
Demonstration of an AI-driven workflow for autonomous high-resolution scanning10

microscopy11

Saugat Kandel,1 Tao Zhou,2 Anakha V Babu,3 Zichao Di,4 Xinxin Li,2, 5 Xuedan Ma,2, 5
12

Martin Holt,2 Antonino Miceli,1 Charudatta Phatak,6 and Mathew J. Cherukara1, a)
13

1)Advanced Photon Source, Argonne National Laboratory, Lemont,14

IL 60439.15

2)Nanoscience and Technology Division, Argonne National Laboratory, Lemont,16

IL 60439.17

3)KLA Corporation, Ann Arbor, Michigan, 48105.18

4)Mathematics and Computer Science, Argonne National Laboratory, Lemont,19

IL 60439.20

5)Consortium for Advanced Science and Engineering, University of Chicago, Chicago,21

Illinois 60637, USA22

6)Materials Science Division, Argonne National Laboratory, Lemont,23

IL 60439.24

(Dated: 17 May 2023)25

2



Modern scanning microscopes can image materials with up to sub-atomic spatial and sub-26

picosecond time resolutions, but these capabilities come with large volumes of data which27

can be difficult to store and analyze. We report the Fast Autonomous Scanning Toolkit28

(FAST) that addresses this challenge by combining a neural network, route optimization,29

and efficient hardware controls to enable a self-driving experiment that actively identifies30

and measures a sparse but representative data subset in lieu of the full dataset. FAST re-31

quires no prior information about the sample, is computationally efficient, and uses generic32

hardware controls with minimal experiment-specific wrapping. We test FAST in simula-33

tions and a dark-field x-ray microscopy experiment of a WSe2 film. Our studies show that a34

FAST scan of <25% is sufficient to accurately image and analyze the sample. FAST is easy35

to adapt for any scanning microscope; its broad adoption will empower general multi-level36

studies of materials evolution with respect to time, temperature, or other parameters.37

a)Electronic mail: mcherukara@anl.gov, skandel@anl.gov
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I. INTRODUCTION38

Scanning microscopes are versatile instruments that use photons, electrons, ions, neutrons, or39

mechanical probes to interrogate atomic-scale composition, topography, and functionality of ma-40

terials, with up to sub-atomic spatial resolution and sub-picosecond time resolution1–3. Notwith-41

standing the variation in the probe modalities, these instruments all rely on a scan of the sample42

to generate spatially resolved signals that are then collected to form an image of the sample. On-43

going advances in instrumentation, such as the development of next-generation x-ray and electron44

detectors4,5, has meant that scanning microscopes can now image faster, and at higher resolutions,45

than ever before. We can now envision a broad use of these instruments to study not only static46

systems, but also multi-level studies of dynamic evolution of materials with time, temperature, or47

other parameters, even in situ or operando6. Fine-resolution large-field-of-view scanning exper-48

iments, however, come with some significant drawbacks: the volume of data generated and the49

probe-induced damage to the sample can be prohibitively large. For example, it is now routinely50

possible to perform x-ray imaging of 1mm3 volumes at ≈10 nm resolution, but this generates51

≈ 1015 voxels of data7,8 and requires a commensurately high probe dose9. Meanwhile, the in-52

formation of interest in these experiments is often concentrated in sparse regions that contain53

interfaces, defects, or other specific structural elements. Directing the scan to only these locations54

could greatly reduce the scan time and data volume, but it is difficult to obtain this information a55

priori. Addressing this challenge with a human-in-the-loop protocol, where an experienced user56

examines the data acquired to identify trends and guide the scan, can be tedious and prohibitively57

time consuming (in comparison to the experimental acquisition time). Given these factors, the58

development of autonomous acquisition techniques that can continuously analyze acquired data59

and drive the sampling specifically towards regions of interest is imperative so as to make full use60

of the potential of these scientific instruments.61

In parallel to the advances in scientific instrumentation, the last decade has also seen the rapid62

development of deep learning (DL) techniques and their applications in all domains of science63

and technology, including for the acceleration and enhancement of advanced microscopy meth-64
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ods10–13. These DL-based inversion methods are enabling real-time data analysis, which is in turn65

opening the door to self-driving techniques that make real-time acquisition decisions based on the66

real-time data streams. Such self-driving or autonomous experimentation methods14 are methods67

that combine automated experimental control with on-the-fly data-driven decision making so that68

an algorithm adaptively explores parameter spaces of interest and conducts new experiments until69

it achieves a pre-defined completion criterion15. These methods therefore have the potential to70

not only remove the need for constant human supervision and intervention in experiments, but71

also make optimal choices in parameter spaces that are too large for humans to easily contextual-72

ize. As such, they have the potential to revolutionize experimental design in many scientific fields73

including the field of imaging and materials characterization.74

In general, the use of data-driven priors to direct future experiments is a Bayesian search prob-75

lem, for which the use of off-the-shelf deep learning methods usually do not suffice16. Specific76

to microscopy, a popular Bayesian search approach is to use unsupervised (without pre-training)77

Gaussian Processes (GPs) that could continuously determine the spatial locations that we are most78

uncertain about, then direct the scanning to these locations17–22. While GPs are powerful tech-79

niques, their computational cost tends to scale cubically with the number of points acquired. The80

decision making time increases during the experiment and quickly exceeds the acquisition time81

for the measurement itself. The development of scalable GPs is a significant area of research, but82

these methods are not yet ready for application in large-scale imaging problems23. General super-83

vised alternatives such as reinforcement learning can be powerful and fast, but they often require84

costly pre-training and tend to ignore the global state of the parameter space in exchange for a85

local search; as such they have only found limited traction for scanning imaging modalities24.86

Specifically for scanning microscopy applications, Godaliyadda et al.25 have proposed to87

achieve computationally efficient autonomous sampling with the Supervised Learning Approach88

for Dynamic Sampling (SLADS) technique. The SLADS technique uses curated feature maps89

to quantify the current measurement state and predict the total image quality improvement ob-90

tained by measuring a given point, thereby informing the choice of which point to measure next.91

Variations of this technique have found applications in live steering for dose-efficient crystal posi-92
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tioning for crystallography26, and for imaging with transmission electron microscopy 27 and mass93

spectrometry28 methods. These works, however, either involve training with and reconstruction94

of binary images only26,27, or, require extensive training with images closely related to the sample95

under study28. As such, they are difficult to translate to imaging settings with more complex im-96

ages, particularly for imaging without any prior assumptions about the sample. Meanwhile, Zhang97

et al.29 have incorporated a neural network (NN) within the SLADS method (for the SLADS-Net98

method) and shown in numerical experiments that it is sufficient to train the method on only a99

generic image, eschewing any prior knowledge about the sample, to produce high-fidelity image100

with sparse sampling. However, this has not yet been demonstrated in experiment.101

In this work, we report the Fast Autonomous Scanning Toolkit (FAST) that combines the102

SLADS-Net method, a route optimization technique, and efficient and modular hardware controls103

to make on-the-fly sampling and scan path choices for synchrotron-based scanning microscopy.104

This method relies on sample-agnostic training to dynamically measure and reconstruct a com-105

plicated (non-binary) sample, distinguishing this toolkit from existing SLADS-based workflows.106

Moreover, its computational cost is negligible compared to the acquisition time even when run on107

a low-power edge computing device placed at a synchrotron beamline, which presents a signifi-108

cant advantage over more generic autonomous experimentation techniques. These characteristics109

enable the application of our workflow in the high-precision nanoscale scanning x-ray microscopy110

instrument present at the hard x-ray nanoprobe beamline at the Advanced Photon Source.111

We validate the FAST scheme through real time demonstration at the hard x-ray nanoprobe112

beamline at the APS30. A few-layer exfoliated two-dimensional WSe2 thin film was chosen as a113

representative example; the preparation process for the thin film often leaves microscopic air bub-114

bles trapped underneath the thin film, deforming the 2D material. We show that an adaptive scan115

of < 25% of the sample is sufficient to produce a high-fidelity reconstruction that identifies all the116

bubbles within the field of view, and even to acquire quantitative information about the film curva-117

ture induced by these bubbles. The scheme quickly identifies the deformed part of the 2D material118

and focuses its attention there, while ignoring regions of the film that are flat and homogeneous.119

Film curvature reconstructed from the adaptive scan (< 25% coverage) is consistent with that re-120
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constructed from full-grid scan (100% coverage). Given these characteristics, the FAST scheme121

can be directly applied in other scanning techniques and instruments at the APS and elsewhere,122

and may underpin the development of many multi-level experimental studies.123

II. RESULTS124

Figure 1 shows the experimental setup that scans a focused x-ray beam on a sample while ac-125

quiring a two-dimensional diffraction image at each point. The live demonstration was performed126

on a few-layer WSe2 sample with the detector placed along the 008 Bragg peak, with 2θ = 43.1°127

at 10.4 keV. The diffraction patterns were processed on the detector computer (see Methods) to128

generate the integrated intensities for use in the FAST workflow. The final output of the workflow129

is a dark-field image of the WSe2 sample.130

A. Self-driving scanning microscopy workflow131

Figure 2A broadly illustrates the FAST workflow for the experiments reported here. To ini-132

tiate the workflow, a low-discrepancy quasi-random selection (generated using the Hammersely133

sequence31) of sample position is measured corresponding to 1% of the total area of interest. The134

integrated intensities of the measurements are transferred to the edge device, an NVIDIA Jetson135

Xavier AGX32 located adjacent to the detector, which used Inverse Distance Weighted (IDW) in-136

terpolation to estimate the dark-field image. The estimated image serves as input for the decision-137

making step whereby the prospective measurement points are identified.138

This self-driving workflow adopts the Supervised Learning Approach for Dynamic Sampling139

using Deep Neural Networks (SLADS-Net) algorithm29 to find the prospective measurement140

points. In effect, the SLADS-Net algorithm uses the current measurements to identify the best141

unmeasured points that, when added to the existing dataset, would have the greatest effect on the142

quality of the reconstructed image. As illustrated in Figure 2B, this is accomplished by, first,143

representing each unmeasured point as a feature vector with elements that depend on the mea-144

surement state in the neighborhood of the point. These feature vectors are used as input for a145
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pre-trained neural network with 5 hidden layers, with 50 nodes per layer, and with the ReLU ac-146

tivation function. The neural network then predicts the expected reduction in distortion (ERD),147

a metric (loosely speaking) for the expected improvement in the reconstruction quality obtained148

from measuring this unmeasured point, individually for each unmeasured point. The original149

SLADS-Net algorithm simply uses the unmeasured point with the highest ERD for the next mea-150

surement, and repeats this procedure pointwise. In practice, if the measurement procedure and the151

motor movements are fast, then the ERD calculation also has to be commensurately fast to reduce152

the dead-time in the experiment. In this work, we mitigate this requirement by instead selecting153

a batch of points that have the highest ERD, sorted in descending order—we found that a batch154

of 50 points adequately minimized the experimental dead-time while still ensuring that the overall155

measurement was adequately sparse.156

The coordinates of these 50 points are passed on to a route optimization algorithm, based157

on Google’s OR-Tools33, to generate the shortest path for the motors to visit all of the them.158

This path is appended to the look-up table in the EPICS34 scan record, which then kicks off the159

data acquisition. Henceforth, the scan is automatically paused after every 50 points, raising a160

flag which event triggers a callback function on the edge device. There, a new estimated dark161

field image of the sample is generated, and the coordinates for the next 50 prospective points are162

computed. The scan is resumed after the EPICS scan record receives the new coordinates for the163

optimized scanning path. The actual scanning of the focused x-ray beam is achieved by moving164

two piezoelectric linear translation motors in step mode. The detector exposure time is set to 0.5 s165

and comes with an overhead of 0.2 s.166

For the 200×40 pixels object described in Section II C, the workflow required ≈0.15 s to167

compute the new positions, ≈42 s to scan the set of 50 positions, and a total of ≈0.37 s to process168

the diffraction patterns and communicate the measurements. This represents an overhead of /169

2%. The workflow is currently entirely CPU-bound, relying on the on-board 8-core ARM CPUs,170

and does not take advantage of the GPU bundled into the NVIDIA AGX device. These timing171

results showcase the rapid data-driven decision-making ability that is characteristic of the FAST172

workflow. In the future, we expect to perform the computation in a parallelized and asynchronous173
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fashion, which would further reduce this overhead.174

We also note that, for all the results reported in this work, the underlying NN was trained on175

the standard “cameraman”35 image that has no relation to microscopy, and we discuss the choice176

of a training image in Supplementary Section S.2 . For details about the SLADS-Net algorithm177

and the sample-agnostic training procedure, the reader is referred to the Methods section.178

B. Numerical demonstration for scanning dark-field microscopy179

We first validated the performance of the proposed workflow through a numerical experiment180

on a set of pre-acquired dark-field microscopy data. Here, we compared the FAST sampling with181

three static sampling techniques:182

1. Raster grid (RG) For a test sampling percentage, we generated a equally spaced raster grid183

that provides a uniform coverage of the sample.184

2. Uniform random (UR) sampling The measurement pixels were drawn from a uniform185

random distribution.186

3. Low-discrepancy (LDR) quasi-random sampling For each measurement percentage, we187

generated a low-discrepancy sampling grid using the quasi-random Hammersly sequence.188

The test dataset is a dark field image of size 600×400 pixels which represents 240,000 possible189

measurement positions. This covers a physical area of 900 µm×600 µm and encloses multiple190

flakes of WSe2 with various thicknesses, with the thicker regions associated with regions of higher191

brightness in the image (Figure 3). At this spatial resolution, only medium and large sized bubbles192

(with diameter > 2 um) can be observed. As explained previously, the bubbles deform the surface193

and shift the Bragg peak of the 2D materials away from their theoretical (flat region) positions,194

resulting in regions of darker contrast. Finally, the image also contains flake-free regions that have195

zero integrated intensities.196

For this comparison, we first initialized the FAST sampling with a 1% measurement coverage197

(as described above), then successively measured 50 additional points at iteration. For each FAST198
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measurement, we also generate RG, UR, and LDR measurement masks with the same number199

of scan points. In this fashion, we generate a sequence of sampling masks and the associated200

reconstructions until we achieve 100% sampling.201

We present the numerical results in Figure 3, where we show a comparison of the various meth-202

ods at 10% sampling. Note that while the proposed method internally uses the fast IDW algorithm203

for the inpainting, the final images presented here are calculated using the higher quality bihar-204

monic inpainting technique36. The uniform random scheme performs worse than the LDR and205

raster grid schemes and is not shown in the figure. In Figure 3A-D, we can see that the FAST206

sampling is able to reproduce with high fidelity the flake boundaries, the bubbles, and the regions207

of transition between the varying levels of thicknesses. In contrast, the LDR and raster schemes208

produce much lower quality reconstructions of these features. Figure 3E shows an evolution of the209

normalized root mean squared error (NRMSE) and fig. 3F the structural similarity metric (SSIM)210

(which measures multiscale perceptual similarity) for the different sampling techniques. It is ev-211

ident that FAST produces high quality reconstructions at much lower measurement percentages212

than the examined static sampling techniques. We note that the result could be further improved213

in the future by using a more sophisticated inpainting technique within the FAST method. To un-214

derstand how FAST outperforms the other methods under the same sampling condition, we show215

the actual measured positions of the various schemes at 10% coverage (Figure 3G-I). FAST pref-216

erentially samples the regions with significant heterogeneity over the homogeneous regions. This217

is particularly useful for sparse samples, where the time spent sampling from empty regions adds218

little additional information.219

C. Experimental demonstration220

We next demonstrate the application of the FAST workflow in a live experiment at a syn-221

chrotron beamline. A video showing the sampling, recorded live during the actual experiment, is222

available here37. Other than starting the workflow scripts at the beginning, the entire experiment223

was unmanned and fully automated. In order to measure the deformed WSe2 flakes in details, a224
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higher spatial resolution of 100 nm was chosen. This limits the field of view to 20 µm×4 µm for225

a scan point density of 200×40 points.226

In Figure 4 we show the reconstructed dark field image (subplots A,C,E) and the measurement227

points (subplots B,D,F) from 5% to 20% coverage and compare them to that obtained from raster228

scanning the sample with 100% coverage(subplot G). We see that the FAST method identifies229

some of the regions of hetereogeneity — the edges of the bubbles — and starts to preferentially230

sample these regions within 5% coverage of the sample. At 15% coverage, these regions are231

extensively sampled. The reconstruction does not change significantly between 15% to 20%,232

indicating that the reconstruction has stabilized. Moreover, the 20% reconstruction also contains233

sharp and accurate reproductions of all the major features present in the full scan image.234

A point of interest is that the partially scanned bubble at the bottom right corners of Figure 4E-235

G shows up only in the 20% scan, and not in the 15% scan. To explain this, we note that the236

5% scan, and therefore the initial 1% quasi-random sampling, does not contain any measurements237

in the neighborhood of this bubble. The FAST scheme favors exploitation of regions it knows238

to be heterogeneous over exploration of this fully unknown region, and therefore only explores239

this region much later in the measurement process (Figure 4H). This is, in fact, an instance of the240

general exploration-exploitation tradeoff that exists in all Bayesian search procedures38. Potential241

mitigation steps could be to sample more initially (say 5% points), or to deliberately introduce242

diversity into each batch of measurement points.243

So far we have reduced the diffraction image measured at each point to one single quantity244

(integrated intensity) in order to guide the automated experiment. These images often need to245

be reprocessed after the experiment to extract additional physically relevant results. Notably, the246

intensity distribution in the diffraction patterns contains information about the strain as well as247

the rotation of the crystal lattice, and in this case, the curvature of the 2D materials due to the248

bubbles underneath. A simple center of mass calculation in the X direction (CoMx) would yield249

the magnitude of the film curved in the XZ plane. The curvature (deviation of the CoMx from its250

nominal value) is the smallest around the center of the bubble and the largest at the edge. It also251

changes sign going from the left side to the right side. Center of mass calculation in the Y direction252
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yields the magnitude of the film curved in the YZ plane. The results look slightly different from253

the CoMx calculations due to the way the shifted Bragg peak intersects with the Ewald’s sphere.254

Figure 5A and B shows respectively the CoMx and CoMy obtained from raster scan with 100%255

coverage on the area of interest. The unit is the number of pixel shift, relative to the center of the256

nominal diffraction pattern. Figure 5C and B shows respectively the CoMx and CoMy obtained257

with FAST. The curvature information of the film were faithfully reproduced despite scanning just258

20% of the entire area. For more information on the reconstruction of the CoM maps, he reader is259

referred to the Methods section.260

III. DISCUSSION261

In this work, we have showcased the FAST workflow that combines a sparse sampling algo-262

rithm with route planning to drive a scanning diffraction microscopy experiment at a synchrotron263

beamline. In addition to being an effective alternative to a full pointwise scan to acquire a dark-264

field image of the sample, FAST also produces accurate quantitative measurements of its phys-265

ical properties. For our live demonstration of a 200 points×40 points with a measurement time266

of 0.5 s/point, the FAST decision-making time was negligible, leading to an overall saving of267

≈80min (about ≈65%) of the experiment time. This saving was facilitated by our choice to ac-268

quire a batch of 50 measurements between the selection of the prospective measurement points.269

This ensured that the communication time stayed negligible with no noticeable loss in the quality270

of points acquired when compared to a pointwise candidate selection scheme (see Supplementary271

Figure S.1).272

The generalizability of the FAST method comes from the fact that the key NN-based compo-273

nent of this workflow is trained on just the standard cameraman image35, not on close analogues of274

a sample of interest. While this generalizability results in a slight loss of performance of the tech-275

nique , it still shows excellent sparsity performance for cases tested in previous research29,39 and276

in the current work. This has the benefit that we do not need a priori knowledge of the sample. As277

such, while general pre-training would be difficult to satisfy for new and expensive experiments,278
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the FAST approach can be used directly. Furthermore, the batch prediction and route optimization279

approach we implement can also be directly applied in any application of choice. Moreover, the280

experimental application of our work uses an extensible edge device and the widely used EPICS281

platform for hardware control, both of which can be incorporated into any instrument even with282

the SLADS-Net replaced by any other sampling strategies. For example, we could just replace the283

dark-field detection procedure described here with a fluorescence counting setup and use exactly284

the FAST scheme for a fluorescence-based imaging of the sample. Alternatively, since all the in-285

struments at the APS rely on EPICS controls, one can perform transmission, surface scattering,286

or any other 2D scanning experiment in any applicable beamline with only minor changes to the287

FAST routine.288

The computations in the current workflow have a time complexity of O(2N logN + kM logN),289

where N is the number of measured points, M the number of unmeasured points, and k the num-290

ber of nearest neighboring measurements (k = 10 in our case) that we use for the feature vector291

calculations. Here, the first term accounts for the creation of the nearest neighbor K-d tree and292

the second term for the nearest neighbor calculation. The remainder of the algorithm has a linear293

time complexity and could be performed in parallel for the unmeasured points. We expect that it is294

possible to reduce this complexity using an approximate nearest neighbor search method instead295

of the K-d tree approach. As such, a GPU-based implementation that takes advantage of the par-296

allelization and the approximation would likely significantly reduce the computation time. This297

stands in stark contrast with the time complexity of O
(

N3
)

(for N measured points) for Gaussian298

Processes, a similarly training-free method that is widely used for autonomous experimentation.299

For an illustrative example, Vasudevan et al20 report a GP-based scanning microscopy experiment300

where the calculation of each set of measurement candidates takes ≈6 s on an NVIDIA DGX-2301

GPU for a 50×50 image; our workflow performs an equivalent calculation for a larger 200×40302

image within ≈1.5 s in a low-power CPU. We note, however, that GPs remain a very powerful303

and generalizable approach with a bevy of applications beyond only scanning microscopy. We304

also note that even the current FAST decision-making time of ≈0.15 s is still much larger than the305

typical dwell times of tens of microseconds in several popular scanning microscopy techniques306
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(like scanning fluorescence microscopy40). As such, the FAST code needs to be significantly ac-307

celerated via GPU-based parallelization, approximate nearest-neighbor search methods, or other308

techniques, to enable its application in high-speed microscopy settings — we are looking to im-309

plement these changes in the future.310

Practical applications of the FAST workflow require considerations about the spatial extent,311

number density, and heterogeneity of the features in the sample under investigation. Our numeri-312

cal experiments for these (see Supplementary Section S.3) show that the FAST workflow is most313

efficient for the study of isolated sparse features, as long as the features are partially sampled314

during the initial quasi-random scan step. Isolated features that are smaller in size than the av-315

erage spacing between the initial scan points are especially likely to be missed during the initial316

sampling, and therefore not sampled until much later in the experiment. One way to resolve this317

challenge is to use prior knowledge (or an informed guess) about the expected dimensions of the318

smallest features to tailor the density of the initial scan so that it samples almost every image patch319

of these dimensions.. We also note that the FAST scan time increases with the increase in the over-320

all contour (or perimeter) of the features, even if the features are at the same intensity levels and321

occupy the same area overall (see Supplementary Section S.3.2). Additionally, while the FAST322

scan is not affected adversely by heterogeneity in the feature sizes, it is less effective at resolv-323

ing low-contrast features in settings with contrast heterogeneity, and addressing this can require324

significant prior information about the experiment (see Supplementary Section S.3.3). Moreover,325

we observe that FAST is less effective in experiments with a highly noisy intensity data (with326

signal-to-noise ratio of < 0.5), but shows consistent performance in all regimes with higher signal327

levels (see Supplementary Section S.6). A final consideration, more practical in nature, is that328

the scan paths require significant motor movement, often including a retracing over points already329

measured. As such, there could exist scenarios in which the time required for the motor movement330

eclipses the time required for a single measurement. We expect to address the latter challenge by331

explicitly including a measurement-density-based term 39 or a movement-time-based term in the332

candidate selection procedure41, or by using a line-based sampling technique42.333

Despite these considerations and challenges, we believe that the proposed FAST technique has334
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great potential. It is an ideal tool for use cases with limited sampling or dosage budgets. It can335

be used to isolate regions of interest in sparse settings, to prepare for pointwise scanning in these336

regions. More generally, it can be used to guide any scanning microscopy experiment where we do337

not need full pointwise information. In the future, we expect to extend this method for 3D imaging,338

fly scans, ptychography, and other imaging applications. We expect that these developments will339

significantly enhance the efficacy of scanning microscopy experiments, bolstering their use for the340

study of dynamic physical phenomena.341

IV. METHODS342

A. The SLADS-Net algorithm343

The SLADS-Net algorithm29 used within the FAST workflow is an adaptation of the Super-

vised Learning Approach for Dynamic Sampling (SLADS) algorithm originally developed by

Godaliyadda et al25, and the algorithms differ only in their training approaches ( Section IVB). To

explain the SLADS algorithm, we first denote the object we want to measure as A ∈R
N , where N

is the total number of pixels in the image. Further, we can denote the pixel at location 1 ≤ s ≤ N

as as so that a measurement at the location s extracts the value as; each measurement is thus

characterized by the pair (s, as). After k measurements, then, we get the k×2 measurement vector

Yk =

















s1 as1

s2 as2

...

sk ask

















(1)

Using these k measurements, then, we can reconstruct (e.g. via interpolation) an estimate Âkof the

true object A. The difference between A and Âk is denoted as the distortion D(A, Âk) and can be

calculated using any chosen metric. In the current work, we define D(A, Âk) to be the L2 norm:

D(A, Âk) = ||A− Âk||2.

Given the measurement Yk and the reconstruction Âk, a new measurement at any location s will344

presumably reduce the distortion in the reconstruction. We can denote this reduction in distortion345
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(RD) as346

Rk,s = D(A, Âk)−D(A, Âk,s) (2)347

where Âk,s is the reconstruction that includes the newly added measurement at s. The goal of348

the SLADS algorithm is then to identify the pixel location that would maximize this reduction in349

distortion:350

sk+1 = argmax
s

Rk,s (3)351

Of course, since we cannot know the value of the measurement as or the ground truth A, SLADS352

bases its selection on the conditional expectation of reduction in distortion (ERD), which is defined353

as:354

R
k,s

= E

[

Rk,s
∣

∣Yk
]

so that sk+1 = argmax
s

R
k,s
. (4)355

The algorithm assumes that we can compute the ERD at s based on just the measurement state Yk356

as357

R
k,s

= g(vk,s) (5)358

where vk,s is a location-dependent feature vector calculated using the measurement state Yk. The359

goal of the SLADS training procedure is to estimate the function g.360

B. Training361

The training procedure for the SLADS/SLADS-Net algorithm is a supervised procedure in362

which we generate a large number of (vk,s,R
k,s
) pairs and use these to estimate g. Note that this is363

a pixelwise computation that is performed independently for each measurement location s; for each364

measurement s we have to calculate a reconstruction Âk,s before we can calculate the RD Rk,s. To365

make this computationally tractable, the Godaliyadda et al25 use approximations that ensure that366

the RD of each pixel only depends on its local neighborhood. Correspondingly, instead of working367

with the full measurement state Yk, the training procedure uses carefully designed feature vectors368

that capture the local neighborhood of the pixel at location s. As shown in Figure 2B, the feature369

vector for the pixel P consists of six features: (i) ∇x and ∇y are the spatial gradients at P, (ii)370
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σ1,r and σ2,r measure the deviation of the estimated value for P from the nearby measured values371

(highlighted in red), and (iii) L (which is the distance of P from the closest measured point) and372

ρr measure the density of measurements around P.373

The original SLADS algorithm assumes that this feature vector is linearly related to the RD,374

and the training therefore is a linear regression procedure. The SLADS-Net adaptation first uses375

an radial basis function (RBF) kernelization to transform the 6-dimensional feature vector to a376

50-dimensional vector, then replaces the linear predictor with a nonlinear fully-connected neural377

network that contains 5 hidden layers with 50 nodes each. We follow the procedure from the378

original SLADS-Net adaptation and use the default parameters in the Scikit-learn Python library43
379

for the RBF kernelization.380

In this work, we train the SLADS-Net neural network on only the standard cameraman image,381

without using any a priori information about the sample. For the training, we generate a mea-382

surement state Yk by randomly choosing a fixed number number of measurement locations, then383

calculate the feature vector vk,s and the RD R
k,s

for each unmeasured pixel. We generate such384

sets of training pairs for 10 different sample coverage percentages between 1% and 80%. This385

overall comprises our training dataset. We use this data to train the neural network for 100 epochs386

using the Adam optimizer with the learning rate 0.001. We use this trained model for all the simu-387

lated and experimental measurements. We provide an example of a training measurement set—the388

measured points, the interpolated reconstruction, and the corresponding RD for the unmeasured389

points—in the Supplementary Figure S.3.390

C. Experimental measurements391

At each point of the measurement, a tight region of interest (RoI) around the expected position392

of the thin film Bragg peak was extracted from the corresponding diffraction image. Integrated393

intensities of the RoI were used to guide the NN prediction. For the flat region, the integrated394

intensity is high, showing up as brighter contrast on the dark field image. For the deformed region,395

the integrated intensity is low (darker contrast on the dark field image) as the illuminated film396
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diffraction partially exits the selected RoI (see Supplementary Figure S.10).397

For the FAST experiment, the predicted ERD and the dark-field reconstruction served as visual398

guides to inform when to stop the experiment.. During the experiment, we noted that the ERD399

and the reconstruction had stabilized by ≈20% scan coverage, but we let the experiment run to400

≈35% coverage to ensure that this behavior persisted (see Supplementary Figure S.11). While we401

used this visual criterion for our exploratory experiment, it is straightforward to design a numerical402

stopping criterion based on the absolute or relative convergence of the ERD, or on the per-iteration403

change in the reconstructed image.404

D. Statistics and reproducibility405

The imaged region of the sample was selected through a visual inspection of a large-field-of-406

view low-resolution scan of the sample. This ensured that the high-resolution scan was directed at407

a region with WSe2 deposition. No other statistical method was used to predetermine the sample408

size.409

Intensity data from hot pixels were excluded during the data analysis process. No other data410

were excluded from the analysis.411

The experiments were not randomized. The investigators were not blinded to allocation during412

the experiment and the outcome assessment since the described workflow provided a real-time413

reconstruction of the sample.414
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The numerical data used for this work is publicly available at https://github.com/416
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FIG. 1. Artist’s representation of the autonomous dark-field scanning microscopy experiment at the Ad-

vanced Photon Source (APS). The APS synchrotron produces a coherent x-ray beam that is focused using

a zone plate setup. It strikes a WSe2 film (green) exfoliated onto a Si substrate (blue), which generates

diffraction patterns that are collected by a two-dimensional detector. Above the bubbles, the lattice of the

film rotates, shifting the diffracted intensities away from its nominal positions. The beam position as well as

the detector acquisition are autonomously controlled by the FAST AI-based workflow. Image by Argonne

National Laboratory.
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FIG. 2. The FAST workflow: (A) A set of quasi-random initial measurements are transferred to the edge

device which sequentially generates an initial sample estimate, computes the candidate points to be mea-

sured next, and calculates the travel path for the measurement. The new measurements are combined with

the existing measurements and used to calculate a new estimate, and the process is repeated until it achieves

a completion criterion. (B) The candidate computation starts by examining the local neighborhood (with

radius r) of each unmeasured point P, with the highlighted points indicating points already measured, to

generate a 6-dimensional feature vector. The feature vector is transformed to a 50-dimensional vector using

the Radial Basis Function (RBF) kernel and used as input to a multi-layer NN. The NN then predicts the

expected improvement in the image (ERD) from measuring the point P. A set of unmeasured pixels with

the highest ERD are selected as candidates for the next measurement.
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FIG. 3. Numerical comparison of sampling methods: (A) shows the ground truth with the color scale rep-

resenting the normalized intensity, (B-D) show respectively the raster grid (RG), low-discrepancy random

(LDR), and FAST reconstructions at 10% scan coverage, and (G-I) show the actual scan points that produce

these reconstructions. (E-F) show the evolution of the normalized root mean square error (NRMSE), for

which lower is better, and the Structural Similarity metric (SSIM), for which higher is better, as a function

of the scan coverage. The FAST reconstruction stabilizes at 27% coverage while the other techniques take

significantly longer to reach the same quality.
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FIG. 4. Evolution of the FAST scan: (A, C, E) show the reconstruction at 5%, 15%, and 20% reconstructions

respectively, (B, D, F) show the corresponding actual measurement points. (G) shows the image obtained

through a full-grid pointwise scan. The color scale in (A-G) show the normalized intensities. (H) shows

only the points sampled between 15% and 20% coverage.

FIG. 5. Comparison of the per measured point center of mass (COM) of the diffraction patterns between

the FAST scan at 20% coverage and full-grid scan. Subplots (A) and (B) show the inpainted COMx and

COMy, respectively, for the full-grid raster FAST scan, and subplots (C) and (D) for the FAST scan.
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