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Modern scanning microscopes can image materials with up to sub-atomic spatial and sub-
picosecond time resolutions, but these capabilities come with large volumes of data which
can be difficult to store and analyze. We report the Fast Autonomous Scanning Toolkit
(FAST) that addresses this challenge by combining a neural network, route optimization,
and efficient hardware controls to enable a self-driving experiment that actively identifies
and measures a sparse but representative data subset in lieu of the full dataset. FAST re-
quires no prior information about the sample, is computationally efficient, and uses generic
hardware controls with minimal experiment-specific wrapping. We test FAST in simula-
tions and a dark-field x-ray microscopy experiment of a WSe; film. Our studies show that a
FAST scan of <25% is sufficient to accurately image and analyze the sample. FAST is easy
to adapt for any scanning microscope; its broad adoption will empower general multi-level

studies of materials evolution with respect to time, temperature, or other parameters.
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I. INTRODUCTION

Scanning microscopes are versatile instruments that use photons, electrons, ions, neutrons, or
mechanical probes to interrogate atomic-scale composition, topography, and functionality of ma-
terials, with up to sub-atomic spatial resolution and sub-picosecond time resolution!=>. Notwith-
standing the variation in the probe modalities, these instruments all rely on a scan of the sample
to generate spatially resolved signals that are then collected to form an image of the sample. On-
going advances in instrumentation, such as the development of next-generation x-ray and electron
detectors*>, has meant that scanning microscopes can now image faster, and at higher resolutions,
than ever before. We can now envision a broad use of these instruments to study not only static
systems, but also multi-level studies of dynamic evolution of materials with time, temperature, or
other parameters, even in situ or operando®. Fine-resolution large-field-of-view scanning exper-
iments, however, come with some significant drawbacks: the volume of data generated and the
probe-induced damage to the sample can be prohibitively large. For example, it is now routinely
possible to perform x-ray imaging of 1 mm? volumes at ~10nm resolution, but this generates

9. Meanwhile, the in-

~ 10" voxels of data’”® and requires a commensurately high probe dose
formation of interest in these experiments is often concentrated in sparse regions that contain
interfaces, defects, or other specific structural elements. Directing the scan to only these locations
could greatly reduce the scan time and data volume, but it is difficult to obtain this information a
priori. Addressing this challenge with a human-in-the-loop protocol, where an experienced user
examines the data acquired to identify trends and guide the scan, can be tedious and prohibitively
time consuming (in comparison to the experimental acquisition time). Given these factors, the
development of autonomous acquisition techniques that can continuously analyze acquired data

and drive the sampling specifically towards regions of interest is imperative so as to make full use

of the potential of these scientific instruments.

In parallel to the advances in scientific instrumentation, the last decade has also seen the rapid
development of deep learning (DL) techniques and their applications in all domains of science

and technology, including for the acceleration and enhancement of advanced microscopy meth-
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0ds'%-13. These DL-based inversion methods are enabling real-time data analysis, which is in turn
opening the door to self-driving techniques that make real-time acquisition decisions based on the
real-time data streams. Such self-driving or autonomous experimentation methods'# are methods
that combine automated experimental control with on-the-fly data-driven decision making so that
an algorithm adaptively explores parameter spaces of interest and conducts new experiments until
it achieves a pre-defined completion criterion!>. These methods therefore have the potential to
not only remove the need for constant human supervision and intervention in experiments, but
also make optimal choices in parameter spaces that are too large for humans to easily contextual-
ize. As such, they have the potential to revolutionize experimental design in many scientific fields

including the field of imaging and materials characterization.

In general, the use of data-driven priors to direct future experiments is a Bayesian search prob-
lem, for which the use of off-the-shelf deep learning methods usually do not suffice!®. Specific
to microscopy, a popular Bayesian search approach is to use unsupervised (without pre-training)
Gaussian Processes (GPs) that could continuously determine the spatial locations that we are most
uncertain about, then direct the scanning to these locations!”->2. While GPs are powerful tech-
niques, their computational cost tends to scale cubically with the number of points acquired. The
decision making time increases during the experiment and quickly exceeds the acquisition time
for the measurement itself. The development of scalable GPs is a significant area of research, but
these methods are not yet ready for application in large-scale imaging problems?*. General super-
vised alternatives such as reinforcement learning can be powerful and fast, but they often require
costly pre-training and tend to ignore the global state of the parameter space in exchange for a

local search; as such they have only found limited traction for scanning imaging modalities>*.

Specifically for scanning microscopy applications, Godaliyadda et al.>> have proposed to
achieve computationally efficient autonomous sampling with the Supervised Learning Approach
for Dynamic Sampling (SLADS) technique. The SLADS technique uses curated feature maps
to quantify the current measurement state and predict the total image quality improvement ob-
tained by measuring a given point, thereby informing the choice of which point to measure next.

Variations of this technique have found applications in live steering for dose-efficient crystal posi-
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tioning for crystallography?®, and for imaging with transmission electron microscopy 2’ and mass
spectrornetry28 methods. These works, however, either involve training with and reconstruction

of binary images only2%-?

, Or, require extensive training with images closely related to the sample
under study®®. As such, they are difficult to translate to imaging settings with more complex im-
ages, particularly for imaging without any prior assumptions about the sample. Meanwhile, Zhang
et al.?? have incorporated a neural network (NN) within the SLADS method (for the SLADS-Net
method) and shown in numerical experiments that it is sufficient to train the method on only a

generic image, eschewing any prior knowledge about the sample, to produce high-fidelity image

with sparse sampling. However, this has not yet been demonstrated in experiment.

In this work, we report the Fast Autonomous Scanning Toolkit (FAST) that combines the
SLADS-Net method, a route optimization technique, and efficient and modular hardware controls
to make on-the-fly sampling and scan path choices for synchrotron-based scanning microscopy.
This method relies on sample-agnostic training to dynamically measure and reconstruct a com-
plicated (non-binary) sample, distinguishing this toolkit from existing SLADS-based workflows.
Moreover, its computational cost is negligible compared to the acquisition time even when run on
a low-power edge computing device placed at a synchrotron beamline, which presents a signifi-
cant advantage over more generic autonomous experimentation techniques. These characteristics
enable the application of our workflow in the high-precision nanoscale scanning x-ray microscopy

instrument present at the hard x-ray nanoprobe beamline at the Advanced Photon Source.

We validate the FAST scheme through real time demonstration at the hard x-ray nanoprobe
beamline at the APS30. A few-layer exfoliated two-dimensional WSe, thin film was chosen as a
representative example; the preparation process for the thin film often leaves microscopic air bub-
bles trapped underneath the thin film, deforming the 2D material. We show that an adaptive scan
of < 25% of the sample is sufficient to produce a high-fidelity reconstruction that identifies all the
bubbles within the field of view, and even to acquire quantitative information about the film curva-
ture induced by these bubbles. The scheme quickly identifies the deformed part of the 2D material
and focuses its attention there, while ignoring regions of the film that are flat and homogeneous.

Film curvature reconstructed from the adaptive scan (< 25% coverage) is consistent with that re-
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constructed from full-grid scan (100% coverage). Given these characteristics, the FAST scheme
can be directly applied in other scanning techniques and instruments at the APS and elsewhere,

and may underpin the development of many multi-level experimental studies.

II. RESULTS

Figure 1 shows the experimental setup that scans a focused x-ray beam on a sample while ac-
quiring a two-dimensional diffraction image at each point. The live demonstration was performed
on a few-layer WSe, sample with the detector placed along the 008 Bragg peak, with 26 = 43.1°
at 10.4keV. The diffraction patterns were processed on the detector computer (see Methods) to
generate the integrated intensities for use in the FAST workflow. The final output of the workflow

is a dark-field image of the WSe, sample.

A. Self-driving scanning microscopy workflow

Figure 2A broadly illustrates the FAST workflow for the experiments reported here. To ini-
tiate the workflow, a low-discrepancy quasi-random selection (generated using the Hammersely
sequence!) of sample position is measured corresponding to 1% of the total area of interest. The
integrated intensities of the measurements are transferred to the edge device, an NVIDIA Jetson
Xavier AGX?? located adjacent to the detector, which used Inverse Distance Weighted (IDW) in-
terpolation to estimate the dark-field image. The estimated image serves as input for the decision-
making step whereby the prospective measurement points are identified.

This self-driving workflow adopts the Supervised Learning Approach for Dynamic Sampling
using Deep Neural Networks (SLADS-Net) algorithm?® to find the prospective measurement
points. In effect, the SLADS-Net algorithm uses the current measurements to identify the best
unmeasured points that, when added to the existing dataset, would have the greatest effect on the
quality of the reconstructed image. As illustrated in Figure 2B, this is accomplished by, first,
representing each unmeasured point as a feature vector with elements that depend on the mea-

surement state in the neighborhood of the point. These feature vectors are used as input for a
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pre-trained neural network with 5 hidden layers, with 50 nodes per layer, and with the ReLLU ac-
tivation function. The neural network then predicts the expected reduction in distortion (ERD),
a metric (loosely speaking) for the expected improvement in the reconstruction quality obtained
from measuring this unmeasured point, individually for each unmeasured point. The original
SLADS-Net algorithm simply uses the unmeasured point with the highest ERD for the next mea-
surement, and repeats this procedure pointwise. In practice, if the measurement procedure and the
motor movements are fast, then the ERD calculation also has to be commensurately fast to reduce
the dead-time in the experiment. In this work, we mitigate this requirement by instead selecting
a batch of points that have the highest ERD, sorted in descending order—we found that a batch
of 50 points adequately minimized the experimental dead-time while still ensuring that the overall

measurement was adequately sparse.

The coordinates of these 50 points are passed on to a route optimization algorithm, based
on Google’s OR-Tools>3, to generate the shortest path for the motors to visit all of the them.
This path is appended to the look-up table in the EPICS3* scan record, which then kicks off the
data acquisition. Henceforth, the scan is automatically paused after every 50 points, raising a
flag which event triggers a callback function on the edge device. There, a new estimated dark
field image of the sample is generated, and the coordinates for the next 50 prospective points are
computed. The scan is resumed after the EPICS scan record receives the new coordinates for the
optimized scanning path. The actual scanning of the focused x-ray beam is achieved by moving
two piezoelectric linear translation motors in step mode. The detector exposure time is set to 0.5 s

and comes with an overhead of 0.2 s.

For the 200 x 40 pixels object described in Section II C, the workflow required ~0.15s to
compute the new positions, ~42 s to scan the set of 50 positions, and a total of ~0.37 s to process
the diffraction patterns and communicate the measurements. This represents an overhead of <
2%. The workflow is currently entirely CPU-bound, relying on the on-board 8-core ARM CPUs,
and does not take advantage of the GPU bundled into the NVIDIA AGX device. These timing
results showcase the rapid data-driven decision-making ability that is characteristic of the FAST

workflow. In the future, we expect to perform the computation in a parallelized and asynchronous
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fashion, which would further reduce this overhead.
We also note that, for all the results reported in this work, the underlying NN was trained on

the standard “cameraman’3>

image that has no relation to microscopy, and we discuss the choice
of a training image in Supplementary Section S.2 . For details about the SLADS-Net algorithm

and the sample-agnostic training procedure, the reader is referred to the Methods section.

B. Numerical demonstration for scanning dark-field microscopy

We first validated the performance of the proposed workflow through a numerical experiment
on a set of pre-acquired dark-field microscopy data. Here, we compared the FAST sampling with

three static sampling techniques:

1. Raster grid (RG) For a test sampling percentage, we generated a equally spaced raster grid

that provides a uniform coverage of the sample.

2. Uniform random (UR) sampling The measurement pixels were drawn from a uniform

random distribution.

3. Low-discrepancy (LDR) quasi-random sampling For each measurement percentage, we

generated a low-discrepancy sampling grid using the quasi-random Hammersly sequence.

The test dataset is a dark field image of size 600 x 400 pixels which represents 240,000 possible
measurement positions. This covers a physical area of 900 um x 600 um and encloses multiple
flakes of WSe, with various thicknesses, with the thicker regions associated with regions of higher
brightness in the image (Figure 3). At this spatial resolution, only medium and large sized bubbles
(with diameter > 2 um) can be observed. As explained previously, the bubbles deform the surface
and shift the Bragg peak of the 2D materials away from their theoretical (flat region) positions,
resulting in regions of darker contrast. Finally, the image also contains flake-free regions that have
zero integrated intensities.

For this comparison, we first initialized the FAST sampling with a 1% measurement coverage

(as described above), then successively measured 50 additional points at iteration. For each FAST
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measurement, we also generate RG, UR, and LDR measurement masks with the same number
of scan points. In this fashion, we generate a sequence of sampling masks and the associated

reconstructions until we achieve 100% sampling.

We present the numerical results in Figure 3, where we show a comparison of the various meth-
ods at 10% sampling. Note that while the proposed method internally uses the fast IDW algorithm
for the inpainting, the final images presented here are calculated using the higher quality bihar-
monic inpainting technique®®. The uniform random scheme performs worse than the LDR and
raster grid schemes and is not shown in the figure. In Figure 3A-D, we can see that the FAST
sampling is able to reproduce with high fidelity the flake boundaries, the bubbles, and the regions
of transition between the varying levels of thicknesses. In contrast, the LDR and raster schemes
produce much lower quality reconstructions of these features. Figure 3E shows an evolution of the
normalized root mean squared error (NRMSE) and fig. 3F the structural similarity metric (SSIM)
(which measures multiscale perceptual similarity) for the different sampling techniques. It is ev-
ident that FAST produces high quality reconstructions at much lower measurement percentages
than the examined static sampling techniques. We note that the result could be further improved
in the future by using a more sophisticated inpainting technique within the FAST method. To un-
derstand how FAST outperforms the other methods under the same sampling condition, we show
the actual measured positions of the various schemes at 10% coverage (Figure 3G-I). FAST pref-
erentially samples the regions with significant heterogeneity over the homogeneous regions. This
is particularly useful for sparse samples, where the time spent sampling from empty regions adds

little additional information.

C. Experimental demonstration

We next demonstrate the application of the FAST workflow in a live experiment at a syn-
chrotron beamline. A video showing the sampling, recorded live during the actual experiment, is
available here®’. Other than starting the workflow scripts at the beginning, the entire experiment

was unmanned and fully automated. In order to measure the deformed WSe; flakes in details, a
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higher spatial resolution of 100 nm was chosen. This limits the field of view to 20 um x 4 um for

a scan point density of 200 x 40 points.

In Figure 4 we show the reconstructed dark field image (subplots A,C,E) and the measurement
points (subplots B,D,F) from 5 % to 20 % coverage and compare them to that obtained from raster
scanning the sample with 100% coverage(subplot G). We see that the FAST method identifies
some of the regions of hetereogeneity — the edges of the bubbles — and starts to preferentially
sample these regions within 5 % coverage of the sample. At 15 % coverage, these regions are
extensively sampled. The reconstruction does not change significantly between 15 % to 20 %,
indicating that the reconstruction has stabilized. Moreover, the 20 % reconstruction also contains

sharp and accurate reproductions of all the major features present in the full scan image.

A point of interest is that the partially scanned bubble at the bottom right corners of Figure 4E-
G shows up only in the 20% scan, and not in the 15% scan. To explain this, we note that the
5% scan, and therefore the initial 1% quasi-random sampling, does not contain any measurements
in the neighborhood of this bubble. The FAST scheme favors exploitation of regions it knows
to be heterogeneous over exploration of this fully unknown region, and therefore only explores
this region much later in the measurement process (Figure 4H). This is, in fact, an instance of the
general exploration-exploitation tradeoff that exists in all Bayesian search procedures®. Potential
mitigation steps could be to sample more initially (say 5% points), or to deliberately introduce

diversity into each batch of measurement points.

So far we have reduced the diffraction image measured at each point to one single quantity
(integrated intensity) in order to guide the automated experiment. These images often need to
be reprocessed after the experiment to extract additional physically relevant results. Notably, the
intensity distribution in the diffraction patterns contains information about the strain as well as
the rotation of the crystal lattice, and in this case, the curvature of the 2D materials due to the
bubbles underneath. A simple center of mass calculation in the X direction (CoMx) would yield
the magnitude of the film curved in the XZ plane. The curvature (deviation of the CoMx from its
nominal value) is the smallest around the center of the bubble and the largest at the edge. It also

changes sign going from the left side to the right side. Center of mass calculation in the Y direction
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yields the magnitude of the film curved in the YZ plane. The results look slightly different from
the CoMx calculations due to the way the shifted Bragg peak intersects with the Ewald’s sphere.
Figure 5A and B shows respectively the CoMx and CoMy obtained from raster scan with 100%
coverage on the area of interest. The unit is the number of pixel shift, relative to the center of the
nominal diffraction pattern. Figure 5C and B shows respectively the CoMx and CoMy obtained
with FAST. The curvature information of the film were faithfully reproduced despite scanning just
20% of the entire area. For more information on the reconstruction of the CoM maps, he reader is

referred to the Methods section.

III. DISCUSSION

In this work, we have showcased the FAST workflow that combines a sparse sampling algo-
rithm with route planning to drive a scanning diffraction microscopy experiment at a synchrotron
beamline. In addition to being an effective alternative to a full pointwise scan to acquire a dark-
field image of the sample, FAST also produces accurate quantitative measurements of its phys-
ical properties. For our live demonstration of a 200 points x 40 points with a measurement time
of 0.5s/point, the FAST decision-making time was negligible, leading to an overall saving of
~80 min (about ~65 %) of the experiment time. This saving was facilitated by our choice to ac-
quire a batch of 50 measurements between the selection of the prospective measurement points.
This ensured that the communication time stayed negligible with no noticeable loss in the quality
of points acquired when compared to a pointwise candidate selection scheme (see Supplementary

Figure S.1).

The generalizability of the FAST method comes from the fact that the key NN-based compo-
nent of this workflow is trained on just the standard cameraman image®>, not on close analogues of
a sample of interest. While this generalizability results in a slight loss of performance of the tech-
nique , it still shows excellent sparsity performance for cases tested in previous research?” and
in the current work. This has the benefit that we do not need a priori knowledge of the sample. As

such, while general pre-training would be difficult to satisfy for new and expensive experiments,
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the FAST approach can be used directly. Furthermore, the batch prediction and route optimization
approach we implement can also be directly applied in any application of choice. Moreover, the
experimental application of our work uses an extensible edge device and the widely used EPICS
platform for hardware control, both of which can be incorporated into any instrument even with
the SLADS-Net replaced by any other sampling strategies. For example, we could just replace the
dark-field detection procedure described here with a fluorescence counting setup and use exactly
the FAST scheme for a fluorescence-based imaging of the sample. Alternatively, since all the in-
struments at the APS rely on EPICS controls, one can perform transmission, surface scattering,
or any other 2D scanning experiment in any applicable beamline with only minor changes to the

FAST routine.

The computations in the current workflow have a time complexity of O (2NlogN + kM 1logN),
where N is the number of measured points, M the number of unmeasured points, and k the num-
ber of nearest neighboring measurements (k = 10 in our case) that we use for the feature vector
calculations. Here, the first term accounts for the creation of the nearest neighbor K-d tree and
the second term for the nearest neighbor calculation. The remainder of the algorithm has a linear
time complexity and could be performed in parallel for the unmeasured points. We expect that it is
possible to reduce this complexity using an approximate nearest neighbor search method instead
of the K-d tree approach. As such, a GPU-based implementation that takes advantage of the par-
allelization and the approximation would likely significantly reduce the computation time. This
stands in stark contrast with the time complexity of O (N 3) (for N measured points) for Gaussian
Processes, a similarly training-free method that is widely used for autonomous experimentation.

For an illustrative example, Vasudevan et al?0

report a GP-based scanning microscopy experiment
where the calculation of each set of measurement candidates takes ~6s on an NVIDIA DGX-2
GPU for a 50 x 50 image; our workflow performs an equivalent calculation for a larger 200 x 40
image within ~1.5s in a low-power CPU. We note, however, that GPs remain a very powerful
and generalizable approach with a bevy of applications beyond only scanning microscopy. We

also note that even the current FAST decision-making time of ~0.15 s is still much larger than the

typical dwell times of tens of microseconds in several popular scanning microscopy techniques
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(like scanning fluorescence microscopy*’). As such, the FAST code needs to be significantly ac-
celerated via GPU-based parallelization, approximate nearest-neighbor search methods, or other
techniques, to enable its application in high-speed microscopy settings — we are looking to im-

plement these changes in the future.

Practical applications of the FAST workflow require considerations about the spatial extent,
number density, and heterogeneity of the features in the sample under investigation. Our numeri-
cal experiments for these (see Supplementary Section S.3) show that the FAST workflow is most
efficient for the study of isolated sparse features, as long as the features are partially sampled
during the initial quasi-random scan step. Isolated features that are smaller in size than the av-
erage spacing between the initial scan points are especially likely to be missed during the initial
sampling, and therefore not sampled until much later in the experiment. One way to resolve this
challenge is to use prior knowledge (or an informed guess) about the expected dimensions of the
smallest features to tailor the density of the initial scan so that it samples almost every image patch
of these dimensions.. We also note that the FAST scan time increases with the increase in the over-
all contour (or perimeter) of the features, even if the features are at the same intensity levels and
occupy the same area overall (see Supplementary Section S.3.2). Additionally, while the FAST
scan is not affected adversely by heterogeneity in the feature sizes, it is less effective at resolv-
ing low-contrast features in settings with contrast heterogeneity, and addressing this can require
significant prior information about the experiment (see Supplementary Section S.3.3). Moreover,
we observe that FAST is less effective in experiments with a highly noisy intensity data (with
signal-to-noise ratio of < (.5), but shows consistent performance in all regimes with higher signal
levels (see Supplementary Section S.6). A final consideration, more practical in nature, is that
the scan paths require significant motor movement, often including a retracing over points already
measured. As such, there could exist scenarios in which the time required for the motor movement
eclipses the time required for a single measurement. We expect to address the latter challenge by

39

explicitly including a measurement-density-based term °” or a movement-time-based term in the

candidate selection procedure*!, or by using a line-based sampling technique*?.

Despite these considerations and challenges, we believe that the proposed FAST technique has
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great potential. It is an ideal tool for use cases with limited sampling or dosage budgets. It can
be used to isolate regions of interest in sparse settings, to prepare for pointwise scanning in these
regions. More generally, it can be used to guide any scanning microscopy experiment where we do
not need full pointwise information. In the future, we expect to extend this method for 3D imaging,
fly scans, ptychography, and other imaging applications. We expect that these developments will
significantly enhance the efficacy of scanning microscopy experiments, bolstering their use for the

study of dynamic physical phenomena.

IV. METHODS
A. The SLADS-Net algorithm

The SLADS-Net algorithm?’ used within the FAST workflow is an adaptation of the Super-
vised Learning Approach for Dynamic Sampling (SLADS) algorithm originally developed by
Godaliyadda et al?®, and the algorithms differ only in their training approaches ( Section IV B). To
explain the SLADS algorithm, we first denote the object we want to measure as A € RY, where N
is the total number of pixels in the image. Further, we can denote the pixel at location 1 < s <N
as ag so that a measurement at the location s extracts the value ag; each measurement is thus

characterized by the pair (s, ay). After k measurements, then, we get the k X 2 measurement vector

1
R) as1
2
R) an
Yi=| 7 (1)
k
_S ask_

Using these k measurements, then, we can reconstruct (e.g. via interpolation) an estimate AKof the
true object A. The difference between A and AF is denoted as the distortion D(A, Ak) and can be
calculated using any chosen metric. In the current work, we define D(A, Ak) to be the L2 norm:

D(A,A%) = [|A —A%|%.

Given the measurement Y* and the reconstruction A¥, a new measurement at any location s will

presumably reduce the distortion in the reconstruction. We can denote this reduction in distortion
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(RD) as

R = D(A,AX) —D(A, A% (2)

where A is the reconstruction that includes the newly added measurement at s. The goal of
the SLADS algorithm is then to identify the pixel location that would maximize this reduction in
distortion:

s = argmax RY 3)

N

Of course, since we cannot know the value of the measurement a; or the ground truth A, SLADS
bases its selection on the conditional expectation of reduction in distortion (ERD), which is defined

as:

R =E [Rk’s |Yk} so that s = argmax R 4

N
The algorithm assumes that we can compute the ERD at s based on just the measurement state Yy

as

R = g(v) 5)

k,s

where v** is a location-dependent feature vector calculated using the measurement state Y;. The

goal of the SLADS training procedure is to estimate the function g.

B. Training

The training procedure for the SLADS/SLADS-Net algorithm is a supervised procedure in
which we generate a large number of (v** ,I_Qk’s) pairs and use these to estimate g. Note that this is
a pixelwise computation that is performed independently for each measurement location s; for each
measurement s we have to calculate a reconstruction A% before we can calculate the RD R**. To
make this computationally tractable, the Godaliyadda et al>> use approximations that ensure that
the RD of each pixel only depends on its local neighborhood. Correspondingly, instead of working
with the full measurement state Y, the training procedure uses carefully designed feature vectors
that capture the local neighborhood of the pixel at location s. As shown in Figure 2B, the feature

vector for the pixel P consists of six features: (i) V. and V, are the spatial gradients at P, (ii)
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o1 and 0, , measure the deviation of the estimated value for P from the nearby measured values
(highlighted in red), and (iii) L (which is the distance of P from the closest measured point) and

pr measure the density of measurements around P.

The original SLADS algorithm assumes that this feature vector is linearly related to the RD,
and the training therefore is a linear regression procedure. The SLADS-Net adaptation first uses
an radial basis function (RBF) kernelization to transform the 6-dimensional feature vector to a
50-dimensional vector, then replaces the linear predictor with a nonlinear fully-connected neural
network that contains 5 hidden layers with 50 nodes each. We follow the procedure from the
original SLADS-Net adaptation and use the default parameters in the Scikit-learn Python library*?
for the RBF kernelization.

In this work, we train the SLADS-Net neural network on only the standard cameraman image,
without using any a priori information about the sample. For the training, we generate a mea-
surement state Y* by randomly choosing a fixed number number of measurement locations, then
calculate the feature vector v&* and the RD R for each unmeasured pixel. We generate such
sets of training pairs for 10 different sample coverage percentages between 1% and 80%. This
overall comprises our training dataset. We use this data to train the neural network for 100 epochs
using the Adam optimizer with the learning rate 0.001. We use this trained model for all the simu-
lated and experimental measurements. We provide an example of a training measurement set—the
measured points, the interpolated reconstruction, and the corresponding RD for the unmeasured

points—in the Supplementary Figure S.3.

C. Experimental measurements

At each point of the measurement, a tight region of interest (Rol) around the expected position
of the thin film Bragg peak was extracted from the corresponding diffraction image. Integrated
intensities of the Rol were used to guide the NN prediction. For the flat region, the integrated
intensity is high, showing up as brighter contrast on the dark field image. For the deformed region,

the integrated intensity is low (darker contrast on the dark field image) as the illuminated film
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diffraction partially exits the selected Rol (see Supplementary Figure S.10).

For the FAST experiment, the predicted ERD and the dark-field reconstruction served as visual
guides to inform when to stop the experiment.. During the experiment, we noted that the ERD
and the reconstruction had stabilized by ~20 % scan coverage, but we let the experiment run to
~35 % coverage to ensure that this behavior persisted (see Supplementary Figure S.11). While we
used this visual criterion for our exploratory experiment, it is straightforward to design a numerical
stopping criterion based on the absolute or relative convergence of the ERD, or on the per-iteration

change in the reconstructed image.

D. Statistics and reproducibility

The imaged region of the sample was selected through a visual inspection of a large-field-of-
view low-resolution scan of the sample. This ensured that the high-resolution scan was directed at
a region with WSe; deposition. No other statistical method was used to predetermine the sample

size.

Intensity data from hot pixels were excluded during the data analysis process. No other data

were excluded from the analysis.

The experiments were not randomized. The investigators were not blinded to allocation during
the experiment and the outcome assessment since the described workflow provided a real-time

reconstruction of the sample.

DATA AVAILABILITY

The numerical data used for this work is publicly available at https://github.com/
saugatkandel/fast_smart_scanning. The raw experimental data is publicly available at

https://doi.org/10.5281/zenodo.7939730.
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420 The FAST software and the code for the numerical simulations are publicly available at
a2 https://github.com/saugatkandel/fast_smart_scanning. The code used to analyze the

a2 experimental data is available at https://doi.org/10.5281/zenodo.7942774.
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FIG. 1. Artist’s representation of the autonomous dark-field scanning microscopy experiment at the Ad-
vanced Photon Source (APS). The APS synchrotron produces a coherent x-ray beam that is focused using
a zone plate setup. It strikes a WSe, film (green) exfoliated onto a Si substrate (blue), which generates
diffraction patterns that are collected by a two-dimensional detector. Above the bubbles, the lattice of the
film rotates, shifting the diffracted intensities away from its nominal positions. The beam position as well as
the detector acquisition are autonomously controlled by the FAST Al-based workflow. Image by Argonne

National Laboratory.
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FIG. 2. The FAST workflow: (A) A set of quasi-random initial measurements are transferred to the edge
device which sequentially generates an initial sample estimate, computes the candidate points to be mea-
sured next, and calculates the travel path for the measurement. The new measurements are combined with
the existing measurements and used to calculate a new estimate, and the process is repeated until it achieves
a completion criterion. (B) The candidate computation starts by examining the local neighborhood (with
radius r) of each unmeasured point P, with the highlighted points indicating points already measured, to
generate a 6-dimensional feature vector. The feature vector is transformed to a 50-dimensional vector using
the Radial Basis Function (RBF) kernel and used as input to a multi-layer NN. The NN then predicts the
expected improvement in the image (ERD) from measuring the point P. A set of unmeasured pixels with

the highest ERD are selected as candidates for the next measurement.
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FIG. 3. Numerical comparison of sampling methods: (A) shows the ground truth with the color scale rep-
resenting the normalized intensity, (B-D) show respectively the raster grid (RG), low-discrepancy random
(LDR), and FAST reconstructions at 10% scan coverage, and (G-I) show the actual scan points that produce
these reconstructions. (E-F) show the evolution of the normalized root mean square error (NRMSE), for
which lower is better, and the Structural Similarity metric (SSIM), for which higher is better, as a function
of the scan coverage. The FAST reconstruction stabilizes at 27% coverage while the other techniques take

significantly longer to reach the same quality.
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FIG. 4. Evolution of the FAST scan: (A, C, E) show the reconstruction at 5%, 15%, and 20% reconstructions
respectively, (B, D, F) show the corresponding actual measurement points. (G) shows the image obtained
through a full-grid pointwise scan. The color scale in (A-G) show the normalized intensities. (H) shows

only the points sampled between 15% and 20% coverage.
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FIG. 5. Comparison of the per measured point center of mass (COM) of the diffraction patterns between
the FAST scan at 20% coverage and full-grid scan. Subplots (A) and (B) show the inpainted COMx and
COMy, respectively, for the full-grid raster FAST scan, and subplots (C) and (D) for the FAST scan.
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