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Abstract
In supervised speech separation, permutation invariant training
(PIT) is widely used to handle label ambiguity by selecting the
best permutation to update the model. Despite its success, pre-
vious studies showed that PIT is plagued by excessive label as-
signment switching in adjacent epochs, impeding the model to
learn better label assignments. To address this issue, we pro-
pose a novel training strategy, dynamic sample dropout (DSD),
which considers previous best label assignments and evaluation
metrics to exclude the samples that may negatively impact the
learned label assignments during training. Additionally, we in-
clude layer-wise optimization (LO) to improve the performance
by solving layer-decoupling. Our experiments showed that
combining DSD and LO outperforms the baseline and solves
excessive label assignment switching and layer-decoupling is-
sues. The proposed DSD and LO approach is easy to imple-
ment, requires no extra training sets or steps, and shows gener-
ality to various speech separation tasks.
Index Terms: Speech separation, permutation invariant train-
ing, dynamic sample dropout, layer-wise optimization

1. Introduction
Speech separation is a specific type of source separation that
focuses on separating human speech sources from overlapping
speech signals. Deep learning has demonstrated great success
in speech separation [1, 2]. During the training of speaker-
independent speech separation models, a commonly recognized
challenge known as label ambiguity or permutation problem
arises, which pertains to the ambiguity or uncertainty in as-
signing labels to predictions. This problem is caused by the
same nature of the overlapped sound sources where the or-
der of the labels and predictions do not match well during
training. To address this issue, permutation invariant training
(PIT) was introduced [3, 4], which involves exploring all pos-
sible label-assignment pairs and selecting the best pair to up-
date the model. PIT has now become the standard training ap-
proach for time-frequency (T-F) domain [5, 6] and time-domain
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14] speech separation models. In
time-domain approaches, 1-D convolution and transposed con-
volution are used as trainable front-end to replace the roles of
STFT and iSTFT in T-F domain approaches, respectively.

Although PIT has effectively tackled label ambiguity for
training speech separation models, it suffers from unstable la-
bel assignment switching [15, 16, 17, 18]. This issue arises
when a large proportion of label assignments abruptly switch
the order in adjacent epochs, resulting in erratic training. The
unstable label assignment switching problem is claimed to be
caused by the slight difference in pairwise loss during the initial
epochs as in [15, 16, 17, 18, 19]. Prior research attempted to
address this problem from two main perspectives. Some stud-

ies [15, 16] have combined different training strategies with the
original PIT approach, including fixing label assignments [15]
and fine-tuning a model pre-trained with speech enhancement
[16], while others [17, 18, 19] have proposed probabilistic re-
laxation PIT to prevent the model from being over-confident
in the label assignments. However, our experiments show
that these approaches are insufficient in resolving this prob-
lem, which impedes the model’s ability to learn better label as-
signments. To solve the above issue, we introduce a practical
training approach named dynamic sample dropout (DSD) by
addressing the issue of excessive label assignment switching.
DSD employs a mechanism that considers previous best label
assignments and evaluation metrics to identify and exclude the
challenging samples that may have a detrimental effect on learn-
ing label assignments. Unlike other techniques [15, 16], DSD
doesn’t require additional data or training steps, so it’s appli-
cable in various speech separation settings. Additionally, we
combine DSD with layer-wise optimization (LO) [20, 21, 22]
to further enhance the model’s performance. Through an exten-
sive study of layer-wise optimization, we found that LO reduces
layer-decoupling (see Section 5.3), leading to the observed im-
provement in model performance. Our experiments using Lib-
riMix data demonstrate that the proposed approach outperforms
the baseline models by a significant margin in a range of 1.07
to 1.62 dB in SI-SDRi. Our contributions are:

1. We assess and illustrate the limitations of current approaches
in addressing excessive label assignment switching.

2. We propose a novel dynamic sample dropout strategy that
employs layer-wise optimization to effectively resolve the is-
sues of excessive label-switching and layer-decoupling with-
out the need for additional training samples or steps.

3. We carry out extensive experiments to demonstrate the con-
sistent performance enhancement and generality of the pro-
posed dynamic sample dropout with the layer-wise optimiza-
tion approach across various speech separation tasks.

2. Related Work
2.1. Label ambiguity and Permutation invariant training
The problem of mono-channel speech separation is formulated
as follows. Given a mixture speech signal X containing N
speakers: X =

∑N
1 si + n, si ∈ Rt, where si is the clean

source of speaker i and n is background noise. The goal is to
recover the speech for each speaker from the mixture waveform.
Considering a two-speakers case, the label ambiguity problem
occurs because the model’s predictions r1 and r2, and labels s1
and s2, could be matched arbitrarily. That is, r1 could be the es-
timated recovery of either s1 or s2. Consequently, there exists
N ! possible different combinations of prediction-label pairs; the
choice in different combinations is known as the problem of la-



bel ambiguity. Permutation invariant training (PIT) [3, 4] has
been proposed to solve this label ambiguity during training. In
short, PIT traverses all the possible prediction-label pairs and
selects only the optimal one to update the model. Although PIT
achieves great success in training speech separation models, the
unstable label assignment switching during training impairs the
model’s performance.

2.2. Learning better label assignments
Different approaches have been proposed to overcome unstable
label assignment switching in the following two ways.

Improving training strategy—The first group tries to im-
prove the training strategy of speech separation with the original
PIT. In [15], the authors proposed a strategy called interrupted
and cascaded training. It avoids label assignment switching by
fixing the label assignments after the initial PIT training epochs.
In [16], the authors proposed using speech enhancement as the
pre-training task to stabilize the label assignments.

Improving PIT—The other group tried to modify the orig-
inal PIT. ProbPIT [17], SinkPIT [18], and soft-minimum PIT
[19] were proposed as the probabilistic relaxation version of the
original PIT. They used a weighted sum of losses over all pos-
sible permutations to avoid the model being over-confident to a
specific permutation, showing better learning label assignments
ability than the original PIT.

We performed the ablation study to assess if the excessive
label assignment switching problem is well-addressed with in-
terrupted and cascaded training strategy [15] and SinkPIT [18].
However, we still observed a sudden excessive switching during
training with these approaches, indicating that excessive label
assignment switching is not well addressed and still hinders the
model from learning better label assignments (see Section 5.1).

3. Dynamic Sample Dropout and
Layer-wise Optimization

3.1. Dynamic sample dropout
We introduced our dynamic sample dropout (DSD) training
method to overcome the problem of excessive label assignment
switching (see Figure 1). During our reproduction of previous
methods and baselines, we noticed that the evaluation metrics
would abruptly decrease after certain training samples. Our hy-
pothesis for this phenomenon is that challenging training sam-
ples can negatively impact the learned label assignments and
result in excessive label assignment switching and inconsistent
training progress. To validate and resolve this issue, we intro-
duce the DSD training strategy, which dynamically removes fil-
tered training samples based on an evaluation of both the metric
and past label assignments. This approach uses a memory bank
to keep track of the best evaluation metric and corresponding
label assignments for each training sample. The challenging
samples are omitted during the corresponding training iterations
to maintain stable label assignments. The memory bank is ini-
tialized at the first training epoch, where it records the label
assignments and evaluation metrics for every sample. In the re-
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Figure 1: The proposed dynamic sample dropout.

maining training epochs, the DSD uses the following criteria to
select or dropout the samples at each optimization step:

1. Select: i) if the current label assignment chosen by PIT is
identical to the recorded best assignments; ii) if the label as-
signment order changed, the evaluation metric relaxed out-
performs the recorded best evaluation metric. We update the
record for these training samples in the memory bank.

2. Dropout: if the label assignment order changes, the evalua-
tion metric is not relaxed better than the recorded best evalu-
ation metric. The loss for this training sample will drop out.

The criterion for “relaxed better” is defined as:
Mcur ∗ (1 + sgn(Mcur) ∗ ϵ) > Mbest (1)

where Mcur represents the current evaluation metric and Mbest

represents the best evaluation metric, ϵ is a relaxation factor.
The sgn function ensures fair sign comparison for negative
evaluation metrics. The relaxation step enables DSD to toler-
ate samples that result in a slightly worse evaluation metric but
switch the label assignments. DSD discards challenging sam-
ples that may disrupt the learned label assignments during the
training process, thereby maintaining a stable label assignment
switching ratio. Instead of discarding, an alternative approach
is to persist with the previously recorded best label assignments
for these challenging samples. Specifically, we use the best-
recorded label assignments stored in the memory bank to recal-
culate the loss for these challenging samples. The reorder op-
eration insists on the best-recorded label assignments for these
challenging samples and allows them to still participate in the
training process. We refer to this approach as DSD (reorder) to
distinguish it from DSD (dropout).
3.2. Layer-wise optimization
We further combined the proposed dynamic sample dropout
(DSD) with layer-wise optimization (LO) to enhance the learn-
ing of label assignments. LO was introduced for efficient in-
ference in previous studies, such as in [20, 21, 22], where in-
termediate layers are trained directly with the target, allowing
for early-exit strategies to save inference time. Specifically in
speech separation, for a model with N repeated sequential mod-
eling blocks, the intermediate outputs from each layer have the
same shape, and they are used to reconstruct the clean target.
Layer-wise optimization computes a loss term for each layer
and sums them up. The layer-wise optimization for speech sep-
aration is shown as follows:

L =
1

N

N∑
i=1

wi ∗ PIT(S̃i, S) (2)

where S̃i is the reconstructed source from intermediate layer i,
S is the target source, and wi is a weighted scalar that controls
each loss’s contribution term to the final loss. In addition to the
inference efficiency, the layer-wise optimized model also out-
performs the model that is only optimized by a single loss term
from the last layer, as shown in [22]. Instead of giving a sub-
jective explanation for the improvement, we conducted experi-
ments and analyses to demonstrate how the improved gradient
flow affects the behavior of each intermediate layer, by com-
paring the dissimilarity between the label assignment switching
ratio curve of intermediate layers and the last layer. We used
the same approach as in [22], where it shares the weights for the
mask estimation network and decoder for intermediate outputs
generation. We believe this discrepancy is the actual reason for
the performance improvement by using LO. Our aim is to in-
crease the popularity of layer-wise optimization in the speech
separation community with this new insight.



4. Experimental Setup and Implementation
We used DPTNet [8] as our baseline model for its competi-
tive performance in various speech separation and enhancement
tasks [8, 23, 24]. The DPTNet is a time-domain masking-based
model that uses dual-path processing [7], which segments audio
into short segments and then sequentially applies the intra and
inter-procedure. The dual-path processing allows the model to
handle the long-range dependencies in long audios. We used the
default configuration as in [8] to construct the separation model,
where the number of the improved transformer is set as six. We
used a kernel size of 16 and strided with 8 in encoder/decoder as
in [6, 7]. The entire model contains 2.7 M trainable parameters.

We employed the open-source LibriMix dataset [25], de-
rived from the Librispeech dataset [26], for our experiments.
We conducted experiments with various subsets, including dif-
ferent numbers of speakers (Libri2Mix and Libri3Mix) and
varying conditions (clean or noisy). The results were reported
on the minimum version of the corresponding test sets, follow-
ing previous studies [25].

We built the model using the Asteroid toolkit [27]. To en-
sure a fair comparison, the model was trained for 200 epochs
with a batch size of 24 in all different experiment settings, con-
sistent with previous work [16]. The Adam optimization algo-
rithm [28] was used with an initial learning rate of 1e-3, and
the gradients were clipped with a maximum L2 norm of 5. The
patience for halving the learning rate was set to 10 for the first
80 epochs and 5 for the remaining epochs. The audio segments
were divided into 3-second segments for both training and vali-
dation. The scale-invariant signal-to-distortion (SI-SDR) metric
was used as the training objective [29] and the evaluation met-
ric in DSD. We set the wi =

layer index
total blocks in LO. We evaluated the

improved signal quality using the SI-SDRi and SDRi metrics.

5. Experiment Results and Analysis
5.1. Baseline experiments with PIT and its variants
We conducted experiments in three settings: i) PIT; ii) SinkPIT;
and iii) Interrupted & Cascaded (only PIT-(fix) step), using the
LibriMix train-100 subset with the sep clean task. SinkPIT
demonstrates the best performance (Table 1), achieving 15.28
dB in SI-SDRi compared to the original PIT (15.13 dB). In con-
trast to the results in [15], PIT-(fix) shows the worst results with
a difference ranging from 14.59 to 14.98 dB in SI-SDRi, de-

Table 1: Performance on the sep clean test set. “L” indicates
the number of epochs trained with PIT.

Method SI SDRi/SDRi
PIT= DSD (ϵ = +∞) 15.13/15.53

SinkPIT 15.28/15.70
(PIT)-(fix) L=1 14.98/15.39
(PIT)-(fix) L=5 14.59/15.00
(PIT)-(fix) L=10 14.65/15.05
(PIT)-(fix) L=25 14.99/15.40
(PIT)-(fix) L=50 14.84/15.24
(PIT)-(fix) L=75 14.93/15.34

(PIT)-(fix) L=100 14.79/15.19
(PIT)-(fix) L=150 14.92/15.31

DSD (reorder, ϵ = 0.0) 15.46/15.90
DSD (dropout,ϵ = 0.0) 15.62/16.07
DSD (dropout,ϵ = 0.1) 15.75/16.20
DSD (dropout,ϵ = 0.2) 15.59/16.05
DSD (dropout,ϵ = 0.5) 15.39/15.83

LO 15.84/16.27
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Figure 2: Label assignments switching ratio versus validation
SI-SDR for PIT, SinkPIT, and DSD.

pending on the value of L.
To better understand the training process, we analyzed the

label assignment switching ratio curve as follows. We selected
the label assignment using PIT for each training sample after
every epoch and defined the fraction of samples with different
label assignments in adjacent epochs as the label assignment
switching ratio. Figure 2 shows the label assignment switching
curve against validation SI-SDR for PIT and SinkPIT. We noted
that a large fraction of label assignments switched in adjacent
epochs, causing instability in the training path and a decline
in SI-SDR, as indicated by the markers on the SI-SDR curves.
This observation also sheds light on the reason behind the in-
effectiveness of PIT-(fix); excessive label assignment switch-
ing in the initial PIT procedure cannot guarantee that the model
learns promising label assignments, thus fixing the label assign-
ments in later steps cannot enhance the performance (L=1 out-
performed L=100). These findings suggest that excessive label
assignment switching hinders the model’s ability to learn better
label assignments, and existing approaches like Interrupted &
Cascaded and SinkPIT do not effectively solve this issue.

5.2. Dynamic sample dropout
We evaluated the proposed dynamic sample dropout (DSD) ap-
proach using the LibriMix train-100 subset with the sep clean
task. It is important that when ϵ = +∞, the DSD strategy be-
comes identical to PIT because it will accept all of the data. As
shown in Table 1, we observe a significant improvement in per-
formance compared to the baseline when we used DSD (15.75
versus 15.13 in SI-SDRi). We then performed an ablation study
comparing DSD (reorder) and the original DSD (dropout) and
found that DSD (dropout) outperformed DSD (reorder), indi-
cating that dropout is a more efficient method in dealing with
challenging samples. We conjectured that DSD (reorder) still
involved challenge samples in training, which impeded learn-
ing better label assignments. Moreover, the speech separation
performance initially improved and then decreased as the relax-
ation factor was increased, suggesting that relaxation is more
effective in handling the criteria for dropping training samples.
We also evaluated the label assignment switching curve of the
proposed DSD method (as shown in Figure 2). The label as-
signment switching ratio of the model trained with DSD be-
came significantly more stable compared to the original PIT
and SinkPIT. The faster convergence rate and improved per-
formance further highlighted the importance of maintaining a
stable label assignment switching ratio for the model to learn
better label assignments. Additionally, in the most stringent



Table 2: Similarity between intermediate layers and the
last layer. L1 distance is reported.

Comparison PIT DSD LO DSD+LO
1 vs 6 37.50 33.31 27.50 0.83
2 vs 6 29.98 16.73 2.26 0.20
3 vs 6 25.56 4.16 0.13 0.07
4 vs 6 14.78 0.56 0.05 0.03
5 vs 6 6.67 0.37 0.03 0.02

scenario (ϵ = 0.0), the percentage of discarded samples in the
training set gradually decreased from 3% to less than 1% over
the course of training, pointing to the fact that challenging sam-
ples disrupt the learned label assignments during training and
result in excessive label assignment switching. For subsequent
experiments, we employed ϵ = 0.1 and dropout for DSD.

5.3. Layer-wise optimization
We evaluated the performance of the layer-wise optimiza-
tion (LO) approach on the LibriMix train-100 subset with the
sep clean task. The results show that using LO improved the
performance (Table 1), achieving 15.84 SI-SDRi and 16.27
SDRi, surpassing the baseline results of PIT and SinkPIT. We
analyzed the label assignment switching ratio curve for each
layer of the models trained with and without LO. We determined
how the improved gradient flow in LO affects the behavior of
the intermediate layers by comparing the similarity in the label
assignment switching curves of the intermediate layers with that
of the last layer. We argue that this similarity somehow reflects
the training process of the model. We also indicate this simi-
larity by calculating the L1 distance between label assignment
switching curves. Based on Figure 3 and Table 2, we made the
following observations:

1. The curves of the label assignment switching ratio for Layers
2-6 change in tandem in the LO-trained model, while Layer
1 shows a distinct trend (Figure 3, LO.)

2. Unlike LO, where Layers 2-3 showed a similar trend in the
changing of label assignment switching ratio curves, only
Layers 4-6 are changing in unison in PIT and DSD, even
though they were trained without LO (Figure 3, PIT & DSD.)

3. The problem of excessive label assignment switching exacer-
bates the differences in the label assignment switching ratio
curves, with the distance of PIT-trained model being much
greater than DSD-trained model (Table 2, PIT & DSD.)
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Figure 3: Layer-wise label assignment switching curve with dif-
ferent training strategies.

Table 3: Experiment results on different tasks, results reported on corresponding
min version of test sets. For DSD, we set ϵ = 0.1

Task DSD LO train-100 train-360
2spk-C (PIT) × × 15.13/15.50 15.92/16.27
2spk-C ✓ × 15.75/16.20 16.70/17.09
2spk-C × ✓ 15.84/16.27 16.84/17.19
2spk-C (Ours) ✓ ✓ 16.28/16.75 17.22/17.56
2spk-N (PIT) × × 11.64/12.21 -/-
2spk-N ✓ × 12.33/12.92 -/-
2spk-N × ✓ 12.50/13.10 -/-
2spk-N (Ours) ✓ ✓ 12.79/13.39 -/-
3spk-C (PIT) × × 11.92/12.38 13.34/13.76
3spk-C ✓ × 12.54/13.00 14.10/14.53
3spk-C × ✓ 12.58/13.04 14.20/14.64
3spk-C (Ours) ✓ ✓ 12.99/13.47 14.96/15.40

The resemblance and disparity between the label assignment
switching ratio curves indicate coherence and incoherence, re-
spectively, in the training directions of each intermediate layer
during training. We refer to the issue of intermediate layers hav-
ing dissimilar switching ratio curves as the “layer-decoupling”
problem. Our findings suggest that LO serves as a regu-
larization technique for the training direction of the middle
layer, which significantly mitigates the layer-decoupling prob-
lem. Nevertheless, the excessive problem of label assignment
switching still affects the layer-decoupling problem in the LO-
trained model (Layer 1 has a different trend), and further ampli-
fies it (observation #3).

5.4. Combining DSD and LO
To take advantage of both the DSD and LO strategies, we com-
bined them to address the excessive label assignment switching
and layer-decoupling problems simultaneously. We first applied
the same experiment and the analysis as in Section 5.3. Figure
3 and Table 2 shows that the DSD+LO eliminates both exces-
sive label assignment switching and layer-decoupling problem.
And it also leads to a further improvement in the separation
performance (in Tale 3). To show the applicability of DSD+LO
in general speech separation, we evaluated the performance of
the combined DSD+LO approach on various speech separation
tasks, including a larger dataset (train-360 subset), noisy condi-
tions (sep noisy), and more speaker scenarios (Lirbi3Mix). The
results (Table 3) show that the proposed DSD+LO-trained mod-
els outperform the baselines with a margin between 1.07 to 1.62
dB in the SI-SDRi. The DSD+LO-trained models also outper-
form the DSD- and LO-trained models, showing the comple-
mentarity of these two training strategies.

6. Conclusion
We studied the issue of excessive label assignment switching
in speech separation and discovered that existing methods were
unable to effectively address it. We proposed dynamic sample
dropout (DSD) to maintain a stable label assignment switch-
ing ratio by removing samples that could negatively impact the
learned label assignments. We further introduced layer-wise op-
timization (LO) to improve separation performance by reducing
layer decoupling. By combining DSD and LO, our proposed
model outperformed all baselines, effectively addressing both
excessive label assignment switching and layer decoupling. The
DSD + LO training strategy is easy to implement, requires no
extra training sets or steps, and demonstrates strong generality
to various single-channel speech separation tasks. We believe
that it could be easily employed in multi-channel scenarios be-
cause PIT is also widely used in multi-channel settings.

This work is supported by NIH/NLM grant number R01LM011834 and
NSF grant IIS-1763827.
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