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Abstract

The review of the optimal local truncation error method (OLTEM) for the numerical solution of PDEs is presented along
with some new developments of OLTEM. First, we explain the basic ideas of OLTEM for the 1-D wave equation and then
we extend them to the time-dependent PDEs (the scalar wave and heat equations as well as a system of the elastodynamics
equations) and to the time-independent PDEs (the Poisson and Helmholtz equations as well as a system of the elastostatics
equations) in the 2-D and 3-D cases for homogeneous, inhomogeneous and heterogeneous materials. The main advantages
of OLTEM are the optimal (maximum possible) accuracy of discrete equations and the use of unfitted Cartesian meshes for
irregular domains and interfaces. For example, for heterogeneous materials with irregular interfaces, OLTEM with 2-D
25-point stencils (similar to those for quadratic finite elements) provides the 11-th and 10-th orders of accuracy for the
Poisson and elasticity equations, i.e, a huge increase in accuracy by 8 and 7 orders compared to quadratic finite elements
without additional computational costs. Another advantage of OLTEM is a special procedure for the imposition of the
boundary and interface conditions without the introduction of additional unknowns. These conditions at a small number of
the selected boundary and interface points are added to the local truncation error as the constraints with Lagrange
multipliers. This special procedure does not introduce additional unknowns on the boundaries and interfaces (only the
unknowns at internal Cartesian grid points are used), does not change the width of cut stencils, allows unfitted meshes and
provides a high accuracy of cut stencils. For time-dependent PDEs, OLTEM offers a rigorous approach for the calculation
of the diagonal mass matrix in terms of the coefficients of the stiffness matrix that is based on the accuracy considerations.
A new OLTEM post-processing procedure for the calculation of the spatial derivatives of the primary function that is based
on the use of original PDEs significantly increases the accuracy of the spatial derivatives. For example, we have obtained
the 10-th order of accuracy for stresses calculated by OLTEM with 25-point stencils applied to 2-D elastostatics problems
with heterogeneous materials and irregular interfaces. New developments of OLTEM related to numerical high-order
boundary conditions for cut stencils as well as to the accurate calculation of the primary functions and their derivatives at
any point of the domain are presented. The comparison of accuracy of OLTEM and FEM at similar stencils is also
analyzed. Numerical results show that at the engineering accuracy, OLTEM can reduce the number of degrees of freedom
by 1000-1,000,000 times compared to that for finite elements at similar stencils.

1 Introduction

Accurate and fast numerical solutions of partial differential
equations (PDEs) describing many mechanical phenomena
is one of the main objectives of computational mechanics.

< A. Idesman
alexander.idesman @ttu.edu

! Department of Mechanical Engineering, Texas Tech

University, Lubbock, TX 79409-1021, USA

Complex irregular geometry including irregular boundaries
and interfaces represents difficulties in the development of
reliable numerical methods for PDEs. The modern
numerical methods such as the finite element method, the
finite volume method, the isogeometric elements, the
spectral elements and similar techniques are widely used
for the solution of different PDEs on irregular geometry.
These methods use powerful mesh generators for the
automatic spatial discretization of irregular geometry with
conforming meshes. However, in the case of very complex
geometries, these conforming meshes may include ’bad’
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elements (e.g., the elements with small angles) that lead to
very inaccurate numerical results. Along with the accuracy
considerations, another very important feature of any
numerical method is the computation time (computational
costs) needed for achieving a given accuracy of numerical
results. For example, many numerical techniques for
irregular domains are derived using some weak formula-
tions (e.g., based on the Galerkin approaches). However, in
many cases these approaches do not provide the optimal
accuracy of the derived discrete equations. For example, it
is known that finite elements of order p provide the p + 1
order of accuracy in the L? norm. However, in our papers
[1-3] we showed that for the same structure of the discrete
equations, new ’quadratic’ elements (p = 2) provide the
18-th order of accuracy for the Poisson equation and the
10-th order of accuracy for the elasticity equations on
regular domains with uniform meshes as well as the 11-th
and 10-th order of accuracy for the Poisson and elasticity
equations for heterogeneous materials with irregular
interfaces.

To resolve the above-mentioned issues with the mesh
generation on irregular geometry, many numerical tech-
niques have been developed with simple uniform meshes
such as the embedded finite difference method, the cut
finite element method, the finite cell method, the Cartesian
grid method, the immersed interface method, the virtual
boundary method, the embedded boundary method, etc.
For example, the techniques based on the finite element
formulations (such as the cut finite element method, the
finite cell method, the virtual boundary method and others)
yield the p + 1 order of accuracy even with small cut cells
generated due to complex irregular boundaries (e.g., see
[4-10] and many others). The main advantage of the
embedded boundary method developed in [11-15] is the
use of simple Cartesian meshes. The boundary conditions
or fluxes in this technique are interpolated using the
Cartesian grid points and this leads to the increase in the
stencil width for the grid points located close to the
boundary (the numerical techniques developed in [11-15]
provide just the second order of accuracy for the global
solution). Interesting finite element techniques with simple
unfitted meshes has been developed in [16-21] for the
Poisson equation with irregular interfaces. However, these
techniques provide the p 4+ 1 order of accuracy for high-
order immersed, generalized and extended finite elements
of order p as well as they introduce additional degrees of
freedom for the consideration of the interface conditions.

Recently, we have developed an optimal local truncation
method (OLTEM) for the numerical solution of PDEs on
regular ( [1, 2, 22-24]) and irregular ( [25-33]) domains
and irregular interfaces ( [34—38]). The main objectives in
the development of OLTEM are to use trivial unfitted
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Cartesian meshes for irregular domains and interfaces as
well as to provide the maximum possible accuracy of
discrete equations used for the discretization of PDEs. In
this paper we will review OLTEM for different PDEs
presented in our above-mentioned papers as well as we will
show some new developments and the applications of
OLTEM. We should also note that the derivation of
OLTEM with compact stencils includes a Taylor series
expansion of unknown functions. The review of Taylor-
series based numerical methods (including the generalized
finite difference method (GFD), the particle strength
method, the moving least square method and the interpo-
lating moving least square method) as well as their com-
parison with the finite element method is given in the
recent paper [39]; see also the numerous references there.
One of the main differences between OLTEM and the
generalized finite difference method is in the approach for
the determination of the coefficients of discrete equations.
In contrast to the approximation of the spatial derivatives
as in GFD, in OLTEM we maximize the accuracy of each
discrete equation by the calculation of the optimal values
of the coefficients of the discrete equations with the use of
the corresponding PDE. For example, in the case of a
system of PDEs, all PDEs are used for the calculation of
the coefficients of one discrete equation. This provides the
maximum possible accuracy of the discrete equations of
OLTEM. Another big difference is the imposition of the
boundary and interface conditions. In OLTEM, these
conditions are applied at a small number of the selected
boundary and interface points as the constraints for the
local truncation error. This procedure does not introduce
additional unknowns on the boundaries and interfaces,
allows unfitted meshes and provides the high accuracy of
cut stencils.

In Sect. 2, we explain the ideas and the derivation of
OLTEM for the simple 1-D wave equation. This includes
the introduction of the local truncation error of stencil
equations, the calculation of the stencil coefficients for the
3-point, 5-point and 7-point stencils (similar to those for
linear quadratic and cubic finite elements) for homoge-
neous materials, the calculation of the diagonal mass
matrix, the consideration of the wave equation with non-
zero body forces, the extension of OLTEM to heteroge-
neous materials. In Sect. 3 we extend OLTEM to the
general 2-D and 3-D cases for the time-dependent scalar
wave and heat equations with homogeneous, inhomoge-
neous and heterogeneous materials as well as for a system
of elastodynamics equations with homogeneous and
heterogeneous materials. The development of OLTEM for
the time independent Poisson, Helmholtz and elasticity
equations with homogeneous and heterogeneous materials
is presented in Sect. 4. The post-processing procedure for
the calculation of the spatial derivatives of the primary
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functions at grid points that is based on OLTEM is
described in Sect. 5. This paper includes also new devel-
opments of OLTEM. A new OLTEM procedure for the
calculation the primary function and its derivatives at any
point of the domain is presented in Sect. 6. New numerical
high-order Dirichlet and Neumann boundary conditions for
cut stencils that provide the same order of the local trun-
cation error as that for the 2-D 25-point regular stencils has
been developed in Sect. 7. The comparison of accuracy of
OLTEM and FEM showing a huge increase in accuracy for
OLTEM is given in Sect. 8. The main features and
advantages of OLTEM are summarized in the concluding
remarks in Sect. 9. For the derivation of many analytical
expressions presented below we use the computational
program “Mathematica”.

2 OLTEM for 1-D Wave Equation

Wave propagation in an 1-D homogeneous medium is
described by the following scalar wave equation:

O%u 5 %u

du_p01_ (1)
2 el

where u is the displacement, c is the wave velocity, fix, ) is
the loading term.

2.1 Introduction of the Local Truncation Error

According to the new approach we assume that a stencil
equation for the wave equation after the space discretiza-
tion with a uniform mesh can be written as an ordinary
differential equation (a semidiscrete equation):

L 2 num
d u[r}u um r
Z <h2mi a2 + ki ) =1 (2)

i=1

dZMI_zum . .
where u/"" and o are the numerical solution for func-

tion u# and its second order time derivative at the grid
points, m; and k; are the unknown coefficients to be
determined (they will be determined by the minimization
of the local truncation error for Eq. (2), see below), L is the
number of the grid points included into the stencil, % is the
mesh size along the x— axis, f is the discretized loading
term. Many numerical techniques such as the finite dif-
ference method, the finite element method, the finite vol-
ume method, the isogeometric elements, the spectral
elements, different meshless methods and others can be
finally reduced to a system of the stencil equations, Eq. (2),
with some specific coefficients m; and k;. For OLTEM used
below, we consider the semi-discrete equations without the
time discretization. After the derivation of the coefficients
of the semidiscrete equations, any existing time-integration

method can be used for the time integration of the
semidiscrete equations. The initial conditions used for the
time integration of the semidiscrete equations are similar to
those for other numerical methods (e.g., for FEM).

Let us introduce the local truncation error used with the
new approach. The replacement of the numerical values of

2, num

i and its second order time derivatives —

the function u]
at the grid points in Eq. (2) by the exact solution u; and %
to the wave equation, Eq. (1), at the grid points leads to the
residual of this equation called the local truncation error e

in space for the semidiscrete equation, Eq. (2):

L 2 dzl/t,' —
e = Z h m; d[2 —|—kiu,- —f (3)

i=1

Considering the difference between Eqgs. (3) and (2) we can
get

L 2 2 num
d7u; du™
_ § 2 i i num
‘T =1 {h ml{dtz - ar ] kilus = o ]} (4)
= 4

_ ’ 2 Ry
where ¢; = u; — u™" and &% = L4 — T

e S are the errors of
function u and its order time derivative at the grid points i.
As can be seen from Eq. (4), the local truncation error e is a
linear combination of the errors of the function u and its
order time derivative at the grid points i which are included
into the stencil equation. We will use the unknown stencil
coefficients m; and k; in Eq. (4) in order to minimize the

local truncation error e in Eq. (4).

2.2 3-Point Stencils for the 1-D Wave
Equation with Zero Load (f =0) on Uniform
Meshes (Comparison OLTEM with FEM)

After the space discretization of Eq. (1) with zero load
(f =f = 0) on a uniform mesh of size h, a 3-point stencil
for each internal grid point can be introduced as follows:
(see Fig. 1):

d2 1um d2 um d2 1 um
h2 1 2 3
(ml a + my a2 + m3 i
+ (k™ 4 k™ + kgt = 0,

(5)

where the coefficients m; and k; (i = 1,2,3) should be

Uy Uy Us

Fig. 1 The spatial locations of the grid points i (i=1,2,3)
contributing to the 3-point stencil for the grid point 2
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determined, superscript num’ corresponds to the numerical *u;  u 0%u,
value of the function. The 3-point stencil in Eq. (5) is 02 ox 2( =x,—h) = 02
similar to that for linear finite elements with the stencil o 5 5 .3 6 14 (12)
. us 6 us h 0 up h 0 1753 h
coefficients calculated through the elemental mass and e 2l oo 3l a4l
stiffness matrices. The stencil coefficients for the conven- 5 o 5 v e . 2' v
tional linear finite elements are: Ouz Ou, ) — 0"up
1 2 1 G e R T (13)
m1=@, mzzﬁ, m3:@, ki = —1, 63u2h+64u2h2 Sup b 6u2h4+
ky =2 ky = —1. ox3 Ox* 21 ox® 3! ox® 4!
(6) Inserting Eqgs. (10)-(13) into Eq. (9) we get the following

The local truncation error e for the 3-point stencil is
obtained by the replacement of the numerical value of
function /" in Eq. (5) by the exact value u; at the grid
points i (i = 1,2, 3):

e =h(m d2 —|—m2d2 —I—mgdzu3
ar dr? dr?

+ (kjuy + kaua + kzuz).

(7)

Using the partial differential equation, Eq. (1), the time
derivatives of the exact solution at the grid points can be
replaced by the spatial derivatives as follows:

o*u, B 262u1 *uy B 262u2

or " S o ¢ o ®)
62u3 - 262143
a2 S e

Then, the expression for the local truncation error, Eq. (5),
can be simplified with the help of Eq. (8) as follows:

O%u O%u 0%u
_ 32,2 1 2 3
e = h'c (ml 2 +my A% +m3 6x2)

+ (k]l/tl + kousr + k3u3).

©)

Next, let us expand the local truncation error, Eq. (9), into a
Taylor series by the expansion of the exact solution for u;
and ! at the grid points i = 1 and i = 3 into a Taylor

series in the vicinity of point i =2 at small & < 1 as fol-
lows (see Fig. 1 for the locations of the grid points):

6u2 0 Ll2h2
ulzu(xlzxz—h)—uz—a— 32 2
. (10)
6 u2h3 0 u2h4
S 3 ot 4l
ou 0%uy h?
172} —u()C3 —x2+h) =u + azh-i- ox 222|
. ) (11)
0 Mgh_3 0 MzE
0x3 3! ox* 4!
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Taylor series for the local truncation error:

0
e =wulky + ky + k3] +h£[k3 — k]

o
+2h2 a”; [kt + k3 + 22 (my + ma + m3)]
o
+6h3 aM; [k3 k1+6c2(m3—m1)]
o*u
4 2 2
ﬂh e [ki + ks + 12¢*(my + m3)]
s @mr b o0e
+m o [3— 1+ C(m3_ml)]
1 u
+25 5 E22 k) + ks + 30¢2(my +m3)] + O(R).

(14)

Equation (14) can be rewritten in the following form:
Ouy 2 Quy 3 %uy
e7u2b1+ha b2+2h 62b+ ha3
6 up 1 a up 1 6 u

B A e - ST e - 6 72
24h ad U5 T 10" e bt e b H O,
(15)

where the b; coefficients are the linear combinations of the
6 stencil coefficients m; and k; (i = 1,2,3). The b; coeffi-
cients can be easily found by the comparison of Eqs. (14)
and (15). Due to the use of Eq. (8), the local truncation
error in Egs. (9), (14) and (15) does not include the time
derivatives. We should mention that Eq. (14) provides the
local truncation error for any numerical method with the 3-
point stencil equation, Eq. (5), independent of the tech-
nique used for the derivation of the stencil coefficients in
Eq. (5). For example, inserting the stencil coefficients for
linear finite elements given by Eq. (6) into Eq. (14), we can
find that linear finite elements provide the fourth order of
the local truncation error:

by

—— +O(h®). (16)

Next, we will show that linear finite elements do not pro-
vide the optimal order of accuracy for the the 3-point
stencil equation, Eq. (5). Below we derive the stencil
coefficients of the 3-point stencil equation, Eq. (5), for
OLTEM that are based on the minimization of the local
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truncation error. Equating the first five coefficients b;
(i=1,2,...,5) with the smallest orders of / in Eq. (15) to
zero we get the following linear system of five algebraic

equations for finding the stencil coefficients:
by =k +ky+ ks =0, by =ks —k; =0,

by = ki + k3 + 2c*(my + my +m3) = 0,
by = ks — ki + 6¢*(m3 —my) = 0,
bs = ki + ks + 12¢*(m; + m3) = 0.

(17)

Solving this system, we can find the following coefficients
m; and k; (i = 1,2,3) of the stencil equation, Eq. (5), for

OLTEM:
a S5a a
m = —- = — m == ——
' 242 2T 12e ST 240 (18)
a
ki =—= ky = ky = —=
1 27 2 a, 3 2)

where a is an arbitrary coefficient.

Remark 1 The multiplication of each term of the stencil
equation, Eq. (5), by any scalar does not change this
equation, i.e, only five coefficients m; and k; are indepen-
dent and should be determined in Eq. (5). Therefore, we
use five algebraic equations for their calculations (see
Eq. (17)). This fact is also reflected by the existence of the
arbitrary multiplier a in Eq. (18) that does not affect the
results and, for convenience, can be taken as k, = a = 1.

Inserting the coefficients m; and k; (i=1,2,3) for
OLTEM (see Eq. (18)) into Eq. (14) we get the local
truncation error for OLTEM (we use k, = a = 1):

he °
€OLTEM = —£+0( h®). (19)

480 0Oxb

As can be seen from Eqgs. (16) and (19), OLTEM with the 3-
point stencils improves the accuracy by two orders compared
to that for linear finite elements with the same 3-point sten-
cils. The difference between OLTEM and FEM is just in the
values of the stencil coefficients m; and k; (i = 1,2, 3).

2.3 Extension of OLTEM to High-Order Stencils
for the 1-D Wave Equation on Uniform
Meshes

Here, we consider the extension of OLTEM derived in
Sect. 2.2 to 5-point and 7-point stencils on uniform
Cartesian meshes with the mesh size A. Similar to Eq. (5),
the 5-point stencil can be written as follows:
2 num 2, num 2, num 2 um 2 e
h2<m1d;12 +m2d:22 +m3d;;;2 + 4dd2 detz >
+ (k" + kouy™ + ks + kgudy"" + ksut™) = 0,

(20)
where the coefficients m; and k; (i = 1,2, 3,4,5) should be

determined. The 5-point stencil in Eq. (20) is similar to that
for quadratic finite elements with the stencil coefficients
calculated through the elemental mass and stiffness
matrices. Similar to the derivations given by Eqgs. (7)-(14),
a Taylor series for the local truncation error for the 5-point
stencil in the vicinity of the stencil central grid point with
the coordinate x3 is:

6143
ox

e =ub +h— aau;
4
6’13%”3 bt g aa;?
+ 50140 4 aa;? bs ¥ 40;20 8 aa;?
9
* 3621880 ” %:93

by +— h2 bs
bs

by

bio + ! h“’ao
1073628800 xl0

Sy +o(n'),
(21)

where similar to Eq. (15) the b; coefficients are the linear
combinations of the 10 stencil coefficients m; and k;
(i=1,2,...,5). Equating the first nine coefficients b;
(i=1,2,...,9) with the smallest orders of /# in Eq. (21) to
zero with k3 =1 (see Remark 1) we get the following
linear system of nine algebraic equations for finding the
stencil coefficients:

by =k +ky+ks+ks+ks =0,
by = =2ky — ko + kg + 2ks = 0,
by = (dky + ko + kg + dks+
2¢%(my + my 4 m3 +my +ms)) =0,
by = (—8ky — ko + k4 + 8ks+
6¢%(=2my — my + ma + 2ms)) = 0,
bs = (16k| + k + ks + 16ks + 12¢*(4m; + my + my + 4ms)) = 0,
be = (=32ki — ko + ka + 32ks + 20c* (—8m; — m>
+my + 8ms)) =0,
by = (64k; + ky + ky + 64ks + 30> (16m; + ma + my
+ 16ms)) =0,
by = (—128k; — ky + ky + 128ks + 42¢*(—32m; — my
+ my 4 32ms)) = 0,
by = (256k; + ky + kg + 256ks + 56¢2(64m; + my + my
+ 64ms)) = 0,
bio = (=512k; — ko + ka + 512ks + 72¢*(—128my — my
+ my + 128ms)) = 0, ks =1.
(22)

Solving this system, we can find the following coefficients
m; and k; (i = 1,2,3,4,5) of the stencil equation, Eq. (20),
for OLTEM:
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23 344 131 0 1 0 k 1
my = my — my = ———=., m = m = — m. = = — —
U7 477002 ™ T 2385027 ™ T 265020 ™ = 27 22 3= ! 2’
344 23 31 1
= 27m5: PRI 1 = —F7g0 K2 kz_l’ k3:——7
238654c . 4Z7OC 318 (23) 7
= —— =1 - —
159"~ 0 159’ (27)
ks = — % with the following local truncation error:
. . . h4 64142 5 28
Inserting the coefficients m; and k; (i =1,2,3,4,5) for +Oo(R). (28)

OLTEM (see Eq. (23)) into Eq. (21) we get the local
truncation error for OLTEM:
79R'0 9'0u;
e _ 7
OLTEM ™ 6010200 0x10

+0o(h'"). (24)

Repeating similar derivations for the 7-point stencil, we

will get the following coefficients m; and k;
(i=1,2,3,4,5,6,7) for OLTEM:
1857 55161
™= 356202 ™ T 16263102
989739 543981
= 325262027 T 81315502
989739 55161
= 325262027 "0 T 16263102 "
1857 7069 8019
= 325262021 = “26a660° 2 T " 33100°
_wse 205
9203274~ 92932 "¢
8019 7069
T33190° 77 T 464660
(25)
with the following local truncation error:
14 14
S 1146694 3 TS 26)

1302349048000 0x'4

It can be also shown that OLTEM with the (2p + 1)-point
stencils (p = 1,2,...) can provide 4p + 2 order of the local
truncation error eprrgy for the 1-D wave equation.

2.4 OLTEM with the Diagonal Mass Matrix

OLTEM with the diagonal mass matrix can be derived as a
particular case of the non-diagonal mass matrix presented
in Sects. 2.2 and 2.3. For the 3-point stencil with the
diagonal mass matrix, the non-diagonal mass matrix
coefficients are zero, i.e, m; = m3 = 0 in Egs. (5), (7), (9),
(15). Equating the first three coefficients b; (i = 1,2,3)
with the smallest orders of / in Eq. (15) to zero with k, = 1
(see Remark 1), we get the following coefficients m; and k;
(i=1,2,3) for OLTEM with the 3-point stencil and the
diagonal mass matrix:
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It is interesting to note that from the equation b3 = 0 [see
Eq. (17)] it follows that

1

s (k1 + k3) (29)

mp =
for the diagonal mass matrix (m; = m3 =0), i.e, the
diagonal mass matrix is expressed in terms of the coeffi-
cients k; and k3 of the stiffness matrix. This formula,
Eq. (29), is valid for any 3-point stencil independent of the
numerical method, i.e., with any other value for the diag-
onal mass term m, in the diagonal mass matrix, the order of
the local truncation error of Eq. (5) will be smaller (the
error will be greater).

Repeating similar derivations for the 5-point and 7-point
stencils (we will zero the first five coefficients b; =0, i =
1,2,...,5 in Eq. (21) for the 5-point stencil and the first
seven coefficients b; =0, i = 1,2,...,7 in the expression
for the local truncation error for the 7-point stencil), we
will get the following coefficients m; and k; for OLTEM
with the diagonal mass matrix:

2
ny =0 I’I12=0 1713_?7 m4=O, m5=O,
1 8
ki =30 k2:—E7 ky =1,
8 1
ky = 15 ks = 30
(30)
with the local truncation error:
h6 aGM’;
=—— 10 31
€OLTEM 22566+ (h") (31)
for the 5-point stencil as well as
m; =0, my = 0, m3 = 0,
18
my =—
* T 49027
ms :0, me = 07 nmy = 0,
1 27 27
! 245’ > 490" } 49" YT
27 27 1
ks = —— ke = — k1 = ——
> 49’ ® ™ 490 ! 245’
(32)

with the local truncation error:
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~9n® Suy
€OLTEM = 13720 ox®
for the 7-point stencil. It can be also shown that OLTEM
with the (2p + 1)-point stencils (p =1,2,...) and the
diagonal mass matrix can provide 2p + 2 order of the local
truncation error eprrgy for the 1-D wave equation.

o(n’) (33)

2.5 Extension of OLTEM with the 3-Point Stencils
to the 1-D Wave Equation with Non-zero
Load Term f%=0

In this case, the non-zero discretized load term f should be
added to the stencil equation, Eq. (5), as follows:

d2 um d2 ylum d2 um
h2 1 2 3
(ml dr? > ar s dr?
+ (kl uilwm + kzugum + k3 ugmm) — f_

(34)

Below we show how to define the load term f. The local
truncation error ey for the 3-point stencil with nonzero load
term f can be obtained by the replacement of the numerical
value of function #]*" in Eq. (34) by the exact value u; at
the grid points i (i = 1,2,3):
d2M1 d2142 d2M3

+ niy )
dr? dr? dr? (35)
+ (kyuy + kouo + ksusz) —f_.

er = I (m

Using the partial differential equation, Eq. (1), the time
derivatives of the exact solution at the grid points can be
replaced by the spatial derivatives as follows:

*u, ) o*u,

e Cae th
62u2 2 62u2
20 = ga (36)
62143 2 62u3
S T

where f] :f(x = X1, I), f2 :f(x = X2, I), f3 :f(x = X3, l)
are the values of the load at three grid points. Then, the
expression for the local truncation error, Eq. (35), can be
simplify with the help of Eq. (36) as follows:

o%u
22 1
e = |h¥c”(m a2

o o’
U Iy 4 (ki + kous + kus) (37)

+ my

+ [P (mifi +mafs + mafs) — f]
=e+ [h2<m1f1 + mofs + maf3) —ﬂ,
where the expression in the first square brackets in Eq. (37)

is the local truncation error e for the case of zero load term
f: see Eq. (9). We will define the discretized load term f by

zeroing the expression in the second square brackets in
Eq. (37):

3 L
=0 (mfi +mafy + mafs) = hZZmif,- = hZZmiﬁ,
i=1 i=1

(38)

where the last equality in Eq. (38) is the expression for the
discretized load term for the L-point stencils. Then, it also
follows from Eq. (37) that e; = e. This means that first the
stencil coefficients m; and k; are calculated for the case of
zero load term f =f = 0 as described in Sects. 2.2-2.4.
Then, the discretized load term f is calculated by Eq. (38).

2.6 Extension of OLTEM with the 3-Point Stencils
to the 1-D Wave Equation for Heterogeneous
Materials

Wave propagation in a composite domain Q = UQ,
(I=1,2,...,N where N is the total number of subdo-
mains) is described by the following scalar wave equation

in each subdomain €Q;:
62u1 _ 02 62u1
or? I ox?

where the wave velocity ¢; is assumed to be a piecewise
constant function (c; is a constant for each subdomains €;).
At the interface G (G is a point in the 1-D case) between
any two subdomains, the following interface conditions for
the function and flux are applied:

* *k
ang — Cyx Gg—; - 52, (40)
where e, and e, are the corresponding material constants,
01(t) and 9, (¢) are the given jumps for the function and for
the flux, the symbols * and ** correspond to the quantities
on the opposite sides from the interface for the corre-
sponding subdomains €; (of course, the composite domain
under consideration can include any number of different
materials). For zero jumps 01 (¢) = d,(¢) = 0, the functions
u; are continuous across the interfaces but have the dis-
continuous spatial derivatives across the interfaces. The
functions f; can be discontinuous across the interfaces.

For the derivation of OLTEM for heterogeneous mate-
rials, we assume that the mesh is sufficiently fine in order
to include only one interface between different materials
within any 3-point stencil; see Fig. 2. The case of the 3-
point stencil inside the homogeneous material considered
in Section 2.2 also follows from this stencil when point G
coincides with the end point 1 or 3 of the 3-point stencil;
see Fig. 2 for £ = +1. The coordinates x; and x3 of the
points 1 and 3 of the 3-point stencil and the coordinate xg
of the interface point G are (see Fig. 2):

=, (39)

* ok
ug — ug =0y, e
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Fig. 2 The spatial locations of the grid points i (i = 1,2,3) and the
interface G between two materials for the 3-point stencil

X3 = x2+h, Xy =x2—h, xg = xo — Ch,

(41)

where —1 <¢<1.

The 3-point stencil equation for homogeneous materials,
Eq. (5), can be modified for heterogeneous materials as
follows:

A2y d2ymem
2 1 1
h*{m; {al e +(1—a) dtz]
Dk num 42y
2 2
+my [QZT—F (1- 02)T]
Dk num d2 oK UM (42)
3
+m3[a3 2 +(1—a3)7]}

+ k2 [azu; Jum (1 _ az)u;* num]

+ k3 [aSu: num (1 — a3 )ug* num] — f‘_,

where the coefficients a; = 1 if the grid point i belongs to
material * and a; = O if the grid point i belongs to another
material ** (i.e., only one variable u ™" or u; """
(i=1,2,3) is included into Eq. (42) for each grid point,
e.g., aj =1 and a; = a3 =0 for the stencil shown in
Fig. 2. As can be seen, the 3-point stencil, Eq. (42),
includes the same number of the stencil coefficients m; and
ki (i =1,2,3) as that for the homogeneous case, Eq. (5).
The local truncation error e follows from Eq. (42) by the

replacement of the numerical solutlon w,", u;
(i = 1,2,3) by the exact solution u;, u}™

dut d*u
e=#{m%nd;+0—aﬂdﬁ]
dzuz*
251

Py
a3 t2 +(1-as) ar }}

+ (1 — a))u)™] + kafaus + (1 — az)u5"]
(1 —a3)uy] ~f

+my

+m3

+ kl [al
+ k3 [a3u
(43)

In contrast to homogeneous materials, the stencil equation
and the local truncation error for heterogeneous materials

@ Springer

given by Eqs. (42) and (43) include two different functions
. One of the ideas of the new approach for
heterogeneous materials is to include the interface condi-
tions for the exact solution into the expression for the local
truncation error, Eq. (43), as the constraints in order to
couple the functions u* and u**

dzl/l* d2u**
) 1 1
e=h {ml [al I +(1—ay) s ]

u* and u**

d2u§ dzuz*
+my {az e + (1 —a2) i }
d2u§ dzug*
+m3 {% an + (1 —a3) P }
+ kilayuy + (1 — a))uy™] + ke [agus + (1 — az)uy”]

slasuy + (1 — a3)uy’] — f

Cduy %

or? or? or?
Fug 6252)

“ofox . otx on
4 % 4 ek 4
+h4q5 GuGia ug 7@ o1 ’
ort ort ort
(44)
where the unknown coefficients ¢; (i = 1,2,...,5) can be

considered as the Lagrange multipliers and they will be
used for the minimization of the local truncation error in
Eq. (44), the expressions in parenthesis after g; and ¢, are
the interface conditions (see Eq. (40), the expressions in
parenthesis after g3, g4 and gs are the time derivatives of
the interface conditions (the time derivatives of the left-
and right-hand sides of Eq. (40)). Therefore, the expres-
sions after the coefficients g; (i = 1,2,...,5) in Eq. (44)
are zero and Eqs. (43) and (44) yield the same local trun-
cation error e. We should mention that we use the even
orders of the time derivatives of the interface conditions in
Eq. (44) in order to finally express the time derivatives in
terms of the spatial derivatives using the partial differential
equation (see the derivations below). However, we do not
have these limitations for the heat equation which is for-
mulated in terms of the first time derivative (e.g., see
Sect. 3.1 below).

To derive the coefficients m; and k; (i=1,2,3) in
Eq. (44), first we replace the time derivatives of the exact
solution in the expression for the local truncation error e in
Eq. (44) by the space derivatives using the partial differ-
ential equation, Eq. (39), as follows (we assume that
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functions u* and u*™* are sufficiently smooth in the corre- 5 L ,
sponding subdomains including the interface): =h Zmi[aifi* + (1 —a)fi"] + P qs(fg — 16)
i=1
62u>f< 62 * af* of** aZf* 62 K
L — c; —|—f; , W . G _ » G H 2V JG G
or? 0x?2 (45) i ase ox " Tow )+ 1as(e. 0x? + or?
azu%* az i sk . 2 62 é* 62 é* 2 6251
2 = 62 + i, (i=1,2,3,G) T2 6t2) —(q101 + hq262 + h Boa
. - %0, | 4 0%
auG:czauG + g —5 2 T 5@)7
¥ Qug _ 2 Oug (46)
ox o2~ T a3 where the last expression in the parenthesis in Eq. (49)
of corresponds to the contribution due to the non-zero jump
426G o . .
ox conditions in Eq. (40). So far, in our papers
oty 64 o2 [2, 3, 24, 34, 36, 37] on OLTEM for heterogeneous
aLiG = *6 26 > azG materials, we have used zero jumps d; = 0, =0 in the
! 6xu ! atz s R ot interface conditions. However, non-zero jumps affect just
=c, 6—x4G +c? axZG 6t26 ) 6t4G the discretized load term f and can be easily included into
, 64u2‘;* azfé* the numerical procedure (e.g., see Eq. (49)).
= Cux 2o o2 Next, similar to Sect. 2.2 let us expand the local trun-
* ul o? a o2 cation error, Eq. (48), into a Taylor series by the expansion

= gd Tt (47)
Equation (45) is the original partial differential equation
applied at the three grid points and one interface point.
Equations (46) and (47) are obtained by the differentiation
of Eq. (45) with respect to x and ¢ as well as by the
replacement of the time derivatives in Eq. (47) using
Eq. (45).

Inserting Eqgs. (45-47) into Eq. (44) we get the following
local truncation error in space for OLTEM that does not
include the time derivatives:

a2 % 62 Fok
e = hz{ml [ale a;tz] + (1 - al)ci* au21 :|

* 0x?

azu* 5 azug*
+m3 [a3c* a2 + (1 —a3)c, o
+k1 [alul +
+k3[a3u§ +

» ouy ouy:
+ {ql(u —uy) +h612(€* axG — e a)f)

62 * 62 sk
+my [a2c2 “ +(1- a2)62 —}

1 —a))u)™] + ka[aous +
3]

( (1 —a2)uy’]
(

1 —a3)u

Q’ut aZu**
h 2 G__ 2 G
+ q%( o = ox?
6314* a3u**
+h3q4 (g*ci ol e**Ci* axg)
a4u* 841/{**
r 49U 4 G
+ qs (C* ax4 *k ax4 B}

(48)

as well as the discretized load term f:

sk au

. and o & " at the grid
points i = 1,2, 3 into a Taylor series in the vicinity of the
interface point G at small 7 < 1 as follows:

of the exact solution for u}, u;

+6v +6 vGr2+63vGr?+64vGrf+
Vi=1V - - ey
ST T a2l a3l a4l
(50)
where r; = x; —xg (e.g., 11 = (E — V)h, 1 = Eh,rs = (E+
2% 2 ek
1)k in Fig. 2), the function v; in Eq. (50) is u7, u}", 54, %4

(i=1,2,3). Inserting Eq. (50) into Eq. (48) we get the
following Taylor series of the local truncation error in
space for OLTEM:

. ouy,  ouy 5 O
e:b]uG—l;bgu —l—h[b'; ? +b4 agc} +h [bs @Xi
oux o u oul o' u
b G h3 b G b G h4 b G
+66f2]+ [7a§+ 635]+ [9—6x46
o ul ou urt u
b 1 + r’b b 9] + Kb
+10663x4]+[1165+1265]+[136
M**
b S1+o(n’
+ 14 6)66 ]+ ( )7
(51)
where the coefficients b, (p = 1,2,...) are expressed in
terms of the coefficients m;, ki, ¢; (i=1,2,3 and

j=1,2,...,5) and the distance &; see our paper [34] for
the details. We should mention again that by the use of the
wave equation, Eqgs. (45-47), the time derivatives in the
expression for the local truncation error in Eq. (51) are
excluded. In order to minimize the order of the local
truncation error in Eq. (51), we will zero the first 10
coefficients b, =0 (p=1,2,...,10) for the smallest
power of h. From these 10 algebraic equations and the
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condition k, = 1 (see the Remark 1) we can find the 11
coefficients m;, k;, g; (i = 1,2,3 andj = 1,2,...,5) as well
as we get the fifth order of the local truncation error in
Eq. (51); see our paper [34] for the details. For example,
for the location of the interface point shown in Fig. 2 with
a; = 1 and a; = a3 = 0, we get the following coefficients
mi, ki, q; 1 =1,2,3andj=1,2,...,5):

e, (c* e (& — 1) + 222

sk ok

meet the corresponding PDE, Eq. (39), and can be extended

outside their subdomains). In this case we expand the exact
i
i =3 into a Taylor series in the vicinity of point i = 2 at
small & < 1 using Egs. (10) - (13) as well as we expand the
o O uy Dur Fuy dug o'uly

UG, o> a2 > o> oo oo o

. u . . .
solution for u, u and "+ at the grid points i = 1 and

and

exact solution for ug;,

(Bef(E+1) +en(=28 + E+ D)(E =1’ + (e f(E +28 — 1) +en(4¢ 28 168 + ¢ 1))

m; =

1
my = E[C‘*‘*e*(—ée** + €un + Se.
E+D))E -1 -2 e.

(e (58 +58% — 6¢ — 4)

d

)

— e £(E+3E42)(E— 1) + el (88 + 248 + 20 +5)(E— 1) + €
EE+DHE +3E+1) + even (=58 — 158 — 48 + 1482 +9¢ + 1)),

—2c%c? e,

* ok

my = Ll eufen(E— 1) = sep)E - 1)

(756**52 + e*(é + ])é

ten)(E =17 + (-2, (88 —4E—1)(E— 1)+ 2E(-8 +2E+1)

+ eenl(5E - 58 — 68 +4¢+2))),

e,
k= S e teten —enl
_ _ *5&«*‘%3** “l’e*i
k2 N 17 k3 N fe*+e*+e**—e**f’
e,
ql - 53* +€* +e** - e**£7
_ ¢-1
R
g = OcheE -1 —dcicen 28+ DE= 1) +cllen (@ +28 62 — L+ 1) — e f(E 428~ 1)
3 = 7 ’
i d
g = ED(chen(e - D' =422 e (6 + D)(E— 1) +cHen (48 +28 — 68 — £+ 1) — e,8(8 +282 - 1))
4 = i )
d
g — DA Ge b+ D Fen(228 + E+ DIE = 1) +e(ed(& +28 — 1) +en (48 228468+ 1))
5 — — - )
; 2d
(52)
with at the interface point G into a Taylor series in the vicinity
_ f point i = 2 at Il h < 1 as follows:
J = 123 (Ser + €+ enr — enE)(cen(E — 1)2 of point i at small h < azs ollows
d 3%, (¢h
e E(E 4+ 1) + e (<28 + E 1 1)). vg = vy — 22 ey 4 02 ()
6x ax2 2' (53)
It can be checked that for £ =1 in Fig. 2 (homogeneous v, (éh)S o*v, (5};)4
materials), Eq. (52) yields the same m;, k; (i=1,2,3) Y ot 4 T

stencil coefficients as those given by Eq. (18).

Remark 2 We should mention that the local truncation
error, Eq. (48), can be also expanded into a Taylor series in
the vicinity of the central grid point i = 2 (we assume that
the unknown functions u* and u™* are sufficiently smooth,

@ Springer
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where the function vg in Eq. (53) is uls, ul, 5L, =, 52

axz > axz ’ ax3 ’
@3ng 64142
oxt

4
e o Inserting Eqgs. (10)-(13), (53) into
Eq. (48) we get the following Taylor series of the local
truncation error in space for OLTEM:

otur
and —=¢
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du ou*
e:b1u§+b2u§*+h[b3ﬁ+b4 ”2]

ox Ox
+ i :bs % + bs 6215]
e :b7 a; 2 1 by a;;?] -
Iy :bg % 1 bio a;zf}
1 by % + by a;tg] +0(h),

where the coefficients b, (p = 1,2,...) are expressed in
terms of the coefficients m;, k;, ¢q; (i=1,2,3 and
j=1,2,...,5) and the distance &. The coefficients b,
(p=1,2,...) in Eq. (54) are different from those in
Eq. (51) and have simpler expressions. However, if we zero
the first 10 coefficients b, = 0 (p = 1,2, ...,10) in Eq. (54)
for the smallest power of & with the condition k, = 1 (see
the Remark 1), then we get the same stencil coefficients as
those given by Eq. (52).

It is also interesting to mention that if we do not use the
last three interface conditions in Eq. (44) (i.e., if we assume
that g3 = g4 = g5 = 0) then we have just the 8 unknown
coefficients my, k;, g; (I = 1,2,3 and j = 1,2). In this case,
we can zero the 7 coefficients b, =0 (p = 1,2,...,6,8) in
Eq. (51) for the smallest power of 4 and we get only the
third order of the local truncation error in Eq. (51), i.e, the
use of the last three interface conditions in Eq. (44) allows
us to improve the local truncation error in Eq. (51) by two
orders.

3 OLTEM for Time-Dependent PDEs in the
2-D and 3-D Cases: Scalar Wave and Heat
Equations, a System of Elastodynamics
Equations

Here, we will shortly review OLTEM for the scalar wave
and heat equations with constant, variable and discontin-
uous coefficients as well as for the elastodynamics equa-
tions with constant and discontinuous coefficients in the
2-D and 3-D cases.

3.1 Scalar Wave and Heat Equations
3.1.1 Homogeneous Materials

The corresponding PDEs with constant coefficients in
domain Q can written down as:

%u
or?
for wave propagation in an isotropic homogeneous medium
as well as

— V2 =f. (55)

Ou »
= f. 56
o aVu=f (56)

for heat propagation in an isotropic homogeneous medium.
Equations (55)-(56) can be uniformly written down in
domain Q as:

"u
o

—Vu=f, (57)

where n =2 and ¢ = ¢? (c is the wave velocity) for the
wave equation as well as n = 1 and ¢ = a (a is the thermal
diffusivity) for the heat equation. The Dirichlet boundary
conditions

u=gx,t) (58)

on the boundary I'* and with the Neumann boundary
conditions

2 gle) (59)

on the boundary I'* are applied where the entire boundary I"
is ' = I"UI"™ and ny, n,, n; are the x—, y— and z—compo-
nents of the outward unit normal vector, g and g are the given
functions. In Egs. (55)-(56), c is the wave velocity, a is the
thermal diffusivity, f(x, t) is the loading (source) term, u is
the field variable. The standard initial conditions should be
also given in domain Q. For OLTEM derived below, we
consider semi-discrete equations without the time dis-
cretization. After the derivation of the coefficients of the
semidiscrete equations, any existing time-integration
method can be used for the time integration of the semidis-
crete equations. The initial conditions used for the time
integration of the semidiscrete equations are similar to those
for other numerical methods (e.g., for FEM).

The detailed derivation of OLTEM is presented in our
papers [1, 22, 23] in the 2-D and 3-D cases on regular
domains and in our papers [25, 27, 28] in the 2-D and 3-D
cases on irregular domains. Below we present the summary
of the results.

The compact stencil equation for OLTEM for the scalar
wave and heat equations in the 2-D and 3-D cases can be
uniformly given for each internal grid point as follows:
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p4
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byh
1 2 3 X 1 2 T3 X X
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() (b)

Fig. 3 The spatial locations of the grid (black) and boundary (blue)
points for the 3 x 3 = 9-point regular (a) and cut (b) stencils (similar
to those for linear finite elements) as well as for the 5 x 5 = 25-point
regular (c) stencils (similar to those for quadratic finite elements) in

(©)

the 2-D case. The irregular boundary in (b) cuts the regular stencil
and leads to the inclusion of the boundary points into the derivations.
These stencils are given for the central grid (red) point 5 (a, b) and 13

(c)

27
5. ‘j Boundary

() (b)

Fig. 4 The spatial locations of the grid (black) and boundary (blue)
points for the 3 x 3 x 3 = 27-point regular (a) and cut (b) stencils
(similar to those for linear finite elements) as well as for the
5 x5 x5 =125-point regular (c) stencils (similar to those for

L ) dnunum _
num
M (60)
i=1
d’l num . .
where u/*" and “;:— are the numerical solution for func-

tion u and its time derivative at the grid points, m;, k; are
the unknown coefficients to be determined, f(¢) is the
discretized loading (source) term; L is the number of the
grid points included into the stencil equation, n = 2 for the
wave equation and n =1 for the heat equation, 4 is the
mesh size along the x— axis. The location of the grid and
boundary points for some compact stencils in the 2-D and
3-D cases is shown in Figs. 3 and 4.

The local truncation errors e for the stencil equations
given by Eq. (60) can obtained by the replacement of the
numerical value of function u/*" in Eq. (60) by the exact

value u; at the grid points i (i = 1,2, ..., L) as well as by the
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(©)

quadratic finite elements) in the 3-D case. The irregular boundary
in ( b) cuts the regular stencil and leads to the inclusion of the
boundary points into the derivations. These stencils are given for the
central grid (red) point 14 (a, b) and 63 ( ¢)

addition of the boundary conditions at a small number Np =
M, + M, of the selected boundary points as the constraints
with some unknown coefficients (Lagrange multipliers) g, ;
m=1,2,3,4,i=1,2,...,Np) as follows (the 3-D case):

e = XL: hzm-dnui+k~u~ —f
- 1 dln (Add]

i=1

M
! da’ i d"u i
+ Z {hzch,i( 8i_ &1, )+ q2.i(gi — MBAi):|
i=1

dr" dm
M, 5 n+1 n+1 el
da'g 0" up,i 0" up, g,
} it i i
+ ;[h 613,:‘(an” orox +ny; dy + ng; A )
5 Oup,i Oup,; Oup;;
+ hqs; <gi - nx,iﬁ + n),,ia—))' + i ]

(61)
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where M| and M, are the numbers of the selected boundary
points with the Dirichlet and Neumann boundary condi-
tions, respectively; the expressions after ¢, ; and g4 ; are the
Dirichlet and Neumann boundary conditions given by
Egs. (58) and (59) at the selected boundary points, the
expressions after ¢;; and g3 ; are the time derivatives of the
boundary conditions at the selected boundary points.
Therefore, the expressions after the term f in Eq. (61) are
zero and do not affect the value of the local truncation error
e.

Remark 3 We should mention that the imposition of the
Dirichlet and Neumann boundary conditions for OLTEM
in our published papers is different from that given by
Eq. (61) (nevertheless, the final expressions and equations
are the same). The the imposition of the boundary condi-
tions in Eq. (61) as the constraints allows us to uniformly
implement the Dirichlet and Neumann boundary conditions
as well as the interface conditions for heterogeneous
materials (see Sects. 2.6, 3.2.2, 4.1.2, 4.3.2).

Using the partial differential equation, Eq. (55), the time
derivatives of the exact solution at the grid and boundary
points in Eq. (61) can be replaced by the spatial derivatives
as well the discretized load f can be defined similar to those
in Sects. 2.2 and 2.5. Then, it follows from Eq. (61) that

e = [h*em;(—
— ox?
Pu;  u;

o a2

uBl
- E ql zc

621437,'
6y2

- th41 n)uauBl

6143 i
+ iy a—yl + g

+ ) + kiu;]

62“3.:’

+ + 2 >-) + q2,iup,]

(62)
6u3,,~
0z )
3

uBt
- Zh CgSlnxz

63 up.i
0x0y?

6 Upi
6x6z2)

63 Upi
oy T 0y?
63 Upi
0z0y?

+

631437,‘)
0y0z2

63143,,'

073 )

4529
_ Ly M,
f={r Z mif; — b Z q1.fs.i
)
—h326]31 Nyi—_— fBl
afB,i afB,i
+ny,i oy +ng, oz )} (63)

o d'g
+ {Z(h ‘ZI,iW—F 92.i8i)}
i=1

M'7 el
2 dng -
T {Z<h343,i am hqsi8:)},
i1

where ¢ = ¢? and n = 2 for the wave equation as well as
¢ =a and n =1 for the heat equation. In Eq. (63), the
expression in the first curly brackets corresponds to the
contribution due to the body forces, the expression in the
second curly brackets corresponds to the contribution due
to the Dirichlet boundary conditions (if the boundary with
the Dirichlet boundary conditions intersects the corre-
sponding cell), the expression in the third curly brackets
corresponds to the contribution due to the Neumann
boundary conditions (if the boundary with the Neumann
boundary conditions intersects the corresponding cell).
Let us describe the coordinates of the grid and boundary
points used in Egs. (60-63) with respect to the stencil
central grid point with the coordinates x., y., z. as follow:

Xi = Xc+ rx.iha i = Ye T .ib ha
Zi = Ze +r5b:h,
for the grid points, and
xi:xc+dxiha i c+dibha
B, , VB, Yy v,i0y (65)

ZBi = Z¢ T dz,ibzha

for the boundary points where 7y, 1y, 7; and d.;, dy;, d.;
are the coefficients describing the location of the grld
points and the boundary points, b, and b, are the aspect
ratios of Cartesian meshes along the y- and z-axes; see
Fig. 4.

In order to represent the local truncation error e as a
Taylor series, let us expand the exact solution and its
spatial derivatives at the grid and boundary points into a
Taylor series at small 4 < 1 in the vicinity of the stencil
central grid point x, y., z. as follows:
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ow, ow,
Wi = We + [d.jh] + By [dy.jbyh]
6wc O*w, [dyih 2
[dzjb h] > [ J ]
6 oz 2 (66)
o’ ¢ ldy, b, h} azwc [dzjbzh]z
o2 2! ozz2 2!
0*we [(dy;h)[dy ibyh]
2 RO L
tiaey o T
where the function w; is u;, %X’é‘, aay‘;', aazzz @i=1,2,...,0),

Qug; up; up,
Upg, 0 up, Up. (l — l 2

51431 Oup; Oup;
UB.i, Az 02 o Ml) and 5

By oz

Sup; Bup; Oup, :
2, gnggz,.., i (j=1,2,...,M,); for the regular grid

points the coefﬁc1ents dyj, dy,l, d.; in Eq. (66) should be
replaced by the coefficients r,;, 7y, 12;; see Egs. (64)-(65).
Using Eq. (66), a Taylor series of the local truncation error
in Eq. (62) for the 27-point stencils (see Fig. 4a,b) can be
represented as:

Ouy Ouig
+b + b
oy oy 4 az]

62u14
b
ooy 7 oxdz

6 U4
b 0y0z

Ouy

e = c{bjuis + hlb—— o

2
b 14

@2u14]
072
a3 Ouy o*

3 +b‘2 2 ZM
Ox Ox 6 1 ox 0z
Ou, Ou
xdy 2+blsa 3 6 +b

Qu *u,
6 3 -1-1718a 26

+b|0

63 Uig
16
0x0z2

+bus

+ b1z

where the coefficients b, (p = 1,2, ...) are expressed as a
linear combination of the coefficients m;, ki, g1, g2, g3,i
and g4; used in Eqgs. (60)-(63); see our papers [25, 27, 28]
on OLTEM with 2-D and 3-D irregular domains. We
should mention that the explicit expression for the coeffi-
cients b, can be first calculated just for one internal and one
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boundary point with the general expression for the location
of these points given Egs. (64)-(65). Then, we should
consider the summation over all internal and boundary
points. For example, the first five coefficients b, in Eq. (67)
have the following form:

M,
ki+> @y, b
T =

erz“i’ZqZ,/dx,j +Zq4lnxla b3
1 Jj= 1 =1

M=

b, =

HMN

i

-

Il
-

2
bykiry,; + Z bygarjdy; + Z qainyi, ba
=1 =1

M, M,
bzkirZ,i + Z bzq2:jdz.j + Z q47lnzﬁla b5

[
M~

izl =1 I=1
L 1,
= ; (cmi +§kirx’i> + Z (cql, qz, )
+ Z qaingdy). (68)
=1

Below we will shortly present the procedure for the forma-
tion of the local system of linear algebraic equations for the
calculation of the stencil coefficients using Eq. (67). OLTEM
with the 27-point stencils for the 3-D wave (heat) equation
described in our paper [28] is considered. In our papers
[27, 28] we suggested a very simple procedure for the
selection of the boundary points for cut stencils for the wave
(heat) equation. For example if any grid point of the regular
stencil is located outside the actual physical domain then we
joint this point with the central grid point of the stencil. The
intersection of this line with the boundary determines the
boundary point included into the cut stencils. This means that
the total number of the grid and boundary points included
into the cut stencil is 27 (L + M| + M, = 27); see [27, 28].
For some simple stencils (no boundary points or just few
boundary points), the expressions for coefficients b,
(p =1,2,...) can be simplified and some results can be
analytically obtained. For example, for the stencil with just
one boundary point with the Neumann boundary conditions,
we do not have the correct solution if we zero the first 35
coefficients b, = Oforp = 1,2,...,35 (however, we can do
this for the boundary points with the Dirichlet boundary
conditions). Therefore, in order to improve the order of the
local truncation error in Eq. (67) for the cut stencils with the
boundary points with the Neumann boundary conditions, we
will zero the first 20 coefficients b, in Eq. (67) up to the third
order with respect to £, i.e,

by,=0, p=1,2,...,20. (69)

Then, in order to have a sufficient number of linearly
independent equations for the calculation of the stencil
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coefficients m;, ki, q1,, g2, g3, and g4;, we use the least
square method for the minimization of coefficients b,
related to the fourth and higher orders of the local trun-
cation error with the following residual R:

35 56 84
R=> D +hY b+h> b

p=21 p=36 p=57

(70)
120 165
eSS
p=85 p=121

where h; (i =1,2,3,4) are the weighting factors to be
selected (e.g., the numerical experiments show that z; = 1
(i=1,2,3,4) yields accurate results). In order to minimize
the residual R with the constraints given by Eq. (69), we
can form a new residual R with the Lagrange multipliers
Ap:

20 35 56
R=Y Jpby+ Y by + hi Y b
p=1

p=21 p=36 (71)
84 120 165
+h > b+ sy b+ hy Y by
p=57 p=85 p=121

The residual R is a quadratic function of coefficients m;, k;,
q1j> 92> 93, and g4 and a linear function of the Lagrange
multipliers 4,, i.e, R = R(mi, ki, q1,,92j,4931,qa1, 7p). In
order minimize the
R = R(mi, ki, q1, 92, 43,1, 941, 4p), the following equations
based on the least square method for the residual R can be
written down:

oR  oR

residual

=0 — =0
6m,~ ’ 6](, ’
oR R
— =0, a_zo,
aﬂ]l,f 6612,,‘
R R
a%,l a614,1
i=1,2,...,L, j=12,....My, [=1,2,...M,,
(72)
OoR
— =0 =1,2,...,20 73
a;\’p ) p ) ) ? ) ( )

where equation % = 0 should be replaced by k4 = 1, the
grid point 14 is the central point of the 27-point stencil; see
Remark 1. Equations (72) and (73) form a system of 74
linear algebraic equations with respect to 54 unknown
coefficients m;, ki, q1j, g2, q3; and q4; (i=1,2,...,L,
j=12,...My and [ =1,2,... .My, L4+ M, + M, =27)
and 20 Lagrange multipliers 4, (p = 1,2,...,20). Solving
these linear algebraic equations numerically, we can find
the coefficients m;, k;, g1, g2, q3g and gq4; i = 1,2,...,L,

j=12,...M;and [ = 1,2,...,M;) for the 27-point reg-
ular and cut stencils.

OLTEM with the 27-point stencils provides the fourth
order of accuracy for the Dirichlet boundary conditions
(see our paper [27]) and the third order of accuracy for the
Neumann boundary conditions (see our paper [28]). Linear
finite elements with similar 27-point stencils provides just
the second order of accuracy. Moreover, due to the mini-
mization of the leading fourth order terms of the local
truncation error in Eq. (71), at the same numbers of degrees
of freedom OLTEM yields more accurate results than those
obtained by high-order finite elements (up to the fourth
order) with much wider stencils; see the numerical exam-
ples in our papers [27, 28]. We should also mention that as
shown in our paper [23], OLTEM in the 2-D case with high
order (2p+ 1) x (2p + 1)-point stencils (p = 2,3) pro-
vides the 4p + 2 and 2p + 2 order of the local truncation
error with the non-diagonal and diagonal mass matrices on
regular domains with conforming Cartesian meshes (simi-
lar to the 1-D case in Sects. 2.3 and 2.4).

3.1.1.1 Diagonal Mass Matrix It is interesting to note that
similar to the calculation of the diagonal mass matrix in the
1-D case (see Sects. 2.4), a very simple formula can be
obtained for the calculation of the diagonal mass matrix in
the multidimensional case. Let us find the coefficient b, for
the smallest power of i in Eq. (67) that includes the
diagonal term my of the mass matrix (all other m; coeffi-
cients in the stencil equation, Eq. (60), are zero). For
example, we can select the coefficient bs in Eq. (68).
Assuming that the order of the local truncation error in
Eq. (67) is at least greater than two and equating the
coefficient b5 to zero bs =0, we will get the following
expression for the diagonal term of the mass matrix:

> S
mg=——% =kir,; —
Cl:lz X,1

M,
- E qa gy dy ).
=1

If the internal grid point is located far from the boundary,
then the stencil equation for this grid point is not affected
by the boundary conditions (M; = M, = 0). In this case
Eq. (74) reduces to a very simple formula for the diagonal
mass matrix in terms of the coefficients of the stiffness
matrix:

M, 1 5
Z(C’CM +5a24dy))

= (74)

lilk 2 (75)
mg = —— —Kilr_ .
‘ c=2

We should mention that this formula can be used for the
calculation of the diagonal mass matrix for any numerical
method with the stencil equation given by Eq. (60) (e.g.,
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for linear and high-order finite elements) on Cartesian
meshes as well as on unstructured meshes (the coefficients
ry; should be correspondingly defined for unstructured
meshes; see Eq. (64)). In contrast to many known ad-hoc
techniques for the calculation of the diagonal mass matrix
(e.g., the ‘row summation’ technique) that manipulates
with the coefficients of the non-diagonal mass matrix, the
coefficients of the stiffness matrix are used in the new
approach. For example, the coefficients of the finite ele-
ment stiffness matrix should be used for the finite element
diagonal mass matrix.

3.1.2 Inhomogeneous Materials

Currently, we have developed OLTEM for inhomogeneous
materials in the 2-D case; see our paper [33]. The corre-
sponding PDEs with the variable coefficients in domain Q
can written down as:

o 0 0 0 0
6—: — [6_x (c)zc(x,y) G_JL:) + a (c_\z,()@y) a—Z)} =f. (76)

for wave propagation in an anisotropic inhomogeneous
medium as well as

Qe {% (ax(x,y) %) +% <ay(x,y) 2—;‘” —f ()

for heat propagation in an anisotropic inhomogeneous
medium with the Dirichlet boundary conditions. In
Eqgs. (76)-(77), c, and ¢, are the wave velocity along the x-
and y-axes (c, = ¢, for isotropic materials), a, and a, are
the thermal diffusivity along the x- and y-axes (a, = a, for
isotropic materials), f(x, ¢) is the loading (source) term, u is
the field variable.

The detailed derivation of OLTEM with 9-point stencils
in the 2-D case on irregular domains with the Dirichlet
boundary conditions is presented in our paper [33]. Below
we present the summary of the results.

The compact stencil equation for OLTEM for the scalar
wave and heat equations in the 2-D and 3-D cases can be
uniformly given for each internal grid point as follows:

L drymm
> | k| = 7 (78)

i=1

for the grid point located far from the boundary. In contrast
to our approach presented in [25, 27] for the wave (heat)
equation with the constant coefficients (see also the pre-
vious Sect. 3.1.1), now we assume that the coefficients
ni;(h) and k;(h) depend on the mesh size h and for the 9-
point stencils they will be expressed in terms of polynomial
functions of 4 as follows:
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mi(h) = mo; + my ;h,
+ k3 ih® + ka ik,

ki(h) = ko + ki ih + ko ;b
i=1,2,...9,
(79)

where my;, k;j; (1=0,1,j=0,1,2,3,4,i=1,2,...,9) are
unknown coefficients. This polynomial representation of
m;(h) and k;(h) can be considered as a Taylor series of
functions 7;(h) and k;(h) at small . We should mention
that for the solution of the global system, we use the 9-
point stencil equation, Eq. (78) with L =9 and the 18
stencil coefficients 7z;(h) and k;(h) (i = 1,2,...,9) similar
to Eq. (60) with the 9-point stencils for the PDE with the
constant coefficients in presented Sect. 3.1.1. However, in
order to calculate these 18 stencil coefficients at a given A,
we introduce 9 x 7 = 63 unknown coefficients m;, k;;
(l=0,1,j=0,1,2,3,4,i = 1,2,...,9) that can be defined
from the minimization of the local truncation error. Similar
to the previous Sect. 3.1.1, we can show that a Taylor series
of the local truncation error e for the 9-point stencil
equation, Eq. (78) with L = 9 and the central grid point 5
(see Fig. 3a), can be represented as follows:

e = c{b|u5 +h|:b2%+ bx%ﬁ+ b4u5:|
%us u Qus %u uis
2 5 5
+h b562+h6aa +b76 +hsa2+h9 ay-i-blous}
us ot
+h? bn o 3 >+ +b20145] +h |:b2la_):f+ +b35u5}
us us
-H’ZS b35 o + +b56u5] +h6 |:b57 o 6 + +bg4bt5:|
[ u Bus
+h | bgs i 75 + . +b120145] +hHe {bm 0 4. +b165u5:|
+...},

(80)

where the coefficients b, (p =1,2,...) are expressed in
terms of the coefficients my;, k;; (I =0,1,j=0,1,2,3,4,
i=1,2,...,9); see our paper [33]. We should mention that
by the use of the wave (heat) partial differential equation,
Egs. (76) - (77), the time derivatives in Eq. (80) for the
local truncation error are excluded. By zeroing the coeffi-
cients b, for the smallest orders of 4 and using the least
square method for the coefficients b, for higher orders of &
(similar to the procedure in Sect. 3.1.1), we can form a
local system of algebraic equations for the calculation of
the unknown coefficients my;, k;; (I =0,1,j=0,1,2,3,4,
i=1,2,...,9). As shown in our paper [33], OLTEM with
the 9-point stencils on irregular domains with the Dirichlet
boundary conditions provides the fourth order of accuracy
of global solutions (similar to OLTEM for the homoge-
neous materials and the Dirichlet boundary conditions in
the previous Sect. 3.1.1)). Moreover, due to the
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minimization of the leading terms of the local truncation
error, at the same numbers of degrees of freedom OLTEM
on irregular domains yields more accurate results than
those obtained by high-order finite elements (up to the third
order) with much wider stencils; see the numerical exam-
ples in our paper [33].

3.1.3 Heterogeneous Materials with Interfaces

Wave propagation in a composite domain Q = UQ,
(I=1,2,...,N where N is the total number of subdo-
mains) is described by the following scalar wave equation
in each subdomain €;:
6214,
W — c%vzul :ﬁ
Similarly, the heat equation in each subdomain €; can be
written as:
6141 )
— —aVu =f.
5 Vi i
For each subdomain €; we use the following notations in
Egs. (81)-(82): ¢; is the wave velocity, a; is the thermal
diffusivity, fi(x,t) is the loading (source) term, u; is the
field variable.

At the interface G (G is a curve in the 2-D case and a
surface in the 3-D case) between any two subdomains, the
following interface conditions are applied:

(81)

(82)

Wy — g =81, elny 28+ n, 20 4, L)
Ox oy 0z (83)
LB S
AN P 7z = 02,

where 91 (x,y,2,1) |(xyz)ec and 62(x,y,2,) |(ryz)ec are the
given jumps for the function and the flux, ny, n, and n, are
the x-, y- and z-components of the normal vector at the
interface, e, and e,, are the corresponding material

Interface Tl* 2% X

(@)

constants, the symbols * and ** correspond to the quanti-
ties on the opposite sides from the interface for the corre-
sponding  subdomains ;. For zero  jumps
01(x,y,2,1) = 82(x,y,2,¢) = 0, the functions u; are con-
tinuous across the interfaces but can have the discontinuous
spatial derivatives across the interfaces. The functions fj
can be discontinuous across the interfaces.

Similar to Eq. (42) in the 1-D case, the compact stencil
equation of OLTEM for the scalar wave and heat equations
in the 2-D and 3-D cases can be uniformly given for each
internal grid point as follows:

N, % UM N ok UM
d u, d"u

L
2 P
h ;m,, {a,, pr + (1 —ap) pr
L
+ ka[apuz,num + (1 _ ap)u;*,num]
p=1
=/
for the grid point located far from the boundary. Here, the
coefficients a, = 1 if the grid point p belongs to material *

and a, = 0 if the grid point p belongs to another material
# (i.e., only one variable u,"" or u,""" (p = 1,2,...,L)

(84)

is included into Eq. (84) for each grid point. As can be
seen, the stencil equation, Eq. (84), includes the same
number of the stencil coefficients m, and k,
(p=1,2,...,L) as that for the homogeneous case,
Eq. (60). The derivation of OLTEM for heterogeneous
materials in the 2-D and 3-D cases includes the use of the
interface conditions at a small number Ng of interface
points along a part of the interface located within the
corresponding compact cell; see Figs. 5 and 6.

To describe the coordinates of the selected N¢g points on
the interface with respect to the stencil central grid point,
we introduce 3Ng coefficients d_xﬁp, d_”, and d_z,p
(»=1,2,...,Ng) in the 3-D case as follows (see also
Egs. (64) - (65) for the internal and boundary points):

Interface

0—s <
E

24%% 25%

21%* 227 23

16** 17* 8 o 19*

11 12* 13* 14*

6* 7* 8% 9* 10*
byh
|

X

(b)

Fig. 5 The spatial locations of the grid and interface points for the 9-point (a) and 25-point (b) stencils (similar to those for linear and quadratic
finite elements, respectively) for heterogeneous materials with irregular interfaces in the 2-D case
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Fig. 6 The spatial locations of the grid and interface points for the
27-point stencils (similar to those for linear finite elements) for
heterogeneous materials with irregular interfaces in the 3-D case

J = Ye +Jyjbyhv
j=1,2,...,N,

xGj = Xc +dyjh, Y6

§ (85)
265 = Zet dz,jbzha

Below we will shortly present OLTEM for the 2-D case
with 9-point stencils developed in our paper [34]. Similar
to the 1-D case in Sect. 2.6, we will add the interface
conditions at a small number of the interface points (we use
5 interface points) to the local truncation error of the stencil
equation, Eq. (84), as the constraints:

) 2 d"u, d"u,’
e=h ;mp[apw—&— (1—ay) e }
9
—I—ka[apu;—i— (1
p=1
5
+ {ZQU(M*G,/‘ - ”*G*J —d1y)

J=1

ap)u;*} —f

5 ou, . ou, .
+th2J {e* (nxJa—xG‘l+ ny_J-a_GJ>
/=] Y
Qutr. Qutr 4
j=2

6"u*(‘;d- 6”u§fj "5y
oM o o
an+1u* an+1 *
3 A, G3 ) Ugs
T [e <n P omox TR ot"dy
an+l ME*S an+1 MG 3 an5213
Coe| Me3 gy T3 oy o

2n s
07"ug;

aZnu* azn(s
4 G3 3 1,3
+h gs < or2n or2n or2n ?
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where o1 = 01(xj,yj,1) and 02 = 02(x;,¥j,1)
G=1,2,...,5) are the jumps in the interface conditions,
Eq. (83), at the 5 selected interface points, n,; and n,; are
the x and y-components of the normal vectors at the five
selected interface points (see Fig. 5a and our paper [34] for
their specific locations), the coefficients g1, g2, g3, g4
and g5 (i=1,2,...,5, j=2,3,4) will be used for the
minimization of the local truncation error in Eq. (86), the
expressions in parenthesis after ¢;; and g,; are the inter-
face conditions (see Eq. (83)) at the five selected interface
points, the expressions in parenthesis after g3, g4 and gs
are the time derivative of the interface conditions (similar
to those for the 1-D case in the previous Sect. 2.6).
Therefore, the expression in the curly brackets in Eq. (86)
is zero and doest not affect the value of the local truncation
error e. Numerical experiments show that in contrast to the
5 interface points used in Eq. (86) with the coefficients g ;,
g»i, we can use a smaller number of the interface points
with the coefficients ¢3;, g4 and ¢s (i=1,2,...,5,
j=2,3,4).

Similar to the previous Section 3.1.1, we can show that a
Taylor series of the local truncation error e for the 9-point
stencil equation, Eq. (86), can be represented as follows:

e = byl + byl + h<b3 aa S 4 b, ag§* + bs aa”y; + be aaui*)
UG
+b1y 662u2* + b1 6;u§*>
+h (bn 663 3* + bia 6; >+ bis 663214; ++bis %ué;
+b17 3 3@ *2 +big 236*1 + bio 66314: + bxo 6;;%*)
+ht (bZI a;c: + ...+ b3o 6;?;)
+h (b31 Qs + ..+ b 65”§*>
0 0y?
e (b43 fﬁ +b56a;_;¢;g*> .

(87)

where the coefficients b, (p = 1,2,...,56) are expressed
in terms of the coefficients m;, k;, q1;, g2, g3, g4 and gs
i=1,2,...,9,j=1,2,3,45,1=2,3,4,); see our paper
[34] for the details. We should mention that by the use of
the wave (heat) equation, Egs. (81, 82), the time derivatives
in the local truncation error in Eq. (87) are excluded. By
zeroing the coefficients b, for the smallest orders of 4 and
using the least square method for the coefficients b, for
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higher orders of % (similar to the procedure in Sect. 3.1.1),
we can form a local system of algebraic equations for the
calculation of the unknown coefficients m;, k;, g1, 42j, 43,4
qs and g5 (i=1,2,...,9,j=1,2,3,4,5,1=12,3,4,). As
shown in our paper [34], OLTEM with the 9-point stencils
and irregular interfaces provides the third order of accuracy
of global solutions (similar to OLTEM for the homoge-
neous materials in the previous Sect. 3.1.1). Moreover, due
to the minimization of the leading terms of the local
truncation error, at the same numbers of degrees of free-
dom OLTEM with irregular interfaces yields more accurate
results than those obtained by high-order finite elements
(up to the third order) with much wider stencils; see the
numerical examples in our paper [34].

3.2 Elastodynamics Equations

Currently, we have developed OLTEM for the elastody-
namics equations in the 2-D case; see our papers
[24, 32, 38]).

3.2.1 Homogeneous Materials

The corresponding 2-D elastodynamics PDEs with constant
coefficients in domain  can written down as:

2

62u v
2 A
2 2 2 (88)
Q— V2 + (n+2) QJFQ +1
Por = H g 0y?  0x0y .

with the Dirichlet boundary conditions

u=gx,1), v=ga(x,1) (89)
on the boundary I'" and with the Neumann boundary
conditions
, Ou ov Ou Ov _
e —nx[(ﬂ+2u)a+ 5 ] +”’”<ay+a > = &1(x,1),
i ov ou Oou Ov B
b=t 205+ 22 w4+ 2) = st
(90)

on the boundary I'* where the entire boundary T is
I'=T°UT". In Egs. (88)-(90), u=u(x,y,t) and v =

v(x,y,t) are the x— and y—components of the displacement
vector, f = fi(x,y,1) and f, = fy(x,y,¢) are the x— and
y—components of the body forces, 7, and #, are the x— and
y—components of the tractive forces, ny, n, are the x— and
y—components of the outward unit normal vector, g; and g;
(i=1,2) are the given functions, ¢ is the time, p is the
density, u and 1 are the Lamé coefficients that can be also
expressed in terms of Young’s modulus E and Poisson’s
ratio v as y = (1+») and A = W

The detailed derivation of OLTEM in the 2-D case is
presented in our paper [24] on regular domains and in our
paper [32] on irregular domains. Below we present the
summary of the results.

According to OLTEM we assume the following general
form of two stencil equations for each grid point after the
space discretization of Eq. (88) with a rectangular Carte-
sian mesh:

62 num

W (ij, 61‘2
62 num
+Zmﬂ ot 2 )
+ ij‘iu?um
L
Z pm fj?

where u"", V™", a?a tzm and azvm are the numerical solution
for the dlsplacements u, v and thelr second time derivatives
at the i—th grid point, m;;, 1, ;, kj;, k i are the unknown
stencil coefficients to be determined, L is the number of the
grid points included into the stencil equation, 4 is the mesh
size, f; are the components of the discretized loading term.

The local truncation errors e; for the stencil equations
given by Eq. (91) can obtained by the replacement of the
numerical values of the displacements u!*", vi*" in
Eq. (91) by the exact values u;, v; at the grid points i
(i=1,2,...,L) as well as by the addition of the boundary
conditions at a small number Ng = M| + M, of the selec-
ted boundary points with some unknown coefficients
(Lagrange multipliers) ¢,,; and g,; (m=1,2,3,4,
i=1,2,...

o1

j=12,

num

Np) as follows:
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2
o (Som Gy )
+ ij,’iui + Zk}m —f_j
[ M, M, n
d 81i d'upi _ (d"'g; d'vp;
n? ; . _4s
+ ZQI ( dr dr +;th A dr
+ZQ2,i(81,i—MB,i)+Z@z,i(g2,i—VB,i)
i=1 i=1
s o e
3 gll tx.B,t
+h Zq3,1< dr dm >
M, ) d"g )
th d" ty,BA,z
o (G L)
M M,
qu(glz B "‘Z%z 82— tyBl)]7

i=1 i=1

+h

(92)

where M| and M, are the numbers of the selected boundary
points with the Dirichlet and Neumann boundary condi-
tions, respectively; g1, g2; and 81> & are the known
values of the Dirichlet and Neumann boundary conditions
at the selected boundary points (see Egs. (89) and (90)), the
expressions after gz, ¢,; and qq4;, q,; are the boundary
conditions at the selected boundary points given by
Eqgs. (89) and (90), the expressions after g, ¢;;, and g3,
g3, are the time derivatives of the boundary conditions at
the selected boundary points. Therefore, the expressions
after the term ﬁ in Eq. (92) are zero and do not affect the
value of the local truncation error e;.

The stencil equations, Eq. (91), written for all internal
grid points form the global system of ordinary differential
equations that can be also presented in the matrix form. In
this case, the coefficients m;;, ri;; form the mass matrix
while the coefficients k;;, k;; form the stiffness matrix. In
contrast to the stencils for the scalar wave equation given
by Eq. (60) in Sect. 3.1.1, the stencil equations for elas-
todynamics include two unknown functions u and v as well
as the Neumann boundary conditions for elastodynamics in
Eq. (92) have a more complicated expression; see Eq. (90).

Using the procedure similar to that for the wave (heat)
equation in Sect. 3.1.1, we can: a) replace the time
derivatives in Eq. (92) by the spatial derivatives with the
help of the elastodynamics equations (see Eq. (88)), b) find
the discretized loading term ﬁ in terms of the body forces
fxi» fyi at the grid points and the known Dirichlet and
Neumann boundary conditions gy, g2; and g; ;, §,; at the

selected boundary points, and c) express the local
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truncation error ¢; (j = 1,2) in Eq. (92) as a Taylor series
as follows:

e; = bjus + b; 2V5+h(bj3aa +b/4aa +b’566 +bj’6%vy5)
+ 1 (b7 a;f +bjs§ 25 +bj-9%

+bj,1oa;2 +bjll§gs JFleZaasz)

—|—h3(bjﬁlia; =+, 14@616 —|—b,|5663a 2+b/|6663—;35
+bj,17a;3 + bjs aaZa +bj1o a@%a 2+b/2063j;35)
+h4(bjﬂ21aa—;5+...+bj,3oaa44)+h5(b131 Egbls5+"'
-1—17_/',42%55)4‘/16(}’/436666 T +b’566§yv;)+m

(93)

with j = 1 and j = 2 for the first and second stencils and
with the coefficients b;; expressed as a linear combination
of the coefficients m;;, m;;, kj;, k~‘i and G1> 9> 926> 920>
434> 93.i» 94> 94 used in Egs. (91)-(92); see our paper [32].
We should mention that the explicit expression for the
coefficients b;; can be first calculated just for one internal
and one boundary points with the general expression for
the location of these points given by Eqgs. (64—65). Then,
we should consider the summation of these expressions
over all internal and boundary points (similar to Eq. (68) in
Sect. 3.1.1). We should mention that by the use of the
elastodynamics equations, Eq. (88), the time derivatives for
the local truncation error in Eq. (93) are excluded. By
zeroing the coefficients b;; for the smallest orders of & and
using the least square method for the coefficients b;; for
higher orders of & (similar to the procedure in Sect. 3.1.1),
we can form a local system of algebraic equations for the
calculation of the unknown coefficients m;;, mi;;, kj;, k_J,
and g1, 91> Qo> 920> 3,5 93,i> Gai> G4i- As shown in our
paper [32], OLTEM with the 9-point stencils and irregular
boundaries provides the second order of accuracy of global
solutions (similar to linear finite elements with the 9-point
stencils). However, due to the minimization of the leading
terms of the local truncation error, at the same numbers of
degrees of freedom OLTEM on irregular domains yields
more accurate results than those obtained by linear and
high-order finite elements (up to the third order) with much
wider stencils; see the numerical examples in our paper
[32]. We should also mention that as shown in our paper
[24], OLTEM in the 2-D case with wider 5 x 5 = 25-point
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stencils provides the 8-th and 6-th orders of the local
truncation errors with the non-diagonal and diagonal mass
matrices on regular domains with conforming Cartesian
meshes, i.e for elastodynamics the optimal accuracy for the
5 x 5 = 25-point stencils is two orders lower than that for
the scalar wave equation on similar stencils; see
Sect. 3.1.1.

3.2.2 Heterogeneous Materials

The 2-D elastodynamics equations in a composite domain
Q=uUQ, (I=1,2,...,N where N is the total number of
subdomains) can be written down in each subdomain €; as
follows:
azul 621), ] azul
W+—axay> =g
v, du %y
2 R 1 1 | _ 1
WV v+ (py + Ar) (6—y2 6x6y> +f = P o

w2 u + (1 + 4) (
(94)

where u; = w(x,y,t) and v; = vj(x,y,1) are the x— and
y—components of the displacement vector, f! = fl(x,y, 1)
and f! = f}(x,y,1) are the x— and y—components of the
body forces that can be discontinuous across interfaces. We
also assume that the functions u; and f; are sufficiently
smooth in each subdomain €;. At the interface G between
any two subdomains, the following interface conditions are
applied:

* * N
ug — ug = 0y, Vg — Vg = 01, (95)

* k% * k% IN
fig — g = 02, e — g = 02, (96)

X1 X1

where 01 (X, 2) t) |(x.y)er 51 (x,y, t) |(x,y)€G and

02(x,9,1) |(xy)eG> 02(%,¥,1) |(xy)ec are the given jumps in
the displacements and in the tractive forces across the
interface, the symbols * and ** correspond to the quantities
on the opposite sides from the interface for the corre-
sponding subdomains €);. The x— and y—components of
the tractive forces t, g and ¢, g can be expressed in terms of
the displacements using Eq. (90) where symbol *(**) in
Eq. (90) should be used for the displacements and Lame
coefficients for material *(**).

The detailed derivation of OLTEM with the 9-point
stencils for heterogeneous materials with irregular inter-
faces in the 2-D case is given in our paper [38] for the cases
with the non-diagonal and diagonal mass matrices. Below
we present the summary of the results.

Similar to the homogeneous materials in the previous
section 3.2.1 (see also Eq. (91)), for heterogeneous mate-
rials with an interface we assume the following general
form of two stencil equations for each grid point after the
space discretization of Eq. (94) with a rectangular Carte-
sian mesh:

4537
azu* d2 *3k, IUM
hz{,;mj"’[“”?zp+ (1~ a) =
dzv*,num d2 ok UM
+ijp[ p#—&— (1-— ap)T}}
p=1
+ Z kj,p |:apu;’mtm + (1 — ap)u;*ﬁum}
p=1
L —
+ Zk |:ClpV;:"um + (1 — ap) *, num:| fj‘, ] _ 17 27
p=1
(97)

where the coefficients a, = 1 if the grid point p belongs to
material * and a, = 0 if the grid point p belongs to another
material s (i.e., only two variables ;™"

** ,aum

* UM

Vb

k% num

or u,”
are included into Eq. (97) for each grid point, e.g.,
see Fig.5a with a=a=a3=as=a¢=1 and
as =a; =ag = a9 =0). As can be seen, the stencil
equations, Eq. (97), for heterogeneous materials include the
same number of the stencil coefficients m; p, 1, k;, and
ki, p=1,2,...,
Eq. (91).

The local truncation error e; for the stencil equations,
Eq. (97), can be obtained by the replacement of the
numerical solution for g*/™m =R I e sesRIm gy
Eq. (97) by the exact solution u*, v*, u™, v** and by the
addition of the interface conditions, Egs. (95)-(96), at a
small number N of the selected interface point to the
obtained expression as the constraints (see the previous
Sect. 3.1.3 for the wave equation):

L) as that for the homogeneous materials,

2k 2 e

T ou, p
ej=h {me[anﬁﬂ%l*%)?}

a aZVM
» +(1- L
+p21m“ ap—> ot 2 ap) FYe) -1}
L
+Zk.,-.,>[apu;+(1fa,,>u;*1+2k,-,p[apv;+<1—a,)>v;*1 - (98)

=1 p=1

Ng Ng -
+ un(u;;_, —ug,—011) +Zflz.l(V?§./ —VG1—011)

+Zh‘131 16~ x(Ga) —021) Jr2}1‘141 G~ hicn =02 |» =12,

where the additional unknown stencil coefficients g1, g2,
q31, gag (1 =1,2,...,Ng) are related to the interface con-
ditions (see Eq. (98)) and should be determined from the
minimization of the local truncation error. As shown in our
paper [38], N = 5 uniformly spaced interface points can
be used for the 9-point stencils. In contrast to the scalar
wave equation in Sect. 3.1.3, for the 9-point stencil (L = 9)
we do not use the time derivatives of the interface condi-
tions in Eq. (98) (the optimal second order of accuracy of
OLTEM can be reached without these additional interface

@ Springer



4538

A.ldesman

conditions; they may be needed for higher accuracy with
wider L > 9 stencils).

Using the elastodynamics equations for each grid point,
we can exclude the time derivatives from the expression for
the local truncation error in Eq. (98) as well as find the
expression for the discretized load jj

62 * aZu*
2 :u*
=h {Z m,,p axz ? + W;)
2 x 2 %
+(u*+,1*)(a u, 6vp)
0. ox2  OxOy

62 *% a2u**

My O U
+ (1 _ap) ( axg + ayz )
(,Ll,** + /l**) aZu** 62 H%
+ Dos ( ax2 Eixay)]
62 * 62\/*
vy
+ Z i pla @ W;)
l* 62 * aZu*
+ (B +2) [ i
P oy*  xdy
aZV** 62\/**
Hs P P
1— _r
+( aP) p**( axz + ayz )
, 2 sk 2wk
,Ll,** + /“** a V a
gt 2] L)
P 'Oy axay
L
+ ka[ap“; +(1 - ap)“;*}
p=1
L —
+ 3 Kiplay; + (1= )]
p=1

Ng

No
E q11(ug, — ug) JFE 01V — V1)

=1

N Ng
+ ; has(tyG) — Liay) + 121: hqai(tyGp — t;(*c,z))] ;

(99)
1 o
fi= hZ{ij,, a, f”,+( a,) fx‘p}
=1 Pk
L 1
+ 2 Mp {a,, vap +(1-a) af\p}
Ng
(91461, + @201 + hq3 021+ hgs 62,), Jj=12,
=1
(100)

where the last expression in the parenthesis in Eq. (100)
corresponds to the contribution due to the non-zero jump
conditions in Egs. (95) and (96). Expanding the values of
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the exact solutions for the displacements « and v at the grid
and interface points in Eq. (99) into a Taylor series in the
vicinity of the central grid point with the coordinates x, and
v (e.g., ¢ =5 for the 9-point stencils), a Taylor series of
the local truncation error e; in Eq. (99) can be represented
as follows:

¢j = bjaug + bjou.” + bjav; + bjav:” + h(bjs %

by by ey aa”y +bio agy

+bj1 66\;* + bj12 agi*) +h (b1 662142* +bj1a a; :*

+ bj 15 662 2* +bj16 a;:g* +bj17 226* + bjis a;:g;

+ bjns %21}2* + bjo4 @; :*) +h (bj2s @;u: + bj 26 @; :*

+ b2y a;v: + bjg 6;:2* + bj2 663;;: + +bj30 2;2;*

+ bj31 3 325 + +bjx 6325 + b3 % 5,34 gc@;*

+ b;3s 6636 *2 +bj36 236**2 +bja7 6@314: +bj3s a;:?

+ bj39 6;‘): + bja0 a;y:*)

+ K (bj,41 % + o+ bjgo %)

+ 1 (b, 61 6; 5* T Djss a;‘}:*)

+h6(bjssaa66*+ -+ Dbjn2 ;;lg*)"""" j=12
=12 (101)
where the coefficients b;, (j = 1,2, p =1,2,...,112) can

be expressed as a linear combination of the coefficients
mji, i, ki, kjj (0=1,2,...,L) and qi1, q20, 431, Gas
(l=1,2,...,Ng). By zeroing the coefficients b;; for the
smallest orders of & and using the least square method for
the coefficients b;; for higher orders of A (similar to the
procedure in Sect. 3.1.1), we can form a local system of
algebraic equations for the calculation of the unknown
coefficients my;, m;;, kj;, kj, (i=12,...,L)and q14, g2,
q31, q41 (I=1,2,...,Ng). As shown in our paper [38],
OLTEM with the 9-point stencils and irregular interfaces
provides the second order of accuracy of global solutions
(similar linear finite elements with 9-point stencils).
However, due to the minimization of the leading terms of
the local truncation error, at the same numbers of degrees
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of freedom, OLTEM for heterogeneous materials with
irregular interfaces yields more accurate results than those
obtained by linear and high-order finite elements (up to the
third order) with much wider stencils; see the numerical
examples in our paper [38].

4 OLTEM for Time Independent PDEs:
Poisson, Helmholtz, Elasticity Equations

The development of OLTEM for time-independent PDEs is
different from that for the time-dependent PDEs considered
in the previous Sections. First of all, the stencil equations for
OLTEM are assumed to be ordinary differential equations
for the time-dependent PDEs and algebraic equations for
time-independent PDEs. For the time-dependent PDEs, we
exclude the time derivatives in the expression for the local
truncation error using the original PDEs at the grid, boundary
and interface points before considering a Taylor series
expansion of the local truncation error. For the time-inde-
pendent PDE:s, the local truncation error is first expressed as
an algebraic equation without the spatial derivatives.
Therefore, in order to use the time-independent PDEs we first
expand the local truncation error in a Taylor series and then
we use the original PDEs in order to express one spatial
derivative in terms of other spatial derivatives in the
expression for the Taylor series of the local truncation error.
The derivations of OLTEM for the time-independent Pois-
son equation will be presented in more detail in the next
Section. For other time-independent PDEs we will use sim-
ilarity with derivations for the Poisson equation and will
refer to our papers for more details.

4.1 Poisson Equation
4.1.1 Homogeneous Materials

The Poisson equation in domain Q can be written down as:

Viu =f, (102)
with the Dirichlet boundary conditions
u=g(x) (103)

on the boundary I'" and with the Neumann boundary
conditions

Ou Ou Ou

- = =5 104

ax+n) ay NaZ g(X) ( )
on the boundary I"* where u is the field variable, f(x, 1) is
the source term, the entire boundary I is I' = I*UT* and
Ny, Ny, n; are the x—, y— and z—components of the outward
unit normal vector, g and g are the given functions.

The detailed derivation of OLTEM for the Poisson
equation is presented in our papers [1, 22, 23] in the 2-D
and 3-D cases on regular domains and in our papers
[25, 27, 28] in the 2-D and 3-D cases on irregular domains.
Below we present the summary of the results.

The compact stencil equation for OLTEM for the
Poisson equation in the 2-D and 3-D cases can be given for
each internal grid point as follows:

L —
> ka" =7,
i=1
where u*" are the numerical solution for function u at the
grid points, k; are the unknown stencil coefficients to be
determined, f_ is the discretized source term; L is the
number of the grid points included into the stencil
equation.

The local truncation errors e for the stencil equations
given by Eq. (105) can obtained by the replacement of the
numerical value of function u/*" in Eq. (105) by the exact
value u; at the grid points i (i = 1,2,...,L) as well as by
the addition of the boundary conditions at a small number
Np = My + M, of the selected boundary points with some
unknown coefficients (Lagrange multipliers) ¢;; and g ;,
i=1,2,...,Np) as the constraints:

L B M,
e= ;kiui —f+ ;qu(gi — up,)

+ M§2 hq (g ny mi g, Qi au‘”)
2,i i~ N V,i Z,0 )
— Ox Oy 0z

(106)

(105)

where M| and M, are the numbers of the selected boundary
points with the Dirichlet and Neumann boundary condi-
tions, respectively; the expressions after g; ; and g ; are the
boundary conditions at the selected boundary points given
by Egs. (103) and (104). Therefore, the expressions after
the term £ in Eq. (106) are zero and do not affect the value
of the local truncation error e.

In order to represent the local truncation errors e given by
Eq. (106) as a Taylor series, let us expand the exact solution
and its spatial derivatives at the grid and boundary points into
a Taylor series at small 7 < 1 in the vicinity of the central
grid point with the coordinates x., y., z. using Eqs. (64—66).
In this case we will obtain the expression given by Eq. (67)
with ¢ = 1 and the coefficients b, (p = 1,2, ...) expressed as
alinear combination of the coefficients k; and g ;, g> ; used in
Egs. (105)-(106); see our papers [25,27, 28] in the 2-D and 3-
D cases on irregular domains. We should mention that the
explicit expression for the coefficients b, can be first calcu-
lated just for one internal and one boundary point with the
general expression for the location of these points given
Egs. (64)-(65). Then, we should consider the summation
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over all internal and boundary points similar to those
expressions given by Eq. (68).
The exact solution u, to the Poisson equation, Eq. (102),
at the central grid point with the coordinates x = x., y = y,
and z = z, meets the following equations:
Ou. §m+§W o
o oy? 072 <
pHH+K)
Ox2HQyidzk =
pHiHHh),,
| oxiayi+2)azk
a(l+j+k) f
6x’ 0y/0zk

with i,j.k=0,1,2,3,4,.... Here, Eq. (108) is directly
obtained by the differentiation of Eq. (107) with respect to
x, y and z. Using Eqgs. (107) and (108), we can exclude the
second and higher order partial derivatives of x in Eq. (67),
and the local truncation error in space e can be written
down as:

(107)

a(2+l+j+k)
(108)

6x Oy/oz(k+2)

efblur+h[b2 +b*aau(+"4auc]+h2[ agzu;
+m§g+m% +%;§ bg%
+h3[bloa;ﬁ+b11 aaédcz +b1266y32bgz
+b13aa3y~‘ +biy 6636 s +b 15@3; %Z+b'6 E?:grz}
+ Wby 36414 % e +h‘[b266855 b 66554;4}
+ by a = aazl 3ot

(109)

where the coefficients b, (p = 1,2,...) are expressed in
terms of the coefficients k; and g, ;, g,;; see our papers
[1, 22,23, 25,27, 28]. Due to Egs. (107)-(108), there are no
second and higher order partial derivatives of x in
Eq. (109). We should also mention that substituting

Egs. (107)-(108) into Eq. (67), the discretized source term f_

in Eq. (105) can be calculated as the addition of the terms
due to the Dirichlet and Neumann boundary conditions at
the selected boundary points S°M g8 + S0% hqa.g;
plus a Taylor series of non-zero source term f in the
Poisson equation, Eq. (102); see our papers
[1, 22, 23, 25, 27, 28] for the details.

By zeroing the coefficients b, for the smallest orders of
h and using the least square method for the coefficients b,
for higher orders of % (similar to the procedure in
Sect. 3.1.1), we can form a local system of algebraic
equations for the calculation of the unknown coefficients k;
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and g ;, ¢, ;- As shown in our papers (25, 27, 28], OLTEM
with the 27-point stencils in the 3-D case or the 9-point
stencils in the 2-D case and irregular boundaries provides
the fourth order of accuracy for the Dirichlet boundary
conditions and the third order of accuracy for the Neumann
boundary conditions. Linear finite elements with similar
27-point stencils provides just the second order of accu-
racy. Moreover, due to the minimization of the leading
terms of the local truncation error in Eq. (109), at the same
numbers of degrees of freedom OLTEM yields more
accurate results than those obtained by high-order finite
elements (up to the fourth order) with much wider stencils;
see the numerical examples in our papers [25-28].

We should also mention that for the Poisson equation on
regular domains, OLTEM with conforming Cartesian
meshes provides a higher accuracy on square meshes than
that on rectangular meshes. For example, OLTEM with the
27-point stencils in the 3-D case or the 9-point stencils in
the 2-D case yields the 6-th and 4-th orders of accuracy on
uniform square (with the same mesh aspect ratios along the
Cartesian axes) and rectangular meshes, respectively (see
our papers [22, 25]). OLTEM with wider 5 x 5 = 25-point
stencils in the 2-D case (similar to the stencils for quadratic
finite elements) provides 18-th and 14-th orders of accu-
racy on uniform square (with the same mesh aspect ratios
along the Cartesian axes) and rectangular meshes, respec-
tively (see our paper [1]).

4.1.2 Heterogeneous Materials

The Poisson equation in a composite domain Q = UQ,
(!I=1,2,...,N where N is the total number of subdo-
mains) can be written down in each subdomain €; as
follows:

eV =fi, (110)

where ¢; is a constant in each subdomain Q; and can be
discontinuous across the interfaces between subdomains €,
(I=1,2,...,N), fi(x) is the source term that can be also
discontinuous across the interfaces between subdomains
Q,, u; is the field variable. We also assume that the func-
tions u; and f; are sufficiently smooth in each subdomain
Q. At the interface G between any two subdomains, the
following interface conditions are applied:

" o ou ou ou
Ug — Ug = 01, e*( aG“r yayG“r a—G>

oust out ouls .
T Oxx <”xa—+ ny aG + n, aG) = 0y,
(111)

where 01 (x,y,z) and 0,(x,y,z) are the given jumps for the
function and for the flux across the interface, ny, n, and n,
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are the x—, y- and z-components of the normal vector at the
interface, e, (e..) is the corresponding material constant,
the symbols * and *x correspond to the quantities on the
opposite sides from the interface for the corresponding
subdomains €;. For zero jumps 6; = d, = 0 the functions
u; are continuous across the interfaces but can have the
discontinuous spatial derivatives across the interfaces.

The detailed derivation of OLTEM for heterogeneous
materials with irregular interfaces in the 2-D and 3-D cases
is presented in our papers [35, 36]. Below we present the
summary of the results.

Similar to the stencil given by Eq. (84) for the wave
(heat) equation, the compact OLTEM stencil equation for
the 2-D and 3-D Poisson equation for each internal grid
point located far from the boundary can be given as
follows:

L
> Kolapiy™ ™ + (1= ap)uy"] =, (112)
p=1

where the coefficients a, = 1 if the grid point p belongs to
material * and a, = 0 if the grid point p belongs to another

*,AUM

material s+ (i.e., only one variable u,
(i=1,2,...,L) is included into Eq. (112) for each grid
point. As can be seen, the stencil equation, Eq. (112),
includes the same number of the stencil coefficients k,
p=1,2,...,L) as that for the homogeneous case,
Eq. (105). The derivation of OLTEM for heterogeneous
materials in the 2-D and 3-D cases includes the use of the
interface conditions at a small number N; of interface
points along a part of the interface located within the
corresponding compact cell. The coordinates of the selec-
ted Ng points on the interface (see Fig. 6 ) are described
with respect to the stencil central grid point by Eq. (85).
One of the ideas of the new approach is to include the
interface conditions for the exact solution at a small
number Ng of the interface points in the expression for the
local truncation error of Eq. (112) as the constraints:

*¥, UM
or l/lp

L
e = ka[apu; +(1- a,,)u;*] —f
=

Ng
+ > quilug; —ug; — 61)
=

No ou; ; ou; 113
+ Y hayle.(ny EJ + ny, WJ + (13)
=1
ug, ; Oug;

o2 ) — 6**(”x¢'g+”y.j
Oug; Oug’;
: PRELL' RN
ay +an oz ) 2]}a

where n,j, n,; and n_; are the x-, y-, and z-components of
the normal vectors at the Ng selected interface points (e.g.,
see Fig. 6), the coefficients g;; and q,; G =1,2,...,Ng)
are unknown and are used for the minimization of the local
truncation error in Eq. (113), the expressions in parenthesis
after g;; and g,; are the interface conditions at the Ng
selected interface points. Therefore, the expression in the
curly brackets in Eq. (113) is zero (see Eq. (111)) and does
not affect the value of the local truncation error e. The
addition of the interface conditions at Ng points in
Eq. (113) with the unknown coefficients ¢q;, ¢
(G=1,2,...,Ng) allows us to couple functions u, and u,"
as well as to get a high accuracy of the proposed method
for general geometry of interfaces; see below.

In order to represent the local truncation error e as a
Taylor series, let us expand the exact solution at the grid
and selected interface points in Eq. (113) into a Taylor
series at small 2 < 1 in the vicinity of the central grid
point with the coordinates x = x., y =y, and z = z. using
Eq. (66). The exact solution u; and u;* to the Poisson
equations, Eq. (110), at the central grid point x = x., y =y,
and z = z, meets the following equations:

o*wr Ot w1,
6x2:_6y2_622 +Zf’ 114
o%ur ofwt otwt 1, (114)
w2 N 2 e
QUitiH+142)
0z 0y ax(”; )
a(i+j+t+2)u* a(i+j+t+2)u*
- azfay<i+2>a;f - @z<’+2)6yi6;f
1oy (115)
e, 0710yiox/’
a(i+j+t+2) e a(i+j+z+2) w

0710yiox®H) 0zl oy +Doxi
a(i+j+t+2)u** 1 a(i+j+l)f**

dz(+2)dyidxi

e 07'0y 0x/

with i,j,t =0,1,2,3,4,.... Equation (115) is obtained by
the differentiation of Eq. (114) with respect to x, y and z.
Inserting Eqs. (66), (114), (115) into Eq. (113) we get the
discretized source term f (see our papers [35, 36]) as well
as the following local truncation error in space e:
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2 c
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+h3(b19
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6zay6x
+ b3 6x6y2

4* a4 *k

S+ by ——— 64 + ...

4* a4 Kok

o0 3+b‘°axay)

aiu* 65 *ok
+h5(b51 oz 3 +b52 02 5 =+ ...
65 * 85 sk
oy T e

6 66 *k

u
he (b b et
+ (7%66+ 4506 +

66 * 661,{**
b bog 2 te ) 4 .
s Tt

+ by

+ b71

where the coefficients b, (p =1,2,...) are expressed in
terms of the coefficients k; and qy;, q2; (i=1,2,...,L,
j=1,2,...,Ns). We should mention that the expression
for the local truncation error, Eq. (116), includes only the
first order derivatives with respect to x (the higher order
derivatives with respect to x are excluded with the help of
Egs. (114) - (115)).
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By zeroing the coefficients b, for the smallest orders of 4 and
using the least square method for the coefficients b, for higher
orders of /i (similar to the procedure in Sect. 3.1.1), we can form
a local system of algebraic equations for the calculation of the
unknown coefficients k; and gy, g2,;. As shown in our papers
[35, 36], OLTEM with the 27-point stencils in the 3-D case and
the 9-point stencils in the 2-D case (similar to those for linear
finite elements) and irregular interfaces provides the third order
of accuracy. However, due to the minimization of the leading
terms of the local truncation error in Eq. (116), at the same
numbers of degrees of freedom OLTEM yields more accurate
results than those obtained by high-order finite elements (up to
the sixth order) with much wider stencils; see the numerical
examples in our papers [35, 36]. OLTEM with wider
5 x5 = 25-point stencils for heterogeneous materials with
irregular interfaces in the 2-D case yields the 11-th order of
accuracy with unfitted Cartesian meshes (the increase by 8
orders compared to that for quadratic finite elements with similar
25-point stencils); see our paper [35].

4.2 Helmholtz Equation

The Helmholtz equation as well as its simple modification
called the screened Poisson equation on an irregular
domain Q can be written down as:

Viu+ of’u =f, (117)

where o = 1 for the Helmholtz equation, « = —1 for the
screened Poisson equation, f§ is the wave number for the
Helmholtz equation, f(x, y, z) is the loading term, u(x, y, z)
is the field variable. The Dirichlet boundary conditions

u = g(x) (118)

on the boundary I'* and the Neumann boundary conditions

JOu . du dw
Mg Ty T —=gx)

s (119)

on the boundary I'* are applied where the entire boundary
I' is I' =T*UT". These boundary conditions given by
Eqgs. (118) and (119) are similar to those for the Poisson
equation; see Egs. (103) and (104).

The detailed derivation of OLTEM for the Helmholtz
equation is presented in our papers [29, 30] in the 2-D and
3-D cases on irregular domains. Below we present the
summary of the results.

The compact stencil equation for OLTEM in the 2-D
and 3-D cases can be uniformly given for each internal grid
point as follows:

L
> B Hmai " + k™) = f,

i=1

(120)

where m;, k; are the unknown stencil coefficients to be
determined. It is interesting to mention that the left-hand
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side of Eq. (120) can be written in terms of one stencil
coefficient k;(h) as follows:

L L
§ : aﬁZthl num +kunum _ E z num

i=1 i=1

(121)

with
ki(h) =

where k;(h) is a polynomial function of the mesh size
h (similar to the stencil coefficients for inhomogeneous
materials in Sect. 3.1.2).

The local truncation errors e for the stencil equation,
Eq. (120), can obtained by the replacement of the numer-
ical value of function u/*" in Eq. (120) by the exact value
u; at the grid points i (i =1,2,...,L) as well as by the
addition of the boundary conditions at a small number
Np = M| + M, of the selected boundary points with some
unknown coefficients (Lagrange multipliers) g, g2, g3,
and g4, i = 1,2,...,Np) as the constraints:

(B h*mi + ki), (122)

L M,
e = Y [(@fWmi+ k] —f + Y (@B hqr; + q2:)(gi — )]
i=1 i=1

M-
2 au au al/i i
2,3 5 Bi B =
+ Z{(ocﬁ g3+ hqai)(g — (nei—— x + 1y dy + 0z 2

i=1

(123)

where M and M, are the numbers of the selected boundary
points with the Dirichlet and Neumann boundary condi-
tions, respectively; the expressions after g, ; and g4, are the
boundary conditions at the selected boundary points given
by Egs. (118) and (119). Therefore, the expressions after
the term f in Eq. (123) are zero and do not affect the value
of the local truncation error e. Similar to the Poisson
equation in the previous Sect. 4.1.1, we expand the exact
solution and its spatial derivatives at the grid and boundary
points into a Taylor series at small 2 < 1 in the vicinity of
the central grid point with the coordinates x., y., z. using
Egs. (64)-(66). The exact solution u. to Egs. (117) at the
stencil central grid point with the coordinates x = x,, y =
v. and z = z. meets the following equations:

’u,

el —a—yz—a—zz—fxﬁzuc +fes (124)
a(i+j+k+2) u, a(i+j+k+2) ",
axi20yi0cF - 0xi0y 205H N (125)
a(l+}+k+2)uc X a(z+]+k)MC a(l+j+k)fC
OxiQyJdzk+2 Oxi0y/0zk  Ox'0y/0zk

with 7,7,k =0,1,2,3,4,.... Here, Eq. (125) is directly
obtained by the differentiation of Eq. (124) with respect to
x, y and z. Similar to the derivation of a Taylor series of the
local truncation error e for the Poisson equation in the

previous Sect. 4.1.1, a Taylor series of the local truncation
error e for the Helmholtz equation can be obtained in the
following form:

du, du, du,
=biue +h|by—4+by—+b

e 1Ue + 26 36y 4aZ
Qu, azuc_i_b@
aa oxoz | 0y?

Qu, du

3z +b962
Qu, Qu,
ax0y? T 712 3xdyoz
Qu, u,

b b
aaz+14ay3+
Qu, ’u
aaz+h7&3

+ bigoff? a—c + byop?

+ h?[bs

+ by —— + bioofu]

+ 1 [byy

Qu,
15 9y20z
)

U
Ox

+ b3

+ bigaff?

Ou,
0z ]
o*u, o*u,
iy T e
*u, *u,
0x0y0z2
o*u,
Bl
4 o

+ bis

+ h[by

+ D3

T bs (126)

Ox0y*

6

57665
7

+ o+ by’ p Mc}

Ou,

o'u
+ h'[bgs = + ... + b1200€3ﬁ6

666 ]

- 68 U,
+ K8 by ady’ + .+ bmsﬁsuc} + O(h?)

where the coefficients b, (p = 1,2,....165) are expressed
as a linear combination of the coefficients m;, k;, g1, g2,
q3; and g4 ; used in Eqgs. (120) and (123); see our papers
[29, 30] for the 2-D and 3-D cases on irregular domains.
Here we should mention that the expression for the local

@ Springer



4544

A.ldesman

truncation error, Eq. (126), includes the first-order deriva-
tives with respect to x only (the higher order derivatives
with respect to x are excluded with the help of Egs. (124) -
(125)).

By zeroing the coefficients b, for the smallest orders of
h and using the least square method for the coefficients b,
for higher orders of & (similar to the procedure in
Sect. 3.1.1), we can form a local system of algebraic
equations for the calculation of the unknown coefficients
m;, ki, q1i, 2, q3; and g4;. As shown in our papers
[29, 30], OLTEM with the 27-point stencils in the 3-D case
(the 9-point stencils in the 2-D case) and irregular bound-
aries provides the fourth order of accuracy for the Dirichlet
boundary conditions and the third order of accuracy for the
Neumann boundary conditions. Linear finite elements with
similar 27-point stencils provides just the second order of
accuracy. Moreover, due to the minimization of the leading
terms of the local truncation error in Eq. (126), at the same
numbers of degrees of freedom OLTEM yields more
accurate results than those obtained by high-order finite
elements (up to the fourth order) with much wider stencils;
see the numerical examples in our papers [29, 30].

4.3 Elasticity Equations

Currently, we have developed OLTEM for the elastostatics
equations in the 2-D case; see our papers [2, 3, 31, 37]).

4.3.1 Homogeneous Materials

The corresponding 2-D elastostatics PDEs with constant
coefficients in domain Q can written down as:

2 %y

O“u
2 1 " 7 _
uVou+ (p+4) (ax2 + axay> +£=0,
?*v  du (127)
2 — — =
uVv+(u+2) <6y2 + 6x6y> +f, =0,

with the Dirichlet boundary conditions

u=g(x), v=g(x) (128)

on the boundary I'" and with the Neumann boundary
conditions

. Ou ou Ov _
tr =nx[(ﬂ+2#)a+/ta ] +”y/4(a—y+a) =g, (x),
. ov . Ou Ou Ov _
[y =ny |:(/L+2[1)6+/La:| +nx,u'(a_y+a) = 2(x)7
(129)

on the boundary T where the entire boundary T is
I' =I°UT". In Egs. (127-129), u = u(x,y) and v = v(x,y)

@ Springer

are the x— and y—components of the displacement vector,
fe =fu(x,y) and f; = f,(x,y) are the x— and y—components
of the body forces, 7, and #,) are the x— and y—components
of the tractive forces, n,, n, are the x— and y—components
of the outward unit normal vector, g; and g; (i = 1,2) are
the given functions, u and A are the Lamé coefficients that
can be also expressed in terms of Young’s modulus E and
Poisson’s ratio v as u = ﬁ and A = (l+»§+2‘)

The detailed derivation of OLTEM for the elastostatics
equations is presented in our paper [2] in the 2-D case on
regular domains and in our paper [31] in the 2-D case on
irregular domains. Below we present the summary of the
results.

According to OLTEM we assume the following general
form of two stencil equations for each grid point after the
space discretization of Eq. (127) with a rectangular
Cartesian mesh:

L L
num - ,aum
> kgl > kv,
i=1 i=1
:f]a

where u"", v{*" are the numerical solution for the dis-
placements u, v at the i—th grid point, kj;, k;, are the
unknown stencil coefficients to be determined, L is the
number of the grid points included into the stencil equa-

tion, f; are the components of the discretized loading term.

(130)
j=12,

The local truncation errors e; for the stencil equations
given by Eq. (130) can obtained by the replacement of the
numerical values of the displacements u/*", V*" in
Eq. (130) by the exact values u;, v; at the grid points i
(i=1,2,...,L) as well as by the addition of the boundary
conditions at a small number Ng = M| + M, of the selec-
ted boundary points with some unknown coefficients
(Lagrange  multipliers) gn; and g,; @m=1,2,
i=1,2,...,Np) as the constraints:

L L
€j = Z ijI/L,' —+ Z kj7,-v,<
i=1 i=1
~ M, M,
—fi+ 2611,;'(81‘5 —upg;) + Zq*]#i(gz,i — Vg,
i=1 i=1

M, M,
+h ZQZ,i(gl i~ bei) Zqz,i(gz,i —typi) |
i=1 i=1

(131)

where M| and M, are the numbers of the selected boundary
points with the Dirichlet and Neumann boundary condi-
tions, respectively; the expressions after g;;, ¢,; and g2,
@, are the Dirichlet and Neumann boundary conditions at
the selected boundary points given by Egs. (128) and
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(129)). Therefore, the expressions after the term f; in u,
P Y er = (b1 juc + biove) + h| b3 .
Eq. (131) are zero and do not affect the value of the local ' ~ Ox
truncation error ¢;. Similar to the Poisson equation in the v, du, v,
previous Sect. 4.1.1, we expand the exact solution for the +b14 o +bis a_y +big a)
displacements and their spatial derivatives at the grid and 2
boundary points into a Taylor series at small 4 < 1 in the + i? (blﬂ ﬁ +big
vicinity of the central grid point with the coordinates x,, y. xoy
using Egs. (64)-(66). The exact solution for the displace- azvc azuc
ments u. and v, of the elasticity equations, Eq. (127), at the 0x0y L 0y?
stencil central grid point with the coordinates x = x. and v,
y = y. satisfies the following equations: +b1,10 ayz)
o%u, o%u, 2) v, 1 u,
S~ o ue | (ut4) Ove —fex|s + 1 by u2+b112
b Qu+2) 0y*  (Qu+A)oxdy  (2u+ A" Ox0y ’
(132) v b %u.
2 113 533
v, {(zu + A0 (1) Pue 1 } oys O
Ox? w2 o andy ) +by 14aayvsc)
(133) o (136)
U
oy, [ Py (ut ) Ry, 1 g, +nt (b1 15 50v3 +bi116
oyl | (2u+ ) owidy@H) | (2 + ) xEHDRyU+D | (24 + 4) owidyd || X0y
(134) 9've
y . N N Oxy?
e | u+ DAy (utd) 3w 13, o o
xCHIey wo oxgyeH o QDR Ty dxidyd |7 +b1,17 IZ +b1,18 tf)
(135) 0y o
5 O u,
with i,j =0,1,2,3,4,... as well as f., = fi(x.,y.) and T\ brioggys T o1
fey =fy(xc,yc). We should mention that Eqs. (132) and o5 oy o5
(133) directly follow from the elasticity equations, — < 4p + by ——
oo 1217505 1227575
Eq. (127), while Eqs. (134) and (135) are obtained by the y y y
i 6
differentiation of Eqgs. (132) and (133) with respect to % +h (b1,23 -+ b
and & axg
o %
Remark 4 1In Eqs. (132) and (133), we have expressed the dxdy’
second x derivatives in terms of the second y derivatives 5y o5y
and the second mixed derivatives. However, we can simi- +b125 W; +b126 WJ) + O(n")

larly express the second y derivatives in terms of the sec-
ond x derivatives and the second mixed derivatives. This
latter case (with the corresponding modifications of
Egs. (134) and (135)) will be used for the calculation of the
local truncation error and the stencil coefficients for the
second stencil equation; see below.

Similar to the derivation of a Taylor series of the local
truncation error e for the Poisson equation in the previous
Sect. 4.1.1, a Taylor series of the local truncation error e
for the first stencil (j = 1) for the elasticity equations can
be obtained in the following form:

where the coefficients by, (p = 1,2, ...) are expressed as a
linear combination of the coefficients k; ;, k,u’ q1is 41> 9.
and ¢, ; used in Egs. (130) and (131); see our paper [31].
Here we should mention that the expression for the local
truncation error, Eq. (136), includes only the first-order
derivatives with respect to x (the higher order derivatives
with respect to x are excluded with the help of the elasticity
equations, Egs. (132)-(135)). A similar expression can be
derived for the local truncation error e, for the second
stencil; see also Remark 4.

By zeroing the coefficients b;; for the smallest orders of
h and using the least square method for the coefficients b;;
for higher orders of A (similar to the procedure in
Sect. 3.1.1), we can form a local system of algebraic
equations for the calculation of the unknown coefficients
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ki, kjy,- and q1,, 41> 92,i» 42;- As shown in our paper [31],
OLTEM with the 9-point stencils and irregular boundaries
provides the second order of accuracy for global solutions
(similar to linear finite elements with the 9-point stencils).
However, due to the minimization of the leading terms of
the local truncation error, at the same numbers of degrees
of freedom OLTEM on irregular domains yields more
accurate results than those obtained by linear and high-
order finite elements (up to the third order) with much
wider stencils; see the numerical examples in our paper
[31]. We should also mention that as shown in our paper
[2], OLTEM with wider 5 x 5 = 25-point stencils in the 2-
D case provides the 10-th order of accuracy on regular
domains with conforming Cartesian meshes, i.e for elas-
tostatics the optimal accuracy for the 5 x 5 = 25-point
stencils is 7 orders higher than that for quadratic finite
elements with similar stencils.

4.3.2 Heterogeneous Materials

The 2-D elastostatics equations in a composite domain Q =
U (I=1,2,...,N where N is the total number of sub-
domains) can be written down in each subdomain €; as
follows:

Pu, v
2 ) [ ! I _
:u'lv u + (:u] + 1) ox a2 + axay +f;c Oa

ot ’
o2 +6x6y) =0

(137)
WV + (y + il)(

where u; = u/(x,y) and v; =v(x,y) are the x— and
y—components of the displacement vector, ﬂ = f)f (x,y) and
f)l, = f){(x,y) are the x— and y—components of the body
forces that can be discontinuous across interfaces. We also
assume that the functions u; and f; are sufficiently smooth
in each subdomain €);. At the interface G between any two
subdomains, the following interface conditions are applied:

ug — ug = 0, Vg — Vg = o1, (138)
i — g = 02, g — fig = 02, (139)
where 51(X,y) |(x,y)€G’ 51 (x7y> |(x‘y)EG and 52()(3,)1) |(X,y)EGs

52(x,¥) |xy)ec are the given jumps in the displacements
and in the tractive forces across the interface, the symbols x*
and *x correspond to the quantities on the opposite sides
from the interface for the corresponding subdomains €.
The x— and y—components of the tractive forces #, ¢ and
fyc can be expressed in terms of the displacements by
Eq. (90).

The detailed derivation of OLTEM for heterogeneous
materials with irregular interfaces in the 2-D case is pre-
sented in our papers [3, 37]. Below we present the sum-
mary of the results.

@ Springer

Similar to the homogeneous materials in the previous
section 4.3.1 (see also Eq. (130)), for heterogeneous
materials with an interface we assume the following gen-
eral form of two stencil equations for each grid point after
the space discretization of Eq. (137) with a rectangular
Cartesian mesh:

L
ij.p [apuz,num (1 o ap) ok, num}

zL: [ s (1 _ap)v;*,num:| :f;
(140)

where the coefficients a, = 1 if the grid point p belongs to
material * and a, = 0 if the grid point p belongs to another
material s (i.e., only two variables u,"*",

** shum

*,num

Hok num
v
p

or u,"
are included into Eq. (140) for each grid point, e.g.,
see Fig.5a with ay =ay=a3=as=as=1 and
as =a7; =ag =ag9g =0). As can be seen, the stencil
equations, Eq. (140), for heterogeneous materials include
the same number of the stencil coefficients k;, and k;,
(p=1,2,...,L) as that for the homogeneous materials,
Eq. (130).

The local truncation error e; for the stencil equations,
Eq. (140), can be obtained by the replacement of the
numerical solution for g™™m, s g e Rim - g
Eq. (140) by the exact solution u*, v*, u**, v** and by the
addition of the interface conditions, Eqgs. (138)-(139), at a
small number N of the selected interface point to the
obtained expression as the constraints (see the previous
Sect. 4.1.2 for the Poisson equation):

e = ik,_,, [a,,u; +(1— ]

,]1

L
N
E Gim( qu uGrr17 +§ Gim(v Gm
1

m=1 m=

Ne
+ Zh‘IZ m( (Gm) — Bi(Gam) — 52) + thz.m (’f((,:m) )

m=1 m=1

Jp [“ﬁ" +( “/’)V;k] *}j

VG — 1)

752)], i=1,2,
(141)

where the additional unknown coefficients g1, | s q2,m»
Gam (m=1,2,...,Ng) are related to the interface condi-
tions (see Egs. (138)-(139)) and should be determined from
the minimization of the local truncation error. As shown in
our paper [38], Ng = 5 uniformly spaced interface points
can be used with the 9-point stencils.

Similar to the derivation of a Taylor series of the local
truncation error e for the Poisson equation in the previous
Sect. 4.1.2, a Taylor series of the local truncation error e
for the first stencil (j = 1) for the elasticity equations can
be obtained in the following form:
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ey = by u, +biovi 4+ bisul + biavy”

Jrh<bl,5 aalerbls%V @g**erlgag**

+ D1y %u* +b 102;' +b1 11 6;% + b2 6{\3}%)
(bl 13 222* +bi14 22;* +b11s5 szlg;

+h (bl 21 affg; + .. tbios 6;%*)

+ " <b1A37 ;:TM; + ..+ b 6;;;*)

+h® (171,45%2;55 +bi 52 6;:;*)

+ i (b[ﬁl % +Dies 6;;:)

+n <b1_69 % +bie 6;;5*)

+h10 (bm g;;’;é Fotbig a;;:)

+h" (bl,ss axlal;’:o ot bio a;lyfl)

1 b St ) <00

(142)

where the coefficients b, (p = 1,2,...) are expressed as a
linear combination of the coefficients k;, kfu, q1is 414> 9.
and ¢, ; used in Egs. (140) and (141); see our papers [3, 37]
for the 2-D case with irregular interfaces. Here we should
mention that the expression for the local truncation error,
Eq. (142), includes only the first-order derivatives with
respect to x (the higher order derivatives with respect to
x are excluded with the help of the elasticity equations,
Eq. (137).

By zeroing the coefficients b;; for the smallest orders of
h and using the least square method for the coefficients b;;
for higher orders of & (similar to the procedure in
Sect. 3.1.1), we can form a local system of algebraic
equations for the calculation of the unknown coefficients
ki, k;, and q , q1.i> 9> Q2i- As shown in our paper [37],
OLTEM with the 9-point stencils and irregular interfaces
provides the second order of accuracy of global solutions
(similar to linear finite elements with the 9-point stencils).
However, due to the minimization of the leading terms of
the local truncation error, at the same numbers of degrees
of freedom OLTEM on irregular domains yields more
accurate results than those obtained by linear and high-

order finite elements (up to the third order) with much
wider stencils; see the numerical examples in our paper
[37]. We should also mention that as shown in our paper
[3], OLTEM in the 2-D case with wider 5 x 5 = 25-point
stencils provides the 10-th order of accuracy for hetero-
geneous materials with irregular interfaces and unfitted
Cartesian meshes, i.e for the elastostatics the optimal
accuracy OLTEM with the 5 x 5 = 25-point stencils is 7
orders higher than that for quadratic finite elements with
similar stencils.

5 OLTEM for Post-processing

For the analysis of engineering problems the calculation of
the spatial derivatives of primary functions are necessary in
many applications, e.g., fluxes for heat transfer problems or
stresses for solid mechanics. Therefore, after the calcula-
tion of the numerical solution for the primary functions,
many computer codes include special post-processing
procedures for the calculation of the spatial derivatives of
the numerical solution for the primary functions. Here we
show in detail the application of OLTEM and PDEs to the
calculation of the spatial derivatives at the grid points for
the 3-D Poisson equation as well as to briefly introduce the
calculation of stresses for the time-independent and time-
dependent elasticity equations. The cases of heterogeneous
materials with irregular interfaces will be considered. The
application of PDEs for post-processing significantly
increases the accuracy of the numerical results for the
spatial derivatives.

5.1 3-D Poisson Equation for Heterogeneous
Materials with Irregular Interfaces

Here we consider the calculation of the spatial derivatives

aulllﬂﬂ aurmm au
oax * Oy and

equation with 1nterfaces, see the previous Sect. 4.1.2 as
well as our paper [36]. Because the calculations of these

three derivatives are similar then we show the procedure
aunum

" at the grid points for the 3-D Poisson

for the calculation of

The compact stencﬂ for the calculation of a" " at the
stencil central point with the coordinates x., y. and Z. (see
Fig. 6 with the central point ¢ = 14) can be selected similar
to Eq. (112) as follows:

Qunum
- |:ac E + (1 _ac>

ok UM
ou I
Ox

Ox
(143)

L
+ Z ky [ap”;’num +(1- ap)u;**””’”] =7,
p=1

where L =27 for the 27-point stencils (see Fig. 6), the

@ Springer



4548

A.ldesman

explanation of the coefficients a; (i = 1,2,...,L) is given
in Sect. 4.1.2. The local truncation error e for Eq. (143) can
be obtained by the replacement of the numerical solution

u,™ and w,»"" in Eq. (143) by the exact solution u,, and

ou ou”
e = —liaca—‘r (l —ac)g}h

L (144)
+ Zk,, [apu; +(1- ap)u;*} —f.

p=1
Similar to Eq. (113) in Sect. 4.1.2, we include the interface
conditions for the exact solution at the same small number

Ng of the interface points in the expression for the local
truncation error in Eq. (144) as the constraints:

ou ou’”
e = —[aca-’— (1 — ac)g]h

L
+ Zk,,[a,,u; + (1 —ap)u,’]

p=1

Ng
-f+ {Z q1(ug; — ug; — 01)
=1 (145)
Ng oug ; oug; ;
+ JZ hCIzJ[e* (nxj W‘] + ny; ayJ
oug ; Gu**
+nZJ a J) - e**(nXJ ox +n}J

kk k%
Gucj auG

ay +n ZJ a ) 52]})

see the corresponding explanations in Sect. 4.1.2. Similar
to Sect. 4.1.2, the coefficients k; and gqij, @
i=12,...,L j=1,2,...,Ng) are calculated by the
minimization of the local truncation error e given by
Eq. (145); see our paper [36] for the 27-point stencils for
the details.

To summarize, for the calculation of the derivative azg:'
using OLTEM with the compact stencils, we should follow
the following procedure:

m

e Calculate the stencil coefficients k; and qi;, ¢
i=1,2,...,L j=1,2,...,Ng) for each internal grid
point (similar to those in Sect. 4.1.2) for homogeneous
(without interfaces) and heterogeneous (with interfaces)
materials by the minimization of the local truncation
error, Eq. (145).

e Using these stencil coefficients, calculate the right-hand
side f in Eq. (143) for each internal grid point (similar
to f in Sect. 4.1.2); see our paper [36] for the 27-point
stencils for the details.

e Calculate the derivative 2~ from Eq. (143) for each

internal grid point as follow.
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au* e - *, um ok, UM r
ka [apup’ +(1- ap)u[, ’ } —f

p=1
(146)

if the stencil central grid point belongs to material
(a. = 1) and

au** Jaum

[Zk [ap (] _ap)u;*,num:| —f]
(147)

if the stencil central grid point belongs to material s
(a. = 0).

The calculation of the derivatives 2 a

num

can be done

similar to the calculation of the derivative % ax
above.

Remark 5. If any regular stencil is cut by the boundary
then for post-processing the local truncation error of the cut
stencil should also include the corresponding boundary
conditions, e.g., see Eq. (106).

It is interesting to note that for homogeneous materials
the post-processing procedure described above can be also
used for the calculation of the spatial derivatives without
the application of the partial differential equation as in
other post-processing techniques (e.g., see [40—42] for
finite and isogeometric elements) Let us assume that we

can calculate the derivative “4— a“ " at the internal grid point in

terms of the values of the functlon u™™ at the neighboring

grid points using the following compact stencil:

Z = (148)
with the following local truncation error e:
Ou, L
e=—h—=— > kit (149)
p=1

Repeating the procedure described in Sect. 4.1.1 without
the use of Eqgs. (124) and (125) and zeroing the corre-
sponding coefficients b, in the Taylor series of the local
truncation error e for Eq. (149), we can calculate the
maximum possible order of the local truncation error,
Eq. (149), without the application of the Poisson equation.
In our paper [36] we showed that the use of the Poisson
equation for the calculation of the coefficients k, in
Eq. (148) for the 3-D 27-point stencils with L=27
increases the accuracy in the calculation of a” “ by two
orders compared to the calculations without the use of the
Poisson equations. It can be also shown that the use of the
Poisson equation for the calculation of the coefficients k, in
Eq. (148) for the 3-D 125-point stencils with L = 125
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increases the accuracy in the calculation of a” ” by 6 orders | ou’” L
compared to the calculations without the use 0f the Poisson €= +(1—ac) Ox
equation. L o

To summarize, the proposed post-processing procedure Z (1- ‘117) i
provides the optimal accuracy of the spatial derivatives of p=l
primary functions calculated at the grid points witli the help + Z k, [ apv; +(1—ay) v;*} —f
of compact stencils. It can be developed with or without the =1
use of PDEs. However, the use of PDEs significantly Ne
- al ot D T st)
improves the accuracy of the spatial derivatives for the Lm\"G m G.m 1

m=1

given stencils. Despite the fact that we have applied the
proposed post-processing technique to the stencils defined
on Cartesian meshes, it can be also used for non-uniform
meshes with the corresponding coefficients ry,, 7yp, 72p
used in Eq. (64) (similar to OLTEM developed in our
papers [25, 27, 28] for irregular boundaries). Finally, the
post-processing procedure developed can be independently
used with any known numerical technique (e.g., with finite
elements).

5.2 The Stencils and the Local Truncation Errors
Used for the Calculation of g—; for the Time-

Independent Elasticity
Equations for Heterogeneous Materials
with Irregular Interfaces

Similar to the previous Sect 5. 1 here we will discuss the

ment for the elastostatics equations. The calculation of the
other spatial derivatives for other displacement compo-
nents can be similarly done. Then, the stresses can be
calculated using Hooke’s law.

For simplicity, below we consider the compact stencil
for heterogeneous materials with interfaces in the 2-D case
that can be written similar to that in basic computations
(see Eq. (140) in the previous Sect. 4.3.2) as follows:

au*,num au**.num
- c < 1- c < h
ia ox +-a) ox i

[+ (1= ap)uy o] (150

L
+2k
"
Zk_ [ap *,num (1 _ap)v;*,num} :f_7

with the following local truncation error e:

Ne _
+ qu,m(vg,m - Vg,m - 51)
+ ZhQZ m(

see also Eq. (141) and the corresponding explanations in
Sect. 4.3.2. Similar to Sect. 4.3.2, the coefficients k,, k;,
and q1, ¢, > @25 §; P =1,2,..,L,j=1,2,...,Ng) are
calculated by the minimization of the local truncation error
e given by Eq. (151); see our paper [3] for the 25-point
stencils for the details. It is interesting to note that in
contrast to the known post-processing procedures for the
elasticity equations (e.g., used with finite elements), the

(Gm) 52)

(G m) 52)

calculation of “4— a” ” includes not only the numerical solution
for the dlsplacement u but also for the displacement v; see
Eq. (150).

The proposed post-processing procedure provides a very
high order of accuracy for the stresses. For example, the
numerical results in our paper [3] show the 10-th order of
accuracy of stresses for OLTEM with the 25-point stencils

used in basic computations and for post-processing.

5.3 The Stencils and the Local Truncation Errors
Used for the Calculation of & for the Time-
Dependent Elasticity
Equations for Heterogeneous Materials
with Irregular Interfaces

The 2-D compact stencil for the calculation of a" " at the
stencil central grid point with the coordinates x, and ye (see
Fig. 5) can be selected similar to Eq. (97) as follows:
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auz,num Qu-mum
— +(1—a < h
lac Ox ( ) fobs }
d2u*,num d2 sk UM

L

+ hz{Zmp[ap#—l— (1 —ap) T]
p=1

d2 * UM

dt2

-3l
i o
r3hd

d2 *k, UM

+ (1 _ap)TH’ (152)

**,num}

— ap)up

* UM £

la, v, (1— ap)v;*v””m] =f,

where a. = 1 if the stencil central grid point belongs to
material * and a. = 0 if the stencil central grid point
belongs to material **. We should mention that in contrast
to the known post-processing procedures (e.g., used with
finite elements), in the proposed approach the calculation
of the spatial derivative g—ﬁé depends not only on the dis-
placement u but also on the displacement v as well as their

second order time derivatives 2% and a ~. The local trun-

o
cation error e for Eq. (152) can be obtamed by the
replacement of the numerical solution u[*;’"”” u;**”“’", v[*;”‘””
and v** M in Eq. (152) by the exact solutions up, ;*, v[*,
and vp
ou* ou™*
= —|a, == 1 —a,)—=%h
e=—lacz=+(1~ac)—7-]
L d2 * d2u**
—l—hz{Zm,,[ap ar +(1—ap) d; ]
p=1
d2v* d2v¥*
_ P P
+;mp[ap dr2 +( - 17) dr2 ]} (153)
L
+ > kplaguy + (1 = a,)us’]
p=1
L —_
+ ka[apvp + (I =a)v)] — f

We should note that in Eq. (153) we do not use index ’j” for
the local truncation error ¢ and for the stencil coefficients
m;, Iﬁi, kl‘, ki (l = 1,2, cey
A we consider just one stencil equation for the grid point.
Similar to Eq. (98) in Sect. 3.2.2, we will include the
interface conditions for the exact solution at the same small
number N of the interface points into the expression for

the local truncation error in Eq. (153) as follows:

9) because for the calculation of

@ Springer

2, Hx L ZV* 2 kx
+(1 _ap)sz} + Z’ﬁp[apdep‘*‘ (1- “p)T;]}
p=1

+ Zk,,[apu; + (1 = ap)uy]
p)";*] -f

Ng
)+ ZQU(V*GJ — Vg, = 01)

* *k
+ q1(ug; — ug; — 01

hG) 52+Zh’i4' YGn ~ hign — 02|,

(154)

see the corresponding explanations in Sect. 3.2.2.

Remark 6. If any regular stencil is cut by the boundary
then for post-processing the local truncation error of the cut
stencil should also include the corresponding boundary
conditions, e.g., see Eq. (92).

Remark 7. The described post-processing procedure can
be equally applied to OLTEM with the diagonal mass
matrix. Because post-processing does not include the
solution of the global system of algebraic equations, the
stencil with all non-zero m,, coefficients in Eq. (152) can be
used for post-processing the results obtained in basic
computations with the diagonal mass matrix; see our paper
[38] for the details.

It is interesting to note that for homogeneous materials
the post-processing procedure described above can be also
used for the calculation of the spatial derivatives without
the application of the partial differential equation as in
other post-processing techniques (e.g., see [40—42] for
finite and isogeometric elements) Let us assume that we

can calculate the derivative “‘é " at the internal grid point in

terms of the values of the displacement u™"

boring grid points with the following stencil:

at the neigh-

auf”m " num
—h——+ Zk,,up =0 (155)
—
and the following local truncation error:
Ou, L
e=—hz"+ > kot (156)
p=1

For simplicity, below we will use a uniform Cartesian mesh

and L = 9 grid points for the calculation of the derivative

a"— at the central ¢ =5 grid point in the 2-D case (see

Flg. 3a and our paper [38]). Using the procedure described
in Sect. 3.2.1 (but without the use of PDEs for the
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calculation of the coefficients b,) and zeroing the corre-
sponding coefficients b, in the Taylor series of the local
truncation error e, we can show that k¢ = 1/2 and k4 =
—1/2 (all other k; =0, i =1,2,3,5,7,8,9) yield the fol-
lowing optimal order of e in Eq. (156) with L = 9:

h3 63 Us
6 axd
In this case we have the well-known finite-difference
approximation of the derivative. In contrast to the third
order of the local truncation error in Eq. (157), the new
post-processing procedure with the use of PDES provides
the the fourth order of the local truncation error for
homogeneous materials and improves the accuracy of the
spatial derivative of by one order for the same 9-point
compact stencils. We should also mention that the
approximation given by Eq. (155) cannot be used for the
stencils with interfaces (as those in Fig. 5a).

To summarize, the proposed post-processing procedure
provides the optimal accuracy of the spatial derivatives of
the displacements calculated at the grid points with the
help of compact stencils. It can be developed with or
without the use of PDEs. However, the use of PDEs
improves the accuracy of the spatial derivatives for the
given stencils. Despite the fact that we have applied the
proposed post-processing technique to the stencils defined
on Cartesian meshes, it can be also used for non-uniform
meshes with the corresponding coefficients 7., 1y, used in
Eq. (64) (similar to OLTEM developed in our papers
[25, 27, 28] for irregular boundaries). Finally, the post-
processing procedure developed can be independently used
with any known numerical technique (e.g., with finite
elements).

e= (157)

+ O(h").

6 OLTEM for the Calculation of the Primary
Function and Its Derivatives at Any Point
of the Domain

Here we will show that OLTEM can be used not only to the
calculation of the spatial derivatives of the primary func-
tion at the grid points at post-processing as shown in
Sect. 5 but also can be generalized for the calculation of
the primary function and their derivatives at any point of
the domain. We will explain the main idea of the new
approach for the 3-D Poisson equation in the homogeneous
media. Assume that the primary function is known at the
grid points of a Cartesian mesh. Then, we will calculate the
primary function and their derivatives at any point P of the
domain using compact 27-point stencils shown in Fig. 4a.
Without the loss of generality, let us consider any point P

of the 3-D 27-point cell of the dimensions 2Ax2hx2h with
the following coordinates:

Xp = Xi4 + reph, Yp = Y14 + rypbyh,

(158)
Zp = 214 + r;pbh,

where the coefficients r.p, ryp and r.p define the location of

point P with respect to the central grid point with the

coordinates x4, y14, Z14. For the calculation of the primary

function up(x,,y,,2,) at point P, the following compact 27-

point stencil can be used::

27
num num r
Up (xpaypazp) + E kiu[ :f7

i=1

(159)

where f = 0 in the case of zero source f = 0 (or can be
calculated in terms of non-zero source f), the unknown
stencil coefficients k; (i = 1,2, ...,27) are to be determined
from the minimization of the local truncation error. The
local truncation error e follows from Eq. (159) by the
replacement of the numerical solution u*" by the exact
solution up:

27

e =up(xp,yp2p) + > _ kitti — f-
i=1

(160)

Similar to the derivations of OLTEM for the 3-D Poisson
equation in our papers [27, 28, 36], a Taylor series of the
local truncation error e in Eq. (160) can be written as:

0
e=biuy+h b2%+b3%+b4ﬂ
0z Oy Ox

oe(n T gt e )
+h3<bm%+bn %-&-hm% +b13%+b14%
Ty ﬁazz;gx + bm%> T+ (bn% 4. +bos %)
+h (b26 aaZSM + ... +bss Sx—g;“>
6 6
+h° (b37 662614 + ..+ l?492 gﬁ) +o(h)
(161)

where the coefficients b, (p = 1,2,...) are expressed in
terms of the coefficients k; (i =1,2,...,27) and r.p, 1yp
and r,p. Here we should mention that the expression for the
local truncation error, Eq. (161), includes only the first
order derivatives with respect to x (the higher order
derivatives with respect to x are excluded with the help of
the Poisson equation; see our papers [27, 28, 36] for the
details). If we zero the first 16 coefficients b; =0
(i=1,2,...,16) up to the third order with respect to & in
Eq. (161) as well as the 6 coefficients b; =0
(i=17,18,19,21,23,24) of the the fourth order with
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respect to h in Eq. (161) then the remaining 3 coefficients
b; = 0 (i = 20,22, 25) of the fourth order become non-zero
and the local truncation error in Eq. (161) can be written as:

1 0uy Oty
e = 8h4 |:(pr}"3 - rngzP) Ry + ”xP"yP(rsz - rfp) dxdy?
641/114
+ryPrzP(”§P — 1) 020y3 +0(),

(162)

i.e., the fourth order is the maximum possible order of
accuracy for the local truncation error e of the stencil equa-
tion, Eq. (159). If we try to calculate the local truncation error
e in Eq. (160) without the use of the Poisson equation, then a
Taylor series of the local truncation error in Eq. (161) will
include more terms due to the additional high-order deriva-
tives of uj4 with respect to x. In this case, the 27 stencil
coefficients k; allow to zero only the coefficients b; up to the
second order with respect to 4. This means that the use of the
partial differential equation (the Poisson equation) for the
calculation of the primary function up(x,,y,,z,) at point
P with the 27-point stencil increases the accuracy by one
order. We should also mention that the stencil coefficients k;
in Eq. (159) can be calculated by the procedure described in
our papers [27, 28, 36].

Similar to the primary function, we can also calculate its
spatial derivatives at any point of the domain. In this case,
the stencil equation, Eq. (159), should be modified as
follows:

o num
o O U™ (X, Vs 2p)

ox"
27 B
+> k™ =,
i=1

h
(163)

for any partial derivative with respect to x (similar modi-
fications can be done for the derivatives with respect to y, z
and the mixed derivatives). Similar to Eq. (159) for the
primary function, the local truncation error for Eq. (163)
can be represented in the form of Eq. (161). Then, we can
Zero the following coefficients bij=0
(i=1,2,...,21,23,24). The remaining 2 coefficients b; =
0 (i = 22,25) of the fourth order become non-zero. For the

first order derivative W, the local truncation error in

Eq. (161) can be calculated as:

| 641414 64M14
e = Gh|(3rpre + i) gga + e~ ¥in) 55
+ 0K,
(164)

i.e., the fourth order is the maximum possible order of
accuracy for the local truncation error e of the stencil
equation, Eq. (163). It is interesting to mention that for the
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grid points, the coefficients r.p, r,p and r.p are equal to one
of the following values: —1;0; 1. In this case, the terms for
the fourth order in Eq. (164) become zero and the new
procedure provides the fifth order of the local truncation
error e in Eq. (161) for the derivatives at the grid points
(the same order of ¢ we have obtained for post-processing
at the grid points in our paper [36]). If we try to calculate
the local truncation error e without the use of the Poisson
equation, then a Taylor series of the local truncation error
in Eq. (161) will include more terms due to the additional
high-order derivatives of u;4 with respect to x. In this case,
the 27 stencil coefficients k; allow to zero only the coef-
ficients b; up to the second order with respect to 4. Similar
results we have obtained for the higher order derivatives
with n = 2 and n = 3 in Eq. (163). This means that the use
of the partial differential equation (the Poisson equation)
for the calculation of the spatial derivatives of the primary
function up(x,,y,,z,) at point P with the 27-point stencil
increases the accuracy by two orders for the grid points and
by one order for other internal points.

7 New Numerical High-Order Boundary
Conditions for ‘Quadratic’ Elements

If the boundary cuts some regular grid points included into the
stencil then we have the cut stencil with a smaller number of
the internal grid points. In this case the cut stencils cannot
usually provide the same high order of accuracy as that for the
regular stencils. Let us consider this in more detail for the 2-D
25-point stencils ("quadratic’ elements) with the Dirichlet and
Neumann boundary conditions. For example, the grid point
13 in Fig. 7ais the closest internal grid point to the horizontal
boundary and its stencil includes 15 internal grid points (in
contrast to the regular stencil with the 25 internal grid points
for the ’quadratic’ elements; see Fig. 3c. The grid points
16,17,...,25 in Fig. 7a are not included into this stencil
because they are located outside the physical domain € or on
the boundary. Without a special treatment of the boundary
conditions, the 15-point cut stencil in the 2-D case (see
Fig. 7a) cannot provide the order of accuracy of the regular
25-point stencil and this leads to the decrease in accuracy of
the global system of equations that includes all regular and cut
stencils. However, the order of accuracy of the cut stencil can
be improved if the boundary conditions are also included into
the expression for the local truncation error of the cut stencils;
see the derivations below for the time-independent elasticity.

7.1 Dirichlet Boundary Conditions

Let us consider the 2-D time-independent elasticity equa-
tions given by Eq. (127) with the Dirichlet boundary
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Fig. 7 a The regular 25-point stencil cut by the horizontal boundary.

conditions given by Eq. (128). Let us also consider
OLTEM with the 25-point stencil equations given by
Eq. (130) with L = 25. In our paper [2] we have shown that
OLTEM with the 25-point stencils and conforming Carte-
sian meshes provides the 12th order of the local truncation
error or the 10th order of accuracy for the global solution.
However, for the internal grid points located close to the
boundary, a part of the stencil grid points are cut by the
boundary. As an example, let us consider the cut stencil in
Fig. 7a. This stencil includes 15 internal grid points located
inside the domain, 5 boundary points on the horizontal
boundary and 5 grid points located outside the domain.
Here, we will show how to construct the 15-point stencil
with the internal grid points that will provide a high
accuracy due to the use of the boundary conditions. First,
the case of the Dirichlet boundary conditions is analyzed.
The considered cut stencil can be explicitly written using
Eq. (130) as:
L L
Zlkj,i"i;mm Z pm 17

j=1.2 (165)

with L = 15. The local truncation error for the cut stencils,
Eq. (165), with the inclusion of the Dirichlet boundary
conditions at M, selected boundary points is given by
Eq. (131) with M, = 0 and can be written as follows:

L L
ej = ijv,'u,- + ijv,-v,- —fj"
i=1 i=1
M, M,
+ ZQI,i(gl,i —up;) + Z%,;(&i — VBi)-
i=1 i=1

with L = 15. The analysis presented below shows that we
can take M; =9 boundary points uniformly distributed
along the horizontal boundary over the interval 44 with the
distance h; = h/4 between the boundary points; see

(166)

Horizontal
boundary

(b)

b The 15-point cut stencil with the 9 boundary points

Fig. 7b. The coordinates of the L = 15 internal grid points
of the cut stencil (see Figs. 7b) with respect to the central
grid point (x;3,y13) can be written as follows:

Xp=x13+tdxph, yp,=y13+dypbyh, p=12,....L (167)

where the coefficients d., and d,, can be easily defined.
For example, for the internal grid point shown in Fig. 7 we
can find that d,, =i—-3 and dy,=j—3 for p=
5G—1)+iwithi=1,2,3,45andj=1,2,3.

Similarly, we can describe the coordinates of the M| =
9 boundary points of the cut stencil (see Fig. 7b) with
respect to the central grid point (x;3,y13):

P = 1,27...,M1
(168)

XBp = X13 + rx,ph7 YBp = V13 + r)'.pbyh7

where the coefficients r., and r,, can be easily defined
after the selection of the location of the boundary points
along the boundary.

In order to derive a Taylor series of the local truncation
error given by Eq. (166), let us expand the exact solution at
the L = 15 grid points and the selected M; = 9 boundary
points in Eq. (166) into a Taylor series at small 2 < 1 in the
vicinity of the central interface point (x;3, y13) as follows:

aw O*wis [dush]
=Wwi3 + [d,(/h] += B [duh h} + Ox’ ZH [ é[! ]
w3 [dy./b,\-h] wis [(dujh][dy by i o
ayz 21 axay 21 J= 1,2,...,L(M1).
(169)

In Eq. (169) the function w; is u; or v; for the internal and
boundary points, the coefficients d, j, d,; for the boundary
points in Eq. (169) should be replaced by the coefficients
Ixj» tyj- The exact solution u;3 and vi3 to the elasticity
equations, Eq. (127), at the central grid point with the
coordinates x, = xj3 and y, = y;3 meets Eqgs. (132)-(135).
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Below, we consider the local truncation error for the first
stencil equation, Eq. (166) with j = 1. The derivations for
the local truncation error and the stencil coefficients for the
second stencil equation of Eq. (166) with j =2 can be
similarly done (see also Sect. 4.3.1). Inserting Egs. (169)
and Egs. (132)-(135) into Eq. (166) we will get the dis-
cretized load term f; and the following local truncation
error in space ey:

ey = by juiz +bioviz

6u13 a\)l} 61413 6v13
hlbijz3——+bjg—+b1s—+b
+<136+146+156y+166y

+n <h1 " gza S+ tbis a;yf)
i (bm gx—g; + ot bs a;;f)
e (bl,lg$g;f1 ot bin ?;3)
+h (bm g;gli ot bios a;éj)
+n’ (b1_27 gxg)l; + bi30 aa;};3>
+ i (b1_31 gi%;; +...+bia 6;;/;3>
+ K (bl,ss % + ...+ bi3s 6;_;;)
+h'" <b1 39 2'051; Tt hia 63!?:(1)3)
+nM <b 143 2‘1;1]?) + ..+ b1,46%>
+ A2 <b1 . gl;”;ﬁ oot brso %) +0(h")

(170)

where the coefficients by, (p = 1,2, ..
terms of the coefficients &k, kfl_’i and qim, G (
i=1,2,...L,m=1,2,...,M;). Here we should mention
that the expression for the local truncation error e,
Eq. (170), includes only the first-order derivatives with
respect to x (the higher order derivatives with respect to
x are excluded with the help of Egs. (132)-(135)).

By zeroing the first 46 coefficients b;; =0
(i=1,2,...,46) and assuming that k; ;3 = 1 (see Remark
1) and k;13 = 0 (we also take k13 =0 and ky13 =1 in
order to have the linearly independent first (j = 1) and
second (j = 2) stencils) we can form a system of 48 alge-
braic equations for the first stencil. Solving this system, we
will get the following 30 coefficients k; ;, kfl_j as well as the
18 coefficients qim, Gy p:

.) are expressed in
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ki1 = 0.000298016, ki, = 0.0125973,

ki3 = 0.0335632,k; 4 = 0.0125973,

kis = 0.000298016, k16 = 0.00305508,

k17 = —0.0324673, kig = —0.199957,

kio = —0.0324673, k9 = 0.00305508,
ki1 = 0.0145572, ki1 = —0.344806,

ks = 1., kig = —0.344806,
k115 = 0.0145572, ki; = —0.00147846,
kip = —0.0090859, ki3 = 0.,
k14 = 0.0090859, kis = 0.00147846,
kig = —0.00560992,  k;7 = —0.04127,
kig = 0.,  kig = 0.04127,
kiio = 0.00560992, k11 = —0.0101237, (171)
ki = 0.0200956,  kyj3 = 0.,
ki = —0.0200956,  ki;5 = 0.0101237,
g1 = 00112764,  ¢i, = —0.0795896,
q13 = 0.156991, q14 = —0.372899,
qi5 = 0428368, 16 = —0.372899,
qi7 = 0.156991,  gi5 = —0.0795896,
g9 = 00112764, g, = —0.00917177,
G, = 00182849, g3 = 0.00432377,
Gi4 = 0.102554, G5 = O,
Gi6 = —0.102554, g, = —0.00432377,
Gis = —0.0182849, g, = 0.00917177,
with the following local truncation error:
el =h'?-10 6<6 sa235 0 u 472256612”13>
dxdy! oy'2
+0(h"),
(172)

i.e., using the boundary conditions at the 9 selected
boundary points, we can provide the 12-th order of the
local truncation error for the 15-point cut stencil.

Let us also consider the new procedure for the 25-point
stencils when the boundary cuts 15 grid points; see Fig. 8a.
In this case we can use the stencil with the 9 internal grid
points and the 15 boundary points uniformly distributed at
distance h; = 3h/7 along the horizontal and vertical parts
of the boundary as shown in Fig. 8b. The stencil equations
for the grid point with the coordinate x9 and yy (see
Fig. 8b) and the corresponding local truncation error can be
written in the form of Eqs. (165) and (166) with L =9 and
M = 15 (for convenience, we use a new numeration of the
internal grid points from 1 to 9 in Fig. 8b). Repeating the
derivations given by Egs. (167) - (170) and zeroing the first
46 coefficients by ; = 0 (i = 1,2, ...,46) and assuming that
kio = 1 (see Remark 1) and 167119 = 0 (we also take kp 9 = 0
and k»9 = 1 in order to have the linearly independent first
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Fig. 8 a The regular 25-point stencil cut by the horizontal and vertical boundaries. b The 9-point cut stencil with the 15 boundary points

(j = 1) and second (j = 2) stencils) we can form a system
of 48 algebraic equations for the first stencil. Solving this
system, we will get the following 18 coefficients k; ;, ky; as
well as the 30 coefficients g1, )

=
I

= —0.000323273,
= 0.0185748,

ki = 0.00559361,
ki4 = —0.00111318,
kis = —0.0477601, k4 = —0.16123,

= 0.008167, kg = —032599, ko =1,
kg = —0.00141205,  kj» = —0.0123643,
ki = —0.0190124, k4 = —0.00508834,

Koy
s
|

ko
=
|

kis = —0.0494195, ki = 0.0234136,
ki7 = —0.00783463, kg = 0.0247765,
kio =0, g1 = —0.159342,

q12 = —0.0752364, q13 = —0.0754087,

g4 = —0.313099, q15 = 0.167508,

16 = —0.120758, q17 = 0.0538803,

q13 = —0.000336028, qr9,= 0.407694,

g0 = —0.751422, g1 = 0.859015,

L1z = —0.716692, q113 = 0.330017,

g4 = —0.117431, q115 = 0.0156938,

g1 = —0.17299, d1» = 0.355267,

q13 = —0.604631, Gr4 = 0.614102,

g5 = —0.303421,4, ¢ = 0.130629,

q17 = —0.00515474, 4,5 = —0.00880635,

dio = 0.0214342, G110 = —0.112411,
g1 = 0.0525618, G112 = 0.106248,

4113 = —0.0488856,

114 = 0.0334346,

(173)

Giis = —0.0103847,

with the following local truncation error:

e) = h'?

RN 02y, 0"%u, R
2.69764 — 1.8176 2.87954
dxdyl! + dxdy!! oy + oy

-107° (2.45681 ) +0o(n'),

(174)

i.e., using the boundary conditions at the 15 selected
boundary points, we can provide the 12-th order of accu-
racy for the local truncation error for the 9-point cut stencil.
The regular 9-point stencil provides just the 4-th order of
accuracy for the local truncation error.

7.2 Neumann Boundary Conditions

The derivation of the numerical high-order Neumann
boundary conditions for cut stencils is similar to that for the
Dirichlet boundary condition in the previous section 7.1. In
order to show this, let us consider the cut stencil shown in
Fig. 7. Similar to section 7.1, we will use the stencil
equations given by Eq. (165) with L = 15. The local
truncation error e¢; for these stencil equations can be
described by Eq. (131) with M; = 0:

L L
e = ij‘,’ui + Zk_j,ivi _ﬁ
pas i=1

Mz M2
+h | @81 — tesi) + Y G2i(8ai — 1y
i=1 i=1
(175)

The Neumann boundary conditions are given by Eq. (129).
We will also use the M, = 9 boundary points as shown in
Fig. 7b. Repeating the derivation of section 7.1, we can
find a Taylor series of the local truncation error for the first
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stencil in the form of Eq. (170). Due to the difference
between Eq. (166) and Eq. (175), the expressions for the
coefficients by, in Eq. (170) will be different for the
Dirichlet and Neumann boundary conditions. By zeroing
the first 46 by; =0 coefficients (i=1,2,...,46) and
assuming that k; ;3 = 1 (see Remark 1) and 151‘,13 =0 (we
also take k3 = 0 and kfz,,13 =1 in order to have the lin-
early independent first (j = 1) and second (j = 2) stencils)
we can form a system of 48 algebraic equations for the first
stencil. Solving this system, we will get the following 30
coefficients ky;, k1; as well as the 18 coefficients g1, G ,,
in the case of the Neumann boundary conditions:

ki1 = —0.00674247, ki, = 0.0379803,
ki3 = 0.126982, k14 = 0.0379803,

kis = —0.00674247, kig = —0.0819144,
k17 = —0.364449, kig = 0.173851,

k1o = —0.364449, kij0o = —0.0819144,
ki1 = —0.259115, k112 = 0.0238247,
ki = 1., ki14 = 0.0238247,

kigs = —0.259115,  kp; = —0.0236224,

ki, = —0.137025, ki3 = 0., k4 = 0.137025,
kis = 0.0236224,  kj6 = —0.129285,
k7 = —027089, kg =0, ko = 0.27089,

ki1o = 0.129285,k;; = —0.286487,

ki = 111672, ki3 = 0., ki = —1.11672,
kiis = 0.286487, ¢, = 0.113835,

g1, = —0.505557, q13 = 1.32361,

q14 = —2.82079, q15 = 2.8939,

q16 = —2.82079, q17 = 1.32361,

q13 = —0.505557, q19 = 0.113835,

g11 = —0.0466453, g1, = —0.0820813,

q13 = —0.2518838, q14 = —0.0549269,

915 = 0., q16 = 0.0549269, q17 = 0.251888,
q13 = 0.0820813, G19 = 0.0466458,

(176)
with the following local truncation error:
alZv 3 alzu13
= h'2.1075( 10.3145 ——> — 7.83087
€1 dxdy!! oyt
+ O(h"),
(177)

i.e., using the boundary conditions at the 9 selected
boundary points, we can provide the 12-th order of the
local truncation error for the 15-point cut stencil.
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Remark 8. The approach developed in this section can
be extended to curved boundaries. This will be considered
in the future.

8 Comparison of Accuracy of OLTEM
and FEM

Here we shortly summarize the results related to the order
of accuracy of OLTEM for different PDEs considered in
the previous Sections as well as we compare the order of
accuracy of OLTEM and FEM at similar stencil equations.
In contrast to finite elements, the maximum possible order
of accuracy of OLTEM with similar stencils is different for
different PDEs, see Table 1, 2, 3 for the regular, cut and
heterogeneous stencils. As can be seen from Table 1,
OLTEM with the regular stencils for the scalar PDEs
provides a higher order of accuracy than that for FEM at
similar stencils. It it interesting to note that for the Poisson
and Helmholtz equations, the order of accuracy of OLTEM
on square meshes is higher than that on rectangular meshes.
Moreover, for the Poisson equation OLTEM with the 2-D
5 x 5 =25-point stencils and 3-D 5 x 5 x 5 = 125-point
stencils (these stencils corresponds to those for quadratic
finite elements) yields the different orders of accuracy in
the 2-D and 3-D cases (however, the increase in the order
of accuracy for OLTEM in the 2-D and 3-D cases is huge
compared to that for finite elements, e.g., by 8 orders in the
3-D case and by 12 orders in the 2-D case on square
meshes).

For a system of the elasticity PDEs, OLTEM with the 2-
D 3 x3=9-point stencils and with the 3-D
3 x 3 x 3 = 27-point stencils (similar to those for linear
finite elements) provides the same order of accuracy as that
for linear finite elements, i.e, linear elements provide the
optimal order of accuracy. However, OLTEM with the 2-D
5 x5=25point stencils and with the 3-D
5 x5 x5 = 125-point stencils (similar to those for quad-
ratic finite and isogeometric elements) provides a much
higher order of accuracy than that for quadratic finite and
isogeometric elements (a huge increase by 6 orders for
elastostatics and by 2 orders for elastodynamics); see
Table 1.

As we mentioned in Sect. 7, currently we have imple-
mented the new numerical high-order boundary conditions
for ’quadratic’ elements with cut stencils for the simple
boundaries corresponding to regular domains. Therefore,
Table 2 shows only the accuracy of OLTEM on irregular
boundaries with the 9-point (2-D) and 27-point (3-D)
stencils corresponding to ’linear’ elements. As can be seen
from Table 2, for the scalar PDEs with the Dirichlet
boundary conditions, OLTEM with cut stencils provides
the same accuracy of global solutions on irregular domains
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Table 1 The comparison of the order of accuracy of global solutions obtained by OLTEM with regular stencils and by FEM in the case of
homogeneous materials and regular domains

Governing Equations

Stencils

Order of accuracy

Order increase with
OLTEM

Conventional finite and OLTEM
isogeometric elements
1. Time-dependent wave and 9-point (2D) and 27-point 2 4 4 —-2=2
heat equations (3D) stencils
25-point (2D) and 125-point 4 8 8§ —-4=4
(3D) stencils
2. Poisson Equation 9-point (2D) and 27-point 2 4 (rectangular 4—-2=2
(3D) stencils meshes) (rectangular meshes)
6 (square 6 — 2 = 4 (square
meshes) meshes)
25-point (2D) and 125-point 4 (rectangular meshes) 14 (rect. 14 —4=10
(3D) stencils meshes)-2D (rect.meshes)-2D
10 (rect. 10—-4=6
meshes)-3D (rect.meshes)-3D
6 (square meshes) 18 (square 18 — 6 = 12 (square
meshes)-2D meshes)-2D
14 (square 14 — 6 = 8 (square
meshes)-3D meshes)-3D
3. Time-independent 9-point (2D) and 27-point 2 4 (rectangular 4 -2=2
Helmholtz equation (3D) stencils meshes) (rectangular meshes)
6 (square 6 — 2 = 4 (square
meshes) meshes)
4. Time-dependent elasticity 9-point (2D) and 27-point 2 2 0
equations (3D) stencils
25-point (2D) and 125-point 4 6 6—-4=2
(3D) stencils
5. Time-independent elasticity ~ 9-point (2D) and 27-point 2 2 0
equations (3D) stencils
25-point (2D) and 125-point 4 10 10-4=6

(3D) stencils

as that on regular domains in Table 1. However, for the
scalar PDEs with the Neumann boundary conditions, the
accuracy of OLTEM on irregular domains is one order
smaller than that for the Dirichlet boundary conditions and
is one order higher than that for linear finite elements. For a
system of the elasticity PDEs, OLTEM with the 2-D
3 x 3 = 9-point stencils and with the 3-D 3 x 3 x 3 = 27-
point stencils (similar to those for linear finite elements) on
irregular domains provides the same order of accuracy as
that for linear finite elements. We should also mention that
due to the minimization of the leading terms for the local
truncation error in OLTEM, it provides a much high
accuracy than linear and high-order finite elements even if
OLTEM and finite elements have the same orders of
accuracy.

The accuracy of OLTEM for heterogeneous materials
with irregular interfaces and its comparison with the
accuracy of finite elements is shown in Table 3. OLTEM
with the 9-point (2-D) and 27-point (3-D) stencils (’linear’
elements) for heterogeneous materials with irregular

interfaces yields the same order of accuracy as that on
irregular domains (see the results in Tables 2 and 3). For
’quadratic’ elements, OLTEM significantly exceeds the
accuracy of quadratic finite elements at similar stencils
despite unfitted meshes. For example, OLTEM yields a
huge increase in accuracy by 8, 7 and 3 orders for the
Poisson, elastostatics and elastodynamics equations,
respectively (see Table 3).

Below, we present only two numerical examples from
our papers [3, 27] related to the comparison of OLTEM
with unfitted meshes and FEM with conforming meshes
used for the solution of the 3-D scalar wave equation on an
irregular domain and the 2-D elastostatics equations for
heterogeneous materials with an irregular interface. For
these two examples, we used the method of manufactured
solutions with exact solutions. Much more 2-D and 3-D
numerical examples solved by OLTEM can be found in our
papers mentioned in the Introduction.

For the first problem we consider a prism ABCDOPQR
with a spherical hole (see Fig. 9a). Figures 9b and 10 show
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Table 2 The comparison of the order of accuracy of global solutions obtained by OLTEM with cut stencils and by FEM in the case of

homogeneous materials and irregular domains

Governing equations Stencils Order of accuracy Order increase
with OLTEM
Conventional finite and OLTEM with unfitted
isogeometric elements Cartesian meshes
1. Time-dependent wave and 9-point (2D) and 27-point 2 4 (Dirichlet boundary 4—-2=2
heat equations (3D) cut stencils conditions)
3 (Neumann boundary 3-2=1
conditions)
2. Poisson Equation 9-point (2D) and 27-point 2 4 (Dirichlet boundary 4—-2=2
(3D) cut stencils conditions)
3 (Neumann boundary 3—-2=1
conditions)
3. Time-independent 9-point (2D) and 27-point 2 4 (Dirichlet boundary 4-2=2
Helmbholtz equation (3D) cut stencils conditions)
3 (Neumann boundary 3—-2=1
conditions)
4. Time-dependent elasticity ~ 9-point (2D) and 27-point 2 2 0
equations (3D) cut stencils
5. Time-independent 9-point (2D) and 27-point 2 2 0

elasticity equations (3D) cut stencils

examples of an unfitted Cartesian mesh for OLTEM and a
conforming tetrahedral finite element mesh generated by
the commercial finite element code ’COMSOL’. The
comparison of accuracy for the numerical results obtained
by OLTEM with the 27-point stencils and by linear and
high-order (up to the 5-th order) finite elements are pre-
sented in Fig. 11 for the maximum relative errors in dis-
placement e)'™ (a, b) and in velocity e'™ (c, d); see our
paper [27] for the details. As can be seen from Fig. 11, at
the same numbers of degrees of freedom N, OLTEM with
’linear’ elements yields much more accurate results than
those obtained by conventional linear and high-order finite
elements including quadratic, cubic, quartic, quintic tetra-
hedral finite elements with much wider stencils and greater
computational costs. It is also interesting to note that at
accuracy of 5%, the new approach reduces the number of
degrees of freedom by a factor of greater than 1000 com-
pared to that for linear finite elements with similar stencils
(e.g., compare curves 1 and 2 in Fig. 11a at Logjpe)™ =
—1.3). This leads to a huge reduction in computation time
for OLTEM at a given accuracy. This reduction in com-
putation time will be even greater if a higher accuracy is
needed, e.g., 1% or less.

The second numerical example is related to the 2-D
elastostatics problem for a square domain with an elliptical
inclusion (see Fig. 12a) solved by OLTEM with the 25-
point stencils (’quadratic’ elements) and unfitted meshes as
well as by finite elements with conforming meshes; see the
examples of the corresponding meshes in Fig. 12b,c. The
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comparison of accuracy for the numerical results obtained
by OLTEM with the 25-point stencils (’quadratic’ ele-
ments) and by linear and high-order (up to the 5-th order)
finite elements are presented in Fig. 13 for the maximum
relative errors and for the relative errors in the L, norm for
the three stress components sy, s, and s,,; see our paper [3]
for the details. We should also mention that for OLTEM
we used the new post-processing procedure for the stress
calculation described in Sect. 5. As can be seen from
Fig. 13, at the same numbers of degrees of freedom N,
OLTEM yields much more accurate results than those
obtained by conventional high-order finite elements with
much wider stencils and greater computational costs.
Moreover, OLTEM with the 25-point stencils (’quadratic’
elements) provides the 10-th order of accuracy for stresses
at mesh refinement; see curves 1 in Fig. 13.

9 Concluding Remarks

In this paper, we review OLTEM published in our papers
[1, 2, 22-38] as well as we consider some new develop-
ments of OLTEM. In contrast to our published papers on
OLTEM, here we use slightly different derivations for the
imposition of the boundary conditions. Now the boundary
and interface conditions are uniformly imposed at a small
number of the selected boundary and interface points as
additional constraints with Lagrange multipliers. Some
modifications are also used for the derivations of OLTEM



Optimal local truncation error method for solution of partial...

4559

Table 3 The comparison of the order of accuracy of global solutions obtained by OLTEM and FEM for heterogeneous materials with irregular

interfaces
Governing Equations Stencils Order of accuracy Order increase
with OLTEM
Conventional finite elements =~ OLTEM with unfitted
and conforming meshes Cartesian meshes
1. Time-dependent wave and heat 9-point (2D) and 2 3 3—-2=1
equations with irregular interfaces 27-point (3D) stencils
2. Poisson equation with irregular 9-point (2D) and 2 3 3-2=1
interfaces 27-point (3D) stencils
25-point (2D) and 3 11 11-3=28
125-point (3D)
stencils
3. Time-independent elasticity 9-point (2D) and 2 2 0
equations with irregular interfaces 27-point (3D) stencils
25-point (2D) and 3 10 10-3=7
125-point (3D)
stencils
4. Time-dependent elastodynamics 9-point (2D) and 2 2 2-2=0
equations with irregular interfaces 27-point (3D) stencils
25-point (2D) and 3 6 6—-3=3
125-point (3D)
stencils
3 (lumped mass matrix) 4 (lumped mass 4-3=1

matrix)

040

()

Fig. 9 a A 3 — D prism ABCDOPQR (A(0, 0, 0), B(1, 0, 0), C(1, 1, 0), D(0, 1, 0),0(0, 1, 1),P(0, 0, 0.8),0(1, 0, 0.6), R(1, 1, 0.8)) with a
spherical hole of radius 0.25 centered at (0.4, 0.6, 0.3). b An unfitted Cartesian mesh for OLTEM

for the time-dependent PDEs for which we first replace the
time derivatives by the spatial derivatives in the stencil
equations using PDEs and then we consider a Taylor series
of the local truncation error for the calculation of the
stencil coefficients (in our published papers except paper
[38] we applied PDEs after a Taylor series expansion). In
contrast to our previously published papers on OLTEM for

heterogeneous materials, the more general interface con-
ditions with the jumps for the function and fluxes are used
in this paper. These small modifications simplify the
understanding and the derivations of OLTEM. We do not
use any weak formulations for the derivation of the discrete
equations of OLTEM. The structure of the discrete equa-
tions in OLTEM is assumed or can be taken from any

@ Springer



4560

A.ldesman

Fig. 10 a An example of a
conforming tetrahedral finite
element mesh generated by the
commercial software COMSOL
for the discretization of the 3 —
D prism ABCDOPQR with the
spherical hole (see Fig. 9a).

b shows a part of the mesh in
the vicinity of the spherical hole

#1(New approach)
2(Linear tetrahedrals) e
-3 {©3(Quadratic tetrahedrals) 6 |
>k4(Cubic tetrahedrals) 1
2¢5(Quartic tetrahedrals)
4 quuimic tetrahedrals)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Logo N

(@)

max
Logig ey

6(Quintic tetrahedrals’

1.1 12 1.3

V\ ~
-2 71(New approach)
E2(Linear tetrahedrals)
3 3(Quadratic tetrahedrals)|
=9 [K4(Cubic tetrahedrals)
3% 5(Quartic tetrahedrals) 1
1.4 1.5 1.6

Logio YN

(©)

Fig. 11 The maximum relative errors in displacement ¢//** (a, b) and

in velocity €' (¢, d) as a function of /N at mesh refinement in the
logarithmic scale. N is the number of degrees of freedom. The
numerical solutions of the 3 — D scalar wave equation with zero ( a,
¢) and non-zero (b, d) loading functions for the prism with the
spherical hole (see Fig. 9a) are obtained by OLTEM on unfitted cubic

known numerical method. The main idea of OLTEM
consists in the fact that if the unknown function/functions
in a discrete equation should meet PDE or a system of
PDEs then the coefficients of the discrete equation can be
calculated by the minimization of the local truncation error
and they will provide the maximum possible accuracy for
the discrete equation.
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X/1(New approach)
2(Linear tetrahedrals)
-3 '©3(Quadratic tetrahedrals)

“4(Cubic tetrahedrals)
>5(Quartic tetrahedrals)
-4 ©6(Quintic tetrahedrals) i | 6
1.1 1.2 1.3 1.4 1.5 1.6 1.7
Logio N
(b)
0 o)

K/1(New approach)
2(Linear tetrahedrals)
©3(Quadratic tetrahedrals)
4(Cubic tetrahedrals)
25(Quartic tetrahedrals)
6(Quintic tetrahedrals

{
W

4 .
I 1.2 1.3 1.4 1.5 1.6 1.7
Logio VN

C))

(by = b, = 1) Cartesian meshes (curve 1) and by conventional linear
(curve 2), quadratic (curve 3), cubic (curve 4), quartic (curve 5) and
quintic (curve 6) tetrahedral finite elements. Symbols 57, +, O, %, x
and ¢ correspond to the results for the different N used in the
calculations

The main features and advantages of OLTEM can be
summarized as follows:

e Many difficulties of existing numerical techniques for
irregular geometry (e.g., finite elements, spectral ele-
ment, isogeometric elements, the finite volume method,
and many others) are related to complicated mesh
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generators and the poor accuracy of ’bad’ elements
(e.g., the elements with small angles). In contrast to
these techniques, OLTEM is based on simple unfitted
Cartesian meshes with a trivial procedure for the
formation of the compact stencils for 2-D and 3-D
complex irregular geometry as well as OLTEM with
unfitted meshes provides a much higher accuracy than
the above-mentioned techniques on conforming meshes
with similar stencils (similar computational costs), e.g.,
see Tables 1,2,3 for the comparison of accuracy of
OLTEM and FEM.

In contrast to the Taylor series expansion-based meth-
ods such as the generalized finite difference methods
and others (e.g., see paper [39] and reference there),
OLTEM does introduce additional unknowns on irreg-
ular boundaries and interfaces, does not change the
width of stencil equations as well as provides a much
higher accuracy than the above-mentioned techniques
with similar stencils (similar computational costs), e.g.,
OLTEM with 5 x 5 =25-point stencils for the 2-D
Poisson equation provides the 18-th order of accuracy
(see Table 1 and our paper [1]). The implementation of
the Dirichlet and Neumann boundary conditions as well
as the interface conditions for OLTEM on unfitted
meshes is simple and straightforward.

A very effective and accurate OLTEM post-processing
procedure has been developed for the calculation of the
spatial derivatives of the primary function at grid points
that is based on the application of the original PDEs. It
uses the compact stencil equations similar to those in
basic computations with the similar procedure for the
calculation of the optimal stencil coefficients that
provide a high accuracy of the spatial derivatives. For
example, we have obtained the 10-th order of accuracy
for stresses for 2-D elastostatics problems with

(b)

(©)

Fig. 12 A square plate ABCD with an elliptical interface centered at point (0, 0) (a). Examples of an unfitted square Cartesian mesh for OLTEM
(b) and of a conforming triangular finite element mesh generated by COMSOL (c)

heterogeneous materials and irregular interfaces calcu-
lated by OLTEM with the 25-point stencils; see our
paper [3]. In this case, the use of the elastostatics PDEs
increases the accuracy of stresses by 6 orders compared
to the post-processing without the use of PDEs.

As we mentioned above, despite unfitted meshes,
OLTEM provides a very high accuracy of numerical
solutions especially when the 25-point (2-D) and
125-point (3-D) stencil equations (similar to those for
quadratic finite elements) are used. For example,
OLTEM with ’quadratic’ elements yields a huge
increase in accuracy by 8, 7 and 3 orders for the
Poisson, elastostatics and elastodynamics equations
with irregular interfaces, respectively (see Table 3).
Even at the same order of accuracy, OLTEM yields
much more accurate results than finite elements due to
the minimization of the leading terms of the local
truncation error in OLTEM. Numerical results from our
papers show that at the engineering accuracy, OLTEM
can reduce the number of degrees of freedom by
1000-1000000 times compared to that for finite ele-
ments at similar stencils. This leads to a huge reduction
in the computation time.

OLTEM with ’quadratic’ elements provides very accu-
rate results for the elasticity equations with nearly
incompressible materials (e.g., with Poisson ratio
0.4995), e.g., see our papers [2, 3, 24].

For time-dependent PDEs, OLTEM offers a rigorous
approach for the calculation of the diagonal mass
matrix that is based on the accuracy considerations. For
the internal grid points located far from the boundary
and interfaces, the diagonal mass matrix can be
calculated in terms of the coefficients of the stiffness
matrix, e.g., see Eqgs. (29) and (75) (similar formulas
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elliptical interface are obtained by OLTEM (curve 1) and by

Fig. 13 The maximum relative errors in stresses e?j“x (a), e;"‘_‘”‘ (c),
conventional triangular finite elements (curves 2-6). Curves
(2,3,4,5,6) correspond to linear, quadratic, cubic, 4-th order and
5-th order finite elements, respectively

x ; L2 L2 L2 ;
eq” (e) as well as the errors in stresses e (b), e, (d), € (f) in the

L? norm as a function of the number N of degrees of freedom in the
logarithmic scale. The numerical solutions for the plate with the

can be derived for the elastodynamics equations as well
as for heterogeneous materials, e.g., see our paper [38]).

approximation technique can be used for accurate data
transfer between different meshes.

New numerical high-order boundary conditions for cut e OLTEM can be easily combined with other numerical
stencils have been developed for OLTEM with ’quad- techniques by the replacement of the stencil equations
ratic’ elements. They offer the same very high accuracy for some selected grid points with the stencil equations
of cut stencils as that for OLTEM with regular stencils. of OLTEM. For example, in our papers [1, 24] the
A new post-processing procedure for the calculation of stencils of OLTEM were used for the grid points of one
the spatial derivatives of primary functions at the grid subdomain while the finite element stencils equations
points has been generalized in this paper. We have were used for for the grid points of another subdomain.
developed a new approach for the calculation of the e OLTEM does not require time consuming numerical

primary functions and their derivatives at any point of
the domain. This approach is based on the optimization
of accuracy of the approximation formulas that includes
the use of the original PDEs. For example, the new
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integration for finding the coefficients of the stencil
equations, e.g., as for high-order finite, spectral and
isogeometric elements. The stencil coefficients are
calculated analytically or numerically (for irregular
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geometry) by the solution of small local systems of
linear algebraic equations. Numerical experiments
show that the solution of these small local systems of
algebraic equations is fast. Moreover, these local
systems are independent of each other and can be
efficiently solved on a parallel computer.

In the future we plan the development of OLTEM with
adaptive mesh refinement similar to the A— and p—
refinement for finite elements. This will include special
"transition’ stencils for quadtrees/octrees meshes that allow
a simple refinement strategy with Cartesian meshes. We
will also study the possibility of the development of the
symmetric global matrices for OLTEM by the increase in
the number of the selected boundary and interface points
for the cut and heterogeneous stencils of OLTEM (cur-
rently, the global matrices for OLTEM are non-symmetric
due to the cut and heterogeneous stencils). Research on the
use of preconditioners for the solution of the global sys-
tems of discrete equations of OLTEM is also planned (for
the results presented in our papers on OLTEM, we use
direct solvers and the built-in iterative MATLAB solver
“gmres’). Similar to different finite-different techniques on
irregular geometry, the rigorous proof of stability of
OLTEM is an open problem (currently we solve problems
by OLTEM using a large number (1000-2000) of different
unfitted meshes with very different locations of grid points
with respect to irregular boundary and interfaces in order to
numerically show stability of OLTEM). The extension of
OLTEM to other PDEs for homogeneous and heteroge-
neous materials as well as to non-linear PDEs will be also
considered in the future.
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