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Abstract

Despite the success of large-scale empirical risk minimization (ERM) at achieving high
accuracy across a variety of machine learning tasks, fair ERM is hindered by the incompati-
bility of fairness constraints with stochastic optimization. We consider the problem of fair
classification with discrete sensitive attributes and potentially large models and data sets,
requiring stochastic solvers. Existing in-processing fairness algorithms are either impractical
in the large-scale setting because they require large batches of data at each iteration or they
are not guaranteed to converge. In this paper, we develop the first stochastic in-processing
fairness algorithm with guaranteed convergence. For demographic parity, equalized odds, and
equal opportunity notions of fairness, we provide slight variations of our algorithm–called
FERMI–and prove that each of these variations converges in stochastic optimization with any
batch size. Empirically, we show that FERMI is amenable to stochastic solvers with multiple
(non-binary) sensitive attributes and non-binary targets, performing well even with minibatch
size as small as one. Extensive experiments show that FERMI achieves the most favorable
tradeo�s between fairness violation and test accuracy across all tested setups compared with
state-of-the-art baselines for demographic parity, equalized odds, equal opportunity. These
benefits are especially significant with small batch sizes and for non-binary classification with
large number of sensitive attributes, making FERMI a practical, scalable fairness algorithm.
The code for all of the experiments in this paper is available at:
https://github.com/optimization-for-data-driven-science/FERMI.

úAL and SB contributed equally to this paper.
†The work of AL, SB and MR was supported in part with funding from the NSF CAREER Award 2144985, from a gift from

3M, and from the USC-Meta Center for Research and Education in AI & Learning.
‡The work of AB was done at Meta AI.

1

https://openreview.net/forum?id=P9Cj6RJmN2
https://github.com/optimization-for-data-driven-science/FERMI


Published in Transactions on Machine Learning Research (11/2022)

Reference NB NB NB Beyond Stoch. alg. Converg.
target attrib. code logistic (unbiasedúú) (stoch.)

FERMI (this work) 3 3 3 3 3 (3) 3 (3)
(Cho et al., 2020b) 3 3 3 3 3 (7) 7
(Cho et al., 2020a) 3 3 7 3 3 (3) 7
(Baharlouei et al., 2020) 3 3 3 3 7 3 (7)
(Rezaei et al., 2020) 7 7 7 7 7 7
(Jiang et al., 2020)ú 7 3 7 7 7 7
(Mary et al., 2019) 3 3 3 3 3 (7) 7
(Prost et al., 2019) 7 7 7 3 3 (7) 7
(Donini et al., 2018) 7 3 7 3 7 7
(Zhang et al., 2018) 3 3 7 3 3 (7) 7
(Agarwal et al., 2018) 7 3 7 3 7 3 (7)

Table 1: Comparison of state-of-the-art in-processing methods (NB = non-binary) on whether they (a) handle
non-binary targets (beyond binary classification), (b) handle non-binary sensitive attributes, (c) release code that
applies to non-binary targets/attributes, (d) extend to arbitrary models, (e) provide code for stochastic optimization
(and whether the gradients are unbiased), (f) provide convergence guarantees (for stochastic optimization). FERMI is
the only method compatible with stochastic optimization and guaranteed convergence. The only existing baselines for
non-binary classification with non-binary sensitive attributes are (Mary et al., 2019; Baharlouei et al., 2020; Cho et al.,
2020b) (NB code). úWe refer to the in-processing method of (Jiang et al., 2020), not their post-processing method.
úúWe use the term “unbiased” in statistical estimation sense; not to be confused with bias in the fairness sense.

1 Introduction

Ensuring that decisions made using machine learning (ML) algorithms are fair to di�erent subgroups is
of utmost importance. Without any mitigation strategy, learning algorithms may result in discrimination
against certain subgroups based on sensitive attributes, such as gender or race, even if such discrimination is
absent in the training data (Mehrabi et al., 2021), and algorithmic fairness literature aims to remedy such
discrimination issues (Sweeney, 2013; Datta et al., 2015; Feldman et al., 2015; Bolukbasi et al., 2016; Angwin
et al., 2016; Calmon et al., 2017b; Hardt et al., 2016; Fish et al., 2016; Woodworth et al., 2017; Zafar et al.,
2017; Bechavod & Ligett, 2017; Agarwal et al., 2018; Kearns et al., 2018; Prost et al., 2019; Lahoti et al.,
2020). Modern ML problems often involve large-scale models with hundreds of millions or even billions of
parameters, e.g., BART (Lewis et al., 2019), ViT (Dosovitskiy et al., 2020), GPT-2 (Radford et al., 2019). In
such cases, during fine-tuning, the available memory on a node constrains us to use stochastic optimization
with (small) minibatches in each training iteration. In this paper, we address the dual challenges of fair and
stochastic ML, providing the first stochastic fairness algorithm that provably converges with any batch size.

A machine learning algorithm satisfies the demographic parity fairness notion if the predicted target is
independent of the sensitive attributes (Dwork et al., 2012). Promoting demographic parity can lead to poor
performance, especially if the true outcome is not independent of the sensitive attributes. To remedy this,
Hardt et al. (2016) proposed equalized odds to ensure that the predicted target is conditionally independent of
the sensitive attributes given the true label. A further relaxed version of this notion is equal opportunity which
is satisfied if predicted target is conditionally independent of sensitive attributes given that the true label is
in an advantaged class (Hardt et al., 2016). Equal opportunity ensures that false positive rates are equal
across di�erent demographics, where negative outcome is considered an advantaged class, e.g., extending a
loan. See Appendix A for formal definitions of these fairness notions.

Measuring fairness violation. In practice, the learner only has access to finite samples and cannot verify
demographic parity, equalized odds, or equal opportunity. This has led the machine learning community
to define several fairness violation metrics that quantify the degree of (conditional) independence between
random variables, e.g., LŒ distance (Dwork et al., 2012; Hardt et al., 2016), mutual information (Kamishima
et al., 2011; Rezaei et al., 2020; Steinberg et al., 2020; Zhang et al., 2018; Cho et al., 2020a; Roh et al., 2020),
Pearson correlation (Zafar et al., 2017; Beutel et al., 2019), false positive/negative rate di�erence (Bechavod
& Ligett, 2017), Hilbert Schmidt independence criterion (HSIC) (Pérez-Suay et al., 2017), kernel-based
minimum mean discrepancy (MMD) (Prost et al., 2019), Rényi correlation (Mary et al., 2019; Baharlouei
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et al., 2020; Grari et al., 2019; 2020), and exponential Rényi mutual information (ERMI) (Mary et al., 2019).
In this paper, we focus on three variants of ERMI specialized to demographic parity, equalized odds, and
equal opportunity. The motivation for the use of ERMI is two-fold. First, we will see in Sec. 2 that ERMI
is amenable to stochastic optimization. Moreover, we observe (Appendix C) that ERMI provides an upper
bound on several of the above notions of fairness violation. Consequently, a model trained to reduce ERMI
will also provide guarantees on these other fairness violations.1

Related work & contributions. Fairness-promoting machine learning algorithms can be categorized in
three main classes: pre-processing, post-processing, and in-processing methods. Pre-processing algorithms
(Feldman et al., 2015; Zemel et al., 2013; Calmon et al., 2017b) transform the biased data features to a new
space in which the labels and sensitive attributes are statistically independent. This transform is oblivious
to the training procedure. Post-processing approaches (Hardt et al., 2016; Pleiss et al., 2017) mitigate the
discrimination of the classifier by altering the final decision. In-processing approaches focus on the training
procedure and impose the notions of fairness as constraints or regularization terms in the training procedure.
Several regularization-based methods are proposed in the literature to promote fairness (Ristanoski et al.,
2013; Quadrianto & Sharmanska, 2017) in decision-trees (Kamiran et al., 2010; Ra� et al., 2018; Aghaei
et al., 2019), support vector machines (Donini et al., 2018), boosting (Fish et al., 2015), neural networks
(Grari et al., 2020; Cho et al., 2020b; Prost et al., 2019), or (logistic) regression models (Zafar et al., 2017;
Berk et al., 2017; Taskesen et al., 2020; Chzhen & Schreuder, 2020; Baharlouei et al., 2020; Jiang et al., 2020;
Grari et al., 2019). See the recent paper by Hort et al. (2022) for a more comprehensive literature survey.

While in-processing approaches generally give rise to better tradeo�s between fairness violation and perfor-
mance, existing approaches are mostly incompatible with stochastic optimization. This paper addresses this
problem in the context of fair (non-binary) classification with discrete (non-binary) sensitive attributes. See
Table 1 for a summary of the main di�erences between FERMI and existing in-processing methods.

Our main contributions are as follows:

1. For each given fairness notion (demographic parity, equalized odds, or equal opportunity), we formulate
an objective that uses ERMI as a regularizer to balance fairness and accuracy (Eq. (FRMI obj.)), and
derive an empirical version of this objective (Eq. (FERMI obj.)). We propose an algorithm (Algorithm 1)
for solving each of these objectives, which is the first stochastic in-processing fairness algorithm with
guaranteed convergence. The main property needed to obtain a convergent stochastic algorithm is to derive
a (stochastically) unbiased estimator of the gradient of the objective function. The existing stochastic
fairness algorithms by Zhang et al. (2018); Mary et al. (2019); Prost et al. (2019); Cho et al. (2020a;b) are
not guaranteed to converge since there is no straightforward way to obtain such unbiased estimator of the
gradients for their fairness regularizers.2 For any minibatch size (even as small as 1), we prove (Theorem 1)
that our algorithm converges to an approximate solution of the empirical objective (Eq. (FERMI obj.)).

2. We show that if the number of training examples is large enough, then our algorithm (Algorithm 1)
converges to an approximate solution of the population-level objective (Theorem 2). The proofs of
these convergence theorems require the development of novel techniques (see e.g. Proposition 1 and
Proposition 2), and the resourceful application of many classical results from optimization, probability
theory, and statistics.

3. We demonstrate through extensive numerical experiments that our stochastic algorithm achieves superior
fairness-accuracy tradeo� curves against all comparable baselines for demographic parity, equalized odds,
and equal opportunity. In particular, the performance gap is very large when minibatch size is small (as is
practically necessary for large-scale problems) and the number of sensitive attributes is large.

1Nevertheless, we use LŒ distance for measuring fairness violation in our numerical experiments, since LŒ is broadly used.
2We suspect it might be possible to derive a provably convergent stochastic algorithm from the framework in Prost et al.

(2019) using our techniques, but their approach is limited to binary classification with binary sensitive attributes. By contrast,
we provide (empirical and population-level) convergence guarantees for our algorithm with any number of sensitive attributes
and any number of classes.
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2 Fair Risk Minimization through ERMI Regularization

In this section, we propose a fair learning objective (Eq. (FRMI obj.)) and derive an empirical variation
(Eq. (FERMI obj.)) of this objective. We then develop a stochastic optimization algorithm (Algorithm 1)
that we use to solve these objectives, and prove that our algorithm converges to an approximate solution of
the two objectives.

Consider a learner who trains a model to make a prediction, ‚Y , e.g., whether or not to extend a loan,
supported on [m] := {1, . . . , m}. The prediction is made using a set of features, X, e.g., financial history
features. Assume that there is a set of discrete sensitive attributes, S, e.g., race and sex, supported on [k].

We now define the fairness violation notion that we will use to enforce fairness in our model.
Definition 1 (ERMI – exponential Rényi mutual information). We define the exponential Rényi mutual
information between random variables ‚Y and S with joint distribution p‚Y ,S

and marginals p‚Y , pS by:

DR(‚Y ; S) := E

Y
]

[
p‚Y ,S

(‚Y , S)

p‚Y (‚Y )pS(S)

Z
^

\ ≠ 1 =
ÿ

jœ[m]

ÿ

rœ[k]

p‚Y ,S
(j, r)2

p‚Y (j)pS(r) ≠ 1. (ERMI)

Definition 1 is what we would use if demographic parity were the fairness notion of interest. If instead one
wanted to promote fairness with respect to equalized odds or equal opportunity, then it is straightforward to
modify the definition by substituting appropriate conditional probabilities for p‚Y ,S

, p‚Y , and pS in Eq. (ERMI):
see Appendix B. In Appendix B, we also discuss that ERMI is the ‰

2-divergence (which is an f -divergence)
between the joint distribution, p‚Y ,S

, and the Kronecker product of marginals, p‚Y ¢ pS (Calmon et al., 2017a).
In particular, ERMI is non-negative, and zero if and only if demographic parity (or equalized odds or equal
opportunity, for the conditional version of ERMI) is satisfied. Additionally, we show in Appendix C that
ERMI provides an upper bound on other commonly used measures of fairness violation: Shannon mutual
information (Cho et al., 2020a), Rényi correlation (Baharlouei et al., 2020), Lq fairness violation (Kearns
et al., 2018; Hardt et al., 2016). Therefore, any algorithm that makes ERMI small will also have small fairness
violation with respect to these other notions.

We can now define our fair risk minimization through exponential Rényi mutual information framework:3

min
◊

Ó
FRMI(◊) := L(◊) + ⁄DR

!‚Y◊(X); S
"Ô

, (FRMI obj.)

where L(◊) := E(X,Y )[¸(X, Y ; ◊)] for a given loss function ¸ (e.g. L2 loss or cross entropy loss); ⁄ > 0 is a
scalar balancing the accuracy versus fairness objectives; and ‚Y◊(X) is the output of the learned model (i.e.
the predicted label in a classification task). While ‚Y◊(X) = ‚Y (X; ◊) inherently depends on X and ◊, in the
rest of this paper, we sometimes leave the dependence of ‚Y on X and/or ◊ implicit for brevity of notation.
Notice that we have also left the dependence of the loss on the predicted outcome ‚Y = ‚Y◊(X) implicit.

As is standard, we assume that the prediction function satisfies P(‚Y (◊, X) = j|X) = Fj(◊, X), where
F(◊, X) = (F1(◊, X), . . . , Fm(◊, X))T

œ [0, 1]m is di�erentiable in ◊ and
qm

j=1 Fj(◊, X) = 1. For example,
F(◊, X) could represent the probability label given by a logistic regression model or the output of a neural
network after softmax layer. Indeed, this assumption is natural for most classifiers. Further, even classifiers,
such as SVM, that are not typically expressed using probabilities can often be well approximated by a classifier
of the form P(‚Y (◊, X) = j|X) = Fj(◊, X), e.g. by using Platt Scaling (Platt et al., 1999; Niculescu-Mizil &
Caruana, 2005).

The work of Mary et al. (2019) considered the same objective Eq. (FRMI obj.), and tried to empirically
solve it through a kernel approximation. We propose a di�erent approach to solving this problem, which we
shall describe below. Essentially, we express ERMI as a “max” function (Proposition 1), which enables us to
re-formulate Eq. (FRMI obj.) (and its empirical counterpart Eq. (FERMI obj.)) as a stochastic min-max

3In this section, we present all results in the context of demographic parity, leaving o� all conditional expectations for clarity
of presentation. The algorithm/results are readily extended to equalized odds and equal opportunity by using the conditional
version of Eq. (ERMI) (which is described in Appendix B); we use these resulting algorithms for numerical experiments.
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optimization problem. This allows us to use stochastic gradient descent ascent (SGDA) to solve Eq. (FRMI
obj.). Unlike the algorithm of Mary et al. (2019), our algorithm provably converges. Our algorithm also
empirically outperforms the algorithm of Mary et al. (2019), as we show in Sec. 3 and Appendix E.2.

2.1 A Convergent Stochastic Algorithm for Fair Empirical Risk Minimization

In practice, the true joint distribution of (X, S, Y, ‚Y ) is unknown and we only have N samples at our disposal.
Let D = {xi, si, yi, ‚y(xi; ◊)}iœ[N ] denote the features, sensitive attributes, targets, and the predictions of the
model parameterized by ◊ for these given samples. For now, we consider the empirical risk minimization
(ERM) problem and do not require any assumptions on the data set (e.g. we allow for di�erent samples in D

to be drawn from di�erent, heterogeneous distributions). Consider the empirical objective

min
◊

Ó
FERMI(◊) := ‚L(◊) + ⁄ ‚DR(‚Y◊(X), S)

Ô
, (FERMI obj.)

where ‚L(◊) := 1
N

qN
i=1 ¸(xi, yi; ◊) is the empirical loss and4

‚DR(‚Y , S) := E

I
p̂‚Y ,S

(‚Y , S)

p̂‚Y (‚Y )p̂S(S)

J
≠ 1 =

ÿ

jœ[m]

ÿ

rœ[k]

p̂‚Y ,S
(j, r)2

p̂‚Y (j)p̂S(r) ≠ 1

is empirical ERMI with p̂ denoting empirical probabilities with respect to D: p̂S(r) = 1
N

qN
i=1 {si=r}; ‚pŷ(j) =

1
N

qN
i=1 Fj(◊, xi); and p̂‚Y ,S

(j, r) = 1
N

qN
i=1 Fj(◊, xi)si,r for j œ [m], r œ [k]. We shall see (Proposition 2)

that empirical ERMI is a good approximation of ERMI when N is large. Now, it is straightforward to derive
an unbiased estimate for ‚L(◊) via 1

|B|
q

iœB ¸
!
xi, yi; ◊

"
where B ™ [N ] is a random minibatch of data points

drawn from D. However, unbiasedly estimating ‚DR(‚Y , S) in the objective function Eq. (FERMI obj.) with
|B| < N samples is more di�cult. In what follows, we present our approach to deriving statistically unbiased
stochastic estimators of the gradients of ‚DR(‚Y , S) given a random batch of data points B. This stochastic
estimator is key to developing a stochastic convergent algorithm for solving Eq. (FERMI obj.). The key
novel observation that allows us to derive this estimator is that Equation FERMI obj. can be written as a
min-max optimization problem (see Corollary 1). This observation, in turn, follows from the following result:

Proposition 1. For random variables ‚Y and S with joint distribution p̂‚Y ,S
, where ‚Y œ [m], S œ [k], we have

‚DR(‚Y ; S) = max
W œRk◊m

{≠ Tr(W ‚PŷW
T ) + 2 Tr(W ‚Pŷ,s

‚P ≠1/2
s ) ≠ 1},

if ‚Pŷ = diag(p̂‚Y (1), . . . , p̂‚Y (m)), ‚Ps = diag(p̂S(1), . . . , p̂S(k)), and ( ‚Pŷ,s)i,j = p̂‚Y ,S
(i, j) with p̂‚Y (i), p̂S(j) > 0

for i œ [m], j œ [k].

The proof is a direct calculation, given in Appendix D. Let ‚y(xi, ◊) œ {0, 1}
m and si = (si,1, . . . , si,k)T

œ

{0, 1}
k be the one-hot encodings of ‚y(xi, ◊) and si, respectively for i œ [N ]. Then, Proposition 1 provides a

useful variational form of Eq. (FERMI obj.), which forms the backbone of our novel algorithmic approach:
Corollary 1. Let (xi, si, yi) be a random draw from D. Then, Eq. (FERMI obj.) is equivalent to

min
◊

max
W œRk◊m

Ó
‚F (◊, W ) := ‚L(◊) + ⁄‚�(◊, W )

Ô
, (1)

where ‚�(◊, W ) = ≠ Tr(W ‚PŷW
T ) + 2 Tr(W ‚Pŷ,s

‚P ≠1/2
s ) ≠ 1 = 1

N

qN
i=1

‚Âi(◊, W ) and

‚Âi(◊, W ) := ≠ Tr(WE[‚y(xi, ◊)‚y(xi, ◊)T
|xi]W T ) + 2 Tr(WE[‚y(xi; ◊)sT

i |xi, si] ‚P ≠1/2
s ) ≠ 1

= ≠ Tr(Wdiag(F1(◊, xi), . . . , Fm(◊, xi))W T ) + 2 Tr(WE[‚y(xi; ◊)sT
i |xi, si] ‚P ≠1/2

s ) ≠ 1.

Corollary 1 implies that for any given data set D, the quantity ¸(xi, yi; ◊)+⁄ ‚Âi(◊, W ) is an unbiased estimator
of ‚F (◊, W ) (with respect to the uniformly random draw of i œ [N ]). Thus, we can use stochastic optimization
(e.g. SGDA) to solve Eq. (FERMI obj.) with any batch size 1 Æ |B| Æ N , and the resulting algorithm will
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Algorithm 1 FERMI Algorithm
1: Input: ◊0

œ Rd◊ , W
0 = 0 œ Rk◊m, step-sizes (÷◊, ÷w), fairness parameter ⁄ Ø 0, iteration number T ,

minibatch sizes |Bt|, t œ {0, 1, · · · , T}, W := Frobenius norm ball of radius D around 0 œ Rk◊m for D

given in Appendix D.
2: Compute ‚P ≠1/2

s = diag(p̂S(1)≠1/2
, . . . , p̂S(k)≠1/2).

3: for t = 0, 1, . . . , T do

4: Draw a mini-batch Bt of data points {(xi, si, yi)}iœBt

5: Set ◊t+1
Ω ◊t

≠
÷◊

|Bt|
q

iœBt
[Ò◊¸(xi, yi; ◊t) + ⁄Ò◊

‚Âi(◊t
, W

t)].

6: Set W
t+1

Ω �W

1
W

t + 2⁄÷w

|Bt|
q

iœBt

Ë
≠ W

tE[‚y(xi, ◊)‚y(xi, ◊)T
|xi] + ‚P ≠1/2

s E[si‚yT (xi; ◊t)|xi, si]
È2

7: end for

8: Pick t̂ uniformly at random from {1, . . . , T}.

9: Return: ◊t̂
.

be guaranteed to converge since the stochastic gradients are unbiased. We present our proposed algorithm,
which we call FERMI, for solving Eq. (FERMI obj.) in Algorithm 1.

Note that the matrix ‚P ≠1/2
s depends only on the full data set of sensitive attributes {s1, · · · , sN } and has no

dependence on ◊, and can therefore be computed just once, in line 2 of Algorithm 1. On the other hand, the
quantities E[‚y(xi, ◊)‚y(xi, ◊)T

|xi] and E[‚y(xi; ◊)sT
i |xi, si] depend on the sample (xi, si, ‚yi) that is drawn in a

given iteration and on the model parameters ◊, and are therefore computed at each iteration of the algorithm.

Although the min-max problem Eq. (FERMI obj.) that we aim to solve is unconstrained, we project the
iterates W

t (in line 5 of Algorithm 1) onto a bounded set W in order to satisfy a technical assumption
that is needed to prove convergence of Algorithm 15. We choose W to be a su�ciently large ball that
contains W

ú(◊) := arg maxW
‚F (◊, W ) for every ◊ in some neighborhood of ◊ú

œ arg min◊ maxW
‚F (◊, W ), so

that Eq. (FERMI obj.) is equivalent to

min
◊

max
W œW

Ó
‚F (◊, W ) = ‚L(◊) + ⁄‚�(◊, W )

Ô
.

See Appendix D for details. When applying Algorithm 1 in practice, it is not necessary to project the iterates;
e.g. in Sec. 3, we obtain strong empirical results without projection in Algorithm 1.

Since Eq. (FERMI obj.) is potentially nonconvex in ◊, a global minimum might not exist and even computing
a local minimum is NP-hard in general (Murty & Kabadi, 1985). Thus, as is standard in the nonconvex
optimization literature, we aim for the milder goal of finding an approximate stationary point of Eq. (FERMI
obj.). That is, given any ‘ > 0, we aim to find a point ◊ú such that EÎÒFERMI(◊ú)Î Æ ‘, where the
expectation is solely with respect to the randomness of the algorithm (minibatch sampling). The following
theorem guarantees that Algorithm 1 will find such a point e�ciently:
Theorem 1. (Informal statement) Let ‘ > 0. Assume that ¸(x, y; ·) and F(·, x) are Lipschitz continuous and
di�erentiable with Lipschitz continuous gradient (see Appendix D for definitions), p̂S(j) > 0 for all sensitive
attributes j œ [k] and p̂Ŷ (l) Ø µ > 0 for all labels l œ [m] and at every iterate ◊t. Then for any batch sizes
1 Æ |Bt| Æ N , Algorithm 1 converges to an ‘-first order stationary point of the Eq. (FERMI obj.) objective in
O

! 1
‘5

"
stochastic gradient evaluations.

The formal statement of Theorem 1 can be found in Theorem 3 in Appendix D. Theorem 1 implies
that Algorithm 1 can e�ciently achieve any tradeo� between fairness (ERMI) violation and (empirical)
accuracy, depending on the choice of ⁄.6 However, if smaller fairness violation is desired (i.e. if larger ⁄ is
chosen), then the algorithm needs to run for more iterations (see Appendix D). The proof of Theorem 1
follows from Corollary 1 and the observation that ‚Âi is strongly concave in W (see Lemma 11 in Appendix D).

4We overload notation slightly here and use E to denote expectation with respect to the empirical (joint) distribution.
5Namely, bounded W t ensures that the gradient of ‚F is Lipschitz continuous at every iterate and the variance of the stochastic

gradients is bounded.
6This sentence is accurate to the degree that an approximate stationary point of the non-convex objective Eq. (FERMI obj.)

corresponds to an approximate risk minimizer.
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This implies that Eq. (1) is a nonconvex-strongly concave min-max problem, so the convergence guarantee
of SGDA (Lin et al., 2020) yields Theorem 1.7 The detailed proof of Theorem 1 is given in Appendix D.
Increasing the batch size to �(‘≠2) improves the stochastic gradient complexity to O(‘≠4). On the other
hand, increasing the batch size further to |Bt| = N results in a deterministic algorithm which is guaranteed
to find a point ◊ú such ÎÒFERMI(◊ú)Î Æ ‘ (no expectation) in O(‘≠2) iterations (Lin et al., 2020, Theorem
4.4),(Ostrovskii et al., 2020, Remark 4.2); this iteration complexity has the optimal dependence on ‘ (Carmon
et al., 2020; Zhang et al., 2021). However, like existing fairness algorithms in the literature, this full-batch
variant is impractical for large-scale problems.
Remark 1. The condition p̂Ŷ (l) Ø µ in Theorem 1 is assumed in order to ensure strong concavity of ‚F (◊t

, ·)
at every iterate ◊t, which leads to the O(‘≠5) convergence rate. This assumption is typically satisfied in
practice: for example, if the iterates ◊t remain in a compact region during the algorithm and the classifier
uses softmax, then p̂Ŷ (l) Ø µ > 0. Having said that, it is worth noting that this condition is not absolutely
necessary to ensure convergence of Algorithm 1. Even if this condition doesn’t hold, then Eq. (1) is still a
nonconvex-concave min-max problem. Hence SGDA still converges to an ‘-stationary point, albeit at the
slower rate of O(‘≠8) (Lin et al., 2020). Alternatively, one can add a small ¸2 regularization term to the
objective to enforce strong concavity and get the fast convergence rate of O(‘≠5).

2.2 Asymptotic Convergence of Algorithm 1 for Population-level FRMI Objective

So far, we have let N Ø 1 be arbitrary and have not made any assumptions on the underlying distribution(s)
from which the data was drawn. Even so, we showed that Algorithm 1 always converges to a stationary point
of Eq. (FERMI obj.). Now, we will show that if D contains i.i.d. samples from an unknown joint distribution
D and if N ∫ 1, then Algorithm 1 converges to an approximate solution of the population risk minimization
problem Eq. (FRMI obj.). Precisely, we will use a one-pass sample-without-replacement (“online”) variant
of Algorithm 1 to obtain this population loss guarantee. The one-pass variant is identical to Algorithm 1
except that: a) once we draw a batch of samples Bt, we remove these samples from the data set so that they
are never re-used; and b) the for-loop terminates when we have used all n samples.
Theorem 2. Let ‘ > 0. Assume that ¸(x, y; ·) and F(·, x) are Lipschitz continuous and di�erentiable with
Lipschitz continuous gradient, and that minrœ[k] pS(r) > 0. Then, there exists N œ N such that if n Ø N and
D ≥ D

n, then a one-pass sample-without-replacement variant of Algorithm 1 converges to an ‘-first order
stationary point of the Eq. (FRMI obj.) objective in O

! 1
‘5

"
stochastic gradient evaluations, for any batch

sizes |Bt|.

Theorem 2 provides a guarantee on the fairness/accuracy loss that can be achieved on unseen “test data.”
This is important because the main goal of (fair) machine learning is to (fairly) give accurate predictions on
test data, rather than merely fitting the training data well. Specifically, Theorem 2 shows that with enough
(i.i.d.) training examples at our disposal, (one-pass) Algorithm 1 finds an approximate stationary point of
the population-level fairness objective Eq. (FRMI obj.). Furthermore, the gradient complexity is the same as
it was in the empirical case. The proof of Theorem 2 will be aided by the following result, which shows that
‚Âi is an asymptotically unbiased estimator of �, where maxW �(◊, W ) equals ERMI:
Proposition 2. Let {zi}

n
i=1 = {xi, si, yi}

n
i=1 be drawn i.i.d. from an unknown joint distribution D. De-

note ‚Â(n)
i (◊, W ) = ≠ Tr(WE[‚y(xi, ◊)‚y(xi, ◊)T

|xi]W T ) + 2 Tr
3

WE[‚y(xi; ◊)sT
i |xi, si]

1
‚P (n)

s

2≠1/24
≠ 1, where

‚P (n)
s = 1

n

qn
i=1 diag( {si=1}, · · · , {si=k}). Denote �(◊, W ) = ≠ Tr(WPŷW

T ) + 2 Tr(WPŷ,sP
≠1/2
s ) ≠ 1,

where Pŷ = diag(EF1(◊, x), · · · ,EFm(◊, x)), (Pŷ,s)j,r = Exi,si [Fj(◊, xi)si,r] for j œ [m], r œ [k], and
Ps = diag(PS(1), · · · , PS(k)). Assume pS(r) > 0 for all r œ [k]. Then,

max
W

�(◊, W ) = DR(‚Y (◊); S)

and
lim

næŒ
E[ ‚Â(n)

i (◊, W )] = �(◊, W ).
7A faster convergence rate of O(‘≠3) could be obtained by using the (more complicated) SREDA method of Luo et al. (2020)

instead of SGDA to solve FERMI objective. We omit the details here.
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The proof of Proposition 2 is given in Appendix D.1. The first claim is immediate from Proposition 1 and
its proof, while the second claim is proved using the strong law of large numbers, the continuous mapping
theorem, and Lebesgue’s dominated convergence theorem.

Proposition 2 implies that the empirical stochastic gradients computed in Algorithm 1 are good approximations
of the true gradients of Eq. (FRMI obj.). Intuitively, this suggests that when we use Algorithm 1 to solve
the fair ERM problem Eq. (FERMI obj.), the output of Algorithm 1 will also be an approximate solution
of Eq. (FRMI obj.). While Theorem 2 shows this intuition does indeed hold, the proof of Theorem 2 requires
additional work. A reasonable first attempt at proving Theorem 2 might be to try to bound the expected
distance between the gradient of FRMI and the gradient of FERMI (evaluated at the point ◊̂ that is output
by Algorithm 1) via Danskin’s theorem (Danskin, 1966) and strong concavity, and then leverage Theorem 1
to conclude that the gradient of FRMI must also be small. However, the dependence of ◊̂ on the training
data prevents us from obtaining a tight enough bound on the distance between the empirical and population
gradients at ◊̂. Thus, we take a di�erent approach to proving Theorem 2, in which we consider the output
of two di�erent algorithms: one is the conceptual algorithm that runs one-pass Algorithm 1 as if we had
access to the true sensitive attributes Ps (“Algorithm A”); the other is the realistic one-pass Algorithm 1
that only uses the training data (“Algorithm B”). We argue: 1) the output of the conceptual algorithm
is a stationary point of the population-level objective; and 2) the distance between the gradients of the
population-level objective at ◊A and ◊B is small. While 1) follows easily from the proof of Theorem 1 and the
online-to-batch conversion, establishing 2) requires a careful argument. The main tools we use in the proof
of Theorem 2 are Theorem 1, Proposition 2, Danskin’s theorem, Lipschitz continuity of the arg max function
for strongly concave objective, the continuous mapping theorem, and Lebesgue’s dominated convergence
theorem: see Appendix D.1 for the detailed proof.

Note that the online-to-batch conversion used to prove Theorem 2 requires a convergent stochastic optimization
algorithm; this implies that our arguments could not be used to prove an analogue of Theorem 2 for existing fair
learning algorithms, since existing convergent fairness algorithms are not stochastic. An alternate approach to
bounding the “generalization error” of our algorithm would be to use a standard covering/uniform convergence
argument. However, this approach would not yield as tight a guarantee as Theorem 2. Specifically, the
accuracy and/or gradient complexity guarantee would depend on the dimension of the space (i.e. the number
of model parameters), since the covering number depends (exponentially) on the dimension. For large-scale
problems with a huge number of model parameters, such dimension dependence is prohibitive.

As previously mentioned, we can interpret Theorem 2 as providing a guarantee that Algorithm 1 generalizes
well, achieving small fairness violation and test error, even on unseen “test” examples–as long as the data is
i.i.d. and N is su�ciently large. In the next section, we empirically corroborate Theorem 2, by evaluating
the fairness-accuracy tradeo�s of the FERMI algorithm (Algorithm 1) in several numerical experiments.

3 Numerical Experiments

In this section, we evaluate the performance of FERMI in terms of the fairness violation vs. test error for
di�erent notions of fairness (e.g. demographic parity, equalized odds, and equality of opportunity). To
this end, we perform diverse experiments comparing FERMI to other state-of-the-art approaches on several
benchmarks. In Section 3.1, we showcase the performance of FERMI applied to a logistic regression model on
binary classification tasks with binary sensitive attributes on Adult, German Credit, and COMPAS datasets.
In Section 3.2, we utilize FERMI with a convolutional neural network base model for fair (to di�erent
religious groups) toxic comment detection. In Section 3.3, we explore fairness in non-binary classification with
non-binary sensitive attributes. Finally, Section 3.4 shows how FERMI may be used beyond fair empirical
risk minimization in domain generalization problems to learn a model independent of spurious features.

3.1 Fair Binary Classification with Binary Sensitive Attributes using Logistic Regression

3.1.1 Benchmarking full-batch performance

In the first set of experiments, we use FERMI to learn a fair logistic regression model on the Adult dataset.
With the Adult data set, the task is to predict whether or not a person earns over $50k annually without
discriminating based on the sensitive attribute, gender. We compare FERMI against state-of-the-art in-
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processing full-batch (|B| = N) baselines, including (Zafar et al., 2017; Feldman et al., 2015; Kamishima
et al., 2011; Jiang et al., 2020; Hardt et al., 2016; Prost et al., 2019; Baharlouei et al., 2020; Rezaei et al.,
2020; Donini et al., 2018; Cho et al., 2020b). Since the majority of existing fair learning algorithms cannot be
implemented with |B| < N , these experiments allow us to benchmark the performance of FERMI against
a wider range of baselines. To contextualize the performance of these methods, we also include a Naïve

Baseline that randomly replaces the model output with the majority label (0 in Adult dataset), with
probability p (independent of the data), and sweep p in [0, 1]. At one end (p = 1), the output will be provably
fair with performance reaching that of a naive classifier that outputs the majority class. At the other end
(p = 0), the algorithm has no fairness mitigation and obtains the best performance (accuracy). By sweeping
p, we obtain a tradeo� curve between performance and fairness violation.

Figure 1: Accuracy/Fairness trade-o� of FERMI and several state-of-the-art in-processing approaches on Adult
dataset. FERMI o�ers the best fairness vs. accuracy tradeo� curve in all experiments against all baselines. Rezaei et al.
(2020) only allow for a single output and do not yield a tradeo� curve. Further, the algorithms by Mary et al. (2019)
and Baharlouei et al. (2020) are equivalent in this binary setting and shown by the red curve. In the binary/binary
setting, FERMI, Mary et al. (2019) and Baharlouei et al. (2020) all try to solve the same objective Eq. (FRMI
obj.). However, the empirical formulation Eq. (FERMI obj.) and FERMI algorithm that we use results in better
performance, even though we are using a full-batch for all baselines in this experiment.

In Fig. 1, we report the fairness violation (demographic parity, equalized odds, and equality of opportunity
violations) vs. test error of the aforementioned in-processing approaches on the Adult dataset. The upper left
corner of the tradeo� curves coincides with the unmitigated baseline, which only optimizes for performance
(smallest test error). As can be seen, FERMI o�ers a fairness-accuracy tradeo� curve that dominates all
state-of-the-art baselines in each experiment and with respect to each notion of fairness, even in the full
batch setting. Aside from in-processing approaches, we compare FERMI with several pre-processing and
post-processing algorithms on Adult, German Credit, and COMPAS datasets in Appendix E.5, where we
show that the tradeo� curves obtained from FERMI dominate that of all other baselines considered. See
Appendix E for details on the data sets and experiments.

It is noteworthy that the empirical objectives of Mary et al. (2019) and Baharlouei et al. (2020) are exactly
the same in the binary/binary setting, and their algorithms also coincide to the red curve in Fig. 1. This is
because Exponential Rényi mutual information is equal to Rényi correlation for binary targets and/or binary
sensitive attributes (see Lemma 2), which is the setting of all experiments in Sec. 3.1. Additionally, like us, in
the binary/binary setting these works are trying to empirically solve Eq. (FRMI obj.), albeit using di�erent
estimation techniques; i.e., their empirical objective is di�erent from Eq. (FERMI obj.). This demonstrates
the e�ectiveness of our empirical formulation (FERMI obj.) and our solver (Algorithm 1), even though we
are using all baselines in full batch mode in this experiment. See Appendix E.5 for the complete version of
Fig. 1 which also includes pre-processing and post-processing baselines.

Fig. 8 in Appendix E illustrates that FERMI outperforms baselines in the presence of noisy outliers and
class imbalance. Our theory did not consider the role of noisy outliers and class imbalance, so the theoretical
investigation of this phenomenon could be an interesting direction for future work.

3.1.2 The e�ect of batch size on fairness/accuracy tradeo�s

Next, we evaluate the performance of FERMI on smaller batch sizes ranging from 1 to 64. To this
end, we compare FERMI against several state-of-the-art in-processing algorithms that permit stochastic
implementation for demographic parity: (Mary et al., 2019), (Baharlouei et al., 2020), and (Cho et al.,
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2020b). Similarly to the full batch setting, for all methods, we train a logistic regression model with a
respective regularizer for each method. We use demographic parity LŒ violation (Definition 10) to measure
demographic parity violation. More details about the dataset and experiments, and additional experimental
results, can be found in Appendix E.

Figure 2: Performance of FERMI, Cho et al. (2020a), Mary et al. (2019), Baharlouei et al. (2020) with di�erent
batch-sizes on Adult dataset. FERMI demonstrates the best accuracy/fainess tradeo� across di�erent batch sizes.

Fig. 2 shows that FERMI o�ers a superior fairness-accuracy tradeo� curve against all baselines, for each
tested batch size, empirically confirming Theorem 1, as FERMI is the only algorithm that is guaranteed to
converge for small minibatches. It is also noteworthy that all other baselines cannot beat Naïve Baseline
when the batch size is very small, e.g., |B| = 1. Furthermore, FERMI with |B| = 4 almost achieves the same
fairness-accuracy tradeo� as the full batch variant.

3.1.3 The e�ect of missing sensitive attributes on fairness/accuracy tradeo�s

Sensitive attributes might be partially unavailable in many real-world applications due to legal issues, privacy
concerns, and data gathering limitations (Zhao et al., 2022; Coston et al., 2019). Missing sensitive attributes
make fair learning tasks more challenging in practice.

Figure 3: Performance of FERMI and
other state-of-the-art approaches on the
Adult dataset where 90% of gender en-
tries are missing. Full-sensitive FERMI is
obtained by applying FERMI on the data
without any missing entries.

The unbiased nature of the estimator used in FERMI algorithm mo-
tivates that it may be able to handle cases where sensitive attributes
are partially available and are dropped uniformly at random. As a
case study on the Adult dataset, we randomly masked 90% of the
sensitive attribute (i.e., gender entries). To estimate the fairness
regularization term, we rely on the remaining 10% of the training
samples (¥ 3k) with sensitive attribute information. Figure 3 depicts
the tradeo� between accuracy and fairness (demographic parity) vio-
lation for FERMI and other baselines. We suspect that the superior
accuracy-fairness tradeo� of FERMI compared to other approaches
is due to the fact that the estimator of the gradient remains unbiased
since the missing entries are missing completely at random (MCAR).
Note that the Naïve Baseline is similar to the one implemented in
the previous section, and Full-sensitive FERMI is an oracle method
that applies FERMI to the data with no missing attributes (for com-
parison purposes only). We observe that FERMI achieves a slightly
worse fairness-accuracy tradeo� compared to Full-sensitive FERMI
oracle, whereas the other baselines are hurt significantly and are only
narrowly outperforming the Naïve Baseline.

3.2 Fair Binary Classification using Neural Models

In this experiment, our goal is to showcase the e�cacy of FERMI in stochastic optimization with neural
network function approximation. To this end, we apply FERMI, (Prost et al., 2019), (Baharlouei et al., 2020),
and (Mary et al., 2019) (which coincides with (Baharlouei et al., 2020)) to the Toxic Comment Classification
dataset where the underlying task is to predict whether a given published comment in social media is toxic.
The sensitive attribute is religion that is binarized into two groups: Christians in one group; Muslims and
Jews in the other group. Training a neural network without considering fairness leads to higher false positive
rate for the Jew-Muslim group. Figure 4 demonstrates the performance of FERMI, MinDi� (Prost et al.,
2019), Baharlouei et al. (2020), and naïve baseline on two di�erent batch-sizes: 128 and 16. Performance is
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Figure 4: Fair toxic comment detection with di�erent batch sizes. For |B| = 128, the performance of (Prost et al.,
2019) and FERMI are close to each other, however, when the batch size is reduced to 16, FERMI demonstrates a
better fairness/ performance trade-o�. The performance and fairness are measured by the test error and the false
positive gap between di�erent religious sub-groups (Christians vs Muslim-Jews), respectively.

Figure 5: Comparison between FERMI, Mary et al. (2019), Baharlouei et al. (2020), and Cho et al. (2020b) on
Communities dataset. (Mary et al., 2019) outperforms (Baharlouei et al., 2020; Cho et al., 2020b), which we believe
could be attributed to the e�ectiveness of ERMI as a regularizer. FERMI outperforms Mary et al. (2019). This can
be attributed to our empirical formulation Eq. (FERMI obj.) and unbiased stochastic optimization algorithm.

measured by the overall false positive rate of the trained network and fairness violation is measured by the
false positive gap between two sensitive groups (Christians and Jews-Muslims). The network structure is
exactly same as the one used by MinDi� (Prost et al., 2019). We can observe that by decreasing the batch
size, FERMI maintains the best fairness-accuracy tradeo� compared to other baselines.

3.3 Fair Non-binary Classification with Multiple Sensitive Attributes

In this section, we consider a non-binary classification problem with multiple binary sensitive attributes.
In this case, we consider the Communities and Crime dataset, which has 18 binary sensitive attributes in
total. For our experiments, we pick a subset of 1, 2, 3, . . . , 18 sensitive attributes, which corresponds to
|S| œ {2, 4, 8, . . . , 218

}. We discretize the target into three classes {high, medium, low}. The only baselines
that we are aware of that can handle non-binary classification with multiple sensitive attributes are (Mary
et al., 2019), (Baharlouei et al., 2020), (Cho et al., 2020b), (Cho et al., 2020a), and (Zhang et al., 2018). We
used the publicly available implementations of (Baharlouei et al., 2020) and (Cho et al., 2020b) and extended
their binary classification algorithms to the non-binary setting.

The results are presented in Fig. 5, where we use conditional demographic parity LŒ violation (Definition 10)
and conditional equal opportunity LŒ violation (Definition 11) as the fairness violation notions for the two
experiments. In each panel, we compare the test error for di�erent number of sensitive attributes for a fixed
value of DP violation. It is expected that test error increases with the number of sensitive attributes, as we
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Figure 6: Domain generalization on Color MNIST (Li & Vasconcelos, 2019) using in-process fair algorithms for
demographic parity. Left panel: The dashed line is the training error and the solid line is test error. As ⁄ increases,
fairness regularization results in a learned representation that is less dependent on color; hence training error increases
while test error decreases (all algorithms reach a plateau around ⁄ = 8). We use |B| = 512 for all baselines. Right

panel: We plot test error vs. batch size using an optimized value of ⁄ for each algorithm selected via a validation set.
The performance of baselines drops 10-20% as batch size becomes small, whereas FERMI is less sensitive to batch size.

will have a more stringent fairness constraint to satisfy. As can be seen, compared to the baselines, FERMI
o�ers the most favorable test error vs. fairness violation tradeo�s, particularly as the number of sensitive
attributes increases and for the more stringent fairness violation levels, e.g., 0.02.8

3.4 Beyond Fairness: Domain Parity Regularization for Domain Generalization

In this section, we demonstrate that our approach may extend beyond fair empirical risk minimization to
other problems such as domain generalization. In fact, Li & Vasconcelos (2019); Lahoti et al. (2020); Creager
et al. (2021) have already established connections between fair ERM and domain generalization. We consider
the Color MNIST dataset (Li & Vasconcelos, 2019), where all 60,000 training digits are colored with di�erent
colors drawn from a class conditional Gaussian distribution with variance ‡

2 around a certain average color
for each digit, while the test set remains black and white. Li & Vasconcelos (2019) show that as ‡

2
æ 0,

a convolutional network model overfits significantly to each digit’s color on the training set, and achieves
vanishing training error. However, the learned representation does not generalize to the black and white test
set, due to the spurious correlation between digits and color.

Conceptually, the goal of the classifier in this problem is to achieve high classification accuracy with predictions
that are independent of the color of the digit. We view color as the sensitive attribute in this experiment, and
apply fairness baselines for the demographic parity notion of fairness. One would expect that by promoting
such independence through a fairness regularizer, generalization would improve (i.e. lower test error on the
black and white test set), at the cost of increased training error (on the colored training set). We compare
against Mary et al. (2019), Baharlouei et al. (2020), and Cho et al. (2020b) as baselines in this experiment.

The results of this experiment are illustrated in Fig. 6. In the left panel, we see that with no regularization
(⁄ = 0), the test error is around 80%. As ⁄ increases, all methods achieve smaller test error while training
error increases. We also observe that FERMI o�ers the best test error in this setup. In the right panel, we
observe that decreasing the batch size results in significantly worse generalization for the three baselines
considered (due to their biased estimators for the regularizer). However, the negative impact of small batch
size is much less severe for FERMI, since FERMI uses unbiased stochastic gradients. In particular, the
performance gap between FERMI and other baselines is more than 20% for |B| = 64. Moreover, FERMI with
minibatch size |B| = 64 still outperforms all other baselines with |B| > 1, 000. Finally, notice that the test
error achieved by FERMI when ‡ = 0 is ≥ 30%, as compared to more than 50% obtained using REPAIR (Li
& Vasconcelos, 2019) for ‡ Æ 0.05.

8Sec. 3.4 demonstrated that using smaller batch sizes results in much more pronounced advantages of FERMI over these
baselines.
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4 Discussion and Concluding Remarks

In this paper, we tackled the challenge of developing a fairness-promoting algorithm that is amenable to
stochastic optimization. As discussed, algorithms for large-scale ML problems are constrained to use stochastic
optimization with (small) minibatches of data in each iteration. To this end, we formulated an empirical
objective (FERMI obj.) using ERMI as a regularizer, and derived unbiased stochastic gradient estimators.
We proposed the stochastic FERMI algorithm (Algorithm 1) for solving this objective. We then provided
the first theoretical convergence guarantees for a stochastic in-processing fairness algorithm, by showing
that FERMI converges to stationary points of the empirical and population-level objectives (Theorem 1,
Theorem 2). Further, these convergence results hold even for non-binary sensitive attributes and non-binary
target variables, with any minibatch size.

From an experimental perspective, we showed that FERMI leads to better fairness-accuracy tradeo�s than all
of the state-of-the-art baselines on a wide variety of binary and non-binary classification tasks (for demographic
parity, equalized odds, and equal opportunity). We also showed that these benefits are particularly significant
when the number of sensitive attributes grows or the batch size is small. In particular, we observed that
FERMI consistently outperforms Mary et al. (2019) (which tries to solve the same objective Eq. (FRMI obj.))
by up to 20% when the batch size is small. This is not surprising since FERMI is the only algorithm that is
guaranteed to find an approximate solution of the fair learning objective with any batch size |B| Ø 1. Also,
we show in Fig. 7 that the lack of convergence guarantee of Mary et al. (2019) is not just due to more limited
analysis: in fact, their stochastic algorithm does not converge. Even in full batch mode, FERMI outperforms
all baselines, including (Mary et al., 2019) (Fig. 1, Fig. 5). In full batch mode, all baselines should be
expected to converge to an approximate solution of their respective empirical objectives, so this suggests
that our empirical objective Eq. (FERMI obj.) is fundamentally better, in some sense, than the empirical
objectives proposed in prior works. In what sense is Eq. (FERMI obj.) a better empirical objective (apart
from permitting stochastic optimization)? For one, it is an asymptotically unbiased estimator of Eq. (FRMI
obj.) (by Proposition 2), and Theorem 2 suggests that FERMI algorithm outputs an approximate solution
of Eq. (FRMI obj.) for large enough N . By contrast, the empirical objectives considered in prior works do
not provably yield an approximate solution to the corresponding population-level objective.

The superior fairness-accuracy tradeo�s of FERMI algorithm over the (full batch) baselines also suggests
that the underlying population-level objective Eq. (FRMI obj.) has benefits over other fairness objectives.
What might these benefits be? First, ERMI upper bounds all other fairness violations (e.g. Shannon
mutual information, Lq, LŒ) used in the literature: see Appendix C. This implies that ERMI-regularized
training yields a model that has small fairness violation with respect to these other notions. Could this also
somehow help explain the superior fairness-accuracy tradeo�s achieved by FERMI? Second, the objective
function Eq. (FRMI obj.) is easier to optimize than the objectives of competing in-processing methods: ERMI
is smooth and is equal to the trace of a matrix (see Lemma 5 in the Appendix), which is easy to compute.
Contrast this with the larger computational overhead of Rényi correlation used by Baharlouei et al. (2020),
for example, which requires finding the second singular value of a matrix. Perhaps these computational
benefits contribute to the observed performance gains? We leave it as future work to rigorously understand
the factors that are most responsible for the favorable fairness-accuracy tradeo�s observed from FERMI.

Broader Impact and Limitations

This paper studied the important problem of developing practical machine learning (ML) algorithms that are
fair towards di�erent demographic groups (e.g. race, gender, age). We hope that the societal impacts of our
work will be positive, as the deployment of our FERMI algorithm may enable/help companies, government
agencies, and other organizations to train large-scale ML models that are fair to all groups of users. On the
other hand, any technology has its limitations, and our algorithm is no exception.

One important limitation of our work is that we have (implicitly) assumed that the data set at hand is
labeled accurately and fairly. For example, if race is the sensitive attribute and “likelihood of default on a
loan” is the target, then we assume that the training data based on past observational data accurately reflects
the financial histories of all individuals (and in particular does not disproportionately inflate the financial
histories of racial minorities). If this assumption is not satisfied in practice, then the outcomes promoted
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by our algorithm may not be as fair (in the philosophical sense) as the computed level of fairness violation
might suggest. For example, if racial minorities are identified as higher risk for default on loans, they may
be extended loans with higher interest rates and payments, which may in turn increase their likelihood of a
default. Hence, it might be even possible that our mitigation strategy could result in more unfairness than
unmitigated ERM in this case. More generally, conditional fairness notions like equalized odds su�er from
a potential amplification of the inherent discrimination that may exist in the training data. Tackling such
issues is beyond the scope of this work; c.f. Kilbertus et al. (2020) and Bechavod et al. (2019).

Another consideration that was not addressed in this paper is the interplay between fairness and other socially
consequential AI metrics, such as privacy and robustness (e.g. to data poisoning). It is possible that our
algorithm could increase the impact of data from certain individuals to improve fairness at the risk of leaking
private information about individuals in the training data set (e.g. via membership inference attacks or model
inversion attacks), even if the data is anonymous (Fredrikson et al., 2015; Shokri et al., 2017; Faizullabhoy
& Korolova, 2018; Nasr et al., 2019; Carlini et al., 2021). Di�erential privacy (Dwork et al., 2006) ensures
that sensitive data cannot be leaked (with high probability), and the interplay between fairness and privacy
has been explored (see e.g. Jagielski et al. (2019); Xu et al. (2019); Cummings et al. (2019); Mozannar
et al. (2020); Tran et al. (2021a;b). Developing and analyzing a di�erentially private version of FERMI
could be an interesting direction for future work. Another potential threat to FERMI-trained models is data
poisoning attacks. While our experiments demonstrated that FERMI is relatively e�ective with missing
sensitive attributes, we did not investigate its performance in the presence of label flipping or other poisoning
attacks. Exploring and improving the robustness of FERMI is another avenue for future research.
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A Notions of Fairness

Let (Y, ‚Y , A, S) denote the true target, predicted target, the advantaged outcome class, and the sensitive
attribute, respectively. We review three major notions of fairness.
Definition 2 (demographic parity (Dwork et al., 2012)). We say that a learning machine satisfies demographic
parity if ‚Y is independent of S.

Definition 3 (equalized odds (Hardt et al., 2016)). We say that a learning machine satisfies equalized odds,
if ‚Y is conditionally independent of S given Y .
Definition 4 (equal opportunity (Hardt et al., 2016)). We say that a learning machine satisfies equal
opportunity with respect to A, if ‚Y is conditionally independent of S given Y = y for all y œ A.

Notice that the equal opportunity as defined here generalizes the definition in (Hardt et al., 2016). It recovers
equalized odds if A = Y, and it recovers equal opportunity of (Hardt et al., 2016) for A = {1} in binary
classification.

21



Published in Transactions on Machine Learning Research (11/2022)

B ERMI: General Definition, Properties, and Special Cases Unraveled

We begin by stating a notion of fairness that generalizes demographic parity, equalized odds, and equal
opportunity fairness definitions (the three notions considered in this paper). This will be convenient for
defining ERMI in its general form and presenting the results in Appendix C. Consider a learner who trains a
model to make a prediction, ‚Y , e.g., whether or not to extend a loan, supported on a set Y . Here we allow ‚Y
to be either discrete or continuous. The prediction is made using a set of features, X, e.g., financial history
features. We assume that there is a set of discrete sensitive attributes, S, e.g., race and sex, supported on
S, associated with each sample. Further, let A ™ Y denote an advantaged outcome class, e.g., the outcome
where a loan is extended.

Definition 5 ((Z, Z)-fairness). Given a random variable Z, let Z be a subset of values that Z can take. We
say that a learning machine satisfies (Z, Z)-fairness if for every z œ Z, ‚Y is conditionally independent of S

given Z = z, i.e. ’ŷ œ Y, s œ S, z œ Z, p‚Y ,S|Z(ŷ, s|z) = p‚Y |Z(ŷ|z)pS|Z(s|z).

(Z, Z)-fairness includes the popular demographic parity, equalized odds, and equal opportunity notions of
fairness as special cases:

1. (Z, Z)-fairness recovers demographic parity (Dwork et al., 2012) if Z = 0 and Z = {0}. In this case,
conditioning on Z has no e�ect, and hence (0, {0}) fairness is equivalent to the independence between ‚Y
and S (see Definition 2, Appendix A).

2. (Z, Z)-fairness recovers equalized odds (Hardt et al., 2016) if Z = Y and Z = Y. In this case, Z œ Z is
trivially satisfied. Hence, conditioning on Z is equivalent to conditioning on Y, which recovers the equalized
odds notion of fairness, i.e., conditional independence of ‚Y and S given Y (see Definition 3, Appendix A).

3. (Z, Z)-fairness recovers equal opportunity (Hardt et al., 2016) if Z = Y and Z = A. This is also similar to
the previous case with Y replaced with A (see Definition 4, Appendix A).

Note that verifying (Z, Z)-fairness requires having access to the joint distribution of random variables
(Z, ‚Y , S). This joint distribution is unavailable to the learner in the context of machine learning, and hence
the learner would resort to empirical estimation of the amount of violation of independence, measured through
some divergence. See (Williamson & Menon, 2019) for a related discussion.

In this general context, here is the general definition of ERMI:

Definition 6 (ERMI – exponential Rényi mutual information). We define the exponential Rényi mutual
information between ‚Y and S given Z œ Z as

DR(‚Y ; S|Z œ Z) := E
Z,‚Y ,S

I
p‚Y ,S|Z(‚Y , S|Z)

p‚Y |Z(‚Y |Z)pS|Z(S|Z)

----- Z œ Z

J
≠ 1. (ERMI)

Notice that ERMI is in fact the ‰
2-divergence between the conditional joint distribution, p‚Y ,S

, and the
Kronecker product of conditional marginals, p‚Y ¢ pS , where the conditioning is on Z œ Z. Further, ‰

2-
divergence is an f -divergence with f(t) = (t ≠ 1)2. See (Csiszár & Shields, 2004, Section 4) for a discussion.
As an immediate result of this observation and well-known properties of f -divergences, we can state the
following property of ERMI:

Remark 2. DR(‚Y ; S|Z œ Z) Ø 0 with equality if and only if for all z œ Z, ‚Y and S are conditionally
independent given Z = z.

To further clarify the definition of ERMI, especially as it relates to demographic parity, equalized odds, and
equal opportunity, we will unravel the definition explicitly in a few special cases.
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First, let Z = 0 and Z = {0}. In this case, Z œ Z trivially holds, and conditioning on Z has no e�ect,
resulting in:

DR(‚Y ; S) := DR(‚Y ; S|Z œ Z)
---
Z=0,Z={0}

= E‚Y ,S

Y
]

[
p‚Y ,S

(‚Y , S)

p‚Y (‚Y )pS(S)

Z
^

\ ≠ 1

=
ÿ

sœS

⁄

ŷœY

p‚Y ,S
(ŷ, s) ≠ p‚Y (ŷ)pS(s)

p‚Y (ŷ)pS(s) p‚Y ,S
(ŷ, s)dŷ. (2)

DR(‚Y ; S) is the notion of ERMI that should be used when the desired notion of fairness is demographic
parity. In particular, DR(‚Y ; S) = 0 implies that ‰

2 divergence between p‚Y ,S
, and the Kronecker product

of marginals, p‚Y ¢ pS is zero. This in turn implies that ‚Y and S are independent, which is the definition
of demographic parity. We note that when ‚Y and S are discrete, this special case (Z = 0 and Z = {0}) of
ERMI is referred to as ‰

2-information by Calmon et al. (2017a).

Next, we consider Z = Y and Z = Y. In this case, Z œ Z is trivially satisfied, and hence,

DR(‚Y ; S|Y ) := DR(‚Y ; S|Z œ Z)
---
Z=Y,Z=Y

= E
Y,‚Y ,S

Y
]

[
p‚Y ,S|Y (‚Y , S|Y )

p‚Y |Y (‚Y |Y )pS|Y (S|Y )

Z
^

\ ≠ 1

=
ÿ

sœS

⁄

yœY

⁄

ŷœY

p‚Y ,S|Y (ŷ, s|y) ≠ p‚Y |Y (ŷ|y)pS|Y (s|y)
p‚Y |Y (ŷ|y)pS|Y (s|y) p

Y,‚Y ,S
(y, ŷ, s)dŷdy

=
ÿ

sœS

⁄

yœY

⁄

ŷœY

p‚Y ,S|Y (ŷ, s|y)2

p‚Y |Y (ŷ|y)pS|Y (s|y)pY (y)dŷdy ≠ 1. (3)

DR(‚Y ; S|Y ) should be used when the desired notion of fairness is equalized odds. In particular, DR(‚Y ; S|Y ) =
0 directly implies the conditional independence of ‚Y and S given Y.

Finally, we consider Z = Y and Z = A. In this case, we have

D
A
R (‚Y ; S|Y ) := DR(‚Y ; S|Z œ Z)

---
Z=Y,Z=A

= E
Y,‚Y ,S

Y
]

[
p‚Y ,S|Y (‚Y , S|Y )

p‚Y |Y (‚Y |Y )pS|Y (S|Y )

------
Y œ A

Z
^

\ ≠ 1

=
ÿ

sœS

⁄

yœA

⁄

ŷœY

p‚Y ,S|Y (ŷ, s|y) ≠ p‚Y |Y (ŷ|y)pS|Y (s|y)
p‚Y |Y (ŷ|y)pS|Y (s|y) p

A
Y (y)dŷdy

=
ÿ

sœS

⁄

yœA

⁄

ŷœY

p‚Y ,S|Y (ŷ, s|y)2

p‚Y |Y (ŷ|y)pS|Y (s|y)p‚Y ,S|Y (ŷ, s|y)pA
Y (y)dŷdy ≠ 1, (4)

where

p
A
Y (y) := pY (y)s

yÕœA pY (yÕ)dyÕ . (5)

This notion is what should be used when the desired notion of fairness is equal opportunity. This can be
further simplified when the advantaged class is a singleton (which is the case in binary classification). If
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Z = Y and Z = {y}, then

DR(‚Y ; S|Y = y) := D
{y}
R (‚Y ; S|Y )

=
ÿ

sœS

⁄

ŷœY

p‚Y ,S|Y (ŷ, s|y) ≠ p‚Y |Y (ŷ|y)pS|Y (s|y)
p‚Y |Y (ŷ|y)pS|Y (s|y) p‚Y ,S|Y (ŷ, s|y)dŷ

=
ÿ

sœS

⁄

ŷœY

p‚Y ,S|Y (ŷ, s|y)2

p‚Y |Y (ŷ|y)pS|Y (s|y)dŷ ≠ 1. (6)

Finally, we note that we use the notation DR(‚Y ; S|Y ) and DR(‚Y ; S|Y = y) to be consistent with the definition
of conditional mutual information in (Cover & Thomas, 1991).
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C Relations Between ERMI and Other Fairness Violation Notions

Recall that most existing in-processing methods use some notion of fairness violation as a regularizer to
enforce fairness in the trained model. These notions of fairness violation typically take the form of some
information divergence between the sensitive attributes and the predicted targets (e.g. Mary et al. (2019);
Baharlouei et al. (2020); Cho et al. (2020a)). In this section, we show that ERMI provides an upper bound
on all of the existing measures of fairness violations for demographic parity, equal opportunity, and equalized
odds. As mentioned in the main body, this insight might help explain the favorable empirical performance of
our algorithm compared to baselines–even when full batch is used. In particular, the results in this section
imply that FERMI algorithm leads to small fairness violation with respect to ERMI and all of these other
measures.

We should mention that many of these properties of f divergences are well-known or easily derived from
existing results, so we do not intend to claim great originality with any of these results. That said, we include
proofs of all results for which we are not aware of any references with proofs. The results in this section also
hold for continuous (or discrete) ‚Y . We will now state and discuss these results before proving them.
Definition 7 (Rényi mutual information (Rényi, 1961)). Let the Rényi mutual information of order – > 1
between random variables ‚Y and S given Z œ Z be defined as:

I–(‚Y ; S|Z œ Z) := 1
– ≠ 1 log

A
E

Z,‚Y ,S

Y
]

[

A
p‚Y ,S|Z(‚Y , S|Z)

p‚Y |Z(‚Y |Z)pS|Z(S|Z)

B–≠1------
Z œ Z

Z
^

\

B
, (RMI)

which generalizes Shannon mutual information

I1(‚Y ; S|Z œ Z) := E
Z,‚Y ,S

I
log

A
p‚Y ,S|Z(‚Y , S|Z)

p‚Y |Z(‚Y |Z)pS|Z(S|Z)

B----- Z œ Z

J
, (MI)

and recovers it as lim–æ1+ I–(‚Y ; S|Z œ Z) = I1(‚Y ; S|Z œ Z).

Note that I–(‚Y ; S|Z œ Z) Ø 0 with equality if and only if (Z, Z)-fairness is satisfied.

The following is a minor change from results in Sason & Verdú (2016):
Lemma 1 (ERMI provides an upper bound for Shannon mutual information). We have

0 Æ I1(‚Y ; S|Z œ Z) Æ I2(‚Y ; S|Z œ Z) Æ eI2(‚Y ;S|ZœZ) ≠ 1 = DR(‚Y ; S|Z œ Z). (7)

Lemma 1 also shows that ERMI is exponentially related to the Rényi mutual information of order 2. We
include a proof below for completeness.
Definition 8 (Rényi correlation (Hirschfeld, 1935; Gebelein, 1941; Rényi, 1959)). Let F and G be the
set of measurable functions such that for random variables ‚Y and S, E‚Y {f(‚Y ; z)} = ES {g(S; z)} = 0,
E‚Y {f(‚Y ; z)2

} = ES

)
g(S; z)2*

= 1, for all z œ Z. Rényi correlation is:

flR(‚Y , S|Z œ Z) := sup
f,gœF◊G

E
Z,‚Y ,S

Ó
f(‚Y ; Z)g(S; Z)

--- Z œ Z
Ô

. (RC)

Rényi correlation generalizes Pearson correlation,

fl(‚Y , S|Z œ Z) := EZ

Y
]

[
E‚Y ,S

{‚Y S|Z}
Ò

E‚Y {‚Y 2|Z}ES{S2|Z}

------
Z œ Z

Z
^

\ , (PC)

to capture nonlinear dependencies between the random variables by finding functions of random variables
that maximize the Pearson correlation coe�cient between the random variables. In fact, it is true that
flR(‚Y , S|Z œ Z) Ø 0 with equality if and only if (Z, Z)-fairness is satisfied. Rényi correlation has gained
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popularity as a measure of fairness violation (Mary et al., 2019; Baharlouei et al., 2020; Grari et al., 2020).
Rényi correlation is also upper bounded by ERMI. The following result has already been shown by Mary
et al. (2019) and we present it for completeness.
Lemma 2 (ERMI provides an upper bound for Rényi correlation). We have

0 Æ |fl(‚Y , S|Z œ Z)| Æ flR(‚Y , S|Z œ Z) Æ DR(‚Y ; S|Z œ Z), (8)

and if |S| = 2, DR(‚Y ; S|Z œ Z) = flR(‚Y , S|Z œ Z).
Definition 9 (Lq fairness violation). We define the Lq fairness violation for q Ø 1 by:

Lq(‚Y , S|Z œ Z) := EZ

IA ⁄

ŷœY0

ÿ

sœS0

---p‚Y ,S|Z(‚y, s|Z) ≠ p‚Y |Z(‚y|Z)pS|Z(s|Z)
---
q

dy

B 1
q
-----Z œ Z

J
. (Lq)

Note that Lq(‚Y , S|Z œ Z) = 0 if and only if (Z, Z)-fairness is satisfied. In particular, LŒ fairness violation
recovers demographic parity violation (Kearns et al., 2018, Definition 2.1) if we let Z = {0} and Z = 0. It
also recovers equal opportunity violation (Hardt et al., 2016) if Z = A and Z = Y .
Lemma 3 (ERMI provides an upper bound for LŒ fairness violation). Let ‚Y be a discrete or continuous
random variable, and S be a discrete random variable supported on a finite set. Then for any q Ø 1,

0 Æ Lq(‚Y , S|Z œ Z) Æ

Ò
DR(‚Y , S|Z œ Z). (9)

The above lemma says that if a method controls ERMI value for imposing fairness, then LŒ violation
is controlled. In particular, the variant of ERMI that is specialized to demographic parity also controls
LŒ demographic parity violation (Kearns et al., 2018). The variant of ERMI that is specialized to equal
opportunity also controls the LŒ equal opportunity violation (Hardt et al., 2016). While our algorithm
uses ERMI as a regularizer, in our experiments, we measure fairness violation through the more commonly
used LŒ violation. Despite this, we show that our approach leads to better tradeo� curves between fairness
violation and performance.

Remark. The bounds in Lemmas 1-3 are not tight in general, but this is not of practical concern. They show
that bounding ERMI is su�cient because any model that achieves small ERMI is guaranteed to satisfy any
other fairness violation. This makes ERMI an e�ective regularizer for promoting fairness. In fact, in Sec. 3,
we saw that our algorithm, FERMI, achieves the best tradeo�s between fairness violation and performance
across state-of-the-art baselines.

Proof of Lemma 1. We proceed to prove all the (in)equalities one by one:

• 0 Æ IS(‚Y ; S|Z œ Z). This is well known and the proof can be found in any information theory
textbook (Cover & Thomas, 1991).

• I1(‚Y ; S|Z œ Z) Æ I2(‚Y ; S|Z œ Z). This is a known property of Rényi mutual information, but we
provide a proof for completeness in Lemma 4 below.

• I2(‚Y ; S|Z œ Z) Æ e
I2(‚Y ;S|ZœZ)

≠ 1. This follows from the fact that x Æ e
x

≠ 1.

• e
I2(‚Y ;S)|ZœZ

≠ 1 = DR(‚Y ; S|Z œ Z). This follows from simple algebraic manipulation.

Lemma 4. Let ‚Y , S, Z be discrete or continuous random variables. Then:

(a) For any –, — œ [1, Œ], I—(‚Y ; S|Z œ Z) Ø I–(‚Y ; S|Z œ Z) if — > –.
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(b) lim–æ1+ I–(‚Y ; S|Z œ Z) = I1(‚Y ; S) := EZ

Ó
DKL(p‚Y ,S|Z ||p‚Y |Z ¢ pS|Z)

--- Z œ Z

Ô
, where I1(·; ·) de-

notes the Shannon mutual information and DKL is Kullback-Leibler divergence (relative entropy).

(c) For all – œ [1, Œ], I–(‚Y ; S|Z œ Z) Ø 0 with equality if and only if for all z œ Z, ‚Y and S are
conditionally independent given z.

Proof. (a) First assume 0 < – < — < Œ and that –, — ”= 1. Define a = – ≠ 1, and b = — ≠ 1. Then the
function „(t) = t

b/a is convex for all t Ø 0, so by Jensen’s inequality we have:

1
b

log

Q

aE

Y
]

[

A
p(‚Y , S|Z)

p(‚Y |Z)p(S|Z)

Bb
------
Z œ Z

Z
^

\

R

b Ø
1
b

log

Q

aE
IA

p(‚Y , S|Z)
p(‚Y |Z)p(S|Z)

Ba----- Z œ Z

Jb/a
R

b

= 1
a

log
A
E

IA
p(‚Y , S|Z)

p(‚Y |Z)p(S|Z)

Ba----- Z œ Z

JB
. (10)

Now suppose – = 1. Then by the monotonicity for – ”= 1 proved above, we have I1(‚Y ; S) = lim–æ1≠ I–(‚Y ; S) =
sup–œ(0,1) I–(‚Y ; S) Æ inf–>1 I–(‚Y ; S). Also, IŒ(‚Y ; S) = lim–æŒ I–(‚Y ; S) = sup–>0 I–(‚Y ; S).

(b) This is a standard property of the cumulant generating function (see (Dembo & Zeitouni, 2009)).

(c) It is straightforward to observe that independence implies that Rényi mutual information vanishes. On
the other hand, if Rényi mutual information vanishes, then part (a) implies that Shannon mutual information
also vanishes, which implies the desired conditional independence.

Proof of Lemma 2. The proof is completed using the following pieces.

• 0 Æ |fl(‚Y , S|Z œ Z)| Æ flR(‚Y , S|Z œ Z). This is obvious from the definition of flR(‚Y , S|Z œ Z).

• flR(‚Y , S|Z œ Z) Æ DR(‚Y ; S|Z œ Z). This follows from Lemma 5 below.

• Notice that if |S| = 2, Lemma 5 implies that DR(‚Y ; S|Z œ Z) = flR(‚Y , S|Z œ Z).

Next, we recall the following lemma, which is stated in Mary et al. (2019) and derives from Witsenhausen’s
characterization of Renyi correlation:

Lemma 5. Suppose that S = [k]. Let the k ◊ k matrix P be defined as P = {Pij}i,jœ[k]◊[k], where

Pij := 1
pS(i)pS(j)

⁄

yœY

A
p‚Y ,S

(y, i)p‚Y ,S
(y, j)

p‚Y (y)

B
dy. (11)

Let 1 = ‡1 Ø ‡2 Ø . . . Ø ‡k Ø 0 be the eigenvalues of P . Then,

flR(‚Y , S) = ‡2, (12)

DR(‚Y ; S) = Tr(P ) ≠ 1 =
kÿ

i=2
‡i. (13)
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Proof. Eq. (12) is proved in (Witsenhausen, 1975, Section 3). To prove Eq. (13), notice that

Tr(P ) =
ÿ

iœ[k]
Pii

=
ÿ

iœ[k]

1
pS(i)

⁄

yœY

A
p‚Y ,S

(y, i)2

p‚Y (y)

B
dy

= E‚Y ,S

Y
]

[

Q

a
p‚Y ,S

(‚Y , S)

p‚Y (‚Y )pS(S)

R

b

Z
^

\

= 1 + DR(‚Y ; S),

which completes the proof.

Proof of Lemma 3. It su�ces to prove the inequality for L1, as Lq is bounded above by L1 for all q Ø 1.

The proof for the case where Z = 0 and Z = {0} follows from the following set of inequalities:

L1(‚Y , S|Z œ Z) =
ÿ

sœS

⁄

yœY

---p‚Y ,S
(y, s) ≠ p‚Y (y)pS(s)

--- dy (14)

=
ÿ

sœS

⁄

yœY

Ò
p‚Y (y)pS(s)

---p‚Y ,S
(y, s) ≠ p‚Y (y)pS(s)

---
Ò

p‚Y (y)pS(s)
dy (15)

Æ

ı̂ıÙ
A

ÿ

sœS

⁄

yœY
p‚Y (y)pS(s)dy

B A
ÿ

sœS

⁄

yœY

A
(p‚Y ,S

(y, s) ≠ p‚Y (y)pS(s))2

p‚Y (y)pS(s)

BB
(16)

Æ

ı̂ıÙÿ

sœS

⁄

yœY

A
(p‚Y ,S

(y, s) ≠ p‚Y (y)pS(s))2

p‚Y (y)pS(s)

B
dy (17)

=
Ò

DR(‚Y ; S), (18)

where Eq. (16) follows from Cauchy-Schwarz inequality, and Eq. (18) follows from Lemma 6. The
extension to general Z and Z is immediate by observing that fl(‚Y , S|Z œ Z) = EZ

Ë
fl(‚Y , S|Z)

--- Z œ Z

È
,

flR(‚Y , S|Z œ Z) = EZ

Ë
flR(‚Y , S|Z)

--- Z œ Z

È
, and DR(‚Y , S|Z œ Z) = EZ

Ë
DR(‚Y , S|Z)

--- Z œ Z

È
.

Lemma 6. We have

DR(‚Y ; S) =
ÿ

sœS

⁄

yœY

A
(p‚Y ,S

(y, s) ≠ p‚Y (y)pS(s))2

p‚Y (y)pS(s)

B
dy. (19)
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Proof. The proof follows from the following set of identities:

ÿ

sœS

⁄

yœY

A
(p‚Y ,S

(y, s) ≠ p‚Y (y)pS(s))2

p‚Y (y)pS(s)

B
dy =

ÿ

sœS

⁄

yœY

(p‚Y ,S
(y, s))2

p‚Y (y)pS(s) dy

≠ 2
ÿ

sœS

⁄

yœY
p‚Y ,S

(y, s)dy

+
ÿ

sœS

⁄

yœY
p‚Y (y)pS(s)dy (20)

= E

Y
]

[
p‚Y ,S

(‚Y , S)

p‚Y (‚Y )pS(S)

Z
^

\ ≠ 1 (21)

= DR(‚Y ; S). (22)

Next, we present some alternative fairness definitions and show that they are also upper bounded by ERMI.
Definition 10 (conditional demographic parity LŒ violation). Given a predictor ‚Y supported on Y and
a discrete sensitive attribute S supported on a finite set S, we define the conditional demographic parity
violation by:

Êdp(‚Y |S) := sup
‚yœY

max
sœS

---p‚Y |S(‚y|s) ≠ p‚Y (‚y)
--- . (23)

First, we show that Êdp(‚Y |S) is a reasonable notion of fairness violation.

Lemma 7. Êdp(‚Y |S) = 0 i� (if and only if) ‚Y and S are independent.

Proof. By definition, Êdp(‚Y |S) = 0 i� for all ‚y œ Y, s œ S, p‚Y ,S
(ŷ|s) = p‚Y (ŷ) i� ‚Y and S are independent

(since we always assume p(s) > 0 for all s œ S).

Lemma 8 (ERMI provides an upper bound for conditional demographic parity LŒ violation). Let ‚Y be a
discrete or continuous random variable supported on Y, and S be a discrete random variable supported on a
finite set S. Denote p

min
S := minsœS pS(s) > 0. Then,

0 Æ Êdp(‚Y |S) Æ
1

pmin
S

Ò
DR(‚Y ; S). (24)

Proof. The proof follows from the following set of (in)equalities:
1

Êdp(‚Y |S)
22

= sup
‚yœY

max
sœS

1
p‚Y |S(‚y|s) ≠ p‚Y (‚y)

22
(25)

Æ
1

(pmin
S )2 sup

‚yœY
max
sœS

1
p‚Y ,S

(‚y, s) ≠ p‚Y (‚y)pS(s))
22

(26)

Æ
1

(pmin
S )2

⁄

ŷœY

ÿ

sœS

1
p‚Y ,S

(‚y, s) ≠ p‚Y (‚y)pS(s))
22

(27)

= 1
(pmin

S )2 DR(‚Y ; S), (28)

where Eq. (28) follows from Lemma 3.
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Definition 11 (conditional equal opportunity LŒ violation (Hardt et al., 2016)). Let Y, ‚Y take values in Y

and let A ™ Y be a compact subset denoting the advantaged outcomes (For example, the decision “to interview"
an individual or classify an individual as a “low risk" for financial purposes). We define the conditional equal
opportunity LŒ violation of ‚Y with respect to the sensitive attribute S and the advantaged outcome A by

Âeo(‚Y |S, Y œ A) := EY

I
sup
‚yœY

max
sœS

---p‚Y ,S|Y (‚y|s, Y ) ≠ p‚Y |Y (‚y|Y )
--- Y œ A

J
. (29)

Lemma 9 (ERMI provides an upper bound for conditional equal opportunity LŒ violation). Let ‚Y , Y, be
discrete or continuous random variables supported on Y, and let S be a discrete random variable supported on
a finite set S. Let A ™ Y be a compact subset of Y.

Denote p
min
S|A = minsœS,yœA pS|Y (s|y). Then,

0 Æ Âeo(‚Y |S, Y œ A) Æ
1

pmin
S|A

Ò
DR(‚Y ; S|Y œ A). (30)

Proof. Notice that the same proof for Lemma 8 would give that for all y œ A:

0 Æ sup
‚yœY

max
sœS

---p‚Y ,S|Y (‚y|s, y) ≠ p‚Y |Y (‚y|y)
--- := Âeo(‚Y |S, Y = y)

Æ
1

pmin
S|y (y)

Ò
DR(‚Y ; S|Y = y)

Æ
1

pmin
S|C

Ò
DR(‚Y ; S|Y = y).

Hence,

Âeo(‚Y |S, Y œ A) = EY

Ó
Âeo(‚Y |S, Y )

--- Y œ A

Ô

Æ
1

pmin
S|A

EY

;Ò
DR(‚Y ; S|Y )

---- Y œ A

<

Æ
1

pmin
S|A

Ú
EY

Ó
DR(‚Y ; S|Y )

--- Y œ A

Ô

= 1
pmin

S|A

Ò
DR(‚Y ; S|Y œ A),

where the last inequality follows from Jensen’s inequality. This completes the proof.
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D Precise Statement and Proofs of Theorem 1 and Theorem 2

To begin, we provide the proof of Proposition 1:
Proposition 3 (Re-statement of Proposition 1). For random variables ‚Y and S with joint distribution p̂‚Y ,S

,
where ‚Y œ [m], S œ [k], we have

‚DR(‚Y ; S) = max
W œRk◊m

{≠ Tr(W ‚PŷW
T ) + 2 Tr(W ‚Pŷ,s

‚P ≠1/2
s ) ≠ 1},

if ‚Pŷ = diag(p̂‚Y (1), . . . , p̂‚Y (m)), ‚Ps = diag(p̂S(1), . . . , p̂S(k)), and ( ‚Pŷ,s)i,j = p̂‚Y ,S
(i, j) with p̂‚Y (i), p̂S(j) > 0

for i œ [m], j œ [k].

Proof. Let W
ú

œ arg maxW œRk◊m ≠ Tr(W ‚PŷW
T ) + 2 Tr(W ‚Pŷ,s

‚P ≠1/2
s ). Setting the derivative of the expres-

sion on the RHS equal to zero leads to:

≠2W ‚Pŷ + 2 ‚P ≠1/2
s

‚P T
ŷ,s = 0 =∆ W

ú = ‚P ≠1/2
s

‚P T
ŷ,s

‚P ≠1
ŷ .

Plugging this expression for W
ú
, we have

max
W œRk◊m

≠ Tr(W ‚PŷW
T ) + 2 Tr(W ‚Pŷ,s

‚P ≠1/2
s )

= ≠ Tr( ‚P ≠1/2
s

‚P T
ŷ,sP

≠1
ŷ

‚Pŷ,s
‚P ≠1/2

s ) + 2 Tr( ‚P ≠1/2
s

‚P T
ŷ,sP

≠1
ŷ

‚Pŷ,s
‚P ≠1/2

s )

= Tr( ‚P ≠1/2
s

‚P T
ŷ,sP

≠1
ŷ

‚Pŷ,s
‚P ≠1/2

s )

= Tr( ‚P ≠1
s

‚P T
ŷ,sP

≠1
ŷ

‚Pŷ,s).

Writing out the matrix multiplication explicitly in the last expression, we have
‚P ≠1

s
‚P T

ŷ,s
‚P ≠1

ŷ
‚Pŷ,s = UV

T
,

where Ui,j = p̂S(i)≠1
p̂‚Y ,S

(j, i) and Vi,j = p̂‚Y (j)≠1
p̂‚Y ,S

(j, i), for i œ [k], j œ [m]. Hence

max
W œRk◊m

≠ Tr(W ‚PŷW
T ) + 2 Tr(W ‚Pŷ,s

‚P ≠1/2
s )

= Tr(UV
T )

=
ÿ

iœ[k]

ÿ

jœ[m]

p̂‚Y ,S
(j, i)2

p̂S(i)p̂‚Y (j)

= ‚DR(‚Y ; S) + 1,

which completes the proof.

Corollary 2 (Re-statement of Corollary 1). Let (xi, si, yi) be a random draw from D. Then, Eq. (FERMI
obj.) is equivalent to

min
◊

max
W œRk◊m

Ó
‚F (◊, W ) := ‚L(◊) + ⁄‚�(◊, W )

Ô
, (31)

where ‚�(◊, W ) = ≠ Tr(W ‚PŷW
T ) + 2 Tr(W ‚Pŷ,s

‚P ≠1/2
s ) ≠ 1 = 1

N

qN
i=1

‚Âi(◊, W ) and

‚Âi(◊, W ) := ≠ Tr(WE[‚y(xi, ◊)‚y(xi, ◊)T
|xi]W T ) + 2 Tr(WE[‚y(xi; ◊)sT

i |xi, si] ‚P ≠1/2
s ) ≠ 1

= ≠ Tr(Wdiag(F1(◊, xi), . . . , Fm(◊, xi))W T ) + 2 Tr(WE[‚y(xi; ◊)sT
i |xi, si] ‚P ≠1/2

s ) ≠ 1.

Proof. The proof simply follows the fact that

max
W œRk◊m

E
Ë

‚Âi(◊, W )
È

= max
W œRk◊m

1
≠ Tr(W ‚PŷW

T ) + 2 Tr(W ‚Pŷ,s
‚P ≠1/2

s ) ≠ 1
2

= ‚DR(‚Y ; S),

where the last equality is due to Proposition 1.
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Next, we will state and prove the precise form of Theorem 1. We first recall some basic definitions:
Definition 12. A function f is L-Lipschitz if for all u, u

Õ
œ domain(f) we have Îf(u) ≠ f(u)Î Æ LÎu ≠ u

Õ
Î.

Definition 13. A di�erentiable function f is —-smooth if for all u, u
Õ

œ domain(Òf) we have ÎÒf(u) ≠

Òf(u)Î Æ —Îu ≠ u
Õ
Î.

Definition 14. A di�erentiable function f is µ-strongly concave if for all x, y œ domain(f), we have
f(x) + f(x)T (y ≠ x) ≠

µ
2 Îy ≠ xÎ

2
Ø f(y)

Definition 15. A point ◊ú = A(D) output by a randomized algorithm A is an ‘-stationary point of a
di�erentiable function � if EÎÒ�(◊ú)Î Æ ‘. We say ◊ú is an ‘-stationary point of the nonconvex-strongly
concave min-max problem min◊ maxW F (◊, W ) if it is an ‘-stationary point of the di�erentiable function
�(◊) := maxW F (◊, W ).

Recall that Eq. (FERMI obj.) is equivalent to

min
◊

max
W œRk◊m

I
‚F (◊, W ) := ‚L(◊) + ⁄‚�(◊, W ) = 1

N

Nÿ

i=1

Ë
¸(xi, yi, ◊) + ⁄ ‚Âi(◊, W )

ÈJ
, (32)

where ‚�(◊, W ) = ≠ Tr(W ‚PŷW
T ) + 2 Tr(W ‚Pŷ,s

‚P ≠1/2
s ) ≠ 1 = 1

N

qN
i=1

‚Âi(◊, W ) and

‚Âi(◊, W ) := ≠ Tr(WE[‚y(xi, ◊)‚y(xi, ◊)T
|xi]W T ) + 2 Tr(WE[‚y(xi; ◊)sT

i |xi, si] ‚P ≠1/2
s ) ≠ 1

= ≠ Tr(Wdiag(F1(◊, xi), . . . , Fm(◊, xi))W T ) + 2 Tr(WE[‚y(xi; ◊)sT
i |xi, si] ‚P ≠1/2

s ) ≠ 1,

where ‚y(xi; ◊) and si are the one-hot encodings of ‚y(xi; ◊) and si, respectively.
Assumption 1. • ¸(·, x, y) is G-Lipscthiz, and —¸-smooth for all x, y.

• F(·, x) is L-Lipschitz and b-smooth for all x.

• ‚pmin
ŷ := inf{◊t,tœ[T ]} minjœ[m]

1
N

qN
i=1 Fj(◊, xi) Ø

µ
2 > 0.

• p̂
min
S := 1

N

qN
i=1 {si=j} > 0.

Remark 3. As mentioned in remark 1, the third bullet in Assumption 1 is convenient and allows for a faster
convergence rate, but not strictly necessary for convergence of Algorithm 1.
Theorem 3 (Precise statement of Theorem 1). Let {xi, yi, si}iœ[N ] be any given data set of features, labels,
and sensitive attributes and grant Assumption 1. Let W := BF (0, D) µ Rk◊m (Frobenius norm ball of radius
D), where D := 2

p̂min
‚Y

Ô
p̂min

S

in Algorithm 1. Denote �‚� := ‚�(◊0) ≠ inf◊
‚�(◊), where ‚�(◊) := maxW

‚F (◊, W ).

In Algorithm 1, choose the step-sizes as ÷◊ = �(1/Ÿ
2
—) and ÷W = �(1/—) and mini-batch size as |Bt| =

�
!
max

)
1, Ÿ‡

2
‘

≠2*"
. Then under Assumption 1, the iteration complexity of Algorithm 1 to return an

‘-stationary point of ‚� is bounded by

O

A
Ÿ

2
—�‚� + Ÿ—

2
D

2

‘2

B
,

which gives the total stochastic gradient complexity of

O

AA
Ÿ

2
—�‚� + Ÿ—

2
D

2

‘2

B
max

)
1, Ÿ‡

2
‘

≠2*
B

,

where

— = 2
A

—¸ + 2⁄Dmb

A
D + 1

p̂min
S

B
+ 2 + 8L

A
D + 1

p̂min
S

BB
,

µ = 2⁄p̂
min
‚Y ,

Ÿ = —/µ,

‡
2 = 16⁄

2(D2 + 1) + 4G
2 + 32⁄

2
D

2
L

2
3

1 + mk

p̂min
S

4
.
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Remark 4. The larger minibatch size is necessary to obtain the faster O(‘≠4) convergence rate via two-
timescale SGDA. However, as noted in (Lin et al., 2020, p.8), their proof readily extends to any batch size
|Bt| Ø 1, showing that two-timescale SGDA still converges. But with |Bt| = 1, the iteration complexity
becomes slower: O(Ÿ3

‘
≠5). This is the informal Theorem 1 that was stated in the main body.

In light of Corollary 1, Theorem 3 follows from (Lin et al., 2020, Theorem 4.5) combined with the following
technical lemmas. We assume Assumption 1 holds for the remainder of the proof of Theorem 3:
Lemma 10. If xi, yi, si are drawn uniformly at random from data set D, then the gradients of ¸(xi, yi, ◊) +
⁄Ò ‚Âi(◊, W ) are unbiased estimators of the gradients of ‚F (◊, W ) for all ◊, W, ⁄:

E[Ò◊¸(xi, yi, ◊) + ⁄Ò◊
‚Âi(◊, W )] = Ò◊

‚F (◊, W ), and

E[⁄ÒW
‚Âi(◊, W )] = ÒW

‚F (◊, W ).

Furthermore, if ÎWÎF Æ D, then the variance of the stochastic gradients is bounded as follows:

sup
◊,W

EÎÒ¸(xi, yi, ◊) + ⁄Ò ‚Âi(◊, W ) ≠ Ò ‚F (◊, W )Î2
Æ ‡

2
, (33)

where ‡
2 = 16⁄

2(D2 + 1) + 4G
2 + 32⁄

2
D

2
L

2
1

1 + mk
p̂min

S

2
.

Proof. Unbiasedness is obvious. For the variance bound, we will show that

sup
◊,W

EÎ⁄ÒW
‚Âi(◊, W ) ≠ ÒW

‚F (◊, W )Î2
Æ ‡

2
w, (34)

and
sup
◊,W

EÎÒ◊¸(xi, yi, ◊) + ⁄Ò◊
‚Âi(◊, W ) ≠ Ò◊

‚F (◊, W )Î2
Æ ‡

2
◊, (35)

where ‡
2 = ‡

2
◊ + ‡

2
w. First,

ÒW
‚Âi(◊, W ) = ≠2WE[ŷ(xi, ◊)ŷ(xi, ◊)T

|xi] + 2‚ps(r)≠1/2E[siŷ(xi, ◊)|xi, si]. (36)

Thus, for any ◊, W, ⁄, we have

EÎ⁄ÒW
‚Âi(◊, W ) ≠ ÒW

‚F (◊, W )Î2
F = 4⁄

2

N

Nÿ

i=1

.....WE[ŷ(xi, ◊)ŷ(xi, ◊)T
|xi] ≠ ‚ps(r)≠1/2E[siŷ(xi, ◊)T

|xi, si]

≠
1
N

Nÿ

i=1

1
WE[ŷ(xi, ◊)ŷ(xi, ◊)T

|xi] ≠ ‚ps(r)≠1/2E[siŷ(xi, ◊)T
|xi, si]

2 .....

2

F

Æ
4⁄

2

N

Nÿ

i=1
2
C

ÎWÎ
2
F

...E[‚y(xi, ◊)‚y(xi, ◊)T
|xi] ≠ ‚Pŷ

...
2

F

+
... ‚P ≠1/2

s

1
E[si‚y(xi, ◊)T

|xi, si] ≠ ‚P T
ŷ,s

2...
2

F

D

Æ
4⁄

2

N

Nÿ

i=1
2

5
2D

2 +
... ‚P ≠1/2

s

1
E[si‚y(xi, ◊)T

|xi, si] ≠ ‚P T
ŷ,s

2...
2

F

6

Æ
4⁄

2

N

Nÿ

i=1
2

#
2D

2 + 2
$

Æ 16⁄
2(D2 + 1),

where we used Young’s inequality, the Frobenius norm inequality ÎABÎF Æ ÎAÎF ÎBÎF , the
facts that ÎE[‚y(xi, ◊)‚y(xi, ◊)T

|xi]Î2
F =

qm
j=1 Fj(◊, xi)2

Æ 1 and Î ‚P ≠1/2
s E[si‚y(xi, ◊)T

|xi, si]Î2
F =
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qk
j=1 s

2
i,j

qm
l=1 Fl(xi, ◊)2

Æ 1 for all i œ [N ] (since for every i œ [N ], only one of the si,j is non-zero
and equal to 1, and

qm
l=1 Fl(◊, xi) = 1).

Next,

⁄Ò◊
‚Âi(◊, W ) = ⁄

Ë
≠Ò◊ vec(E[‚y(xi, ◊)‚y(xi, ◊)T

|xi])T vec(W T
W ) + 2Ò◊ vec(E[si‚y(xi, ◊)T

|xi, si]) vec(W T ‚P ≠1/2
s )

È
.

(37)
Hence, for any ◊, W , we have

EÎÒ◊¸(xi, yi, ◊) + ⁄Ò◊
‚Âi(◊, W ) ≠ Ò◊

‚F (◊, W )Î2
Æ 2

C
2 sup

xi,yi

ÎÒ◊¸(xi, yi, ◊)Î2

+ ⁄
2 sup

xi,yi,si

... ≠ Ò◊ vec(E[‚y(xi, ◊)‚y(xi, ◊)T
|xi])T vec(W T

W )

+ 2Ò◊ vec(E[si‚y(xi, ◊)T
|xi, si]) vec(W T ‚P ≠1/2

s )
...

2
D

Æ 4
C

G
2 + 2⁄

2

A
sup
xi

..Ò◊ vec(E[‚y(xi, ◊)‚y(xi, ◊)T
|xi])T vec(W T

W )
..2

+ 4 sup
xi,si

...Ò◊ vec(E[si‚y(xi, ◊)T
|xi, si]) vec(W T ‚P ≠1/2

s )
...

2
BD

,

by Young’s and Jensen’s inequalities and the assumption that ¸(xi, yi, ·) is G-Lipschitz. Now,

Ò◊ vec(E[‚y(xi, ◊)‚y(xi, ◊)T
|xi])T vec(W T

W ) =
mÿ

l=1
ÒFl(xi, ◊)

kÿ

j=1
Wj,1Wj,l,

which implies

ÎÒ◊ vec(E[‚y(xi, ◊)‚y(xi, ◊)T
|xi])T vec(W T

W )Î2
Æ

ÿ

j,l

W
2
j,l sup

lœ[m],x,◊
ÎÒFl(x, ◊)Î2

Æ D
2
L

2
, (38)

by L-Lipschitzness of F(·, x). Also,

Ò◊ vec(E[si‚y(xi, ◊)T
|xi, si]) vec(W T ‚P ≠1/2

s ) =
kÿ

r=1

mÿ

j=1
ÒFj(◊, xi)

si,rWr,j
p̂S(r)

,

which implies

...Ò◊ vec(E[si‚y(xi, ◊)T
|xi, si]) vec(W T ‚P ≠1/2

s )
...

2
Æ mk

kÿ

r=1

mÿ

j=1
sup
xi,◊

ÎÒFj(◊, xi)Î2

A
si,rWr,j

p̂S(r)

B2

Æ
mk

p̂min
S

L
2
D

2
.

Thus,

‡
2
◊ Æ 4G

2 + 32⁄
2
D

2
L

2
3

1 + mk

p̂min
S

4
.

Combining the ◊- and W -variance bounds yields the lemma.

Lemma 11. Let

‚F (◊, W ) = 1
N

ÿ

iœ[N ]
¸(xi, yi; ◊) + ⁄ ‚Âi(◊, W )

where
‚Âi(◊, W ) = ≠ Tr(WE[‚y(xi, ◊)‚y(xi, ◊)T

|xi]W T ) + 2 Tr(WE[‚y(xi; ◊)sT
i |xi, si] ‚P ≠1/2

s ) ≠ 1.

Then:
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1. ‚F is —-smooth, where — = 2
3

—¸ + 2⁄Dmb

3
D + 1Ô

p̂min
S

4
+ 2 + 8L

3
D + 1Ô

p̂min
S

44
.

2. ‚F (◊, ·) is 2⁄p̂
min
‚Y -strongly concave for all ◊t.

3. If W = BF (0, D) with D Ø
2

p̂min
‚Y

Ô
p̂min

S

, then Eq. (1) = min◊ maxW œW ‚F (◊, W ).

Proof. We shall freely use the expressions for the derivatives of ‚Âi obtained in the proof of Lemma 10.
1. First,

ÎÒw
‚F (◊, W ) ≠ Òw

‚F (◊, W
Õ)ÎF Æ 2 sup

xi

ÎWE[‚y(xi, ◊)‚y(xi, ◊)T
|xi] ≠ W

ÕE[‚y(xi, ◊)‚y(xi, ◊)T
|xi]ÎF

Æ 2ÎW ≠ W
Õ
ÎF ,

since Fj(◊, xi) Æ 1 for all j œ [m]. Next,

ÎÒw
‚F (◊, W ) ≠ Òw

‚F (◊Õ
, W )Î2

F

Æ 8 sup
xi,si,yi

C
D

2
...E[‚y(xi, ◊)‚y(xi, ◊)T

|xi] ≠ E[ ‚Y(xi, ◊Õ) ‚Y(xi, ◊Õ)T
|xi]

...
2

F

+
... ‚P ≠1/2

s

1
E[si‚y(xi, ◊)T

|xi, si] ≠ E[si
‚Y(xi, ◊Õ)T

|xi, si]
2...

2

F

D

Æ 8 sup
xi,si,yi

C
D

2
ÎF(◊, xi) ≠ F(◊Õ

, xi)Î
2
F

+
mÿ

j=1

kÿ

r=1
|Fj(◊, xi) ≠ Fj(◊Õ

, xi)|2‚ps(r)(r)≠1
s

2
i,r

D

Æ 8 sup
xi,si,yi

C
D

2
L

2
Î◊ ≠ ◊Õ

Î
2 + L

2

p̂min
S

Î◊ ≠ ◊Õ
Î

2

D
,

which implies

ÎÒw
‚F (◊, W ) ≠ Òw

‚F (◊Õ
, W )ÎF Æ 8L

A
D + 1

p̂min
S

B
Î◊ ≠ ◊Õ

Î.

Lastly,

ÎÒ◊
‚F (◊, W ) ≠ Ò◊

‚F (◊Õ
, W )Î Æ sup

xi,yi,si

C
ÎÒ¸(xi, yi, ◊) ≠ Ò¸(xi, yi, ◊Õ)Î

+ ⁄
..#

≠Ò◊ vec(E[‚y(xi, ◊)‚y(xi, ◊)T
|xi])T + Ò◊ vec(E[ŷ(xi, ◊Õ)ŷ(xi, ◊Õ)T

|xi])T
$

vec(W T
W )

..

+ 2⁄

...[Ò◊ vec(E[si‚y(xi, ◊)T
|xi, si]) ≠ Ò◊ vec(E[siŷ(xi, ◊Õ)T

|xi, si])] vec(W T ‚P ≠1/2
s )

...

D

Æ —¸Î◊ ≠ ◊Õ
Î + ⁄D

2 sup
x

mÿ

l=1
ÎÒFl(◊, x) ≠ ÒFl(◊Õ

, x)Î

+ 2⁄ sup
x,rœ[k]

......

mÿ

j=1
ÒFj(◊, x) ≠ ÒFj(◊Õ

, x)p̂S(r)≠1/2
Wr,j

......

Æ

C
—¸ + 2⁄

A
D

2
b + Db

p̂min
S

BD
Î◊ ≠ ◊Õ

Î,
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by Assumption 1. Combining the above inequalities yields part 1.
2. We have Ò

2
ww

‚F (◊, W ) = ≠2⁄ ‚Pŷ, which is a diagonal matrix with (Ò2
ww

‚F (◊, W ))j,j =
≠2⁄

1
N

qN
i=1 Fj(xi, ◊) Æ ≠2⁄p̂

min
‚Y , by Assumption 1. Thus, ‚F (·, ◊) is 2⁄p̂

min
‚Y -strongly concave for all ◊.

3. Our choice of D ensures that W
ú(◊ú) œ int(W), since

ÎW
ú(◊ú)ÎF = Î ‚P ≠1/2

s
‚Pŷ,s(◊ú)T ‚Pŷ(◊ú)≠1

ÎF (39)

Æ
1

p̂min
‚Y


p̂min

S

. (40)

Therefore, maxW œW ‚F (◊, W ) = maxW
‚F (◊, W ), which implies part 3 of the lemma.

By Assumption 1 and Lemma 11, our choice of W implies that W
ú(◊ú) œ W and hence that the solution

of Eq. (FERMI obj.) solves

min
◊

max
W œW

Y
]

[
‚F (◊, W ) := 1

N

ÿ

iœ[N ]

‚L(◊) + ⁄‚�(◊, W )

Z
^

\ .

This enables us to establish the convergence of Algorithm 1 (which involves projection) to a stationary point
for the unconstrained min-max optimization problem Eq. (1) that we consider. The W

t projection step in
Algorithm 1 is necessary to ensure that the iterates W

t remain bounded, and hence that the smoothness and
bounded variance conditions of ‚F are satisfied at every iteration.

D.1 Proof of Theorem 2

Now we turn to the proof of Theorem 2. We first re-state and prove Proposition 2.
Proposition 4 (Restatement of Proposition 2). Let {zi}

n
i=1 = {xi, si, yi}

n
i=1 be drawn i.i.d.

from an unknown joint distribution D. Denote ‚Â(n)
i (◊, W ) = ≠ Tr(WE[‚y(xi, ◊)‚y(xi, ◊)T

|xi]W T ) +

2 Tr
3

WE[‚y(xi; ◊)sT
i |xi, si]

1
‚P (n)

s

2≠1/24
≠ 1, where ‚P (n)

s = 1
n

qn
i=1 diag( {si=1}, · · · , {si=k}). Denote

�(◊, W ) = ≠ Tr(WPŷW
T ) + 2 Tr(WPŷ,sP

≠1/2
s ) ≠ 1, where Pŷ = diag(EF1(◊, x), · · · ,EFm(◊, x)), (Pŷ,s)j,r =

Exi,si [Fj(◊, xi)si,r] for j œ [m], r œ [k], and Ps = diag(PS(1), · · · , PS(k)). Assume pS(r) > 0 for all r œ [k].
Then,

max
W

�(◊, W ) = DR(‚Y (◊); S)

and
lim

næŒ
E[ ‚Â(n)

i (◊, W )] = �(◊, W ).

Proof. The first claim, that maxW �(◊, W ) = DR(‚Y (◊); S) is immediate from Proposition 1 and its proof, by
replacing the empirical probabilities with D-probabilities everywhere. For the second claim, we clearly have

E[ ‚Â(n)
i (◊, W )] = E

#
≠ Tr(WE[‚y(xi, ◊)‚y(xi, ◊)T |xi]W T )

$
+ 2E

5
Tr

3
WE[‚y(xi; ◊)sT

i |xi, si]
1

‚P (n)
s

2≠1/2
46

≠ 1 (41)

= ≠ Tr(W PŷW T ) + 2E
5

Tr
3

WE[‚y(xi; ◊)sT
i |xi, si]

1
‚P (n)

s

2≠1/2
46

≠ 1,

for any n Ø 1. Now, ‚P (n)
s (r) converges almost surely (and in probability) to pS(r) by the strong law of large

numbers, and E[ ‚P (n)
s (r)] = pS(r). Thus, ‚P (n)

s (r) is a consistent estimator of pS(r). Then by the continuous

mapping theorem and the assumption that pS(r) Ø C for some C > 0, we have that
1

‚P (n)
s (r)

2≠1/2
converges

almost surely (and in probability) to pS(r)≠1/2. Moreover, we claim that there exists N
ú

œ N such that
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for any n Ø N
ú, Var

31
‚P (n)

s (r)
2≠1/2

4
Æ 2

C < Œ. To see why this claim holds, note that the definition of

almost sure convergence of ‚P (n)
s (r) to pS(r) implies that, with probability 1, there exists N

ú such that for all
n Ø N

ú,
min
rœ[k]

‚P (n)
s (r) Ø min

rœ[k]
pS(r) ≠ C/2 Ø C/2.

Thus, Var
31

‚P (n)
s (r)

2≠1/2
4

Æ E
51

‚P (n)
s (r)

2≠1
6

Æ 2
C . Therefore

1
‚P (n)

s (r)
2≠1/2

is a consistent estimator

with uniformly bounded variance, hence it is asymptotically unbiased: limnæŒ E
51

‚P (n)
s (r)

2≠1/2
6

=

pS(r)≠1/2. Furthermore,
-----

3
E[‚y(xi; ◊)sT

i |xi, si]
1

‚P (n)
s

2≠1/2
4

j,r

----- Æ 2
C for all n Ø N

ú and
3
E[‚y(xi; ◊)sT

i |xi, si]
1

‚P (n)
s

2≠1/2
4

j,r

converges almost surely to
1
E[‚y(xi; ◊)sT

i |xi, si] (PS)≠1/2
2

j,r
as n æ Œ

(for any j œ [m], r œ [k]). Thus, by Lebesgue’s dominated convergence theorem, we have

lim
næŒ

3
E

5
E[‚y(xi; ◊)sT

i |xi, si]
1

‚P (n)
s

2≠1/2
64

j,r

= E
5
E[‚y(xi; ◊)sT

i |xi, si] lim
næŒ

1
‚P (n)

s (r)
2≠1/2

6

= E [si,rFj(◊, xi)] lim
næŒ

1
‚P (n)

s (r)
2≠1/2

= (Pŷ,s)j,rpS(r)≠1/2

= (Pŷ,sP ≠1/2
s )j,r, (42)

for all j œ [m], r œ [k]. Combining Eq. (41) with Eq. (42) (and using linearity of trace and matrix multiplication)
proves the second claim.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Denote �(◊) := maxW F (◊, W ) for the population-level objective F (◊, W ) := L(◊) +
⁄�(◊, W ) (using the notation in Proposition 2). Let ◊ú denote the output of the one-pass/sample-without-

replacement version of Algorithm 1, run on the modified empirical objective where
1

‚P (n)
s

2≠1/2
is replaced by

the true sensitive attribute matrix P
≠1/2
S . That is, ◊ú

≥ Unif(◊ú
1 , . . . , ◊ú

T ), where ◊ú
t denotes the t-th iterate

of the modified FERMI algorithm just described. Then, given i.i.d. samples, the stochastic gradients are
unbiased (with respect to the population distribution D) for any minibatch size, by Corollary 1 and its proof.
Further, the without-replacement sampling strategy ensures that the stochastic gradients are independent
across iterations. Additionally, the proof of Proposition 2 showed that

1
‚P (n)

s

2≠1/2
converges almost surely to

P
≠1/2
S . Thus, there exists N such that if n Ø N Ø T = �(‘≠5), then minrœ[k] ‚P (n)

s (r) > 0 (by almost sure
convergence of ‚Ps, see proof of Proposition 2), and

EÎÒ�(◊ú)Î2
Æ

‘

4 , (43)

by Theorem 1 and its proof. Let ‚◊(n)
t denote the t-th iteration of the one-pass version of Algorithm 1 run on

the empirical objective (with
1

‚P (n)
s

2≠1/2
). Now,

Ò◊
‚Âi(◊, W ) = ≠Ò◊ vec(E[‚y(xi, ◊)‚y(xi, ◊)T

|xi])T vec(W T
W )+2Ò◊ vec(E[si‚y(xi, ◊)T

|xi, si]) vec
3

W
T

1
‚P (n)

s

2≠1/24
,

which shows that ‚◊(n)
t is a continuous (indeed, linear) function of

1
‚P (n)

s

2≠1/2
for every t. Thus, the continuous

mapping theorem implies that ‚◊(n)
t converges almost surely to ◊ú

t as n æ Œ for every t œ [T ]. Hence, if
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‚◊(n)
≥ Unif

1
‚◊(n)

1 , . . . , ‚◊(n)
T

2
, then ‚◊(n) converges almost surely to ◊ú. Now, for any ◊, let us denote W (◊) =

arg maxW F (◊, W ). Recall that by Danskin’s theorem (Danskin, 1966), we have Ò�(◊) = Ò◊F (◊, W (◊)).
Then,

ÎÒ�(‚◊(n)) ≠ Ò�(◊ú)Î2
Æ 2

...Ò◊F (‚◊(n)
, W (‚◊(n))) ≠ Ò◊F (◊ú

, W (‚◊(n)))
...

2
+ 2

...Ò◊F (◊ú
, W (‚◊(n))) ≠ Ò◊F (◊ú

, W (◊ú))
...

2

Æ 2
Ë
—

2
Î‚◊(n)

≠ ◊ú
Î

2 + —
2
ÎW (‚◊(n)) ≠ W (◊ú)Î2

È

Æ 2
5
—

2
Î‚◊(n)

≠ ◊ú
Î

2 + 2—
2
L

2

µ2 Î‚◊(n)
≠ ◊ú

Î
2
6

,

where L denotes the Lipschitz parameter of F , — is the Lipschitz parameter of ÒF , and µ is the strong
concavity parameter of F (◊, ·): see Lemma 11 and its proof (in Appendix D) for the explicit —, L, and µ. We
used Danskin’s theorem and Young’s inequality in the first line, —-Lipschitz continuity of ÒF in the second
line, and 2L

µ -Lipschitz continuity of the arg maxW F (◊, W ) function for µ-strongly concave and L-Lipschitz
F (◊, ·) (see e.g. (Lowy & Razaviyayn, 2021, Lemma B.2)). Letting n æ Œ makes Î‚◊(n)

≠ ◊ú
Î

2
æ 0 almost

surely, and hence ÎÒ�(‚◊(n)) ≠ Ò�(◊ú)Î2
æ 0 almost surely. Furthermore, Danskin’s theorem and Lipschitz

continuity of Ò◊F implies that ÎÒ�(‚◊(n)) ≠ Ò�(◊ú)Î2
Æ C almost surely for some absolute constant C > 0

and all n su�ciently large. Therefore, we may apply Lebesgue’s dominated convergence theorem to get
limnæŒ EÎÒ�(‚◊(n)) ≠ Ò�(◊ú)Î2 = E

Ë
limnæŒ ÎÒ�(‚◊(n)) ≠ Ò�(◊ú)Î2

È
= 0. In particular, there exists N

such that n Ø N =∆ EÎÒ�(‚◊(n)) ≠ Ò�(◊ú)Î2
Æ

‘
4 . Combining this with Eq. (43) and Young’s inequality

completes the proof.

38



Published in Transactions on Machine Learning Research (11/2022)

E Experiment Details and Additional Results

E.1 Model description

For all the experiments, the model’s output is of the form O = softmax(Wx + b). The model outputs are
treated as conditional probabilities p(ŷ = i|x) = Oi which are then used to estimate the ERMI regularizer.
We encode the true class label Y and sensitive attribute S using one-hot encoding. We define ¸(·) as the
cross-entropy measure between the one-hot encoded class label Y and the predicted output vector O.

We use logistic regression as the base classification model for all experiments in Fig. 1. The choice of
logistic regression is due to the fact that all of the existing approaches demonstrated in Fig. 1, use the same
classification model. The model parameters are estimated using the algorithm described in Algorithm 1.
The trade-o� curves for FERMI are generated by sweeping across di�erent values for ⁄ œ [0, 10000]. The
learning rates ÷◊, ÷w is constant during the optimization process and is chosen from the interval [0.0005, 0.01]
for all datasets. Moreover, the number of iterations T for experiments in Fig. 1 is fixed to 2000. Since the
training and test data for the Adult dataset are separated and fixed, we do not consider confidence intervals
for the test accuracy. We generate ten distinct train/test sets for each one of the German and COMPAS
datasets by randomly sampling 80% of data points as the training data and the rest 20% as the test data.
For a given method in Fig. 1, the corresponding curve is generated by taking the average test accuracy on
10 training/test datasets. Furthermore, the confidence intervals are estimated based on the test accuracy’s
standard deviation on these 10 datasets.

To perform the experiments in Sec. 3.3 we use a a linear model with softmax activation. The model parameters
are estimated using the algorithm described in Sec. 3. The data set is cleaned and processed as described
in (Kearns et al., 2018). The trade-o� curves for FERMI are generated by sweeping across di�erent values
for ⁄ in [0, 100] interval, learning rate ÷ in [0.0005, 0.01], and number of iterations T in [50, 200]. The data
set is cleaned and processed as described in (Kearns et al., 2018).

For the experiments in Sec. 3.4, we create the synthetic color MNIST as described by Li & Vasconcelos (2019).
We set the value ‡ = 0. In Fig. 6, we compare the performance of stochastic solver (Algorithm 1) against the
baselines. We use a mini-batch of size 512 when using the stochastic solver. The color MNIST data has 60000
training samples, so using the stochastic solver gives a speedup of around 100x for each iteration, and an
overall speedup of around 40x. We present our results on two neural network architectures; namely, LeNet-5
(Lecun et al., 1998) and a Multi-layer perceptron (MLP). We set the MLP with two hidden layers (with 300
and 100 nodes) and an output layer with ten nodes. A ReLU activation follows each hidden layer, and a
softmax activation follows the output layer.

Some general advice for tuning ⁄: Larger value for ⁄ generally translates to better fairness, but one must be
careful to not use a very large value for ⁄ as it could lead to poor generalization performance of the model.
The optimal values for ⁄, ÷, and T largely depend on the data and intended application. We recommend
starting with ⁄ ¥ 10. In Appendix E.4, we can observe the e�ect of changing ⁄ on the model accuracy and
fairness for the COMPAS dataset.

E.2 More comparison to (Mary et al., 2019)

The algorithm proposed by Mary et al. (2019) backpropagates the batch estimate of ERMI, which is biased
especially for small minibatches. Our work uses a correct and unbiased implementation of a stochastic ERMI
estimator. Furthermore, Mary et al. (2019) does not establish any convergence guarantees, and in fact their
algorithm does not converge. See Fig. 7 for the evolution of training loss (i.e. value of the objective function)
and test accuracy. For this experiment, we follow the same setup used in (Mary et al., 2019, Table 1); the
minibatch size for this experiment is 128.

E.3 Performance in the presence of outliers & class-imbalance

We also performed an additional experiment on Adult (setup of Fig 1) with a random 10% of sensitive
attributes in training forced to 0. FERMI o�ers the most favorable tradeo�s on clean test data, however, all
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Figure 7: (Mary et al., 2019) fails to converge to a stationary point whereas our stochastic algorithm easily converges.

methods reach a higher plateau (see Fig 8). The interplay between fairness, robustness, and generalization is
an important future direction. With respect to imbalanced sensitive groups, the experiments in Fig 5 are on
a naturally imbalanced dataset, where maxsœS p(s)/ minsœS p(s) > 100 for 3-18 sensitive attrib, and FERMI
o�ers the favorable tradeo�s.

Figure 8: Comparing FERMI with other methods in the presence of outliers (random 10% of sensitive attributes in
training forced to 0. FERMI still achieves a better trade-o� compared to all other baselines.

E.4 E�ect of hyperparameter ⁄ on the accuracy-fairness tradeo�s

We run ERMI algorithm for the binary case to COMPAS dataset to investigate the e�ect of hyper-parameter
tuning on the accuracy-fairness trade-o� of the algorithm. As it can be observed in Fig. 9, by increasing
⁄ from 0 to 1000, test error (left axis, red curves) is slightly increased. On the other hand, the fairness
violation (right axis, green curves) is decreased as we increase ⁄ to 1000. Moreover, for both notions of
fairness (demographic parity with the solid curves and equality of opportunity with the dashed curves) the
trade-o� between test error and fairness follows the similar pattern. To measure the fairness violation, we use
demographic parity violation and equality of opportunity violation defined in Section equation 3 for the solid
and dashed curves respectively.
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Figure 9: Tradeo� of fairness violation vs test error for FERMI algorithm on COMPAS and Adult datasets. The solid
and dashed curves correspond to FERMI algorithm under the demographic parity and equality of opportunity notions
accordingly. The left axis demonstrates the e�ect of changing ⁄ on the test error (red curves), while the right axis
shows how the fairness of the model (measured by equality of opportunity or demographic parity violations) depends
on changing ⁄.

E.5 Complete version of Figure 1 (with pre-processing and post-processing baselines)

In Figure 1 we compared FERMI with several state-of-the-art in-processing approaches. In the next three
following figures we compare the in-processing approaches depicted in Figure 1 with pre-processing and
post-processing methods including (Hardt et al., 2016; Kamiran et al., 2010; Feldman et al., 2015).

E.6 Description of datasets

All of the following datasets are publicly available at UCI repository.

German Credit Dataset.
9 German Credit dataset consists of 20 features (13 categorical and 7 numerical)

regarding to social, and economic status of 1000 customers. The assigned task is to classify customers as
good or bad credit risks. Without imposing fairness, the DP violation of the trained model is larger than
20%. We choose 80% of customers as the train data and the remaining 20% customers as the test data. The
sensitive attributes are gender, and marital-status.

Adult Dataset.
10 Adult dataset contains the census information of individuals including education, gender,

and capital gain. The assigned classification task is to predict whether a person earns over 50k annually.
The train and test sets are two separated files consisting of 32, 000 and 16, 000 samples respectively. We
consider gender and race as the sensitive attributes (For the experiments involving one sensitive attribute, we
have chosen gender). Learning a logistic regression model on the training dataset (without imposing fairness)
shows that only 3 features out of 14 have larger weights than the gender attribute. Note that removing
the sensitive attribute (gender), and retraining the model does not eliminate the bias of the classifier. the
optimal logistic regression classifier in this case is still highly biased. For the clustering task, we have chosen
5 continuous features (Capital-gain, age, fnlwgt, capital-loss, hours-per-week), and 10, 000 samples to cluster.
The sensitive attribute of each individual is gender.

Communities and Crime Dataset.11 The dataset is cleaned and processed as described in (Kearns et al.,
2018). Briefly, each record in this dataset summarizes aggregate socioeconomic information about both the
citizens and police force in a particular U.S. community, and the problem is to predict whether the community
has a high rate of violent crime.

COMPAS Dataset.12 Correctional O�ender Management Profiling for Alternative Sanctions (COMPAS) is
a famous algorithm which is widely used by judges for the estimation of likelihood of reo�ending crimes. It is

9https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
10https://archive.ics.uci.edu/ml/datasets/adult.
11http://archive.ics.uci.edu/ml/datasets/communities+and+crime
12https://www.kaggle.com/danofer/compass
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Figure 10: Tradeo� of demographic parity violation vs test error for FERMI algorithm on COMPAS, German, and
Adult datasets.

observed that the algorithm is highly biased against the black defendants. The dataset contains features used
by COMPAS algorithm alongside with the assigned score by the algorithm within two years of the decision.

Colored MNIST Dataset.
13 We use the code by Li & Vasconcelos (2019) to create a Colored MNIST

dataset with ‡ = 0. We use the provided LeNet-5 model trained on the colored dataset for all baseline models
of Baharlouei et al. (2020); Mary et al. (2019); Cho et al. (2020b) and FERMI, where we further apply the
corresponding regularizer in the training process.

13https://github.com/JerryYLi/Dataset-REPAIR/
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Figure 11: Tradeo� of equalized odds violation vs test error for FERMI algorithm on COMPAS, German, and Adult
datasets.
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Figure 12: Tradeo� of equality of opportunity violation vs test error for FERMI algorithm on COMPAS, German,
and Adult datasets.
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