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Abstract

Despite the success of large-scale empirical risk minimization (ERM) at achieving high
accuracy across a variety of machine learning tasks, fair ERM is hindered by the incompati-
bility of fairness constraints with stochastic optimization. We consider the problem of fair
classification with discrete sensitive attributes and potentially large models and data sets,
requiring stochastic solvers. Existing in-processing fairness algorithms are either impractical
in the large-scale setting because they require large batches of data at each iteration or they
are not guaranteed to converge. In this paper, we develop the first stochastic in-processing
fairness algorithm with guaranteed convergence. For demographic parity, equalized odds, and
equal opportunity notions of fairness, we provide slight variations of our algorithm—called
FERMI-and prove that each of these variations converges in stochastic optimization with any
batch size. Empirically, we show that FERMI is amenable to stochastic solvers with multiple
(non-binary) sensitive attributes and non-binary targets, performing well even with minibatch
size as small as one. Extensive experiments show that FERMI achieves the most favorable
tradeoffs between fairness violation and test accuracy across all tested setups compared with
state-of-the-art baselines for demographic parity, equalized odds, equal opportunity. These
benefits are especially significant with small batch sizes and for non-binary classification with
large number of sensitive attributes, making FERMI a practical, scalable fairness algorithm.
The code for all of the experiments in this paper is available at:
https://github.com/optimization-for-data-driven-science/FERMI.
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Reference NB NB NB | Beyond | Stoch. alg. | Converg.
target | attrib. | code | logistic | (unbiased**) | (stoch.)
FERMI (this work) 7 7 7 7 7 () 7 ()
Cho et al., [2020D) 7 7 7 7 7 (X X
Cho et al.,|2020a) v v X v v/ (V) X
Baharlouei et al.|[2020) v v v v X v/ (X)
Rezaei et al.|[2020) X X X X X X
Jiang et al., [2020)* X v X X X X
Mary ot al.| [2019) 7 7 7 7 7 (X X
Prost et al., 2019) X X X v v (X) X
Donini et al., 2018) X v X v X X
Zhang et al.,2018) v v X v 7 (X) X
Agarwal et al., [2018) X v/ X v/ X 7 (X)

Table 1: Comparison of state-of-the-art in-processing methods (NB = non-binary) on whether they (a) handle
non-binary targets (beyond binary classification), (b) handle non-binary sensitive attributes, (c) release code that
applies to non-binary targets/attributes, (d) extend to arbitrary models, (e) provide code for stochastic optimization
(and whether the gradients are unbiased), (f) provide convergence guarantees (for stochastic optimization). FERMI is
the only method compatible with stochastic optimization and guaranteed convergence. The only existing baselines for
non-binary classification with non-binary sensitive attributes are (Mary et al.| [2019; Baharlouei et al.| [2020; [Cho et al.l
2020b)) (NB code). *We refer to the in-processing method of (Jiang et al.,|2020), not their post-processing method.
**We use the term “unbiased” in statistical estimation sense; not to be confused with bias in the fairness sense.

1 Introduction

Ensuring that decisions made using machine learning (ML) algorithms are fair to different subgroups is
of utmost importance. Without any mitigation strategy, learning algorithms may result in discrimination
against certain subgroups based on sensitive attributes, such as gender or race, even if such discrimination is
absent in the training data (Mehrabi et al., 2021), and algorithmic fairness literature aims to remedy such
discrimination issues (Sweeney, 2013; Datta et al., |2015; Feldman et al., |2015; Bolukbasi et al., |2016; Angwin
let al., [2016} [Calmon et al., 2017b} [Hardt et al., [2016} [Fish et al., 2016} [Woodworth et al., 2017} [Zafar et al.|
2017; Bechavod & Ligett] [2017; [Agarwal et al.| 2018; [Kearns et al., 2018} [Prost et al., 2019; [Lahoti et al.
@. Modern ML problems often involve large-scale models with hundreds of millions or even billions of
parameters, e.g., BART (Lewis et all [2019), ViT (Dosovitskiy et al., 2020), GPT-2 (Radford et al.,|2019). In
such cases, during fine-tuning, the available memory on a node constrains us to use stochastic optimization
with (small) minibatches in each training iteration. In this paper, we address the dual challenges of fair and
stochastic ML, providing the first stochastic fairness algorithm that provably converges with any batch size.

A machine learning algorithm satisfies the demographic parity fairness notion if the predicted target is
independent of the sensitive attributes (Dwork et al.| [2012)). Promoting demographic parity can lead to poor
performance, especially if the true outcome is not independent of the sensitive attributes. To remedy this,
[Hardt et al.| (2016) proposed equalized odds to ensure that the predicted target is conditionally independent of
the sensitive attributes given the true label. A further relaxed version of this notion is equal opportunity which
is satisfied if predicted target is conditionally independent of sensitive attributes given that the true label is
in an advantaged class (Hardt et al.| [2016). Equal opportunity ensures that false positive rates are equal
across different demographics, where negative outcome is considered an advantaged class, e.g., extending a
loan. See Appendix [A] for formal definitions of these fairness notions.

Measuring fairness violation. In practice, the learner only has access to finite samples and cannot verify
demographic parity, equalized odds, or equal opportunity. This has led the machine learning community
to define several fairness violation metrics that quantify the degree of (conditional) independence between
random variables, e.g., Lo distance (Dwork et al., 2012; Hardt et al., [2016), mutual information (Kamishima
let al., 2011} [Rezaei et al., 2020; Steinberg et al., [2020; Zhang et al., 2018;|Cho et al., 2020a; Roh et al., |2020),
Pearson correlation (Zafar et al., 2017} [Beutel et al., 2019)), false positive/negative rate difference (Bechavod
2017), Hilbert Schmidt independence criterion (HSIC) (Pérez-Suay et al., [2017), kernel-based
minimum mean discrepancy (MMD) (Prost et al.| 2019), Rényi correlation (Mary et al.,2019; [Baharlouei|
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let al.l 2020; |Grari et al., 2019; [2020), and exponential Rényi mutual information (ERMI) (Mary et al., 2019).
In this paper, we focus on three variants of ERMI specialized to demographic parity, equalized odds, and
equal opportunity. The motivation for the use of ERMI is two-fold. First, we will see in Sec. 2 that ERMI
is amenable to stochastic optimization. Moreover, we observe (Appendix that ERMI provides an upper
bound on several of the above notions of fairness violation. Consequently, a model trained to reduce ERMI
will also provide guarantees on these other fairness ViolationsE

Related work & contributions. Fairness-promoting machine learning algorithms can be categorized in
three main classes: pre-processing, post-processing, and in-processing methods. Pre-processing algorithms
(Feldman et al., 2015; Zemel et al., 2013; |Calmon et al.,|2017b) transform the biased data features to a new
space in which the labels and sensitive attributes are statistically independent. This transform is oblivious
to the training procedure. Post-processing approaches (Hardt et al., 2016; [Pleiss et al.| [2017) mitigate the
discrimination of the classifier by altering the final decision. In-processing approaches focus on the training
procedure and impose the notions of fairness as constraints or regularization terms in the training procedure.
Several regularization-based methods are proposed in the literature to promote fairness (Ristanoski et al.]
2013; |Quadrianto & Sharmanskay, 2017) in decision-trees (Kamiran et al., [2010; Raff et al., 2018} |Aghaei|
et al., 2019), support vector machines (Donini et al., 2018), boosting (Fish et al., |2015), neural networks
Grari et al.; 2020; |Cho et al., 2020b; Prost et al.,|2019), or (logistic) regression models (Zafar et al., [2017;
Berk et al., [2017; [Taskesen et all, 2020} [Chzhen & Schreuder, [2020; Baharlouei et all, 2020} [Jiang et al.| [2020;
Grari et al., [2019). See the recent paper by Hort et al| (2022)) for a more comprehensive literature survey.

While in-processing approaches generally give rise to better tradeoffs between fairness violation and perfor-
mance, existing approaches are mostly incompatible with stochastic optimization. This paper addresses this
problem in the context of fair (non-binary) classification with discrete (non-binary) sensitive attributes. See
Table |1f for a summary of the main differences between FERMI and existing in-processing methods.

Our main contributions are as follows:

1. For each given fairness notion (demographic parity, equalized odds, or equal opportunity), we formulate
an objective that uses ERMI as a regularizer to balance fairness and accuracy (Eq. ), and
derive an empirical version of this objective (Eq. ) We propose an algorithm (Algorithm
for solving each of these objectives, which is the first stochastic in-processing fairness algorithm with
guaranteed convergence. The main property needed to obtain a convergent stochastic algorithm is to derive
a (stochastically) unbiased estimator of the gradient of the objective function. The existing stochastic
fairness algorithms by |Zhang et al. (2018); Mary et al. (2019); [Prost et al.| (2019); |Cho et al. (2020a3b) are
not guaranteed to converge since there is no straightforward way to obtain such unbiased estimator of the
gradients for their fairness regularizers For any minibatch size (even as small as 1), we prove (Theorem
that our algorithm converges to an approximate solution of the empirical objective (Eq. )

2. We show that if the number of training examples is large enough, then our algorithm (Algorithm
converges to an approximate solution of the population-level objective (Theorem . The proofs of
these convergence theorems require the development of novel techniques (see e.g. Proposition E and
Proposition , and the resourceful application of many classical results from optimization, probability
theory, and statistics.

3. We demonstrate through extensive numerical experiments that our stochastic algorithm achieves superior
fairness-accuracy tradeoff curves against all comparable baselines for demographic parity, equalized odds,
and equal opportunity. In particular, the performance gap is very large when minibatch size is small (as is
practically necessary for large-scale problems) and the number of sensitive attributes is large.

INevertheless, we use Lo distance for measuring fairness violation in our numerical experiments, since Lo, is broadly used.

2We suspect it might be possible to derive a provably convergent stochastic algorithm from the framework in [Prost et al.
using our techniques, but their approach is limited to binary classification with binary sensitive attributes. By contrast,
we provide (empirical and population-level) convergence guarantees for our algorithm with any number of sensitive attributes
and any number of classes.
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2 Fair Risk Minimization through ERMI Regularization

In this section, we propose a fair learning objective (Eq. ) and derive an empirical variation
(Eq. (FERMI obj.)) of this objective. We then develop a stochastic optimization algorithm (Algorithm
that we use to solve these objectives, and prove that our algorithm converges to an approximate solution of
the two objectives.

Consider a learner who trains a model to make a prediction, }A/, e.g., whether or not to extend a loan,
supported on [m] := {1,...,m}. The prediction is made using a set of features, X, e.g., financial history
features. Assume that there is a set of discrete sensitive attributes, S, e.g., race and sex, supported on [k].
We now define the fairness violation notion that we will use to enforce fairness in our model.

Definition 1 (ERMI - exponential Rényi mutual information). We define the exponential Rényi mutual
information between random variables Y and S with joint distribution Py g and marginals Py Ps by:

S b (?75) Po (j,’f’)2
Dp(Y;8)=E{ 22—~ % —1=)" SR Y (ERMI)
py(Y)ps(S) e e PP (1)

Definition [T is what we would use if demographic parity were the fairness notion of interest. If instead one
wanted to promote fairness with respect to equalized odds or equal opportunity, then it is straightforward to
modify the definition by substituting appropriate conditional probabilities for Py g0 Py and pg in Eq. :
see Appendix |E In Appendix E, we also discuss that ERMI is the y2-divergence (which is an f-divergence)
between the joint distribution, Py g and the Kronecker product of marginals, p;; @ ps (Calmon et al., 2017a).
In particular, ERMI is non-negative, and zero if and only if demographic parity (or equalized odds or equal
opportunity, for the conditional version of ERMI) is satisfied. Additionally, we show in Appendix |C| that
ERMI provides an upper bound on other commonly used measures of fairness violation: Shannon mutual
information (Cho et al., [2020a)), Rényi correlation (Baharlouei et al.| [2020), L, fairness violation (Kearns
et al., 2018; [Hardt et al.,[2016)). Therefore, any algorithm that makes ERMI small will also have small fairness
violation with respect to these other notions.

We can now define our fair risk minimization through exponential Rényi mutual information frameworkﬂ
min {FRMI(O) = £(0) + ADg (Yo (X); S)} : (FRMI obj.)

where £(0) := Ex,v)[¢(X,Y;8)] for a given loss function £ (e.g. Ly loss or cross entropy loss); A > 0 is a
scalar balancing the accuracy versus fairness objectives; and Yo (X) is the output of the learned model (i.e.
the predicted label in a classification task). While Y5(X) = Y (X;6) inherently depends on X and 6, in the
rest of this paper, we sometimes leave the dependence of Y on X and/or @ implicit for brevity of notation.
Notice that we have also left the dependence of the loss on the predicted outcome Y = )A/g (X) implicit.

~

As is standard, we assume that the prediction function satisfies P(Y (0,X) = j|X) = F;(0,X), where
F(0,X) = (F1(0,X),...,Fn(0,X))T € [0,1]™ is differentiable in § and Z;":l F;(0,X) = 1. For example,
F(0,X) could represent the probability label given by a logistic regression model or the output of a neural
network after softmax layer. Indeed, this assumption is natural for most classifiers. Further, even classifiers,
such as SVM, that are not typically expressed using probabilities can often be well approximated by a classifier
of the form P(Y (0, X) = j|X) = F;(0,X), e.g. by using Platt Scaling (Platt et al., |1999; Niculescu-Mizil &
Caruana, 2005).

The work of Mary et al. (2019)) considered the same objective Eq. (FRMI obj.), and tried to empirically
solve it through a kernel approximation. We propose a different approach to solving this problem, which we
shall describe below. Essentially, we express ERMI as a “max” function (Proposition , which enables us to

re-formulate Eq. (FRMI obj.) (and its empirical counterpart Eq. (FERMI obj.)) as a stochastic min-max

3In this section, we present all results in the context of demographic parity, leaving off all conditional expectations for clarity
of presentation. The algorithm/results are readily extended to equalized odds and equal opportunity by using the conditional
version of Eq. (ERMI) (which is described in Appendix ; we use these resulting algorithms for numerical experiments.
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optimization problem. This allows us to use stochastic gradient descent ascent (SGDA) to solve Eq. (FRMI
obj.). Unlike the algorithm of [Mary et al. (2019), our algorithm provably converges. Our algorithm also
empirically outperforms the algorithm of Mary et al.| (2019), as we show in Sec. [3|and Appendix

2.1 A Convergent Stochastic Algorithm for Fair Empirical Risk Minimization

In practice, the true joint distribution of (X, S,Y, 17) is unknown and we only have IV samples at our disposal.
Let D = {x, 5i, %, Y(Xi; 0) }icn) denote the features, sensitive attributes, targets, and the predictions of the
model parameterized by 6 for these given samples. For now, we consider the empirical risk minimization
(ERM) problem and do not require any assumptions on the data set (e.g. we allow for different samples in D
to be drawn from different, heterogeneous distributions). Consider the empirical objective

min {FERMI(e) = £(0) + ADg(Yo(X), S)} : (FERMI obj.)

where £(0) := + ZN 1 (x4, y4; 0) is the empirical loss an

= S Y (Y S YS‘]’
D Y,S ::E S~ ———
) {w)ps } "2 2 mn

is empirical ERMI with p denoting empirical probabilities with respect to D: pg(r) = = Zil Lis,=ry; Pg(d) =
+ val}"-(B x;); and Py, gdir) = = val}"l(O X;)s;, for j € [m],r € [k]. We shall see (Proposition E)
that empirical ERMI is a good approxuna‘mon of ERMI when N is large. Now, it is straightforward to derive
an unbiased estimate for £(80) via Wzl BI > ien ¢(xi,y:;0) where B C [N] is a random minibatch of data points
drawn from D. However, unbiasedly estimating D R(Y, S) in the objective function Eq. (FERMI obj.) with
|B| < N samples is more difficult. In what follows, we present our approach to deriving statistically unbiased
stochastic estimators of the gradients of Dr(Y, S) given a random batch of data points B. This stochastic
estimator is key to developing a stochastic convergent algorithm for solving Eq. (FERMI obj.). The key

novel observation that allows us to derive this estimator is that Equation can be written as a
min-maz optimization problem (see Corollary . This observation, in turn, follows from the following result:

Proposition 1. For random variables Y and S with joint distribution pg o, where Y € [m], S € [k], we have

Dr(Y;:S) = e {- Te(WP,WT) + 2 Te(WP, P 1/?) — 1},

sz = diag(py(1), ..., pp(m)), P, = diag(ps(1),...,ps(k)), and (ﬁys)” = ﬁ§7s(i,j) with pe (i), ps(j) > 0
forielm],j € [k].
The proof is a direct calculation, given in Appendix @ Let y(x;,0) € {0,1}™ and s; = (s;1,...,8.)" €

{0,1}* be the one-hot encodlngb of y(x;,0) and s;, respectively for ¢ € [N]. Then, Proposition |1 provides a
useful variational form of Eq. (FERMI obj.), which forms the backbone of our novel algorithmic approach:

Corollary 1. Let (x;, $;,y;) be a random draw from D. Then, Fq. (FERMI obj.) is equivalent to

min_ max {F(e, W) := £(6) + A¥(6, W)} : (1)

where U(O, W) = — Tr(WﬁgWT) + 2Tr(W]3@7sﬁs_1/2) -1=4% vazl 7;,-(0, W) and
0i(8,W) i= = TH(WE[F (x;,0)§ (x:, 0)  [xW ) + 2 Te(WE[F (x:; 0)s] [, 5, P, /%) — 1

= — Tr(Wdiag(F1(6,%;), . .., Fm(0,%))WT) + 2 Te(WE[y(x;: 0)sT |x;, ;]| P, /?) — 1.

Corollaryimplies that for any given data set D, the quantity £(x;, y;; 0) —i—)ﬂ@(@, W) is an unbiased estimator

of F(0,W) (with respect to the uniformly random draw of ¢ € [N]). Thus, we can use stochastic optimization
(e.g. SGDA) to solve Eq. (FERMI obj.) with any batch size 1 < |B| < N, and the resulting algorithm will
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Algorithm 1 FERMI Algorithm

1: Input: 8° € R, WO = 0 € R¥*™ step-sizes (1,1, ), fairness parameter \ > 0, iteration number T,
minibatch sizes |By|,t € {0,1,--- ,T}, W := Frobenius norm ball of radius D around 0 € R¥*™ for D
given in Appendix [D]

2: Compute pyl2 = diag(ps(1)~12, ..., ps(k)~1/?).

3: fort=0,1,...,T do

4:  Draw a mini-batch B; of data points {(x;, si,y:) }ien,

5. Set 0!+ 0" — 1B 2ien, [Vol(xi, yis 0') + AVothy (67, W*)].

6 Set W e Iy (W + 3 50, | = WOEIF (0, 0)5(x,,0)7 i) + P Elsi3™ (xi: 6 i, si] )
7. end for

8: Pick # uniformly at random from {1,...,T}.

9: Return: 6°.

be guaranteed to converge since the stochastic gradients are unbiased. We present our proposed algorithm,

which we call FERMI, for solving Eq. (FERMI obj.) in Algorithm

Note that the matrix P 1/2 depends only on the full data set of sensitive attributes {s1,--, sy} and has no
dependence on 8, and can therefore be computed just once, in line 2 of Algorithm [I] On the other hand, the
quantities E[¥(x;, 0)¥(x;, 0)7|x;] and E[y(x;; 0)sT|x;, s;] depend on the sample (x;, s;,7;) that is drawn in a
given iteration and on the model parameters 6, and are therefore computed at each iteration of the algorithm.

Although the min-max problem Eq. (FERMI obj.) that we aim to solve is unconstrained, we project the

iterates W (in line 5 of Algorithm |1) onto a bounded set W in order to satisfy a technical assumption
that is needed to prove convergence of Algorithm EE We choose W to be a sufficiently large ball that
contains W*(0) := arg maxy, F'(8, W) for every 0 in some neighborhood of 8* € arg ming maxy F (0, W), so

that Eq. (FERMI obj.) is equivalent to

min max {ﬁ(@, W) = L(6) + A\U(, W)} .
6 wew

See Appendix [D]for details. When applying Algorithm [I]in practice, it is not necessary to project the iterates;

e.g. in Sec. [3] we obtain strong empirical results without projection in Algorithm

Since Eq. is potentially nonconvex in 8, a global minimum might not exist and even computing
a local minimum is NP-hard in general (Murty & Kabadi} [1985). Thus, as is standard in the nonconvex
optimization literature, we aim for the milder goal of finding an approximate stationary point of Eq.
obj.). That is, given any ¢ > 0, we aim to find a point 6* such that E|VFERMI(6*)|| < €, where the
expectation is solely with respect to the randomness of the algorithm (minibatch sampling). The following
theorem guarantees that Algorithm [1| will find such a point efficiently:

Theorem 1. (Informal statement) Let e > 0. Assume that £(X,y;-) and F(-,x) are Lipschitz continuous and
differentiable with Lipschitz continuous gradient (see Appendix@for definitions), ps(j) > 0 for all sensitive
attributes j € [k] and py (1) > p > 0 for all labels | € [m] and at every iterate @'. Then for any batch sizes

1< |B: <N, Algorithm converges to an e-first order stationary point of the Eq. (FERMI obj.) objective in

@) (i) stochastic gradient evaluations.

b

The formal statement of Theorem [I can be found in Theorem [3) in Appendix [D] Theorem [I implies
that Algorithm [T can efficiently achieve any tradeoff between fairness (ERMI) violation and (empirical)
accuracy, depending on the choice of )\ﬁ However, if smaller fairness violation is desired (i.e. if larger A is
chosen), then the algorithm needs to run for more iterations (see Appendix @ The proof of Theore%

follows from Corollaryand the observation that 1@- is strongly concave in W (see Lemmain Appendix

4We overload notation slightly here and use E to denote expectation with respect to the empirical (joint) distribution.

5Namely, bounded W? ensures that the gradient of Fis Lipschitz continuous at every iterate and the variance of the stochastic
gradients is bounded.

6This sentence is accurate to the degree that an approximate stationary point of the non-convex objective Eq.
corresponds to an approximate risk minimizer.
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This implies that Eq. (1) is a nonconvex-strongly concave min-max problem, so the convergence guarantee
of SGDA (Lin et al., 2020) yields Theorem II The detailed proof of Theorem II is given in Appendix @
Increasing the batch size to ©(e~2) improves the stochastic gradient complexity to O(e=*). On the other
hand, increasing the batch size further to |B;| = N results in a deterministic algorithm which is guaranteed
to find a point 8* such |[VFERMI(8*)|| < € (no expectation) in O(e~2) iterations (Lin et al., {2020, Theorem
4.4),(Ostrovskii et al., |2020, Remark 4.2); this iteration complexity has the optimal dependence on e (Carmon
et al.| [2020; [Zhang et al.,|2021). However, like existing fairness algorithms in the literature, this full-batch
variant is impractical for large-scale problems.

Remark 1. The condition py (1) > p in Theorem is assumed in order to ensure strong concavity of ﬁ(@t, )
at every iterate 0', which leads to the O(e~®) convergence rate. This assumption is typically satisfied in
practice: for example, if the iterates @° remain in a compact region during the algorithm and the classifier
uses softmaz, then py- (1) > p > 0. Having said that, it is worth noting that this condition is not absolutely
necessary to ensure convergence of Algorithm |Z Even if this condition doesn’t hold, then Eq. is still a
nonconvez-concave min-max problem. Hence SGDA still converges to an e-stationary point, albeit at the
slower rate of O(e~®) (Lin et al., |2020). Alternatively, one can add a small {5 regularization term to the
objective to enforce strong concavity and get the fast convergence rate of O(e~?).

2.2 Asymptotic Convergence of Algorithm [I] for Population-level FRMI Objective

So far, we have let N > 1 be arbitrary and have not made any assumptions on the underlying distribution(s)
from which the data was drawn. Even so, we showed that Algorithm [1] always converges to a stationary point
of Eq. ‘ Now, we will show that if D contains ¢.7.d. samples from an unknown joint distribution
D and if N > 1, then Algorithm [I] converges to an approximate solution of the population risk minimization
problem Eq. . Precisely, we will use a one-pass sample-without-replacement (“online”) variant
of Algorithm [I to obtain this population loss guarantee. The one-pass variant is identical to Algorithm [T
except that: a) once we draw a batch of samples By, we remove these samples from the data set so that they
are never re-used; and b) the for-loop terminates when we have used all n samples.

Theorem 2. Let € > 0. Assume that {(x,y;-) and F(-,x) are Lipschitz continuous and differentiable with
Lipschitz continuous gradient, and that min, ey ps(r) > 0. Then, there exists N € N such that if n > N and
D ~ D", then a one-pass sample-without-replacement variant of Algorithm[I converges to an e-first order

stationary point of the Eq. (FRMI obj.) objective in O (}5) stochastic gradient evaluations, for any batch
sizes | By|.

Theorem |Z provides a guarantee on the fairness/accuracy loss that can be achieved on unseen “test data.”
This is important because the main goal of (fair) machine learning is to (fairly) give accurate predictions on
test data, rather than merely fitting the training data well. Specifically, Theorem [2] shows that with enough
(i.i.d.) training examples at our disposal, (one-pass) Algorithm |I finds an approximate stationary point of
the population-level fairness objective Eq. . Furthermore, the gradient complexity is the same as
it was in the empirical case. The proof of Theorem [2| will be aided by the following result, which shows that
1; is an asymptotically unbiased estimator of ¥, where maxy ¥(0, W) equals ERMI:

Proposition 2. Let {z;}!", = {xi,s:, ¥}, be drawn i.i.d. from an unknown joint distribution D. De-
- N —1/2

note (0, W) = — Te(WE[§ (x;, 0)3 (x:, 0)T |x:]WT) + 2 Tr <W]E[§(xi;0)siT|xi,si] (P§">) ) 1, where

P = LS diag(Ljg—1y,- - Lismk}). Denote W(0,W) = —Te(WP,WT) + 2Te(WP; . Ps /%) — 1,

where Py = diag(EFy1(0,x%),--- ,EF,(0,%)), (Pys)jr = Ex, s [F;(0,%i)sir] for j € [m],r € [k], and
P, = diag(Ps(1),--- , Ps(k)). Assume ps(r) > 0 for allr € [k]. Then,

max U(6, W) = Dr(Y(6);5)

and R
lim E[¢" (6, W)] = ¥ (6, W).

7A faster convergence rate of O(¢~3) could be obtained by using the (more complicated) SREDA method of [Luo et al. (2020)
instead of SGDA to solve FERMI objective. We omit the details here.
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The proof of Proposition 2 is given in Appendix The first claim is immediate from Proposition [T and
its proof, while the second claim is proved using the strong law of large numbers, the continuous mapping
theorem, and Lebesgue’s dominated convergence theorem.

Proposition[2]implies that the empirical stochastic gradients computed in Algorithm [I]are good approximations
of the true gradients of Eq. (FRMI obj.). Intuitively, this suggests that when we use Algorithm |I to solve
the fair ERM problem Eq. (FERMI obj.), the output of Algorithm |I will also be an approximate solution
of Eq. . While Theorem |2| shows this intuition does indeed hold, the proof of Theorem [2| requires
additional work. A reasonable first attempt at proving Theorem [2 might be to try to bound the expected
distance between the gradient of FRMI and the gradient of FERMI (evaluated at the point 6 that is output
by Algorithm [1)) via Danskin’s theorem (Danskin, [1966) and strong concavity, and then leverage Theorem
to conclude that the gradient of FRMI must also be small. However, the dependence of 6 on the training
data prevents us from obtaining a tight enough bound on the distance between the empirical and population
gradients at 6. Thus, we take a different approach to proving Theorem E, in which we consider the output
of two different algorithms: one is the conceptual algorithm that runs one-pass Algorithm [I as if we had
access to the true sensitive attributes Py (“Algorithm A”); the other is the realistic one-pass Algorithm E
that only uses the training data (“Algorithm B”). We argue: 1) the output of the conceptual algorithm
is a stationary point of the population-level objective; and 2) the distance between the gradients of the
population-level objective at 84 and Op is small. While 1) follows easily from the proof of Theorem [I|and the
online-to-batch conversion, establishing 2) requires a careful argument. The main tools we use in the proof
of Theorem [2|are Theorem [I| Proposition |2] Danskin’s theorem, Lipschitz continuity of the arg max function
for strongly concave objective, the continuous mapping theorem, and Lebesgue’s dominated convergence
theorem: see Appendix for the detailed proof.

Note that the online-to-batch conversion used to prove Theorem [2]requires a convergent stochastic optimization
algorithm; this implies that our arguments could not be used to prove an analogue of Theorem [2for existing fair
learning algorithms, since existing convergent fairness algorithms are not stochastic. An alternate approach to
bounding the “generalization error” of our algorithm would be to use a standard covering/uniform convergence
argument. However, this approach would not yield as tight a guarantee as Theorem [2 Specifically, the
accuracy and/or gradient complexity guarantee would depend on the dimension of the space (i.e. the number
of model parameters), since the covering number depends (exponentially) on the dimension. For large-scale
problems with a huge number of model parameters, such dimension dependence is prohibitive.

As previously mentioned, we can interpret Theorem 2] as providing a guarantee that Algorithm [1| generalizes
well, achieving small fairness violation and test error, even on unseen “test” examples—as long as the data is
iid. and N is sufficiently large. In the next section, we empirically corroborate Theorem [2, by evaluating
the fairness-accuracy tradeoffs of the FERMI algorithm (Algorithm [1) in several numerical experiments.

3 Numerical Experiments

In this section, we evaluate the performance of FERMI in terms of the fairness violation vs. test error for
different notions of fairness (e.g. demographic parity, equalized odds, and equality of opportunity). To
this end, we perform diverse experiments comparing FERMI to other state-of-the-art approaches on several
benchmarks. In Section we showcase the performance of FERMI applied to a logistic regression model on
binary classification tasks with binary sensitive attributes on Adult, German Credit, and COMPAS datasets.
In Section we utilize FERMI with a convolutional neural network base model for fair (to different
religious groups) toxic comment detection. In Section we explore fairness in non-binary classification with
non-binary sensitive attributes. Finally, Section shows how FERMI may be used beyond fair empirical
risk minimization in domain generalization problems to learn a model independent of spurious features.

3.1 Fair Binary Classification with Binary Sensitive Attributes using Logistic Regression

3.1.1 Benchmarking full-batch performance

In the first set of experiments, we use FERMI to learn a fair logistic regression model on the Adult dataset.
With the Adult data set, the task is to predict whether or not a person earns over $50k annually without
discriminating based on the sensitive attribute, gender. We compare FERMI against state-of-the-art in-
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processing full-batch (|B| = N) baselines, including (Zafar et al., 2017; Feldman et al., 2015; Kamishima
et al.| 2011; [Jiang et all [2020; [Hardt et al., [2016; [Prost et al., 2019; [Baharlouei et al.| [2020; [Rezaei et al.)
2020; [Donini et al., [2018; [Cho et al., [2020Db)). Since the majority of existing fair learning algorithms cannot be
implemented with |B| < N, these experiments allow us to benchmark the performance of FERMI against
a wider range of baselines. To contextualize the performance of these methods, we also include a Naive
Baseline that randomly replaces the model output with the majority label (0 in Adult dataset), with
probability p (independent of the data), and sweep p in [0,1]. At one end (p = 1), the output will be provably
fair with performance reaching that of a naive classifier that outputs the majority class. At the other end
(p = 0), the algorithm has no fairness mitigation and obtains the best performance (accuracy). By sweeping
p, we obtain a tradeoff curve between performance and fairness violation.
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Figure 1: Accuracy/Fairness trade-off of FERMI and several state-of-the-art in-processing approaches on Adult
dataset. FERMI offers the best fairness vs. accuracy tradeoff curve in all experiments against all baselines.
@) only allow for a single output and do not yield a tradeoff curve. Further, the algorithms by
and [Baharlouei et al. (2020) are equivalent in this binary setting and shown by the red curve. In the binary/binary
setting, FERMI, Mary et al. (2019) and [Baharlouei et al. (2020) all try to solve the same objective Eq. (FRMI
obj.). However, the empirical formulation Eq. (FERMI obj.) and FERMI algorithm that we use results in better
performance, even though we are using a full-batch for all baselines in this experiment.

In Fig. [1} we report the fairness violation (demographic parity, equalized odds, and equality of opportunity
violations) vs. test error of the aforementioned in-processing approaches on the Adult dataset. The upper left
corner of the tradeoff curves coincides with the unmitigated baseline, which only optimizes for performance
(smallest test error). As can be seen, FERMI offers a fairness-accuracy tradeoff curve that dominates all
state-of-the-art baselines in each experiment and with respect to each notion of fairness, even in the full
batch setting. Aside from in-processing approaches, we compare FERMI with several pre-processing and
post-processing algorithms on Adult, German Credit, and COMPAS datasets in Appendix [E.5| where we
show that the tradeoff curves obtained from FERMI dominate that of all other baselines considered. See
Appendix [E] for details on the data sets and experiments.

It is noteworthy that the empirical objectives of Mary et al.| (2019) and |Baharlouei et al. (2020) are exactly
the same in the binary/binary setting, and their algorithms also coincide to the red curve in Fig. 1} This is
because Exponential Rényi mutual information is equal to Rényi correlation for binary targets and/or binary
sensitive attributes (see Lemma, which is the setting of all experiments in Sec. Additionally, like us, in
the binary/binary setting these works are trying to empirically solve Eq. :FRMI obj.), albeit using different
estimation techniques; i.e., their empirical objective is different from Eq. (FERMI obj.). This demonstrates
the effectiveness of our empirical formulation and our solver (Algorithm , even though we
are using all baselines in full batch mode in this experiment. See Appendix for the complete version of
Fig. [1) which also includes pre-processing and post-processing baselines.

Fig. [8 in Appendix [E] illustrates that FERMI outperforms baselines in the presence of noisy outliers and
class imbalance. Our theory did not consider the role of noisy outliers and class imbalance, so the theoretical
investigation of this phenomenon could be an interesting direction for future work.

3.1.2 The effect of batch size on fairness/accuracy tradeoffs

Next, we evaluate the performance of FERMI on smaller batch sizes ranging from 1 to 64. To this
end, we compare FERMI against several state-of-the-art in-processing algorithms that permit stochastic
implementation for demographic parity: (Mary et al. [2019), (Baharlouei et al., 2020), and (Cho et al.,
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2020b). Similarly to the full batch setting, for all methods, we train a logistic regression model with a
respective regularizer for each method. We use demographic parity Lo, violation (Definition [10) to measure
demographic parity violation. More details about the dataset and experiments, and additional experimental
results, can be found in Appendix
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Figure 2: Performance of FERMI, |Cho et al. (2020a), Mary et al.| (2019), [Baharlouei et al.| (2020) with different
batch-sizes on Adult dataset. FERMI demonstrates the best accuracy/fainess tradeoff across different batch sizes.

Fig. [2 shows that FERMI offers a superior fairness-accuracy tradeoff curve against all baselines, for each
tested batch size, empirically confirming Theorem |1} as FERMI is the only algorithm that is guaranteed to
converge for small minibatches. It is also noteworthy that all other baselines cannot beat Naive Baseline
when the batch size is very small, e.g., | B| = 1. Furthermore, FERMI with |B| = 4 almost achieves the same
fairness-accuracy tradeoff as the full batch variant.

3.1.3 The effect of missing sensitive attributes on fairness/accuracy tradeoffs

Sensitive attributes might be partially unavailable in many real-world applications due to legal issues, privacy
concerns, and data gathering limitations (Zhao et al., |2022; |Coston et al., 2019). Missing sensitive attributes
make fair learning tasks more challenging in practice.

The unbiased nature of the estimator used in FERMI algorithm mo-
tivates that it may be able to handle cases where sensitive attributes

are partially available and are dropped uniformly at random. As a é 023 \.\'\R :;‘::'h“;‘jj‘:i“;f;v oz
case study on the Adult dataset, we randomly masked 90% of the B o020/ \\ o Cooenomno]
sensitive attribute (i.e., gender entries). To estimate the fairness ; \,\\\Q:\ =7 Fsastoe e
regularization term, we rely on the remaining 10% of the training 5 o1 \ \ N

samples (= 3k) with sensitive attribute information. Figure[3|depicts 2010 RN SN S
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accuracy-fairness tradeoff of FERMI compared to other approaches & 0.00 >

. . . . . 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23
is due to the fact that the estimator of the gradient remains unbiased Test Error

since the missing e“ntries are mi.ssin.g (.?ompletely at rafndom (MCAR). Figure 3: Performance of FERMI and
Note that the Naive Baseline is similar to the one implemented in ;' o0 ey oo approaches on the
the previous section, and Full-sensitive FERMI is an oracle method  Agult dataset where 90% of gender en-
that applies FERMI to the data with no missing attributes (for com- tries are missing. Full-sensitive FERMI is
parison purposes only). We observe that FERMI achieves a slightly obtained by applying FERMI on the data
worse fairness-accuracy tradeoff compared to Full-sensitive FERMI  without any missing entries.

oracle, whereas the other baselines are hurt significantly and are only

narrowly outperforming the Naive Baseline.

3.2 Fair Binary Classification using Neural Models

In this experiment, our goal is to showcase the efficacy of FERMI in stochastic optimization with neural
network function approximation. To this end, we apply FERMI, (Prost et al., [2019), (Baharlouei et al., 2020,
and (Mary et al.,2019) (which coincides with (Baharlouei et al.,|2020)) to the Toxic Comment Classification
dataset where the underlying task is to predict whether a given published comment in social media is toxic.
The sensitive attribute is religion that is binarized into two groups: Christians in one group; Muslims and
Jews in the other group. Training a neural network without considering fairness leads to higher false positive
rate for the Jew-Muslim group. Figure E demonstrates the performance of FERMI, MinDiff (Prost et al.,
2019), Baharlouei et al.| (2020), and naive baseline on two different batch-sizes: 128 and 16. Performance is
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Figure 4: Fair toxic comment detection with different batch sizes. For |B| = 128, the performance of (Prost et al.l,
and FERMI are close to each other, however, when the batch size is reduced to 16, FERMI demonstrates a
better fairness/ performance trade-off. The performance and fairness are measured by the test error and the false
positive gap between different religious sub-groups (Christians vs Muslim-Jews), respectively.
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Figure 5: Comparison between FERMI, [Mary et al.| (2019), [Baharlouei et al| (2020), and |Cho et al. (2020b) on
Communities dataset. (Mary et al) [2019) outperforms (Baharlouei et al., 20205 |Cho et al.| [2020b), which we believe
could be attributed to the effectiveness of ERMI as a regularizer. FERMI outperforms [Mary et al. (2019). This can
be attributed to our empirical formulation Eq. and unbiased stochastic optimization algorithm.

measured by the overall false positive rate of the trained network and fairness violation is measured by the
false positive gap between two sensitive groups (Christians and Jews-Muslims). The network structure is
exactly same as the one used by MinDiff (Prost et al.,|[2019). We can observe that by decreasing the batch
size, FERMI maintains the best fairness-accuracy tradeoff compared to other baselines.

3.3 Fair Non-binary Classification with Multiple Sensitive Attributes

In this section, we consider a non-binary classification problem with multiple binary sensitive attributes.
In this case, we consider the Communities and Crime dataset, which has 18 binary sensitive attributes in
total. For our experiments, we pick a subset of 1,2,3,...,18 sensitive attributes, which corresponds to
|S| € {2,4,8,...,2'}. We discretize the target into three classes {high, medium, low}. The only baselines
that we are aware of that can handle non-binary classification with multiple sensitive attributes are (Mary
let al.} [2019), (Baharlouei et al.l [2020)), (Cho et al., 2020b), (Cho et al.,[2020a), and (Zhang et all, [2018). We
used the publicly available implementations of (Baharlouei et al.l [2020) and (Cho et al., 2020b) and extended
their binary classification algorithms to the non-binary setting.

The results are presented in Fig. |5} where we use conditional demographic parity L., violation (Definition
and conditional equal opportunity L., violation (Definition as the fairness violation notions for the two
experiments. In each panel, we compare the test error for different number of sensitive attributes for a fixed
value of DP violation. It is expected that test error increases with the number of sensitive attributes, as we
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Figure 6: Domain generalization on Color MNIST (]Li & Vasconcelos, |2019[) using in-process fair algorithms for
demographic parity. Left panel: The dashed line is the training error and the solid line is test error. As X increases,
fairness regularization results in a learned representation that is less dependent on color; hence training error increases
while test error decreases (all algorithms reach a plateau around A = 8). We use |B| = 512 for all baselines. Right
panel: We plot test error vs. batch size using an optimized value of A for each algorithm selected via a validation set.
The performance of baselines drops 10-20% as batch size becomes small, whereas FERMI is less sensitive to batch size.

will have a more stringent fairness constraint to satisfy. As can be seen, compared to the baselines, FERMI
offers the most favorable test error vs. fairness violation tradeoffs, particularly as the number of sensitive
attributes increases and for the more stringent fairness violation levels, e.g., 0.02@

3.4 Beyond Fairness: Domain Parity Regularization for Domain Generalization

In this section, we demonstrate that our approach may extend beyond fair empirical risk minimization to
other problems such as domain generalization. In fact, Li & Vasconcelos| (2019); Lahoti et al.| (2020); |Creager|
have already established connections between fair ERM and domain generalization. We consider
the Color MNIST dataset (Li & Vasconcelos, 2019)), where all 60,000 training digits are colored with different
colors drawn from a class conditional Gaussian distribution with variance o? around a certain average color
for each digit, while the test set remains black and white. [Li & Vasconcelos (2019) show that as 02 — 0,
a convolutional network model overfits significantly to each digit’s color on the training set, and achieves
vanishing training error. However, the learned representation does not generalize to the black and white test
set, due to the spurious correlation between digits and color.

Conceptually, the goal of the classifier in this problem is to achieve high classification accuracy with predictions
that are independent of the color of the digit. We view color as the sensitive attribute in this experiment, and
apply fairness baselines for the demographic parity notion of fairness. One would expect that by promoting
such independence through a fairness regularizer, generalization would improve (i.e. lower test error on the
black and white test set), at the cost of increased training error (on the colored training set). We compare
against Mary et al| (2019)), [Baharlouei et al. (2020)), and [Cho et al. (2020b) as baselines in this experiment.

The results of this experiment are illustrated in Fig. [6] In the left panel, we see that with no regularization
(A =0), the test error is around 80%. As )\ increases, all methods achieve smaller test error while training
error increases. We also observe that FERMI offers the best test error in this setup. In the right panel, we
observe that decreasing the batch size results in significantly worse generalization for the three baselines
considered (due to their biased estimators for the regularizer). However, the negative impact of small batch
size is much less severe for FERMI, since FERMI uses unbiased stochastic gradients. In particular, the
performance gap between FERMI and other baselines is more than 20% for |B| = 64. Moreover, FERMI with
minibatch size |B| = 64 still outperforms all other baselines with |B| > 1,000. Finally, notice that the test
error achieved by FERMI when ¢ = 0 is ~ 30%, as compared to more than 50% obtained using REPAIR
[& Vasconcelos, 2019)) for o < 0.05.

8Sec. @ demonstrated that using smaller batch sizes results in much more pronounced advantages of FERMI over these
baselines.
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4 Discussion and Concluding Remarks

In this paper, we tackled the challenge of developing a fairness-promoting algorithm that is amenable to
stochastic optimization. As discussed, algorithms for large-scale ML problems are constrained to use stochastic
optimization with (small) minibatches of data in each iteration. To this end, we formulated an empirical
objective (FERMI obj.)) using ERMI as a regularizer, and derived unbiased stochastic gradient estimators.
We proposed the stochastic FERMI algorithm (Algorithm [1) for solving this objective. We then provided
the first theoretical convergence guarantees for a stochastic in-processing fairness algorithm, by showing
that FERMI converges to stationary points of the empirical and population-level objectives (Theorem E,
Theorem . Further, these convergence results hold even for non-binary sensitive attributes and non-binary
target variables, with any minibatch size.

From an experimental perspective, we showed that FERMI leads to better fairness-accuracy tradeoffs than all
of the state-of-the-art baselines on a wide variety of binary and non-binary classification tasks (for demographic
parity, equalized odds, and equal opportunity). We also showed that these benefits are particularly significant
when the number of sensitive attributes grows or the batch size is small. In particular, we observed that
FERMI consistently outperforms Mary et al. (2019) (which tries to solve the same objective Eq. )
by up to 20% when the batch size is small. This is not surprising since FERMI is the only algorithm that is
guaranteed to find an approximate solution of the fair learning objective with any batch size |B| > 1. Also,
we show in Fig. 7| that the lack of convergence guarantee of [Mary et al.| (2019) is not just due to more limited
analysis: in fact, their stochastic algorithm does not converge. Even in full batch mode, FERMI outperforms
all baselines, including (Mary et al., 2019) (Fig. E, Fig. . In full batch mode, all baselines should be
expected to converge to an approximate solution of their respective empirical objectives, so this suggests
that our empirical objective Eq. is fundamentally better, in some sense, than the empirical
objectives proposed in prior works. In what sense is Eq. a better empirical objective (apart
from permitting stochastic optimization)? For one, it is an asymptotically unbiased estimator of Eq. (FRMI
[obj)) (by Proposition , and Theorem [2| suggests that FERMI algorithm outputs an approximate solution
of Eq. (FRMI obj.) for large enough N. By contrast, the empirical objectives considered in prior works do
not provably yield an approximate solution to the corresponding population-level objective.

The superior fairness-accuracy tradeoffs of FERMI algorithm over the (full batch) baselines also suggests
that the underlying population-level objective Eq. has benefits over other fairness objectives.
What might these benefits be? First, ERMI upper bounds all other fairness violations (e.g. Shannon
mutual information, Ly, L) used in the literature: see Appendix [C| This implies that ERMI-regularized
training yields a model that has small fairness violation with respect to these other notions. Could this also
somehow help explain the superior fairness-accuracy tradeoffs achieved by FERMI? Second, the objective
function Eq. is easier to optimize than the objectives of competing in-processing methods: ERMI
is smooth and is equal to the trace of a matrix (see Lemma E in the Appendix), which is easy to compute.
Contrast this with the larger computational overhead of Rényi correlation used by [Baharlouei et al. (2020)),
for example, which requires finding the second singular value of a matrix. Perhaps these computational
benefits contribute to the observed performance gains? We leave it as future work to rigorously understand
the factors that are most responsible for the favorable fairness-accuracy tradeoffs observed from FERMI.

Broader Impact and Limitations

This paper studied the important problem of developing practical machine learning (ML) algorithms that are
fair towards different demographic groups (e.g. race, gender, age). We hope that the societal impacts of our
work will be positive, as the deployment of our FERMI algorithm may enable/help companies, government
agencies, and other organizations to train large-scale ML models that are fair to all groups of users. On the
other hand, any technology has its limitations, and our algorithm is no exception.

One important limitation of our work is that we have (implicitly) assumed that the data set at hand is
labeled accurately and fairly. For example, if race is the sensitive attribute and “likelihood of default on a
loan” is the target, then we assume that the training data based on past observational data accurately reflects
the financial histories of all individuals (and in particular does not disproportionately inflate the financial
histories of racial minorities). If this assumption is not satisfied in practice, then the outcomes promoted
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by our algorithm may not be as fair (in the philosophical sense) as the computed level of fairness violation
might suggest. For example, if racial minorities are identified as higher risk for default on loans, they may
be extended loans with higher interest rates and payments, which may in turn increase their likelihood of a
default. Hence, it might be even possible that our mitigation strategy could result in more unfairness than
unmitigated ERM in this case. More generally, conditional fairness notions like equalized odds suffer from
a potential amplification of the inherent discrimination that may exist in the training data. Tackling such
issues is beyond the scope of this work; c.f. Kilbertus et al. (2020)) and |Bechavod et al. (2019).

Another consideration that was not addressed in this paper is the interplay between fairness and other socially
consequential AT metrics, such as privacy and robustness (e.g. to data poisoning). It is possible that our
algorithm could increase the impact of data from certain individuals to improve fairness at the risk of leaking
private information about individuals in the training data set (e.g. via membership inference attacks or model
inversion attacks), even if the data is anonymous (Fredrikson et all [2015; [Shokri et al., 2017; [Faizullabhoy
& Korolova, [2018; [Nasr et al., 2019; |Carlini et al.| [2021). Differential privacy (Dwork et al., [2006) ensures
that sensitive data cannot be leaked (with high probability), and the interplay between fairness and privacy
has been explored (see e.g. Jagielski et al.| (2019); Xu et al. (2019); |(Cummings et al.| (2019); Mozannar
et al. (2020); [Tran et al. (2021ajb). Developing and analyzing a differentially private version of FERMI
could be an interesting direction for future work. Another potential threat to FERMI-trained models is data
poisoning attacks. While our experiments demonstrated that FERMI is relatively effective with missing
sensitive attributes, we did not investigate its performance in the presence of label flipping or other poisoning
attacks. Exploring and improving the robustness of FERMI is another avenue for future research.
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A Notions of Fairness

Let (Y, )A/, A, S) denote the true target, predicted target, the advantaged outcome class, and the sensitive
attribute, respectively. We review three major notions of fairness.

Definition 2 (demographic parity (Dwork et al.,2012))). We say that a learning machine satisfies demographic
parity if Y is independent of S.

Definition 3 (equalized odds (Hardt et al. 2016)). We say that a learning machine satisfies equalized odds,
if Y is conditionally independent of S given Y.

Definition 4 (equal opportunity (Hardt et al., 2016)). We say that a learning machine satisfies equal
opportunity with respect to A, if Y is conditionally independent of S given Y =y for all y € A.

Notice that the equal opportunity as defined here generalizes the definition in (Hardt et al., 2016). It recovers
equalized odds if A = Y, and it recovers equal opportunity of (Hardt et al., |2016) for A = {1} in binary
classification.
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B ERMI: General Definition, Properties, and Special Cases Unraveled

We begin by stating a notion of fairness that generalizes demographic parity, equalized odds, and equal
opportunity fairness definitions (the three notions considered in this paper). This will be convenient for
defining ERMI in its general form and presenting the results in Appendix [C. Consider a learner who trains a
model to make a prediction, Y, e.g., whether or not to extend a loan, supported on a set ). Here we allow Y
to be either discrete or continuous. The prediction is made using a set of features, X, e.g., financial history
features. We assume that there is a set of discrete sensitive attributes, 5, e.g., race and sex, supported on
S, associated with each sample. Further, let A C ) denote an advantaged outcome class, e.g., the outcome
where a loan is extended.

Definition 5 ((Z, Z)-fairness). Given a random variable Z, let Z be a subset of values that Z can take. We
say that a learning machine satisfies (Z, Z)-fairness if for every z € Z, Y is conditionally independent of S
given Z = Z, i.e. vg € y,S € 872 € Z7 p?7S|Z(Q’S‘2) = p?‘z(glz)pS\Z(S‘z)

(Z, Z)-fairness includes the popular demographic parity, equalized odds, and equal opportunity notions of
fairness as special cases:

1. (Z, Z)-fairness recovers demographic parity (Dwork et al., 2012) if Z = 0 and Z = {0}. In this case,
conditioning on Z has no effect, and hence (0,{0}) fairness is equivalent to the independence between Y
and S (see Definition [2] Appendix .

2. (Z, Z)-fairness recovers equalized odds (Hardt et al., [2016) if Z =Y and Z = Y. In this case, Z € Z is
trivially satisfied. Hence, conditioning on Z is equivalent to conditioning on Y, which recovers the equalized
odds notion of fairness, i.e., conditional independence of Y and S given Y (see Definition [3] Appendix .

3. (Z, Z)-fairness recovers equal opportunity (Hardt et al.,|2016) if Z =Y and Z = A. This is also similar to
the previous case with ) replaced with A (see Definition [4f Appendix .

Note that verifying (Z, Z)-fairness requires having access to the joint distribution of random variables
(Z, }7, S). This joint distribution is unavailable to the learner in the context of machine learning, and hence
the learner would resort to empirical estimation of the amount of violation of independence, measured through
some divergence. See (Williamson & Menon, |2019) for a related discussion.

In this general context, here is the general definition of ERMI:

Definition 6 (ERMI — exponential Rényi mutual information). We define the exponential Rényi mutual
information between Y and S given Z € Z as

pgf\ys‘z(y’ S‘Z)

P, (Y12)ps12(512)

DR(Y;S|Z € Z) = EZ,/);,S {

z} ~ 1. (ERMI)

Notice that ERMI is in fact the y2-divergence between the conditional joint distribution, Dy g» and the
Kronecker product of conditional marginals, Py @ s, where the conditioning is on Z € Z. Further, x2-
divergence is an f-divergence with f(t) = (t — 1)2. See (Csiszar & Shields| 2004, Section 4) for a discussion.
As an immediate result of this observation and well-known properties of f-divergences, we can state the
following property of ERMI:

Remark 2. DR(?;S\Z € Z) > 0 with equality if and only if for all z € Z, Y and S are conditionally
independent given Z = z.

To further clarify the definition of ERMI, especially as it relates to demographic parity, equalized odds, and
equal opportunity, we will unravel the definition explicitly in a few special cases.
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First, let Z = 0 and £ = {0}. In this case, Z € Z trivially holds, and conditioning on Z has no effect,
resulting in:

Dﬂﬁsy:Dﬂﬁswezw

Z=0,2={0}
p?ﬁ(Y,S)
Y5 pp(Y)ps(S)
Py (0, 5) = pp(9)ps(s) o
= / w5 - py (0, 8)dy. (2)
“ZJgey py(9)ps(s) >

D R(XA/; S) is the notion of ERMI that should be used when the desired notion of fairness is demographic
parity. In particular, Dg(Y;S) = 0 implies that x? divergence between Py o and the Kronecker product

of marginals, p;; ® pg is zero. This in turn implies that Y and S are independent, which is the definition

of demographic parity. We note that when Y and S are discrete, this special case (Z =0 and Z = {0}) of
ERMI is referred to as y2-information by |Calmon et al. (2017a).

Next, we consider Z =Y and Z = ). In this case, Z € Z is trivially satisfied, and hence,

Dﬂﬁswyzpmﬁswezﬂ

Z=Y,Z2=Y
_E p?ys|y(y75|y) B
Yys p§|y(y|y)pS\Y(5|Y)

3 sy (@5 81y) — Py, (@ly)psy (sly) o
Py ¢(Y: 0, 8)djdy
yey Jgey o

ses py|y(y\y)pS|Y(5|y)

P oy (0, 8ly)?
/ / Yo¥ py (y)djdy — 1. (3)
yey Jgey py|y (9ly) pSIY( |y)

D R(f/; S|Y") should be used when the desired notion of fairness is equalized odds. In particular, D R(?; SlY) =
0 directly implies the conditional independence of Y and S given Y.

seS

Finally, we consider Z =Y and Z = A. In this case, we have

DAY S|Y) := Dp(Y:S|Z z‘
R( ) | ) R( ) ‘ € )Z:Y,Z:A

0o p?vs‘y(y, S|Y) veal_1
Y55\ gy (VY sy (STY)

Py sy (s 81y) — Py, (0ly)ps)y (sly) R
= / / | ' Py (y)djdy
yed Jyey Py (01Y)psyy (s]y)

sES

P o (9, 8Y)?
/ / Y5y (@, sly)pi(y)didy 1, (4)
ycAJy

= ey Py (01Y)ps)v (sly) Py.siv

where

Ay vy
e ©)

This notion is what should be used when the desired notion of fairness is equal opportunity. This can be
further simplified when the advantaged class is a singleton (which is the case in binary classification). If
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Z =Y and Z = {y}, then

Dr(Y;S|Y =y) = D} (V;S|Y)
B / 3 sy (5 81Y) = Py (@ly)ps)y (sly)
yey p?‘y(imy)pS\Y(S‘y)

p?7s‘y(g7 S|y)dﬁ
seS

by (g},s|y)2
= / Y5y dj — 1. (6)

scs /€Y PQ‘Y(MQ)PS\Y(S\ZI)

Finally, we note that we use the notation Dg(Y; S|Y) and Dr(Y; S|Y = ) to be consistent with the definition
of conditional mutual information in (Cover & Thomas| [1991).
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C Relations Between ERMI and Other Fairness Violation Notions

Recall that most existing in-processing methods use some notion of fairness violation as a regularizer to
enforce fairness in the trained model. These notions of fairness violation typically take the form of some
information divergence between the sensitive attributes and the predicted targets (e.g. Mary et al. (2019);
Baharlouei et al.| (2020); |Cho et al. (2020a)). In this section, we show that ERMI provides an upper bound
on all of the existing measures of fairness violations for demographic parity, equal opportunity, and equalized
odds. As mentioned in the main body, this insight might help explain the favorable empirical performance of
our algorithm compared to baselines—even when full batch is used. In particular, the results in this section
imply that FERMI algorithm leads to small fairness violation with respect to ERMI and all of these other
measures.

We should mention that many of these properties of f divergences are well-known or easily derived from
existing results, so we do not intend to claim great originality with any of these results. That said, we include
proofs of all results for which we are not aware of any references with proofs. The results in this section also
hold for continuous (or discrete) Y. We will now state and discuss these results before proving them.

Definition 7 (Rényi mutual information (Rényi, |1961)). Let the Rényi mutual information of order o > 1
between random variables Y and S given Z € Z be defined as:

-~ a—1
% (YaS|Z)
L og E, o Y.5\2 Zezy |, (RMI)
a1 V51 \pp, (V12)ps12(512)

which generalizes Shannon mutual information

- P 6, Y:512)
L(V;S|Ze2)=E, - {log .5 ZeZy, (MT)
” p3,,(Y12)psi2(512)

1,(Y;S|Z € Z) =

and recovers it as lim,_, 1+ Ia(}A’; S|Z e 2Z)= 11(57; S|Z € 2).

Note that I,(Y; S|Z € Z) > 0 with equality if and only if (Z, Z)-fairness is satisfied.

The following is a minor change from results in [Sason & Verdu (2016):

Lemma 1 (ERMI provides an upper bound for Shannon mutual information). We have

0<L(Y;8|1Z€2)<L(Y;S|Z e 2) < 2YVSI2€2) _ 1 = Dp(V, 9|7 € Z). (7)

Lemma [T also shows that ERMI is exponentially related to the Rényi mutual information of order 2. We
include a proof below for completeness.

Definition 8 (Rényi correlation (Hirschfeld, [1935; |Gebelein, (1941; |Rényi, 1959)). Let F and G be the
set of measurable functions such that for random variables Y and S, Eo{f(Y;z)} = Es{g(S;2)} = 0,
E}/;{f(f/; 2)2} =Es {9(S;2)?} =1, for all z € Z. Rényi correlation is:

pr(V,S|Z € Z) = sup E As{f(?;Z)g(S; Z)’ZGZ}. (RC)

fg€eF %G Z:Ys

Rényi correlation generalizes Pearson correlation,

E; {V5|2}

o(Y,S|Z € 2) := ZeZY, (PC)

Ez —
\/IE§{Y2|Z}]ES{SQ|Z}

to capture nonlinear dependencies between the random variables by finding functions of random variables
that maximize the Pearson correlation coefficient between the random variables. In fact, it is true that
pr(Y,S|Z € Z) > 0 with equality if and only if (Z, Z)-fairness is satisfied. Rényi correlation has gained
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popularity as a measure of fairness violation (Mary et al.,2019; Baharlouei et al.| [2020; |Grari et al., [2020).
Rényi correlation is also upper bounded by ERMI. The following result has already been shown by [Mary
et al. (2019)) and we present it for completeness.

Lemma 2 (ERMI provides an upper bound for Rényi correlation). We have

0<|p(Y,S|Z € 2)| < pr(Y,S|Z € 2) < Dr(Y; 5|2 € 2), (8)

and if |S| =2, Dr(Y;S|Z € 2) = pr(Y,S8|Z € Z).
Definition 9 (L, fairness violation). We define the L, fairness violation for ¢ > 1 by:

Q=

Ly(Y,8|Z € 2) == Ez{ ( / > \p;,S‘Z@,sm —PQZ@|Z)Z?S|Z(SZ)‘qdy> Ze Z} (La)
y€Vo

s€So

Note that Lq(f/7 S|Z € Z2) =0 if and only if (Z, Z)-fairness is satisfied. In particular, L., fairness violation
recovers demographic parity violation (Kearns et al., 2018, Definition 2.1) if we let Z = {0} and Z =0. It
also recovers equal opportunity violation (Hardt et al., |[2016) if Z = A4 and Z =Y.

Lemma 3 (ERMI provides an upper bound for L., fairness violation). Let Y be a discrete or continuous
random variable, and S be a discrete random variable supported on a finite set. Then for any q > 1,

0<L,(Y,S|Ze2)< \/DR(?,S|ZEZ). (9)

The above lemma says that if a method controls ERMI value for imposing fairness, then L., violation
is controlled. In particular, the variant of ERMI that is specialized to demographic parity also controls
Lo demographic parity violation (Kearns et al., 2018). The variant of ERMI that is specialized to equal
opportunity also controls the Lo, equal opportunity violation (Hardt et al., |2016). While our algorithm
uses ERMI as a regularizer, in our experiments, we measure fairness violation through the more commonly
used L., violation. Despite this, we show that our approach leads to better tradeoff curves between fairness
violation and performance.

Remark. The bounds in Lemmas 1-3 are not tight in general, but this is not of practical concern. They show
that bounding ERMI is sufficient because any model that achieves small ERMI is guaranteed to satisfy any
other fairness violation. This makes ERMI an effective regularizer for promoting fairness. In fact, in Sec.
we saw that our algorithm, FERMI, achieves the best tradeoffs between fairness violation and performance
across state-of-the-art baselines.

Proof of Lemma[I. We proceed to prove all the (in)equalities one by one:

e 0 < Ig (3/}, S|Z € Z). This is well known and the proof can be found in any information theory
textbook (Cover & Thomas, [1991)).

« 1,(Y;8|Z € Z) < I,(Y;S|Z € Z). This is a known property of Rényi mutual information, but we
provide a proof for completeness in Lemma [4] below.

e L(Y;81Z€Z2)< e2(ViS|Z€2) _ 1 This follows from the fact that « <e”—1.

. B(ViS)NZEZ DR(?; S|Z € Z). This follows from simple algebraic manipulation.

Lemma 4. Let 37, S, Z be discrete or continuous random variables. Then:

(a) For any o, € [1,00], Iﬁ(}?;S|Z €Z)>I,(Y;S|Z € Z) if B> a.
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(b) limg_y1+ Io(V;S|Z € 2) = [(V;S) := Ey {DKL(p}A,7S‘Z||p}A,|Z ®pS|Z)’ Ze z} , where I,(-) de-

notes the Shannon mutual information and Dy is Kullback-Leibler divergence (relative entropy).

(c) For all o € [1,00], Ia(?;S\Z € Z) > 0 with equality if and only if for all z € Z, Y and S are
conditionally independent given z.

Proof. (a) First assume 0 < o < 8 < oo and that «, 8 # 1. Define a = a — 1, and b = § — 1. Then the
function @(t) = ¥/ is convex for all ¢ > 0, so by Jensen’s inequality we have:

11og E (W)bZEZ zllog E{<M>G|Z€Z}b/a
b p(Y[2)p(5]Z) b p(Y[Z)p(5]Z)

1 v.s12) \"
— Zlog (]E{ (M) ZeZ}). (10)
a p(Y[Z)p(S|Z)
Now suppose a = 1. Then by the monotonicity for o # 1 proved above, we have Il(}?; S) =limg,_,q- Ia(f/; S) =
SUPue(0,1) La (Y3 S) < infax1 1o (Y5 5). Also, 1o(Y5S5) = lima o0 Ia(Y55) = sup,~o Lo (Y5 5).

(b) This is a standard property of the cumulant generating function (see (Dembo & Zeitouni, 2009)).

(c) 1t is straightforward to observe that independence implies that Rényi mutual information vanishes. On
the other hand, if Rényi mutual information vanishes, then part (a) implies that Shannon mutual information
also vanishes, which implies the desired conditional independence. O

Proof of Lemma[2. The proof is completed using the following pieces.
« 0<|p(Y,S|Z € Z)| < pr(Y,S|Z € Z). This is obvious from the definition of pr(Y, S|Z € Z).
e pr(V,S|Z € ) < DR(Y;S|Z € Z). This follows from Lemma [5] below.

o Notice that if |S| = 2, Lemmaimplies that Dg(Y;S|Z € Z) = pr(Y,S|Z € 2Z).

Next, we recall the following lemma, which is stated in [Mary et al.| (2019) and derives from Witsenhausen’s
characterization of Renyi correlation:

Lemma 5. Suppose that S = [k]. Let the k x k matriz P be defined as P = {Pi;}; jex]x[x], where

b, 1 | / <p§7s(y,i)19§7s(y,j)> " an
Vps(@ps (i) Jyey Py ()
Letl1=01>09>...> 0 >0 be the eigenvalues of P. Then,
pr(Y,8) = o2, (12)
Dr(Y;8) =Tr(P)—1= Xk:a (13)
i=2
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Proof. Eq. is proved in (Witsenhausen, (1975, Section 3). To prove Eq. , notice that

Tr(P)= Y Pi
1€ k]
1 Py 5y, 9)
s Jyey \ P9 )
Py, .9
9 e (Vps(9)
=1+ Dgr(Y;5)
which completes the proof. O

Proof of Lemma [3. Tt suffices to prove the inequality for Ly, as L, is bounded above by L for all ¢ > 1.
The proof for the case where Z = 0 and Z = {0} follows from the following set of inequalities:

(V8|7 € 2) = Z/

seS yey

/yey W’pys Yy, s py(y)ps( )‘dy (15)

‘pgs(y, s) — p§(y)ps(5)‘ dy (14)

SES
Py (U, 8) = Py (y)ps(s))?
- (Z/ )( ( s )) e
_ Z/ (P55, 8) — Py (y)ps(s . an
"\ yey P (W)ps(s) Y

Dg(Y;S), (18)

where Eq. follows from Cauchy-Schwarz inequality, and Eq. follows from Lemma E The
extension to general Z and Z is immediate by observing that p(Y,S|Z € Z) = Ey [p(}/}, S|Z)‘ YA Z},

pr(Y,8|Z € Z) = Ey [pR()?, S|Z)‘ Ze z}, and Dg(Y,8|Z € Z) = Ey {DR(?, S|Z)‘ Ze z].
0

Lemma 6. We have

Da(®:8) :Z/ ((pgs(yvs)—py(y)ps(s)) )dy. 19)
ses JYEY

py(Y)ps(s)
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Proof. The proof follows from the following set of identities:

(05505~ DpWps()? (b 5. 5))?
Zs/y < P ps(s) ) W= Zs/y porsts)

722/ Py (v, 9)dy

seS yey
+3 / s (s)y (20)
_pl s L (21)
py(Y)ps(S)
= Dg(Y:5). (22)
O

Next, we present some alternative fairness definitions and show that they are also upper bounded by ERMI.

Definition 10 (conditional demographic parity L., violation). Given a predictor Y supported on Y and
a discrete sensitive attribute S supported on a finite set S, we define the conditional demographic parity
violation by:

dp(YS) := sup max |pg  (4ls) —py(H))|- (23)
yeY

First, we show that (,i?)(ﬂS) is a reasonable notion of fairness violation.

Lemma 7. ZZ\];()/}|S) =0 iff (if and only if) Y and S are independent.

Proof. By definition, (TI/)(}A/\S) =0iff forally € Y,s € S, Py S(Q|s) = pg;(gj) iff Y and S are independent
(since we always assume p(s) > 0 for all s € S). O

Lemma 8 (ERMI provides an upper bound for conditional demographic parity L., violation). Let Y be a
discrete or continuous random variable supported on Y, and S be a discrete random variable supported on a
finite set S. Denote p%'™ := minses ps(s) > 0. Then,

0 < dp(Y|S) < Dg(Y;5). (24)

Proof. The proof follows from the following set of (in)equalities:

~ o~ 2 2
(A(¥19)) " = supmax (g 5(7ls) ~ pp (@) (25)
yeY
< (pg}m)Q o (v, 5(5-9) - po@ps()’ (26)

mm /Eyz py S yv p?(@\)pS(s)))z (27)

seS

= (p?T) (Y S), (28)

where Eq. follows from Lemma [
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Definition 11 (conditional equal opportunity L., violation (Hardt et al.,2016)). Let Y, Y take values in Yy
and let A C Y be a compact subset denoting the advantaged outcomes (For example, the decision “to interview"
an individual or classify an individual as a “low risk" for financial purposes). We define the conditional equal
opportunity Le violation off’ with respect to the sensitive attribute S and the advantaged outcome A by

(Y|S,Y € A) :=Ey {iup max ‘pgs‘y@ls, Y) - pgy@\Y)’ Ye «4} : (29)
yey

Lemma 9 (ERMI provides an upper bound for conditional equal opportunity L., violation). Let }7, Y, be
discrete or continuous random variables supported on Y, and let S be a discrete random variable supported on
a finite set S. Let A CY be a compact subset of ).

min

Denote Pja = Milses yeA ps|y (sly). Then,

1
min

S| A

0< @(P|S,Y € A) < ——\/Da(V; S|y € 4). (30)

Proof. Notice that the same proof for Lemma [§] would give that for all y € A:
0 < supmaxpg. gy (7ls.1) = Ppyy 0ly)| = (¥, Y =)

min DR(?7 S|Y = y)

= Dsiy (y)

Dr(Y; S|y =y).

— ,min
p

s|c

Hence,

(Y]S,Y € A) = Ey {ez(ﬂs,Y)‘ Y e A}

< Llg, { \/DR()A/;S|Y)‘ Y e A}

DPsia

1 ~
<— \/Ey {Dr(¥3517)|v € A}
Ds|a

1

S|A

VDR(T:SIY € A),

where the last inequality follows from Jensen’s inequality. This completes the proof. O
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D Precise Statement and Proofs of Theorem [1l and Theorem [2|

To begin, we provide the proof of Proposition
Proposition 3 (Re-statement of Proposition . For random variables Y and S with Jjoint distribution py
where Y € [m)], S € [k], we have

Dr(Y;S)= max {—Te(WP,WT)+2Tx(WP, ,P-'/?) -1},

W eRkXxm

if Py = ding(pg(1)..... p(m)), P = ding(ps(1). ... ps(k)). and (Py.0)i; = by 4(i.4) with (i), ps(j) > 0
for i € [m). j € k).

Proof. Let W* € arg maxyycgrxm — Tr(WﬁgWT) + 2Tr(Wﬁg,sﬁ;1/2). Setting the derivative of the expres-
sion on the RHS equal to zero leads to:

—2W Py + 2P, 1/2PT =0 = W*= P 2pT p-

ysy

Plugging this expression for W*, we have

max — Te(WP,WT) +2Te(WP, P, /?)
WeRk,X?n

= —Te(P;V2PY Py Py Py V) + 2 Te(Py VR PY Py Py (P
= TP B By P
= Te(P; P PPy ).

Writing out the matrix multiplication explicitly in the last expression, we have

P 'PL PP, =UVT,

y.sy

where Ui,j = ﬁS(i)ilﬁ?ﬂg(J‘ai) and ‘/i,j = ﬁ?(])7 ﬁ?s(]az)a for i € [k]a.] € [m] Hence

max —Te(WP,WT) +2Te(W P, P /?)
WGRka

=Tr(UVT)

2y
= DR(Y; S) + 1,

Py (5,1)?
ps(i)py(d)

which completes the proof. O

Corollary 2 (Re-statement of Corollary . Let (x;, 84, yi) be a random draw from D. Then, Eq. (FERMI
lobj.) is equivalent to

min  max {ﬁ(a,W) ::E(a)+A@(e,W)}, (31)
6 WeRkxm

where U(6, W) = — Tr(Wﬁ@WT) + 2Tr(Wﬁg75138_1/2) -1=% vazl 0;(0,W) and

bi(0, W) := — Te(WE[y(x;, 0)¥(x;, )T |x;]WT) + 2 Te(WE[§(x;; 0)sT |x;, ] P, 1/?) — 1
= — Tr(Wdiag(F1(0,%;), . .., Fm(0,%))WT) + 2 Te(WE[y(x;: 0)sT |x;, ;] P /?) — 1.

Proof. The proof simply follows the fact that
E[ ’ } (—Tr PWT) 4 2Te(WP, /2 —1) — Dp(Y:5),
yhax B (4i(0,W)) = max (WE;W™) + 2Te(W Py P/7) r(Y;S)

where the last equality is due to Proposition O
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Next, we will state and prove the precise form of Theorem [I] We first recall some basic definitions:
Definition 12. A function f is L-Lipschitz if for all u,u’ € domain(f) we have ||f(u) — f(u)|| < Ljju—1u'||.
Definition 13. A differentiable function f is B-smooth if for all u,u’ € domain(Vf) we have ||V f(u) —
V)| < Bllu—u'.

Definition 14. A differentiable function f is p-strongly concave if for all x,y € domain(f), we have
f)+ )y —x) = Slly —x[* > f(y)

Definition 15. A point 8* = A(D) output by a randomized algorithm A is an e-stationary point of a
differentiable function ® if E|V®(0*)| < e. We say 0* is an e-stationary point of the nonconvez-strongly

concave min-max problem ming maxy F (0, W) if it is an e-stationary point of the differentiable function
®(0) := maxy F(0,W).

Recall that Eq. (FERMI obj.) is equivalent to

N
min_max {F(@,W) = L(0) + \T(0, V) ;[ Xi, Ui, 8) + Mbi (6, W)}} (32)
where U(0, W) = — Te(WB,WT) + 2Te(WPF, P, /%) — 1= L 5N (0, W) and

0;(0,W) := — Tr(WE[y(x;, 0)y(xs,0)T | ]WT) + 2 Te(WE[y(x:; 0)sT |x, 5:] P, /?) — 1
= - Tr(Wdiag(fl(evxi)a .. 7fm(07xi))WT) + 2Tr(W]E[y(sz )Si ‘Xiv si]ﬁs_1/2) - 17

where y(x;;60) and s; are the one-hot encodings of y(x;;0) and s;, respectively.

Assumption 1. o (-, x,y) is G-Lipscthiz, and Bg-smooth for all x,y.
o F(-,x) is L-Lipschitz and b-smooth for all x.

. ]/)\glin = il’lf{gt7t€[T]} minje[m] % EZJ\L1 ]‘}(0,,%,) > % > 0.

o« = F Tl gy > 0.
Remark 3. As mentioned in remark[1], the third bullet in Assumption[]]is convenient and allows for a faster
convergence rate, but not strictly necessary for convergence of Algorithm|[1.
Theorem 3 (Precise statement of Theorem Let {x;,yi, Si}ie[]\z] be any given data set of features, labels,
and sensitive attributes and grant Assumption |1l Let W := Bp(0, D) C RF*™ (Frobenius norm ball of radius

D), where D := W in Algorithm . Denote Ag := </I\>(90) — infg @(9), where 5(0) = maxyy ﬁ(@, W).
In Algorithm |Z, choose the step-sizes as ng = O(1/k?B) and nw = O(1/8) and mini-batch size as |By| =
© (max {1,&026*2}) - Then under Assumption |gz, the iteration complexity of Algorithm |Z to return an
e-stationary point of ® is bounded by

)
62

o (ﬁma + n52D2>

which gives the total stochastic gradient complexity of

20 A 272
(@] ((H ﬁA‘D;KB b )max{l Ko 6_2}>

1 1
ﬂ=2<6€+2/\Dmb<D+AA>+2+8L<D+ A.>>7
/p?ln /prélln

— 2)\/\1’1’111‘1
K= B/u,
0? = 16)\*(D? + 1) +4G?* + 32)*D?*L? (1 + mk ) )

where

Amin
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Remark 4. The larger minibatch size is necessary to obtain the faster O(e~*) convergence rate via two-
timescale SGDA. However, as noted in (Lin et al., |2020, p.8), their proof readily extends to any batch size
|B:| > 1, showing that two-timescale SGDA still converges. But with |Bi| = 1, the iteration complexity
becomes slower: O(k3e¢=5). This is the informal Theoremlz that was stated in the main body.

In light of Corollary |1, Theorem |3| follows from (Lin et al.,|2020, Theorem 4.5) combined with the following
technical lemmas. We assume Assumption [1] holds for the remainder of the proof of Theorem

Lemma 10. If x;,y;, s; are drawn uniformly at random from data set D, then the gradients of £(x;,y;,0) +
AV, (0, W) are unbiased estimators of the gradients of F(0, W) for all 8, W, A:

E[Vel(xi,yi,0) + AVgth; (8, W)] = Vo F (6, W), and
EAVw:(0,W)] = VwF(68,W).

Furthermore, if |W||r < D, then the variance of the stochastic gradients is bounded as follows:

sup B||VE(x;, yi, 8) + AV, (6, W) — VE(6, W)|? < 02, (33)
w

)

where 02 = 16A\*(D? + 1) + 4G* + 32\ D?L? (1 + mk)

~m
Ps

Proof. Unbiasedness is obvious. For the variance bound, we will show that

sup B[ AV (8, W) — Viw F(0, W)||* < o2, (34)
oW
and R R
sup E||Vol(xi, yi,0) + A\Ve1i (0, W) — Vo '(8,W)|* < 03, (35)
o.W
where 0% = 05 + 02 First,
Vi (0, W) = —2WE[§(x;, 0)§(x:,0)7 ;] + 255 (r) "/ *Els;9(xi, ) |xs, 5:]- (36)
Thus, for any 8, W, A, we have
R _ an N . o .
E[AVw (0, W) = Vi F(0,W)||7 = ~ WE[§ (%, 0)9(xi,0)7 |x;] — Ps(r) "/ *E[si9(x:,0)7 |, 5]
i=1
1 Y ’
_ = (% Six: O 1<.1 — 7 -1/2 Sl N 1% <.
N2 (WE(xi, 0)9(xi, 0) il — B (r) ™2 Elsi (x5, ) I, 1)) )
2
F

< S W [ 005050 07 ]~ P
=N < F Y (X, V)y(Xq, X 1

i

4)\2 N N ~
22 2084 [P (Bl )7 ) - P

Els.5(xi,0)" xi, 5~ L, )

IN

]
F
g

—— 2[2D*+2]

N i=1

<16)A*(D?* + 1),

IN

where we used Young’s inequality, the Frobenius norm inequality ||ABllr < |Allr|B|F, the

facts that [E[§(x;,0)3(xi,0)7 x| = 7, Fi(0,x)? < 1 and [P ?Els;§(x;,0)7|xi, 1]} =
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Z] 1875 2y Fi(xi,0)* < 1 for all i € [N] (since for every i € [N], only one of the s;; is non-zero
and equal to 1, and ) ;" F(0,%;) = 1).
Next,

)\Veﬂ;z‘(@a W)=\ [—Ve vec(E[y(xi, 0)¥(xi, 0)" |[xi])" vec(WTW) + 2Vg vec(E[s;y (x;, 8)" |xi, s:]) VeC(WTﬁs_l/g)} .

(37)
Hence, for any 6, W, we have

E||Vol(xi, yi,8) + AVet; (0, W) — Vo F(0,W)|* < 2 lz sup [|Vol(x;, yi, 0)||>
XiYi

+ A2 sup

XisYisSi

— Vo vec(E[§(x;, 0)5(x;, 0)7 |x;) T vec(WTW)

~ 2
+ 2V vec(Efsiy (xi, 8) i, 5i]) vee(WT P 1/2) ]

4|G? +2)\? (sup Vo vec(E[Y(x;, 0)¥ (x:, 0)"[x;])" vec(W W) H2

+ 4 sup

Xi,Si

N 2
Vo vec(E[s;¥(xi, 0)7[x;, 5i]) vec(WT P;1/2) H )1 ’

by Young’s and Jensen’s inequalities and the assumption that £(x;,y;,-) is G-Lipschitz. Now,

k
Vo vec(E[y (xi, 0)3 (xi,0)" [x;])" vec(W' W Zvﬂ X, 0 ZWJJWJ',[,

j=1
which implies
1Ve vec(E[3 (xi, 0)3 (%, 0)" [x:])T vec(W' W) > < > W7, sup IVFi(x,0)|* < D’L?,  (38)
I le[m],x,0
by L-Lipschitzness of F(-,x). Also,

k. m
i rWr j
Vo vec(E[s;y(xi, 0) 7 |xi, 5:]) vec(WT P;1/2) = E g S’ (;
r=1j=1 Ps(r

)

which implies

~ 2 kom ) N\
HVgvec(]E[si§(xi7H)T\Xi,si])vec(WTPS_l/z)H Smkz:z:sup||V.7:j(0,xi)||2 <Sl’TAWT’]> < TnﬁlL2D2.

r=1j=1 % PS(T) bs
Thus,
k
03 < 4G? + 322D L2 (1 + fﬁm> .
pg
Combining the 8- and W-variance bounds yields the lemma. O

Lemma 11. Let

Z 0,955 0) + Mbi (0, W)

ze [N]
where

Ui(0,W) = — Tr(WE[F (xi,0)3(x:,0)" |xi] W) + 2 Te(WE[F (x;; 0)s] |x;, 5, Py /%) — 1.

Then:
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1. F s B-smooth, where § = 2 (,6’@ + 2ADmb (D + \/pli> + 2+ 8L (D + \/;7))
S S

2. 13(0, ) is 2)\}55‘1’“ -strongly concave for all 6°.

3. If W= Br(0,D) with D > W, then Eq. = ming maxy cw ﬁ(O, w).

Proof. We shall freely use the expressions for the derivatives of 1@ obtained in the proof of Lemma
1. First,
IVWF(0,W) = Vo F(0, W) < 2sup [WE[y (x;, 0)y (xi, 0)" x| - WE[y(x:,0)¥(xi, 0)" |xi]l| r
< 2||V‘; - Wlr,
since F;(0,x;) <1 for all j € [m]. Next,
IV E (O, W) = VW (6, W)

~ ~ 2
<8 sup [D?HE[&(xi,my(xi,mﬂxﬁ—E[Y(xi,e)')Y(xi,e')ﬂxi} .
Xi,84,Yi

i Hﬁs—l/Q (]E[Si§(xi, 9)T|Xi, 5] — E[si{((xi, OI)T‘Xi7 Sz]) Hi]

Xi3Si,Yi

<8 sup [DQ |F(0,%;) — ~7:(0/7Xi)||??

m k
+ YD IFi(0.x) — F(8, Xi)lzﬁs(r)(r)lsf,r]

j=1r=1
2712 /112 L2 /112
<8 sup |D°L70—0'|"+ — 16 — 0|7 |,
Xi,Si,Yi Ds

which implies

~ ~ 1
[V F (8, W) =V, F(@,W)|r <8L (D + m) 16 — 0.
DPg

Lastly,

IVeF(8,W) — Vo F(8',W)|| < sup

XisYisSi

+ M || [~ Ve vec(E[y(x:, 0)¥ (x:,0)"[x:])" + Vo vec(E[§(xi,0")9(xi,0") 7 [x;])"] vec(W W)|

||v£(xz7 Yis 0) - vg(x’ia Yi,s 0/) ||

+ 20| (Vo vee(Blsi3(xi, 6)7 xi, si]) — Vo vec(Blsif (xi, )7 xi, s:])] vee(WT P71/2)| ]

< B0 — 0’| + AD*sup > |[VFi(6,x) — VF(6',x)]|
X =1

+2)\ sup Z VF;(8,x) — VF;(0,x)ps(r) "W,

x,relk] |55

Db
Be + 2 <D2b+ Ammﬂ le—e|,
VPs

<
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by Assumption [I} Combining the above inequalities yields part 1. R

2. We have V2 F(6,W) = —2\P;, which is a diagonal matrix with (VZ,F(0,W));; =
—2A % Efil Fi(x;,0) < —2)\]5$i“, by Assumption Thus, F(-,0) is 2\ A%‘in—strongly concave for all 6.

3. Our choice of D ensures that W*(6*) € int(W), since

IW=(0")lr = 1P/ Py o (67)T By (07) I (39)
1
SR (40)
p%nn@
Therefore, maxy ey ﬁ(@, W) = maxw F\(O, W), which implies part 3 of the lemma.
O

By Assumption |l and Lemma E, our choice of W implies that W*(6*) € W and hence that the solution
of Eq. (FERMI obj.) solves

. ~ 1 = =
min max FO,W):= N EX[]:V] L(0) + \T(O,W)

This enables us to establish the convergence of Algorithm [1| (which involves projection) to a stationary point
for the unconstrained min-max optimization problem Eq. @ that we consider. The W' projection step in
Algorithm [1] is necessary to ensure that the iterates W* remain bounded, and hence that the smoothness and
bounded variance conditions of F are satisfied at every iteration.

D.1 Proof of Theorem

Now we turn to the proof of Theorem 2l We first re-state and prove Proposition

Proposition 4 (Restatement of Proposition [2). Let {z}l, = {xi sy}l be drawn i.i.d.
from an unknown joint distribution D. Denote 1/)§n)(0, W) = —Te(WE[y(x;,0)y(xi,0)T|x;]WT) +

~ -1/2 ~
2Tr (WE[?(xi;G)sﬂxi,si] (PS(")) ) — 1, where PV = L5~ diag(Lys,=1y,- » Lis,=ky). Denote

(O, W) = — Te(WP,WT) +2Te(W P, ,Ps*/?) — 1, where Py = diag(EF(0,x), -, EF(8,%)), (Py.o)jr =
Ex, s;[F;(0,%i)sir] for j € [m],r € [k], and Py = diag(Ps(1),--- , Ps(k)). Assume ps(r) > 0 for all r € [k].
Then,

max ¥(6, W) = Dr(Y(6);5)

and

lim E[¢"™) (6, W)] = ¥(6,W).

n— oo

Proof. The first claim, that maxy ¥(0, W) = Dr(Y();S) is immediate from Proposition [I|and its proof, by
replacing the empirical probabilities with D-probabilities everywhere. For the second claim, we clearly have

“(n) _ ~ ~ T T ~ T ) —1/2
E[5" (0, W)] = E [~ Te(WE[F(xi, 0)5(xi, 0)” x,)W™)] + 2E {Tr (WE[y(xi,O)si 14, 5i] (PS ) )]—1 (41)

N —1/2
= -—Tr(WP,W") +2E |:Tr <WEBI\(X,;; 0)s! |xi, ] (P§">) )} —-1,

for any n > 1. Now, ﬁs(n)(r) converges almost surely (and in probability) to ps(r) by the strong law of large

numbers, and ]E[Ps(n)(r)] = pg(r). Thus, Ps(n)(r) is a consistent estimator of pg(r). Then by the continuous
~ —-1/2

mapping theorem and the assumption that pg(r) > C for some C' > 0, we have that (Ps(n) (r)) converges

—1/2

almost surely (and in probability) to pg(r) . Moreover, we claim that there exists N* € N such that
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=R —1/2
for any n > N*, Var ((Ps(n)(r)) ) < 2 < oo. To see why this claim holds, note that the definition of

almost sure convergence of pm (r) to ps(r) implies that, with probability 1, there exists N* such that for all
n>N*

min ﬁs(n)(r) > min ps(r) — C/2 > C/2.
re k] re[k]

Thus, Var((ﬁ5<n>(r))—1/2> - & (1,55'(”)(7“))_1

N —1/2
with uniformly bounded variance, hence it is asymptotically unbiased: lim,_oE [(Ps,(")(r)) } =

N —1/2
< Z. Therefore (Ps,(")(r)) is a consistent estimator

for all n > N* and

Qv

N —1/2
ps(r)~2 Furthermore, ‘ (E[?(xi; 0)s] |xi, si] (ps(n)) )
J,r

~ -1/2 _
(E[?(xi;O)sﬂxi,sz'] (PS(")> ) converges almost surely to (E[y(xi;O)siT\xi,si] (Ps) 1/2> asn — oo
Jr Jsr

(for any j € [m],r € [k]). Thus, by Lebesgue’s dominated convergence theorem, we have

N —1/2 N —1/2
lim (IE [E[?(xi;e)s?xi,si] (PS(”)) }) =K [E[?(Xi;e)sﬂxi, s;] lim (PS(")(T)) }

n—00 .
7,7

. —1/2
— E[si,F;(0,%)] lim (Ps(">(r))

n— 00
= (Pys)jrps(r)” "2
= (P@,SPS_I/Z)]',N (42)

for all j € [m],r € [k]. Combining Eq. with Eq. (and using linearity of trace and matrix multiplication)
proves the second claim. O

We are now ready to prove Theorem

Proof of Theorem[2. Denote ®(0) := maxy F (6, W) for the population-level objective F'(8, W) := L(0) +
AU (0, W) (using the notation in Proposition . Let 0* denote the output of the one-pass/sample-without-

o\ —1/2
replacement version of Algorithm (1} run on the modified empirical objective where (Ps(n)> is replaced by

the true sensitive attribute matrix Pg /2 That is, 0* ~ Unif(67,...,0}.), where 6 denotes the t-th iterate
of the modified FERMI algorithm just described. Then, given i.i.d. samples, the stochastic gradients are
unbiased (with respect to the population distribution D) for any minibatch size, by Corollary [If and its proof.
Further, the without-replacement sampling strategy ensures that the stochastic gradients are independent

. —1/2
across iterations. Additionally, the proof of Proposition [2{ showed that (P§">) converges almost surely to

Ps_l/z. Thus, there exists N such that if n > N > T = Q(e™°), then min, ¢ P (r) > 0 (by almost sure
convergence of ﬁs, see proof of Proposition , and

* €
B|Va(0") < 5, (43)

by Theorem [1{ and its proof. Let §§n) denote the t-th iteration of the one-pass version of Algorithm |1/ run on
. —1/2
the empirical objective (with (Ps(n)) ). Now,

N N —1/2
Voti(0, W) = —Vg vec(E[y(x;,0)¥(x;,0)7|x:])" vec(WT W)+2Vg vec(E[s;¥(x;, 0)"|x;, 5:]) vec <WT (Ps(n)) ) )

~ N —1/2
which shows that 0§”) is a continuous (indeed, linear) function of (Ps(n)) for every t. Thus, the continuous

mapping theorem implies that 5,5") converges almost surely to ; as n — oo for every t € [T]. Hence, if
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6™ ~ Unif (5%"), ceey g(Tn)), then () converges almost surely to 8*. Now, for any 6, let us denote W(0) =

)
argmaxy, F'(60,W). Recall that by Danskin’s theorem (Danskin, [1966), we have V®(0) = Vo F (0, W (0)).
Then,

—~ —~ —~ ~ 2 —~ 2
IVE(8") — Ve(8")|* < 2 |[VoF (@™, W(B"™)) ~ VoF (6", W(8"))|| +2||VoF (6", W(8)) ~ VoF (6", W (6"))|
<2 (828 — 0" + 52w (8) — W (0")]?]

—~ 28212

<2|216% o+ 2o - 61 2.
1

where L denotes the Lipschitz parameter of F', 5 is the Lipschitz parameter of VF, and p is the strong
concavity parameter of F(0,-): see Lemma [11|and its proof (in Appendix @ for the explicit 8, L, and p. We
used Danskin’s theorem and Young’s inequality in the first line, 8-Lipschitz continuity of VF in the second
line, and %—Lipschitz continuity of the arg maxy, F'(6, W) function for p-strongly concave and L-Lipschitz
F(8,) (see e.g. (Lowy & Razaviyayn, 2021, Lemma B.2)). Letting n — oo makes || — 6*||2 = 0 almost
surely, and hence ||[V®(0(™)) — V&(6*)||> — 0 almost surely. Furthermore, Danskin’s theorem and Lipschitz
continuity of Vo F implies that |[V®(0)) — V&(0*)||? < C almost surely for some absolute constant C' > 0
and all n sufficiently large. Therefore, we may apply Lebesgue’s dominated convergence theorem to get

limy_s o0 E|V(O™) — VO(6*)|2 = E [hmn%o IVD(@O™) — v<1>(0*)||2] = 0. In particular, there exists N

such that n > N = IE||V<I>(§(”)) — V®(0*)||* < £. Combining this with Eq. (@) and Young’s inequality
completes the proof. O
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E Experiment Details and Additional Results

E.1 Model description

For all the experiments, the model’s output is of the form O = softmax(Wx 4 b). The model outputs are
treated as conditional probabilities p(§ = i|z) = O; which are then used to estimate the ERMI regularizer.
We encode the true class label Y and sensitive attribute S using one-hot encoding. We define £(-) as the
cross-entropy measure between the one-hot encoded class label Y and the predicted output vector O.

We use logistic regression as the base classification model for all experiments in Fig. [I. The choice of
logistic regression is due to the fact that all of the existing approaches demonstrated in Fig. [1} use the same
classification model. The model parameters are estimated using the algorithm described in Algorithm [I.
The trade-off curves for FERMI are generated by sweeping across different values for A € [0,10000]. The
learning rates 1y, 1, is constant during the optimization process and is chosen from the interval [0.0005, 0.01]
for all datasets. Moreover, the number of iterations T' for experiments in Fig. [Iis fixed to 2000. Since the
training and test data for the Adult dataset are separated and fixed, we do not consider confidence intervals
for the test accuracy. We generate ten distinct train/test sets for each one of the German and COMPAS
datasets by randomly sampling 80% of data points as the training data and the rest 20% as the test data.
For a given method in Fig. [1, the corresponding curve is generated by taking the average test accuracy on
10 training/test datasets. Furthermore, the confidence intervals are estimated based on the test accuracy’s
standard deviation on these 10 datasets.

To perform the experiments in Sec. [3.3|we use a a linear model with softmax activation. The model parameters
are estimated using the algorithm described in Sec. [3. The data set is cleaned and processed as described
in (Kearns et al., 2018). The trade-off curves for FERMI are generated by sweeping across different values
for A in [0, 100] interval, learning rate 7 in [0.0005, 0.01], and number of iterations 7" in [50,200]. The data
set is cleaned and processed as described in (Kearns et al., 2018)).

For the experiments in Sec. we create the synthetic color MNIST as described by |Li & Vasconcelos (2019)).
We set the value 0 = 0. In Fig. @ we compare the performance of stochastic solver (Algorithm [I) against the
baselines. We use a mini-batch of size 512 when using the stochastic solver. The color MNIST data has 60000
training samples, so using the stochastic solver gives a speedup of around 100x for each iteration, and an
overall speedup of around 40x. We present our results on two neural network architectures; namely, LeNet-5
(Lecun et al., |1998) and a Multi-layer perceptron (MLP). We set the MLP with two hidden layers (with 300
and 100 nodes) and an output layer with ten nodes. A ReLU activation follows each hidden layer, and a
softmax activation follows the output layer.

Some general advice for tuning A: Larger value for A generally translates to better fairness, but one must be
careful to not use a very large value for X as it could lead to poor generalization performance of the model.
The optimal values for A, n, and T largely depend on the data and intended application. We recommend
starting with A ~ 10. In Appendix we can observe the effect of changing A on the model accuracy and
fairness for the COMPAS dataset.

E.2 More comparison to (Mary et al., 2019)

The algorithm proposed by [Mary et al.| (2019) backpropagates the batch estimate of ERMI, which is biased
especially for small minibatches. Our work uses a correct and unbiased implementation of a stochastic ERMI
estimator. Furthermore, |Mary et al.| (2019) does not establish any convergence guarantees, and in fact their
algorithm does not converge. See Fig. [7| for the evolution of training loss (i.e. value of the objective function)
and test accuracy. For this experiment, we follow the same setup used in (Mary et al., 2019, Table 1); the
minibatch size for this experiment is 128.

E.3 Performance in the presence of outliers & class-imbalance

We also performed an additional experiment on Adult (setup of Fig [1) with a random 10% of sensitive
attributes in training forced to 0. FERMI offers the most favorable tradeoffs on clean test data, however, all
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Figure 7: (Mary et al., 2019) fails to converge to a stationary point whereas our stochastic algorithm easily converges.

methods reach a higher plateau (see Fig . The interplay between fairness, robustness, and generalization is
an important future direction. With respect to imbalanced sensitive groups, the experiments in Fig [5|are on
a naturally imbalanced dataset, where maxscs p(s)/ minges p(s) > 100 for 3-18 sensitive attrib, and FERMI
offers the favorable tradeoffs.

0.11 k MHardt et al.,|2016
2010 WZafar et al., 2017
S \ M Donini et al., 2018
t 509 \ # Rezaei et al., 2020
o v B FERMI
o
©
3 0.07 + k\

L

0.06

0.16 0.18 0.20 0.22 0.24 0.26
Test Error

Figure 8: Comparing FERMI with other methods in the presence of outliers (random 10% of sensitive attributes in
training forced to 0. FERMI still achieves a better trade-off compared to all other baselines.

E.4 Effect of hyperparameter )\ on the accuracy-fairness tradeoffs

We run ERMI algorithm for the binary case to COMPAS dataset to investigate the effect of hyper-parameter
tuning on the accuracy-fairness trade-off of the algorithm. As it can be observed in Fig. [9, by increasing
A from 0 to 1000, test error (left axis, red curves) is slightly increased. On the other hand, the fairness
violation (right axis, green curves) is decreased as we increase A to 1000. Moreover, for both notions of
fairness (demographic parity with the solid curves and equality of opportunity with the dashed curves) the
trade-off between test error and fairness follows the similar pattern. To measure the fairness violation, we use
demographic parity violation and equality of opportunity violation defined in Section equation [3| for the solid
and dashed curves respectively.

40



Published in Transactions on Machine Learning Research (11/2022)

COMPAS Adult
0.225
0-31 — 0.205 0.200
// 0.200
- 0.200 0175
0.30 10175 @ o
________ El 0.195 0.150 =
S I 0150 3 5 z
b= 4 O Eg190] 0125 ®
W o029 0125 © W | J «
B g S Bo ' I e 0100 <
o .185 i goe S
) A 0.100 2 @ 1 o
= A n F i 1 0.075 &
0.28{ f|\ = Demographic Parity Notion 1 0.075 & 0-180 11\ 7" et Deemogaphic Parity Notion 5
\

AN Equal Opportunity Notion 0.050 0.175 w)(" ------ Equal Opportunity Notion | 0-050 >

~ST—— ;o 0.025

0274 TTmme——eeaaoo L 10.025 0.170 1
- 0.000
[ 200 400 600 800 1000 0 100 200 300 400 500 600 700 800
Lambda Lambda

Figure 9: Tradeoff of fairness violation vs test error for FERMI algorithm on COMPAS and Adult datasets. The solid
and dashed curves correspond to FERMI algorithm under the demographic parity and equality of opportunity notions
accordingly. The left axis demonstrates the effect of changing A on the test error (red curves), while the right axis
shows how the fairness of the model (measured by equality of opportunity or demographic parity violations) depends
on changing .

E.5 Complete version of Figure 1 (with pre-processing and post-processing baselines)

In Figure [l we compared FERMI with several state-of-the-art in-processing approaches. In the next three
following figures we compare the in-processing approaches depicted in Figure [I with pre-processing and
post-processing methods including (Hardt et al., 2016} [Kamiran et al.| [2010; [Feldman et al., [2015)).

E.6 Description of datasets

All of the following datasets are publicly available at UCI repository.

German Credit Dataset.ﬂ German Credit dataset consists of 20 features (13 categorical and 7 numerical)
regarding to social, and economic status of 1000 customers. The assigned task is to classify customers as
good or bad credit risks. Without imposing fairness, the DP violation of the trained model is larger than
20%. We choose 80% of customers as the train data and the remaining 20% customers as the test data. The
sensitive attributes are gender, and marital-status.

Adult Dataset.IE Adult dataset contains the census information of individuals including education, gender,
and capital gain. The assigned classification task is to predict whether a person earns over 50k annually.
The train and test sets are two separated files consisting of 32,000 and 16,000 samples respectively. We
consider gender and race as the sensitive attributes (For the experiments involving one sensitive attribute, we
have chosen gender). Learning a logistic regression model on the training dataset (without imposing fairness)
shows that only 3 features out of 14 have larger weights than the gender attribute. Note that removing
the sensitive attribute (gender), and retraining the model does not eliminate the bias of the classifier. the
optimal logistic regression classifier in this case is still highly biased. For the clustering task, we have chosen
5 continuous features (Capital-gain, age, fnlwgt, capital-loss, hours-per-week), and 10,000 samples to cluster.
The sensitive attribute of each individual is gender.

Communities and Crime Dataset The dataset is cleaned and processed as described in (Kearns et al.|
2018). Briefly, each record in this dataset summarizes aggregate socioeconomic information about both the
citizens and police force in a particular U.S. community, and the problem is to predict whether the community
has a high rate of violent crime.

COMPAS Dataset Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) is
a famous algorithm which is widely used by judges for the estimation of likelihood of reoffending crimes. It is

9https://archive.ics.uci.edu/ml/datasets/statlog+(german+tcredit+data)
Ohttps://archive.ics.uci.edu/ml/datasets/adult.
Mhttp://archive.ics.uci.edu/ml/datasets/communities+and+crime
2https://wuw.kaggle.com/danofer/compass
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Figure 10: Tradeoff of demographic parity violation vs test error for FERMI algorithm on COMPAS, German, and
Adult datasets.

observed that the algorithm is highly biased against the black defendants. The dataset contains features used
by COMPAS algorithm alongside with the assigned score by the algorithm within two years of the decision.

Colored MNIST DatasetE We use the code by [Li & Vasconcelos| (2019) to create a Colored MNIST
dataset with o = 0. We use the provided LeNet-5 model trained on the colored dataset for all baseline models
of Baharlouei et al.| (2020); [Mary et al.| (2019); |Cho et al. (2020b) and FERMI, where we further apply the
corresponding regularizer in the training process.

https://github.com/JerryYLi/Dataset-REPAIR/
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Figure 11: Tradeoff of equalized odds violation vs test error for FERMI algorithm on COMPAS, German, and Adult
datasets.
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Figure 12: Tradeoff of equality of opportunity violation vs test error for FERMI algorithm on COMPAS, German,
and Adult datasets.
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