
STAR: A Cache-based StreamWarehouse System for Spatial Data

ZHIDA CHEN, SCALE@Nanyang Technological University, Singapore

GAO CONG, SCALE@Nanyang Technological University, Singapore

WALID G. AREF, Purdue University, USA

The proliferation of mobile phones and location-based services has given rise to an explosive growth in spatial data. In order
to enable spatial data analytics, spatial data needs to be streamed into a data stream warehouse system that can provide
real-time analytical results over the most recent and historical spatial data in the warehouse. Existing data stream warehouse
systems are not tailored for spatial data. In this paper, we introduce the STAR system. STAR is a distributed in-memory data
stream warehouse system that provides low-latency and up-to-date analytical results over a fast-arriving spatial data stream.
STAR supports both snapshot and continuous queries that are composed of aggregate functions and ad hoc query constraints
over spatial, textual, and temporal data attributes. STAR implements a cache-based mechanism to facilitate the processing of
snapshot queries that collectively utilizes the techniques of query-based caching (i.e., view materialization) and object-based
caching. Moreover, to speed-up processing continuous queries, STAR proposes a novel index structure that achieves high
efficiency in both object checking and result updating. Extensive experiments over real data sets demonstrate the superior
performance of STAR over existing systems.

CCS Concepts: • Information systems → Location based services; Data streaming; Parallel and distributed DBMSs.

Additional Key Words and Phrases: spatial data, data stream, warehouse system, distributed system

1 INTRODUCTION

With the proliferation of GPS-equipped mobile devices and social media services, there has been an explosive
growth in the spatial data sizes. Numerous users of social media upload posts on Twitter or Facebook using their
smartphones, giving rise to a fast arriving spatial data stream. This spatially annotated data contains valuable
information, and it is beneficial for spatial data analytics. For instance, consider a marketing manager who
wants to know the popularity of some product in various regions so that she can decide whether to adjust the
advertising strategy. She can issue an ad hoc aggregate query that returns the frequencies grouped by region of
the newly uploaded posts on social networks that mention the product. As another example, consider a manager
of a food delivery company who wants to improve the company’s delivery service by adjusting the distribution of
deliverymen in different regions at different time of the day. To do so, he can issue aggregate queries that return
the number of orders and deliverymen grouped by region and time. Techniques already exist for processing
aggregate queries over data warehouses. However, most of these techniques are for batch-oriented systems that
operate over static data sets [35], and are not suitable for handling highly dynamic data streams.
To reduce the gap between data production and data analysis, a data stream warehouse system (DSWS, for

short) [25, 30, 48, 53] provides real-time analytics over data streams. A DSWS efficiently ingests data and enables
online analytical processing over the streamed data. It allows users to issue continuous queries that monitor

Authors’ addresses: Zhida Chen, chen0936@e.ntu.edu.sg, SCALE@Nanyang Technological University, Singapore; Gao Cong, gaocong@ntu.
edu.sg, SCALE@Nanyang Technological University, Singapore; Walid G. Aref, aref@purdue.edu, Purdue University, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2374-0353/2023/6-ART $15.00
https://doi.org/10.1145/3605944

ACM Trans. Spatial Algorithms Syst.

HTTPS://ORCID.ORG/0000-0002-7811-8477
HTTPS://ORCID.ORG/0000-0002-4430-6373
HTTPS://ORCID.ORG/0000-0001-8169-7775
https://orcid.org/0000-0002-7811-8477
https://orcid.org/0000-0002-4430-6373
https://orcid.org/0000-0001-8169-7775
https://doi.org/10.1145/3605944
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605944&domain=pdf&date_stamp=2023-06-27

2 • Zhida Chen, Gao Cong, and Walid G. Aref

changes in the streamed data, as well as snapshot queries that report the current or past status of the warehoused
data.

Although spatial data is explosive, research on distributed DSWSs that offer native spatial data stream analytics
is still lacking. Most existing distributed systems, e.g., [4–6, 21, 63] focus on developing spatial data management
systems over static data sets, but they are not designed for streamed data, and do not support continuous or
snapshot ad hoc aggregate queries over spatial data streams. Existing distributed spatial data stream systems,
e.g., [16, 45], do not support ad hoc aggregate queries. Besides, they only support continuous but not snapshot
queries. BBoxDB [49] is a distributed system to store multidimensional data. BBoxDB Streams [50] is developed
on top of BBoxDB that supports both snapshot and continuous queries on multidimensional data. However,
BBoxDB Streams does not consider aggregate queries that are essential to a DSWS. Moreover, though supporting
multidimensional data, BBoxDB Streams does not offer functions to process the spatial, temporal, and textual
data attributes, collectively, thus making it difficult to extend BBoxDB Streams to support aggregate queries with
ad hoc constraints on spatial, temporal, and textual data attributes.
It is challenging to develop a DSWS that supports both snapshot and continuous ad hoc queries over spatial

data streams. First, the fast arrival speed of streamed spatial data imposes high demand on system performance,
of which the accompanying workload will overwhelm a centralized system. It calls for a distributed solution with
an effective workload partitioning scheme that is tailored for the workloads of processing objects, and analytical
queries. Second, there exist notable differences in the mechanisms for processing snapshot and continuous ad hoc
aggregate queries. Processing snapshot queries requires an efficient caching strategy that uses the cached data to
answer the queries without having to recheck numerous indexed objects. In contrast, processing continuous
queries requires an efficient indexing mechanism that categorizes and groups the continuous queries and incurs
small update overheads over the streamed data.

In this paper, we introduce STAR , an in-memory cache-based Spatial Data Stream Warehouse for spatial data
analytics over spatial data streams. STAR supports both snapshot and continuous aggregate queries that can have
constraints over spatial, textual, and temporal data attributes. STAR supports algebraic aggregate functions, e.g.,
𝐶𝑜𝑢𝑛𝑡 , 𝐴𝑣𝑔, and 𝑆𝑢𝑚 in addition to a holistic aggregate function 𝑇𝑜𝑝𝐾 . Currently, STAR does not support the
spatial join operation that we plan to consider in future work. We develop a cache-based mechanism to facilitate
the processing of snapshot queries that collectively utilizes query-based caching (i.e., view materialization) as
well as object-based caching. Moreover, to speed-up processing continuous queries, STAR employs new indexing
techniques to facilitate the processing of various types of queries. Finally, STAR adopts a workload partitioning
method that achieves data locality and load balance. This paper extends our published conference paper [14]. We
improve it extensively by adding optimizations of processing continuous queries, which is realized by proposing
a novel index to categorize continuous queries with various predicates.

In particular, STAR has the following novelties:

• STAR supports a rich set of aggregate queries over spatial data streams. STAR supports both snapshot
and continuous queries that are composed of algebraic or 𝑇𝑜𝑝𝑘 aggregate functions and ad hoc query
constraints over spatial, textual, and temporal data attributes.

• STAR implements a cache-based mechanism for the efficient processing of snapshot ad hoc aggregate
queries. The cache-based mechanism collectively utilizes the techniques of query- and object-based caching.
Query-based caching considers spatial and textual attributes to define views for aggregate functions, and
it selects and maintains a set of views in-memory to speed-up query processing. Object-based caching is
complementary to query-based caching when a query cannot be answered using the materialized views
only. We develop an approximation algorithm for the object-based caching that provides competitive
solution with theoretical bounds.

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 3

• To efficiently process continuous ad hoc aggregate queries, STAR features a novel index that categorizes the
queries with various predicates, and that reduces the amount of queries to be checked for streamed objects.

• STAR adopts an effective and efficient workload partitioning strategy that is tailored to workloads that
process objects, snapshot and continuous queries, as well as achieves load balance and data locality.

We evaluate STAR on Amazon EC2 with real spatial data. STAR achieves excellent performance for both
snapshot and continuous queries, and outperforms the best baseline systems by up to 5× and 1.5×, respectively.

2 RELATED WORK

Data StreamWarehouse Systems. Based on the architecture, existing distributed warehouse systems can be
classified into three types: (1) Systems that extend a database system with the abilities of fast data ingestion and
real-time data evaluation [24, 26, 53], (2) Systems that extend a data stream processing system with the ability
of exploring historical data [8, 40, 48], and (3) Systems that extend a distributed analytics framework, with the
abilities of fast data ingestion and real-time data evaluation [18, 37, 52]. However, existing distributed warehouse
systems do not provide native support for spatial data stream, and they are difficult to optimize for aggregate
operations over the spatial data stream.
Some work exists for developing centralized stream warehouse systems over spatial data. Gorawski and

Malczok [27] present an index structure to store spatial data in a stream warehouse. Lins et al. [41] and Giampi et
al. [17] consider the problem of exploring streamed spatio-temporal data, and they propose a new data structure
of views to achieve this. Feng et al. [22] propose solutions for exploring events from streamed geotagged tweets.
These systems do not provide native support for aggregate queries with spatial, textual, or temporal constraints
as STAR does. Moreover, these systems are centralized systems, while STAR is distributed.
Systems for Spatial Data. A host of systems has been proposed for exploring spatial data. We categorize

them as systems for static spatial data and systems for streamed spatial data.
(1) Systems for static spatial data [4, 5, 21, 42, 51, 58, 58, 63, 66, 67]. Most systems are extensions to popular

data analytics frameworks, which allow users to write UDFs (user-defined functions) for deploying an analytical
job: SpatialHadoop [21], Hadoop-GIS [4], Parallel-Secondo [42], MD-HBase [51], and ST-Hadoop [5] extend
the Hadoop framework; Simba [63], SpatialSpark [66], LocationSpark [58] and GeoSpark [67] extend the Spark
framework. They extend Hadoop or Spark with the operations to support spatial queries, e.g., range and 𝑘NN
query, over a large scale of spatial data. STAR differs from these systems in at least three aspects: 1) STAR operates
over data streams, while they consider a static data set with few or no updates. 2) STAR is optimized for ad
hoc aggregate queries, while they mainly consider object-finding queries. 3) Apart from operations on spatial
attributes, STAR supports operations on textual attributes, while they focus only on operations over spatial
attributes. LocationSpark [58] adopts a caching strategy that maintains frequently accessed data in-memory for
object-finding queries. However, it does not support caching query results for aggregate queries, which is the
main focus of STAR .
(2) Systems for streamed spatial data [1, 3, 10, 11, 13, 16, 33, 39, 44, 45, 57, 59, 60, 64, 68]. The problem of

querying spatial data streams has been studied extensively. Many centralized solutions have been proposed. Some
efforts are made to find top-𝑘 frequent terms given a spatio-temporal range [3, 57]. Another line of work considers
answering spatio-keyword queries. A spatio-keyword query has a spatial and a textual argument. An object is
in the result of the query if the object qualifies both arguments [10, 39, 68] or if the object’s similarity is larger
than a threshold [33]. Another body of work studies the top-𝑘 spatio-keyword query [11, 59, 60] that returns
objects having the top-𝑘 highest similarities to the input query. Several distributed systems [1, 13, 16, 44, 45]
have been proposed for querying streamed spatial data. However, these systems do not have native support for
aggregate operations over spatial data. In contrast, STAR is optimized for processing ad hoc aggregate queries,
which focuses on computing the aggregate results over all objects rather than finding individual objects, i.e.,

ACM Trans. Spatial Algorithms Syst.

4 • Zhida Chen, Gao Cong, and Walid G. Aref

STAR treats aggregate queries over spatial objects as a first class operation. A preliminary version of this work
has been demonstrated [7].
(3) Systems for both static and streamed spatial data [49, 50]. BBoxDB [49] is a distributed store system for

multidimensional data. The authors develop BBoxDB Streams [50] on top of BBoxDB that supports both snapshot
and continuous queries over multidimensional data. Our work has some key differences from BBoxDB Streams.
First, BBoxDB Streams mainly considers object-finding queries and the join query, and it does not support
aggregate queries that are essential to a DSWS and are the focus of this paper. Second, BBoxDB Streams does
not support the collective processing of spatial, temporal, and textual data attributes, thus making it difficult to
extend BBoxDB Streams to support aggregate queries with ad hoc constraints on these data attributes. In contrast,
STAR is designed to consider spatial, temporal, and textual data attributes, collectively, and applies effective
optimizations on ad hoc aggregate queries. Lastly, BBoxDB Streams does not provide indexing mechanisms for
continuous queries. In contrast, STAR implements two indexes, termed the CH-tree and the MT-index to organize
the continuous queries.

ViewMaterialization. Labio et al. [36] and Ross et al. [54] propose exhaustive algorithms to materialize views
in a single machine that takes significantly long time to finish. Many other research focuses on designing greedy
algorithms, e.g., [28, 29, 31, 65], or randomized algorithms including genetic algorithms, e.g., [32] and simulated
annealing algorithms, e.g., [19, 20]. Ghanem et al. [23] consider the problem of supporting materialized views in
a data stream management system. They propose a synchronized SQL query language to express continuous
queries over data streams and create continuous query execution plans. However, they do not support aggregate
or analytical queries over these views.

Indexing Continuous Queries. Many indexes exist for continuous queries over relational data streams, e.g.,
𝑘-index [62], BE-tree [55] and OpIndex [69]. These indexes do not consider data with spatial and textual attributes,
making them not efficient for our problem. Another line of research investigates indexes for continuous queries
over spatial data streams [10, 12, 15, 43, 60, 61, 68], which only work for continuous queries that have some
spatial constraint. STAR differs in that it accepts continuous queries that do not have a spatial constraint.

3 SYSTEM OVERVIEW

First, we introduce the data types and queries supported by STAR . Then, we present STAR ’s architecture.

3.1 Data Types andQueries

Data Types: Each object has primitive and/or extracted or derived attributes. Primitive attributes store raw
streamed data, while the extracted or derived attributes store data that is extracted or derived from the primitive
attributes. We assume that the raw data has at least the primitive attributes 𝑙𝑜𝑐 and 𝑡𝑖𝑚𝑒 , where 𝑙𝑜𝑐 represents
the geographical latitude and longitude, and 𝑡𝑖𝑚𝑒 represents the timestamp. The raw data can also have other
primitive attributes, e.g., 𝑡𝑒𝑥𝑡 that contains a set of terms. STAR integrates a set of tools to extract data from these
primitive attributes. For example, data in Attribute 𝑡𝑜𝑝𝑖𝑐 can be extracted from 𝑡𝑒𝑥𝑡 by employing a pre-trained
Latent Dirichlet Allocation (LDA) model [9].

Supported Queries: STAR is optimized to support aggregate queries with arbitrary constraints, e.g., over 𝑙𝑜𝑐 ,
𝑡𝑒𝑥𝑡 , and 𝑡𝑖𝑚𝑒 . STAR supports algebraic aggregate functions and a holistic aggregate function TopK . Algebraic
aggregate functions, e.g., 𝐶𝑜𝑢𝑛𝑡 , can be computed over the disjoint data partitions, and then the partial results
are aggregated to obtain the final aggregate result. In contrast, holistic aggregate functions, e.g., TopK , aggregate
the entire data set to obtain the 𝑘 most-frequent terms appearing in Attribute 𝑡𝑒𝑥𝑡 .
STAR supports range and keyword constraints over Attributes 𝑙𝑜𝑐 and 𝑡𝑒𝑥𝑡 , respectively. STAR focuses on

time-window constraints that consider only the recently streamed data. STAR expresses these constraints using
SQL-like syntax, e.g.,

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 5

SELECT aggr_func() FROM stream
WHERE condition(s) GROUP BY attribute(s) [SYNC freq].
aggr_func() is an aggregate function, condition(s) are the constraints, and attribute(s) are the grouping attributes.
STAR allows users to define a continuous query via the SYNC operator. SYNC freq indicates that the query
result is to be refreshed every freq time, which is inspired by [23].
Example 1: Snapshot Aggregate Query. To find the popularity trend for iPhones in Region 𝑅 grouped by

date, we find the number of tweets mentioning ‘iPhone’ and the average length of these tweets.
SELECT Count(id), Avg(length), 𝑑𝑎𝑡𝑒 FROM stream
WHERE 𝑙𝑜𝑐 INSIDE 𝑅 AND 𝑡𝑒𝑥𝑡 CONTAINS “iPhone”
GROUP BY 𝑑𝑎𝑡𝑒 .

Example 2: Snapshot Aggregate Query. Find the hot topics in the given range in the last 10 minutes.
SELECT 𝐶𝑜𝑢𝑛𝑡 (𝑖𝑑), 𝑡𝑜𝑝𝑖𝑐 ,𝑚𝑖𝑛𝑢𝑡𝑒 FROM 𝑠𝑡𝑟𝑒𝑎𝑚
WHERE 𝑙𝑜𝑐 INSIDE 𝑅 AND 𝑡𝑖𝑚𝑒 AFTER “10 mins ago”
GROUP BY 𝑡𝑜𝑝𝑖𝑐 ,𝑚𝑖𝑛𝑢𝑡𝑒 ORDER BY 𝐶𝑜𝑢𝑛𝑡 (𝑖𝑑) DESC.
Example 3: Continuous Aggregate Query. Find the most-frequent terms of each topic on the objects that

are within a region 𝑅. Continuously produce the result every 1 minute.
SELECT TopK(text), 𝑡𝑜𝑝𝑖𝑐 FROM stream
WHERE 𝑙𝑜𝑐 INSIDE 𝑅 GROUP BY 𝑡𝑜𝑝𝑖𝑐 SYNC 1 minute.

Example 4: Continuous Aggregate Query. Track the number of customers on each street in a region every
minute.
SELECT 𝐶𝑜𝑢𝑛𝑡 (𝑖𝑑), 𝑠𝑡𝑟𝑒𝑒𝑡𝑁𝑎𝑚𝑒 ,𝑚𝑖𝑛𝑢𝑡𝑒 FROM 𝑠𝑡𝑟𝑒𝑎𝑚
WHERE 𝑙𝑜𝑐 INSIDE 𝑅 AND 𝑡𝑖𝑚𝑒 AFTER “10 mins ago”
GROUP BY 𝑠𝑡𝑟𝑒𝑒𝑡𝑁𝑎𝑚𝑒 ,𝑚𝑖𝑛𝑢𝑡𝑒 SYNC 1 minute.

3.2 System Architecture

Parser
Object Parser

Query Parser

Router

Query OptimizerIndex Manager
Worker Data Store

Aggregator Result Manager

Index Manager

Load Monitor

Query Processor

GUI

STAR System

DBMS

Location based Services

Apache Storm

Users

DWH HDFS ……

Fig. 1. System Architecture of STAR .

Figure 1 gives the system architecture of STAR .

ACM Trans. Spatial Algorithms Syst.

6 • Zhida Chen, Gao Cong, and Walid G. Aref

STAR is based on Apache Storm1, a distributed stream processing framework that provides great flexibility
for extension. STAR can also be built on other stream processing frameworks, e.g., Flink2. STAR has four main
component types: parser, router, worker and aggregator.

Parser. The parser takes as input the streamed spatial objects and the queries from users. It parses the primitive
attributes of each object and generates the extracted ones. Then, it transforms a user’s SQL query into a predefined
data structure in STAR . The parsed queries are sent to the router.

Router. The router is responsible for workload partitioning. It maintains a global index to facilitate partitioning
the workload.

Worker. The worker processes objects and queries. It builds in-memory object and query indexes. The worker
performs the following operations: (1) On receiving an object, say 𝑜 , the worker inserts 𝑜 into the object index.
Then, it checks the continuous-query index to find the queries whose results are affected due to 𝑜’s arrival. If
any query qualifies, then the worker sends the updated results to the aggregator. (2) On receiving a snapshot
query, say 𝑞𝑠 , the worker leverages the cached data to answer 𝑞𝑠 by checking whether the maintained query
cache structures can be used. Otherwise, it checks the indexed objects to answer 𝑞𝑠 . The results are sent to the
aggregator. (3) On receiving a continuous query 𝑞𝑐 , the worker registers 𝑞𝑐 into an in-memory continuous-query
index.
Aggregator. The aggregator collects the partial results from the workers and computes the final result. It

maintains an index to store the partial results for each query. When receiving a notification that a new query has
arrived, it stores the query id, and waits for the results from workers. For a snapshot query, after receiving all the
partial results, the aggregator computes and outputs the final result immediately. For a continuous query, the
aggregator outputs the result according to the result’s refresh-rate specified by the query.

4 CACHE-BASED QUERY PROCESSING

STAR offers a cache-based mechanism for answering snapshot aggregate queries. It combines query- and
object-based caching.

4.1 Query-based Caching

Query-based caching facilitates processing snapshot queries by materializing a set of views based on historical
queries. It maintains a selected set of views per worker. View selection is a classical problem in data warehousing,
and it has been extensively studied [28, 29, 46]. However, in STAR , we investigate whether views defined for
spatial and textual attributes can optimize processing aggregate queries over spatial data streams. STAR is the
first to utilize materialized views to optimize spatial data analytics. Materializing stream-based views may induce
significant overhead, and it deserves more consideration. STAR materializes the following views into memory:
(1) Views for algebraic aggregate functions, and (2) Views for 𝑇𝑜𝑝𝐾 aggregate functions. The former is similar to
those for relational databases, while the latter is not investigated in the view selection literature. For the first type
of views, STAR has a new load-aware view materialization algorithm, and introduces the notion of domination
among views that is defined based on the load, and that improves the effectiveness of the classic greedy algorithm
by more than 50% according to our experiments. For the second type of views, STAR has an approximate solution
that maintains a summary structure with a performance guarantee.

4.1.1 Views for Algebraic Aggregate Functions. The result of an algebraic aggregate function can be computed
as follows: (1) Partition the input into disjoint subsets, (2) Compute the aggregate result for each subset, and
(3) Aggregate the partial results. For simplicity, we illustrate using Aggregate Function 𝐶𝑜𝑢𝑛𝑡 . However, the
proposed techniques can be extended easily to support other algebraic aggregate functions, e.g., 𝐴𝑣𝑔 and 𝑆𝑢𝑚.

1http://storm.apache.org/
2https://flink.apache.org/

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 7

�!: SELECT ����, �����(id) FROM
���� WHERE ��� ∈ � GROUP BY
����

����	1

����	2

����	�:
“Seattle”, 10
“Los Angle”, 15

����	�:
“Los Angeles”, 5
“Las Vegas”, 12

(a) Views for the range constraint.

�!: SELECT ����, �����(id) FROM ����
WHERE “iphone”∈ ���� GROUP BY ����

“iphone”:
“Seattle”, 10
“Los Angle”, 25
“Las Vegas”, 12
“New York”, 30

�": SELECT ����, �����(id) FROM �������
WHERE “NBA”∈ ���� GROUP BY ����

“NBA”:
“Seattle”, 12
“Los Angle”, 30
“Las Vegas”, 8
“New York”, 22

(b) Views for the keyword constraint.

Fig. 2. Views for the queries.

The reason is that a view is essentially a set of key-value pairs, and the views for 𝐶𝑜𝑢𝑛𝑡 and other algebraic
aggregate functions only differ in the way of computing 𝑣𝑎𝑙𝑢𝑒 for each disjoint subset of objects.
Example. Figure 2 gives an example of views. In Figure 2(a), 𝑞1 returns the number of objects for each city,

and it has a range constraint that covers Cells 1 and 2. The views maintained in Cells 1 and 2 are two sets of
key-value pairs. Only the cells covered by the query need to maintain this view. To answer 𝑞1, we merge the
views in Cells 1 and 2, and scan the objects in the other overlapped cells to compute the result. Figure 2(b) gives
two views for the queries that have a keyword constraint. To answer 𝑞2 and 𝑞3, STAR produces the corresponding
view as output.

Worker Overhead for Processing Snapshot Queries. We define the overhead of a worker for processing
snapshot queries in Definition 4.1.

Definition 4.1. Worker Overhead: The overhead for processing snapshot queries for a worker, say𝑤𝑖 , during
a certain time period can be estimated as follows:

𝐿𝑖 = 𝑐1
∑

𝑜∈𝑂

𝑛1 (𝑜,𝑉) + 𝑐2
∑

𝑞∈𝑄𝑠

(𝑛2 (𝑞,𝑉) + 𝑛3 (𝑞,𝑂)), (1)

where 𝑂 is the set of spatial objects that has arrived to𝑤𝑖 in this time period, 𝑄𝑠 is the set of snapshot queries
handled by 𝑤𝑖 , 𝑉 is the set of materialized views stored in 𝑤𝑖 , 𝑛1 (𝑜,𝑉) is the number of views updated for 𝑜 ,
𝑛2 (𝑞,𝑉) is the sum of the sizes of the views checked for 𝑞, 𝑛3 (𝑞,𝑂) is the number of indexed objects checked for
𝑞, 𝑐1 is the average cost of updating a view, and 𝑐2 is the average cost of processing a snapshot query.

Note that the load of a worker is composed of the processing overheads of both snapshot and continuous
queries. Definition 4.1 gives the overhead of processing the snapshot queries. We will discuss the processing of
the continuous queries in Section 5.

Domination. Observe that when a set of views is materialized, selecting another view to be materialized may
result in a bigger load. Consider a candidate view 𝑣𝑐 , and a set of materialized views 𝑆 , 𝐿(𝑆 ∪ {𝑣𝑐 }) − 𝐿(𝑆) < 0,
where 𝐿(.) is computed using Eqn 1. Although STAR can benefit from materializing a new view 𝑣𝑐 by gaining
efficiency in answering a set of queries, this benefit can be outweighed by the burden of maintaining the new
view. We define domination between views to capture this.

Definition 4.2. Domination: Given two views 𝑣𝑎 and 𝑣𝑏 , 𝑣𝑎 is dominated by 𝑣𝑏 iff (1) 𝑄 (𝑣𝑎) can be answered
using 𝑣𝑏 , where𝑄 (𝑣𝑎) represents the set of queries that can be answered using 𝑣𝑎 , and (2) 𝐿({𝑣𝑏}) < 𝐿({𝑣𝑎, 𝑣𝑏}).

ACM Trans. Spatial Algorithms Syst.

8 • Zhida Chen, Gao Cong, and Walid G. Aref

Based on this definition, when a view, say 𝑣𝑐 , is selected for materialization, the views dominated by 𝑣𝑐 are
removed from the candidate views for materialization.
Generating Candidate Views. Another problem is how to generate the set of candidate views. We insert

every query 𝑞 into a quad-tree [56], and find the largest quad-tree node (denoted by 𝑛𝑞) that is covered by 𝑞’s
query range. Then, the view defined over the objects in 𝑛𝑞 that can help answer 𝑞 will be added to the list of
candidate views. This strategy is based on the domination definition. The rationale for it is to reduce the number
of candidate views.
Load-aware View Materialization. STAR selects recursively the view that has the largest benefit per unit

space. The benefit of a view w.r.t. a set of materialized views 𝑆 is computed by:

𝐵(𝑣, 𝑆) = max(𝐿(𝑆) − 𝐿(𝑆 ∪ {𝑣}), 0), (2)

where 𝐿(𝑆) is the worker overhead due to 𝑆 (Eqn 1). The benefit of a view 𝑣 per unit space is 𝐵(𝑣, 𝑆)/𝑛𝑣 . The
main operation in this algorithm is finding the view that has the maximum benefit per unit space, and thus it has
a time complexity of 𝑂 (𝑛2), where 𝑛 is the number of candidate views. It runs at most 𝐶 iterations, where 𝐶 is
the memory capacity for the materialized views, and it is a system-defined parameter. Thus, the time complexity
of the algorithm is 𝑂 (𝐶𝑛2).

4.1.2 Views for the 𝑇𝑜𝑝𝐾 Aggregate Function. The result of an algebraic aggregate function can be computed by
aggregating the partial results for each subset of the data. However, this technique does not work for the 𝑇𝑜𝑝𝐾
aggregate function, as it needs to compute over the complete dataset. Due to the fast arrival of the streamed
objects and the large vocabulary size, it is not practical to maintain an accurate view for a TopK query. We
propose to maintain a summary structure as a view that contains a few key-value pairs. To save memory space,
we do not employ techniques that have dynamic summary size, e.g., [57]. Instead, we maintain a SpaceSaving
summary [47] that estimates the frequency of any term 𝑡 with additive error 𝜖𝑛 using 𝑂 (1/𝜖) memory space,
where 𝑛 is the number of objects. For a parameter𝑚 that is specified based on the available memory size, the
SpaceSaving summary maintains at most𝑚 counters.𝑚 is set automatically by the system, or it is provided by a
system administrator. When a new term 𝑡 arrives, SpaceSaving summary checks if 𝑡 has been maintained in the
summary, and increments 𝑡 ’s counter. Otherwise, let 𝑡𝑚 be the term having the least frequency in the summary, 𝑡
replaces 𝑡𝑚 and increase the counter by 1. To answer a TopK query, the summary can output the 𝑘 terms having
the largest counters. A term 𝑡 is guaranteed to be among the top-𝑘 most-frequent terms if𝐶 [𝑡] −𝜖𝑡 > 𝐶𝑘+1, where
𝐶𝑘+1 is the (𝑘 + 1)-th largest counter.

Theorem 4.3. For a 𝑇𝑜𝑝𝐾 query, by using 𝑂 (1/𝜖) memory space, SpaceSaving summary guarantees that terms
having frequency larger than (1− 𝜖)𝐹𝑘 are included in the result, where 𝐹𝑘 is the frequency of the 𝑘-th most-frequent
term.

Proof: Assume that the SpaceSaving summary maintains 𝑛
𝜖𝐹𝑘

counters that take𝑂 (1/𝜖) memory space. Then, the
maximal possible overestimation error will be 𝜖𝐹𝑘 . Therefore, all the terms included in the result have frequencies
that are larger than (1 − 𝜖)𝐹𝑘 .

According to Theorem 4.3, the SpaceSaving summary provides guarantees on the accuracy of the result for a
𝑇𝑜𝑝𝐾 aggregate function. In the case that a query has ad hoc constraints, STAR maintains multiple SpaceSaving
summaries, one for each subset of data that is partitioned according to the constraints. Agarwal et al. [2] have
proven that the guarantee in Theorem 4.3 still holds when merging multiple SpaceSaving summaries.

4.1.3 Using Views for ProcessingQueries. STAR organizes views using a quad-tree. Each node in the quad-tree
maintains a set of materialized views (the empty set is also possible for some nodes). To explain the procedure of
processing a query, say 𝑞, we start with a simplified case when 𝑞’s query range matches a quad-tree node, say 𝑛𝑠 .
If 𝑛𝑠 is a leaf node, we select the most cost-efficient view(s) in 𝑛𝑠 to answer 𝑞, or access the objects in 𝑛𝑠 if these

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 9

view(s) do not exist. When 𝑛𝑠 is a non-leaf node, we compare the costs of using 𝑛𝑠 and using the child nodes of
𝑛𝑠 to answer 𝑞, and choose the one that has the smaller cost. STAR uses Eqn 1 to compute the cost. If one of the
child nodes 𝑛𝑐 is also a non-leaf node, we recursively compare the costs of using 𝑛𝑐 and using 𝑛𝑐 ’s child nodes.
Specifically,

𝐿(𝑞,𝑛𝑠) =

{

𝑐𝑜𝑠𝑡 (𝑛𝑠), if 𝑛𝑠 is a leaf

𝑚𝑖𝑛(𝑐𝑜𝑠𝑡 (𝑛𝑠),
∑

𝑛𝑐 ∈𝑛𝑠 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝐿(𝑞,𝑛𝑐)), otherwise

This recursive computation is efficient because we maintain the sizes of the materialized views and the number
of objects in each node. Then, we access either the materialized views or the objects, accordingly, to compute the
result.

�!: SELECT �����(id) FROM ����
WHERE ��� ∈ � GROUP BY ����

Covered by �

Overlapped by �
on a side

Overlapped by �
on a corner

Unrelated to �

Fig. 3. A query range overlaps multiple quad-tree nodes.

Next, we explain the case when the query range is not a quad-tree node. The overall procedure is identical to
processing the simplified case, except that we cannot utilize the views of a node that is not covered by the query
range. For nodes that are partially overlapped, we need to access objects in them to compute the query result.
Figure 3 gives an example query that overlaps multiple quad-tree nodes. Nodes may overlap the query by a side
or by a corner, e.g., nodes with slash pattern and with horizontal line pattern, respectively. The overhead may be
large when many partially overlapped nodes exist with many objects in them. To reduce query time, we propose
to cache objects in the next subsection.

4.2 Object-based Caching

We present the idea of caching the bordering objects that works seamlessly with the materialized views. The main
idea is to cache the objects in the borders of a node that overlap the query range so that we only need to access
the cached objects rather than the entire object set in the node to answer a query. We propose an approximation
algorithm to decide a set of cached objects to optimize query processing with theoretical guarantees.

Definition 4.4. Caching Region: For a quad-tree node 𝑛𝑝 that partially overlaps queries, there are two types
of caching regions for 𝑛𝑝 . A side caching region of 𝑛𝑝 is a rectangle inside 𝑛𝑝 that has one side being set as a
border line of 𝑛𝑝 . A corner caching region of 𝑛𝑝 is a circular sector inside 𝑛𝑝 whose centre is a corner point of 𝑛𝑝
and has the angle being equal to 90 degree.

Figure 4 gives example caching regions. The smaller gray node has two candidate side caching regions that have
a height equal to the shorter or longer bidirectional arrow, respectively. The larger gray node has two candidate
corner caching regions that have a radius equal to the shorter or longer bidirectional arrow, respectively.
For one quad-tree node, we maintain at most 8 caching regions, i.e., four for the sides and the other four for

the corners. For a query 𝑞 that covers a side of a node 𝑛𝑐 (but not the full node region), only the closest side
caching region of 𝑛𝑐 to 𝑞 can be used (the overlapped area should be inside the caching region, otherwise, we do
not use the cache). For a query 𝑞′ that covers a corner of a node 𝑛𝑐 (again, not the full node region), we select

ACM Trans. Spatial Algorithms Syst.

10 • Zhida Chen, Gao Cong, and Walid G. Aref

among the closest corner caching region and the two closest side caching regions. We use the one that has the
smallest number of cached objects among the ones covering the overlapped area. Next, we define the Object
Caching Problem.

Definition 4.5. Object Caching Problem: Given a set of spatial objects 𝑂 , a set of snapshot queries 𝑄𝑠 , and a
quad-tree 𝑇 organizing the materialized views, the Object Caching problem is to decide a caching region (can be
empty) for each border or corner of the nodes in 𝑇 . We aim to maximize

∑

𝑞∈𝑄𝑠

∑

𝑛𝑝 ∈𝑁𝑝
(|𝑂𝑛𝑝 | − |𝑂𝑐 |) subject to

the constraint that the total number of cached objects is smaller than 𝐵, where 𝑁𝑝 is the set of partially overlapped
nodes for 𝑞,𝑂𝑛𝑝 is the set of objects in 𝑛𝑝 ,𝑂𝑐 is the set of objects in the caching region that are used for answering
𝑞, and 𝐵 is the memory capacity for caching.

Theorem 4.6. The Object Caching problem is NP-hard.

Proof Sketch: This can be proved by reducing from the Knapsack problem.
Load-based Greedy Algorithm.We introduce a greedy algorithm to determine the caching regions. We need

to decide caching regions for a node that overlaps queries. The optimal solution is based on the overlapped area
with queries. Considering a set of partially overlapped queries 𝑄 and the overlapped area being 𝐴, a caching
region 𝑟 that covers 𝐴 can accelerate the processing of each query in 𝑄 . The overall load improvement will
be Δ𝐿 = 𝑐2

∑

𝑞∈𝑄 (𝑛 − 𝑛𝑟) based on Eqn 1, where 𝑛 and 𝑛𝑟 denote the number of objects in the node and in 𝑟 ,
respectively. Figure 4 gives an example of caching regions. Both 𝑞1 and 𝑞2 partially overlap the smaller gray node.
If we build a caching region with the height being equal to the shorter bidirectional arrow, we can reduce the
running time of 𝑞1. If the height of the caching region equals to the longer bidirectional arrow, both 𝑞1 and 𝑞2
can be accelerated. Based on this observation, we propose a greedy algorithm that decides the caching regions in
descending order of Δ𝐿 (𝑅,𝑟)

𝑛𝑟
, where 𝑅 denotes the current set of caching regions, and Δ𝐿(𝑅, 𝑟) denotes the load

improvement after adding 𝑟 . When adding 𝑟 into 𝑅, we delete the caching regions that are covered by 𝑟 .

�! �"

Fig. 4. Caching regions of a node for queries.

Theorem 4.7. The load improvement of the caching regions 𝑅 produced by the greedy algorithm is at least 63% of
that of the optimal solution using the same amount of space as 𝑅.

Proof: The proof is based on the observation that

Δ𝐿({𝑟1, 𝑟2},𝑅) ≤ Δ𝐿(𝑟1,𝑅) + Δ𝐿(𝑟2,𝑅)

that can be easily extended to Δ𝐿(𝐺,𝑅) ≤
∑

𝑟 ∈𝐺 Δ𝐿(𝑟 ,𝑅), where 𝐺 denotes a set of caching regions.
Let 𝑅 be the set of caching regions produced by the greedy algorithm, Δ𝐿(𝑅) be the load improvement of 𝑅,

and 𝜃𝑅 be the memory used by 𝑅. Assume that the optimal solution using 𝜃𝑅 units of memory space produces 𝑅∗,
and the load improvement of 𝑅∗ is Δ𝐿(𝑅∗).
Consider that during the running of the greedy algorithm, Caching Region 𝑅𝑘 has been selected, and 𝑅𝑘

consumes 𝑘 units of memory space. 𝑅𝑘 has the load improvement
∑𝑘

𝑖=1 𝑏𝑖 , where 𝑏𝑖 is the load improvement of
adding the 𝑖th unit of memory space. Observe that the load improvement of the set 𝑅∗ ∪ 𝑅𝑘 is at least Δ𝐿(𝑅∗), i.e.,
the load improvement of 𝑅∗ with respect to 𝑅𝑘 is at least Δ𝐿(𝑅∗) −

∑

1≤𝑖≤𝑘 𝑏𝑖 : Δ𝐿(𝑅
∗,𝑅𝑘) ≥ Δ𝐿(𝑅∗) −

∑𝑘
𝑖=1 𝑏𝑖 .

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 11

According to this earlier observation, we deduce that

Δ𝐿(𝑅∗,𝑅𝑘) ≤
∑

𝑟 ∈𝑅∗

Δ𝐿(𝑟 ,𝑅𝑘). (3)

There exists a caching region 𝑟𝑡 ∈ 𝑅∗ satisfying Δ𝐿(𝑟𝑡 ,𝑅𝑘)/𝜃𝑟𝑡 ≥ Δ𝐿(𝑅∗,𝑅𝑘)/𝜃𝑅 ≥ (Δ𝐿(𝑅∗) −
∑𝑘

𝑖=1 𝑏𝑖)/𝜃𝑅 , where
𝜃𝑟𝑡 is the memory space of 𝑟𝑡 . Otherwise, inequality 3 will not hold.

The load improvement per unit space of the caching region 𝑟𝑔 selected by the greedy algorithm with respect to
𝑅𝑘 is at least Δ𝐿(𝑟𝑡 ,𝑅𝑘)/𝜃𝑟𝑡 that is at least (Δ𝐿(𝑅

∗) −
∑𝑘

𝑖=1 𝑏𝑖)/𝜃𝑅 . By distributing the benefit of 𝑟𝑔 over each of
its unit memory spaces, we get 𝑏𝑘+𝑗 ≥ (Δ𝐿(𝑅∗) −

∑𝑘
𝑖=1 𝑏𝑖)/𝜃𝑅, for 0 < 𝑗 ≤ 𝜃𝑟𝑔 , where 𝜃𝑟𝑔 is the memory used by

𝑟𝑔. The above equation applies to each caching region that is selected by the greedy algorithm. Thus,

Δ𝐿(𝑅∗) ≤ 𝜃𝑅𝑏 𝑗 +

𝑗−1
∑

𝑖=1

𝑏𝑖 , for 0 < 𝑗 ≤ 𝜃𝑅 . (4)

Multiplying the 𝑗 th equation by (𝜃𝑅−1𝜃𝑅
)𝜃𝑅− 𝑗 and adding all the equations, then

∑𝜃𝑅
𝑖=1 𝑏𝑖/Δ𝐿(𝑅

∗) ≥ 1−1/𝑒 ≈ 0.63.
Theorem 4.7 provides a theoretical bound on the performance of the greedy algorithm. Notice that the savings

achieved from having caching regions are orthogonal to the query-based caching, i.e., maintaining materialized
views. Thus, having caching regions can reduce query time even without using query-based caching.

Maintaining Caching Regions. Due to insertions of new objects, the memory constraints for the caching
regions may get violated. To handle this issue, STAR adopts an eviction policy that removes the Least Recently
Used (LRU, for short) caching region. It keeps removing these caching regions in the LRU order until the memory
constraint is satisfied.

5 INDEXING CONTINUOUS QUERIES

Unlike existing spatial data streaming systems [13, 16, 45] that are optimized for continuous range queries with
keyword filtering, STAR deals with aggregate continuous queries with ad hoc constraints, whose results are
a set of key-value pairs. In their setting, each query has a range and keyword constraints, and spatial indexes,
e.g., a quad-tree, are adapted to index the continuous range queries [10, 13, 16, 45, 68]. However, these adapted
indexing techniques are not applicable to STAR because the query predicates STAR supports are more complex.
Another line of work [55, 62, 69] proposes indexes for continuous queries on relational data streams. They do not
consider queries with range and keyword constraint as in STAR , making them not efficient for our problem.

The challenges are twofold: First, STAR needs to store and update the query results against the fast streamed
objects. It imposes higher requirements on the efficiency of the index, as we not only check whether or not a new
object satisfies a query, but also need to update the query results in real-time. Second, STAR needs to handle
various types of predicates. Furthermore, for the queries with temporal constraints that focus on the most recent
objects, e.g., a query that wants the aggregate information of the latest 10 minutes of data, STAR needs to exclude
the effect of the outdated objects from the stored results. STAR implements new indexing mechanisms to address
the above challenges. In Section 5.1, we introduce cost-based hybrid tree index (CH-tree) for STAR to handle the
continuous queries without temporal constraints. In Section 5.2, we present the multi-layer time-window index
(MT-index) for STAR to process the queries with temporal constraints that works together with the CH-tree.

5.1 Indexing Non-TemporalQueries

We introduce a new index, termed the cost-based hybrid tree index (CH-tree, for short) that stores continuous
queries without a temporal constraint. The CH-tree is novel in that it applies to a variety of query predicates, e.g.,
spatial and keyword constraints, and it considers the selectivities of query predicates that enable it to achieve
better efficiency over existing indexes proposed for continuous queries.

ACM Trans. Spatial Algorithms Syst.

12 • Zhida Chen, Gao Cong, and Walid G. Aref

A query may have ad hoc constraints on several attributes. The constraints can be represented as a conjunction
of Boolean predicates. Each predicate is a triple 𝑃 (𝑎𝑡𝑡𝑟 ,𝑜𝑝𝑡 ,𝑣𝑎𝑙) , where 𝑎𝑡𝑡𝑟 is an attribute, 𝑜𝑝𝑡 is a predicate operator,
and 𝑣𝑎𝑙 is a set of values. Given an object 𝑜 , 𝑃 (𝑎𝑡𝑡𝑟 ,𝑜𝑝𝑡,𝑣𝑎𝑙) (𝑜) returns true if all the predicates are satisfied, and
returns false, otherwise. For ease of explanation, we use the following 4 types of predicates as representatives:
(1) 𝑃 (𝑥,=,𝑣) , (2) 𝑃 (𝑦,∈,[𝑙𝑏,𝑢𝑏]) , (3) 𝑃 (𝑙𝑜𝑐,𝑖𝑛,𝑅) , and (4) 𝑃 (𝑡𝑒𝑥𝑡,ℎ𝑎𝑠,{𝑘1,𝑘2,...}) . Note that the CH-Tree applies to other types
of predicates.
The main idea of the CH-Tree is to categorize the queries based on their predicates, and use the common

predicates to group them. However, it is difficult to find the optimal ordering of the common predicates that can
minimize the number of predicates to be checked. Actually, the problem is NP-hard, as it can be reduced from the
set cover problem. Therefore, we introduce a greedy method that uses a cost model to find a good ordering of the
predicates.

Cost model. The cost model takes into consideration three factors: (1) the selectivity of the predicate, (2) the
execution cost of the predicate, and (3) the number of queries that contain the predicate. Intuitively, for a new
object, we want to filter the most irrelevant queries as soon as possible with small costs. We construct our cost
model using sets of historical objects and queries. We estimate the cost due to a predicate 𝑃 (𝑎𝑡𝑡𝑟 ,𝑜𝑝𝑡 ,𝑣𝑎𝑙) by

𝐶𝑜𝑠𝑡 (𝑃) = 𝑐𝑃1 · |𝑂 | +
∑

𝑜∈𝑂

(𝑐𝑃2 · |𝑄𝑜 | + 𝑐
𝑃
3 · |𝑄𝑣 |), (5)

where 𝑂 is the set of objects, 𝑄𝑜 is the set of queries with which 𝑃 (𝑎𝑡𝑡𝑟 ,𝑜𝑝𝑡,𝑣𝑎𝑙) is satisfied without a need of
verification for an object 𝑜 , and𝑄𝑣 is the set of queries that require verification; 𝑐𝑃1 is the average cost of checking
Attribute 𝑎𝑡𝑡𝑟 of objects for 𝑃 (𝑎𝑡𝑡𝑟 ,𝑜𝑝𝑡,𝑣𝑎𝑙) , 𝑐𝑃2 is the average cost of processing the queries without verification,
and 𝑐𝑃3 is the average cost of processing the queries that require verification. To explain the difference between
𝑄𝑜 and 𝑄𝑣 , consider predicates 𝑃 (𝑥,=,𝑣) and 𝑃 (𝑙𝑜𝑐,𝑖𝑛,𝑅) . If we use a hash table to categorize 𝑃 (𝑥,=,𝑣) , e.g., 𝑣0 is the
key and the value is a list of predicates having 𝑥 = 𝑣0, 𝑄𝑜 is the set of queries that the predicates having 𝑥 = 𝑣0
corresponds to, and𝑄𝑣 = Φ. The reason is that the property of the hash table guarantees that the returned 𝑃 (𝑥,=,𝑣)

is true for the new object, so the corresponding queries require no verification. For 𝑃 (𝑙𝑜𝑐,𝑖𝑛,𝑅) , we use a spatial
index, e.g., a quad-tree, to categorize the predicates. For an object 𝑜 , let 𝐿𝑒𝑎𝑓 be the leaf node that 𝑜 falls into and
𝑃𝐿𝑒𝑎𝑓 be the set of predicates stored in 𝐿𝑒𝑎𝑓 , 𝑄𝑣 is the set of queries that 𝑃𝐿𝑒𝑎𝑓 corresponds to, and 𝑄𝑜 = Φ. The
reason is that 𝑃𝐿𝑒𝑎𝑓 may not be true and requires verification, i.e., checking whether 𝑜 falls into the query range.
It is worth noting that 𝑄𝑜 may be not empty if we store additional information for each leaf node of that the set
of predicates whose 𝑅 covers the leaf node range.

Categorizing the Predicates. Since the costs of predicates depend on the way that they are categorized, we
first introduce the indexing mechanism for each type of predicate, respectively.

𝑃 (𝑥,=,𝑣) : We use a hash table that uses each distinct value of 𝑣 as the key and maps the key to the predicates
that 𝑥 equals to the key.
𝑃 (𝑦,∈,[𝑙𝑏,𝑢𝑏]) : We use an interval tree that is built by inserting intervals specified by the predicates. Each
tree node has a centre point, and the predicates whose intervals overlap it are stored in that node.
𝑃 (𝑙𝑜𝑐,𝑖𝑛,𝑅) : We use a quad-tree that is built by inserting ranges specified by the predicates. The predicates
are stored in the leaf nodes that overlap the query range.
𝑃 (𝑡𝑒𝑥𝑡 ,ℎ𝑎𝑠,{𝑘1,𝑘2,...}) : We use an inverted index that is built by selecting a representative keyword as the key
for each predicate and inserting the predicates into the list of the corresponding key. For each predicate, we
choose the most selective keyword (i.e., the keyword that has the least frequency in the objects) as the key.

Cost-basedHybrid Tree.Wepropose a cost-based hybrid tree index (CH-tree, for short) to store the continuous
queries. We use the cost model to predefine the ordering of the predicates to be considered when building CH-tree,
which is in ascending order of 𝐶𝑜𝑠𝑡 (𝑃): the root node (level 1) consider the first predicate, the nodes at level 2

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 13

considers the second predicate, and so on. The queries are stored in the leaf nodes and for each non-leaf node 𝑁 ,
we categorize the queries based on a selected 𝑃 (𝑎𝑡𝑡𝑟 ,𝑜𝑝𝑡 ,𝑣𝑎𝑙) in the following way:

𝑃 (𝑥,=,𝑣) : If a query 𝑞 has Predicate 𝑃 (𝑥,=,𝑣) , we pass 𝑞 to the child node labelled by the value of 𝑣 (if such
node does not exist, we create one). Otherwise, we pass 𝑞 to a special child node labelled “none”.
𝑃 (𝑦,∈,[𝑙𝑏,𝑢𝑏]) : If a query 𝑞 has Predicate 𝑃 (𝑦,∈,[𝑙𝑏,𝑢𝑏]) , we insert the query interval and query id into an
interval tree that is integrated in 𝑁 . Each node of the interval tree has a pointer linking to a child node of
𝑁 (if the child node does not exist, we create one). Then we pass 𝑞 to that child node. If 𝑞 does not have
Predicate 𝑃 (𝑦,∈,[𝑙𝑏,𝑢𝑏]) , we pass 𝑞 to a special child node labelled “none”.
𝑃 (𝑙𝑜𝑐,𝑖𝑛,𝑅) : If a query 𝑞 has Predicate 𝑃 (𝑙𝑜𝑐,𝑖𝑛,𝑅) , we insert the query range and query id into a quad-tree
that is integrated in 𝑁 . Each leaf node of the quad-tree has a pointer linking to a child node of 𝑁 (if the
child node does not exist, we create one). Then we pass 𝑞 to that child node. If 𝑞 does not have predicate
𝑃 (𝑙𝑜𝑐,𝑖𝑛,𝑅) , we pass 𝑞 to a special child node labelled “none”.
𝑃 (𝑡𝑒𝑥𝑡 ,ℎ𝑎𝑠,{𝑘1,𝑘2,...}) : If a query 𝑞 has Predicate 𝑃 (𝑡𝑒𝑥𝑡,ℎ𝑎𝑠,{𝑘1,𝑘2,...}) , we find the most selectivity keyword of 𝑞
and pass 𝑞 to the child node labelled by that keyword (if such node does not exist, we create one). Otherwise,
we pass 𝑞 to a special child node labelled “none”.

For predicates 𝑃 (𝑦,∈,[𝑙𝑏,𝑢𝑏]) and 𝑃 (𝑙𝑜𝑐,𝑖𝑛,𝑅) , we employ an interval tree or quad-tree to categorize the predicates.
The update overhead is large when the insertion of a new query incurs node splitting operations, which will
trigger a sequence of update operations on the successor nodes. For the purpose of reducing the update costs,
we decide in-prior the structure of the interval tree and quad-tree using a set of historical set of queries. After
deploying them to the CH-tree, we do not update their structure when inserting new queries.

To avoid degrading the performance of a CH-tree greatly due to changes in the workload and data distribution,
we use a threshold to limit the maximum number of continuous queries that a CH-tree can store. When a CH-tree
is full, we build a new CH-tree to store the new queries, which is based on a fresh cost model derived from the
most recent set of queries and objects. This strategy performs well when minor changes happen to the workload
and data distribution before a CH-tree becomes full. However, the threshold cannot be too small, otherwise it will
result in considerable index building cost. We set the threshold at an empirical value of 1,000. We leverage a lazy
deletion strategy to delete queries from the CH-tree. When the user drops a query, we do not delete that query
immediately, but set an inactive state to it. We set a threshold for the maximum number of inactive queries and
delete all the inactive queries when the threshold is reached. A CH-tree is deleted if all of its queries are inactive.
Processing Objects.When receiving an object 𝑜 , we traverse the CH-tree to find the queries whose result

requires updating. At each non-leaf node, based on the selected predicate 𝑃 (𝑎𝑡𝑡𝑟 ,𝑜𝑝𝑡 ,𝑣𝑎𝑙) , we check Attribute 𝑎𝑡𝑡𝑟
of 𝑜 to find the child node(s) that 𝑜 should be passed to: (1) For 𝑃 (𝑥,=,𝑣) , we pass 𝑜 to the child node that is
labelled by the value of 𝐴𝑡𝑡𝑟 . (2) For 𝑃 (𝑦,∈,[𝑙𝑏,𝑢𝑏]) and 𝑃 (𝑙𝑜𝑐,𝑖𝑛,𝑅) , we check the interval tree or quad-tree to find
the child node that 𝑜 should be passed to. During the procedure, for the node that 𝑜 falls in, we check 𝑜 against
its intervals or ranges, and mark the corresponding query id as “invalid” if 𝑜 is not in an interval or range. (3)
For 𝑃 (𝑡𝑒𝑥𝑡,ℎ𝑎𝑠,{𝑘1,𝑘2,...}) , we scan 𝑡𝑒𝑥𝑡 of 𝑜 and pass 𝑜 to the child node(s) whose labels are contained in 𝑡𝑒𝑥𝑡 . At
each level, we also pass 𝑜 to the special child node labelled “none”. After reaching to a leaf node, we first filter
the queries whose ids are marked as “invalid”. For the remaining queries without predicate 𝑃 (𝑡𝑒𝑥𝑡 ,ℎ𝑎𝑠,{𝑘1,𝑘2,...}) ,
we update their results directly. For the query with predicate 𝑃 (𝑡𝑒𝑥𝑡,ℎ𝑎𝑠,{𝑘1,𝑘2,...}) , we update its result only if 𝑜
contains all the keywords.

5.2 Indexing TemporalQueries

STAR supports aggregate queries with a time-window constraint, as illustrated in Section 3.1 (Example 4 with
the temporal constraint “time AFTER 10 mins ago”). Processing this and similar queries is challenging as we not
only need to maintain the query results but also need to exclude the effect of the outdated objects from the results.

ACM Trans. Spatial Algorithms Syst.

14 • Zhida Chen, Gao Cong, and Walid G. Aref

time

level

� = 0
� = 1
� = 2

� = 5 min

(a) MT-index at time 𝑡0.

time

level

� = 0
� = 1
� = 2

� = 5 min

(b) MT-index at time 𝑡0+1min.

time

level

� = 0
� = 1
� = 2

� = 5 min

(c) MT-index at time 𝑡0+1min
(cont.).

time

level

� = 0
� = 1
� = 2

� = 5 min

(d) MT-index at time 𝑡0+2min.

Fig. 5. The MT-index and a query with a 5-min time-window and 1-min refresh rate.

To address this, we present a multi-layer time-window index (MT-index) that works along with the CH-tree by
integrating the MT-index into the leaf nodes of the CH-tree.
Each continuous query has a “sync” clause to define its result refresh rate, e.g., every 1 minute. In STAR , we

assume that the length of the refresh interval is always smaller than the time-window size and the window size is
a multiple of the refresh interval. The assumption is not necessarily true, as we can always split a refresh interval
into smaller intervals that can be divided evenly by the window size and wait to report the result when the
refresh interval is reached. For ease of explanation, we consider the simple case of one query and then generalize
to multiple queries. The MT-index is composed of multi-layer time intervals. Each layer consists of adjacent
equal-sized time intervals. At layer 𝐿0, each interval is of size 𝑟 , where 𝑟 is the length of the refresh interval. At
layer 𝐿𝑖 , each interval is of size 2𝑖 ×𝑟 . The highest layer is 𝐿𝑚 , where𝑚 = argmax𝑖 2

𝑖 ≤ 𝑊
𝑟 (𝑊 is the time-window

size). The interval at layer 𝐿𝑖+1 is built by combining two adjacent intervals at layer 𝐿𝑖 . Each interval maintains a
partial query result on the objects that arrives within it.

When a new object arrives, we update the partial result in the newest 𝐿0 interval. When the timestamp reaches
the end of the newest interval, it indicates that the result refresh interval has been reached. Before computing the
result, we delete the intervals that are not covered by the time-window and consider whether to conduct merging
operations: Staring from layer 𝐿0, if the second-newest interval is not covered by any interval at layer 𝐿1, we
merge the two newest intervals (and the partial results in them) into a new interval at layer 𝐿1. Then we move to
the higher layer and conduct the same operation recursively. The iteration ends if the second-newest interval at
the current layer has been covered or the highest layer is reached. After that, we compute the result by finding a
minimum number of intervals that compose the query time-window and combining the partial results in them.
Figure 5 gives an example of MT-index and the procedure of processing a query with a time-window of 5

minutes and 1 minute refresh rate. In Figure 5(a), we use one 𝐿0 interval and one 𝐿2 interval, i.e., the grey boxes,
to answer the query. In Figure 5(b)), after one minute, the refresh interval is reached, so we delete intervals that
are not covered by the time-window, i.e., the slashed boxes. In Figure 5(c), we conduct merging operations and
build two new intervals at 𝐿1 and 𝐿2, and compute the result using intervals at 𝐿0 and 𝐿2. In Figure 5(d), another
refresh interval is reached. We delete the outdated interval, and as no merging is required, we compute the result
directly.

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 15

Time Complexity.When the refresh interval is not reached, only the newest interval at layer 𝐿0 requires
updating, so the time complexity is𝑂 (1). When the refresh interval is reached, for each layer, at most one deletion
and merging are conducted. Therefore, the time complexity is 𝑂 (⌈log𝑊 /𝑟⌉).
Extending to General Cases.When there are more than one query, we set𝑊 as the largest time-window

size, and set 𝑟 as the largest common divisor of all the query refresh rates that can be divided evenly by𝑊 (in the
most extreme case, 𝑟 is set as 1-min if all the time-windows are in minutes). We can shift slightly the refresh
period of a new query so that it can be put into an existing MT-index. The only difference is that we need to
decide the set of queries whose results need updating when the timestamp reaches the end of the newest 𝐿0
interval. To avoid a very large𝑊 and small 𝑟 , we categorize the queries into groups based on the time-window
size and maintain an MT-index for each group of queries.

6 WORKLOAD PARTITIONING

STAR partitions the streaming workload with two main considerations: (1) Data Locality. Records that are close
to each other should be assigned to the same partition. (2) Load Balance. Partitions should be roughly of the
same load.

The load of one worker comprises processing spatial objects, processing queries, and maintaining caches, i.e.,
materialized views and cached objects. The workload partitioning problem aims at minimizing the total amount
of load. The first constraint is that the memory usage of the indexed data and the index structures does not
exceed the memory capacity of the worker. The second constraint is that the workers should have balanced load.
The Problem is NP-hard [29]. AQWA [6] is a disk-based system that is based on Hadoop, and hence is not well
suited for streaming. However, AQWA’s partitioning algorithm utilizes a kd-tree for spatial workload partitioning
problem. AQWA’s partitioning algorithm is not suitable for the problem at hand because AQWA only considers
the query processing cost, while in our problem, the cache maintenance cost accounts for an important part of
the worker load. Therefore, we propose a new workload partitioning algorithm.

Algorithm overview.We use a quad-tree to partition the workload. The main idea is to construct a quad-tree
by recursively partitioning the most loaded node, and then assigning leaf nodes of the quad-tree to workers,
aiming to achieve load balance and data locality. The algorithm can be divided into two phases. In Phase 1, we
initialize a quad-tree with one root node, and recursively partition the node with the maximum estimated load
until the number of nodes is larger than the required number of partitions. In each iteration, we call a function to
estimate the load of each node, and partition the node having the maximum load. We estimate the load of a node
by 𝑐1 |𝑂 | + 𝑐2 |𝑂 | · |𝑄𝑐 | + 𝑐3 |𝑂 | · |𝑄𝑠 |, where𝑂 is the set of objects, 𝑄𝑐 is the set of continuous queries, 𝑄𝑠 is the set
of snapshot queries, 𝑐1 is the average cost of processing an object, 𝑐2 is the average cost of processing continuous
queries against the objects, 𝑐3 is the average cost of processing snapshot queries against the objects.

In Phase 2, we assign leaf nodes to different partitions, and check if the load balance constraint can be satisfied.
If this is the case, then we output the quad-tree and the partitions. Otherwise, we partition the leaf node having
the maximum load, and repeat the above procedure. We have two objectives for the assignment of nodes to
partitions: (1) We attempt to locate neighbouring leaf nodes into the same partition. The reason is that some
queries may overlap multiple adjacent nodes. Assigning them to different partitions will increase the total amount
of load. (2) We attempt to balance the workload of different workers.
Assigning Nodes to Partitions. This function assigns leaf nodes of the quad-tree to partitions, aiming to

achieve the two design objectives above. To achieve load balance, first, we estimate the average load each partition
should have that we denote by 𝐿𝑎𝑣𝑔. Then, we access the leaf nodes of the quad-tree in a depth-first manner, and
assign the leaf nodes to different partitions so that the load of each partition is close to 𝐿𝑎𝑣𝑔, and the adjacent
nodes in the quad-tree order are assigned to the same partition.

ACM Trans. Spatial Algorithms Syst.

16 • Zhida Chen, Gao Cong, and Walid G. Aref

Workload adjustment.We implement dynamic load adjustment mechanism in STAR to adapt to the changing
workload. When the router detects that the load balance constraint is violated, it notifies the most loaded worker,
say𝑤𝑜 , to transfer part of𝑤𝑜 ’s workload to other workers. We adjust the workload by migrating the cells of the
global index to other workers. We expect that after adjustment, each worker still maintains an adjacent set of
cells. The purpose is to reduce the total amount of load, as some queries and views may overlap multiple adjacent
cells.
After receiving notification from the router, Worker𝑤𝑜 , having the maximum load, computes the amount of

load that needs to be transferred. Let 𝐵 be the cells bordering𝑤𝑜 .𝑤𝑜 sorts 𝐵 in descending order of 𝑙𝑜𝑎𝑑 (𝑔)/𝑠𝑖𝑧𝑒 (𝑔),
where 𝑔 ∈ 𝐵. For each 𝑔 ∈ 𝐵,𝑤𝑜 transfers 𝑔 to the router, and the router sends 𝑔 to another worker that contains
cells being adjacent to 𝑔. If multiple candidates exist, the one having the minimum load is selected. This procedure
repeats until the load balance constraint is satisfied, or until𝑤𝑜 has finished transferring 𝐵 to other workers.

7 DATA ORGANIZATION

The objects are categorized over the timeline into a set of time slots, where different time slots have different
granularities. The more recent data has a finer granularity, while the older data has coarser granularity. The
granularity follows an exponential function 𝑓 (𝑥) = 2𝑥 , where 𝑥 represents the lifetime of the data in the system
(e.g., #hours). The system periodically checks whether adjacent time slots can be merged. Two adjacent time slots
can be merged when their granularities are the same. Since users usually focus more on the more recent data,
they can tolerate minor accuracy loss in the old data. The system periodically checks the data size and deletes
the oldest data when the data size exceeds a predefined threshold, which can be efficiently achieved by deleting
the oldest time slot(s). This design is good for memory efficiency of STAR and allows efficient deletion of old
data. In each time slot, a quad-tree is employed to index the objects. Objects having the 𝑡𝑒𝑥𝑡 attribute are further
categorized using an inverted index.

8 EXPERIMENTAL EVALUATION

8.1 Experimental Setup

We deploy STAR on the Amazon EC2 platform using a cluster of 8 c5d.2xlarge instances with 10G network
bandwidth. Each c5d.2xlarge has 8 vCPUs running Intel Xeon Platinum 8000-series Processors with 3.5GHz and
16GB RAM. To simulate the streaming scenario, we deploy Apache Kafka on another storage optimized instance
i3.4xlarge for emitting streamed data to STAR , which has 16 vCPUs running Intel Xeon E5 2686 v4 Processor at
2.3GHz and 122GB RAM. Apache Kafka [34] is a popular framework for building real-time data pipelines and
streaming applications.
Datasets and Queries. We evaluate STAR using a real dataset Tweets. The Tweets dataset consists of 500

million tweets in America, each of which has the attributes of 𝑙𝑜𝑐 , 𝑡𝑒𝑥𝑡 and 𝑡𝑖𝑚𝑒 . We use tools to extract derived
attributes from 𝑙𝑜𝑐 , 𝑡𝑒𝑥𝑡 and 𝑡𝑖𝑚𝑒 , respectively. Due to lacking of real-life ad hoc aggregation queries over Tweets,
we synthesize both snapshot and continuous queries based on Tweets for evaluation. To synthesize a query with
ad hoc constraints, we synthesize a constraint on Attribute 𝑙𝑜𝑐 , 𝑡𝑒𝑥𝑡 , 𝑡𝑖𝑚𝑒 and 𝑡𝑜𝑝𝑖𝑐 (a derived attribute extracted
from 𝑡𝑒𝑥𝑡), respectively, each of which is of a different type: a range constraint on 𝑙𝑜𝑐 , a keyword constraint on
𝑡𝑒𝑥𝑡 , an interval constraint on 𝑡𝑖𝑚𝑒 , and an equality constraint on 𝑡𝑜𝑝𝑖𝑐 . we also define an aggregation function
and group-by attribute(s). For continuous queries, we define an additional sync time.
Table 1 shows the possible values of each query parameter. 𝑇𝑜𝑝𝐾 () uses a default parameter 𝑘 = 10. Each

query has a number of constraints that are selected randomly. Range constraint is created by defining a square
whose upper left point is the coordinates of a random tweet in Tweets. Keyword constraint is created by selecting
a set of keywords randomly from Tweets. Interval constraint wants the result on the objects that arrived within

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 17

Parameter Value
Aggregate function 𝐶𝑜𝑢𝑛𝑡 , 𝑇𝑜𝑝𝐾 ()
Number of constraints 1, 2, 3, 4
Side length of the range 0.05%, 0.1%, 0.2%
Number of keywords 1, 2, 3
Interval length on 𝑡𝑖𝑚𝑒 10min, 20min, 30min
Equality value on 𝑡𝑜𝑝𝑖𝑐 a random value among 50 topics
Sync time 1min, 5min, 10min

Table 1. Possible values for parameters.

the past a period of time. Equality constraint requires that Attribute 𝑡𝑜𝑝𝑖𝑐 equals to a value selected from 50
topics. The parameter value for each constraint is selected randomly from the values in Table 1.
For both snapshot and continuous queries, we synthesize two types of queries that have different data

distributions of group-by attribute(s). We first enumerate all possible combinations of derived attributes to create
the set of group-by attribute(s). For the first type of queries, we select the group-by attribute(s) from the set
randomly. However, in real-life scenario, users are usually more interested in a small ratio of group-by attribute(s),
and users at different positions tend to have different interested group-by attribute(s). Therefore, we synthesize
another type of queries. We partition the spatial space into 10 × 10 uniform cells, and for each cell we randomly
pick a group-by attribute(s) from the set of group-by attribute(s), which we call it as pivot. Each query, based on
the cell which its upper left point resides, has a probability of 𝑃 using the corresponding pivot as the group-by
attribute(s), and 1 − 𝑃 probability using a random group-by attribute(s). In our experiments, we set 𝑃 as 0.7. We
classify our queries as follows:
QS1-Count, QS1-TopK: Both are snapshot queries. The group-by attribute(s) are randomly selected. 𝑄𝑆1-Count
uses 𝐶𝑜𝑢𝑛𝑡 () as the aggregation function, and 𝑄𝑆1-TopK uses 𝑇𝑜𝑝𝐾 () as the aggregation function.
QS2-Count, QS2-TopK: Both are snapshot queries. The group-by attribute(s) are selected using the pivot based
method. 𝑄𝑆2-Count uses 𝐶𝑜𝑢𝑛𝑡 () as the aggregation function, and 𝑄𝑆2-TopK uses 𝑇𝑜𝑝𝐾 () as the aggregation
function.
QC1-Count,QC1-TopK: Both are continuous queries. The other settings are the same as𝑄𝑆1-Count and𝑄𝑆1-TopK.
QC2-Count,QC2-TopK: Both are continuous queries. The other settings are the same as𝑄𝑆2-Count and𝑄𝑆2-TopK.
Workload. The arrival speed of a spatio-textual object is approximately 10 times of the arrival speed of a

snapshot or a continuous query. We evaluate our system after the system digests and processes objects and
queries for 10 minutes.

8.2 Evaluation on SnapshotQueries

To evaluate the performance of STAR on processing snapshot queries, we compare STAR with the following two
baselines that are variants of STAR :
Baseline-1. Baseline-1 does not use any cache-based technique. The other techniques used are the same as

STAR .
Baseline-2. Baseline-2 differs from Baseline-1 only in that it uses a classic greedy algorithm to materialize

views for queries without a spatial or keyword constraint.
Note that no existing spatial data stream system is designed to provide native support for ad hoc snapshot

aggregate queries. We will extend representative existing systems for comparison in Section 8.4. We evaluate the
performance by measuring the query response time.

ACM Trans. Spatial Algorithms Syst.

18 • Zhida Chen, Gao Cong, and Walid G. Aref

Query Response Time. Query response time is the average time required for answering a query. To avoid
long queuing time in the buffer, we measure query latency by using a moderate input speed of the data stream.
We evaluate the performance of our cache-based algorithms: Q-cache represents using query-based caching and
QO-cache represents using both query- and object-based caching.

 0

 100

 200

 300

 400

 500

 600

1 2 3 4

R
es

p
o
n
se

 t
im

e
(m

s)

#constraints

Baseline1
Baseline2

Q-Cache
QO-Cache

(a) 𝑄𝑆1-Count

 0

 500

 1000

 1500

 2000

1 2 3 4

R
es

p
o
n
se

 t
im

e
(m

s)

#constraints

Simba
GeoSpark

Q-Cache
QO-Cache

(b) 𝑄𝑆1-TopK

 0

 100

 200

 300

 400

 500

 600

1 2 3 4

R
es

p
o
n
se

 t
im

e
(m

s)

#constraints

Baseline1
Baseline2

Q-Cache
QO-Cache

(c) 𝑄𝑆2-Count

 0

 500

 1000

 1500

 2000

1 2 3 4

R
es

p
o
n
se

 t
im

e
(m

s)

#constraints

Simba
GeoSpark

Q-Cache
QO-Cache

(d) 𝑄𝑆2-TopK

Fig. 6. Query response time comparison for snapshot queries.

Figure 6 gives the experimental results. We observe that both Q-cache and QO-cache show a significant
performance improvement over the baselines: they are about one magnitude faster than Baseline-1 when the
number of constraints is 1 and 4–9 times faster when there are more than one constraint; they are 2–3 times
faster than Baseline-2. QO-cache has the best performance, which improves the performance of Q-cache by from
10% to 40%. This is because that QO-cache maintains materialized views and uses cached objects to help process
queries, which avoids checking a large amount of objects. Baseline-1 performs the worst as it always needs to
check the objects to answer queries. Baseline-2 is at least 1 time faster than Baseline-1, indicating that views
without spatial or textual attributes are also helpful. We also observe that Baseline-2, Q-cache and QO-cache have
smaller query response time for 𝑄𝑆2 queries than for 𝑄𝑆1 queries. The reason is that for the uneven distribution
of group-by attribute(s) in 𝑄𝑆2 queries, the query-based caching algorithm is more likely to materialize the views
having larger benefits, which helps to reduce the query response time.

8.3 Evaluation on ContinuousQueries

We evaluate the performance of our CH-tree and MT-index on processing continuous queries. We compare them
with two state-of-the-art indexes that were proposed for publish/subscribe systems.

OpIndex [69]. OpIndex adopts a two-level partitioning scheme. In the first level, continuous queries are
partitioned into query lists based on a selected pivot attribute. In the second level, the predicates in each query list

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 19

are further partitioned into predicate lists based on the predicate operator. OpIndex does not consider range or
keyword constraint, and we transform each range constraint into two interval constraints and leave the keyword
constraint to be checked at the last step.
RP-trees [70]. RP-trees index partitions the continuous queries into query lists based on a selected pivot

attribute. For each query list, it maintains an R-tree, which stores the range constraints that are specified by the
queries. As it does not consider keyword constraint, we check the keyword constraint at the last step.

We evaluate the performance by measuring throughput, as it is done in previous work on continuous queries.

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 3 4

T
h
ro

g
h
p
u
t

(#
tu

p
le

s/
se

c.
)

#constraints

OpIndex
RP-trees

CH-tree
CH-tree+MT

(a) 𝑄𝐶1-Count

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 3 4

T
h
ro

g
h
p
u
t

(#
tu

p
le

s/
se

c.
)

#constraints

OpIndex
RP-trees

CH-tree
CH-tree+MT

(b) 𝑄𝐶1-TopK

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 3 4

T
h
ro

g
h
p
u
t

(#
tu

p
le

s/
se

c.
)

#constraints

OpIndex
RP-trees

CH-tree
CH-tree+MT

(c) 𝑄𝐶2-Count

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 3 4

T
h
ro

g
h
p
u
t

(#
tu

p
le

s/
se

c.
)

#constraints

OpIndex
RP-trees

CH-tree
CH-tree+MT

(d) 𝑄𝐶2-TopK

Fig. 7. Throughput comparison for continuous queries.

Throughput. The throughput is the number of tuples (including objects and queries) a system can handle
when the processing capacity of the system is reached. We measure the throughput of each method by tuning
the input speed of the data stream to be close to its processing capacity.
Figure 7 gives the throughputs of CH-tree, CH-tree+MT (using both CH-tree and MT-index), OpIndex and

RP-trees for the four groups of queries. CH-tree+MT has the best performance, followed by CH-tree, which
improves CH-tree by 10% – 20%. CH-tree+MT’s throughput is 2–3 times of that of OpIndex and about 1.5 times
of that of PR-trees. OpIndex has the worst performance, probably due to its poor performance in processing
queries with a range constraint. RP-trees index performs better than OpIndex as it supports range constraints
natively. We also observe that the throughputs of CH-tree and CH-tree+MT decrease slower than OpIndex and
RP-trees’ with respect to the number of constraints. This is because that the cost model in CH-tree can find a
good ordering of predicates so that more queries can be filtered in an early stage, thus reducing the processing
cost. The results demonstrate the superior performance of our indexes over state-of-the-art index structures.

ACM Trans. Spatial Algorithms Syst.

20 • Zhida Chen, Gao Cong, and Walid G. Aref

 0

 100

 200

 300

 400

 500

 600

1 2 3 4

R
es

p
o
n
se

 t
im

e
(m

s)

#constraints

Simba
GeoSpark

STAR

(a) 𝑄𝑆1-Count

 0

 100

 200

 300

 400

 500

 600

1 2 3 4

R
es

p
o
n
se

 t
im

e
(m

s)

#constraints

Simba
GeoSpark

STAR

(b) 𝑄𝑆2-Count

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.01% 0.05% 0.1% 0.5% 1%

R
es

p
o
n
se

 t
im

e
(m

s)

Side-length of the query range

Simba
GeoSpark

STAR

(c) 𝑄𝑆1-Count (#constraints=3)

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.01% 0.05% 0.1% 0.5% 1%

R
es

p
o
n
se

 t
im

e
(m

s)

Side-length of the query range

Simba
GeoSpark

STAR

(d) 𝑄𝑆2-Count (#constraints=3)

Fig. 8. Comparison with existing systems (snapshot queries).

8.4 Comparison with Existing Systems

Since existing systems are not optimized to support both snapshot and continuous aggregate queries over spatial
data streams, we compare STAR with them on processing snapshot and continuous queries, separately. We
evaluate the performance of each system by running it exclusively on the cluster.

Comparison with systems over static data. We extend Simba [63] and GeoSpark [67], two representative
distributed spatial data analytics systems, for comparison. Because both Simba and GeoSpark cannot work on
streamed data, to make the comparison feasible, we introduce the following setting: (1) We create a static spatial
data set by preloading STAR , Simba and GeoSpark with a static set of tweets. (2) We input the queries with at
least one range constraint.

Figures 8(a) and 8(b) show the query response time with respect to the number of constraints. STAR is about 3
times faster than Simba and GeoSpark. Though Simba and GeoSpark are designed for spatial data analytics, they
are not optimized for aggregate queries with ad hoc constraints. The results demonstrate the effectiveness of
the cache-based algorithms adopted by STAR . To further compare their performance, we vary the size of the
query range to investigate the impact on the query response time. Figures 8(c) and 8(d) show that STAR has a
much smaller query response time, e.g., in Figure 8(d), the query response time of STAR is smaller than 40% of
the response times of other systems. The running time of all the systems increases with the increase of the query
range. However, the running time of STAR is more stable, which is ascribed to the cached data maintained in
STAR .

Figure 9 gives the result on scalability with the number of workers. STAR is 2–3 times faster than Simba and
GeoSpark no matter how many workers are used. The results show that STAR scales well with the system size.

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 21

 0

 200

 400

 600

 800

 1000

 1200

2 4 6 8

R
es

p
o
n
se

 t
im

e
(m

s)

#Workers

Simba
GeoSpark

STAR

(a) 𝑄𝑆1-Count (#constraints=3)

 0

 200

 400

 600

 800

 1000

 1200

2 4 6 8

R
es

p
o
n
se

 t
im

e
(m

s)

#Workers

Simba
GeoSpark

STAR

(b) 𝑄𝑆2-Count (#constraints=3)

Fig. 9. Scalability (snapshot queries).

The experimental results demonstrate that STAR outperforms Simba and GeoSpark in processing ad hoc
aggregate snapshot queries over a static set of spatial data, although STAR is designed for streamed data. The
main reason is that STAR exploits cache-based algorithms to optimize processing ad hoc aggregate queries over
spatial data.
Comparison with Tornado. For continuous aggregate queries, we compare STAR with Tornado [45], a

state-of-the-art system that supports continuous queries with ad hoc spatial and textual constraints over spatial
data streams. Tornado utilizes FAST [43], an indexing framework to organize continuous queries. FAST has a
spatial pyramid structure similar to a quad-tree, and is equipped with a frequency-aware indexing mechanism for
continuous spatio-textual queries. We extend Tornado to support aggregate continuous queries for spatial data.
Tornado only indexes continuous queries, but not spatial objects (and thus it cannot answer snapshot queries).

Figure 10 gives the experimental results. STAR has larger throughputs than Tornado for all types of queries.
For example, in Figures 10(a) and 10(b), the throughputs of STAR are larger than Tornado by 35%–55%. The
difference becomes more significant when increasing the number of query constraints, e.g., in Figure 10(a), STAR
outperforms Tornado by about 55%. This is because that the CH-tree in STAR uses a cost model to determine
the ordering of predicates, which can effectively reduce the cost of checking objects in the presence of multiple
query constraints. Figures 10(c) and 10(d) show the throughputs of STAR and Tornado with respect to the size of
the query range. STAR has a more stable performance than Tornado: the throughput of STAR decreases slower
than Tornado when increasing the size of the query range. This is ascribed to the better filtering effect of the
indexes used by STAR .

Figure 11 gives the result on scalability with the number of workers. STAR achieves larger throughputs than
Tornado, e.g., in Figure 11(a), the throughput of STAR is consistently about 1.5 times of that of Tornado. The
results demonstrate that STAR outperforms Tornado in processing aggregate continuous queries.

8.5 Workload Partitioning

We evaluate our workload partitioning scheme by comparing it with two partitioning schemes: STR [38] and
AQWA [6]. Figure 12 gives the experimental results. We observe that our partitioning scheme has the best
performance: In Figure 12(a), STAR has about 20% smaller query response time than the others; In Figure 12(b),
STAR has about 18% larger throughput than the others. The results demonstrate the effectiveness of our
partitioning scheme.

ACM Trans. Spatial Algorithms Syst.

22 • Zhida Chen, Gao Cong, and Walid G. Aref

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 3 4

T
h
ro

g
h
p
u
t

(#
tu

p
le

s/
se

c.
)

#constraints

Tornado STAR

(a) 𝑄𝐶1-Count

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 3 4

T
h
ro

g
h
p
u
t

(#
tu

p
le

s/
se

c.
)

#constraints

Tornado STAR

(b) 𝑄𝐶1-TopK

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

0.01% 0.05% 0.1% 0.5% 1%

T
h
ro

g
h
p
u
t

(#
tu

p
le

s/
se

c.
)

Side-length of the query range

Tornado STAR

(c) 𝑄𝐶2-Count (#constraints=3)

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

0.01% 0.05% 0.1% 0.5% 1%

T
h
ro

g
h
p
u
t

(#
tu

p
le

s/
se

c.
)

Side-length of the query range

Tornado STAR

(d) 𝑄𝐶2-TopK (#constraints=3)

Fig. 10. Comparison with Tornado (continuous queries).

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

2 4 6 8

T
h
ro

g
h
p
u
t

(#
tu

p
le

s/
se

c.
)

#Workers

Tornado STAR

(a) 𝑄𝑆2-Count (#constraints=3)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

2 4 6 8

T
h
ro

g
h
p
u
t

(#
tu

p
le

s/
se

c.
)

#Workers

Tornado STAR

(b) 𝑄𝑆2-TopK (#constraints=3)

Fig. 11. Scalability (continuous queries).

8.6 Memory

In this set of experiments, we evaluate the impact of the memory constraint on snapshot query processing and
the memory usage of the indexes for continuous query processing.

Figures 13(a) and 13(b) give the results of snapshot query processing. When the memory constraint is 1,000MB,
the query response time of QO-Cache is significantly smaller than that of QO-Cache when the memory constraint
is 500MB. For 𝑄𝑆1-Count, QO-Cache(1,000MB) takes less than 40% time of QO-Cache(500MB). For 𝑄𝑆1-TopK,
QO-Cache(1,000MB) takes less than 20% time than that of QO-Cache (500MB). This is expected because when
there is more available memory, more queries can be answered using query- and object-based caching, which

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 23

 0

 50

 100

 150

 200

R
es

p
o
n
se

 t
im

e
(m

s)

STR
AQWA

STAR

(a) 𝑄𝑆1-Count (#constraints=3)

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

T
h
ro

u
g
h
p
u
t

(#
tu

p
le

s/
se

co
n
d
)

STR
AQWA

STAR

(b) 𝑄𝑆1-Count (#constraints=3)

Fig. 12. Comparing different partitioning schemes.

 0

 100

 200

 300

 400

 500

 600

1 2 3 4

R
es

p
o
n
se

 t
im

e
(m

s)

#constraints

QO-Cache (500MB)
QO-Cache (1000MB)

(a) 𝑄𝑆1-Count

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4

R
es

p
o
n
se

 t
im

e
(m

s)

#constraints

QO-Cache (500MB)
QO-Cache (1000MB)

(b) 𝑄𝑆1-TopK

 0

 200

 400

 600

 800

 1000

 1200

 1400

M
em

o
ry

 (
M

B
)

CH-tree
CH-tree+MT

(c) 𝑄𝐶1-Count (#constraints=3)

 0

 500

 1000

 1500

 2000

M
em

o
ry

 (
M

B
)

CH-tree
CH-tree+MT

(d) 𝑄𝐶1-TopK (#constraints=3)

Fig. 13. Evaluating the impact of memories on the snapshot query processing and the memories of continuous query indexes.

saves considerable time. The improvement is more prominent for 𝑄𝑆1-TopK because computing top-𝑘 results
from scratch is costly.
Figures 13(c) and 13(d) give the memory usage of both the CH-tree and CH-tree+MT for continuous query

processing. The CH-tree+MT occupies about 4 times the memory for the CH-tree. This is due to the structure of
CH-tree+MT that maintains multiple CH-tree instances.

ACM Trans. Spatial Algorithms Syst.

24 • Zhida Chen, Gao Cong, and Walid G. Aref

9 CONCLUSIONS

In this paper, we present STAR ; a distributed in-memory data stream warehouse system that provides low-latency
and up-to-date analytical results over a fast arriving spatial data stream. STAR supports both snapshot and
continuous aggregate queries that have ad hoc constraints over spatial, textual and temporal data attributes.
STAR adopts a cache-based mechanism to facilitate the processing of snapshot queries. STAR implements a novel
index to categorize the continuous queries, which outperforms existing indexes in the procedures of checking
objects against the indexed queries and maintaining the query results. Extensive experiments over real data sets
demonstrate the superior performance of STAR over existing systems.

10 ACKNOWLEDGEMENTS

This study is supported under the RIE2020 Industry Alignment Fund – Industry Collaboration Projects (IAF–
ICP) Funding Initiative, as well as cash and in-kind contribution from Singapore Telecommunications Limited
(Singtel), through Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU). Walid G.
Aref acknowledges the support of the U.S. National Science Foundation under Grant Numbers: IIS-1910216 and
III-1815796.

REFERENCES
[1] A. S. Abdelhamid, M. Tang, A. M. Aly, A. R. Mahmood, T. Qadah, W. G. Aref, and S. Basalamah. 2016. Cruncher: Distributed in-memory

processing for location-based services. In ICDE. 1406–1409.
[2] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, JeffM Phillips, Zhewei Wei, and Ke Yi. 2013. Mergeable summaries. TODS

(2013).
[3] Pritom Ahmed, Mahbub Hasan, Abhijith Kashyap, Vagelis Hristidis, and Vassilis J Tsotras. 2017. Efficient Computation of Top-k Frequent

Terms over Spatio-temporal Ranges. In SIGMOD. ACM, 1227–1241.
[4] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, and Joel Saltz. 2013. Hadoop GIS: A High Performance

Spatial Data Warehousing System over Mapreduce. PVLDB (2013), 1009–1020.
[5] Louai Alarabi and Mohamed F. Mokbel. 2017. A Demonstration of ST-hadoop: A MapReduce Framework for Big Spatio-temporal Data.

PVLDB (2017), 1961–1964.
[6] Ahmed M Aly, Ahmed R Mahmood, Mohamed S Hassan, Walid G Aref, Mourad Ouzzani, Hazem Elmeleegy, and Thamir Qadah. 2015.

AQWA: adaptive query workload aware partitioning of big spatial data. VLDB 8, 13 (2015), 2062–2073.
[7] Anonymous. Anonymous. Reference omitted for anonymity purposes.
[8] Magdalena Balazinska, YongChul Kwon, Nathan Kuchta, and Dennis Lee. 2007. Moirae: History-Enhanced Monitoring.. In CIDR.

375–386.
[9] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. Journal of machine Learning research 3, Jan (2003),

993–1022.
[10] Lisi Chen, Gao Cong, and Xin Cao. 2013. An Efficient Query Indexing Mechanism for Filtering Geo-textual Data. In SIGMOD. ACM,

749–760.
[11] L. Chen, G. Cong, X. Cao, and K. L. Tan. 2015. Temporal Spatial-Keyword Top-k publish/subscribe. In ICDE. 255–266.
[12] Lisi Chen, Shuo Shang, Kai Zheng, and Panos Kalnis. 2019. Cluster-based subscription matching for geo-textual data streams. In ICDE.

IEEE, 890–901.
[13] Yue Chen, Zhida Chen, Gao Cong, Ahmed R Mahmood, andWalid G Aref. 2020. SSTD: A Distributed System on Streaming Spatio-Textual

Data. VLDB 13, 11 (2020).
[14] Zhida Chen, Gao Cong, and Walid G. Aref. 2021. STAR: A Cache-Based Distributed Warehouse System for Spatial Data Streams. In

SIGSPATIAL. 606–615.
[15] Zhida Chen, Gao Cong, Zhenjie Zhang, Tom ZJ Fuz, and Lisi Chen. 2017. Distributed publish/subscribe query processing on the

spatio-textual data stream. In ICDE. IEEE, 1095–1106.
[16] Z. Chen, G. Cong, Z. Zhang, T. Z. J. Fuz, and L. Chen. 2017. Distributed Publish/Subscribe Query Processing on the Spatio-Textual Data

Stream. In ICDE. 1095–1106.
[17] Anna Ciampi, Annalisa Appice, Donato Malerba, and Angelo Muolo. 2011. Space-time roll-up and drill-down into geo-trend stream

cubes. Foundations of Intelligent Systems (2011), 365–375.
[18] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein, Khaled Elmeleegy, and Russell Sears. 2010. MapReduce online.. In

NSDI, Vol. 10. 20.

ACM Trans. Spatial Algorithms Syst.

STAR: A Cache-based Stream Warehouse System for Spatial Data • 25

[19] Roozbeh Derakhshan, Frank KHA Dehne, Othmar Korn, and Bela Stantic. 2006. Simulated Annealing for Materialized View Selection in
Data Warehousing Environment.. In Databases and Applications. 89–94.

[20] Roozbeh Derakhshan, Bela Stantic, Othmar Korn, and Frank Dehne. 2008. Parallel simulated annealing for materialized view selection
in data warehousing environments. Lecture Notes in Computer Science 5022 (2008), 121–132.

[21] A. Eldawy and M. F. Mokbel. 2015. SpatialHadoop: A MapReduce framework for spatial data. In ICDE. 1352–1363.
[22] W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang, C. Aggarwal, and J. Huang. 2015. STREAMCUBE: Hierarchical spatio-temporal hashtag

clustering for event exploration over the Twitter stream. In ICDE. 1561–1572.
[23] Thanaa M Ghanem, Ahmed K Elmagarmid, Per-Åke Larson, and Walid G Aref. 2010. Supporting views in data stream management

systems. TODS 35, 1 (2010), 1.
[24] Anil K. Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis, Scott MacLean, Franz Färber, Francis Gropengiesser, Christian Mathis,

Thomas Bodner, and Wolfgang Lehner. 2015. Towards Scalable Real-time Analytics: An Architecture for Scale-out of OLxP Workloads.
PVLDB 8, 12 (2015), 1716–1727.

[25] Lukasz Golab, Theodore Johnson, J. Spencer Seidel, and Vladislav Shkapenyuk. 2009. Stream Warehousing with DataDepot. In SIGMOD.
ACM, 847–854.

[26] Lukasz Golab, Theodore Johnson, Subhabrata Sen, and Jennifer Yates. 2012. A Sequence-Oriented Stream Warehouse Paradigm for
Network Monitoring Applications. In PAM. Springer, 53–63.

[27] Marcin Gorawski and Rafal Malczok. 2010. Indexing Spatial Objects in Stream Data Warehouse. Advances in Intelligent Information and
Database Systems 283 (2010), 53–65.

[28] Himanshu Gupta. 1997. Selection of views to materialize in a data warehouse. Springer Berlin Heidelberg, Berlin, Heidelberg, 98–112.
[29] Himanshu Gupta and Inderpal Singh Mumick. 1999. Selection of Views to Materialize Under a Maintenance Cost Constraint. Springer

Berlin Heidelberg, 453–470.
[30] Jiawei Han, Yixin Chen, Guozhu Dong, Jian Pei, Benjamin W. Wah, Jianyong Wang, and Y. Dora Cai. 2005. Stream Cube: An Architecture

for Multi-Dimensional Analysis of Data Streams. Distributed and Parallel Databases 18, 2 (2005), 173–197.
[31] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. 1996. Implementing Data Cubes Efficiently. In SIGMOD. ACM, 205–216.
[32] J.-T. Horng, Y.-J. Chang, and B.-J. Liu. 2003. Applying evolutionary algorithms to materialized view selection in a data warehouse. Soft

Computing 7, 8 (2003), 574–581.
[33] H. Hu, Y. Liu, G. Li, J. Feng, and K. L. Tan. 2015. A location-aware publish/subscribe framework for parameterized spatio-textual

subscriptions. In ICDE. 711–722.
[34] Apache Kafka. 2020. https://kafka.apache.org/.
[35] Ralph Kimball and Margy Ross. 2013. The data warehouse toolkit: The definitive guide to dimensional modeling. John Wiley & Sons.
[36] W. J. Labio, D. Quass, and B. Adelberg. 1997. Physical database design for data warehouses. In ICDE. 277–288.
[37] Wang Lam, Lu Liu, Sts Prasad, Anand Rajaraman, Zoheb Vacheri, and AnHai Doan. 2012. Muppet: MapReduce-style Processing of Fast

Data. PVLDB 5, 12 (2012), 1814–1825.
[38] Scott T Leutenegger, Mario A Lopez, and Jeffrey Edgington. 1997. STR: A simple and efficient algorithm for R-tree packing. In ICDE.

IEEE, 497–506.
[39] Guoliang Li, Yang Wang, Ting Wang, and Jianhua Feng. 2013. Location-aware Publish/Subscribe. In SIGKDD. ACM, 802–810.
[40] G. Liang, L. Runheng, J. Yan, and J. Xin. 2010. Compressed StreamCube: Implementation of Compressed Data Cube in DSMS. In CCIE,

Vol. 1. 345–349.
[41] L. Lins, J. T. Klosowski, and C. Scheidegger. 2013. Nanocubes for Real-Time Exploration of Spatiotemporal Datasets. TVCG 19, 12 (Dec

2013), 2456–2465.
[42] J. Lu and R. H. Güting. 2014. Parallel SECONDO: A practical system for large-scale processing of moving objects. In 2014 IEEE 30th

International Conference on Data Engineering. 1190–1193. https://doi.org/10.1109/ICDE.2014.6816738
[43] Ahmed R Mahmood, Ahmed M Aly, and Walid G Aref. 2018. FAST: frequency-aware indexing for spatio-textual data streams. In ICDE.

IEEE, 305–316.
[44] Ahmed R. Mahmood, Ahmed M. Aly, Thamir Qadah, El Kindi Rezig, Anas Daghistani, Amgad Madkour, Ahmed S. Abdelhamid,

Mohamed S. Hassan, Walid G. Aref, and Saleh Basalamah. 2015. Tornado: A Distributed Spatio-textual Stream Processing System.
PVLDB 8, 12 (2015), 2020–2023.

[45] Ahmed R Mahmood, Anas Daghistani, Ahmed M Aly, Mingjie Tang, Saleh Basalamah, Sunil Prabhakar, and Walid G Aref. 2018. Adaptive
processing of spatial-keyword data over a distributed streaming cluster. In SIGSPATIAL. ACM, 219–228.

[46] Imene Mami and Zohra Bellahsene. 2012. A Survey of View Selection Methods. SIGMOD 41, 1 (2012), 20–29.
[47] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient computation of frequent and top-k elements in data streams.

In ICDT. Springer, 398–412.
[48] K. Nakabasami, T. Amagasa, S. A. Shaikh, F. Gass, and H. Kitagawa. 2015. An architecture for stream OLAP exploiting SPE and OLAP

engine. In IEEE Big Data. 319–326.

ACM Trans. Spatial Algorithms Syst.

https://doi.org/10.1109/ICDE.2014.6816738

26 • Zhida Chen, Gao Cong, and Walid G. Aref

[49] Jan Kristof Nidzwetzki and Ralf Hartmut Güting. 2018. BBoxDB - A Scalable Data Store for Multi-Dimensional Big Data. In CIKM
(Torino, Italy). Association for Computing Machinery, 1867–1870.

[50] Jan Kristof Nidzwetzki and Ralf Hartmut Güting. 2022. BBoxDB streams: scalable processing of multi-dimensional data streams.
Distributed and Parallel Databases (2022), 1573–7578.

[51] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi. 2011. MD-HBase: A Scalable Multi-dimensional Data Infrastructure for Location
Aware Services. In 2011 IEEE 12th International Conference onMobile DataManagement, Vol. 1. 7–16. https://doi.org/10.1109/MDM.2011.41

[52] Christopher Olston, Greg Chiou, Laukik Chitnis, Francis Liu, Yiping Han, Mattias Larsson, Andreas Neumann, Vellanki B.N. Rao,
Vijayanand Sankarasubramanian, Siddharth Seth, Chao Tian, Topher ZiCornell, and Xiaodan Wang. 2011. Nova: Continuous Pig/Hadoop
Workflows. In SIGMOD. ACM, 1081–1090.

[53] Pedro Pedreira, Chris Croswhite, and Luis Bona. 2016. Cubrick: Indexing Millions of Records Per Second for Interactive Analytics.
PVLDB 9, 13 (2016), 1305–1316.

[54] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. 1996. Materialized View Maintenance and Integrity Constraint Checking: Trading
Space for Time. In SIGMOD. ACM, 447–458.

[55] Mohammad Sadoghi and Hans-Arno Jacobsen. 2011. Be-tree: an index structure to efficiently match boolean expressions over high-
dimensional discrete space. In SIGMOD. 637–648.

[56] Hanan Samet. 2006. Foundations of multidimensional and metric data structures. Academic Press.
[57] Anders Skovsgaard, Darius Sidlauskas, and Christian S Jensen. 2014. Scalable top-k spatio-temporal term querying. In ICDE. IEEE,

148–159.
[58] Mingjie Tang, Yongyang Yu, Qutaibah M Malluhi, Mourad Ouzzani, and Walid G Aref. 2016. Locationspark: A distributed in-memory

data management system for big spatial data. VLDB 9, 13 (2016), 1565–1568.
[59] Bin Wang, Rui Zhu, Xiaochun Yang, and Guoren Wang. 2017. Top-k representative documents query over geo-textual data stream.

WWW (2017), 1–19.
[60] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Zengfeng Huang. 2016. Skype: Top-k Spatial-keyword Publish/Subscribe

over Sliding Window. PVLDB 9, 7 (2016), 588–599.
[61] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. 2015. Ap-tree: Efficiently support continuous spatial-keyword

queries over stream. In ICDE. IEEE, 1107–1118.
[62] Steven Euijong Whang, Hector Garcia-Molina, Chad Brower, Jayavel Shanmugasundaram, Sergei Vassilvitskii, Erik Vee, and Ramana

Yerneni. 2009. Indexing Boolean Expressions. 2, 1 (Aug. 2009), 37–48.
[63] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba: Efficient In-Memory Spatial Analytics. In SIGMOD.

1071–1085.
[64] Xiaopeng Xiong, Hicham G Elmongui, Xiaoyong Chai, and Walid G Aref. 2007. Place: A distributed spatio-temporal data stream

management system for moving objects. In MDM. IEEE, 44–51.
[65] Jian Yang, Kamalakar Karlapalem, and Qing Li. 1997. Algorithms for materialized view design in data warehousing environment. In

VLDB, Vol. 97. 136–145.
[66] S. You, J. Zhang, and L. Gruenwald. 2015. Large-scale spatial join query processing in Cloud. In ICDEW. 34–41.
[67] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: A Cluster Computing Framework for Processing Large-scale Spatial Data. In

SIGSPATIAL. ACM.
[68] M. Yu, G. Li, T. Wang, J. Feng, and Z. Gong. 2015. Efficient Filtering Algorithms for Location-Aware Publish/Subscribe. TKDE 27, 4

(April 2015), 950–963.
[69] Dongxiang Zhang, Chee-Yong Chan, and Kian-Lee Tan. 2014. An Efficient Publish/Subscribe Index for e-Commerce Databases. 7, 8

(April 2014), 613–624.
[70] Pengpeng Zhao, Hanhan Jiang, Jiajie Xu, Victor S Sheng, Guanfeng Liu, An Liu, Jian Wu, and Zhiming Cui. 2017. Location-aware

publish/subscribe index with complex boolean expressions. WWW 20, 6 (2017), 1363–1384.

ACM Trans. Spatial Algorithms Syst.

https://doi.org/10.1109/MDM.2011.41

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Data Types and Queries
	3.2 System Architecture

	4 Cache-based Query Processing
	4.1 Query-based Caching
	4.2 Object-based Caching

	5 Indexing Continuous Queries
	5.1 Indexing Non-Temporal Queries
	5.2 Indexing Temporal Queries

	6 Workload Partitioning
	7 Data Organization
	8 Experimental Evaluation
	8.1 Experimental Setup
	8.2 Evaluation on Snapshot Queries
	8.3 Evaluation on Continuous Queries
	8.4 Comparison with Existing Systems
	8.5 Workload Partitioning
	8.6 Memory

	9 Conclusions
	10 Acknowledgements
	References

