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Abstract
The review of the optimal local truncation error method (OLTEM) for the numerical solution of PDEs is presented along

with some new developments of OLTEM. First, we explain the basic ideas of OLTEM for the 1-D wave equation and then

we extend them to the time-dependent PDEs (the scalar wave and heat equations as well as a system of the elastodynamics

equations) and to the time-independent PDEs (the Poisson and Helmholtz equations as well as a system of the elastostatics

equations) in the 2-D and 3-D cases for homogeneous, inhomogeneous and heterogeneous materials. The main advantages

of OLTEM are the optimal (maximum possible) accuracy of discrete equations and the use of unfitted Cartesian meshes for

irregular domains and interfaces. For example, for heterogeneous materials with irregular interfaces, OLTEM with 2-D

25-point stencils (similar to those for quadratic finite elements) provides the 11-th and 10-th orders of accuracy for the

Poisson and elasticity equations, i.e, a huge increase in accuracy by 8 and 7 orders compared to quadratic finite elements

without additional computational costs. Another advantage of OLTEM is a special procedure for the imposition of the

boundary and interface conditions without the introduction of additional unknowns. These conditions at a small number of

the selected boundary and interface points are added to the local truncation error as the constraints with Lagrange

multipliers. This special procedure does not introduce additional unknowns on the boundaries and interfaces (only the

unknowns at internal Cartesian grid points are used), does not change the width of cut stencils, allows unfitted meshes and

provides a high accuracy of cut stencils. For time-dependent PDEs, OLTEM offers a rigorous approach for the calculation

of the diagonal mass matrix in terms of the coefficients of the stiffness matrix that is based on the accuracy considerations.

A new OLTEM post-processing procedure for the calculation of the spatial derivatives of the primary function that is based

on the use of original PDEs significantly increases the accuracy of the spatial derivatives. For example, we have obtained

the 10-th order of accuracy for stresses calculated by OLTEM with 25-point stencils applied to 2-D elastostatics problems

with heterogeneous materials and irregular interfaces. New developments of OLTEM related to numerical high-order

boundary conditions for cut stencils as well as to the accurate calculation of the primary functions and their derivatives at

any point of the domain are presented. The comparison of accuracy of OLTEM and FEM at similar stencils is also

analyzed. Numerical results show that at the engineering accuracy, OLTEM can reduce the number of degrees of freedom

by 1000-1,000,000 times compared to that for finite elements at similar stencils.

1 Introduction

Accurate and fast numerical solutions of partial differential

equations (PDEs) describing many mechanical phenomena

is one of the main objectives of computational mechanics.

Complex irregular geometry including irregular boundaries

and interfaces represents difficulties in the development of

reliable numerical methods for PDEs. The modern

numerical methods such as the finite element method, the

finite volume method, the isogeometric elements, the

spectral elements and similar techniques are widely used

for the solution of different PDEs on irregular geometry.

These methods use powerful mesh generators for the

automatic spatial discretization of irregular geometry with

conforming meshes. However, in the case of very complex

geometries, these conforming meshes may include ’bad’
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elements (e.g., the elements with small angles) that lead to

very inaccurate numerical results. Along with the accuracy

considerations, another very important feature of any

numerical method is the computation time (computational

costs) needed for achieving a given accuracy of numerical

results. For example, many numerical techniques for

irregular domains are derived using some weak formula-

tions (e.g., based on the Galerkin approaches). However, in

many cases these approaches do not provide the optimal

accuracy of the derived discrete equations. For example, it

is known that finite elements of order p provide the pþ 1

order of accuracy in the L2 norm. However, in our papers

[1–3] we showed that for the same structure of the discrete

equations, new ’quadratic’ elements (p ¼ 2) provide the

18-th order of accuracy for the Poisson equation and the

10-th order of accuracy for the elasticity equations on

regular domains with uniform meshes as well as the 11-th

and 10-th order of accuracy for the Poisson and elasticity

equations for heterogeneous materials with irregular

interfaces.

To resolve the above-mentioned issues with the mesh

generation on irregular geometry, many numerical tech-

niques have been developed with simple uniform meshes

such as the embedded finite difference method, the cut

finite element method, the finite cell method, the Cartesian

grid method, the immersed interface method, the virtual

boundary method, the embedded boundary method, etc.

For example, the techniques based on the finite element

formulations (such as the cut finite element method, the

finite cell method, the virtual boundary method and others)

yield the pþ 1 order of accuracy even with small cut cells

generated due to complex irregular boundaries (e.g., see

[4–10] and many others). The main advantage of the

embedded boundary method developed in [11–15] is the

use of simple Cartesian meshes. The boundary conditions

or fluxes in this technique are interpolated using the

Cartesian grid points and this leads to the increase in the

stencil width for the grid points located close to the

boundary (the numerical techniques developed in [11–15]

provide just the second order of accuracy for the global

solution). Interesting finite element techniques with simple

unfitted meshes has been developed in [16–21] for the

Poisson equation with irregular interfaces. However, these

techniques provide the pþ 1 order of accuracy for high-

order immersed, generalized and extended finite elements

of order p as well as they introduce additional degrees of

freedom for the consideration of the interface conditions.

Recently, we have developed an optimal local truncation

method (OLTEM) for the numerical solution of PDEs on

regular ( [1, 2, 22–24]) and irregular ( [25–33]) domains

and irregular interfaces ( [34–38]). The main objectives in

the development of OLTEM are to use trivial unfitted

Cartesian meshes for irregular domains and interfaces as

well as to provide the maximum possible accuracy of

discrete equations used for the discretization of PDEs. In

this paper we will review OLTEM for different PDEs

presented in our above-mentioned papers as well as we will

show some new developments and the applications of

OLTEM. We should also note that the derivation of

OLTEM with compact stencils includes a Taylor series

expansion of unknown functions. The review of Taylor-

series based numerical methods (including the generalized

finite difference method (GFD), the particle strength

method, the moving least square method and the interpo-

lating moving least square method) as well as their com-

parison with the finite element method is given in the

recent paper [39]; see also the numerous references there.

One of the main differences between OLTEM and the

generalized finite difference method is in the approach for

the determination of the coefficients of discrete equations.

In contrast to the approximation of the spatial derivatives

as in GFD, in OLTEM we maximize the accuracy of each

discrete equation by the calculation of the optimal values

of the coefficients of the discrete equations with the use of

the corresponding PDE. For example, in the case of a

system of PDEs, all PDEs are used for the calculation of

the coefficients of one discrete equation. This provides the

maximum possible accuracy of the discrete equations of

OLTEM. Another big difference is the imposition of the

boundary and interface conditions. In OLTEM, these

conditions are applied at a small number of the selected

boundary and interface points as the constraints for the

local truncation error. This procedure does not introduce

additional unknowns on the boundaries and interfaces,

allows unfitted meshes and provides the high accuracy of

cut stencils.

In Sect. 2, we explain the ideas and the derivation of

OLTEM for the simple 1-D wave equation. This includes

the introduction of the local truncation error of stencil

equations, the calculation of the stencil coefficients for the

3-point, 5-point and 7-point stencils (similar to those for

linear quadratic and cubic finite elements) for homoge-

neous materials, the calculation of the diagonal mass

matrix, the consideration of the wave equation with non-

zero body forces, the extension of OLTEM to heteroge-

neous materials. In Sect. 3 we extend OLTEM to the

general 2-D and 3-D cases for the time-dependent scalar

wave and heat equations with homogeneous, inhomoge-

neous and heterogeneous materials as well as for a system

of elastodynamics equations with homogeneous and

heterogeneous materials. The development of OLTEM for

the time independent Poisson, Helmholtz and elasticity

equations with homogeneous and heterogeneous materials

is presented in Sect. 4. The post-processing procedure for

the calculation of the spatial derivatives of the primary
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functions at grid points that is based on OLTEM is

described in Sect. 5. This paper includes also new devel-

opments of OLTEM. A new OLTEM procedure for the

calculation the primary function and its derivatives at any

point of the domain is presented in Sect. 6. New numerical

high-order Dirichlet and Neumann boundary conditions for

cut stencils that provide the same order of the local trun-

cation error as that for the 2-D 25-point regular stencils has

been developed in Sect. 7. The comparison of accuracy of

OLTEM and FEM showing a huge increase in accuracy for

OLTEM is given in Sect. 8. The main features and

advantages of OLTEM are summarized in the concluding

remarks in Sect. 9. For the derivation of many analytical

expressions presented below we use the computational

program ‘‘Mathematica’’.

2 OLTEM for 1-D Wave Equation

Wave propagation in an 1-D homogeneous medium is

described by the following scalar wave equation:

o2u

ot2
� c2

o2u

ox2
¼ f ; ð1Þ

where u is the displacement, c is the wave velocity, f(x, t) is

the loading term.

2.1 Introduction of the Local Truncation Error

According to the new approach we assume that a stencil

equation for the wave equation after the space discretiza-

tion with a uniform mesh can be written as an ordinary

differential equation (a semidiscrete equation):

XL

i¼1

h2mi
d2unumi

dt2
þ kiu

num
i

� �
¼ �f ; ð2Þ

where unumi and
d2unumi

dt2
are the numerical solution for func-

tion u and its second order time derivative at the grid

points, mi and ki are the unknown coefficients to be

determined (they will be determined by the minimization

of the local truncation error for Eq. (2), see below), L is the

number of the grid points included into the stencil, h is the

mesh size along the x� axis, �f is the discretized loading

term. Many numerical techniques such as the finite dif-

ference method, the finite element method, the finite vol-

ume method, the isogeometric elements, the spectral

elements, different meshless methods and others can be

finally reduced to a system of the stencil equations, Eq. (2),

with some specific coefficients mi and ki. For OLTEM used

below, we consider the semi-discrete equations without the

time discretization. After the derivation of the coefficients

of the semidiscrete equations, any existing time-integration

method can be used for the time integration of the

semidiscrete equations. The initial conditions used for the

time integration of the semidiscrete equations are similar to

those for other numerical methods (e.g., for FEM).

Let us introduce the local truncation error used with the

new approach. The replacement of the numerical values of

the function unumi and its second order time derivatives
d2unumi

dt2

at the grid points in Eq. (2) by the exact solution ui and
d2ui
dt2

to the wave equation, Eq. (1), at the grid points leads to the

residual of this equation called the local truncation error e

in space for the semidiscrete equation, Eq. (2):

e ¼
XL

i¼1

h2mi
d2ui
dt2

þ kiui

� �
� �f : ð3Þ

Considering the difference between Eqs. (3) and (2) we can

get

e ¼
XL

i¼1

h2mi
d2ui
dt2

� d2unumi

dt2

� �
þ ki½ui � unumi �

� �

¼
XL

i¼1

ðh2mi �e
v
i þ ki �eiÞ;

ð4Þ

where �ei ¼ ui � unumi and �evi ¼ d2ui
dt2

� d2unumi

dt2
are the errors of

function u and its order time derivative at the grid points i.

As can be seen from Eq. (4), the local truncation error e is a

linear combination of the errors of the function u and its

order time derivative at the grid points i which are included

into the stencil equation. We will use the unknown stencil

coefficients mi and ki in Eq. (4) in order to minimize the

local truncation error e in Eq. (4).

2.2 3-Point Stencils for the 1-D Wave
Equation with Zero Load (f = 0) on Uniform
Meshes (Comparison OLTEM with FEM)

After the space discretization of Eq. (1) with zero load

(f ¼ �f ¼ 0) on a uniform mesh of size h, a 3-point stencil

for each internal grid point can be introduced as follows:

(see Fig. 1):

h2 m1

d2unum1

dt2
þ m2

d2unum2

dt2
þ m3

d2unum3

dt2

� �

þ k1u
num
1 þ k2u

num
2 þ k3u

num
3

� 	
¼ 0;

ð5Þ

where the coefficients mi and ki (i ¼ 1; 2; 3) should be

Fig. 1 The spatial locations of the grid points i (i ¼ 1; 2; 3)
contributing to the 3-point stencil for the grid point 2
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determined, superscript ’num’ corresponds to the numerical

value of the function. The 3-point stencil in Eq. (5) is

similar to that for linear finite elements with the stencil

coefficients calculated through the elemental mass and

stiffness matrices. The stencil coefficients for the conven-

tional linear finite elements are:

m1 ¼
1

6c2
; m2 ¼

2

3c2
; m3 ¼

1

6c2
; k1 ¼ �1;

k2 ¼ 2; k3 ¼ �1:

ð6Þ

The local truncation error e for the 3-point stencil is

obtained by the replacement of the numerical value of

function unumi in Eq. (5) by the exact value ui at the grid

points i (i ¼ 1; 2; 3):

e ¼ h2 m1

d2u1
dt2

þ m2

d2u2
dt2

þ m3

d2u3
dt2

� �

þ k1u1 þ k2u2 þ k3u3ð Þ:
ð7Þ

Using the partial differential equation, Eq. (1), the time

derivatives of the exact solution at the grid points can be

replaced by the spatial derivatives as follows:

o2u1
ot2

¼ c2
o2u1
ox2

;
o2u2
ot2

¼ c2
o2u2
ox2

;

o2u3
ot2

¼ c2
o2u3
ox2

;

ð8Þ

Then, the expression for the local truncation error, Eq. (5),

can be simplified with the help of Eq. (8) as follows:

e ¼ h2c2 m1

o2u1
ox2

þ m2

o2u2
ox2

þ m3

o2u3
ox2

� �

þ k1u1 þ k2u2 þ k3u3ð Þ:
ð9Þ

Next, let us expand the local truncation error, Eq. (9), into a

Taylor series by the expansion of the exact solution for ui

and o2ui
ox2 at the grid points i ¼ 1 and i ¼ 3 into a Taylor

series in the vicinity of point i ¼ 2 at small h � 1 as fol-

lows (see Fig. 1 for the locations of the grid points):

u1 ¼ uðx1 ¼ x2 � hÞ ¼ u2 �
ou2
ox

hþ o2u2
ox2

h2

2!

� o3u2
ox3

h3

3!
þ o4u2

ox4
h4

4!
� ::: :

ð10Þ

u3 ¼ uðx3 ¼ x2 þ hÞ ¼ u2 þ
ou2
ox

hþ o2u2
ox2

h2

2!

þ o3u2
ox3

h3

3!
þ o4u2

ox4
h4

4!
þ ::: :

ð11Þ

o2u1
ox2

¼ o2u

ox2
ðx1 ¼ x2 � hÞ ¼ o2u2

ox2

� o3u2
ox3

hþ o4u2
ox4

h2

2!
� o5u2

ox5
h3

3!
þ o6u2

ox6
h4

4!
� ::: :

ð12Þ

o2u3
ox2

¼ o2u

ox2
ðx3 ¼ x2 þ hÞ ¼ o2u2

ox2

þ o3u2
ox3

hþ o4u2
ox4

h2

2!
þ o5u2

ox5
h3

3!
þ o6u2

ox6
h4

4!
þ ::: :

ð13Þ

Inserting Eqs. (10)-(13) into Eq. (9) we get the following

Taylor series for the local truncation error:

e ¼ u2½k1 þ k2 þ k3� þ h
ou2
ox

½k3 � k1�

þ 1

2
h2

o2u2
ox2

k1 þ k3 þ 2c2ðm1 þ m2 þ m3Þ

 �

þ 1

6
h3

o3u2
ox3

k3 � k1 þ 6c2ðm3 � m1Þ

 �

þ 1

24
h4

o4u2
ox4

k1 þ k3 þ 12c2ðm1 þ m3Þ

 �

þ 1

120
h5

o5u2
ox5

k3 � k1 þ 20c2ðm3 � m1Þ

 �

þ 1

720
h6

o6u2
ox6

k1 þ k3 þ 30c2ðm1 þ m3Þ

 �

þ O h7
� 	

:

ð14Þ

Equation (14) can be rewritten in the following form:

e ¼ u2b1 þ h
ou2
ox

b2 þ
1

2
h2

o2u2
ox2

b3 þ
1

6
h3

o3u2
ox3

b4

þ 1

24
h4

o4u2
ox4

b5 þ
1

120
h5

o5u2
ox5

b6 þ
1

720
h6

o6u2
ox6

b7 þ O h7
� 	

;

ð15Þ

where the bi coefficients are the linear combinations of the

6 stencil coefficients mi and ki (i ¼ 1; 2; 3). The bi coeffi-

cients can be easily found by the comparison of Eqs. (14)

and (15). Due to the use of Eq. (8), the local truncation

error in Eqs. (9), (14) and (15) does not include the time

derivatives. We should mention that Eq. (14) provides the

local truncation error for any numerical method with the 3-

point stencil equation, Eq. (5), independent of the tech-

nique used for the derivation of the stencil coefficients in

Eq. (5). For example, inserting the stencil coefficients for

linear finite elements given by Eq. (6) into Eq. (14), we can

find that linear finite elements provide the fourth order of

the local truncation error:

eFE ¼ h4

12

o4u2
ox4

þ Oðh6Þ: ð16Þ

Next, we will show that linear finite elements do not pro-

vide the optimal order of accuracy for the the 3-point

stencil equation, Eq. (5). Below we derive the stencil

coefficients of the 3-point stencil equation, Eq. (5), for

OLTEM that are based on the minimization of the local

4520 A.Idesman

123



truncation error. Equating the first five coefficients bi
(i ¼ 1; 2; . . .; 5) with the smallest orders of h in Eq. (15) to

zero we get the following linear system of five algebraic

equations for finding the stencil coefficients:
b1 ¼ k1 þ k2 þ k3 ¼ 0; b2 ¼ k3 � k1 ¼ 0;

b3 ¼ k1 þ k3 þ 2c2ðm1 þ m2 þ m3Þ ¼ 0;

b4 ¼ k3 � k1 þ 6c2ðm3 � m1Þ ¼ 0;

b5 ¼ k1 þ k3 þ 12c2ðm1 þ m3Þ ¼ 0:

ð17Þ

Solving this system, we can find the following coefficients

mi and ki (i ¼ 1; 2; 3) of the stencil equation, Eq. (5), for

OLTEM:

m1 ¼
a

24c2
; m2 ¼

5a

12c2
; m3 ¼

a

24c2
;

k1 ¼ � a

2
; k2 ¼ a; k3 ¼ � a

2
;

ð18Þ

where a is an arbitrary coefficient.

Remark 1 The multiplication of each term of the stencil

equation, Eq. (5), by any scalar does not change this

equation, i.e, only five coefficients mi and ki are indepen-

dent and should be determined in Eq. (5). Therefore, we

use five algebraic equations for their calculations (see

Eq. (17)). This fact is also reflected by the existence of the

arbitrary multiplier a in Eq. (18) that does not affect the

results and, for convenience, can be taken as k2 ¼ a ¼ 1.

Inserting the coefficients mi and ki (i ¼ 1; 2; 3) for

OLTEM (see Eq. (18)) into Eq. (14) we get the local

truncation error for OLTEM (we use k2 ¼ a ¼ 1):

eOLTEM ¼ h6

480

o6u2
ox6

þ Oðh8Þ: ð19Þ

As can be seen from Eqs. (16) and (19), OLTEM with the 3-

point stencils improves the accuracy by two orders compared

to that for linear finite elements with the same 3-point sten-

cils. The difference between OLTEM and FEM is just in the

values of the stencil coefficients mi and ki (i ¼ 1; 2; 3).

2.3 Extension of OLTEM to High-Order Stencils
for the 1-D Wave Equation on Uniform
Meshes

Here, we consider the extension of OLTEM derived in

Sect. 2.2 to 5-point and 7-point stencils on uniform

Cartesian meshes with the mesh size h. Similar to Eq. (5),

the 5-point stencil can be written as follows:

h2 m1

d2unum1

dt2
þ m2

d2unum2

dt2
þ m3

d2unum3

dt2
þ m4

d2unum4

dt2
þ m5

d2unum5

dt2

� �

þ k1u
num
1 þ k2u

num
2 þ k3u

num
3 þ k4u

num
4 þ k5u

num
5

� 	
¼ 0;

ð20Þ

where the coefficients mi and ki (i ¼ 1; 2; 3; 4; 5) should be

determined. The 5-point stencil in Eq. (20) is similar to that

for quadratic finite elements with the stencil coefficients

calculated through the elemental mass and stiffness

matrices. Similar to the derivations given by Eqs. (7)-(14),

a Taylor series for the local truncation error for the 5-point

stencil in the vicinity of the stencil central grid point with

the coordinate x3 is:

e ¼ u2b1 þ h
ou3
ox

b2 þ
1

2
h2

o2u3
ox2

b3

þ 1

6
h3

o3u3
ox3

b4 þ
1

24
h4

o4u3
ox4

b5

þ 1

120
h5

o5u3
ox5

b6 þ
1

720
h6

o6u3
ox6

b7

þ 1

5040
h7

o7u3
ox7

b8 þ
1

40320
h8

o8u3
ox8

b9

þ 1

362880
h9

o9u3
ox9

b10 þ
1

3628800
h10

o10u3
ox10

b11 þ O h11
� 	

;

ð21Þ

where similar to Eq. (15) the bi coefficients are the linear

combinations of the 10 stencil coefficients mi and ki
(i ¼ 1; 2; . . .; 5). Equating the first nine coefficients bi
(i ¼ 1; 2; . . .; 9) with the smallest orders of h in Eq. (21) to

zero with k3 ¼ 1 (see Remark 1) we get the following

linear system of nine algebraic equations for finding the

stencil coefficients:

b1 ¼ k1 þ k2 þ k3 þ k4 þ k5 ¼ 0;

b2 ¼ �2k1 � k2 þ k4 þ 2k5 ¼ 0;

b3 ¼ ð4k1 þ k2 þ k4 þ 4k5þ
2c2ðm1 þ m2 þ m3 þ m4 þ m5ÞÞ ¼ 0;

b4 ¼ ð�8k1 � k2 þ k4 þ 8k5þ
6c2ð�2m1 � m2 þ m4 þ 2m5ÞÞ ¼ 0;

b5 ¼ ð16k1 þ k2 þ k4 þ 16k5 þ 12c2ð4m1 þ m2 þ m4 þ 4m5ÞÞ ¼ 0;

b6 ¼ ð�32k1 � k2 þ k4 þ 32k5 þ 20c2ð�8m1 � m2

þ m4 þ 8m5ÞÞ ¼ 0;

b7 ¼ ð64k1 þ k2 þ k4 þ 64k5 þ 30c2ð16m1 þ m2 þ m4

þ 16m5ÞÞ ¼ 0;

b8 ¼ ð�128k1 � k2 þ k4 þ 128k5 þ 42c2ð�32m1 � m2

þ m4 þ 32m5ÞÞ ¼ 0;

b9 ¼ ð256k1 þ k2 þ k4 þ 256k5 þ 56c2ð64m1 þ m2 þ m4

þ 64m5ÞÞ ¼ 0;

b10 ¼ ð�512k1 � k2 þ k4 þ 512k5 þ 72c2ð�128m1 � m2

þ m4 þ 128m5ÞÞ ¼ 0; k3 ¼ 1:

ð22Þ

Solving this system, we can find the following coefficients

mi and ki (i ¼ 1; 2; 3; 4; 5) of the stencil equation, Eq. (20),

for OLTEM:
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m1 ¼ 23

4770c2
; m2 ¼ 344

2385c2
; m3 ¼ 131

265c2
; m4

¼ 344

2385c2
; m5 ¼ 23

4770c2
; k1 ¼ � 31

318
; ; k2

¼ � 64

159
; k3 ¼ 1; k4 ¼ � 64

159
;

k5 ¼ � 31

318
:

ð23Þ

Inserting the coefficients mi and ki (i ¼ 1; 2; 3; 4; 5) for

OLTEM (see Eq. (23)) into Eq. (21) we get the local

truncation error for OLTEM:

eOLTEM ¼ 79h10

6010200

o10u3
ox10

þ Oðh11Þ: ð24Þ

Repeating similar derivations for the 7-point stencil, we

will get the following coefficients mi and ki
(i ¼ 1; 2; 3; 4; 5; 6; 7) for OLTEM:

m1 ¼ 1857

3252620c2
; m2 ¼ 55161

1626310c2
; m3

¼ 989739

3252620c2
;m4 ¼ 543981

813155c2
; m5

¼ 989739

3252620c2
; m6 ¼ 55161

1626310c2
; m7

¼ 1857

3252620c2
; k1 ¼ � 7069

464660
; k2 ¼ � 8019

33190
; k3

¼ � 22599

92932
; k4 ¼ 1; k5 ¼ � 22599

92932
; k6

¼ � 8019

33190
; k7 ¼ � 7069

464660

ð25Þ

with the following local truncation error:

eOLTEM ¼ 114669h14

1302349048000

o14u4
ox14

þ Oðh15Þ: ð26Þ

It can be also shown that OLTEM with the ð2pþ 1Þ-point
stencils (p ¼ 1; 2; . . .) can provide 4pþ 2 order of the local

truncation error eOLTEM for the 1-D wave equation.

2.4 OLTEM with the Diagonal Mass Matrix

OLTEM with the diagonal mass matrix can be derived as a

particular case of the non-diagonal mass matrix presented

in Sects. 2.2 and 2.3. For the 3-point stencil with the

diagonal mass matrix, the non-diagonal mass matrix

coefficients are zero, i.e, m1 ¼ m3 ¼ 0 in Eqs. (5), (7), (9),

(15). Equating the first three coefficients bi (i ¼ 1; 2; 3)

with the smallest orders of h in Eq. (15) to zero with k2 ¼ 1

(see Remark 1), we get the following coefficients mi and ki
(i ¼ 1; 2; 3) for OLTEM with the 3-point stencil and the

diagonal mass matrix:

m1 ¼ 0; m2 ¼ 1

2c2
; m3 ¼ 0; k1 ¼ � 1

2
;

k2 ¼ 1; k3 ¼ � 1

2
;

ð27Þ

with the following local truncation error:

eOLTEM ¼ h4

24

o4u2
ox4

þ Oðh5Þ: ð28Þ

It is interesting to note that from the equation b3 ¼ 0 [see

Eq. (17)] it follows that

m2 ¼ � 1

2c2
ðk1 þ k3Þ ð29Þ

for the diagonal mass matrix (m1 ¼ m3 ¼ 0), i.e, the

diagonal mass matrix is expressed in terms of the coeffi-

cients k1 and k3 of the stiffness matrix. This formula,

Eq. (29), is valid for any 3-point stencil independent of the

numerical method, i.e., with any other value for the diag-

onal mass term m2 in the diagonal mass matrix, the order of

the local truncation error of Eq. (5) will be smaller (the

error will be greater).

Repeating similar derivations for the 5-point and 7-point

stencils (we will zero the first five coefficients bi ¼ 0, i ¼
1; 2; . . .; 5 in Eq. (21) for the 5-point stencil and the first

seven coefficients bi ¼ 0, i ¼ 1; 2; . . .; 7 in the expression

for the local truncation error for the 7-point stencil), we

will get the following coefficients mi and ki for OLTEM

with the diagonal mass matrix:

m1 ¼ 0; m2 ¼ 0; m3 ¼ 2

5c2
; m4 ¼ 0; m5 ¼ 0;

k1 ¼ 1

30
; k2 ¼ � 8

15
; k3 ¼ 1;

k4 ¼ � 8

15
; k5 ¼ 1

30
;

ð30Þ

with the local truncation error:

eOLTEM ¼ h6

225

o6u3
ox6

þ Oðh7Þ ð31Þ

for the 5-point stencil as well as

m1 ¼ 0; m2 ¼ 0; m3 ¼ 0;

m4 ¼ 18

49c2
;

m5 ¼ 0; m6 ¼ 0; m7 ¼ 0;

k1 ¼ � 1

245
; k2 ¼ 27

490
; k3 ¼ � 27

49
; k4 ¼ 1;

k5 ¼ � 27

49
; k6 ¼ 27

490
; k7 ¼ � 1

245
;

ð32Þ

with the local truncation error:
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eOLTEM ¼ 9h8

13720

o8u4
ox8

þ Oðh9Þ ð33Þ

for the 7-point stencil. It can be also shown that OLTEM

with the ð2pþ 1Þ-point stencils (p ¼ 1; 2; . . .) and the

diagonal mass matrix can provide 2pþ 2 order of the local

truncation error eOLTEM for the 1-D wave equation.

2.5 Extension of OLTEM with the 3-Point Stencils
to the 1-D Wave Equation with Non-zero
Load Term f „ 0

In this case, the non-zero discretized load term �f should be

added to the stencil equation, Eq. (5), as follows:

h2 m1

d2unum1

dt2
þ m2

d2unum2

dt2
þ m3

d2unum3

dt2

� �

þ ðk1unum1 þ k2u
num
2 þ k3u

num
3 Þ ¼ �f :

ð34Þ

Below we show how to define the load term �f . The local

truncation error ef for the 3-point stencil with nonzero load

term �f can be obtained by the replacement of the numerical

value of function unumi in Eq. (34) by the exact value ui at

the grid points i (i ¼ 1; 2; 3):

ef ¼ h2ðm1

d2u1
dt2

þ m2

d2u2
dt2

þ m3

d2u3
dt2

Þ

þ ðk1u1 þ k2u2 þ k3u3Þ � �f :

ð35Þ

Using the partial differential equation, Eq. (1), the time

derivatives of the exact solution at the grid points can be

replaced by the spatial derivatives as follows:

o2u1
ot2

¼ c2
o2u1
ox2

þ f1;

o2u2
ot2

¼ c2
o2u2
ox2

þ f2;

o2u3
ot2

¼ c2
o2u3
ox2

þ f3;

ð36Þ

where f1 ¼ f ðx ¼ x1; tÞ, f2 ¼ f ðx ¼ x2; tÞ, f3 ¼ f ðx ¼ x3; tÞ
are the values of the load at three grid points. Then, the

expression for the local truncation error, Eq. (35), can be

simplify with the help of Eq. (36) as follows:

ef ¼ h2c2ðm1

o2u1
ox2

þ m2

�

o2u2
ox2

þ m3

o2u3
ox2

Þ þ ðk1u1 þ k2u2 þ k3u3Þ
�

þ h2ðm1f1 þ m2f2 þ m3f3Þ � �f

 �

¼ eþ h2ðm1f1 þ m2f2 þ m3f3Þ � �f

 �

;

ð37Þ

where the expression in the first square brackets in Eq. (37)

is the local truncation error e for the case of zero load term

f; see Eq. (9). We will define the discretized load term �f by

zeroing the expression in the second square brackets in

Eq. (37):

�f ¼ h2ðm1f1 þ m2f2 þ m3f3Þ ¼ h2
X3

i¼1

mifi ¼ h2
XL

i¼1

mifi;

ð38Þ

where the last equality in Eq. (38) is the expression for the

discretized load term for the L-point stencils. Then, it also

follows from Eq. (37) that ef ¼ e. This means that first the

stencil coefficients mi and ki are calculated for the case of

zero load term f ¼ �f ¼ 0 as described in Sects. 2.2–2.4.

Then, the discretized load term �f is calculated by Eq. (38).

2.6 Extension of OLTEM with the 3-Point Stencils
to the 1-D Wave Equation for Heterogeneous
Materials

Wave propagation in a composite domain X ¼ [Xl

(l ¼ 1; 2; . . .; �N where �N is the total number of subdo-

mains) is described by the following scalar wave equation

in each subdomain Xl:

o2ul
ot2

� c2l
o2ul
ox2

¼ fl; ð39Þ

where the wave velocity cl is assumed to be a piecewise

constant function (cl is a constant for each subdomains Xl).

At the interface G (G is a point in the 1-D case) between

any two subdomains, the following interface conditions for

the function and flux are applied:

u�G � u��G ¼ d1; e�
ou�G
ox

� e��
ou��G
ox

¼ d2; ð40Þ

where e� and e�� are the corresponding material constants,

d1ðtÞ and d2ðtÞ are the given jumps for the function and for

the flux, the symbols � and �� correspond to the quantities

on the opposite sides from the interface for the corre-

sponding subdomains Xl (of course, the composite domain

under consideration can include any number of different

materials). For zero jumps d1ðtÞ ¼ d2ðtÞ ¼ 0, the functions

ul are continuous across the interfaces but have the dis-

continuous spatial derivatives across the interfaces. The

functions fl can be discontinuous across the interfaces.

For the derivation of OLTEM for heterogeneous mate-

rials, we assume that the mesh is sufficiently fine in order

to include only one interface between different materials

within any 3-point stencil; see Fig. 2. The case of the 3-

point stencil inside the homogeneous material considered

in Section 2.2 also follows from this stencil when point G

coincides with the end point 1 or 3 of the 3-point stencil;

see Fig. 2 for n ¼ �1. The coordinates x1 and x3 of the

points 1 and 3 of the 3-point stencil and the coordinate xG
of the interface point G are (see Fig. 2):
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x3 ¼ x2 þ h; x1 ¼ x2 � h; xG ¼ x2 � nh;

ð41Þ

where �1� n� 1.

The 3-point stencil equation for homogeneous materials,

Eq. (5), can be modified for heterogeneous materials as

follows:

h2fm1 a1
d2u�;num1

dt2
þ ð1� a1Þ

d2u��;num1

dt2

� �

þ m2 a2
d2u�;num2

dt2
þ ð1� a2Þ

d2u��;num2

dt2

� �

þ m3 a3
d2u�;num3

dt2
þ ð1� a3Þ

d2u��;num3

dt2

� �
g

þ k1½a1u�;num1 þ ð1� a1Þu��;num1 �
þ k2½a2u�;num2 þ ð1� a2Þu��;num2 �
þ k3½a3u�;num3 þ ð1� a3Þu��;num3 � ¼ �f ;

ð42Þ

where the coefficients ai ¼ 1 if the grid point i belongs to

material � and ai ¼ 0 if the grid point i belongs to another

material �� (i.e., only one variable u�;numi or u��;numi

(i ¼ 1; 2; 3) is included into Eq. (42) for each grid point,

e.g., a1 ¼ 1 and a2 ¼ a3 ¼ 0 for the stencil shown in

Fig. 2. As can be seen, the 3-point stencil, Eq. (42),

includes the same number of the stencil coefficients mi and

ki (i ¼ 1; 2; 3) as that for the homogeneous case, Eq. (5).

The local truncation error e follows from Eq. (42) by the

replacement of the numerical solution u�;numi , u��;numi

(i ¼ 1; 2; 3) by the exact solution u�i , u
��
i :

e ¼ h2 m1 a1
d2u�1
dt2

þ ð1� a1Þ
d2u��1
dt2

� ��

þm2 a2
d2u�2
dt2

þ ð1� a2Þ
d2u��2
dt2

� �

þm3 a3
d2u�3
dt2

þ ð1� a3Þ
d2u��3
dt2

� ��

þ k1½a1u�1 þ ð1� a1Þu��1 � þ k2½a2u�2 þ ð1� a2Þu��2 �
þ k3½a3u�3 þ ð1� a3Þu��3 � � �f :

ð43Þ

In contrast to homogeneous materials, the stencil equation

and the local truncation error for heterogeneous materials

given by Eqs. (42) and (43) include two different functions

u� and u��. One of the ideas of the new approach for

heterogeneous materials is to include the interface condi-

tions for the exact solution into the expression for the local

truncation error, Eq. (43), as the constraints in order to

couple the functions u� and u��:

e ¼ h2 m1 a1
d2u�1
dt2

þ ð1� a1Þ
d2u��1
dt2

� ��

þm2 a2
d2u�2
dt2

þ ð1� a2Þ
d2u��2
dt2

� �

þm3 a3
d2u�3
dt2

þ ð1� a3Þ
d2u��3
dt2

� ��

þ k1½a1u�1 þ ð1� a1Þu��1 � þ k2½a2u�2 þ ð1� a2Þu��2 �
þ k3½a3u�3 þ ð1� a3Þu��3 � � �f

þ q1ðu�G � u��G � d1Þ þ hq2 e�
ou�G
ox

� e��
ou��G
ox

� d2

� ��

þh2q3
o2u�G
ot2

� o2u��G
ot2

� o2d1
ot2

� �

þh3q4 e�
o3u�G
ot2ox

� e��
o3u��G
ot2ox

� o2d2
ot2

� �

þh4q5
o4u�G
ot4

� o4u��G
ot4

� o4d1
ot4

� ��
;

ð44Þ

where the unknown coefficients qi (i ¼ 1; 2; . . .; 5) can be

considered as the Lagrange multipliers and they will be

used for the minimization of the local truncation error in

Eq. (44), the expressions in parenthesis after q1 and q2 are

the interface conditions (see Eq. (40), the expressions in

parenthesis after q3, q4 and q5 are the time derivatives of

the interface conditions (the time derivatives of the left-

and right-hand sides of Eq. (40)). Therefore, the expres-

sions after the coefficients qi (i ¼ 1; 2; . . .; 5) in Eq. (44)

are zero and Eqs. (43) and (44) yield the same local trun-

cation error e. We should mention that we use the even

orders of the time derivatives of the interface conditions in

Eq. (44) in order to finally express the time derivatives in

terms of the spatial derivatives using the partial differential

equation (see the derivations below). However, we do not

have these limitations for the heat equation which is for-

mulated in terms of the first time derivative (e.g., see

Sect. 3.1 below).

To derive the coefficients mi and ki (i ¼ 1; 2; 3) in

Eq. (44), first we replace the time derivatives of the exact

solution in the expression for the local truncation error e in

Eq. (44) by the space derivatives using the partial differ-

ential equation, Eq. (39), as follows (we assume that

Fig. 2 The spatial locations of the grid points i (i ¼ 1; 2; 3) and the

interface G between two materials for the 3-point stencil
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functions u� and u�� are sufficiently smooth in the corre-

sponding subdomains including the interface):

o2u�i
ot2

¼ c2�
o2u�i
ox2

þ f �i ;

o2u��i
ot2

¼ c2��
o2u��i
ox2

þ f ��i ; ði ¼ 1; 2; 3;GÞ
ð45Þ

o3u�G
oxot2

¼ c2�
o3u�G
ox3

þ of �G
ox

;
o3u��G
oxot2

¼ c2��
o3u��G
ox3

þ of ��G
ox

;

ð46Þ

o4u�G
ot4

¼ c2�
o4u�G
ox2ot2

þ o2f �G
ot2

¼ c4�
o4u�G
ox4

þ c2�
o2f �G
ox2

þ o2f �G
ot2

;
o4u��G
ot4

¼ c2��
o4u��G
ox2ot2

þ o2f ��G
ot2

¼ c4��
o4u��G
ox4

þ c2��
o2f ��G
ox2

þ o2f ��G
ot2

: ð47Þ

Equation (45) is the original partial differential equation

applied at the three grid points and one interface point.

Equations (46) and (47) are obtained by the differentiation

of Eq. (45) with respect to x and t as well as by the

replacement of the time derivatives in Eq. (47) using

Eq. (45).

Inserting Eqs. (45–47) into Eq. (44) we get the following

local truncation error in space for OLTEM that does not

include the time derivatives:

e ¼ h2 m1 a1c
2
�
o2u�1
ox2

þ ð1� a1Þc2��
o2u��1
ox2

� ��

þ m2 a2c
2
�
o2u�2
ox2

þ ð1� a2Þc2��
o2u��2
ox2

� �

þm3 a3c
2
�
o2u�3
ox2

þ ð1� a3Þc2��
o2u��3
ox2

� ��

þ k1½a1u�1 þ ð1� a1Þu��1 � þ k2½a2u�2 þ ð1� a2Þu��2 �
þ k3½a3u�3 þ ð1� a3Þu��3 �

þ q1ðu�G � u��G Þ þ hq2 e�
ou�G
ox

� e��
ou��G
ox

� ��

þh2q3 c2�
o2u�G
ox2

� c2��
o2u��G
ox2

� �

þh3q4 e�c
2
�
o3u�G
ox3

� e��c
2
��
o3u��G
ox3

� �

þh4q5 c4�
o4u�G
ox4

� c4��
o4u��G
ox4

� ��
;

ð48Þ

as well as the discretized load term �f :

�f ¼ h2
XL

i¼1

mi½aif �i þ ð1� aiÞf ��i � þ h2q3ðf �G � f ��G Þ

þ h3q4ðe�
of �G
ox

� e��
of ��G
ox

Þ þ h4q5ðc2�
o2f �G
ox2

þ o2f �G
ot2

� c2��
o2f ��G
ox2

� o2f ��G
ot2

Þ � ðq1d1 þ hq2d2 þ h2q3
o2d1
ot2

þ h3q4
o2d2
ot2

þ h4q5
o4d1
ot4

Þ;

ð49Þ

where the last expression in the parenthesis in Eq. (49)

corresponds to the contribution due to the non-zero jump

conditions in Eq. (40). So far, in our papers

[2, 3, 24, 34, 36, 37] on OLTEM for heterogeneous

materials, we have used zero jumps d1 ¼ d2 ¼ 0 in the

interface conditions. However, non-zero jumps affect just

the discretized load term �f and can be easily included into

the numerical procedure (e.g., see Eq. (49)).

Next, similar to Sect. 2.2 let us expand the local trun-

cation error, Eq. (48), into a Taylor series by the expansion

of the exact solution for u�i , u
��
i ,

o2u�i
ox2 and

o2u��i
ox2 at the grid

points i ¼ 1; 2; 3 into a Taylor series in the vicinity of the

interface point G at small h � 1 as follows:

vi ¼ vG þ ovG
ox

ri þ
o2vG
ox2

r2i
2!

þ o3vG
ox3

r3i
3!

þ o4vG
ox4

r4i
4!

þ ::: ;

ð50Þ

where ri ¼ xi � xG (e.g., r1 ¼ ðn� 1Þh, r2 ¼ nh, r3 ¼ ðnþ
1Þh in Fig. 2), the function vi in Eq. (50) is u

�
i , u

��
i ,

o2u�i
ox2 ,

o2u��i
ox2

(i ¼ 1; 2; 3). Inserting Eq. (50) into Eq. (48) we get the

following Taylor series of the local truncation error in

space for OLTEM:

e ¼ b1u
�
G þ b2u

��
G þ h½b3

ou�G
ox

þ b4
ou��G
ox

� þ h2½b5
o2u�G
ox2

þ b6
o2u��G
ox2

� þ h3½b7
o3u�G
ox3

þ b8
o3u��G
ox3

� þ h4½b9
o4u�G
ox4

þ b10
o4u��G
ox4

� þ h5½b11
o5u�G
ox5

þ b12
o5u��G
ox5

� þ h6½b13
o6u�G
ox6

þ b14
o6u��G
ox6

� þ O h7
� 	

;

ð51Þ

where the coefficients bp (p ¼ 1; 2; . . .) are expressed in

terms of the coefficients mi, ki, qj (i ¼ 1; 2; 3 and

j ¼ 1; 2; . . .; 5) and the distance n; see our paper [34] for

the details. We should mention again that by the use of the

wave equation, Eqs. (45–47), the time derivatives in the

expression for the local truncation error in Eq. (51) are

excluded. In order to minimize the order of the local

truncation error in Eq. (51), we will zero the first 10

coefficients bp ¼ 0 (p ¼ 1; 2; . . .; 10) for the smallest

power of h. From these 10 algebraic equations and the
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condition k2 ¼ 1 (see the Remark 1) we can find the 11

coefficients mi, ki, qj (i ¼ 1; 2; 3 and j ¼ 1; 2; . . .; 5) as well

as we get the fifth order of the local truncation error in

Eq. (51); see our paper [34] for the details. For example,

for the location of the interface point shown in Fig. 2 with

a1 ¼ 1 and a2 ¼ a3 ¼ 0, we get the following coefficients

mi, ki, qj (i ¼ 1; 2; 3 and j ¼ 1; 2; . . .; 5):

with

�d ¼ 12c2�c
2
��ðne� þ e� þ e�� � e��nÞðc2��e�ðn� 1Þ2

þ c2�e�nðnþ 1Þ þ c2�e��ð�2n2 þ nþ 1ÞÞ:

It can be checked that for n ¼ 1 in Fig. 2 (homogeneous

materials), Eq. (52) yields the same mi, ki (i ¼ 1; 2; 3)

stencil coefficients as those given by Eq. (18).

Remark 2 We should mention that the local truncation

error, Eq. (48), can be also expanded into a Taylor series in

the vicinity of the central grid point i ¼ 2 (we assume that

the unknown functions u� and u�� are sufficiently smooth,

meet the corresponding PDE, Eq. (39), and can be extended

outside their subdomains). In this case we expand the exact

solution for u�i , u
��
i ,

o2u�i
ox2

and
o2u��i
ox2

at the grid points i ¼ 1 and

i ¼ 3 into a Taylor series in the vicinity of point i ¼ 2 at

small h � 1 using Eqs. (10) - (13) as well as we expand the

exact solution for u�G, u
��
G ,

o2u�G
ox2 ,

o2u��G
ox2 ,

o3u�G
ox3 ,

o3u��G
ox3 ,

o4u�G
ox4 and

o4u��G
ox4

at the interface point G into a Taylor series in the vicinity

of point i ¼ 2 at small h � 1 as follows:

vG ¼ v2 �
ov2
ox

ðnhÞ þ o2v2
ox2

ðnhÞ2

2!

� o3v2
ox3

ðnhÞ3

3!
þ o4v2

ox4
ðnhÞ4

4!
þ ::: ;

ð53Þ

where the function vG in Eq. (53) is u�G, u
��
G ,

o2u�G
ox2 ,

o2u��G
ox2 ,

o3u�G
ox3 ,

o3u��G
ox3

,
o4u�G
ox4

and
o4u��G
ox4

. Inserting Eqs. (10)-(13), (53) into

Eq. (48) we get the following Taylor series of the local

truncation error in space for OLTEM:

m1 ¼ e�ðc4��e�ðn� 1Þ4 þ 2c2�c
2
��ð3e�nðnþ 1Þ þ e��ð�2n2 þ nþ 1ÞÞðn� 1Þ2 þ c4�ðe�nðn3 þ 2n2 � 1Þ þ e��ð�4n4 � 2n3 þ 6n2 þ n� 1ÞÞÞ

�d
;

m2 ¼ 1
�d
½c4��e�ð�ne�� þ e�� þ 5e�

ðnþ 1ÞÞðn� 1Þ4 � 2c2�c
2
��e�ðe��ð5n3 þ 5n2 � 6n� 4Þ

� e�nðn2 þ 3nþ 2ÞÞðn� 1Þ2 þ c4�ðe2��ð8n3 þ 24n2 þ 20nþ 5Þðn� 1Þ2 þ e2�

nðnþ 1Þ2ðn2 þ 3nþ 1Þ þ e�e��ð�5n5 � 15n4 � 4n3 þ 14n2 þ 9nþ 1ÞÞ�;

m3 ¼ 1
�d
½c4��e�ðe��ðn� 1Þ � 5e�nÞðn� 1Þ4 � 2c2�c

2
��e�

ð�5e��n
2 þ e�ðnþ 1Þn

þ e��Þðn� 1Þ3 þ c4�ð�e2��ð8n3 � 4n� 1Þðn� 1Þ2 þ e2�n
2ð�n3 þ 2nþ 1Þ

þ e�e��nð5n4 � 5n3 � 6n2 þ 4nþ 2ÞÞ�;

k1 ¼ � e�
ne� þ e� þ e�� � e��n

;

k2 ¼ 1; k3 ¼ � �ne�� þ e�� þ e�n
ne� þ e� þ e�� � e��n

;

q1 ¼ e�
ne� þ e� þ e�� � e��n

;

q2 ¼ n� 1

ne� þ e� þ e�� � e��n
;

q3 ¼ e�ð5c4��e�ðn� 1Þ4 � 4c2�c
2
��e��ð2nþ 1Þðn� 1Þ3 þ c4�ðe��ð4n4 þ 2n3 � 6n2 � nþ 1Þ � e�nðn3 þ 2n2 � 1ÞÞÞ

�d
;

q4 ¼ ðn� 1Þðc4��e�ðn� 1Þ4 � 4c2�c
2
��e�nðnþ 1Þðn� 1Þ2 þ c4�ðe��ð4n4 þ 2n3 � 6n2 � nþ 1Þ � e�nðn3 þ 2n2 � 1ÞÞÞ

�d
;

q5 ¼ � e�ðn� 1Þ2ðc2��ð5e�nðnþ 1Þ þ e��ð�2n2 þ nþ 1ÞÞðn� 1Þ2 þ c2�ðe�nðn3 þ 2n2 � 1Þ þ e��ð�4n4 � 2n3 þ 6n2 þ n� 1ÞÞÞ
2 �d

;

ð52Þ
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e ¼ b1u
�
2 þ b2u

��
2 þ h b3

ou�2
ox

þ b4
ou��2
ox

� �

þ h2 b5
o2u�2
ox2

þ b6
o2u��2
ox2

� �

þ h3 b7
o3u�2
ox3

þ b8
o3u��2
ox3

� �

þ h4 b9
o4u�2
ox4

þ b10
o4u��2
ox4

� �

þ h5 b11
o5u�2
ox5

þ b12
o5u��2
ox5

� �

þ h6 b13
o6u�2
ox6

þ b14
o6u��2
ox6

� �
þ O h7

� 	
;

ð54Þ

where the coefficients bp (p ¼ 1; 2; . . .) are expressed in

terms of the coefficients mi, ki, qj (i ¼ 1; 2; 3 and

j ¼ 1; 2; . . .; 5) and the distance n. The coefficients bp
(p ¼ 1; 2; . . .) in Eq. (54) are different from those in

Eq. (51) and have simpler expressions. However, if we zero

the first 10 coefficients bp ¼ 0 (p ¼ 1; 2; . . .; 10) in Eq. (54)

for the smallest power of h with the condition k2 ¼ 1 (see

the Remark 1), then we get the same stencil coefficients as

those given by Eq. (52).

It is also interesting to mention that if we do not use the

last three interface conditions in Eq. (44) (i.e., if we assume

that q3 ¼ q4 ¼ q5 ¼ 0) then we have just the 8 unknown

coefficients ml, kl, qj (l ¼ 1; 2; 3 and j ¼ 1; 2). In this case,

we can zero the 7 coefficients bp ¼ 0 (p ¼ 1; 2; . . .; 6; 8) in

Eq. (51) for the smallest power of h and we get only the

third order of the local truncation error in Eq. (51), i.e, the

use of the last three interface conditions in Eq. (44) allows

us to improve the local truncation error in Eq. (51) by two

orders.

3 OLTEM for Time-Dependent PDEs in the
2-D and 3-D Cases: Scalar Wave and Heat
Equations, a System of Elastodynamics
Equations

Here, we will shortly review OLTEM for the scalar wave

and heat equations with constant, variable and discontin-

uous coefficients as well as for the elastodynamics equa-

tions with constant and discontinuous coefficients in the

2-D and 3-D cases.

3.1 Scalar Wave and Heat Equations

3.1.1 Homogeneous Materials

The corresponding PDEs with constant coefficients in

domain X can written down as:

o2u

ot2
� c2r2u ¼ f : ð55Þ

for wave propagation in an isotropic homogeneous medium

as well as

ou

ot
� ar2u ¼ f : ð56Þ

for heat propagation in an isotropic homogeneous medium.

Equations (55)-(56) can be uniformly written down in

domain X as:

onu

otn
� �cr2u ¼ f ; ð57Þ

where n ¼ 2 and �c ¼ c2 (c is the wave velocity) for the

wave equation as well as n ¼ 1 and �c ¼ a (a is the thermal

diffusivity) for the heat equation. The Dirichlet boundary

conditions

u ¼ gðx; tÞ ð58Þ

on the boundary Cu and with the Neumann boundary

conditions

nx
ou

ox
þ ny

ou

oy
þ nz

ou

oz
¼ �gðx; tÞ ð59Þ

on the boundary Cs are applied where the entire boundary C
is C ¼ CsUCu and nx, ny, nz are the x�, y� and z�compo-

nents of the outward unit normal vector, g and �g are the given
functions. In Eqs. (55)-(56), c is the wave velocity, a is the

thermal diffusivity, f ðx; tÞ is the loading (source) term, u is

the field variable. The standard initial conditions should be

also given in domain X. For OLTEM derived below, we

consider semi-discrete equations without the time dis-

cretization. After the derivation of the coefficients of the

semidiscrete equations, any existing time-integration

method can be used for the time integration of the semidis-

crete equations. The initial conditions used for the time

integration of the semidiscrete equations are similar to those

for other numerical methods (e.g., for FEM).

The detailed derivation of OLTEM is presented in our

papers [1, 22, 23] in the 2-D and 3-D cases on regular

domains and in our papers [25, 27, 28] in the 2-D and 3-D

cases on irregular domains. Below we present the summary

of the results.

The compact stencil equation for OLTEM for the scalar

wave and heat equations in the 2-D and 3-D cases can be

uniformly given for each internal grid point as follows:
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XL

i¼1

h2mi
dnunumi

dtn
þ kiu

num
i

� �
¼ �f ; ð60Þ

where unumi and
dnunumi

dtn are the numerical solution for func-

tion u and its time derivative at the grid points, mi, ki are

the unknown coefficients to be determined, �f ðtÞ is the

discretized loading (source) term; L is the number of the

grid points included into the stencil equation, n ¼ 2 for the

wave equation and n ¼ 1 for the heat equation, h is the

mesh size along the x� axis. The location of the grid and

boundary points for some compact stencils in the 2-D and

3-D cases is shown in Figs. 3 and 4.

The local truncation errors e for the stencil equations

given by Eq. (60) can obtained by the replacement of the

numerical value of function unumi in Eq. (60) by the exact

value ui at the grid points i (i ¼ 1; 2; . . .; L) as well as by the

addition of the boundary conditions at a small number NB ¼
M1 þM2 of the selected boundary points as the constraints

with some unknown coefficients (Lagrange multipliers) qm;i
(m ¼ 1; 2; 3; 4, i ¼ 1; 2; . . .;NB) as follows (the 3-D case):

e ¼
XL

i¼1

h2mi
dnui
dtn

þ kiui

� �
� �f

þ
XM1

i¼1

h2q1;ið
dngi
dtn

� dnuB;i
dtn

Þ þ q2;iðgi � uB;iÞ
� �

þ
XM2

i¼1

½h3q3;ið
dn �g

dtn
� nx;i

onþ1uB;i
otnox

þ ny;i
onþ1uB;i
otnoy

þ nz;i
onþ1uB;i
otnoz

Þ

þ hq4;i �gi � nx;i
ouB;i
ox

þ ny;i
ouB;i
oy

þ nz;i
ouB;i
oz

� �
�

ð61Þ

(a) (b) (c)

Fig. 3 The spatial locations of the grid (black) and boundary (blue)

points for the 3� 3 ¼ 9-point regular (a) and cut (b) stencils (similar

to those for linear finite elements) as well as for the 5� 5 ¼ 25-point

regular (c) stencils (similar to those for quadratic finite elements) in

the 2-D case. The irregular boundary in (b) cuts the regular stencil

and leads to the inclusion of the boundary points into the derivations.

These stencils are given for the central grid (red) point 5 (a, b) and 13

(c)

(a) (b) (c)

Fig. 4 The spatial locations of the grid (black) and boundary (blue)

points for the 3� 3� 3 ¼ 27-point regular (a) and cut (b) stencils
(similar to those for linear finite elements) as well as for the

5� 5� 5 ¼ 125-point regular (c) stencils (similar to those for

quadratic finite elements) in the 3-D case. The irregular boundary

in ( b) cuts the regular stencil and leads to the inclusion of the

boundary points into the derivations. These stencils are given for the

central grid (red) point 14 (a, b) and 63 ( c)
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where M1 and M2 are the numbers of the selected boundary

points with the Dirichlet and Neumann boundary condi-

tions, respectively; the expressions after q2;i and q4;i are the

Dirichlet and Neumann boundary conditions given by

Eqs. (58) and (59) at the selected boundary points, the

expressions after q1;i and q3;i are the time derivatives of the

boundary conditions at the selected boundary points.

Therefore, the expressions after the term �f in Eq. (61) are

zero and do not affect the value of the local truncation error

e.

Remark 3 We should mention that the imposition of the

Dirichlet and Neumann boundary conditions for OLTEM

in our published papers is different from that given by

Eq. (61) (nevertheless, the final expressions and equations

are the same). The the imposition of the boundary condi-

tions in Eq. (61) as the constraints allows us to uniformly

implement the Dirichlet and Neumann boundary conditions

as well as the interface conditions for heterogeneous

materials (see Sects. 2.6, 3.2.2, 4.1.2, 4.3.2).

Using the partial differential equation, Eq. (55), the time

derivatives of the exact solution at the grid and boundary

points in Eq. (61) can be replaced by the spatial derivatives

as well the discretized load �f can be defined similar to those

in Sects. 2.2 and 2.5. Then, it follows from Eq. (61) that

e ¼
XL

i¼1

½h2 �cmið
o2ui
ox2

þ o2ui
oy2

þ o2ui
oz2

Þ þ kiui�

�
XM1

i¼1

½h2q1;i �cð
o2uB;i
ox2

þ o2uB;i
oy2

þ o2uB;i
oz2

Þ þ q2;iuB;i�

�
XM2

i¼1

hq4;iðnx;i
ouB;i
ox

þ ny;i
ouB;i
oy

þ nz;i
ouB;i
oz

Þ

�
XM2

i¼1

h3 �cq3;i½nx;ið
o3uB;i
ox3

þ o3uB;i
oxoy2

þ o3uB;i
oxoz2

Þ

þ ny;ið
o3uB;i
oyox2

þ o3uB;i
oy3

þ o3uB;i
oyoz2

Þ

þ nz;ið
o3uB;i
ozox2

þ o3uB;i
ozoy2

þ o3uB;i
oz3

Þ�

ð62Þ

and

�f ¼ fh2
XL2

i¼1

mifi � h2
XM1

i¼1

q1;ifB;i

� h3
XM2

i¼1

q3;iðnx;i
ofB;i
ox

þ ny;i
ofB;i
oy

þ nz;i
ofB;i
oz

Þg

þ f
XM1

i¼1

ðh2q1;i
dngi
dtn

þ q2;igiÞg

þ f
XM2

i¼1

ðh3q3;i
dn �g

dtn
þ hq4;i �giÞg;

ð63Þ

where �c ¼ c2 and n ¼ 2 for the wave equation as well as

�c ¼ a and n ¼ 1 for the heat equation. In Eq. (63), the

expression in the first curly brackets corresponds to the

contribution due to the body forces, the expression in the

second curly brackets corresponds to the contribution due

to the Dirichlet boundary conditions (if the boundary with

the Dirichlet boundary conditions intersects the corre-

sponding cell), the expression in the third curly brackets

corresponds to the contribution due to the Neumann

boundary conditions (if the boundary with the Neumann

boundary conditions intersects the corresponding cell).

Let us describe the coordinates of the grid and boundary

points used in Eqs. (60–63) with respect to the stencil

central grid point with the coordinates xc, yc, zc as follow:

xi ¼ xc þ rx;ih; yi ¼ yc þ ry;ibyh;

zi ¼ zc þ rz;ibzh;
ð64Þ

for the grid points, and

xB;i ¼ xc þ dx;ih; yB;i ¼ yc þ dy;ibyh;

zB;i ¼ zc þ dz;ibzh;
ð65Þ

for the boundary points where rx;i, ry;i, rz;i and dx;i, dy;i, dz;i
are the coefficients describing the location of the grid

points and the boundary points, by and bz are the aspect

ratios of Cartesian meshes along the y- and z-axes; see

Fig. 4.

In order to represent the local truncation error e as a

Taylor series, let us expand the exact solution and its

spatial derivatives at the grid and boundary points into a

Taylor series at small h � 1 in the vicinity of the stencil

central grid point xc, yc, zc as follows:
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wi ¼ wc þ
owc

ox
½dx;jh� þ

owc

oy
½dy;jbyh�

þ owc

oz
½dz;jbzh� þ

o2wc

ox2
½dx;jh�2

2!

þ o2wc

oy2
½dy;jbyh�2

2!
þ o2wc

oz2
½dz;jbzh�2

2!

þ 2
o2wc

oxoy

½ðdx;jh�½dy;jbyh�
2!

þ :::; ;

ð66Þ

where the function wi is ui,
o2ui
ox2 ,

o2ui
oy2 ,

o2ui
oz2 (i ¼ 1; 2; . . .; L),

uB;i,
o2uB;i
ox2 ,

o2uB;i
oy2 ,

o2uB;i
oz2 (i ¼ 1; 2; . . .;M1) and

ouB;i
ox ,

ouB;i
oy ,

ouB;i
oz ,

o3uB;i
ox3 ,

o3uB;i
oxoy2,...,

o3uB;i
oz3 (i ¼ 1; 2; . . .;M2); for the regular grid

points the coefficients dx;i, dy;i, dz;i in Eq. (66) should be

replaced by the coefficients rx;i, ry;i, rz;i; see Eqs. (64)-(65).

Using Eq. (66), a Taylor series of the local truncation error

in Eq. (62) for the 27-point stencils (see Fig. 4a,b) can be

represented as:

e ¼ �cfb1u14 þ h½b2
ou14
ox

þ b3
ou14
oy

þ b4
ou14
oz

�

þ h2½b5
o2u14
ox2

þ b6
o2u14
oxoy

þ b7
o2u14
oxoz

þ b8
o2u14
oy2

þ b9
o2u14
oyoz

þ b10
o2u14
oz2

�

þ h3½b11
o3u14
ox3

þ b12
o3u14
ox2oy

þ b13
o3u14
ox2oz

þ b14
o3u14
oxoy2

þ b15
o3u14
oxoyoz

þ b16
o3u14
oxoz2

þ b17
o3u14
oy3

þ b18
o3u14
oy2oz

þ b19
o3u14
oyoz2

þ b20
o3u14
oz3

�

þ h4½b21
o4u14
ox4

þ :::þ b35
o4u14
oz4

�

þ h5½b36
o5u14
ox5

þ :::þ b56
o5u14
oz5

�

þ h6½b57
o6u14
ox6

þ :::þ b84
o6u14
oz6

�

þ h7½b85
o7u14
ox7

þ :::þ b120
o7u14
oz7

� þ h8½b121
o8u14
ox8

þ :::þ b165
o8u14
oz8

� þ :::g;

ð67Þ

where the coefficients bp (p ¼ 1; 2; . . .) are expressed as a

linear combination of the coefficients mi, ki, q1;i, q2;i, q3;i
and q4;i used in Eqs. (60)-(63); see our papers [25, 27, 28]

on OLTEM with 2-D and 3-D irregular domains. We

should mention that the explicit expression for the coeffi-

cients bp can be first calculated just for one internal and one

boundary point with the general expression for the location

of these points given Eqs. (64)-(65). Then, we should

consider the summation over all internal and boundary

points. For example, the first five coefficients bp in Eq. (67)

have the following form:

b1 ¼
XL

i¼1

ki þ
XM1

j¼1

q2;j; b2

¼
XL

i¼1

kirx;i þ
XM1

j¼1

q2;jdx;j þ
XM2

l¼1

q4;lnx;l; b3

¼
XL

i¼1

bykiry;i þ
XM1

j¼1

byq2;jdy;j þ
XM2

l¼1

q4;lny;l; b4

¼
XL

i¼1

bzkirz;i þ
XM1

j¼1

bzq2;jdz;j þ
XM2

l¼1

q4;lnz;l; b5

¼
XL

i¼1

�cmi þ
1

2
kir

2
x;i

� �
þ
XM1

j¼1

�cq1;j þ
1

2
q2;jd

2
x;j

� �

þ
XM2

l¼1

q4;lnx;ldx;l: ð68Þ

Below we will shortly present the procedure for the forma-

tion of the local system of linear algebraic equations for the

calculation of the stencil coefficients usingEq. (67). OLTEM

with the 27-point stencils for the 3-D wave (heat) equation

described in our paper [28] is considered. In our papers

[27, 28] we suggested a very simple procedure for the

selection of the boundary points for cut stencils for the wave

(heat) equation. For example if any grid point of the regular

stencil is located outside the actual physical domain then we

joint this point with the central grid point of the stencil. The

intersection of this line with the boundary determines the

boundary point included into the cut stencils. Thismeans that

the total number of the grid and boundary points included

into the cut stencil is 27 (LþM1 þM2 ¼ 27); see [27, 28].

For some simple stencils (no boundary points or just few

boundary points), the expressions for coefficients bp
(p ¼ 1; 2; . . .) can be simplified and some results can be

analytically obtained. For example, for the stencil with just

one boundary point with the Neumann boundary conditions,

we do not have the correct solution if we zero the first 35

coefficients bp ¼ 0 for p ¼ 1; 2; . . .; 35 (however, we can do

this for the boundary points with the Dirichlet boundary

conditions). Therefore, in order to improve the order of the

local truncation error in Eq. (67) for the cut stencils with the

boundary points with the Neumann boundary conditions, we

will zero the first 20 coefficients bp in Eq. (67) up to the third

order with respect to h, i.e,

bp ¼ 0; p ¼ 1; 2; . . .; 20: ð69Þ

Then, in order to have a sufficient number of linearly

independent equations for the calculation of the stencil
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coefficients mi, ki, q1;i, q2;i, q3;i and q4;i, we use the least

square method for the minimization of coefficients bp
related to the fourth and higher orders of the local trun-

cation error with the following residual R:

R ¼
X35

p¼21

b2p þ h1
X56

p¼36

b2p þ h2
X84

p¼57

b2p

þ h3
X120

p¼85

b2p þ h4
X165

p¼121

b2p;

ð70Þ

where hi (i ¼ 1; 2; 3; 4) are the weighting factors to be

selected (e.g., the numerical experiments show that hi ¼ 1

(i ¼ 1; 2; 3; 4) yields accurate results). In order to minimize

the residual R with the constraints given by Eq. (69), we

can form a new residual �R with the Lagrange multipliers

kp:

�R ¼
X20

p¼1

kpbp þ
X35

p¼21

b2p þ h1
X56

p¼36

b2p

þ h2
X84

p¼57

b2p þ h3
X120

p¼85

b2p þ h4
X165

p¼121

b2p:

ð71Þ

The residual �R is a quadratic function of coefficients mi, ki,

q1;j, q2;j, q3;l and q4;l and a linear function of the Lagrange

multipliers kp, i.e, �R ¼ �Rðmi; ki; q1;j; q2;j; q3;l; q4;l; kpÞ. In

order minimize the residual
�R ¼ �Rðmi; ki; q1;j; q2;j; q3;l; q4;l; kpÞ, the following equations

based on the least square method for the residual �R can be

written down:

o �R

omi
¼ 0;

o �R

oki
¼ 0;

o �R

oq1;j
¼ 0;

o �R

oq2;j
¼ 0;

o �R

oq3;l
¼ 0;

o �R

oq4;l
¼ 0;

i ¼ 1; 2; . . .;L; j ¼ 1; 2; . . .;M1; l ¼ 1; 2; . . .;M2;

ð72Þ

o �R

okp
¼ 0; p ¼ 1; 2; . . .; 20; ð73Þ

where equation o �R
ok14

¼ 0 should be replaced by k14 ¼ 1, the

grid point 14 is the central point of the 27-point stencil; see

Remark 1. Equations (72) and (73) form a system of 74

linear algebraic equations with respect to 54 unknown

coefficients mi, ki, q1;j, q2;j, q3;l and q4;l (i ¼ 1; 2; . . .; L,

j ¼ 1; 2; . . .;M1 and l ¼ 1; 2; . . .;M2, LþM1 þM2 ¼ 27)

and 20 Lagrange multipliers kp (p ¼ 1; 2; . . .; 20). Solving

these linear algebraic equations numerically, we can find

the coefficients mi, ki, q1;j, q2;j, q3;l and q4;l (i ¼ 1; 2; . . .; L,

j ¼ 1; 2; . . .;M1 and l ¼ 1; 2; . . .;M2) for the 27-point reg-

ular and cut stencils.

OLTEM with the 27-point stencils provides the fourth

order of accuracy for the Dirichlet boundary conditions

(see our paper [27]) and the third order of accuracy for the

Neumann boundary conditions (see our paper [28]). Linear

finite elements with similar 27-point stencils provides just

the second order of accuracy. Moreover, due to the mini-

mization of the leading fourth order terms of the local

truncation error in Eq. (71), at the same numbers of degrees

of freedom OLTEM yields more accurate results than those

obtained by high-order finite elements (up to the fourth

order) with much wider stencils; see the numerical exam-

ples in our papers [27, 28]. We should also mention that as

shown in our paper [23], OLTEM in the 2-D case with high

order ð2pþ 1Þ � ð2pþ 1Þ-point stencils (p ¼ 2; 3) pro-

vides the 4pþ 2 and 2pþ 2 order of the local truncation

error with the non-diagonal and diagonal mass matrices on

regular domains with conforming Cartesian meshes (simi-

lar to the 1-D case in Sects. 2.3 and 2.4).

3.1.1.1 Diagonal Mass Matrix It is interesting to note that

similar to the calculation of the diagonal mass matrix in the

1-D case (see Sects. 2.4), a very simple formula can be

obtained for the calculation of the diagonal mass matrix in

the multidimensional case. Let us find the coefficient bp for

the smallest power of h in Eq. (67) that includes the

diagonal term md of the mass matrix (all other mi coeffi-

cients in the stencil equation, Eq. (60), are zero). For

example, we can select the coefficient b5 in Eq. (68).

Assuming that the order of the local truncation error in

Eq. (67) is at least greater than two and equating the

coefficient b5 to zero b5 ¼ 0, we will get the following

expression for the diagonal term of the mass matrix:

md ¼ � 1

�c

XL

i¼1

1

2
kir

2
x;i �

XM1

j¼1

ð�cq1;j þ
1

2
q2;jd

2
x;jÞ

�
XM2

l¼1

q4;lnx;ldx;l:

ð74Þ

If the internal grid point is located far from the boundary,

then the stencil equation for this grid point is not affected

by the boundary conditions (M1 ¼ M2 ¼ 0). In this case

Eq. (74) reduces to a very simple formula for the diagonal

mass matrix in terms of the coefficients of the stiffness

matrix:

md ¼ � 1

�c

XL

i¼1

1

2
kir

2
x;i: ð75Þ

We should mention that this formula can be used for the

calculation of the diagonal mass matrix for any numerical

method with the stencil equation given by Eq. (60) (e.g.,
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for linear and high-order finite elements) on Cartesian

meshes as well as on unstructured meshes (the coefficients

rx;i should be correspondingly defined for unstructured

meshes; see Eq. (64)). In contrast to many known ad-hoc

techniques for the calculation of the diagonal mass matrix

(e.g., the ’row summation’ technique) that manipulates

with the coefficients of the non-diagonal mass matrix, the

coefficients of the stiffness matrix are used in the new

approach. For example, the coefficients of the finite ele-

ment stiffness matrix should be used for the finite element

diagonal mass matrix.

3.1.2 Inhomogeneous Materials

Currently, we have developed OLTEM for inhomogeneous

materials in the 2-D case; see our paper [33]. The corre-

sponding PDEs with the variable coefficients in domain X
can written down as:

o2u

ot2
� o

ox
c2xðx; yÞ

ou

ox

� �
þ o

oy
c2yðx; yÞ

ou

oy

� �� �
¼ f : ð76Þ

for wave propagation in an anisotropic inhomogeneous

medium as well as

ou

ot
� o

ox
axðx; yÞ

ou

ox

� �
þ o

oy
ayðx; yÞ

ou

oy

� �� �
¼ f : ð77Þ

for heat propagation in an anisotropic inhomogeneous

medium with the Dirichlet boundary conditions. In

Eqs. (76)-(77), cx and cy are the wave velocity along the x-

and y-axes (cx ¼ cy for isotropic materials), ax and ax are

the thermal diffusivity along the x- and y-axes (ax ¼ ay for

isotropic materials), f ðx; tÞ is the loading (source) term, u is

the field variable.

The detailed derivation of OLTEM with 9-point stencils

in the 2-D case on irregular domains with the Dirichlet

boundary conditions is presented in our paper [33]. Below

we present the summary of the results.

The compact stencil equation for OLTEM for the scalar

wave and heat equations in the 2-D and 3-D cases can be

uniformly given for each internal grid point as follows:

XL

i¼1

h2 �miðhÞ
dnunumi

dtn
þ �kiðhÞunumi

� �
¼ �f ; ð78Þ

for the grid point located far from the boundary. In contrast

to our approach presented in [25, 27] for the wave (heat)

equation with the constant coefficients (see also the pre-

vious Sect. 3.1.1), now we assume that the coefficients

�miðhÞ and �kiðhÞ depend on the mesh size h and for the 9-

point stencils they will be expressed in terms of polynomial

functions of h as follows:

�miðhÞ ¼ m0;i þ m1;ih; �kiðhÞ ¼ k0;i þ k1;ihþ k2;ih
2

þ k3;ih
3 þ k4;ih

4; i ¼ 1; 2; . . .; 9;

ð79Þ

where ml;i, kj;i (l ¼ 0; 1, j ¼ 0; 1; 2; 3; 4, i ¼ 1; 2; . . .; 9) are

unknown coefficients. This polynomial representation of

�miðhÞ and �kiðhÞ can be considered as a Taylor series of

functions �miðhÞ and �kiðhÞ at small h. We should mention

that for the solution of the global system, we use the 9-

point stencil equation, Eq. (78) with L ¼ 9 and the 18

stencil coefficients �miðhÞ and �kiðhÞ (i ¼ 1; 2; . . .; 9) similar

to Eq. (60) with the 9-point stencils for the PDE with the

constant coefficients in presented Sect. 3.1.1. However, in

order to calculate these 18 stencil coefficients at a given h,

we introduce 9� 7 ¼ 63 unknown coefficients ml;i, kj;i
(l ¼ 0; 1, j ¼ 0; 1; 2; 3; 4, i ¼ 1; 2; . . .; 9) that can be defined

from the minimization of the local truncation error. Similar

to the previous Sect. 3.1.1, we can show that a Taylor series

of the local truncation error e for the 9-point stencil

equation, Eq. (78) with L ¼ 9 and the central grid point 5

(see Fig. 3a), can be represented as follows:

e ¼ �c b1u5 þ h b2
ou5
ox

þ b3
ou5
oy

þ b4u5

� ��

þh2 b5
o2u5
ox2

þ b6
o2u5
oxoy

þ b7
ou5
ox

þ b8
o2u5
oy2

þ b9
ou5
oy

þ b10u5

� �

þh3 b11
o3u5
ox3

þ :::þ b20u5

� �
þ h4 b21

o4u5
ox4

þ :::þ b35u5

� �

þh5 b36
o5u5
ox5

þ :::þ b56u5

� �
þ h6 b57

o6u5
ox6

þ :::þ b84u5

� �

þh7 b85
o7u5
ox7

þ :::þ b120u5

� �
þ h8 b121

o8u5
ox8

þ :::þ b165u5

� �

þ:::g;
ð80Þ

where the coefficients bp (p ¼ 1; 2; . . .) are expressed in

terms of the coefficients ml;i, kj;i (l ¼ 0; 1, j ¼ 0; 1; 2; 3; 4,

i ¼ 1; 2; . . .; 9); see our paper [33]. We should mention that

by the use of the wave (heat) partial differential equation,

Eqs. (76) - (77), the time derivatives in Eq. (80) for the

local truncation error are excluded. By zeroing the coeffi-

cients bp for the smallest orders of h and using the least

square method for the coefficients bp for higher orders of h

(similar to the procedure in Sect. 3.1.1), we can form a

local system of algebraic equations for the calculation of

the unknown coefficients ml;i, kj;i (l ¼ 0; 1, j ¼ 0; 1; 2; 3; 4,

i ¼ 1; 2; . . .; 9). As shown in our paper [33], OLTEM with

the 9-point stencils on irregular domains with the Dirichlet

boundary conditions provides the fourth order of accuracy

of global solutions (similar to OLTEM for the homoge-

neous materials and the Dirichlet boundary conditions in

the previous Sect. 3.1.1)). Moreover, due to the
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minimization of the leading terms of the local truncation

error, at the same numbers of degrees of freedom OLTEM

on irregular domains yields more accurate results than

those obtained by high-order finite elements (up to the third

order) with much wider stencils; see the numerical exam-

ples in our paper [33].

3.1.3 Heterogeneous Materials with Interfaces

Wave propagation in a composite domain X ¼ [Xl

(l ¼ 1; 2; . . .; �N where �N is the total number of subdo-

mains) is described by the following scalar wave equation

in each subdomain Xl:

o2ul
ot2

� c2lr2ul ¼ fl: ð81Þ

Similarly, the heat equation in each subdomain Xl can be

written as:

oul
ot

� alr2ul ¼ fl: ð82Þ

For each subdomain Xl we use the following notations in

Eqs. (81)-(82): cl is the wave velocity, al is the thermal

diffusivity, flðx; tÞ is the loading (source) term, ul is the

field variable.

At the interface G (G is a curve in the 2-D case and a

surface in the 3-D case) between any two subdomains, the

following interface conditions are applied:

u�G � u��G ¼ d1; e�ðnx
ou�G
ox

þ ny
ou�G
oy

þ nz
ou�G
oz

Þ

� e��ðnx
ou��G
ox

þ ny
ou��G
oy

þ nz
ou��G
oz

Þ ¼ d2;
ð83Þ

where d1ðx; y; z; tÞ jðx;y;zÞ2G and d2ðx; y; z; tÞ jðx;y;zÞ2G are the

given jumps for the function and the flux, nx, ny and nz are

the x-, y- and z-components of the normal vector at the

interface, e� and e�� are the corresponding material

constants, the symbols � and �� correspond to the quanti-

ties on the opposite sides from the interface for the corre-

sponding subdomains Xl. For zero jumps

d1ðx; y; z; tÞ ¼ d2ðx; y; z; tÞ ¼ 0, the functions ul are con-

tinuous across the interfaces but can have the discontinuous

spatial derivatives across the interfaces. The functions fl
can be discontinuous across the interfaces.

Similar to Eq. (42) in the 1-D case, the compact stencil

equation of OLTEM for the scalar wave and heat equations

in the 2-D and 3-D cases can be uniformly given for each

internal grid point as follows:

h2
XL

p¼1

mp ap
dnu�;nump

dtn
þ ð1� apÞ

� �
dnu��;nump

dtn

þ
XL

p¼1

kp½apu�;nump þ ð1� apÞu��;nump �

¼ �f ; ð84Þ

for the grid point located far from the boundary. Here, the

coefficients ap ¼ 1 if the grid point p belongs to material �
and ap ¼ 0 if the grid point p belongs to another material

�� (i.e., only one variable u�;nump or u��;nump (p ¼ 1; 2; . . .; L)

is included into Eq. (84) for each grid point. As can be

seen, the stencil equation, Eq. (84), includes the same

number of the stencil coefficients mp and kp
(p ¼ 1; 2; . . .; L) as that for the homogeneous case,

Eq. (60). The derivation of OLTEM for heterogeneous

materials in the 2-D and 3-D cases includes the use of the

interface conditions at a small number NG of interface

points along a part of the interface located within the

corresponding compact cell; see Figs. 5 and 6.

To describe the coordinates of the selected NG points on

the interface with respect to the stencil central grid point,

we introduce 3NG coefficients �dx;p, �dy;p and �dz;p
(p ¼ 1; 2; . . .;NG) in the 3-D case as follows (see also

Eqs. (64) - (65) for the internal and boundary points):

(a) (b)

Fig. 5 The spatial locations of the grid and interface points for the 9-point (a) and 25-point (b) stencils (similar to those for linear and quadratic

finite elements, respectively) for heterogeneous materials with irregular interfaces in the 2-D case
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xG;j ¼ xc þ �dx;jh; yG;j ¼ yc þ �dy;jbyh;

zG;j ¼ zc þ �dz;jbzh; j ¼ 1; 2; . . .;NG:
ð85Þ

Below we will shortly present OLTEM for the 2-D case

with 9-point stencils developed in our paper [34]. Similar

to the 1-D case in Sect. 2.6, we will add the interface

conditions at a small number of the interface points (we use

5 interface points) to the local truncation error of the stencil

equation, Eq. (84), as the constraints:

e ¼ h2
X9

p¼1

mp ap
dnu�p
dtn

þ ð1� apÞ
dnu��p
dtn

� �

þ
X9

p¼1

kp apu
�
p þ ð1� apÞu��p

h i
� �f

þ
X5

j¼1

q1;jðu�G;j � u��G;j � d1;jÞ
(

þ
X5

j¼1

hq2;j e� nx;j
ou�G;j
ox

þ ny;j
ou�G;j
oy

� ��

�e�� nx;j
ou��G;j
ox

þ ny;j
ou��G;j
oy

� �
� d2;j

�
þ
X4

j¼2

h2q3;j

onu�G;j
otn

�
onu��G;j
otn

� ond1;j
otn

� �

þ h3q4 e� nx;3
onþ1u�G;3
otnox

þ ny;3
onþ1u�G;3
otnoy

 !"

�e�� nx;3
onþ1u��G;3
otnox

þ ny;3
onþ1u��G;3
otnoy

 !
� ond2;3

otn

#

þh4q5
o2nu�G;3
ot2n

�
o2nu��G;3
ot2n

� o2nd1;3
ot2n

 !)
;

ð86Þ

where d1;j ¼ d1ðxj; yj; tÞ and d2;j ¼ d2ðxj; yj; tÞ
(j ¼ 1; 2; . . .; 5) are the jumps in the interface conditions,

Eq. (83), at the 5 selected interface points, nx;j and ny;j are

the x and y-components of the normal vectors at the five

selected interface points (see Fig. 5a and our paper [34] for

their specific locations), the coefficients q1;i, q2;i, q3;j, q4
and q5 (i ¼ 1; 2; . . .; 5, j ¼ 2; 3; 4) will be used for the

minimization of the local truncation error in Eq. (86), the

expressions in parenthesis after q1;j and q2;j are the inter-

face conditions (see Eq. (83)) at the five selected interface

points, the expressions in parenthesis after q3;j, q4 and q5
are the time derivative of the interface conditions (similar

to those for the 1-D case in the previous Sect. 2.6).

Therefore, the expression in the curly brackets in Eq. (86)

is zero and doest not affect the value of the local truncation

error e. Numerical experiments show that in contrast to the

5 interface points used in Eq. (86) with the coefficients q1;i,

q2;i, we can use a smaller number of the interface points

with the coefficients q3;j, q4 and q5 (i ¼ 1; 2; . . .; 5,

j ¼ 2; 3; 4).

Similar to the previous Section 3.1.1, we can show that a

Taylor series of the local truncation error e for the 9-point

stencil equation, Eq. (86), can be represented as follows:

e ¼ b1u
�
5 þ b2u

��
5 þ h b3

ou�5
ox

þ b4
ou��5
ox

þ b5
ou�5
oy

þ b6
ou��5
oy

� �

þ h2 b7
o2u�5
ox2

þ b8
o2u��5
ox2

þ b9
o2u�5
oxoy

þ b10
o2u��5
oxoy

�

þb11
o2u�5
oy2

þ b12
o2u��5
oy2

�

þh3 b13
o3u�5
ox3

þ b14
o3u��5
ox3

þ b15
o3u�5
ox2oy

þþb16
o3u��5
ox2oy

�

þb17
o3u�5
oxoy2

þ b18
o3u��5
oxoy2

þ b19
o3u�5
oy3

þ b20
o3u��5
oy3

�

þh4 b21
o4u�5
ox4

þ :::þ b30
o4u��5
oy4

� �

þh5 b31
o5u�5
ox5

þ :::þ b42
o5u��5
oy5

� �

þh6 b43
o6u�5
ox6

þ :::þ b56
o6u��5
oy6

� �
þ :::;

ð87Þ

where the coefficients bp (p ¼ 1; 2; . . .; 56) are expressed

in terms of the coefficients mi, ki, q1;j, q2;j, q3;l, q4 and q5
(i ¼ 1; 2; . . .; 9, j ¼ 1; 2; 3; 4; 5, l ¼ 2; 3; 4,); see our paper

[34] for the details. We should mention that by the use of

the wave (heat) equation, Eqs. (81, 82), the time derivatives

in the local truncation error in Eq. (87) are excluded. By

zeroing the coefficients bp for the smallest orders of h and

using the least square method for the coefficients bp for

Fig. 6 The spatial locations of the grid and interface points for the

27-point stencils (similar to those for linear finite elements) for

heterogeneous materials with irregular interfaces in the 3-D case
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higher orders of h (similar to the procedure in Sect. 3.1.1),

we can form a local system of algebraic equations for the

calculation of the unknown coefficients mi, ki, q1;j, q2;j, q3;l,

q4 and q5 (i ¼ 1; 2; . . .; 9, j ¼ 1; 2; 3; 4; 5, l ¼ 2; 3; 4,). As

shown in our paper [34], OLTEM with the 9-point stencils

and irregular interfaces provides the third order of accuracy

of global solutions (similar to OLTEM for the homoge-

neous materials in the previous Sect. 3.1.1). Moreover, due

to the minimization of the leading terms of the local

truncation error, at the same numbers of degrees of free-

dom OLTEM with irregular interfaces yields more accurate

results than those obtained by high-order finite elements

(up to the third order) with much wider stencils; see the

numerical examples in our paper [34].

3.2 Elastodynamics Equations

Currently, we have developed OLTEM for the elastody-

namics equations in the 2-D case; see our papers

[24, 32, 38]).

3.2.1 Homogeneous Materials

The corresponding 2-D elastodynamics PDEs with constant

coefficients in domain X can written down as:

q
o2u

ot2
¼ lr2uþ ðlþ kÞ o2u

ox2
þ o2v

oxoy

� �
þ fx;

q
o2v

ot2
¼ lr2vþ ðlþ kÞ o2v

oy2
þ o2u

oxoy

� �
þ fy;

ð88Þ

with the Dirichlet boundary conditions

u ¼ g1ðx; tÞ; v ¼ g2ðx; tÞ ð89Þ

on the boundary Cu and with the Neumann boundary

conditions

tx ¼ nx kþ 2lð Þ ou
ox

þ k
ov

oy

� �
þ nyl

ou

oy
þ ov

ox

� �
¼ �g1ðx; tÞ;

ty ¼ ny ðkþ 2lÞ ov
oy

þ k
ou

ox

� �
þ nxl

ou

oy
þ ov

ox

� �
¼ �g2ðx; tÞ;

ð90Þ

on the boundary Cs where the entire boundary C is

C ¼ CsUCu. In Eqs. (88)-(90), u ¼ uðx; y; tÞ and v ¼

vðx; y; tÞ are the x� and y�components of the displacement

vector, fx ¼ fxðx; y; tÞ and fy ¼ fyðx; y; tÞ are the x� and

y�components of the body forces, tx and ty are the x� and

y�components of the tractive forces, nx, ny are the x� and

y�components of the outward unit normal vector, gi and �gi
(i ¼ 1; 2) are the given functions, t is the time, q is the

density, l and k are the Lam�e coefficients that can be also

expressed in terms of Young’s modulus E and Poisson’s

ratio m as l ¼ E
2ð1þmÞ and k ¼ Em

ð1þmÞð1�2mÞ.

The detailed derivation of OLTEM in the 2-D case is

presented in our paper [24] on regular domains and in our

paper [32] on irregular domains. Below we present the

summary of the results.

According to OLTEM we assume the following general

form of two stencil equations for each grid point after the

space discretization of Eq. (88) with a rectangular Carte-

sian mesh:

h2
XL

i¼1

mj;i
o2unumi

ot2

 

þ
XL

i¼1

�mj;i
o2vnumi

ot2

!

þ
XL

i¼1

kj;iu
num
i

þ
XL

i¼1

�kj;iv
num
i ¼ �f j; j ¼ 1; 2;

ð91Þ

where unumi , vnumi ,
o2unumi

ot2
and

o2vnumi

ot2
are the numerical solution

for the displacements u, v and their second time derivatives

at the i�th grid point, mj;i, �mj;i, kj;i, �kj;i are the unknown

stencil coefficients to be determined, L is the number of the

grid points included into the stencil equation, h is the mesh

size, �f j are the components of the discretized loading term.

The local truncation errors ej for the stencil equations

given by Eq. (91) can obtained by the replacement of the

numerical values of the displacements unumi , vnumi in

Eq. (91) by the exact values ui, vi at the grid points i

(i ¼ 1; 2; . . .; L) as well as by the addition of the boundary

conditions at a small number NB ¼ M1 þM2 of the selec-

ted boundary points with some unknown coefficients

(Lagrange multipliers) qm;i and �qm;i (m ¼ 1; 2; 3; 4,

i ¼ 1; 2; . . .;NB) as follows:
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ej¼h2
XL

i¼1

mj;i
o2ui
ot2

þ
XL

i¼1

�mj;i
o2vi
ot2

 !

þ
XL

i¼1

kj;iuiþ
XL

i¼1

�kj;ivi�fj

þh2
XM1

i¼1

q1;i
dng1;i
dtn

�dnuB;i
dtn

� �
þ
XM1

i¼1

�q1;i
dng2;i
dtn

�dnvB;i
dtn

� �" #

þ
XM1

i¼1

q2;iðg1;i�uB;iÞþ
XM1

i¼1

�q2;iðg2;i�vB;iÞ

þh3
XM2

i¼1

q3;i
dn �g1;i
dtn

�dntx;B;i
dtn

� �"

þ
XM2

i¼1

�q3;i
dn �g2;i
dtn

�dnty;B;i
dtn

� �#

þh
XM2

i¼1

q4;ið�g1;i�tx;B;iÞþ
XM2

i¼1

�q4;ið�g2;i�ty;B;iÞ
" #

;

ð92Þ

where M1 and M2 are the numbers of the selected boundary

points with the Dirichlet and Neumann boundary condi-

tions, respectively; g1;i, g2;i and �g1;i, �g2;i are the known

values of the Dirichlet and Neumann boundary conditions

at the selected boundary points (see Eqs. (89) and (90)), the

expressions after q2;i, �q2;i and q4;i, �q4;i are the boundary

conditions at the selected boundary points given by

Eqs. (89) and (90), the expressions after q1;i, �q1;i, and q3;i,

�q3;i are the time derivatives of the boundary conditions at

the selected boundary points. Therefore, the expressions

after the term �fj in Eq. (92) are zero and do not affect the

value of the local truncation error ej.

The stencil equations, Eq. (91), written for all internal

grid points form the global system of ordinary differential

equations that can be also presented in the matrix form. In

this case, the coefficients mj;i, �mj;i form the mass matrix

while the coefficients kj;i, �kj;i form the stiffness matrix. In

contrast to the stencils for the scalar wave equation given

by Eq. (60) in Sect. 3.1.1, the stencil equations for elas-

todynamics include two unknown functions u and v as well

as the Neumann boundary conditions for elastodynamics in

Eq. (92) have a more complicated expression; see Eq. (90).

Using the procedure similar to that for the wave (heat)

equation in Sect. 3.1.1, we can: a) replace the time

derivatives in Eq. (92) by the spatial derivatives with the

help of the elastodynamics equations (see Eq. (88)), b) find

the discretized loading term �fj in terms of the body forces

fx;i, fy;i at the grid points and the known Dirichlet and

Neumann boundary conditions g1;i, g2;i and �g1;i, �g2;i at the

selected boundary points, and c) express the local

truncation error ej (j ¼ 1; 2) in Eq. (92) as a Taylor series

as follows:

ej ¼ bj;1u5 þ bj;2v5 þ hðbj;3
ou5
ox

þ bj;4
ou5
oy

þ bj;5
ov5
ox

þ bj;6
ov5
oy

Þ

þ h2ðbj;7
o2u5
ox2

þ bj;8
o2u5
oxoy

þ bj;9
o2u5
oy2

þ bj;10
o2v5
ox2

þ bj;11
o2v5
oxoy

þ bj;12
o2v5
oy2

Þ

þ h3ðbj;13
o3u5
ox3

þ bj;14
o3u5
ox2oy

þ bj;15
o3u5
oxoy2

þ bj;16
o3u5
oy3

þ bj;17
o3v5
ox3

þ bj;18
o3v5
ox2oy

þ bj;19
o3v5
oxoy2

þ bj;20
o3v5
oy3

Þ

þ h4ðbj;21
o4u5
ox4

þ :::þ bj;30
o4v5
oy4

Þ þ h5ðbj;31
o5u5
ox5

þ :::

þ bj;42
o5v5
oy5

Þ þ h6ðbj;43
o6u5
ox6

þ :::þ bj;56
o6v5
oy6

Þ þ :::

ð93Þ

with j ¼ 1 and j ¼ 2 for the first and second stencils and

with the coefficients bj;i expressed as a linear combination

of the coefficients mj;i, �mj;i, kj;i, �kj;i and �q1;i, q1;i, �q2;i, q2;i,

�q3;i, q3;i, �q4;i, q4;i used in Eqs. (91)-(92); see our paper [32].

We should mention that the explicit expression for the

coefficients bj;i can be first calculated just for one internal

and one boundary points with the general expression for

the location of these points given by Eqs. (64–65). Then,

we should consider the summation of these expressions

over all internal and boundary points (similar to Eq. (68) in

Sect. 3.1.1). We should mention that by the use of the

elastodynamics equations, Eq. (88), the time derivatives for

the local truncation error in Eq. (93) are excluded. By

zeroing the coefficients bj;i for the smallest orders of h and

using the least square method for the coefficients bj;i for

higher orders of h (similar to the procedure in Sect. 3.1.1),

we can form a local system of algebraic equations for the

calculation of the unknown coefficients mj;i, �mj;i, kj;i, �kj;i
and �q1;i, q1;i, �q2;i, q2;i, �q3;i, q3;i, �q4;i, q4;i. As shown in our

paper [32], OLTEM with the 9-point stencils and irregular

boundaries provides the second order of accuracy of global

solutions (similar to linear finite elements with the 9-point

stencils). However, due to the minimization of the leading

terms of the local truncation error, at the same numbers of

degrees of freedom OLTEM on irregular domains yields

more accurate results than those obtained by linear and

high-order finite elements (up to the third order) with much

wider stencils; see the numerical examples in our paper

[32]. We should also mention that as shown in our paper

[24], OLTEM in the 2-D case with wider 5� 5 ¼ 25-point
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stencils provides the 8-th and 6-th orders of the local

truncation errors with the non-diagonal and diagonal mass

matrices on regular domains with conforming Cartesian

meshes, i.e for elastodynamics the optimal accuracy for the

5� 5 ¼ 25-point stencils is two orders lower than that for

the scalar wave equation on similar stencils; see

Sect. 3.1.1.

3.2.2 Heterogeneous Materials

The 2-D elastodynamics equations in a composite domain

X ¼ [Xl (l ¼ 1; 2; . . .; �N where �N is the total number of

subdomains) can be written down in each subdomain Xl as

follows:

llr2ul þ ðll þ klÞ
o2ul
ox2

þ o2vl
oxoy

� �
þ f lx ¼ ql

o2ul
ot2

;

llr2vl þ ðll þ klÞ
o2vl
oy2

þ o2ul
oxoy

� �
þ f ly ¼ ql

o2vl
ot2

;

ð94Þ

where ul ¼ ulðx; y; tÞ and vl ¼ vlðx; y; tÞ are the x� and

y�components of the displacement vector, f lx ¼ f lxðx; y; tÞ
and f ly ¼ f lyðx; y; tÞ are the x� and y�components of the

body forces that can be discontinuous across interfaces. We

also assume that the functions ul and fl are sufficiently

smooth in each subdomain Xl. At the interface G between

any two subdomains, the following interface conditions are

applied:

u�G � u��G ¼ d1; v�G � v��G ¼ �d1; ð95Þ

t�x;G � t��x;G ¼ d2; t�y;G � t��y;G ¼ �d2; ð96Þ

where d1ðx; y; tÞ jðx;yÞ2G, �d1ðx; y; tÞ jðx;yÞ2G and

d2ðx; y; tÞ jðx;yÞ2G, �d2ðx; y; tÞ jðx;yÞ2G are the given jumps in

the displacements and in the tractive forces across the

interface, the symbols � and �� correspond to the quantities

on the opposite sides from the interface for the corre-

sponding subdomains Xl. The x� and y�components of

the tractive forces tx;G and ty;G can be expressed in terms of

the displacements using Eq. (90) where symbol *(**) in

Eq. (90) should be used for the displacements and Lame

coefficients for material *(**).

The detailed derivation of OLTEM with the 9-point

stencils for heterogeneous materials with irregular inter-

faces in the 2-D case is given in our paper [38] for the cases

with the non-diagonal and diagonal mass matrices. Below

we present the summary of the results.

Similar to the homogeneous materials in the previous

section 3.2.1 (see also Eq. (91)), for heterogeneous mate-

rials with an interface we assume the following general

form of two stencil equations for each grid point after the

space discretization of Eq. (94) with a rectangular Carte-

sian mesh:

h2
XL

p¼1

mj;p½ap
o2u�p
ot2

þ ð1� apÞ
d2u��;nump

dt2
�

(

þ
XL

p¼1

�mj;p½ap
d2v�;nump

dt2
þ ð1� apÞ

d2v��;nump

dt2
�
)

þ
XL

p¼1

kj;p apu
�;num
p þ ð1� apÞu��;nump

h i

þ
XL

p¼1

�kj;p apv
�;num
p þ ð1� apÞv��;nump

h i
¼ �fj; j ¼ 1; 2;

ð97Þ

where the coefficients ap ¼ 1 if the grid point p belongs to

material � and ap ¼ 0 if the grid point p belongs to another

material �� (i.e., only two variables u�;nump , v�;nump or u��;nump ,

v��;nump are included into Eq. (97) for each grid point, e.g.,

see Fig. 5a with a1 ¼ a2 ¼ a3 ¼ a5 ¼ a6 ¼ 1 and

a4 ¼ a7 ¼ a8 ¼ a9 ¼ 0). As can be seen, the stencil

equations, Eq. (97), for heterogeneous materials include the

same number of the stencil coefficients mj;p, �mj;p, kj;p and
�kj;p (p ¼ 1; 2; . . .; L) as that for the homogeneous materials,

Eq. (91).

The local truncation error ej for the stencil equations,

Eq. (97), can be obtained by the replacement of the

numerical solution for u�;num, v�;num, u��;num, v��;num in

Eq. (97) by the exact solution u�, v�, u��, v�� and by the

addition of the interface conditions, Eqs. (95)-(96), at a

small number NG of the selected interface point to the

obtained expression as the constraints (see the previous

Sect. 3.1.3 for the wave equation):

ej¼h2f
XL

p¼1

mj;p½ap
o2u�p
ot2

þð1�apÞ
o2u��p
ot2

�

þ
XL

p¼1

�mj;p½ap
o2v�p
ot2

þð1�apÞ
o2v��p
ot2

�g

þ
XL

p¼1

kj;p½apu�pþð1�apÞu��p �þ
XL

p¼1

�kj;p½apv�pþð1�apÞv��p �� �fj

þ
XNG

l¼1

q1;lðu�G;l�u��G;l�d1;lÞþ
XNG

l¼1

q2;lðv�G;l�v��G;l��d1;lÞ
"

þ
XNG

l¼1

hq3;lðt�xðG;lÞ�t��xðG;lÞ�d2;lÞþ
XNG

l¼1

hq4;lðt�yðG;lÞ�t��yðG;lÞ��d2;lÞ
#
; j¼1;2;

ð98Þ

where the additional unknown stencil coefficients q1;l, q2;l,

q3;l, q4;l (l ¼ 1; 2; . . .;NG) are related to the interface con-

ditions (see Eq. (98)) and should be determined from the

minimization of the local truncation error. As shown in our

paper [38], NG ¼ 5 uniformly spaced interface points can

be used for the 9-point stencils. In contrast to the scalar

wave equation in Sect. 3.1.3, for the 9-point stencil (L ¼ 9)

we do not use the time derivatives of the interface condi-

tions in Eq. (98) (the optimal second order of accuracy of

OLTEM can be reached without these additional interface
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conditions; they may be needed for higher accuracy with

wider L[ 9 stencils).

Using the elastodynamics equations for each grid point,

we can exclude the time derivatives from the expression for

the local truncation error in Eq. (98) as well as find the

expression for the discretized load �fj:

ej ¼ h2f
XL

p¼1

mj;p½ap
l�
q�

ð
o2u�p
ox2

þ
o2u�p
oy2

Þ

þ ðl� þ k�Þ
q�

ð
o2u�p
ox2

þ
o2v�p
oxoy

Þ

þ ð1� apÞ
l��
q��

ð
o2u��p
ox2

þ
o2u��p
oy2

Þ

þ ðl�� þ k��Þ
q��

ð
o2u��p
ox2

þ
o2v��p
oxoy

Þ�

þ
XL

p¼1

�mj;p½ap
l�
q�

ð
o2v�p
ox2

þ
o2v�p
oy2

Þ

þ ðl� þ k�Þ
q�

ð
o2v�p
oy2

þ
o2u�p
oxoy

Þ

þ ð1� apÞ
l��
q��

ð
o2v��p
ox2

þ
o2v��p
oy2

Þ

þ ðl�� þ k��Þ
q��

ð
o2v��p
oy2

þ
o2u��p
oxoy

Þ�g

þ
XL

p¼1

kj;p½apu�p þ ð1� apÞu��p �

þ
XL

p¼1

�kj;p½apv�p þ ð1� apÞv��p �

þ
XNG

l¼1

q1;lðu�G;l � u��G;lÞ þ
XNG

l¼1

q2;lðv�G;l � v��G;lÞ
"

þ
XNG

l¼1

hq3;lðt�xðG;lÞ � t��xðG;lÞÞ þ
XNG

l¼1

hq4;lðt�yðG;lÞ � t��yðG;lÞÞ
#
; j ¼ 1; 2;

ð99Þ

and

�fj ¼ h2
XL

p¼1

mj;p ap
1

q�
f �x;p þ ð1� apÞ

1

q��
f ��x;p

� �(

þ
XL

p¼1

�mj;p ap
1

q�
f �y;p þ ð1� apÞ

1

q��
f ��y;p

� �)

�
XNG

l¼1

q1;ld1;l þ q2;l�d1;l þ hq3;ld2;l þ hq4;l�d2;l
� 	

; j ¼ 1; 2;

ð100Þ

where the last expression in the parenthesis in Eq. (100)

corresponds to the contribution due to the non-zero jump

conditions in Eqs. (95) and (96). Expanding the values of

the exact solutions for the displacements u and v at the grid

and interface points in Eq. (99) into a Taylor series in the

vicinity of the central grid point with the coordinates xc and

yc (e.g., c ¼ 5 for the 9-point stencils), a Taylor series of

the local truncation error ej in Eq. (99) can be represented

as follows:

ej ¼ bj;1u
�
c þ bj;2u

��
c þ bj;3v

�
c þ bj;4v

��
c þ hðbj;5

ou�c
ox

þ bj;6
ou��c
ox

þ bj;7
ov�c
ox

þ bj;8
ov��c
ox

þ bj;9
ou�c
oy

þ b10
ou��c
oy

þ bj;11
ov�c
oy

þ bj;12
ov��c
oy

Þ þ h2ðbj;13
o2u�c
ox2

þ bj;14
o2u��c
ox2

þ bj;15
o2v�c
ox2

þ bj;16
o2v��c
ox2

þ bj;17
o2u�c
oxoy

þ bj;18
o2u��c
oxoy

þ bj;19
o2v�c
oxoy

þ bj;20
o2v��c
oxoy

þ bj;21
o2u�c
oy2

þ bj;22
o2u��c
oy2

þ bj;23
o2v�c
oy2

þ bj;24
o2v��c
oy2

Þ þ h3ðbj;25
o3u�c
ox3

þ bj;26
o3u��c
ox3

þ bj;27
o3v�c
ox3

þ bj;28
o3v��c
ox3

þ bj;29
o3u�c
ox2oy

þþbj;30
o3u��c
ox2oy

þ bj;31
o3v�c
ox2oy

þþbj;32
o3v��c
ox2oy

þ bj;33
o3u�c
oxoy2

þ bj;34
o3u��c
oxoy2

þ bj;35
o3v�c
oxoy2

þ bj;36
o3v��c
oxoy2

þ bj;37
o3u�c
oy3

þ bj;38
o3u��c
oy3

þ bj;39
o3v�c
oy3

þ bj;40
o3v��c
oy3

Þ

þ h4 bj;41
o4u�c
ox4

þ :::þ bj;60
o4v��c
oy4

� �

þ h5 bj;61
o5u�c
ox5

þ :::þ bj;84
o5v��c
oy5

� �

þ h6 bj;85
o6u�c
ox6

þ :::þ bj;112
o6u��c
oy6

� �
þ :::; j ¼ 1; 2

ð101Þ

where the coefficients bj;p (j ¼ 1; 2, p ¼ 1; 2; . . .; 112) can

be expressed as a linear combination of the coefficients

mj;i, �mj;i, kj;i, �kj;i (i ¼ 1; 2; . . .; L) and q1;l, q2;l, q3;l, q4;l
(l ¼ 1; 2; . . .;NG). By zeroing the coefficients bj;i for the

smallest orders of h and using the least square method for

the coefficients bj;i for higher orders of h (similar to the

procedure in Sect. 3.1.1), we can form a local system of

algebraic equations for the calculation of the unknown

coefficients mj;i, �mj;i, kj;i, �kj;i (i ¼ 1; 2; . . .; L) and q1;l, q2;l,

q3;l, q4;l (l ¼ 1; 2; . . .;NG). As shown in our paper [38],

OLTEM with the 9-point stencils and irregular interfaces

provides the second order of accuracy of global solutions

(similar linear finite elements with 9-point stencils).

However, due to the minimization of the leading terms of

the local truncation error, at the same numbers of degrees
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of freedom, OLTEM for heterogeneous materials with

irregular interfaces yields more accurate results than those

obtained by linear and high-order finite elements (up to the

third order) with much wider stencils; see the numerical

examples in our paper [38].

4 OLTEM for Time Independent PDEs:
Poisson, Helmholtz, Elasticity Equations

The development of OLTEM for time-independent PDEs is

different from that for the time-dependent PDEs considered

in the previous Sections. First of all, the stencil equations for

OLTEM are assumed to be ordinary differential equations

for the time-dependent PDEs and algebraic equations for

time-independent PDEs. For the time-dependent PDEs, we

exclude the time derivatives in the expression for the local

truncation error using the original PDEs at the grid, boundary

and interface points before considering a Taylor series

expansion of the local truncation error. For the time-inde-

pendent PDEs, the local truncation error is first expressed as

an algebraic equation without the spatial derivatives.

Therefore, in order to use the time-independent PDEswefirst

expand the local truncation error in a Taylor series and then

we use the original PDEs in order to express one spatial

derivative in terms of other spatial derivatives in the

expression for the Taylor series of the local truncation error.

The derivations of OLTEM for the time-independent Pois-

son equation will be presented in more detail in the next

Section. For other time-independent PDEs we will use sim-

ilarity with derivations for the Poisson equation and will

refer to our papers for more details.

4.1 Poisson Equation

4.1.1 Homogeneous Materials

The Poisson equation in domain X can be written down as:

r2u ¼ f ; ð102Þ

with the Dirichlet boundary conditions

u ¼ gðxÞ ð103Þ

on the boundary Cu and with the Neumann boundary

conditions

nx
ou

ox
þ ny

ou

oy
þ nz

ou

oz
¼ �gðxÞ ð104Þ

on the boundary Cs where u is the field variable, f ðx; tÞ is
the source term, the entire boundary C is C ¼ CsUCu and

nx, ny, nz are the x�, y� and z�components of the outward

unit normal vector, g and �g are the given functions.

The detailed derivation of OLTEM for the Poisson

equation is presented in our papers [1, 22, 23] in the 2-D

and 3-D cases on regular domains and in our papers

[25, 27, 28] in the 2-D and 3-D cases on irregular domains.

Below we present the summary of the results.

The compact stencil equation for OLTEM for the

Poisson equation in the 2-D and 3-D cases can be given for

each internal grid point as follows:

XL

i¼1

kiu
num
i ¼ �f ; ð105Þ

where unumi are the numerical solution for function u at the

grid points, ki are the unknown stencil coefficients to be

determined, �f is the discretized source term; L is the

number of the grid points included into the stencil

equation.

The local truncation errors e for the stencil equations

given by Eq. (105) can obtained by the replacement of the

numerical value of function unumi in Eq. (105) by the exact

value ui at the grid points i (i ¼ 1; 2; . . .; L) as well as by
the addition of the boundary conditions at a small number

NB ¼ M1 þM2 of the selected boundary points with some

unknown coefficients (Lagrange multipliers) q1;i and q2;i,

i ¼ 1; 2; . . .;NB) as the constraints:

e ¼
XL

i¼1

kiui � �f þ
XM1

i¼1

q1;iðgi � uB;iÞ

þ
XM2

i¼1

hq2;i �gi � nx;i
ouB;i
ox

þ ny;i
ouB;i
oy

þ nz;i
ouB;i
oz

� �
;

ð106Þ

where M1 and M2 are the numbers of the selected boundary

points with the Dirichlet and Neumann boundary condi-

tions, respectively; the expressions after q1;i and q2;i are the

boundary conditions at the selected boundary points given

by Eqs. (103) and (104). Therefore, the expressions after

the term �f in Eq. (106) are zero and do not affect the value

of the local truncation error e.

In order to represent the local truncation errors e given by

Eq. (106) as a Taylor series, let us expand the exact solution

and its spatial derivatives at the grid and boundary points into

a Taylor series at small h � 1 in the vicinity of the central

grid point with the coordinates xc, yc, zc using Eqs. (64–66).

In this case we will obtain the expression given by Eq. (67)

with �c ¼ 1 and the coefficients bp (p ¼ 1; 2; . . .) expressed as

a linear combination of the coefficients ki and q1;i, q2;i used in

Eqs. (105)-(106); see our papers [25, 27, 28] in the 2-D and 3-

D cases on irregular domains. We should mention that the

explicit expression for the coefficients bp can be first calcu-

lated just for one internal and one boundary point with the

general expression for the location of these points given

Eqs. (64)-(65). Then, we should consider the summation
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over all internal and boundary points similar to those

expressions given by Eq. (68).

The exact solution uc to the Poisson equation, Eq. (102),

at the central grid point with the coordinates x ¼ xc, y ¼ yc
and z ¼ zc meets the following equations:

o2uc
ox2

¼ � o2uc
oy2

þ o2uc
oz2

� �
þ fc; ð107Þ

oð2þiþjþkÞuc
ox2þioy jozk

¼

� oð2þiþjþkÞuc
oxioyðjþ2Þozk

þ oð2þiþjþkÞuc
oxioy jozðkþ2Þ

 !

þ oðiþjþkÞfc
oxioy jozk

ð108Þ

with i; j; k ¼ 0; 1; 2; 3; 4; . . .. Here, Eq. (108) is directly

obtained by the differentiation of Eq. (107) with respect to

x, y and z. Using Eqs. (107) and (108), we can exclude the

second and higher order partial derivatives of x in Eq. (67),

and the local truncation error in space e can be written

down as:

e ¼ b1uc þ h½b2
ouc
oz

þ b3
ouc
oy

þ b4
ouc
ox

� þ h2½b5
o2uc
oz2

þ b6
o2uc
oyoz

þ b7
o2uc
oy2

þ b8
o2uc
oxoz

þ b9
o2uc
oxoy

�

þ h3½b10
o3uc
oz3

þ b11
o3uc
oyoz2

þ b12
o3uc
oy2oz

þ b13
o3uc
oy3

þ b14
o3uc
oxoz2

þ b15
o3uc

oxoyoz
þ b16

o3uc
oxoy2

�

þ h4½b17
o4uc
oz4

þ :::þ b25
o4uc
oxoy3

� þ h5½b26
o5uc
oz5

þ :::þ b36
o5uc
oxoy4

�

þ h6½b37
o6uc
oz6

þ :::þ b49
o6uc
oxoy5

� þ :::;

ð109Þ

where the coefficients bp (p ¼ 1; 2; . . .) are expressed in

terms of the coefficients ki and q1;i, q2;i; see our papers

[1, 22, 23, 25, 27, 28]. Due to Eqs. (107)-(108), there are no

second and higher order partial derivatives of x in

Eq. (109). We should also mention that substituting

Eqs. (107)-(108) into Eq. (67), the discretized source term �f

in Eq. (105) can be calculated as the addition of the terms

due to the Dirichlet and Neumann boundary conditions at

the selected boundary points
PM1

i¼1 q1;igi þ
PM2

i¼1 hq2;i �gi
plus a Taylor series of non-zero source term f in the

Poisson equation, Eq. (102); see our papers

[1, 22, 23, 25, 27, 28] for the details.

By zeroing the coefficients bp for the smallest orders of

h and using the least square method for the coefficients bp
for higher orders of h (similar to the procedure in

Sect. 3.1.1), we can form a local system of algebraic

equations for the calculation of the unknown coefficients ki

and q1;i, q2;i. As shown in our papers [25, 27, 28], OLTEM

with the 27-point stencils in the 3-D case or the 9-point

stencils in the 2-D case and irregular boundaries provides

the fourth order of accuracy for the Dirichlet boundary

conditions and the third order of accuracy for the Neumann

boundary conditions. Linear finite elements with similar

27-point stencils provides just the second order of accu-

racy. Moreover, due to the minimization of the leading

terms of the local truncation error in Eq. (109), at the same

numbers of degrees of freedom OLTEM yields more

accurate results than those obtained by high-order finite

elements (up to the fourth order) with much wider stencils;

see the numerical examples in our papers [25–28].

We should also mention that for the Poisson equation on

regular domains, OLTEM with conforming Cartesian

meshes provides a higher accuracy on square meshes than

that on rectangular meshes. For example, OLTEM with the

27-point stencils in the 3-D case or the 9-point stencils in

the 2-D case yields the 6-th and 4-th orders of accuracy on

uniform square (with the same mesh aspect ratios along the

Cartesian axes) and rectangular meshes, respectively (see

our papers [22, 25]). OLTEM with wider 5� 5 ¼ 25-point

stencils in the 2-D case (similar to the stencils for quadratic

finite elements) provides 18-th and 14-th orders of accu-

racy on uniform square (with the same mesh aspect ratios

along the Cartesian axes) and rectangular meshes, respec-

tively (see our paper [1]).

4.1.2 Heterogeneous Materials

The Poisson equation in a composite domain X ¼ [Xl

(l ¼ 1; 2; . . .; �N where �N is the total number of subdo-

mains) can be written down in each subdomain Xl as

follows:

elr2ul ¼ fl; ð110Þ

where el is a constant in each subdomain Xl and can be

discontinuous across the interfaces between subdomains Xl

(l ¼ 1; 2; . . .; �N), flðxÞ is the source term that can be also

discontinuous across the interfaces between subdomains

Xl, ul is the field variable. We also assume that the func-

tions ul and fl are sufficiently smooth in each subdomain

Xl. At the interface G between any two subdomains, the

following interface conditions are applied:

u�G � u��G ¼ d1; e� nx
ou�G
ox

þ ny
ou�G
oy

þ nz
ou�G
oz

� �

� e�� nx
ou��G
ox

þ ny
ou��G
oy

þ nz
ou��G
oz

� �
¼ d2;

ð111Þ

where d1ðx; y; zÞ and d2ðx; y; zÞ are the given jumps for the

function and for the flux across the interface, nx, ny and nz
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are the x�, y- and z-components of the normal vector at the

interface, e� (e��) is the corresponding material constant,

the symbols � and �� correspond to the quantities on the

opposite sides from the interface for the corresponding

subdomains Xl. For zero jumps d1 ¼ d2 ¼ 0 the functions

ul are continuous across the interfaces but can have the

discontinuous spatial derivatives across the interfaces.

The detailed derivation of OLTEM for heterogeneous

materials with irregular interfaces in the 2-D and 3-D cases

is presented in our papers [35, 36]. Below we present the

summary of the results.

Similar to the stencil given by Eq. (84) for the wave

(heat) equation, the compact OLTEM stencil equation for

the 2-D and 3-D Poisson equation for each internal grid

point located far from the boundary can be given as

follows:

XL

p¼1

kp½apu�;nump þ ð1� apÞu��;nump � ¼ �f ; ð112Þ

where the coefficients ap ¼ 1 if the grid point p belongs to

material � and ap ¼ 0 if the grid point p belongs to another

material �� (i.e., only one variable u�;nump or u��;nump

(i ¼ 1; 2; . . .; L) is included into Eq. (112) for each grid

point. As can be seen, the stencil equation, Eq. (112),

includes the same number of the stencil coefficients kp
(p ¼ 1; 2; . . .; L) as that for the homogeneous case,

Eq. (105). The derivation of OLTEM for heterogeneous

materials in the 2-D and 3-D cases includes the use of the

interface conditions at a small number NG of interface

points along a part of the interface located within the

corresponding compact cell. The coordinates of the selec-

ted NG points on the interface (see Fig. 6 ) are described

with respect to the stencil central grid point by Eq. (85).

One of the ideas of the new approach is to include the

interface conditions for the exact solution at a small

number NG of the interface points in the expression for the

local truncation error of Eq. (112) as the constraints:

e ¼
XL

p¼1

kp½apu�p þ ð1� apÞu��p � � �f

þ f
XNG

j¼1

q1;jðu�G;j � u��G;j � d1Þ

þ
XNG

j¼1

hq2;j½e�ðnx;j
ou�G;j
ox

þ ny;j
ou�G;j
oy

þ nz;j

ou�G;j
oz

Þ � e��ðnx;j
ou��G;j
ox

þ ny;j

ou��G;j
oy

þ nz;j
ou��G;j
oz

Þ � d2�g;

ð113Þ

where nx;j, ny;j and nz;j are the x-, y-, and z-components of

the normal vectors at the NG selected interface points (e.g.,

see Fig. 6), the coefficients q1;j and q2;j (j ¼ 1; 2; . . .;NG)

are unknown and are used for the minimization of the local

truncation error in Eq. (113), the expressions in parenthesis

after q1;j and q2;j are the interface conditions at the NG

selected interface points. Therefore, the expression in the

curly brackets in Eq. (113) is zero (see Eq. (111)) and does

not affect the value of the local truncation error e. The

addition of the interface conditions at NG points in

Eq. (113) with the unknown coefficients q1;j, q2;j
(j ¼ 1; 2; . . .;NG) allows us to couple functions u�p and u��p
as well as to get a high accuracy of the proposed method

for general geometry of interfaces; see below.

In order to represent the local truncation error e as a

Taylor series, let us expand the exact solution at the grid

and selected interface points in Eq. (113) into a Taylor

series at small h � 1 in the vicinity of the central grid

point with the coordinates x ¼ xc, y ¼ yc and z ¼ zc using

Eq. (66). The exact solution u�p and u��p to the Poisson

equations, Eq. (110), at the central grid point x ¼ xc, y ¼ yc
and z ¼ zc meets the following equations:

o2u�c
ox2

¼ � o2u�c
oy2

� o2u�c
oz2

þ 1

e�
f �;

o2u��c
ox2

¼ � o2u��c
oy2

� o2u��c
oz2

þ 1

e��
f ��;

ð114Þ

oðiþjþtþ2Þu�c
oztoyioxð2þjÞ

¼ � oðiþjþtþ2Þu�c
oztoyðiþ2Þox j

� oðiþjþtþ2Þu�c
ozðtþ2Þoyiox j

þ 1

e�

oðiþjþtÞf �

oztoyiox j
;

oðiþjþtþ2Þu��c
oztoyioxð2þjÞ ¼ � oðiþjþtþ2Þu��c

oztoyðiþ2Þox j

� oðiþjþtþ2Þu��c
ozðtþ2Þoyiox j

þ 1

e��

oðiþjþtÞf ��

oztoyiox j

ð115Þ

with i; j; t ¼ 0; 1; 2; 3; 4; . . .. Equation (115) is obtained by

the differentiation of Eq. (114) with respect to x, y and z.

Inserting Eqs. (66), (114), (115) into Eq. (113) we get the

discretized source term �f (see our papers [35, 36]) as well

as the following local truncation error in space e:
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e ¼ b1u
�
c þ b2u

��
c þ hðb3

ou�c
oz

þ b4
ou��c
oz

þ b5
ou�c
oy

þ b6
ou��c
oy

þ b7
ou�c
ox

þ b8
ou��c
ox

Þ

þ h2ðb9
o2u�c
oz2

þ b10
o2u��c
oz2

þ b11
o3u�c
ozoy2

þ b12
o3u��c
ozoy2

þ b13
o2u�c
oy2

þ b14
o2u��c
oy2

þ b15
o3u�c
ozox2

þ b16
o3u��c
ozox2

þ b17
o2u�c
oxoy

þ b18
o2u��c
oxoy

Þ

þ h3ðb19
o3u�c
oz3

þ b20
o3u��c
oz3

þ b21
o3u�c
oz2oy

þ b22
o3u��c
oz2oy

þ b23
o3u�c
ozoy2

þ b24
o3u��c
ozoy2

b25
o3u�c
oy3

þ b26
o3u��c
oy3

þ b27
o3u�c
oz2ox

þ b28
o3u��c
oz2ox

þ b29
o3u�c
ozoyox

þ b30
o3u��c
ozoyox

þ b31
o3u�c
oxoy2

þ b32
o3u��c
oxoy2

Þ

þ h4ðb33
o4u�c
oz4

þ b34
o4u��c
oz4

þ :::

þ b49
o4u�c
oxoy3

þ b50
o4u��c
oxoy3

Þ

þ h5ðb51
o5u�c
oz5

þ b52
o5u��c
oz5

þ :::

þ b71
o5u�c
oxoy4

þ b72
o5u��c
oxoy4

Þ

þ h6ðb73
o6u�c
oz6

þ b74
o6u��c
oz6

þ :::

þ b97
o6u�c
oxoy5

þ b98
o6u��c
oxoy5

Þ þ :::

ð116Þ

where the coefficients bp (p ¼ 1; 2; . . .) are expressed in

terms of the coefficients ki and q1;j, q2;j ( i ¼ 1; 2; . . .; L,

j ¼ 1; 2; . . .;NG). We should mention that the expression

for the local truncation error, Eq. (116), includes only the

first order derivatives with respect to x (the higher order

derivatives with respect to x are excluded with the help of

Eqs. (114) - (115)).

By zeroing the coefficients bp for the smallest orders of h and

using the least square method for the coefficients bp for higher

orders of h (similar to the procedure in Sect. 3.1.1), we can form

a local system of algebraic equations for the calculation of the

unknown coefficients ki and q1;j, q2;j. As shown in our papers

[35, 36], OLTEMwith the 27-point stencils in the 3-D case and

the 9-point stencils in the 2-D case (similar to those for linear

finite elements) and irregular interfaces provides the third order

of accuracy. However, due to the minimization of the leading

terms of the local truncation error in Eq. (116), at the same

numbers of degrees of freedom OLTEM yields more accurate

results than those obtained by high-order finite elements (up to

the sixth order) with much wider stencils; see the numerical

examples in our papers [35, 36]. OLTEM with wider

5� 5 ¼ 25-point stencils for heterogeneous materials with

irregular interfaces in the 2-D case yields the 11-th order of

accuracy with unfitted Cartesian meshes (the increase by 8

orders compared to that forquadraticfinite elementswith similar

25-point stencils); see our paper [35].

4.2 Helmholtz Equation

The Helmholtz equation as well as its simple modification

called the screened Poisson equation on an irregular

domain X can be written down as:

r2uþ ab2u ¼ f ; ð117Þ

where a ¼ 1 for the Helmholtz equation, a ¼ �1 for the

screened Poisson equation, b is the wave number for the

Helmholtz equation, f(x, y, z) is the loading term, u(x, y, z)

is the field variable. The Dirichlet boundary conditions
u ¼ gðxÞ ð118Þ

on the boundary Cu and the Neumann boundary conditions

nx
ou

ox
þ ny

ou

oy
þ nz

ou

oz
¼ �gðxÞ ð119Þ

on the boundary Cs are applied where the entire boundary

C is C ¼ CsUCu. These boundary conditions given by

Eqs. (118) and (119) are similar to those for the Poisson

equation; see Eqs. (103) and (104).

The detailed derivation of OLTEM for the Helmholtz

equation is presented in our papers [29, 30] in the 2-D and

3-D cases on irregular domains. Below we present the

summary of the results.

The compact stencil equation for OLTEM in the 2-D

and 3-D cases can be uniformly given for each internal grid

point as follows:

XL

i¼1

ðab2h2miu
num
i þ kiu

num
i Þ ¼ �f ; ð120Þ

where mi, ki are the unknown stencil coefficients to be

determined. It is interesting to mention that the left-hand
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side of Eq. (120) can be written in terms of one stencil

coefficient �kiðhÞ as follows:
XL

i¼1

ðab2h2miu
num
i þ kiu

num
i Þ ¼

XL

i¼1

�kiðhÞunumi ; ð121Þ

with

�kiðhÞ ¼ ðab2h2mi þ kiÞ; ð122Þ

where �kiðhÞ is a polynomial function of the mesh size

h (similar to the stencil coefficients for inhomogeneous

materials in Sect. 3.1.2).

The local truncation errors e for the stencil equation,

Eq. (120), can obtained by the replacement of the numer-

ical value of function unumi in Eq. (120) by the exact value

ui at the grid points i (i ¼ 1; 2; . . .; L) as well as by the

addition of the boundary conditions at a small number

NB ¼ M1 þM2 of the selected boundary points with some

unknown coefficients (Lagrange multipliers) q1;i, q2;i, q3;i
and q4;i, i ¼ 1; 2; . . .;NB) as the constraints:

e ¼
XL

i¼1

½ðab2h2mi þ kiÞui� � �f þ
XM1

i¼1

½ðab2h2q1;i þ q2;iÞðgi � uB;iÞ�

þ
XM2

i¼1

fðab2h3q3;i þ hq4;iÞ½�gi � ðnx;i
ouB;i
ox

þ ny;i
ouB;i
oy

þ nz;i
ouB;i
oz

Þ�g

ð123Þ

where M1 and M2 are the numbers of the selected boundary

points with the Dirichlet and Neumann boundary condi-

tions, respectively; the expressions after q2;i and q4;i are the

boundary conditions at the selected boundary points given

by Eqs. (118) and (119). Therefore, the expressions after

the term �f in Eq. (123) are zero and do not affect the value

of the local truncation error e. Similar to the Poisson

equation in the previous Sect. 4.1.1, we expand the exact

solution and its spatial derivatives at the grid and boundary

points into a Taylor series at small h � 1 in the vicinity of

the central grid point with the coordinates xc, yc, zc using

Eqs. (64)-(66). The exact solution uc to Eqs. (117) at the

stencil central grid point with the coordinates x ¼ xc, y ¼
yc and z ¼ zc meets the following equations:

o2uc
ox2

¼ � o2uc
oy2

� o2uc
oz2

� ab2uc þ fc; ð124Þ

oðiþjþkþ2Þuc
oxiþ2oy jozk

¼ � oðiþjþkþ2Þuc
oxioyjþ2ozk

� oðiþjþkþ2Þuc
oxioy jozkþ2

� ab2
oðiþjþkÞuc
oxioy jozk

þ oðiþjþkÞfc
oxioy jozk

ð125Þ

with i; j; k ¼ 0; 1; 2; 3; 4; . . .. Here, Eq. (125) is directly

obtained by the differentiation of Eq. (124) with respect to

x, y and z. Similar to the derivation of a Taylor series of the

local truncation error e for the Poisson equation in the

previous Sect. 4.1.1, a Taylor series of the local truncation

error e for the Helmholtz equation can be obtained in the

following form:

e ¼ b1uc þ h b2
ouc
ox

þ b3
ouc
oy

þ b4
ouc
oz

� �

þ h2½b5
o2uc
oxoy

þ b6
o2uc
oxoz

þ b7
o2uc
oy2

þ b8
o2uc
oyoz

þ b9
o2uc
oz2

þ b10ab
2uc�

þ h3½b11
o3uc
oxoy2

þ b12
o3uc

oxoyoz

þ b13
o3uc
oxoz2

þ b14
o3uc
oy3

þ b15
o3uc
oy2oz

þ b16
o3uc
oyoz2

þ b17
o3uc
oz3

þ b18ab
2 ouc
ox

þ b19ab
2 ouc
oy

þ b20ab
2 ouc
oz

�

þ h4½b21
o4uc
oxoy3

þ b22
o4uc

oxoy2oz

þ b23
o4uc

oxoyoz2
þ b24

o4uc
oxoz3

þ b25
o4uc
oy4

þ b26
o4uc
oy3oz

þ b27
o4uc
oy2oz2

þ b28
o4uc
oyoz3

þ b29
o4uc
oz4

þ b30ab
2 o

2uc
oxoy

þ b31ab
2 o

2uc
oxoz

þ b32ab
2 o

2uc
oy2

þ b33ab
2 o

2uc
oyoz

þ b34ab
2 o

2uc
oz2

þ b35b
4uc� þ h5½b36

o5uc
oxoy4

þ :::

þ b56b
4 o

5uc
oz

�

þ h6 b57
o6uc
oxoy5

þ :::þ b84a
3b6uc

� �

þ h7½b85
o7uc
oxoy6

þ :::þ b120a
3b6

ouc
oz

�

þ h8 b121
o8uc
oxoy7

þ :::þ b165b
8uc

� �
þ Oðh9Þ;

ð126Þ

where the coefficients bp (p ¼ 1; 2; :. . .165) are expressed

as a linear combination of the coefficients mi, ki, q1;i, q2;i,

q3;i and q4;i used in Eqs. (120) and (123); see our papers

[29, 30] for the 2-D and 3-D cases on irregular domains.

Here we should mention that the expression for the local
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truncation error, Eq. (126), includes the first-order deriva-

tives with respect to x only (the higher order derivatives

with respect to x are excluded with the help of Eqs. (124) -

(125)).

By zeroing the coefficients bp for the smallest orders of

h and using the least square method for the coefficients bp
for higher orders of h (similar to the procedure in

Sect. 3.1.1), we can form a local system of algebraic

equations for the calculation of the unknown coefficients

mi, ki, q1;i, q2;i, q3;i and q4;i. As shown in our papers

[29, 30], OLTEM with the 27-point stencils in the 3-D case

(the 9-point stencils in the 2-D case) and irregular bound-

aries provides the fourth order of accuracy for the Dirichlet

boundary conditions and the third order of accuracy for the

Neumann boundary conditions. Linear finite elements with

similar 27-point stencils provides just the second order of

accuracy. Moreover, due to the minimization of the leading

terms of the local truncation error in Eq. (126), at the same

numbers of degrees of freedom OLTEM yields more

accurate results than those obtained by high-order finite

elements (up to the fourth order) with much wider stencils;

see the numerical examples in our papers [29, 30].

4.3 Elasticity Equations

Currently, we have developed OLTEM for the elastostatics

equations in the 2-D case; see our papers [2, 3, 31, 37]).

4.3.1 Homogeneous Materials

The corresponding 2-D elastostatics PDEs with constant

coefficients in domain X can written down as:

lr2uþ ðlþ kÞ o2u

ox2
þ o2v

oxoy

� �
þ fx ¼ 0;

lr2vþ ðlþ kÞ o2v

oy2
þ o2u

oxoy

� �
þ fy ¼ 0;

ð127Þ

with the Dirichlet boundary conditions

u ¼ g1ðxÞ; v ¼ g2ðxÞ ð128Þ

on the boundary Cu and with the Neumann boundary

conditions

tx ¼ nx ðkþ 2lÞ ou
ox

þ k
ov

oy

� �
þ nylð

ou

oy
þ ov

ox
Þ ¼ �g1ðxÞ;

ty ¼ ny ðkþ 2lÞ ov
oy

þ k
ou

ox

� �
þ nxlð

ou

oy
þ ov

ox
Þ ¼ �g2ðxÞ;

ð129Þ

on the boundary Cs where the entire boundary C is

C ¼ CsUCu. In Eqs. (127–129), u ¼ uðx; yÞ and v ¼ vðx; yÞ

are the x� and y�components of the displacement vector,

fx ¼ fxðx; yÞ and fy ¼ fyðx; yÞ are the x� and y�components

of the body forces, tx and tyÞ are the x� and y�components

of the tractive forces, nx, ny are the x� and y�components

of the outward unit normal vector, gi and �gi (i ¼ 1; 2) are

the given functions, l and k are the Lam�e coefficients that

can be also expressed in terms of Young’s modulus E and

Poisson’s ratio m as l ¼ E
2ð1þmÞ and k ¼ Em

ð1þmÞð1�2mÞ.

The detailed derivation of OLTEM for the elastostatics

equations is presented in our paper [2] in the 2-D case on

regular domains and in our paper [31] in the 2-D case on

irregular domains. Below we present the summary of the

results.

According to OLTEM we assume the following general

form of two stencil equations for each grid point after the

space discretization of Eq. (127) with a rectangular

Cartesian mesh:

XL

i¼1

kj;iu
num
i þ

XL

i¼1

�kj;iv
num
i

¼ �f j; j ¼ 1; 2;

ð130Þ

where unumi , vnumi are the numerical solution for the dis-

placements u, v at the i�th grid point, kj;i, �kj;i are the

unknown stencil coefficients to be determined, L is the

number of the grid points included into the stencil equa-

tion, �f j are the components of the discretized loading term.

The local truncation errors ej for the stencil equations

given by Eq. (130) can obtained by the replacement of the

numerical values of the displacements unumi , vnumi in

Eq. (130) by the exact values ui, vi at the grid points i

(i ¼ 1; 2; . . .; L) as well as by the addition of the boundary

conditions at a small number NB ¼ M1 þM2 of the selec-

ted boundary points with some unknown coefficients

(Lagrange multipliers) qm;i and �qm;i (m ¼ 1; 2,

i ¼ 1; 2; . . .;NB) as the constraints:

ej ¼
XL

i¼1

kj;iui þ
XL

i¼1

�kj;ivi

� �fj þ
XM1

i¼1

q1;iðg1;i � uB;iÞ þ
XM1

i¼1

�q1;iðg2;i � vB;iÞ

þ h
XM2

i¼1

q2;ið�g1;i � tx;B;iÞ þ
XM2

i¼1

�q2;ið�g2;i � ty;B;iÞ
" #

;

ð131Þ

where M1 and M2 are the numbers of the selected boundary

points with the Dirichlet and Neumann boundary condi-

tions, respectively; the expressions after q1;i, �q1;i and q2;i,

�q2;i are the Dirichlet and Neumann boundary conditions at

the selected boundary points given by Eqs. (128) and
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(129)). Therefore, the expressions after the term �fj in

Eq. (131) are zero and do not affect the value of the local

truncation error ej. Similar to the Poisson equation in the

previous Sect. 4.1.1, we expand the exact solution for the

displacements and their spatial derivatives at the grid and

boundary points into a Taylor series at small h � 1 in the

vicinity of the central grid point with the coordinates xc, yc
using Eqs. (64)-(66). The exact solution for the displace-

ments uc and vc of the elasticity equations, Eq. (127), at the

stencil central grid point with the coordinates x ¼ xc and

y ¼ yc satisfies the following equations:

o2uc
ox2

¼ � l
ð2lþ kÞ

o2uc
oy2

þ ðlþ kÞ
ð2lþ kÞ

o2vc
oxoy

þ 1

ð2lþ kÞ fc;x
� �

;

ð132Þ

o2vc
ox2

¼ � ð2lþ kÞ
l

o2vc
oy2

þ ðlþ kÞ
l

o2uc
oxoy

þ 1

l
fc;y

� �
;

ð133Þ
oð2þiþjÞuc
oxð2þiÞoy j

¼ � l
ð2lþ kÞ

oð2þiþjÞuc
oxioyð2þjÞ þ

ðlþ kÞ
ð2lþ kÞ

oð2þiþjÞvc
oxðiþ1Þoyðjþ1Þ þ

1

ð2lþ kÞ
oðiþjÞfc;x
oxioy j

" #
;

ð134Þ

oð2þiþjÞvc
oxð2þiÞoy j

¼ � ð2lþ kÞ
l

oð2þiþjÞvc
oxioyð2þjÞ þ

ðlþ kÞ
l

oð2þiþjÞuc
oxðiþ1Þoyðjþ1Þ þ

1

l
oðiþjÞfc;y
oxioy j

" #
;

ð135Þ

with i; j ¼ 0; 1; 2; 3; 4; . . . as well as fc;x ¼ fxðxc; ycÞ and

fc;y ¼ fyðxc; ycÞ. We should mention that Eqs. (132) and

(133) directly follow from the elasticity equations,

Eq. (127), while Eqs. (134) and (135) are obtained by the

differentiation of Eqs. (132) and (133) with respect to oi

oxi

and oj

oyj.

Remark 4 In Eqs. (132) and (133), we have expressed the

second x derivatives in terms of the second y derivatives

and the second mixed derivatives. However, we can simi-

larly express the second y derivatives in terms of the sec-

ond x derivatives and the second mixed derivatives. This

latter case (with the corresponding modifications of

Eqs. (134) and (135)) will be used for the calculation of the

local truncation error and the stencil coefficients for the

second stencil equation; see below.

Similar to the derivation of a Taylor series of the local

truncation error e for the Poisson equation in the previous

Sect. 4.1.1, a Taylor series of the local truncation error e1
for the first stencil (j ¼ 1) for the elasticity equations can

be obtained in the following form:

e1 ¼ b1;1uc þ b1;2vc
� 	

þ h b1;3
ouc
ox

�

þb1;4
ovc
ox

þ b1;5
ouc
oy

þ b1;6
ovc
oy

�

þ h2 b1;7
o2uc
oxoy

þ b1;8

�

o2vc
oxoy

þ b1;9
o2uc
oy2

þb1;10
o2vc
oy2

�

þ h3 b1;11
o3uc
oxoy2

þ b1;12

�

o3vc
oxoy2

þ b1;13
o3uc
oy3

þb1;14
o3vc
oy3

�

þ h4 b1;15
o4uc
oxoy3

þ b1;16

�

o4vc
oxoy3

þb1;17
o4uc
oy4

þ b1;18
o4vc
oy4

�

þ h5 b1;19
o5uc
oxoy4

þ b1;20

�

o5vc
oxoy4

þ b1;21
o5uc
oy5

þ b1;22
o5vc
oy5

�

þ h6 b1;23
o6uc
oxoy5

þ b1;24

�

o6vc
oxoy5

þb1;25
o6uc
oy6

þ b1;26
o6vc
oy6

�
þ Oðh7Þ

ð136Þ

where the coefficients b1;p (p ¼ 1; 2; . . .) are expressed as a

linear combination of the coefficients k1;i, �k1;i, q1;i, �q1;i, q2;i
and �q2;i used in Eqs. (130) and (131); see our paper [31].

Here we should mention that the expression for the local

truncation error, Eq. (136), includes only the first-order

derivatives with respect to x (the higher order derivatives

with respect to x are excluded with the help of the elasticity

equations, Eqs. (132)-(135)). A similar expression can be

derived for the local truncation error e2 for the second

stencil; see also Remark 4.

By zeroing the coefficients bj;i for the smallest orders of

h and using the least square method for the coefficients bj;i
for higher orders of h (similar to the procedure in

Sect. 3.1.1), we can form a local system of algebraic

equations for the calculation of the unknown coefficients
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kj;i, �kj;i and q1;i, �q1;i, q2;i, �q2;i. As shown in our paper [31],

OLTEM with the 9-point stencils and irregular boundaries

provides the second order of accuracy for global solutions

(similar to linear finite elements with the 9-point stencils).

However, due to the minimization of the leading terms of

the local truncation error, at the same numbers of degrees

of freedom OLTEM on irregular domains yields more

accurate results than those obtained by linear and high-

order finite elements (up to the third order) with much

wider stencils; see the numerical examples in our paper

[31]. We should also mention that as shown in our paper

[2], OLTEM with wider 5� 5 ¼ 25-point stencils in the 2-

D case provides the 10-th order of accuracy on regular

domains with conforming Cartesian meshes, i.e for elas-

tostatics the optimal accuracy for the 5� 5 ¼ 25-point

stencils is 7 orders higher than that for quadratic finite

elements with similar stencils.

4.3.2 Heterogeneous Materials

The 2-D elastostatics equations in a composite domain X ¼
[Xl (l ¼ 1; 2; . . .; �N where �N is the total number of sub-

domains) can be written down in each subdomain Xl as

follows:

llr2ul þ ðll þ klÞ
o2ul
ox2

þ o2vl
oxoy

� �
þ f lx ¼ 0;

llr2vl þ ðll þ klÞ
o2vl
oy2

þ o2ul
oxoy

� �
þ f ly ¼ 0;

ð137Þ

where ul ¼ ulðx; yÞ and vl ¼ vlðx; yÞ are the x� and

y�components of the displacement vector, f lx ¼ f lxðx; yÞ and
f ly ¼ f lyðx; yÞ are the x� and y�components of the body

forces that can be discontinuous across interfaces. We also

assume that the functions ul and fl are sufficiently smooth

in each subdomain Xl. At the interface G between any two

subdomains, the following interface conditions are applied:

u�G � u��G ¼ d1; v�G � v��G ¼ �d1; ð138Þ

t�x;G � t��x;G ¼ d2; t�y;G � t��y;G ¼ �d2; ð139Þ

where d1ðx; yÞ jðx;yÞ2G, �d1ðx; yÞ jðx;yÞ2G and d2ðx; yÞ jðx;yÞ2G,
�d2ðx; yÞ jðx;yÞ2G are the given jumps in the displacements

and in the tractive forces across the interface, the symbols �
and �� correspond to the quantities on the opposite sides

from the interface for the corresponding subdomains Xl.

The x� and y�components of the tractive forces tx;G and

ty;G can be expressed in terms of the displacements by

Eq. (90).

The detailed derivation of OLTEM for heterogeneous

materials with irregular interfaces in the 2-D case is pre-

sented in our papers [3, 37]. Below we present the sum-

mary of the results.

Similar to the homogeneous materials in the previous

section 4.3.1 (see also Eq. (130)), for heterogeneous

materials with an interface we assume the following gen-

eral form of two stencil equations for each grid point after

the space discretization of Eq. (137) with a rectangular

Cartesian mesh:

XL

p¼1

kj;p apu
�;num
p þ ð1� apÞu��;nump

h i

þ
XL

p¼1

�kj;p apv
�;num
p þ ð1� apÞv��;nump

h i
¼ �fj; j ¼ 1; 2;

ð140Þ

where the coefficients ap ¼ 1 if the grid point p belongs to

material � and ap ¼ 0 if the grid point p belongs to another

material �� (i.e., only two variables u�;nump , v�;nump or u��;nump ,

v��;nump are included into Eq. (140) for each grid point, e.g.,

see Fig. 5a with a1 ¼ a2 ¼ a3 ¼ a5 ¼ a6 ¼ 1 and

a4 ¼ a7 ¼ a8 ¼ a9 ¼ 0). As can be seen, the stencil

equations, Eq. (140), for heterogeneous materials include

the same number of the stencil coefficients kj;p and �kj;p
(p ¼ 1; 2; . . .; L) as that for the homogeneous materials,

Eq. (130).

The local truncation error ej for the stencil equations,

Eq. (140), can be obtained by the replacement of the

numerical solution for u�;num, v�;num, u��;num, v��;num in

Eq. (140) by the exact solution u�, v�, u��, v�� and by the

addition of the interface conditions, Eqs. (138)-(139), at a

small number NG of the selected interface point to the

obtained expression as the constraints (see the previous

Sect. 4.1.2 for the Poisson equation):

ej ¼
XL

p¼1

kj;p apu
�
p þ ð1� apÞu��p

h i
þ
XL

p¼1

�kj;p apv
�
p þ ð1� apÞv��p

h i
� �fj

þ
XNG

m¼1

q1;mðu�G;m � u��G;m � d1Þ þ
XNG

m¼1

�q1;mðv�G;m � v��G;m � �d1Þ
"

þ
XNG

m¼1

hq2;m t�xðG;mÞ � t��xðG;mÞ � d2
� 


þ
XNG

m¼1

h�q2;m t�yðG;mÞ � t��yðG;mÞ � �d2
� 
#

; j ¼ 1; 2;

ð141Þ

where the additional unknown coefficients q1;m, �q1;m, q2;m,
�q2;m (m ¼ 1; 2; . . .;NG) are related to the interface condi-

tions (see Eqs. (138)-(139)) and should be determined from

the minimization of the local truncation error. As shown in

our paper [38], NG ¼ 5 uniformly spaced interface points

can be used with the 9-point stencils.

Similar to the derivation of a Taylor series of the local

truncation error e for the Poisson equation in the previous

Sect. 4.1.2, a Taylor series of the local truncation error e1
for the first stencil (j ¼ 1) for the elasticity equations can

be obtained in the following form:
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e1 ¼ b1;1u
�
c þ b1;2v

�
c þ b1;3u

��
c þ b1;4v

��
c

þ h b1;5
ou�c
ox

þ b1;6
ov�c
ox

þ b1;7

�
ou��c
ox

þ b1;8
ov��c
ox

þ b1;9
ou�c
oy

þ b1;10
ov�c
oy

þb1;11
ou��c
oy

þ b1;12
ov��c
oy

�

þ h2 b1;13
o2u�c
oxoy

þ b1;14
o2v�c
oxoy

�
þ b1;15

o2u��c
oxoy

þ b1;16
o2v��c
oxoy

þ b1;17
o2u�c
oy2

þ b1;18
o2v�c
oy2

þb1;19
o2u��c
oy2

þ b1;20
o2v��c
oy2

�

þ h3 b1;21
o3u�c
oxoy2

þ :::

�
þb1;28

o3v��c
oy3

�

þ h4 b1;29
o4u�c
oxoy3

þ :::þ b1;36
o4v��c
oy4

� �

þ h5 b1;37
o5u�c
oxoy4

þ :::þ b1;44
o5v��c
oy5

� �

þ h6 b1;45
o6u�c
oxoy5

þ :::þ b1;52
o6v��c
oy6

� �

þ h7 b1;53
o7u�c
oxoy6

þ :::þ b1;60
o7v��c
oy7

� �

þ h8 b1;61
o8u�c
oxoy7

þ :::þ b1;68
o8v��c
oy8

� �

þ h9 b1;69
o9u�c
oxoy8

þ :::þ b1;76
o9v��c
oy9

� �

þ h10 b1;77
o10u�c
oxoy9

þ :::þ b1;84
o10v��c
oy10

� �

þ h11 b1;85
o11u�c
oxoy10

þ :::þ b1;92
o11v��c
oy11

� �

þ h12 b1;93
o12u�c
oxoy11

þ :::þ b1;100
o12v��c
oy12

� �
þ Oðh13Þ

ð142Þ

where the coefficients bp (p ¼ 1; 2; . . .) are expressed as a

linear combination of the coefficients ki, �k1;i, q1;i, �q1;i, q2;i
and �q2;i used in Eqs. (140) and (141); see our papers [3, 37]

for the 2-D case with irregular interfaces. Here we should

mention that the expression for the local truncation error,

Eq. (142), includes only the first-order derivatives with

respect to x (the higher order derivatives with respect to

x are excluded with the help of the elasticity equations,

Eq. (137).

By zeroing the coefficients bj;i for the smallest orders of

h and using the least square method for the coefficients bj;i
for higher orders of h (similar to the procedure in

Sect. 3.1.1), we can form a local system of algebraic

equations for the calculation of the unknown coefficients

kj;i, �kj;i and q1;i, �q1;i, q2;i, �q2;i. As shown in our paper [37],

OLTEM with the 9-point stencils and irregular interfaces

provides the second order of accuracy of global solutions

(similar to linear finite elements with the 9-point stencils).

However, due to the minimization of the leading terms of

the local truncation error, at the same numbers of degrees

of freedom OLTEM on irregular domains yields more

accurate results than those obtained by linear and high-

order finite elements (up to the third order) with much

wider stencils; see the numerical examples in our paper

[37]. We should also mention that as shown in our paper

[3], OLTEM in the 2-D case with wider 5� 5 ¼ 25-point

stencils provides the 10-th order of accuracy for hetero-

geneous materials with irregular interfaces and unfitted

Cartesian meshes, i.e for the elastostatics the optimal

accuracy OLTEM with the 5� 5 ¼ 25-point stencils is 7

orders higher than that for quadratic finite elements with

similar stencils.

5 OLTEM for Post-processing

For the analysis of engineering problems the calculation of

the spatial derivatives of primary functions are necessary in

many applications, e.g., fluxes for heat transfer problems or

stresses for solid mechanics. Therefore, after the calcula-

tion of the numerical solution for the primary functions,

many computer codes include special post-processing

procedures for the calculation of the spatial derivatives of

the numerical solution for the primary functions. Here we

show in detail the application of OLTEM and PDEs to the

calculation of the spatial derivatives at the grid points for

the 3-D Poisson equation as well as to briefly introduce the

calculation of stresses for the time-independent and time-

dependent elasticity equations. The cases of heterogeneous

materials with irregular interfaces will be considered. The

application of PDEs for post-processing significantly

increases the accuracy of the numerical results for the

spatial derivatives.

5.1 3-D Poisson Equation for Heterogeneous
Materials with Irregular Interfaces

Here we consider the calculation of the spatial derivatives
ounum

ox , ounum

oy and ounum

oz at the grid points for the 3-D Poisson

equation with interfaces; see the previous Sect. 4.1.2 as

well as our paper [36]. Because the calculations of these

three derivatives are similar then we show the procedure

for the calculation of ounum

ox .

The compact stencil for the calculation of ounum

ox at the

stencil central point with the coordinates xc, yc and zc (see

Fig. 6 with the central point c ¼ 14) can be selected similar

to Eq. (112) as follows:

� ac
ou�;numc

ox
þ ð1� acÞ

ou��;numc

ox

� �
h

þ
XL

p¼1

kp apu
�;num
p þ ð1� apÞu��;nump

h i
¼ �f ;

ð143Þ

where L ¼ 27 for the 27-point stencils (see Fig. 6), the
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explanation of the coefficients ai (i ¼ 1; 2; . . .; L) is given

in Sect. 4.1.2. The local truncation error e for Eq. (143) can

be obtained by the replacement of the numerical solution

u�;nump and u��;nump in Eq. (143) by the exact solution u�p and

u��p :

e ¼ � ac
ou�c
ox

þ ð1� acÞ
ou��c
ox

� �
h

þ
XL

p¼1

kp apu
�
p þ ð1� apÞu��p

h i
� �f :

ð144Þ

Similar to Eq. (113) in Sect. 4.1.2, we include the interface

conditions for the exact solution at the same small number

NG of the interface points in the expression for the local

truncation error in Eq. (144) as the constraints:

e ¼ �½ac
ou�c
ox

þ ð1� acÞ
ou��c
ox

�h

þ
XL

p¼1

kp½apu�p þ ð1� apÞu��p �

� �f þ f
XNG

j¼1

q1;jðu�G;j � u��G;j � d1Þ

þ
XNG

j¼1

hq2;j½e�ðnx;j
ou�G;j
ox

þ ny;j
ou�G;j
oy

þ nz;j
ou�G;j
oz

Þ � e��ðnx;j
ou��G;j
ox

þ ny;j

ou��G;j
oy

þ nz;j
ou��G;j
oz

Þ � d2�g;

ð145Þ

see the corresponding explanations in Sect. 4.1.2. Similar

to Sect. 4.1.2, the coefficients ki and q1;j, q2;j
(i ¼ 1; 2; . . .; L, j ¼ 1; 2; . . .;NG) are calculated by the

minimization of the local truncation error e given by

Eq. (145); see our paper [36] for the 27-point stencils for

the details.

To summarize, for the calculation of the derivative ounum

ox

using OLTEM with the compact stencils, we should follow

the following procedure:

• Calculate the stencil coefficients ki and q1;j, q2;j
(i ¼ 1; 2; . . .; L, j ¼ 1; 2; . . .;NG) for each internal grid

point (similar to those in Sect. 4.1.2) for homogeneous

(without interfaces) and heterogeneous (with interfaces)

materials by the minimization of the local truncation

error, Eq. (145).

• Using these stencil coefficients, calculate the right-hand

side �f in Eq. (143) for each internal grid point (similar

to �f in Sect. 4.1.2); see our paper [36] for the 27-point

stencils for the details.

• Calculate the derivative ounum

ox from Eq. (143) for each

internal grid point as follow:

ou�;numc

ox
¼ 1

h

XL

p¼1

kp apu
�;num
p þ ð1� apÞu��;nump

h i
� �f

" #
;

ð146Þ

if the stencil central grid point belongs to material �
(ac ¼ 1) and

ou��;numc

ox
¼ 1

h

XL

p¼1

kp apu
�;num
p þ ð1� apÞu��;nump

h i
� �f

" #
;

ð147Þ

if the stencil central grid point belongs to material ��
(ac ¼ 0).

The calculation of the derivatives ounum

oy and ounum

oz can be done

similar to the calculation of the derivative ounum

ox as described

above.

Remark 5. If any regular stencil is cut by the boundary

then for post-processing the local truncation error of the cut

stencil should also include the corresponding boundary

conditions, e.g., see Eq. (106).

It is interesting to note that for homogeneous materials

the post-processing procedure described above can be also

used for the calculation of the spatial derivatives without

the application of the partial differential equation as in

other post-processing techniques (e.g., see [40–42] for

finite and isogeometric elements). Let us assume that we

can calculate the derivative ounum

ox at the internal grid point in

terms of the values of the function unum at the neighboring

grid points using the following compact stencil:

�h
ounumc

ox
þ
XL

p¼1

kpu
num
p ¼ 0 ð148Þ

with the following local truncation error e:

e ¼ �h
ouc
ox

�
XL

p¼1

kpup: ð149Þ

Repeating the procedure described in Sect. 4.1.1 without

the use of Eqs. (124) and (125) and zeroing the corre-

sponding coefficients bp in the Taylor series of the local

truncation error e for Eq. (149), we can calculate the

maximum possible order of the local truncation error,

Eq. (149), without the application of the Poisson equation.

In our paper [36] we showed that the use of the Poisson

equation for the calculation of the coefficients kp in

Eq. (148) for the 3-D 27-point stencils with L ¼ 27

increases the accuracy in the calculation of ounum

ox by two

orders compared to the calculations without the use of the

Poisson equations. It can be also shown that the use of the

Poisson equation for the calculation of the coefficients kp in

Eq. (148) for the 3-D 125-point stencils with L ¼ 125
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increases the accuracy in the calculation of ounum

ox by 6 orders

compared to the calculations without the use of the Poisson

equation.

To summarize, the proposed post-processing procedure

provides the optimal accuracy of the spatial derivatives of

primary functions calculated at the grid points with the help

of compact stencils. It can be developed with or without the

use of PDEs. However, the use of PDEs significantly

improves the accuracy of the spatial derivatives for the

given stencils. Despite the fact that we have applied the

proposed post-processing technique to the stencils defined

on Cartesian meshes, it can be also used for non-uniform

meshes with the corresponding coefficients rx;p, ry;p, rz;p
used in Eq. (64) (similar to OLTEM developed in our

papers [25, 27, 28] for irregular boundaries). Finally, the

post-processing procedure developed can be independently

used with any known numerical technique (e.g., with finite

elements).

5.2 The Stencils and the Local Truncation Errors
Used for the Calculation of ou

ox for the Time-
Independent Elasticity
Equations for Heterogeneous Materials
with Irregular Interfaces

Similar to the previous Sect. 5.1, here we will discuss the

calculation of the spatial derivative ounum

ox of the u displace-

ment for the elastostatics equations. The calculation of the

other spatial derivatives for other displacement compo-

nents can be similarly done. Then, the stresses can be

calculated using Hooke’s law.

For simplicity, below we consider the compact stencil

for heterogeneous materials with interfaces in the 2-D case

that can be written similar to that in basic computations

(see Eq. (140) in the previous Sect. 4.3.2) as follows:

� ac
ou�;numc

ox
þ ð1� acÞ

ou��;numc

ox

� �
h

þ
XL

p¼1

kp apu
�;num
p þ ð1� apÞu��;nump

h i

þ
XL

p¼1

�kp apv
�;num
p þ ð1� apÞv��;nump

h i
¼ �f ;

ð150Þ

with the following local truncation error e:

e ¼ � ac
ou�c
ox

þ ð1� acÞ
ou��c
ox

� �
h

þ
XL

p¼1

kp apu
�
p þ ð1� apÞu��p

h i

þ
XL

p¼1

�kp apv
�
p þ ð1� apÞv��p

h i
� �f

þ
XNG

m¼1

q1;mðu�G;m � u��G;m � d1Þ

þ
XNG

m¼1

�q1;mðv�G;m � v��G;m � �d1Þ

þ
XNG

m¼1

hq2;m t�x;ðG;mÞ � t��x;ðG;mÞ � d2
� 


þ
XNG

m¼1

h�q2;m t�y;ðG;mÞ � t��y;ðG;mÞ � �d2
� 


;

ð151Þ

see also Eq. (141) and the corresponding explanations in

Sect. 4.3.2. Similar to Sect. 4.3.2, the coefficients kp, �kp
and q1;j, �q1;j, q2;j, �q2;j (p ¼ 1; 2; . . .; L, j ¼ 1; 2; . . .;NG) are

calculated by the minimization of the local truncation error

e given by Eq. (151); see our paper [3] for the 25-point

stencils for the details. It is interesting to note that in

contrast to the known post-processing procedures for the

elasticity equations (e.g., used with finite elements), the

calculation of ounum

ox includes not only the numerical solution

for the displacement u but also for the displacement v; see

Eq. (150).

The proposed post-processing procedure provides a very

high order of accuracy for the stresses. For example, the

numerical results in our paper [3] show the 10-th order of

accuracy of stresses for OLTEM with the 25-point stencils

used in basic computations and for post-processing.

5.3 The Stencils and the Local Truncation Errors
Used for the Calculation of ou

ox for the Time-
Dependent Elasticity
Equations for Heterogeneous Materials
with Irregular Interfaces

The 2-D compact stencil for the calculation of ounum

ox at the

stencil central grid point with the coordinates xc and yc (see

Fig. 5) can be selected similar to Eq. (97) as follows:
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� ½ac
ou�;numc

ox
þ ð1� acÞ

ou��;numc

ox
�h

þ h2f
XL

p¼1

mp½ap
d2u�;nump

dt2
þ ð1� apÞ

d2u��;nump

dt2
�

þ
XL

p¼1

�mp½ap
d2v�;nump

dt2
þ ð1� apÞ

d2v��;nump

dt2
�g

þ
XL

p¼1

kp½apu�;nump þ ð1� apÞu��;nump �

þ
XL

p¼1

�kp½apv�;nump þ ð1� apÞv��;nump � ¼ �f ;

ð152Þ

where ac ¼ 1 if the stencil central grid point belongs to

material � and ac ¼ 0 if the stencil central grid point

belongs to material ��. We should mention that in contrast

to the known post-processing procedures (e.g., used with

finite elements), in the proposed approach the calculation

of the spatial derivative ou
ox depends not only on the dis-

placement u but also on the displacement v as well as their

second order time derivatives o2u
ot2

and o2v
ot2
. The local trun-

cation error e for Eq. (152) can be obtained by the

replacement of the numerical solution u�;nump , u��;nump , v�;nump

and v��;nump in Eq. (152) by the exact solutions u�p, u
��
p , v�p

and v��p :

e ¼ �½ac
ou�c
ox

þ ð1� acÞ
ou��c
ox

�h

þ h2f
XL

p¼1

mp½ap
d2u�p
dt2

þ ð1� apÞ
d2u��p
dt2

�

þ
XL

p¼1

�mp½ap
d2v�p
dt2

þ ð1� apÞ
d2v��p
dt2

�g

þ
XL

p¼1

kp½apu�p þ ð1� apÞu��p �

þ
XL

p¼1

�kp½apv�p þ ð1� apÞv��p � � �f :

ð153Þ

We should note that in Eq. (153) we do not use index ’j’ for

the local truncation error e and for the stencil coefficients

mi, �mi, ki, �ki (i ¼ 1; 2; . . .; 9) because for the calculation of
ounum

ox we consider just one stencil equation for the grid point.

Similar to Eq. (98) in Sect. 3.2.2, we will include the

interface conditions for the exact solution at the same small

number NG of the interface points into the expression for

the local truncation error in Eq. (153) as follows:

e ¼ �½ac
ou�c
ox

þ ð1� acÞ
ou��c
ox

�h

þ h2f
XL

p¼1

mp½ap
d2u�p
dt2

þ ð1� apÞ
d2u��p
dt2

� þ
XL

p¼1

�mp½ap
d2v�p
dt2

þ ð1� apÞ
d2v��p
dt2

�g

þ
XL

p¼1

kp½apu�p þ ð1� apÞu��p �

þ
XL

p¼1

�kp½apv�p þ ð1� apÞv��p � � �f

þ
XNG

l¼1

q1;lðu�G;l � u��G;l � d1Þ þ
XNG

l¼1

q2;lðv�G;l � v��G;l � �d1Þ
"

þ
XNG

l¼1

hq3;lðt�xðG;lÞ � t��xðG;lÞ � d2Þ þ
XNG

l¼1

hq4;lðt�yðG;lÞ � t��yðG;lÞ � �d2Þ
#
;

ð154Þ

see the corresponding explanations in Sect. 3.2.2.

Remark 6. If any regular stencil is cut by the boundary

then for post-processing the local truncation error of the cut

stencil should also include the corresponding boundary

conditions, e.g., see Eq. (92).

Remark 7. The described post-processing procedure can

be equally applied to OLTEM with the diagonal mass

matrix. Because post-processing does not include the

solution of the global system of algebraic equations, the

stencil with all non-zero mp coefficients in Eq. (152) can be

used for post-processing the results obtained in basic

computations with the diagonal mass matrix; see our paper

[38] for the details.

It is interesting to note that for homogeneous materials

the post-processing procedure described above can be also

used for the calculation of the spatial derivatives without

the application of the partial differential equation as in

other post-processing techniques (e.g., see [40–42] for

finite and isogeometric elements). Let us assume that we

can calculate the derivative ounum

ox at the internal grid point in

terms of the values of the displacement unum at the neigh-

boring grid points with the following stencil:

�h
ounumc

ox
þ
XL

p¼1

kpu
num
p ¼ 0 ð155Þ

and the following local truncation error:

e ¼ �h
ouc
ox

þ
XL

p¼1

kpup: ð156Þ

For simplicity, below we will use a uniform Cartesian mesh

and L ¼ 9 grid points for the calculation of the derivative
ounumc

ox at the central c ¼ 5 grid point in the 2-D case (see

Fig. 3a and our paper [38]). Using the procedure described

in Sect. 3.2.1 (but without the use of PDEs for the
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calculation of the coefficients bp) and zeroing the corre-

sponding coefficients bp in the Taylor series of the local

truncation error e, we can show that k6 ¼ 1=2 and k4 ¼
�1=2 (all other ki ¼ 0, i ¼ 1; 2; 3; 5; 7; 8; 9) yield the fol-

lowing optimal order of e in Eq. (156) with L ¼ 9:

e ¼ � h3

6

o3u5
ox3

þ Oðh4Þ: ð157Þ

In this case we have the well-known finite-difference

approximation of the derivative. In contrast to the third

order of the local truncation error in Eq. (157), the new

post-processing procedure with the use of PDES provides

the the fourth order of the local truncation error for

homogeneous materials and improves the accuracy of the

spatial derivative of by one order for the same 9-point

compact stencils. We should also mention that the

approximation given by Eq. (155) cannot be used for the

stencils with interfaces (as those in Fig. 5a).

To summarize, the proposed post-processing procedure

provides the optimal accuracy of the spatial derivatives of

the displacements calculated at the grid points with the

help of compact stencils. It can be developed with or

without the use of PDEs. However, the use of PDEs

improves the accuracy of the spatial derivatives for the

given stencils. Despite the fact that we have applied the

proposed post-processing technique to the stencils defined

on Cartesian meshes, it can be also used for non-uniform

meshes with the corresponding coefficients rx;p, ry;p used in

Eq. (64) (similar to OLTEM developed in our papers

[25, 27, 28] for irregular boundaries). Finally, the post-

processing procedure developed can be independently used

with any known numerical technique (e.g., with finite

elements).

6 OLTEM for the Calculation of the Primary
Function and Its Derivatives at Any Point
of the Domain

Here we will show that OLTEM can be used not only to the

calculation of the spatial derivatives of the primary func-

tion at the grid points at post-processing as shown in

Sect. 5 but also can be generalized for the calculation of

the primary function and their derivatives at any point of

the domain. We will explain the main idea of the new

approach for the 3-D Poisson equation in the homogeneous

media. Assume that the primary function is known at the

grid points of a Cartesian mesh. Then, we will calculate the

primary function and their derivatives at any point P of the

domain using compact 27-point stencils shown in Fig. 4a.

Without the loss of generality, let us consider any point P

of the 3-D 27-point cell of the dimensions 2hx2hx2h with

the following coordinates:

xP ¼ x14 þ rxPh; yP ¼ y14 þ ryPbyh;

zP ¼ z14 þ rzPbzh;
ð158Þ

where the coefficients rxP, ryP and rzP define the location of

point P with respect to the central grid point with the

coordinates x14, y14, z14. For the calculation of the primary

function uPðxp; yp; zpÞ at point P, the following compact 27-

point stencil can be used::

unumP ðxp; yp; zpÞ þ
X27

i¼1

kiu
num
i ¼ �f ; ð159Þ

where �f ¼ 0 in the case of zero source f ¼ 0 (or can be

calculated in terms of non-zero source f), the unknown

stencil coefficients ki (i ¼ 1; 2; . . .; 27) are to be determined

from the minimization of the local truncation error. The

local truncation error e follows from Eq. (159) by the

replacement of the numerical solution unumi by the exact

solution uP:

e ¼ uPðxp; yp; zpÞ þ
X27

i¼1

kiui � �f : ð160Þ

Similar to the derivations of OLTEM for the 3-D Poisson

equation in our papers [27, 28, 36], a Taylor series of the

local truncation error e in Eq. (160) can be written as:

e ¼ b1u14 þ h b2
ou14
oz

þ b3
ou14
oy

þ b4
ou14
ox

� �

þ h2 b5
o2u14
oz2

þ b6
o3u14
ozoy2

þ b7
o2u14
oy2

þ b8
o3u14
ozox2

þ b9
o2u14
oxoy

� �

þ h3 b10
o3u14
oz3

þ b11
o3u14
oz2oy

þ b12
o3u14
ozoy2

þ b13
o3u14
oy3

þ b14
o3u14
oz2ox

�

þb15
o3u14
ozoyox

þ b16
o3u14
oxoy2

�
þ h4 b17

o4u14
oz4

þ ::: þ b25
o4u14
oxoy3

� �

þh5 b26
o5u14
oz5

þ ::: þ b36
o5u14
oxoy4

� �

þh6 b37
o6u14
oz6

þ :::þ b49
o6u14
oxoy5

� �
þ Oðh7Þ

ð161Þ

where the coefficients bp (p ¼ 1; 2; . . .) are expressed in

terms of the coefficients ki (i ¼ 1; 2; . . .; 27) and rxP, ryP
and rzP. Here we should mention that the expression for the

local truncation error, Eq. (161), includes only the first

order derivatives with respect to x (the higher order

derivatives with respect to x are excluded with the help of

the Poisson equation; see our papers [27, 28, 36] for the

details). If we zero the first 16 coefficients bi ¼ 0

(i ¼ 1; 2; . . .; 16) up to the third order with respect to h in

Eq. (161) as well as the 6 coefficients bi ¼ 0

(i ¼ 17; 18; 19; 21; 23; 24) of the the fourth order with
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respect to h in Eq. (161) then the remaining 3 coefficients

bi ¼ 0 (i ¼ 20; 22; 25) of the fourth order become non-zero

and the local truncation error in Eq. (161) can be written as:

e ¼ 1

6
h4 ðrxPr3zP � r3xPrzPÞ

o4u14
oxoz3

þ rxPryPðr2yP � r2xPÞ
o4u14
oxoy3

�

þryPrzPðr2yP � r2zPÞ
o4u14
ozoy3

�
þ Oðh5Þ;

ð162Þ

i.e., the fourth order is the maximum possible order of

accuracy for the local truncation error e of the stencil equa-

tion, Eq. (159). If we try to calculate the local truncation error

e in Eq. (160) without the use of the Poisson equation, then a

Taylor series of the local truncation error in Eq. (161) will

include more terms due to the additional high-order deriva-

tives of u14 with respect to x. In this case, the 27 stencil

coefficients ki allow to zero only the coefficients bi up to the

second order with respect to h. This means that the use of the

partial differential equation (the Poisson equation) for the

calculation of the primary function uPðxp; yp; zpÞ at point

P with the 27-point stencil increases the accuracy by one

order. We should also mention that the stencil coefficients ki
in Eq. (159) can be calculated by the procedure described in

our papers [27, 28, 36].

Similar to the primary function, we can also calculate its

spatial derivatives at any point of the domain. In this case,

the stencil equation, Eq. (159), should be modified as

follows:

hn
onunumP ðxp; yp; zpÞ

oxn

þ
X27

i¼1

kiu
num
i ¼ �f ;

ð163Þ

for any partial derivative with respect to x (similar modi-

fications can be done for the derivatives with respect to y, z

and the mixed derivatives). Similar to Eq. (159) for the

primary function, the local truncation error for Eq. (163)

can be represented in the form of Eq. (161). Then, we can

zero the following coefficients bi ¼ 0

(i ¼ 1; 2; . . .; 21; 23; 24). The remaining 2 coefficients bi ¼
0 (i ¼ 22; 25) of the fourth order become non-zero. For the

first order derivative
ouPðxp;yp;zpÞ

ox , the local truncation error in

Eq. (161) can be calculated as:

e ¼ 1

6
h4 ð�3r2xPrzP þ r3zPÞ

o4u14
oxoz3

þ ryPðr2yP � 3r2xPÞ
o4u14
oxoy3

� �

þ Oðh5Þ;
ð164Þ

i.e., the fourth order is the maximum possible order of

accuracy for the local truncation error e of the stencil

equation, Eq. (163). It is interesting to mention that for the

grid points, the coefficients rxP, ryP and rzP are equal to one

of the following values: �1; 0; 1. In this case, the terms for

the fourth order in Eq. (164) become zero and the new

procedure provides the fifth order of the local truncation

error e in Eq. (161) for the derivatives at the grid points

(the same order of e we have obtained for post-processing

at the grid points in our paper [36]). If we try to calculate

the local truncation error e without the use of the Poisson

equation, then a Taylor series of the local truncation error

in Eq. (161) will include more terms due to the additional

high-order derivatives of u14 with respect to x. In this case,

the 27 stencil coefficients ki allow to zero only the coef-

ficients bi up to the second order with respect to h. Similar

results we have obtained for the higher order derivatives

with n ¼ 2 and n ¼ 3 in Eq. (163). This means that the use

of the partial differential equation (the Poisson equation)

for the calculation of the spatial derivatives of the primary

function uPðxp; yp; zpÞ at point P with the 27-point stencil

increases the accuracy by two orders for the grid points and

by one order for other internal points.

7 New Numerical High-Order Boundary
Conditions for ’Quadratic’ Elements

If the boundary cuts some regular grid points included into the

stencil then we have the cut stencil with a smaller number of

the internal grid points. In this case the cut stencils cannot

usually provide the same high order of accuracy as that for the

regular stencils. Let us consider this inmore detail for the 2-D

25-point stencils (’quadratic’ elements)with theDirichlet and

Neumann boundary conditions. For example, the grid point

13 in Fig. 7a is the closest internal grid point to the horizontal

boundary and its stencil includes 15 internal grid points (in

contrast to the regular stencil with the 25 internal grid points

for the ’quadratic’ elements; see Fig. 3c. The grid points

16; 17; . . .; 25 in Fig. 7a are not included into this stencil

because they are located outside the physical domainX or on

the boundary. Without a special treatment of the boundary

conditions, the 15-point cut stencil in the 2-D case (see

Fig. 7a) cannot provide the order of accuracy of the regular

25-point stencil and this leads to the decrease in accuracy of

the global systemof equations that includes all regular and cut

stencils. However, the order of accuracy of the cut stencil can

be improved if the boundary conditions are also included into

the expression for the local truncation error of the cut stencils;

see the derivations below for the time-independent elasticity.

7.1 Dirichlet Boundary Conditions

Let us consider the 2-D time-independent elasticity equa-

tions given by Eq. (127) with the Dirichlet boundary
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conditions given by Eq. (128). Let us also consider

OLTEM with the 25-point stencil equations given by

Eq. (130) with L ¼ 25. In our paper [2] we have shown that

OLTEM with the 25-point stencils and conforming Carte-

sian meshes provides the 12th order of the local truncation

error or the 10th order of accuracy for the global solution.

However, for the internal grid points located close to the

boundary, a part of the stencil grid points are cut by the

boundary. As an example, let us consider the cut stencil in

Fig. 7a. This stencil includes 15 internal grid points located

inside the domain, 5 boundary points on the horizontal

boundary and 5 grid points located outside the domain.

Here, we will show how to construct the 15-point stencil

with the internal grid points that will provide a high

accuracy due to the use of the boundary conditions. First,

the case of the Dirichlet boundary conditions is analyzed.

The considered cut stencil can be explicitly written using

Eq. (130) as:

XL

i¼1

kj;iu
num
i þ

XL

i¼1

�kj;iv
num
i ¼ �f j; j ¼ 1; 2 ð165Þ

with L ¼ 15. The local truncation error for the cut stencils,

Eq. (165), with the inclusion of the Dirichlet boundary

conditions at M1 selected boundary points is given by

Eq. (131) with M2 ¼ 0 and can be written as follows:

ej ¼
XL

i¼1

kj;iui þ
XL

i¼1

�kj;ivi � �fj

þ
XM1

i¼1

q1;iðg1;i � uB;iÞ þ
XM1

i¼1

�q1;iðg2;i � vB;iÞ:
ð166Þ

with L ¼ 15. The analysis presented below shows that we

can take M1 ¼ 9 boundary points uniformly distributed

along the horizontal boundary over the interval 4h with the

distance h1 ¼ h=4 between the boundary points; see

Fig. 7b. The coordinates of the L ¼ 15 internal grid points

of the cut stencil (see Figs. 7b) with respect to the central

grid point ðx13; y13Þ can be written as follows:

xp¼ x13þdx;ph; yp¼ y13þdy;pbyh; p¼1;2;...;L ð167Þ

where the coefficients dx;p and dy;p can be easily defined.

For example, for the internal grid point shown in Fig. 7 we

can find that dx;p ¼ i� 3 and dy;p ¼ j� 3 for p ¼
5ðj� 1Þ þ i with i ¼ 1; 2; 3; 4; 5 and j ¼ 1; 2; 3.

Similarly, we can describe the coordinates of the M1 ¼
9 boundary points of the cut stencil (see Fig. 7b) with

respect to the central grid point ðx13; y13Þ:
xB;p ¼ x13 þ rx;ph; yB;p ¼ y13 þ ry;pbyh; p ¼ 1; 2; . . .;M1

ð168Þ

where the coefficients rx;p and ry;p can be easily defined

after the selection of the location of the boundary points

along the boundary.

In order to derive a Taylor series of the local truncation

error given by Eq. (166), let us expand the exact solution at

the L ¼ 15 grid points and the selected M1 ¼ 9 boundary

points in Eq. (166) into a Taylor series at small h � 1 in the

vicinity of the central interface point (x13, y13) as follows:

wj ¼ w13 þ
ow13

ox
½dx;jh� þ

ow13

oy
½dy;jbyh� þ

o2w13

ox2
½dx;jh�2

2!

þ o2w13

oy2
½dy;jbyh�2

2!
þ 2

o2w13

oxoy

½ðdx;jh�½dy;jbyh�
2!

þ :::; j ¼ 1; 2; . . .;LðM1Þ:

ð169Þ

In Eq. (169) the function wj is uj or vj for the internal and

boundary points, the coefficients dx;j, dy;j for the boundary

points in Eq. (169) should be replaced by the coefficients

rx;j, ry;j. The exact solution u13 and v13 to the elasticity

equations, Eq. (127), at the central grid point with the

coordinates xc ¼ x13 and yc ¼ y13 meets Eqs. (132)-(135).

(a) (b)

Fig. 7 a The regular 25-point stencil cut by the horizontal boundary. b The 15-point cut stencil with the 9 boundary points
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Below, we consider the local truncation error for the first

stencil equation, Eq. (166) with j ¼ 1. The derivations for

the local truncation error and the stencil coefficients for the

second stencil equation of Eq. (166) with j ¼ 2 can be

similarly done (see also Sect. 4.3.1). Inserting Eqs. (169)

and Eqs. (132)-(135) into Eq. (166) we will get the dis-

cretized load term �f1 and the following local truncation

error in space e1:

e1 ¼ b1;1u13 þ b1;2v13

þ h b1;3
ou13
ox

þ b1;4
ov13
ox

�
þb1;5

ou13
oy

þ b1;6
ov13
oy

�

þ h2 b1;7
o2u13
oxoy

þ b1;8
o2v13
oxoy

�
þb1;9

o2u13
oy2

þ b1;10
o2v13
oy2

�

þ h3 b1;11
o3u13
oxoy2

þ :::

�
þb1;14

o3v13
oy3

�

þ h4 b1;15
o4u13
oxoy3

þ :::þ b1;18
o4v13
oy4

� �

þ h5 b1;19
o5u13
oxoy4

þ :::þ b1;22
o5v13
oy5

� �

þ h6 b1;23
o6u13
oxoy5

þ :::þ b1;26
o6v13
oy6

� �

þ h7 b1;27
o7u13
oxoy6

þ :::þ b1;30
o7v13
oy7

� �

þ h8 b1;31
o8u13
oxoy7

þ :::þ b1;34
o8v13
oy8

� �

þ h9 b1;35
o9u13
oxoy8

þ :::þ b1;38
o9v13
oy9

� �

þ h10 b1;39
o10u13
oxoy9

þ :::þ b1;42
o10v13
oy10

� �

þ h11 b1;43
o11u13
oxoy10

þ :::þ b1;46
o11v11
oy11

� �

þ h12 b1;47
o12u13
oxoy11

þ :::þ b1;50
o12v12
oy12

� �
þ Oðh13Þ

ð170Þ

where the coefficients b1;p (p ¼ 1; 2; . . .) are expressed in

terms of the coefficients k1;i, �k1;i and q1;m, �q1;m (

i ¼ 1; 2; . . .; L, m ¼ 1; 2; . . .;M1). Here we should mention

that the expression for the local truncation error e1,

Eq. (170), includes only the first-order derivatives with

respect to x (the higher order derivatives with respect to

x are excluded with the help of Eqs. (132)-(135)).

By zeroing the first 46 coefficients b1;i ¼ 0

(i ¼ 1; 2; . . .; 46) and assuming that k1;13 ¼ 1 (see Remark

1) and �k1;13 ¼ 0 (we also take k2;13 ¼ 0 and �k2;13 ¼ 1 in

order to have the linearly independent first (j ¼ 1) and

second (j ¼ 2) stencils) we can form a system of 48 alge-

braic equations for the first stencil. Solving this system, we

will get the following 30 coefficients k1;i, �k1;i as well as the

18 coefficients q1;m, �q1;m:

k1;1 ¼ 0:000298016; k1;2 ¼ 0:0125973;

k1;3 ¼ 0:0335632; k1;4 ¼ 0:0125973;

k1;5 ¼ 0:000298016; k1;6 ¼ 0:00305508;

k1;7 ¼ �0:0324673; k1;8 ¼ �0:199957;

k1;9 ¼ �0:0324673; k1;10 ¼ 0:00305508;

k1;11 ¼ 0:0145572; k1;12 ¼ �0:344806;

k1;13 ¼ 1:; k1;14 ¼ �0:344806;

k1;15 ¼ 0:0145572; �k1;1 ¼ �0:00147846;

�k1;2 ¼ �0:0090859; �k1;3 ¼ 0:;

�k1;4 ¼ 0:0090859; �k1;5 ¼ 0:00147846;

�k1;6 ¼ �0:00560992; �k1;7 ¼ �0:04127;

�k1;8 ¼ 0:; �k1;9 ¼ 0:04127;

�k1;10 ¼ 0:00560992; �k1;11 ¼ �0:0101237;

�k1;12 ¼ 0:0200956; �k1;13 ¼ 0:;

�k1;14 ¼ �0:0200956; �k1;15 ¼ 0:0101237;

q1;1 ¼ 0:0112764; q1;2 ¼ �0:0795896;

q1;3 ¼ 0:156991; q1;4 ¼ �0:372899;

q1;5 ¼ 0:428368; q1;6 ¼ �0:372899;

q1;7 ¼ 0:156991; q1;8 ¼ �0:0795896;

q1;9 ¼ 0:0112764; �q1;1 ¼ �0:00917177;

�q1;2 ¼ 0:0182849; �q1;3 ¼ 0:00432377;

�q1;4 ¼ 0:102554; �q1;5 ¼ 0:;

�q1;6 ¼ �0:102554; �q1;7 ¼ �0:00432377;

�q1;8 ¼ �0:0182849; �q1;9 ¼ 0:00917177;

ð171Þ

with the following local truncation error:

e1 ¼ h12 	 10�6 6:54235
o12v13
oxoy11

� 4:72256
o12u13
oy12

� �

þ Oðh13Þ;
ð172Þ

i.e., using the boundary conditions at the 9 selected

boundary points, we can provide the 12-th order of the

local truncation error for the 15-point cut stencil.

Let us also consider the new procedure for the 25-point

stencils when the boundary cuts 15 grid points; see Fig. 8a.

In this case we can use the stencil with the 9 internal grid

points and the 15 boundary points uniformly distributed at

distance h1 ¼ 3h=7 along the horizontal and vertical parts

of the boundary as shown in Fig. 8b. The stencil equations

for the grid point with the coordinate x9 and y9 (see

Fig. 8b) and the corresponding local truncation error can be

written in the form of Eqs. (165) and (166) with L ¼ 9 and

M ¼ 15 (for convenience, we use a new numeration of the

internal grid points from 1 to 9 in Fig. 8b). Repeating the

derivations given by Eqs. (167) - (170) and zeroing the first

46 coefficients b1;i ¼ 0 (i ¼ 1; 2; . . .; 46) and assuming that

k1;9 ¼ 1 (see Remark 1) and �k1;9 ¼ 0 (we also take k2;9 ¼ 0

and �k2;9 ¼ 1 in order to have the linearly independent first
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(j ¼ 1) and second (j ¼ 2) stencils) we can form a system

of 48 algebraic equations for the first stencil. Solving this

system, we will get the following 18 coefficients k1;i, �k1;i as

well as the 30 coefficients q1;m, �q1;m:

k1;1 ¼ �0:000323273; k1;2 ¼ 0:00559361;

k1;3 ¼ 0:0185748; k1;4 ¼ �0:00111318;

k1;5 ¼ �0:0477601; k1;6 ¼ �0:16123;

k1;7 ¼ 0:008167; k1;8 ¼ �0:32599; k1;9 ¼ 1:;

�k1;1 ¼ �0:00141205; �k1;2 ¼ �0:0123643;

�k1;3 ¼ �0:0190124; �k1;4 ¼ �0:00508834;

�k1;5 ¼ �0:0494195; �k1;6 ¼ 0:0234136;

�k1;7 ¼ �0:00783463; �k1;8 ¼ 0:0247765;

�k1;9 ¼ 0:; q1;1 ¼ �0:159342;

q1;2 ¼ �0:0752364; q1;3 ¼ �0:0754087;

q1;4 ¼ �0:313099; q1;5 ¼ 0:167508;

q1;6 ¼ �0:120758; q1;7 ¼ 0:0538803;

q1;8 ¼ �0:000336028; q1;9;¼ 0:407694;

q1;10 ¼ �0:751422; q1;11 ¼ 0:859015;

q1;12 ¼ �0:716692; q1;13 ¼ 0:330017;

q1;14 ¼ �0:117431; q1;15 ¼ 0:0156938;

�q1;1 ¼ �0:17299; �q1;2 ¼ 0:355267;

�q1;3 ¼ �0:604681; �q1;4 ¼ 0:614102;

�q1;5 ¼ �0:303421; �q1;6 ¼ 0:130629;

�q1;7 ¼ �0:00515474; �q1;8 ¼ �0:00880635;

�q1;9 ¼ 0:0214342; �q1;10 ¼ �0:112411;

�q1;11 ¼ 0:0525618; �q1;12 ¼ 0:106248;

�q1;13 ¼ �0:0488856;

�q1;14 ¼ 0:0334346; �q1;15 ¼ �0:0103847;

ð173Þ

with the following local truncation error:

e1 ¼ h12

	 10�5 2:45681
o12u9
oxoy11

þ 2:69764
o12v9
oxoy11

� 1:8176
o12u9
oy12

þ 2:87954
o12v9
oy12

� �
þ Oðh13Þ;

ð174Þ

i.e., using the boundary conditions at the 15 selected

boundary points, we can provide the 12-th order of accu-

racy for the local truncation error for the 9-point cut stencil.

The regular 9-point stencil provides just the 4-th order of

accuracy for the local truncation error.

7.2 Neumann Boundary Conditions

The derivation of the numerical high-order Neumann

boundary conditions for cut stencils is similar to that for the

Dirichlet boundary condition in the previous section 7.1. In

order to show this, let us consider the cut stencil shown in

Fig. 7. Similar to section 7.1, we will use the stencil

equations given by Eq. (165) with L ¼ 15. The local

truncation error ej for these stencil equations can be

described by Eq. (131) with M1 ¼ 0:

ej ¼
XL

i¼1

kj;iui þ
XL

i¼1

�kj;ivi � �fj

þ h
XM2

i¼1

q2;ið�g1;i � tx;B;iÞ þ
XM2

i¼1

�q2;ið�g2;i � ty;B;iÞ
" #

:

ð175Þ

The Neumann boundary conditions are given by Eq. (129).

We will also use the M2 ¼ 9 boundary points as shown in

Fig. 7b. Repeating the derivation of section 7.1, we can

find a Taylor series of the local truncation error for the first

(a) (b)

Fig. 8 a The regular 25-point stencil cut by the horizontal and vertical boundaries. b The 9-point cut stencil with the 15 boundary points
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stencil in the form of Eq. (170). Due to the difference

between Eq. (166) and Eq. (175), the expressions for the

coefficients b1;p in Eq. (170) will be different for the

Dirichlet and Neumann boundary conditions. By zeroing

the first 46 b1;i ¼ 0 coefficients (i ¼ 1; 2; . . .; 46) and

assuming that k1;13 ¼ 1 (see Remark 1) and �k1;13 ¼ 0 (we

also take k2;13 ¼ 0 and �k2;13 ¼ 1 in order to have the lin-

early independent first (j ¼ 1) and second (j ¼ 2) stencils)

we can form a system of 48 algebraic equations for the first

stencil. Solving this system, we will get the following 30

coefficients k1;i, �k1;i as well as the 18 coefficients q1;m, �q1;m
in the case of the Neumann boundary conditions:

k1;1 ¼ �0:00674247; k1;2 ¼ 0:0379803;

k1;3 ¼ 0:126982; k1;4 ¼ 0:0379803;

k1;5 ¼ �0:00674247; k1;6 ¼ �0:0819144;

k1;7 ¼ �0:364449; k1;8 ¼ 0:173851;

k1;9 ¼ �0:364449; k1;10 ¼ �0:0819144;

k1;11 ¼ �0:259115; k1;12 ¼ 0:0238247;

k1;13 ¼ 1:; k1;14 ¼ 0:0238247;

k1;15 ¼ �0:259115; �k1;1 ¼ �0:0236224;

�k1;2 ¼ �0:137025; �k1;3 ¼ 0:; �k1;4 ¼ 0:137025;

�k1;5 ¼ 0:0236224; �k1;6 ¼ �0:129285;

�k1;7 ¼ �0:27089; �k1;8 ¼ 0:; �k1;9 ¼ 0:27089;

�k1;10 ¼ 0:129285; �k1;11 ¼ �0:286487;

�k1;12 ¼ 1:11672; �k1;13 ¼ 0:; �k1;14 ¼ �1:11672;

�k1;15 ¼ 0:286487; q1;1 ¼ 0:113835;

q1;2 ¼ �0:505557; q1;3 ¼ 1:32361;

q1;4 ¼ �2:82079; q1;5 ¼ 2:8939;

q1;6 ¼ �2:82079; q1;7 ¼ 1:32361;

q1;8 ¼ �0:505557; q1;9 ¼ 0:113835;

�q1;1 ¼ �0:0466458; �q1;2 ¼ �0:0820813;

�q1;3 ¼ �0:251888; �q1;4 ¼ �0:0549269;

�q1;5 ¼ 0:; �q1;6 ¼ 0:0549269; �q1;7 ¼ 0:251888;

�q1;8 ¼ 0:0820813; �q1;9 ¼ 0:0466458;

ð176Þ

with the following local truncation error:

e1 ¼ h12 	 10�5 10:3145
o12v13
oxoy11

� 7:83087
o12u13
oy12

� �

þ Oðh13Þ;
ð177Þ

i.e., using the boundary conditions at the 9 selected

boundary points, we can provide the 12-th order of the

local truncation error for the 15-point cut stencil.

Remark 8. The approach developed in this section can

be extended to curved boundaries. This will be considered

in the future.

8 Comparison of Accuracy of OLTEM
and FEM

Here we shortly summarize the results related to the order

of accuracy of OLTEM for different PDEs considered in

the previous Sections as well as we compare the order of

accuracy of OLTEM and FEM at similar stencil equations.

In contrast to finite elements, the maximum possible order

of accuracy of OLTEM with similar stencils is different for

different PDEs, see Table 1, 2, 3 for the regular, cut and

heterogeneous stencils. As can be seen from Table 1,

OLTEM with the regular stencils for the scalar PDEs

provides a higher order of accuracy than that for FEM at

similar stencils. It it interesting to note that for the Poisson

and Helmholtz equations, the order of accuracy of OLTEM

on square meshes is higher than that on rectangular meshes.

Moreover, for the Poisson equation OLTEM with the 2-D

5� 5 ¼ 25-point stencils and 3-D 5� 5� 5 ¼ 125-point

stencils (these stencils corresponds to those for quadratic

finite elements) yields the different orders of accuracy in

the 2-D and 3-D cases (however, the increase in the order

of accuracy for OLTEM in the 2-D and 3-D cases is huge

compared to that for finite elements, e.g., by 8 orders in the

3-D case and by 12 orders in the 2-D case on square

meshes).

For a system of the elasticity PDEs, OLTEM with the 2-

D 3� 3 ¼ 9-point stencils and with the 3-D

3� 3� 3 ¼ 27-point stencils (similar to those for linear

finite elements) provides the same order of accuracy as that

for linear finite elements, i.e, linear elements provide the

optimal order of accuracy. However, OLTEM with the 2-D

5� 5 ¼ 25-point stencils and with the 3-D

5� 5� 5 ¼ 125-point stencils (similar to those for quad-

ratic finite and isogeometric elements) provides a much

higher order of accuracy than that for quadratic finite and

isogeometric elements (a huge increase by 6 orders for

elastostatics and by 2 orders for elastodynamics); see

Table 1.

As we mentioned in Sect. 7, currently we have imple-

mented the new numerical high-order boundary conditions

for ’quadratic’ elements with cut stencils for the simple

boundaries corresponding to regular domains. Therefore,

Table 2 shows only the accuracy of OLTEM on irregular

boundaries with the 9-point (2-D) and 27-point (3-D)

stencils corresponding to ’linear’ elements. As can be seen

from Table 2, for the scalar PDEs with the Dirichlet

boundary conditions, OLTEM with cut stencils provides

the same accuracy of global solutions on irregular domains
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as that on regular domains in Table 1. However, for the

scalar PDEs with the Neumann boundary conditions, the

accuracy of OLTEM on irregular domains is one order

smaller than that for the Dirichlet boundary conditions and

is one order higher than that for linear finite elements. For a

system of the elasticity PDEs, OLTEM with the 2-D

3� 3 ¼ 9-point stencils and with the 3-D 3� 3� 3 ¼ 27-

point stencils (similar to those for linear finite elements) on

irregular domains provides the same order of accuracy as

that for linear finite elements. We should also mention that

due to the minimization of the leading terms for the local

truncation error in OLTEM, it provides a much high

accuracy than linear and high-order finite elements even if

OLTEM and finite elements have the same orders of

accuracy.

The accuracy of OLTEM for heterogeneous materials

with irregular interfaces and its comparison with the

accuracy of finite elements is shown in Table 3. OLTEM

with the 9-point (2-D) and 27-point (3-D) stencils (’linear’

elements) for heterogeneous materials with irregular

interfaces yields the same order of accuracy as that on

irregular domains (see the results in Tables 2 and 3). For

’quadratic’ elements, OLTEM significantly exceeds the

accuracy of quadratic finite elements at similar stencils

despite unfitted meshes. For example, OLTEM yields a

huge increase in accuracy by 8, 7 and 3 orders for the

Poisson, elastostatics and elastodynamics equations,

respectively (see Table 3).

Below, we present only two numerical examples from

our papers [3, 27] related to the comparison of OLTEM

with unfitted meshes and FEM with conforming meshes

used for the solution of the 3-D scalar wave equation on an

irregular domain and the 2-D elastostatics equations for

heterogeneous materials with an irregular interface. For

these two examples, we used the method of manufactured

solutions with exact solutions. Much more 2-D and 3-D

numerical examples solved by OLTEM can be found in our

papers mentioned in the Introduction.

For the first problem we consider a prism ABCDOPQR

with a spherical hole (see Fig. 9a). Figures 9b and 10 show

Table 1 The comparison of the order of accuracy of global solutions obtained by OLTEM with regular stencils and by FEM in the case of

homogeneous materials and regular domains

Governing Equations Stencils Order of accuracy Order increase with

OLTEM

Conventional finite and

isogeometric elements

OLTEM

1. Time-dependent wave and

heat equations

9-point (2D) and 27-point

(3D) stencils

2 4 4 - 2 = 2

25-point (2D) and 125-point

(3D) stencils

4 8 8 - 4 = 4

2. Poisson Equation 9-point (2D) and 27-point

(3D) stencils

2 4 (rectangular

meshes)

4 - 2 = 2

(rectangular meshes)

6 (square

meshes)

6 - 2 = 4 (square

meshes)

25-point (2D) and 125-point

(3D) stencils

4 (rectangular meshes) 14 (rect.

meshes)-2D

14 - 4 = 10

(rect.meshes)-2D

10 (rect.

meshes)-3D

10 - 4 = 6

(rect.meshes)-3D

6 (square meshes) 18 (square

meshes)-2D

18 - 6 = 12 (square

meshes)-2D

14 (square

meshes)-3D

14 - 6 = 8 (square

meshes)-3D

3. Time-independent

Helmholtz equation

9-point (2D) and 27-point

(3D) stencils

2 4 (rectangular

meshes)

4 - 2 = 2

(rectangular meshes)

6 (square

meshes)

6 - 2 = 4 (square

meshes)

4. Time-dependent elasticity

equations

9-point (2D) and 27-point

(3D) stencils

2 2 0

25-point (2D) and 125-point

(3D) stencils

4 6 6 - 4 = 2

5. Time-independent elasticity

equations

9-point (2D) and 27-point

(3D) stencils

2 2 0

25-point (2D) and 125-point

(3D) stencils

4 10 10 - 4 = 6
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examples of an unfitted Cartesian mesh for OLTEM and a

conforming tetrahedral finite element mesh generated by

the commercial finite element code ’COMSOL’. The

comparison of accuracy for the numerical results obtained

by OLTEM with the 27-point stencils and by linear and

high-order (up to the 5-th order) finite elements are pre-

sented in Fig. 11 for the maximum relative errors in dis-

placement emaxu (a, b) and in velocity emaxv (c, d); see our

paper [27] for the details. As can be seen from Fig. 11, at

the same numbers of degrees of freedom N, OLTEM with

’linear’ elements yields much more accurate results than

those obtained by conventional linear and high-order finite

elements including quadratic, cubic, quartic, quintic tetra-

hedral finite elements with much wider stencils and greater

computational costs. It is also interesting to note that at

accuracy of 5%, the new approach reduces the number of

degrees of freedom by a factor of greater than 1000 com-

pared to that for linear finite elements with similar stencils

(e.g., compare curves 1 and 2 in Fig. 11a at Log10e
max
u ¼

�1:3 ). This leads to a huge reduction in computation time

for OLTEM at a given accuracy. This reduction in com-

putation time will be even greater if a higher accuracy is

needed, e.g., 1% or less.

The second numerical example is related to the 2-D

elastostatics problem for a square domain with an elliptical

inclusion (see Fig. 12a) solved by OLTEM with the 25-

point stencils (’quadratic’ elements) and unfitted meshes as

well as by finite elements with conforming meshes; see the

examples of the corresponding meshes in Fig. 12b,c. The

comparison of accuracy for the numerical results obtained

by OLTEM with the 25-point stencils (’quadratic’ ele-

ments) and by linear and high-order (up to the 5-th order)

finite elements are presented in Fig. 13 for the maximum

relative errors and for the relative errors in the L2 norm for

the three stress components sx, sy and sxy; see our paper [3]

for the details. We should also mention that for OLTEM

we used the new post-processing procedure for the stress

calculation described in Sect. 5. As can be seen from

Fig. 13, at the same numbers of degrees of freedom N,

OLTEM yields much more accurate results than those

obtained by conventional high-order finite elements with

much wider stencils and greater computational costs.

Moreover, OLTEM with the 25-point stencils (’quadratic’

elements) provides the 10-th order of accuracy for stresses

at mesh refinement; see curves 1 in Fig. 13.

9 Concluding Remarks

In this paper, we review OLTEM published in our papers

[1, 2, 22–38] as well as we consider some new develop-

ments of OLTEM. In contrast to our published papers on

OLTEM, here we use slightly different derivations for the

imposition of the boundary conditions. Now the boundary

and interface conditions are uniformly imposed at a small

number of the selected boundary and interface points as

additional constraints with Lagrange multipliers. Some

modifications are also used for the derivations of OLTEM

Table 2 The comparison of the order of accuracy of global solutions obtained by OLTEM with cut stencils and by FEM in the case of

homogeneous materials and irregular domains

Governing equations Stencils Order of accuracy Order increase

with OLTEM

Conventional finite and

isogeometric elements

OLTEM with unfitted

Cartesian meshes

1. Time-dependent wave and

heat equations

9-point (2D) and 27-point

(3D) cut stencils

2 4 (Dirichlet boundary

conditions)

4 - 2 = 2

3 (Neumann boundary

conditions)

3 - 2 = 1

2. Poisson Equation 9-point (2D) and 27-point

(3D) cut stencils

2 4 (Dirichlet boundary

conditions)

4 - 2 = 2

3 (Neumann boundary

conditions)

3 - 2 = 1

3. Time-independent

Helmholtz equation

9-point (2D) and 27-point

(3D) cut stencils

2 4 (Dirichlet boundary

conditions)

4 - 2 = 2

3 (Neumann boundary

conditions)

3 - 2 = 1

4. Time-dependent elasticity

equations

9-point (2D) and 27-point

(3D) cut stencils

2 2 0

5. Time-independent

elasticity equations

9-point (2D) and 27-point

(3D) cut stencils

2 2 0
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for the time-dependent PDEs for which we first replace the

time derivatives by the spatial derivatives in the stencil

equations using PDEs and then we consider a Taylor series

of the local truncation error for the calculation of the

stencil coefficients (in our published papers except paper

[38] we applied PDEs after a Taylor series expansion). In

contrast to our previously published papers on OLTEM for

heterogeneous materials, the more general interface con-

ditions with the jumps for the function and fluxes are used

in this paper. These small modifications simplify the

understanding and the derivations of OLTEM. We do not

use any weak formulations for the derivation of the discrete

equations of OLTEM. The structure of the discrete equa-

tions in OLTEM is assumed or can be taken from any

Table 3 The comparison of the order of accuracy of global solutions obtained by OLTEM and FEM for heterogeneous materials with irregular

interfaces

Governing Equations Stencils Order of accuracy Order increase

with OLTEM

Conventional finite elements

and conforming meshes

OLTEM with unfitted

Cartesian meshes

1. Time-dependent wave and heat

equations with irregular interfaces

9-point (2D) and

27-point (3D) stencils

2 3 3 - 2 = 1

2. Poisson equation with irregular

interfaces

9-point (2D) and

27-point (3D) stencils

2 3 3 - 2 = 1

25-point (2D) and

125-point (3D)

stencils

3 11 11 - 3 = 8

3. Time-independent elasticity

equations with irregular interfaces

9-point (2D) and

27-point (3D) stencils

2 2 0

25-point (2D) and

125-point (3D)

stencils

3 10 10 - 3 = 7

4. Time-dependent elastodynamics

equations with irregular interfaces

9-point (2D) and

27-point (3D) stencils

2 2 2 - 2 = 0

25-point (2D) and

125-point (3D)

stencils

3 6 6 - 3 = 3

3 (lumped mass matrix) 4 (lumped mass

matrix)

4 - 3 = 1

Fig. 9 a A 3� D prism ABCDOPQR (A(0, 0, 0), B(1, 0, 0), C(1, 1, 0), D(0, 1, 0),O(0, 1, 1),P(0, 0, 0.8),Q(1, 0, 0.6), R(1, 1, 0.8)) with a

spherical hole of radius 0.25 centered at (0.4, 0.6, 0.3). b An unfitted Cartesian mesh for OLTEM
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known numerical method. The main idea of OLTEM

consists in the fact that if the unknown function/functions

in a discrete equation should meet PDE or a system of

PDEs then the coefficients of the discrete equation can be

calculated by the minimization of the local truncation error

and they will provide the maximum possible accuracy for

the discrete equation.

The main features and advantages of OLTEM can be

summarized as follows:

• Many difficulties of existing numerical techniques for

irregular geometry (e.g., finite elements, spectral ele-

ment, isogeometric elements, the finite volume method,

and many others) are related to complicated mesh

Fig. 10 a An example of a

conforming tetrahedral finite

element mesh generated by the

commercial software COMSOL

for the discretization of the 3�
D prism ABCDOPQR with the

spherical hole (see Fig. 9a).

b shows a part of the mesh in

the vicinity of the spherical hole

Fig. 11 The maximum relative errors in displacement emaxu ( a, b) and

in velocity emaxv ( c, d) as a function of
ffiffiffiffi
N3

p
at mesh refinement in the

logarithmic scale. N is the number of degrees of freedom. The

numerical solutions of the 3� D scalar wave equation with zero ( a,
c) and non-zero (b, d) loading functions for the prism with the

spherical hole (see Fig. 9a) are obtained by OLTEM on unfitted cubic

(by ¼ bz ¼ 1) Cartesian meshes (curve 1) and by conventional linear

(curve 2), quadratic (curve 3), cubic (curve 4), quartic (curve 5) and

quintic (curve 6) tetrahedral finite elements. Symbols 5, þ, 
, H, �
and � correspond to the results for the different N used in the

calculations
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generators and the poor accuracy of ’bad’ elements

(e.g., the elements with small angles). In contrast to

these techniques, OLTEM is based on simple unfitted

Cartesian meshes with a trivial procedure for the

formation of the compact stencils for 2-D and 3-D

complex irregular geometry as well as OLTEM with

unfitted meshes provides a much higher accuracy than

the above-mentioned techniques on conforming meshes

with similar stencils (similar computational costs), e.g.,

see Tables 1,2,3 for the comparison of accuracy of

OLTEM and FEM.

• In contrast to the Taylor series expansion-based meth-

ods such as the generalized finite difference methods

and others (e.g., see paper [39] and reference there),

OLTEM does introduce additional unknowns on irreg-

ular boundaries and interfaces, does not change the

width of stencil equations as well as provides a much

higher accuracy than the above-mentioned techniques

with similar stencils (similar computational costs), e.g.,

OLTEM with 5� 5 ¼ 25-point stencils for the 2-D

Poisson equation provides the 18-th order of accuracy

(see Table 1 and our paper [1]). The implementation of

the Dirichlet and Neumann boundary conditions as well

as the interface conditions for OLTEM on unfitted

meshes is simple and straightforward.

• A very effective and accurate OLTEM post-processing

procedure has been developed for the calculation of the

spatial derivatives of the primary function at grid points

that is based on the application of the original PDEs. It

uses the compact stencil equations similar to those in

basic computations with the similar procedure for the

calculation of the optimal stencil coefficients that

provide a high accuracy of the spatial derivatives. For

example, we have obtained the 10-th order of accuracy

for stresses for 2-D elastostatics problems with

heterogeneous materials and irregular interfaces calcu-

lated by OLTEM with the 25-point stencils; see our

paper [3]. In this case, the use of the elastostatics PDEs

increases the accuracy of stresses by 6 orders compared

to the post-processing without the use of PDEs.

• As we mentioned above, despite unfitted meshes,

OLTEM provides a very high accuracy of numerical

solutions especially when the 25-point (2-D) and

125-point (3-D) stencil equations (similar to those for

quadratic finite elements) are used. For example,

OLTEM with ’quadratic’ elements yields a huge

increase in accuracy by 8, 7 and 3 orders for the

Poisson, elastostatics and elastodynamics equations

with irregular interfaces, respectively (see Table 3).

• Even at the same order of accuracy, OLTEM yields

much more accurate results than finite elements due to

the minimization of the leading terms of the local

truncation error in OLTEM. Numerical results from our

papers show that at the engineering accuracy, OLTEM

can reduce the number of degrees of freedom by

1000-1000000 times compared to that for finite ele-

ments at similar stencils. This leads to a huge reduction

in the computation time.

• OLTEM with ’quadratic’ elements provides very accu-

rate results for the elasticity equations with nearly

incompressible materials (e.g., with Poisson ratio

0.4995), e.g., see our papers [2, 3, 24].

• For time-dependent PDEs, OLTEM offers a rigorous

approach for the calculation of the diagonal mass

matrix that is based on the accuracy considerations. For

the internal grid points located far from the boundary

and interfaces, the diagonal mass matrix can be

calculated in terms of the coefficients of the stiffness

matrix, e.g., see Eqs. (29) and (75) (similar formulas

(a) (b) (c)

Fig. 12 A square plate ABCD with an elliptical interface centered at point (0, 0) (a). Examples of an unfitted square Cartesian mesh for OLTEM

(b) and of a conforming triangular finite element mesh generated by COMSOL (c)
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can be derived for the elastodynamics equations as well

as for heterogeneous materials, e.g., see our paper [38]).

• New numerical high-order boundary conditions for cut

stencils have been developed for OLTEM with ’quad-

ratic’ elements. They offer the same very high accuracy

of cut stencils as that for OLTEM with regular stencils.

• A new post-processing procedure for the calculation of

the spatial derivatives of primary functions at the grid

points has been generalized in this paper. We have

developed a new approach for the calculation of the

primary functions and their derivatives at any point of

the domain. This approach is based on the optimization

of accuracy of the approximation formulas that includes

the use of the original PDEs. For example, the new

approximation technique can be used for accurate data

transfer between different meshes.

• OLTEM can be easily combined with other numerical

techniques by the replacement of the stencil equations

for some selected grid points with the stencil equations

of OLTEM. For example, in our papers [1, 24] the

stencils of OLTEM were used for the grid points of one

subdomain while the finite element stencils equations

were used for for the grid points of another subdomain.

• OLTEM does not require time consuming numerical

integration for finding the coefficients of the stencil

equations, e.g., as for high-order finite, spectral and

isogeometric elements. The stencil coefficients are

calculated analytically or numerically (for irregular

Fig. 13 The maximum relative errors in stresses emaxsx
(a), emaxsy

(c),

emaxsxy
(e) as well as the errors in stresses eL

2

sx
(b), eL

2

sy
(d), eL

2

sxy
(f) in the

L2 norm as a function of the number N of degrees of freedom in the

logarithmic scale. The numerical solutions for the plate with the

elliptical interface are obtained by OLTEM (curve 1) and by

conventional triangular finite elements (curves 2-6). Curves

(2,3,4,5,6) correspond to linear, quadratic, cubic, 4-th order and

5-th order finite elements, respectively
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geometry) by the solution of small local systems of

linear algebraic equations. Numerical experiments

show that the solution of these small local systems of

algebraic equations is fast. Moreover, these local

systems are independent of each other and can be

efficiently solved on a parallel computer.

In the future we plan the development of OLTEM with

adaptive mesh refinement similar to the h� and p�
refinement for finite elements. This will include special

’transition’ stencils for quadtrees/octrees meshes that allow

a simple refinement strategy with Cartesian meshes. We

will also study the possibility of the development of the

symmetric global matrices for OLTEM by the increase in

the number of the selected boundary and interface points

for the cut and heterogeneous stencils of OLTEM (cur-

rently, the global matrices for OLTEM are non-symmetric

due to the cut and heterogeneous stencils). Research on the

use of preconditioners for the solution of the global sys-

tems of discrete equations of OLTEM is also planned (for

the results presented in our papers on OLTEM, we use

direct solvers and the built-in iterative MATLAB solver

’gmres’). Similar to different finite-different techniques on

irregular geometry, the rigorous proof of stability of

OLTEM is an open problem (currently we solve problems

by OLTEM using a large number (1000-2000) of different

unfitted meshes with very different locations of grid points

with respect to irregular boundary and interfaces in order to

numerically show stability of OLTEM). The extension of

OLTEM to other PDEs for homogeneous and heteroge-

neous materials as well as to non-linear PDEs will be also

considered in the future.
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