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In clinical settings, most automatic recognition systems use visual or sensory data to recognize activities. These systems cannot
recognize activities that rely on verbal assessment, lack visual cues, or do not use medical devices. We examined speech-based
activity and activity-stage recognition in a clinical domain, making the following contributions. (1) We collected a high-quality
dataset representing common activities and activity stages during actual trauma resuscitation events—the initial evaluation and
treatment of critically injured patients. (2) We introduced a novel multimodal network based on audio signal and a set of
keywords that does not require a high-performing automatic speech recognition (ASR) engine. (3) We designed novel contextual
modules to capture dynamic dependencies in team conversations about activities and stages during a complex workflow. (4) We
introduced a data augmentation method, which simulates team communication by combining selected utterances and their audio
clips, and showed that this method contributed to performance improvement in our data-limited scenario. In offline experiments,
our proposed context-aware multimodal model achieved Fi-scores of 73.2£0.8% and 78.1+1.1% for activity and activity-stage
recognition, respectively. In online experiments, the performance declined about 10% for both recognition types when using
utterance-level segmentation of the ASR output. The performance declined about 15% when we omitted the utterance-level
segmentation. Our experiments showed the feasibility of speech-based activity and activity-stage recognition during dynamic

clinical events.
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Fig. 1: The overall framework of clinical decision support system. This paper focuses on Phase 1.

1 INTRODUCTION

Clinical decision support systems (CDSS) [65, 69] can help reduce errors in complex medical teamwork [19]. For CDSS that relies
on current task performance as an input, timely and accurate activity recognition is critical. Most activity recognition approaches
in medical domains use visual and sensory data and cannot recognize activities that are reported through speech, lack distinct
visual cues, or do not use medical devices. However, speech and team communication are critical components of medical work.
Medical teams use speech to assign an activity, report the progress or results of the activity, and plan the subsequent activities.
The awareness of activities and their temporal progression (activity stage) [30] will affect the next-step decision in clinical
decision support systems [38, 65]. Gu et al. [24] proposed a multimodal network that predicts activities from the manually-
derived transcripts and audio. This system requires high-performing automatic speech recognition (ASR) to replace manual
transcripts, a feature limiting implementation in the real-time because the performance of ASR is inadequate due to the extreme
background noise. To address this limitation, Abdulbagqi et al. [1] simplified the recognition problem by using a keyword-based

approach, training on a limited-size vocabulary and relying on the identification of the most frequent keyword associated with
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each activity. Even when a given keyword is associated with more than one activity, this system always infers the activity most
frequently associated with that keyword. Another approach relied on speech intention recognition [22] to distinguish semantic
differences in utterances spoken during trauma resuscitation events. Although these previous approaches [1, 22, 24] have shown
promising results in the recognition of activities and speech intentions, they are inadequate for real-time use and decision
support for several reasons. First, the number of previously recognized activity labels has been small (between 5-10) compared
to >100 different activity types potentially performed during most clinical events. Second, speech intentions representing the
intent of utterances have been too fine-grained with many classes that were not relevant to clinical decision support, and were
not always linked to activities, which makes them inadequate for representing the activity progression. Third, they needed
manual transcription of human speech which hindered real-time application. Fourth, the conversational context has not been
considered. Lastly, predictions were made using utterance-level data, but utterance-level segmentation is not available for real-

time use.

We developed a novel context-aware multimodal network to address the aforementioned limitations and bring our model
closer to real-time application (Fig. 1). First, we extended the number of activities to include 23 commonly performed activities
during trauma resuscitation. We also identified four distinct activity-stage labels from speech intentions [22] based on previously
defined features representing activity progression [30-32] to supplement a clinical decision support system [65, 69]. Second, we
extended the keyword-based method [1] by using a selected keyword list rather than entire vocabulary. The keyword-based
approach avoids the need for a high-performing ASR in real-time application. Third, we designed a novel multimodal network
that relies on the conversational context during trauma resuscitation to recognize contextual dependencies of activities and
activity stages. Finally, we augmented our dataset by simulating multi-label utterances (i.e., several activities appearing in one
utterance) to improve the model’s ability to manage concurrent activities and activity stages and avoid or manual segmentation
of utterances. We ran experiments with our model in offline (using manually segmented and transcribed speech) and online
(using real-time speech recognition without manual segmentation) settings. The results showed a consistent performance
improvement with our proposed context modules and data augmentation methods, while also showing the applicability of an
offline-trained model in the online setting. In offline and online settings, our model outperformed the NLP (Natural Language
Processing) and multimodal baselines that were constructed using existing techniques [4, 17, 28]. We have developed our system
using the activities and activity stages specific to trauma resuscitation, but the system can be applied to other settings where
activity recognition is also based on verbal communication and the activities are temporally dependent. For example, our system
can be applied to settings such as operating rooms and intensive care units (ICU) where many routine activities are also
performed (e.g., airway and breathing assessment, oxygen administration, and neurological exam), and the vocabulary used to
communicate these activities is the same across these settings. As another example, in daily living activity recognition [2, 44],
the activity “washing dishes” is likely to happen after “cooking,” and “shaving” usually is followed by “washing face.” We
believed that modeling the temporal relations between activities in general could improve recognition performance. In this way,

our system is generalizable because these temporal dependencies are common across many use cases.

This work makes five contributions to speech-based recognition and monitoring of collocated, dynamic teamwork:

1) A medical dataset with a large set of activity labels that cover commonly occurring activities and their stages during a
complex workflow.

2)  Approaches that do not require a large vocabulary or a high-performing ASR, including keyword spotting and selection

methods that rely on a small set of keywords for activity and activity-stage recognition.
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3)  An end-to-end multimodal architecture that uses speech sound, keywords, and the conversational context and

outperforms previous models that lack the context of team communication.

4)  Generation of a simulated team-communication dataset that contains concurrent activities and activity stages that

improved the model’s ability to recognize concurrent activities and activity stages in data-limited scenarios.

5)  Evaluation and discussion of our model in offline experiments and during real-time application.

2 BACKGROUND AND RELATED WORK

The initial care of severely injured patients in the hospital (“trauma resuscitation”) is performed using a defined sequence of
evaluation and treatment steps. Prior work has found that efficient and error-free care during trauma resuscitation lowers
morbidity and mortality [21, 27, 62]. To limit the impact of human factors in this domain, Advanced Trauma Life Support (ATLS)
was developed as a standard resuscitation protocol [59]. Deviations from and errors in application of ATLS are still observed,
even among experienced trauma teams [20, 48]. Some errors may have no direct impact on patient care, but others can lead to
poor outcomes, including death [21]. Given the evidence supporting the benefits of adherence to ATLS, previous studies have
evaluated real-time decision support to improve compliance with standard protocols [19]. Although promising, these early
systems have had limited usability in practice because they required manual data entry and active interaction with the system.

Activity recognition has been proposed for the resuscitation domain to address these limitations by automating data input.

Recognizing human activity is a challenging problem [33]. Different types of activities are defined based on the application
needs. In clinical settings, recognition is targeted at critical activities performed by providers during patient care. Recognition of
these activities can be used to identify the phases of a clinical process [69], define differences in activity sequence performance
associated with different outcomes, and track work in runtime for providing activity-based decision support [65, 69]. Most prior
studies have focused on activity recognition in the operating room [55, 58]. Unlike this setting, trauma resuscitation follows a
more flexible medical workflow under time pressure, with patient information emerging throughout the process. Activity
recognition in team-based settings like trauma resuscitation is challenging for many reasons, including a crowded workspace,
concurrent and fast-paced activities, and different modalities for conveying information (e.g., visual observation, verbal
assessment, and signals from devices and instruments). Current research on activity recognition mostly relies on visual and
sensory data sources to predict activities [5, 10, 42]. Visible-light or depth cameras provide rich sources of data about activities
without interfering with work. Object localization in video frames [43] can also assist with activity recognition. This approach
has been used in a multimodal network developed to detect the workflow phase during trauma resuscitation [41]. Vision-based
approaches have several limitations, including privacy issues, occlusion in a crowded workspace, and the visual similarity of
some activities. Unlike vision-based systems, RFID-based recognition systems rely on tagging medical objects and tracking their
movement for activity recognition [40, 42]. Passive RFID cannot address challenges of the limited types of activities that use

taggable devices and the need for continuous tagging of disposable objects.

In addition to using vision- and sensor-based systems, audio or speech signals can also serve as a valuable information source
for human activity recognition. Nicholas et al. [36], pretrained a Gaussian Restricted Boltzmann machine (RBM) with a large set
of unannotated audio streams using unsupervised learning. Their model was fine-tuned to various acoustic classification tasks
and showed robustness to a wide range of acoustic scenes based on mobile audio sensing. Yohan et al. [14] used multi-sensory

data, including speech words and scene sounds, to categorize different places. Dawei et al. [44] used a large-scale pretrained
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VGGish model as a feature extractor to generate acoustic embeddings for ambient sounds, followed by a classification network,
to perform daily living activity recognition and showed promising results. Rebecca et al. [2] evaluated the feasibility of using
mid-interaction segments to distinguish daily living activities, a setting in which mid-interaction segments refer to voice
assistants' response time after receiving human queries. A multimodal system was built that recognizes concurrent activities
during trauma resuscitation using multiple data modalities, including depth camera video, RFID sensors, and audio recordings
[12]. A separate convolutional neural network (CNN) was used to extract features for each modality that were fused using a long
short-term memory (LSTM) network in the final decision layer. These previous studies showed the feasibility of using audio or
speech related to activity recognition. In clinical settings, vision- and sensor-based systems are not applicable to recognizing
activities that lack distinct visual cues or do not use medical devices, such as those performed or reported through verbal
communication. For example, airway assessment is performed by asking the patient to answer several questions and verbalizing
the assessment results to the entire team. Verbal communication associated with these activities has many cues about the activity

and can serve as a valuable source of data for activity recognition in clinical settings [32].

Recent research on predicting activities from manual speech transcripts and audio recordings [24] showed promising results,
despite the ambient noise and concurrent speech affecting system performance. In this previous work, a multimodal transformer
network manually processed the transcribed speech and audio sound to predict activities. When using only audio, the system
predicted the activities with an average accuracy of 36.4%. The accuracy increased to 71.8% for 11 activities when using both
modalities (audio recordings and manual transcripts). This network, however, relied on manually generated rather than
automatically derived transcripts, limiting its applicability to real-time activity recognition. A keyword-based approach was
developed that avoided the need for full transcripts [1] or high-performing ASR in real-time applications. This system built a
keyword list for each activity by ranking the frequency of each word and switched the keyword list based on the activity label
when spotting keywords. This approach is not practical because it requires knowing the activity label for each utterance to
determine the keyword lists. Frequency-based keyword extraction also has limited performance [24]. Frequency-inverse
document frequency (TF-IDF) has been used to categorize text documents by weighing each word in text documents based on
uniqueness [60, 67, 68]. We used a similar approach in this work, incorporating a sensitivity score that extracts words specific

to activity and activity stages from the speech transcripts.

We have observed that activity recognition alone is insufficient for developing effective clinical decision support systems [38,
65]. For example, the utterances (“Can we get an IV?’) and (“IV is in place”) refer to the same medical activity (intravenous [IV]
catheter placement) but are semantically different. An earlier study [22] successfully recognized speech intentions associated
with spoken utterances to determine semantic differences. These speech intentions are too fine-grained with many classes
irrelevant to clinical decision support and ignored the relation to the activity type. We build on this prior work by adopting the
activity model with four stages of performance, each with distinct speech patterns [30-32]: the “before” stage, such as assessing
the need for an activity or requesting an activity; the “during” stage, such as speech related to interactions with patients or
reporting activity progress; the “after” stage, such as reports on activity results; and the “other” stage for speech unrelated to
activity performance. The utterance (“Can we get an IV?’) now indicates the “before” stage, while the utterance (“IV is in place”)
indicates the “after” stage. Another utterance (“I am working on an IV”) indicates the “during” stage. Different activity stages for
the same activity can result in different recommendations for decision making. Supplementing activity recognition with the
recognition of the activity stage helps avoid semantic misunderstanding, provides additional information about the performed

work, improves system recommendations, and brings our system closer to real-time use [65, 69].
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To our knowledge, workflow and communication context have not been used for speech-based activity and activity-stage
recognition in clinical settings. Context information has been used in natural language processing (NLP) tasks, such as dialog
act recognition, where the output is based on the current input and context information. In our setting, a discussion among
several team members about an activity may also indicate the status of that activity. A naive approach would be using a fixed-
size context window to collect preceding input to provide better predictions. In the area of text classification, the preceding short
texts were used to classify current texts [37, 56]. A fixed context window is not appropriate for scenarios where the occurrence,
amount, and length of team communication are unpredictable, and where interruptions and parallel conversations are common.
To manage this dynamic context information, a conversational-level model was used to represent the dependencies between
different utterances in dialog act recognition [3, 7, 15, 35, 39, 52]. A bi-directional conversational recurrent neural network (RNN)
has been used to manage temporal dependencies [35, 39, 52] between utterances. The attention mechanism has also been used
to capture the relationships between the utterances in conversation-level model [3, 7, 15]. These models do not easily transfer to
our application for two reasons. First, these models were designed for two-people conversations. In contrast, our domain involves
team-based communication with a more complex relationship between the utterances (e.g., the conversation might be interleaved
or interrupted by another speaker). Second, the sequence-to-sequence models were designed for an offline setting, using the
entire conversation log to make a prediction for each utterance. The non-causal nature of these models makes them unfit for
online deployment. To overcome these limitations, we designed a causal context module, which independently uses a

unidirectional conversational RNN and an attention-based model for interleaved conversation.

The rest of the paper is organized as follows. Section 3 introduces our dataset, including activity and activity-stage labels.
Section 4 describes the proposed keyword selection methods and identifies the smallest set of keywords that achieves
performance similar to using the entire vocabulary. Section 5 describes our proposed context-aware multimodal network for
recognizing activity and activity stages using conversational context from team communication in real time. Section 6 describes
a data augmentation method that helps generalize the model’s applicability to concurrent activities and activity stages. Section
7 presents the experimental design for offline and online settings, and Section 8 presents the results from offline experiments.

Section 9 presents the results from using our model in online settings. Section 10 discusses the results and future work.

3 DATASET DESCRIPTION

Our dataset was recorded during 168 trauma resuscitations in the emergency room at a pediatric hospital between December
2016 and May 2019. The study was approved by the hospital’s institutional review board (IRB). The audio data was recorded
using two fixed NTG2 Phantom Powered Condenser shotgun microphones with a 16000 Hz sampling rate. These microphones
were pointed at two locations around the patient bed, where key members of the team typically stand. All audio recordings were
manually transcribed. This preprocessing of audio recordings was time-consuming and required domain knowledge. Censoring
the files with patient or provider information involved generating silence in locations of the audio file where this sensitive
information was captured. The censoring process was also time-consuming because it required listening to the entire case. After
censoring, the recordings were manually segmented into utterances. Although utterance-level segmentation is not available in
real-time, it is necessary for model training and accurate label assignment. Utterances were distinct, medically relevant words
or sentences spoken by an individual team member and consisted of intelligible speech that could be transcribed. The
transcription process followed guidelines to ensure that the transcribed speech could be used for algorithm training. For each

utterance, the transcribers marked the start and stop times, the speaker (e.g., emergency medical services (EMS) team member,
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Table 1: The statistics of activity-related utterances in our dataset of transcripts from 168 trauma resuscitations.

# Activity Code Utterances
1 No activity performed None 7,584
2 Head, eye, ear, nose, throat assessment HEENT 3,117
3 Pre-arrival activities PR 2,748
4 Extremity examination E 2,155
5 Medications MEDS 1,319
6 Back examination BK 1,464
7 Adjunctive procedures ADJ 1,327
3 Glasgow coma scale (GCS) evaluation GCS 1,164
9 Intravenous (IV) catheter placement IVPLAC 1,155
10 Blood pressure and vital sign measurment BP 1,004
11 Cervical collar activities CS 1,077
12 Log roll of patient LOG 984
13 Circulatory status assessment CC 905
14 Temperature management (exposure control) EC 824
15 Airway management AM 643
16 Summary of reports SUM 582
17 Airway assessment AA 571
18 Respiratory assessment (breathing assessment) BA 504
19 Abdomen examination A 444
20 Chest palpation CP 435
21 | Cardiopulmonary resuscitation (CPR)-related activities CPR 434
22 Pelvic examination PE 432
23 Respiratory support (breathing control) BC 249

physician examiner, leadership team member, medication nurse, and charge nurse), the transcribed utterance, the associated

medical activity, and the activity stage. The utterances were on average 2.3 seconds long.

Prior research using speech for activity recognition in this domain focused only on frequent activities for recognition [1, 24].
Utterances from rare activities are also relevant for resuscitation outcomes and should not be ignored. Supporting even routine
decision making requires the recognition of a larger set of activities. For the purposes of our real-time application, a medical
expert on our team categorized all clinical tasks into broad groups of related activities (e.g., involving similar procedures or
performed on similar body regions) based on standard resuscitation protocol, resulting in 23 activity groups. Each utterance in
the transcript was then assigned the corresponding activities. Our dataset shows a “long-tail effect,” with more than nine
activities having less than 800 samples (Table 1). This imbalance of utterances across activities presents a challenge for activity
recognition. In addition to activity labels, each activity in the utterance was also labeled with its stage [30-32]: before, during,
after, or other (Table 2).

Table 2: The statistics of activity-stage-related utterances in our dataset of transcripts from 168 trauma resuscitations.

# | Activity-stage | Utterances
1 Before 5,655

2 During 4,347

3 After 11,307

4 Other 8,857
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4 KEYWORD SELECTION AND SPOTTING

Real-time system execution requires automatic speech recognition (ASR) instead of manually generated transcripts. The limited
amount of training data and unstructured ambient noise in our domain negatively affected ASR performance. We relied on a
small set of keywords for activity recognition, which simplified the problem and removed the need for a real-time high-
performing ASR [1]. The goal of keyword selection is to select a small set of words that maintains recognition performance for
activities and activity stages. We used two different keyword selection methods—f{requency-based and sensitivity-based. We also

discuss different keyword spotting methods and introduce our proposed activity-specific training.

4.1 Keyword List

In NLP tasks, standard text preprocessing steps are usually applied to the text before further processing. These steps include
removing low-frequency words and stopwords, and text normalization. We followed all text preprocessing steps, except
removing stopwords. Stopwords are often removed in the text preprocessing stage because they are not related to the
corresponding task. Our evaluation of the activity and activity-stage recognition using the entire vocabulary showed that
removal of stopwords pre-defined by NLTK [45] was not needed (Section 8.1.1). Our keyword list was created in two steps. First,
we independently created the keyword list for each activity and activity stage. Second, we combined these keyword lists into a

common keyword list retaining a single copy of recurring words.

4.2 Frequency-Based Keyword Selection

A frequency-based approach uses the frequency of words associated with each activity to generate a corresponding keyword
list. We used a previously described procedure [1] for this purpose we used a cutoff frequency threshold to select the keywords
that occurred most frequently with an activity. For example, if 1,000 words are related to an activity and the relative-frequency
threshold is 0.1, we can form the keyword list for this activity using the words that appeared more than 100 times. We empirically
determined the optimal threshold value to obtain the keyword list. The main limitation of this method is that the keyword list
may contain everyday words that appear more frequently than medical terms, leading to omission of medical terms from the
keyword list. Although ordinary words may have specific meanings for different activities [1], they are not as useful as medical
terms for distinguishing activities and activity stages. This problem could be mitigated by manually filtering ordinary words, but

this approach is time-consuming, requires domain knowledge, and may introduce human errors.

4.3 Sensitivity-Based Keyword Selection

Given the limitations of using a frequency-based approach, we considered the “sensitivity measure” to select the words most
related to activities, an approach that simultaneously accounts for the frequency and semantic relevance of words. The sensitivity

score is adapted from the concept of frequency-inverse document frequency (TF-IDF) defined as:

count(w|C) count(w|C)
*
2w, count(w;|C)  X¢, count(w|C;)

sensitivity(w|c) =
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we have distal pulse or blood pressure | Original Text

OO0V OOV distal pulse OOV blood

pressure Spotting method #1

distal pulse blood pressure Spotting method #2

Fig. 2: Examples of different spotting methods. OOV = out-of-vocabulary word.

where w is a given word, C is the given activity or activity-stage category. The first term of the product is the frequency score,
which calculates how frequently the word w occurred in the utterances labeled with activity C compared to other words that
occurred with C, i.e., how distinguishing the word w is for class C. The frequency score is the same as the frequency-based
method (Section 4.2.). The second term is the uniqueness score, which calculates specificity, i.e., how frequently the word w
appeared with the activity C compared to all other activities. We multiplied these two terms to make a tradeoff between
frequency and uniqueness. Using only the frequency score may lead to overestimating the context relevance of generic words
because they would have a high rank in activities where they appeared frequently, but they could also appear with other activities
(Section 4.2). Using only the uniqueness score may lead to some words having a high rank even if these words rarely appear.
We used this sensitivity measure to rank the words for each activity and empirically set a cutoff sensitivity threshold for keyword

selection.

4.4 Keyword Spotting

The keyword spotting stage [1] selects the most frequent word in the keyword list for a given activity and ignores the rest of
the list. This model may erroneously assign spotted words that occur in several activities or activity stages. Our approach uses
all spotted keywords from the input text because the combination of multiple keywords contains additional cues for activity
recognition. We evaluated two keyword spotting approaches (Fig. 2): (1) spotting method #1 - replaces the words that do not
appear in the keyword list with an out-of-vocabulary (OOV) symbol, and (2) spotting Method #2 - omits the unspotted words
and adds a special symbol “none” if no keywords are spotted in the utterance. Our goal with these different spotting methods
was to determine whether the position of the unspotted words affected recognition performance. We used word embedding [46]
to represent the keywords instead of the one-hot encoding [1]. We discuss how these methods, including keywords selection

and keywords spotting, affected the model performance in our experiments for the context-independent model in Section 8.1.

4.5 Activity-Specific Training

Although using the common keyword list to spot keywords is appropriate, the relationship between keywords and their
associated activity and activity stage may be underrepresented when these keywords occur in more than one activity or activity
stage. To strengthen the relationship between activity/activity-stage types and associated keywords, we proposed keyword

specific training, an approach complementary to keyword spotting methods. We mixed the use of common keyword list with
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the keyword lists specific to the activity for keyword spotting. For example, when we apply the common keyword list to an
utterance about medications (“MEDS”), such as “give another epi right now,” the following keywords will be spotted: “give,”
“another,” “epi,” “right,” and “now.” Conversely, if a keyword list specific to the activity “MEDS” is used for keyword spotting,
only three keywords will be spotted: “give,” “another,” and “epi.” The words “right” and “now” are not activity-specific and
should not affect recognition results when omitted. We hypothesized that this training method would strengthen the connections

between activity/activity stage and the associated keywords and ensure complete training of the entire keyword list.

5 CONTEXT-AWARE MULTIMODAL MODEL

Our proposed causal context-aware multimodal network was designed to help recognize activities and activity stages based on
conversational context from the team communication during trauma resuscitation. This model consists of two parts: (1) an
utterance-level model (“context-independent multimodal model”) based on a convolutional augmented transformer that uses the
spotted keywords and audio features in utterances [25], and (2) a novel context model that learns temporal dependencies in team

communication using both unidirectional RNN and attention mechanism.

5.1 Context-Independent Multimodal Model

Our context-independent multimodal model used the spotted keywords and audio features to simultaneously predict the activity
and activity stage. The multimodal network used complementary heterogeneous features to provide more accurate predictions
[41]. Many studies have investigated the fusion of modal features. Recent methods [23, 61] have focused on aligning different
modalities along the time axis, achieving better performance than unaligned methods. Ambient sounds not related to human
speech (e.g., alerts) usually come from the instruments or equipment in our domain. For this reason, we chose the late fusion

approach that integrates the features processed by each monomodal model.

5.1.1 Monomodal Model

Transformer and its variants have achieved high performance in many domains [17, 18, 25, 47, 63]. The convolution-augmented
transformer has outperformed the original transformer because of better modeling of local dependencies [25]. We built our

monomodal model based on the conformer block that consists of self-attention, convolution, and feedforward modules (Fig. 3).

A multi-head self-attention with positional encoding is used in the self-attention module. The self-attention calculates an affinity
matrix to measure the contribution of inputs to each other. Given an input X = {xq, ..., xy}, for every x, € R%,t € [1, N], the

attention score between x; and any other input x; is determined as:

exp (thT W Wyex,)

N

at‘r -
S T W W)

exp (\/d_k
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Fig. 4: Context-independent multimodal model.

XN XN

where Wy, Wy, € R%*4k are the matrices that transform x, to the query space and the key space, respectively. The d is the
dimension of the key and query spaces. a;; is the attentive score that measures how x; contributes to x;. For the utterance-level

recognition, we did not apply the attention mask in sequence modeling to prevent the disclosure of future information. The final

Zt = Z AW Xy

n

embedding output for x; is obtained as:

where W, is the transformation that maps the input embeddings to the value space. The attention mechanism improves
performance by providing a global view of the temporal sequence. The self-attention can be further improved by incorporating
a multi-head mechanism that creates multiple attentions to manage complex scenarios. The multi-head self-attention splits the
Wy, Wi, W, along dj, to generate several submatrices, ie, W = [W0 H Wh], where h is the number of heads. The embedding

output for x; with multi-head attention is obtained as:

z, =W’ [Z agnl/l/vixn]
n

where W° € R%*4k is a matrix that aggregates the output from different attention heads and i is the attention head index.
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The convolution module uses the separable convolution [13] to enhance the capturing of local relations in the conformer. The
input first goes through the step-wise convolution with the gating mechanism [16]. It then follows a depth-wise convolution

with the batch norm [29] and swish activation [53]. A stepwise convolution is used for the final output.

The feedforward block enriches the model’s representation ability. It is composed of two linear projection layers with an
activation function (GELU) in between [26]. A residual connection and layer normalization [6] are used to guarantee a gradient

flow for stable training in these three modules.

Finally, the conformer block is built using two feedforward blocks, one self-attention block, and one convolution block (Fig. 3).

The monomodal model is a stack of conformer blocks to provide better performance.

5.1.2  Structure of the Context-Independent Multimodal Model

We used two monomodal models for processing keywords and audio signals. The inference speed of the monomodal models
prevented real-time application. The input sequence length for different modalities often varied: the number of speech-signal
frames was often tenfold the number of words in the corresponding text, leading to slower inference speed for the audio model.
We applied downsampling in the audio model to accelerate the inference speed using two approaches: (1) a common sub-
sampling layer was applied before the conformer, and (2) a strided convolution module, which progressively downsamples the

features, was used in the conformer block for different modalities [9] instead of the non-strided module [25].

Our context-independent multimodal model used late fusion to integrate the keyword and audio modalities into a shared
representation space (Fig. 4). The multimodal model concatenated the output from the keyword and audio monomodal model

and passed it through a non-linear transformation. The classifiers were then used to make predictions.

5.2 Causal Context Module

Previous work on speech-based activity recognition used individual utterances for prediction and did not consider the preceding
conversational context [1, 22, 24]. Although these models achieved promising results, the performance decreased with an
increasing number of activity labels because the individual utterances did not carry sufficient information. Using input from
medical experts, we identified three types of verbal communication during trauma resuscitation. The first type is about reporting
results from evaluations performed by a provider. Activities associated with these utterances usually can be recognized from the
utterance alone, without the conversational context (e.g., “blood pressure is 112 over 85”). The second type includes dialog
between team members, like discussion about diagnostic results and the next steps, or synchronizing the teamwork. The third
type is a dialog between team members and the patient to assess the patient’s condition or obtain information, which requires
the patient feedback. The latter two types of verbal communication usually require the context of previous utterances to
determine the activity. To help distinguish between the activities, we introduced the context module that captures the

dependencies between utterances.

To leverage the context of previous utterances while addressing the limitations discussed in prior work [3, 15, 35, 39, 52], we
introduced a causal context module using a unidirectional conversational RNN and attention-based historical conversation

interaction to capture continuing and interleaved conversations in a real-time setting.
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5.2.1 Unidirectional Conversation RNN

Although a bidirectional conversational RNN showed promising results in dialog act recognition [7, 35, 39, 52], the non-causal
property makes it unsuitable for real-time application. For real-time use, we replaced the bidirectional with a unidirectional

conversational RNN. We used this unidirectional RNN to capture an ongoing conversation.

5.2.2 Attention-Based Historical Conversation Interaction

Conversational RNN has difficulty managing the dependencies between interleaved conversations that often occur in team
communication in our domain. Although the attention mechanism has been used in dialog act recognition, these approaches
were either unsuitable for online settings [7, 15], or calculated the attention score using only one previous context vector [3],
which could not fully utilize the attention mechanism’s ability to model long-range dependencies. Our attention-based historical

conversation interaction is a stand-alone module, which uses the encoder-decoder attention. It is defined as:
v = Enc-DecAttn([ug), [ug ... up—1])

where u; represents the output from the context-independent multimodal model at time t. The attention-based historical
conversation interaction stored the preceding utterance-level representations as historical dialogue, which allowed it to retrieve
long-past historical information. The current utterance-level representation was used as the query for the encoder-decoder
mechanism. The attention-based historical conversation interaction managed the interleaved-style conversations while

preserving the causal property for the real-time model.
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Historical Dialog Fusion
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Fig. 5: Context-aware multimodal model.
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5.2.3  Structure of the Context-Aware Multimodal Model

The two context modules formed our proposed context module (Fig. 5). These two modules were used independently to capture
different kinds of dependencies. The context module was applied on top of the context-independent multimodal model. The
concatenation of the output of the context-independent model and the output of the context module were used to make the final

predictions.

6 DATA AUGMENTATION

Our data were transcribed and segmented into utterances for accurate label assignment. The transcribers transcribed most speech
into utterances about individual activities. For a small subset, segmenting chunks of text based on individual activities was not
possible, leading to a small number of utterances related to multiple activities and activity stages. The utterance-level
segmentation is not available in a real-time setting. We used a fixed-length sliding time window of speech signal for recognizing
the activities and activity stages. The time window could not capture enough information if the window length was too short
because utterances were fragmented. If the time window was too long, it would cause a delay in real-time recognition, which is
not expected. For use in a real-time setting, we choose the window length of five seconds as a tradeoff between the fragmentation
problem and delays. Because this window length (5 seconds) was longer than the average length of utterance-level segmentation
(2.3 seconds), utterances within the window were more likely to refer to multiple activities and activity stages. To enhance the
model’s ability to recognize concurrent activities and their stages, we introduced two data augmentation methods. We first
simulated context-independent utterances with multiple activities and stages. Second, we simulated team communication during
trauma resuscitation. Our data augmentation method is described below. We justify the feasibility of data augmentation for both

offline experiments and real-time application in Sections 8 and 9.

6.1 Simulating Context-independent Utterances

The goal of simulating context-independent utterances was to strengthen the model’s ability to simultaneously recognize
multiple activities. We composed new utterances by randomly selecting the utterances from our training dataset. Some
utterances can only be recognized within a given context. Selecting these utterances may confuse the training of the model. To
avoid this issue, we identified a set of context-independent utterances and assumed these could be recognized without contextual

information because they preserved enough information for recognition. We identified context-independent utterances based

Algorithm 1 Simulate Team Communications

Input: Actual prearrival- and postarrival-related conversations from the training corpus
Output: Simulated trauma conversation
1: function SIMULATETRAUMACONVERSATION(Pre_arrival, Post_arrival, maz_len)

2 case = [Random _Select(Pre_arrival))

3 while len(case) < maz_len do:

4 conversation = Random_Select(Post_arrival)

5 conversation = Insert_or_Append(conversation, single_utter)
6: case.append(conversation)

7 end while

8 return case

9: end function

Fig. 6: Workflow for simulating team communication during a trauma case
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on activity/activity stage specific training (Section 4.5). If activity-specific keywords were spotted in an utterance then we classify
this utterance as context-independent. Finally, we simulated new utterances by randomly selecting and combining these context-

independent utterances.

6.2 Simulating Team Communication During Actual Trauma Resuscitations

In addition to simulating context-independent utterances, we simulated team communication for data augmentation (Fig. 6). We
identified two subsets of conversations from available transcripts in several steps. First, we collected all utterances that formed
a conversation about each activity in a given resuscitation. We started with the activity related to the first utterance of a
transcript and traversed the subsequent utterances until an utterance about a different activity was encountered. The previous
sentence was considered as the termination of the first conversation. The resulting set of adjacent utterances and the associated
audio clips formed an activity-related conversation. We then used the activity in the current utterance as the start of the next
conversation and continued in this way until the end of the transcript. Finally, we divided the conversations into the subsets
related to patient pre-arrival and post-arrival phases. We simulated team communication during resuscitation cases using these

steps (Fig. 6):
1. We selected several pre-arrival conversations as the beginning of a simulated team communication.
2. Repeat either (a) or (b)

a)  We appended a context-independent utterance (either simulated as in Section 6.1 or an original) to a
randomly-selected conversation that occurred after patient arrival.

b)  We inserted a context-independent utterance into a randomly-selected conversation that occurred after
patient arrival to represent an interleaved conversation.

3.  We repeated Step 2 until the simulated team communication reached the maximum specified number of
utterances.

7 EXPERIMENTAL SETUP

We trained and evaluated both the context-independent and context-aware models (described in Section 5). For offline
experiments, we first compared different keyword generation and spotting methods using the context-independent model. After
identifying the optimal keyword list and the spotting method, we evaluated the proposed context-aware model and performed
an ablation study. We then ran online experiments to evaluate model performance in an online setting. We also performed

experiments to show the efficiency of data augmentation with offline and online settings.

7.1 Dataset Preparation for Offline Experiments

We trained and evaluated the proposed models using 168 trauma resuscitation transcripts with 28,468 utterances (Table 1).
Because of the small dataset, we applied five-fold cross-validation based on the unit of individual transcripts. We separated a
fraction of transcripts (10%) from the training set to serve as the validation set. Each data sample (an utterance) contained a
unique identifier indicating the sequential order of the utterance from the start of the resuscitation, a normalized human-
transcribed utterance (text cleaned from the punctuations, Arabic numerals converted to text, and text normalization and
contraction expansion), an audio clip, and the corresponding activity and activity-stage labels. Keyword lists were generated

based on the entire dataset using different generation methods (Sections 4.2 & 4.3). We used a window size of 25 ms with a shift
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of 10 ms for commonly used 80-dimensional filterbank feature extraction from audio. We evaluated the efficiency of our proposed
data augmentation with different numbers of simulated utterances obtained from the training set, including 5,000, 10,000, 15,000,

and 20,000 sample size.

7.2 Label Alignment for System Evaluation in Online Experiments

We used the context-aware model trained with data collected offline to evaluate its performance in real time. For real-time
application, we used an input based on a five-second sliding time window instead of utterance-level segmentation. The system-
generated label predictions were stored for post-event validation. After the event, we used a manually generated transcript with
utterance-level segmentation to assign the activity and activity-stage labels to each time-window of speech. For each time-
window, we checked if it overlapped with time intervals generated from the start-end timestamps of the manually segmented
utterances. We omitted utterances that partially overlapped with the given time window (shorter than one-third of the original
utterance interval and shorter than one half of the time window). We then merged the activity and activity-stage labels for the

remaining overlapped utterances. We used these aligned labels to evaluate our system in an online setting.

7.3 Model Implementation and the Training Configuration

We implemented our models using Pytorch [51] 1.8.0 with one Nvidia GTX 2080 GPU and CUDA version 10.1. Adam [34] was
used as an optimization algorithm, setting the initial learning rate as le-3. Dropout [57] was set as 0.15 in all experiments to
avoid overfitting. No other regularization or procedures were applied. We used a batch size of 256 utterances in all experiments.
The random seed was fixed for reproducibility. We used binary cross entropy as the loss function to update our model for
multilabel classification. To address the imbalance of the dataset (Section 3), we calculated weights based on statistical analysis
of the dataset and applied the weights to the binary cross entropy to rescale the penalty for different activities and activity stages.
The run time for the five-fold validation was about two days. We used Fi-score as the evaluation metric. During training, we
halved the learning rate if the weighted Fi-score among all activities in the validation set did not increase in three consecutive

epochs. Early stop criteria were triggered if the Fi-score could not be improved in 15 epochs.

7.4 Baseline Models

To provide a strong baseline for a fair comparison of our proposed approach, we designed several baseline models using existing
techniques. Bidirectional Encoder Representations from Transformers (BERT) [17] leverages large amounts of unannotated data
by using self-supervised pretraining. BERT has shown promising performance by fine-tuning the pretrained model in various
natural-language tasks. In audio domains, this technique has been known as self-supervised representation learning. We used
the HuBERT [66] to extract audio feature, with the pretrained model showing generalizability to various audio tasks. We

designed three models based on these techniques:

e Model #1: A monomodal model that used the BERT base model [17] (contains around 110 million trainable parameters)
pretrained with BooksCorpus [70] and English Wikipedia, and its pretrained tokenizer. We added two classifiers that

used the representation generated by BERT for activity and stage predictions.

e Model #2: Model #1 modified to replace BERT with a pretrained Clinical BERT base model [4], trained with a publicly
available clinical-domain corpus that addresses the domain-shifting. We also used the Clinical BERT base and its

pretrained tokenizer for fine-tuning.
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e  Model #3: A multimodal model that concatenates the audio representation extracted by HuBERT [28] with the text
representation extracted by either BERT or Clinical BERT. We selected either a BERT or Clinical BERT text
representation based on which one performed better in model #1 and model #2. We then fused different modalities and
used two classifiers to predict activity and activity stage. We did not use audio representation alone because it did not
contain sufficient cues to distinguish between activities and activity stages. Audio could be used as a supplementary
modality to improve the recognition performance.

Table 3: Performance comparison between using the original vocabulary and filtered vocabulary. The numbers in the parentheses indicate the
vocabulary size (in words). Weighted average F;-score is reported.

Selection Method Activity | Activity-Stage
Original Vocabulary (4,717) | 65.7+1.4% 75.4+1.2%
Filtered Vocabulary (4,591) | 64.8+0.9% 71.8+1.6%

8 RESULTS FROM THE OFFLINE EXPERIMENTS AND DISCUSSION

We first selected the optimal keyword list and model configuration for context-independent model (Section 8.1). We then
evaluated our proposed context-aware model (Section 8.2). The data augmentation experiments are presented in Section 8.3.

Finally, Section 8.5 presents our analysis.

8.1 Experimental Configuration and Results for the Context-Independent Model

We performed a series of experiments for the context-independent model. First, we showed that regular stopwords are needed
in our study domain. Second, we evaluated different keyword selection methods and identified the best keyword list and spotting
method. Finally, we performed an ablation study that compared the model configuration and our proposed activity-specific

training. We used the best-performing context-independent model for father experiments.

8.1.1 Evaluating the Impact of Removing Regular Stopwords from Vocabulary

We performed two experiments to evaluate the performance of the context-independent model with and without stopwords in
the keyword list. In the first experiment, we used the entire vocabulary. In the second experiment, we used a filtered vocabulary
where we removed regular stopwords that were introduced by NLTK [45]. We used the same configuration for the context-
independent model in both experiments, setting up a 3-layer context-independent model with a word embedding size of 256 and
the number of heads in multi-heads attention set at 8. We used the spotting method #1 (described in Section 4.4) and repeated
the five-fold validation. We then independently compared the weighted Fi-score among the different categories for activity and
activity stage (Table 3). The recognition performance for activity and activity stage decreased when we removed the regular
stopwords (the activity had a 0.9% performance decline and activity stage had a 3.6% performance decline). This result showed
that regular stopwords improved activity and activity-stage recognition, suggesting they should not be removed in advance. In

the remaining experiments, we did not remove these regular stopwords from the keyword lists.

Table 4: Frequency and sensitivity thresholds and vocabulary sizes. When a threshold was 0, we used the entire vocabulary.

Selection Method 0.01 0.005 0.0025 0.0015 0.001 0.00075 0.0005 0.00025 0.0001 0.0

Frequency-based 140 237 371 500 661 768 999 1651 2881 4717
Sensitivity-based 139 248 340 436 512 729 1100 2240 2948 4717
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Fig. 7: Activity and Activity-stage recognition weighted Fi-score for 5-fold validation using different keyword lists.

8.1.2  Selecting the Methods for Keyword List Generation

Our goal was to minimize the vocabulary size (keyword list) needed for activity and activity-stage recognition while preserving
high system performance (Section 4). In these experiments, we set a series of thresholds that resulted in different vocabulary
sizes (Table 4). We did not enforce the same vocabulary size for frequency and sensitivity-based selection methods because we
thresholded statistical parameters for these different selection methods (relative frequency versus sensitivity score). Because we
were studying the effects of keywords selection, we used the same model configuration (described in Section 8.1.1). We repeated

the five-fold validation for each keyword list.

For activity recognition results (Fig. 7), we observed that the sensitivity-based keyword selection method performed better
than the frequency-based method for vocabularies with less than 1,000 words. As the vocabulary size increased, the performance
differences between different selection and spotting methods decreased. The performance improvement was small when the
vocabulary exceeded 2,000 words because most domain-specific keywords were already included when smaller-size keyword

selections were used.

For activity-stage recognition results (Fig. 7), we observed that frequency-based method had nearly identical performance
compared to sensitivity-based method when the vocabulary size was smaller than 500. The sensitivity-based method performed

slightly better when the vocabulary size increased (greater than 500).
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Table 5: The results for ablation study of Context-independent model. Two-step training first uses activity-specific keyword lists, followed by
the common list.

Model Spottin; . Activity/Activity-stage specific .. Activity-
Configuration” l\gethodg Modality Y spotzing Besp Activity stagey
Post-norm, 256, 3 #1 Text+Audio 66.3+1.0% 76.1+1.3%
Post-norm, 256, 6 #1 Text+Audio 66.0+1.4% 76.1+1.9%
Post-norm, 384, 3 #1 Text+Audio 66.2+1.3% 76.0+1.6%
Pre-norm, 256, 3 #1 Text+Audio 66.1+1.1% 75.9+1.2%
Post-norm, 256, 3 #1 Text+Audio o 66.7£0.9% 76.3£1.2%
Post-norm, 256, 3 #2 Text+Audio 65.9+1.1% 75.3+1.2%
Post-norm, 256, 6 #2 Text+Audio . 66.411.1% 75.5%¥1.3%
Post-norm, 256, 3 #1 Text . 64.911.2% 75.2+1.8%

* The model configuration in the table represents pre- or post-norm style, the dimension size for word embedding, and the number of layers
used in the model.

We also observed that the performance for activity and activity-stage recognition using an appropriate-size keyword list had
better performance compared to using the entire vocabulary, suggesting that keyword-based methods are more robust in the
recognition tasks with limited-size data. We chose the keyword list based on the sensitivity method with a vocabulary size of
729 words (“sensitive-729”) to make a tradeoff between recognition performance and the keyword list size. We used this keyword

list in the remaining experiments.

8.1.3 Ablation Study for the Context-Independent Model

After identifying the optimal keyword list, we performed an ablation study to find the best setting for the context-independent
model. Our study included the effects of various hyperparameters on the model configuration, different keyword-spotting
methods (Section 4.4), the proposed activity-specific training (Section 4.5), and the effect of different modalities. Changes in the
model configuration included modifying the number of layers used in the encoder (3 vs. 6), the dimension of text embedding
(256 vs. 384), and positional embedding. We also selected between the pre-norm (as in [25]) or post-norm style (our adaption) of
the encoder, and between a single modality (text) or combined modalities (text+tudio) as input. The audio modality alone was
not considered because aforementioned limitations. These different model configurations had only a small impact on the
recognition performance (Table 5). The two spotting methods achieved comparable performance for activity recognition.
Spotting method #1 outperformed spotting method #2 on activity-stage recognition because the unspotted keywords from
method #1 provided additional position information in the text, helping distinguish the difference in activity stages. Our proposed
activity/activity-stage specific training strengthened the relations between activity, activity stage, and associated keyword lists.
The ablation study of different modalities showed that the multimodal models outperformed the single-modality model (text) in

both activity and activity-stage recognition (Table 5, last row).

Based on the results from the ablation study, we chose the original setting (post-norm, 256, 3) with spotting method #1 and

used activity-specific training in the remaining experiments.
8.2 Experimental Configuration and Results for the Context-Aware Model

8.2.1 Comparing Context-Independent and Context-Aware Models

We next performed the experiments with the proposed context-aware multimodal model. The context-aware model

outperformed the context-independent model by a large margin for activity recognition (66.7% versus 71.5%) and had a slight
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improvement in performance for activity-stage recognition (76.3% versus 77.6%). To understand how the context-aware model
made these improvements, we independently analyzed the performance for each activity and activity stage and compared it with
the context-independent model (Table 6, columns 1 & 4). We highlighted in bold face the activity (HEENT, PR, E, BK, GCS,
IVPLAC, LOG, SUM, A) and activity stage (During) when major improvements were made using the context-aware model. The
recognition results for these activities and activity stages are affected by the conversational context, showing that conversational
context is needed for recognizing specific types of activities and activity stages. The improvement for the remaining activities

and activity stages was lower, implying a smaller effect of conversational context.

8.2.2 Ablation Study for the Context-Aware Model

We next performed an ablation study to assess how each of the three context modules contributed to the recognition of activities
and activity stages. We constructed three models (Table 6): a model that only contained conversational-RNN (RNN), a model
that only contained attention-based historical conversation interaction (Attention), and our proposed model that combined the
first two (context-aware model). The results for each class are shown independently (Table 6, columns 3, 4, and 5). By comparing
the results for each activity and activity-stage, we observed that: (1) the RNN model performed better than the Attention model

for these activities, including HEENT, E, BK, CS, GCS. The conversations for these activities are usually continuous and short-

Table 6: Fi-scores (in percentages) for activities and activity stages using the context-aware model with three designs (last three columns).
Boldfaced numbers highlight significantly improved performance compared to the context-independent model (first column).

Model Configuration Context-independent RNN Attention | Context-aware
Weigted F-scores for All Activities 66.7£0.9 70.9£1.0 71.1£1.0 71.5+1.2
No activity performed (None) 67.842.5 70.0£2.0 69.5%2.5 70.0+2.6
Head, eye, ear, nose, throat assessment (HEENT) 71.1+3.6 76.1£2.9 75.3£2.7 76.2+3.1
Pre-arrival activities (PR) 56.0+3.8 65.4+3.1 67.5%4.1 68.613.5
Extremity examination (E) 66.1+5.4 76.1£3.0 75.1£3.7 75.9+2.8
Medications (MEDS) 71.6+4.7 72.7£5.7 74.9+4.5 74.5£6.7
Back examination (BK) 51.9+2.3 71.314.1 70.1+4.2 71.4+3.6
Adjunctive procedures (AD]) 68.4%2.6 70.7£2.9 69.7+4.3 70.5+3.1
Glasgow coma scale (GCS) evaluation (GCS) 66.8+2.3 72.3%2.9 71.5%2.7 72.6+2.5
Intravenous (IV) catheter placement (IVPLAC) 69.6+4.3 74.5£3.4 74.442.7 74.6+2.6
Blood pressure and vital sign measurment (BP) 75.73.6 76.8+3.2 76.8+3.4 77.8+2.8
Cervical collar activities (CS) 60.3+4.7 63.6%5.7 62.9+3.7 63.5+3.7
Log roll of patient (LOG) 69.8+5.4 76.3%4.3 76.5%4.0 76.4+4.0
Circulatory status assessment (CC) 75.544.3 76.0£3.3 76.5£3.1 76.1+3.5
Temperature management (exposure control) (EC) 74.7+1.5 77.3+2.6 77.3+0.7 77.4%1.0
Airway management (AM) 53.3%5.4 57.4+7.7 57.946.9 57.9+7.5
Summary of reports (SUM) 44.2+4.7 46.6+6.4 49.0+8.3 50.5+5.5
Airway assessment (AA) 77.7£3.6 77.7£4.0 78.2%3.6 77.7+4.3
Respiratory assessment (breathing assessment) (BA) 67.1+4.1 68.9+3.5 66.3+3.0 70.0+4.1
Abdomen examination (A) 66.6+5.9 71.8+7.4 73.1£3.5 73.6+5.0
Chest palpation (CP) 71.945.3 72.2£6.1 74.4%2.9 73.9+5.4
Cardiopulmonary resuscitation-related activities (CPR) 58.242.2 61.0+4.3 61.3£2.5 62.241.9
Pelvic examination (PE) 67.1£3.2 71.4%+3.8 71.242.6 71.8%3.0
Respiratory support (breathing control) (BC) 48.7+6.8 49.9+6.1 50.0+6.4 50.1£6.6
Weigted F-scores for All Activity Stages 76.3%1.2 77.6£1.2 77.5%1.0 77.6+1.0
Before 68.9+2.3 69.2+2.3 69.4+2.2 69.2+2.1
During 77.5%2.5 81.7£3.0 81.4+2.7 81.8+2.9
After 80.6£2.2 81.7+£2.1 81.6%£2.0 81.7+2.0
Other 73.9£2.0 75.6£1.5 75.5%1.5 75.8+£1.6
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Table 7: Performance comparison between without-data-augmentation and data-augmentation.
Weighted Average Fi-scores for activity/activity-stage recognition are reported.

Context-independent| Context-aware

W/O Data Augmentation 66.7£0.9/76.3+1.2% 71.5£1.2/77.6£1.0%

Data Augmentation (5,000) 67.4+0.9/76.4£1.1% 72.3+1.2/77.9+0.9%

Data Augmentation (10,000) 68.0£1.1/76.4+1.2% 72.9+0.9/77.9+1.0%

Data Augmentation (15,000) 68.5+£1.2/76.4+1.2% 73.240.8/78.1+1.1%

Data Augmentation (20,000)|  68.6+1.3/76.3£1.2% 73.240.7/78.2+1.2%

duration because providers take the initiative to perform activities and report results. RNN is better at handling these continuous
local conversational dependencies; (2) the Attention model performed better than the RNN model for some activities, including
PR, SUM, A, and CP. These activities either had longer-duration (PR, SUM), or required feedback from patients (A, CP). The long
durations or possible delayed responses were the main causes of interleaved conversations, when other activities were more
likely to overlap and break the continuity of the communication. The Attention model was better at handling these discontinuous
dependencies in conversation; (3) both RNN and Attention achieved comparable performance in activity-stage recognition; and
(4) the context-aware model performed better than the RNN and Attention models. These results were observed because our
model combined the advantages of both RNN and Attention models, allowing it to handle complex team communication as the
observations (1) and (2) were not always true in real scenarios. For example, the GCS activity is usually performed by a single
provider and is a “continuous” conversation. Sometimes GCS is assigned to several providers and is associated with a
“discontinuous” conversation, interleaved with other activities. In another example related to activity A, a delayed response from
the patient may cause an interleaved conversation. The providers did not need to wait for the response when visible injuries
were observed or the patient lost consciousness. Based on these results, we used the context-aware model in the remaining

experiments.

8.3 Data Augmentation and its Effect for Offline Settings

Data augmentation improved the performance of the context-aware model and partially the performance of the context-
independent model (Table 7). We empirically analyzed the effectiveness of the proposed data augmentation methods, gradually
increasing the number of simulated samples from 5,000 to 20,000. Models trained with data augmentation performed better than
those trained without data augmentation. This performance improvement first increased as the number of simulated data grew
and then converged to performance comparable to when augmented with 15,000 or 20,000 samples. For the rest of our analysis,
we used the data augmentation with 15,000 simulated samples because it most improved the performance with the fewest
simulated samples. Data augmentation improved the performance for both activity (1.7%) and activity-stage (1.5%) recognition
in the context-aware model. For the context-independent model, data augmentation improved activity recognition (1.8%), but
contributed less to activity-stage recognition (0.1%). Data augmentation was more effective for the context-aware model because
it improved the recognition of the “during” activity stage. These findings suggest that our proposed data augmentation improved

the performance of both models in the offline setting.
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Table 8: Performance comparison to baselines. Weighted Average Fi-scores for activity/activity-stage recognition are reported.

W/O Data Augmentation| Data Augmentation (15,000)

" BERT (text) 65.0£1.0/76.0+1.6% -

]

T‘i ClinicalBERT (text) 65.5%1.1/76.1+1.5% —

<

= ClinicalBERT+HuBERT (text+audio), 67.3+0.7/76.6£1.3% 68.7£0.9/76.9+1.2%

2 Context-independent (text) 64.9+1.2/75.2+1.8% —

—é Context-independent (text+audio) 66.7+0.9/76.3+1.2% 68.5+1.2/76.4£1.2%

-

5 Context-aware (text+audio) 71.5+1.2/77.6+1.0% 73.2+0.8/78.1+1.1%

8.4 Comparisons to Baseline Models

We compared our proposed approaches to three baseline models. We first evaluated the single-modality baseline Models #1 and
#2 (BERT and Clinical BERT). The performance of activity stages improved in both BERT and Clinical BERT compared to the
context-independent (text) model (Table 8). We propose that pretraining with a large amount of unannotated data helped the
model distinguish the semantic differences in activity stages. BERT achieved activity-recognition performance comparable to
the context-independent (text) model. Clinical BERT showed an improvement in activity-recognition performance, proving more
helpful to activity recognition in clinical domains. For the multimodal baseline Model #3, we combined text representation from
Clinical BERT with audio presentation from HuBERT [28]. We observed that this combination improved recognition
performance, showing how different modalities influence performance in our domain. The improvement with
Clinical BERT+HuBERT over ClinicalBERT was about the same as the improvement of our context-independent (text+audio)
over context-independent (text) (Table 8). We suspect that this comparable performance improvement was caused by
instruments sounds that helped activity recognition more than human speech (and HuBERT was pretrained with clean human
speech). Applying data augmentation to ClinicalBERT+HuBERT further improved the performance and showed that our
proposed data augmentation improved performance in a limited-data scenario (last column in Table 8). Data augmentation
showed less performance improvement when the model (ClinicalBERT+HuBERT) was pretrained with a large unannotated
dataset compared to the model trained from scratch (context-independent). Although the ClinicalBERT+HuBERT baseline
outperformed the context-independent model, it had two limitations. First, the ClinicalBERT+HuBERT baseline has more
parameters than the context-independent model, leading to high computational costs. Second, the ClinicalBERT+HuBERT
baseline ignores the conversational context, which led to a better performance of the context-aware model (last row in Table 8).
Despite these limitations, the baseline models showed promise for improving context-independent model by self-supervised

learning using a large unannotated in-domain corpus. This approach will be evaluated in our future work.

8.5 Analysis and Discussion

We analyzed the context-aware model performance for each activity and activity stage and conducted an error analysis for the
low-performing activities (CS, AM, SUM, CPR, BC). The main error-type was misclassifying the activity group as “none,”
particularly for the activities AM and CPR (Table 6). Activities BC and BA were sometimes confused, and SUM was often
misclassified with its finer-level activities, such as A, AA, BA, and E. For the remaining activities, the context-aware model

performed well (more than 70% of Fi-scores) (Table 6). In activity-stage recognition, the main confusion occurred between the
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Table 9: Comparing our context-aware system performance with prior work [1] on their set of activities. Fi-score is reported.

ctivity Extremity Back examination| GCS evaluation | Head, eye, ear, nose, throat | Circulatory status
Model examination (E) (BK) (GCS) assessment (HEENT) assessment (CC)
Previous 63.2% 66.5% 56.8% 59.9% 56.7%
System [1]
Our System 75.9+2.8% 71.4%3.6% 72.6%2.5% 75.3£3.3% 75.7£3.5%

“before” and “other” stages. Some “other” stage utterances were related to requesting items or information that were unrelated
to medical activities (e.g., “What time is it?”). When comparing the model performance for a subset of activities used in previous

research [1], our system significantly outperformed the previous work (Table 9).

We also jointly evaluated the activity and activity-stage recognition considering four scenarios (Table 10): (1) both activity
and activity stage were correctly recognized (TT), (2) the activity was correctly recognized while activity stage was incorrectly
recognized (TF), (3) the activity was incorrectly recognized while activity stage was correctly recognized (FT), and (4) both
activity and activity stage were incorrectly recognized (FF). In most cases, activity and activity stage were simultaneously
recognized correctly (TT), but in a subset of cases only one was recognized correctly (TF or FT). To ensure accurate decision
support recommendations, activity and activity stage need to be correctly recognized. If the clinical decision support system is
used to recommend future activities in the workflow, an incorrect activity-stage recognition could lead to an incorrect
recommendation. To achieve high reliability in the actual application, our speech-based activity recognition system should be
combined with other modalities, such as computer vision for detecting activity stage [41]. Tracking the workflow and predicting

future activities could also be achieved based on learning from the past cases [65].

9 RESULTS FROM THE ONLINE EXPERIMENTS AND DISCUSSION

We also evaluated the context-aware model in online experiments. We built and trained our ASR model using one training set
from a five-fold validation (Section 9.2). We performed two types of online experiments and compared their results to the offline
setting. First, we ran the experiments using ASR output in place of manual transcripts with the utterance-level segmentation.
We then replaced the utterance-level segmentation with time-window segmentation and validated the model in a real-time

setting.

9.1 Training of the ASR

Recent deep learning-based ASR [8, 11, 25, 54, 63] has provided reliable performance. To replace offline manual transcripts, we
built a customized end-to-end ASR model using ESPNet toolkit [64]. We used the pretrained WavLM [12], which was trained

using self-supervised learning with large-scale training dataset as the front-end in the acoustic model. We set the acoustic model

Table 10: Confusion matrix of the correctness (true/false) for activity and activity-stage recognition.

- Activity-Stage T (Activity-stage correctly recognized)| F (Activity-stage incorrectly recognized)
Activity
T (Activity correctly recognized) 52.7+1.6% 11.1+1.0%
F (Activity incorrectly recognized) 19.6+1.0% 15.8+0.9%
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as a 6-layer encoder, followed by a 3-layer decoder based on the conformer architecture [25]. A 6-layer transformer was used as
the language model [63]. We used one set of a five-fold validation for training and testing in the ASR experiment. We used raw
data augmentation with the Librispeech corpus [49] and spectrum augmentation [50] during training. This customized ASR
achieved a 46.7% of word error rate (WER) in the testing set. The main contributor to the high WER was the ambient noise,
reverberation, and low-volume speech. These factors and the limited size of the training dataset negatively affected ASR

performance.

9.2 Replacing Manual Transcripts with the ASR Output

Although the performance of the ASR was inadequate, we evaluated substituting the manual transcripts with the ASR output as
the input for our keyword-based activity and activity-stage recognition. We compared the performance of activity and activity-
stage recognition for two context-aware models. The first model was trained on the entire vocabulary and the second on a
selected keyword list (“sensitive-729” from Section 8.1.2). We then segmented the audio based on the utterance-level
segmentation from the manual transcripts and replaced the manual transcript with the ASR output. When using the manual
transcripts, our keyword-based model performed marginally better than the model based on the entire vocabulary (Table 11, row
1). Data augmentation further improved performance (Table 11, third column). When using the ASR output to replace the manual
transcripts (Table 11, row 2), the system performance declined by about 10%. The keyword-based model performed better than
the model based on the entire vocabulary, most likely because the keyword-based model was less affected by ASR performance.
These findings suggest that the keyword-based model is more robust and that data augmentation improved performance. The
proposed models (Table 11, columns 2-4) with the context module all outperformed the baseline model (ClinicalBERT+HuBERT)
with data augmentation (Table 11, last column). This result showed that capturing the conversational context is critical in activity
and activity-stage recognition during complex workflows such as trauma resuscitation. The pretrained tokenizer in [4, 17] was
more negatively affected by a poorly performing ASR than our word-level model. This may be because the pretrained tokenizer
would encode the out-of-vocabulary words that were wrongly generated from poorly performing ASR, negatively impacting

recognition results.

9.3 Real-Time Activity and Activity-Stage Recognition

Although our context-aware model achieved moderate performance after replacing manual transcripts with the ASR output, the
utterance-level segmentation is not available in real time. To evaluate our model in a real-time setting, we used a time-window
segmentation. We aligned the utterance-level labels with each time window (Section 7.2) and measured the system performance
in a real-time setting (Table 11, last row). The performance of each model further declined when relying on the time-window
segmentation and compared to aligned labels. The main cause of this decline may be utterance fragmentation that occurred
during the label alignment. For example, an utterance may span two time-windows, but the keywords associated with the activity
may only occur in the second window. Because of the causal property for the real-time model, the information for the first
window is inadequate for the model to recognize the corresponding activity. The performance further improved with data
augmentation. This finding suggests that concurrent activities and activity stages occurred more frequently in fixed-length time
windows. Our model achieved reasonable performance for a real-time setting such as dynamic and complex medical workflow
(Table 11, shaded in grey). This baseline model (ClinicalBERT+HuBERT) performed worst because it ignored the conversational

context and was more affected by a poorly performing ASR when using a tokenizer.
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Table 11: Performance comparison between manual transcripts and the ASR output. Weighted Average Fi-scores for activity and
activity-stage recognition are reported. The number of words used in each case is shown in the first row.

Entire vocabulary| Keyword-based| Keyword-based (729) with ClinicalBERT+HuBERT with data
(4717) (729) data augmentation augmentation

Utterance-level

segmented 69.3/75.1 69.6/76.8 72.0/77.4 68.1/74.8

& manual

transcripts
Utterance-level

segmented 58.7/61.2 60.0/62.7 60.9/65.2 54.1/59.3

& ASR

Time window
sliding & ASR 53.9/58.1 55.4/59.9 57.4/61.6 50.9/55.2

10 CONCLUSION AND FUTURE WORK

We developed a system for recognizing 23 types of medical activities and 4 activity stages. We introduced a dynamic keyword
spotting and selection method that relies on a small set of keywords. Using multiple data sources, such as audio sound, keywords,
and the context of previous sentences, we developed a context-aware multimodal architecture to recognize activities and
corresponding activity stages. This proposed system addresses the following requirements for an online model: (1) alleviating
the need for a high-quality ASR; (2) capturing the conversational context during a complex workflow; (3) recognizing both
activities and activity stages, a required feature for developing a clinical decision support system. We have built this system
specific to trauma resuscitation scenario, but it can be generalized to the scenarios where activity recognition is also based on
verbal communication and had common routine activities, such as surgery and ICU. We introduced a data augmentation method
to improve performance and evaluated the system using manually transcribed speech (offline experiments) and real-time speech
(online experiments). In offline experiments, the results for 23 activity types and 4 activity stages showed an average Fi-score of
73.2 % and 78.1% for activity and activity stage recognition, respectively. In online experiments, our model performance declined
by about 10% in both activity and activity-stage recognition when using utterance-level segmentation with the ASR output and
declined around 15% when using time-window sliding with the ASR output. Although models were trained with utterance-level
data and performed on time-window segments, online experiments showed the feasibility of using speech to detect activity and

activity stage in complex medical workflows.

The performance of our model may still be inadequate for some activities in a real-time decision-support system due to the
poorly performing ASR and a limited training dataset. Our future work will focus on complementing speech-based activity
recognition with computer vision-based methods. Some activities for which our speech-based system showed lower accuracy
(CPR, BC) have clear visual cues and could be reliably recognized using computer vision. Our future work will consider four
approaches to improve the performance of our current system: (1) improving the training objective for imbalanced datasets; (2)
designing a more realistic data augmentation method; (3) pretraining the model with a large amount of in-domain unannotated
data using self-supervised learning; (4) improving the ASR performance by semi- and self-supervised learning to supplement a

limited-size human-annotated dataset.
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