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Abstract

In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative
temperature, the zeros of the partition functions of a ferromagnetic Ising model always
lie on the unit circle in the complex magnetic field. Zeros of the partition function in
the complex temperature were then considered by Fisher, when the magnetic field
is set to zero. Limiting distributions of Lee—Yang and of Fisher zeros are physically
important as they control phase transitions in the model. One can also consider the
zeros of the partition function simultaneously in both complex magnetic field and
complex temperature. They form an algebraic curve called the Lee—Yang—Fisher (LYF)
zeros. In this paper, we continue studying their limiting distribution for the Diamond
Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of
an explicit rational function R in two variables (the Migdal-Kadanoff renormalization
transformation). We study properties of the Fatou and Julia sets of this transformation
and then we prove that the LYF zeros are equidistributed with respect to a dynamical
(1, 1)-current in the projective space. The free energy of the lattice gets interpreted
as the pluripotential of this current. We also prove a more general equidistribution
theorem which applies to rational mappings having indeterminate points, including
the Migdal-Kadanoff renormalization transformation of various other hierarchical
lattices.
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1 Introduction
1.1 Lee-Yang-Fisher Zeros

We will begin with providing a brief background on the Lee—Yang—Fisher zeros that
continues the discussion in Part I [4].

We consider the Ising model on a finite graph I' and its partition function Zr,
which is a Laurent polynomial in two variables (z, t), where z = e T ig a “field-
like” variable and t = e=2//7 is “temperature-like” one. They are expressed in terms
of the externally applied magnetic field %, the temperature T', and the coupling constant
J > 0; see [4, Section 2.1] for more details.

For a fixed ¢ € [0, 1], the complex zeros of Z(z, ) in z are called the Lee—Yang
zeros. The Lee—Yang Theorem [63,67] asserts that for the ferromagnetic Ising model
on any graph, the zeros of the partition function lie on the unit circle T in the complex
plane.

If we have a hierarchy of graphs I';, of increasing size, then under fairly general
conditions, zeros of the partition functions Z,, = Zr, will have a limiting distribution
W on the unit circle. This distribution captures phase transitions in the model.

Instead of freezing temperature, one can freeze the external field, and study zeros
of Z(z, t) in the ¢-variable. They are called Fisher zeros as they were first studied by
Fisher for the regular two-dimensional lattice, see [55,58]. Similarly to the Lee—Yang
zeros, asymptotic distribution of the Fisher zeros is supported on the singularities of the
magnetic observables, and is thus related to phase transitions in the model. However,
Fisher zeros do not lie on the unit circle any more. For instance, for the regular 2D
lattice at zero field (corresponding to z = 1), the asymptotic distribution lies on the
union of two Fisher circles depicted on Fig. 1.

We can also consider the zeros of Z,(z,1) as a single object in C2. While
{Z,(z, ) = 0} is an algebraic curve in C2, we want to keep track of the multiplicities
to which Z,,(z, t) vanishes along each irreducible component of this curve. We will do
this using the notion of divisor, which is a sum of finitely many irreducible algebraic
curves, each with integer multiplicities (see [4, Appendix A.3]). Thus, the way Z,, (z, t)
vanishes in C? defines a divisor' S$ on C? which we call the Lee—Yang—Fisher (LYF)
Zeros.

To study the limiting distribution of the LYF zeros Sy, as n tends to infinity, we will
use the theory of currents; see [38,43]. A (1, 1)-current v on C? is a linear functional
on the space of (1, 1)-forms that have compact support (see Appendix A.3). A basic
example is the current [ X] of integration over an irreducible algebraic curve X. Mean-
while, the current of integration [ D] over a divisor D is the weighted sum of currents of
integration over each of the irreducible components, weighted according to the multi-

plicities. A plurisubharmonic function G is called a pluripotential of v if L 390G = v,in
T

' We will see in Remark 2.1 that each of these multiplicities is one, and hence there is no harm in thinking
in terms of the algebraic curve.
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Fig.1 The Fisher circles:
1 =2

1
the sense of distributions. (Informally, this means that — A(G| L) = v| L for almost
any complex line L, so G| L is the electrostatic potential of the charge distribution
v|L.)
Let d,, be the degree of divisor Sf. It is natural to ask whether there exists a (1, 1)-
current S¢ so that

di[s;,'] oS (L.1)

It would describe the limiting distribution of Lee—Yang—Fisher zeros. Within almost
any complex line L, the limiting distribution of zeros can be obtained as the restriction
SCIL.

To justify existence of S¢, one considers the sequence of “free energies”

Fl(z,1) :=log|Z,(z, 1)l

where Z,(z, 1) is the polynomial obtained by clearing the denominators of Z,,. We will
say that the sequence of graphs I';, has a global thermodynamic limit if

1
—Ff(z, 1 — F¥z, 1)
dy

in LllOC (C?). In Proposition 2.2 we will show that this is sufficient for the limiting
current S to exist and convergence (1.1) to hold.

The support of S¢ consists of the singularities of the magnetic observables of the
model, thus describing “global phase transitions” in C2. Connected components of

C? . supp S¢ describe the distinct “complex phases” of the system.

1.2 Diamond Hierarchical Model

The diamond hierarchical lattice (DHL) is a sequence of graphs I';, illustrated on
Fig. 2. Part I [4] and much of the present paper are both devoted to study of this lattice.
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Fig.2 Diamond hierarchical
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The Migdal-Kadanoff renorm-group RG equations for the DHL have the form:

2412 2+z72+2
R R

@nt1s In1) = ( ) = R(zn, tn), (1.2)

where z,, and #,, are the renormalized field-like and temperature-like variables on T',,.
The map R that relates these quantities is also called the renormalization transforma-
tion.

To study the Fisher zeros, we consider the line Lipy = {z = 1} in C2. This line is
invariant under R, and R : Liny — Liyy reduces to a fairly simple one-dimensional

rational map
2t \?
R:t— .
2 +1

The Fisher zeros at level n are obtained by pulling back the point # = —1 under R".
As shown in [51], the limiting distribution of the Fisher zeros in this case exists and
it coincides with the measure of maximal entropy (see [6,24,39,40]) of R| L. The
limiting support for this measure is the Julia set for R| Ly, which is shown in Fig. 3.
It was studied by [51,56,57,60] and others.

In this paper, we will use the Migdal-Kadanoff RG equations to study the global
limiting distribution of Lee—Yang—Fisher zeros for the DHL in the complex projective
plane CIP?. (The divisors S¢ are extended to CP? in the natural way.) The first main
result of this paper is:

Global Lee-Yang-Fisher Current Theorem For the DHL, the currents 242,, [S5] con-
verge distributionally to some (1, 1)-current S¢ on CP? whose pluripotential coincides

with the free energy F* of the system.

It would seem natural to prove this theorem by extending R as a rational map
R : CP> — CP? and then considering the normalized pullbacks ﬁ(R”)*SS.
However, an important subtlety arises because the degrees of R do not behave properly
under iteration:

4" < deg(R") < (deg(R))" = 6".
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Fig.3 On the left is the Julia set for R| Lipy. On the right is a zoomed-in view of a boxed region around the
critical point #.. The invariant interval [0, 1] corresponds to the states with real temperatures 7 € [0, o0]
and vanishing field 7 = 0

This algebraic instability* of R has the consequence that
S, # (R")*S;.

The issue is resolved by working with another rational mapping R : CP? — CP?
coming directly from the Migdal-Kadanoff RG Equations, without passing to the
“physical” (z, t)-coordinates. This map is semi-conjugate to R by a degree two rational
map ¥ : CP? — CP?. Moreover, R is algebraically stable, satisfying deg(R") =
(deg(R))" = 4". For each n > 0, we have:

S¢=w I (RT"SY),

where S is an appropriate projective line.
Note that even though R is algebraically stable, it is still not well defined at two
indeterminate points a4+ which strongly influence the global dynamics.

1.3 Equidistribution of Curves to the Green Current

Associated to any (dominant, algebraically stable) rational mapping f : CP?> — CP?
is a canonically defined invariant current S, called the Green current’ of f. It satisfies
f*S=d- S, where d = deg f. Such invariant currents are a powerful tool of higher-
dimensional holomorphic dynamics: see Bedford—Smillie [2], Fornaess—Sibony [22],
Hubbard-Papadapol [33], and others (see [16,47] for surveys of this subject).

2 For the definition, see [47, §1.4] or [4, Appendix A.6].

3 It is common in the literature to denote the Green current by T, but we use S to avoid any confusion with
the temperature.
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782 P.Bleher et al.

Let A C CP? be an algebraic curve of degree deg(A). Since the early 1990s there
has been extensive research proving that

1 nyk
T degy A1 S (13)

under certain hypotheses on f and A. See [2,10,11,14,19-22,27,28,42,45,48] for a
sample of papers on the subject. Note also the recent survey [15].

If (1.3) holds for f = R (the Migdal-Kadanoff RG mapping for the DHL) and
A = § (the principal LYF zeros), then we obtain the Global Lee—Yang—Fisher The-
orem by pulling everything back under W. In this way, the classical Lee—Yang—Fisher
theory gets linked to the contemporary Dynamical Pluripotential Theory.

However, the majority of the papers studying (1.3) focus on the case that either

1. f is birational (f has a rational “inverse”), or
2. f is a holomorphic endomorphism (no indeterminate points),

to obtain the sharpest possible results. Otherwise, they either assume A is generic, or
they work with a more “diffused” current in place of A. In any case, because I (R) #
and diop(R) > 1, there does not seem to be an existing result that applies to our setting:

Equidistribution Theorem for the DHL Convergence (1.3) holds for the Migdal—
Kadanoff Renormalization mapping R : CP?> — CP? and any algebraic curve
A C CP%

Remark 1.1 The dynamical approach to studying the limiting distribution of Lee—
Yang-Fisher zeros for hierarchical lattices has independently been considered in [8]
and studied numerically in [9].

The strategy of the proof of the Equistribution Theorem for the DHL can be adapted
to prove a more general Equidistribution Theorem, also suitable for rational maps
whose indeterminacy locus satisfies certain properties.

Let f : CP> — CP? be a dominant algebraically stable rational mapping of
algebraic degree d. Denote the indeterminacy set of f by I(f). For any ¥ C CP? we
define f(Y) and f~!(Y) using a resolution of I(f); see Appendix A.1.

We say that an algebraic curve A is backward invariant* if f~'(A) = A and we
say that A is collapsed by f if f(A \ I(f)) is a single point. Let

I (f):={f(A\I(f)) : Aisacollapsed curve of f}.

Since each collapsed curve is critical for f, I~ (f) is finite.

Choose a volume form on CPP? normalized so that vol(CP?) = 1. For any z € CP?
we define the volume exponent o (z, f) to be the smallest positive number so that for
any y > o(z, f) there is a constant K > 0 and a neighborhood N of z such that for
any measurable set ¥ C CP? we have

vol(f ' (Y)NN) < K (vol )/7 . (1.4)

4 Note that such a curve is also forward invariant unless it contains an indeterminate point that blows-up
to a different curve.
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In Sect. 5 we will give two estimates on o (z, f) in terms of how the complex Jacobian
Jac f := det Df vanishes at z. One of them is simply in terms of the order of vanish-
ing u(z, f) of Jac f at z, while the second is stronger, but requires a more detailed
assumption on Jac f near z.

A sequence of points {z,} C CP? is an orbit of fifz,41 € f({zn}) foreachn > 0.
(If z, € I1(f), zy+1 can be any point on the algebraic curve f({z,}).) If z, ¢ I(f) for
every n, we will refer to the orbit as a regular orbit. Otherwise, we will refer to it as
an indeterminate orbit.

If £ is holomorphic in a neighborhood of z € CP? let ¢(z, f") denote the order of
vanishing of the power series expansion for f” expressed in local coordinates centered
atz and f"(z), respectively. If zg, .. ., zx—1 is aregular periodic orbit of period k for f
then

COO(ZOs f) = nll)ngo C(Z(), fnk)l/nk

exists and satisfies coo(z0, f) < d; see Sect. 7.2. We say that a regular periodic
point zg is superattracting if cx(zo, f) > 1 and is maximally superattracting if
Cc0(20, f) = d. In these cases, the orbit of z is attracting at superexponential rate in
all directions.

Let £ be the finite set containing all

(a) maximally superattracting periodic points, and

(b) superattracting periodic points zq of period k for which there is an algebraic curve
C that is backward invariant under f k. collapsed to zp under some iterate of f k.
and for which zg is a singular point of C.

Denote the respective subsets of £ where (a) or (b) holds as £(a) and £(b). We will
call £ the exceptional set for f.

Equidistribution Theorem Let f : CP?> — CP? be a dominant algebraically stable
rational map of degree d > 2 and let S denote the Green Current of f. Assume that

@ I1(f) #9,
(i) o(z, f) < d foreveryz € I(f), and
(iii) no periodic orbit passes through both the finite set
Dog:={ze€CP?:0(z f)>d}and I(f)U I~ (f).

Then, for any algebraic curve A that does not pass through the exceptional set £ we
have

1 1y *
m(f )'[A] — S.

Note that Hypotheses (i) and (ii) are verifiable algebraic conditions on the map
f itself. The last Hypothesis (iii) is more problematic as it is dynamical; still it is
amenable to verification under favorable circumstances as it requires that a certain
finite set of points (specified algebraically) is aperiodic. We illustrate application of
the Equidistribution Theorem to a few examples in Sect. 8.
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784 P.Bleher et al.

Let us also compare> our result to the cases of birational maps and endomorphisms:

Equidistribution for Birational Mappings [10,19,20] Let f : CP> — CP? be an
algebraically stable birational mapping of degree d > 2 and let S denote the Green
Current of f. Let A C CP? be an algebraic curve. Then, there is a exceptional set £
consisting of at most one point such that

1
——(fMH*[A] = S ifand only if A does not pass through .
d"deg A
The exceptional set £ consists of a maximally superattracting fixed point through
which there passes a backward invariant curve. In the special case that f is a Hénon

mapping,
oy - —[+2 . .2
flx:y:zl=[x"+ayz:xz:z7],

we have that £ = [1 : 0 : 0] is the superattracting fixed point at infinity, with the
totally invariant curve corresponding to the line at infinity {z = 0} [2,23].

Equidistribution for Endomorphisms [14,21] Let f : CP? — CP? be a holomorphic
endomorphism of degree d > 2 and let S denote the Green Current of f. Then, there is
a totally invariant algebraic set £| consisting of at most three projective complex lines
and a finite totally invariant set £, with the following property: If A is an algebraic
curve such that

i) A ¢ &, and
(i) AN&E =40,
then

1 ny*
m(f ) [A] — S.

The exceptional set £; corresponds to curves on which the order of vanishing of
the Jacobian grows at rate > d”" under iteration, and hence the volume exponent
o (z, f™*) growing at rate > d" as well. Meanwhile the set £ consists of maximally
superattracting periodic points.

Our general strategy is similar to that in the above-mentioned works: We prove
the Llloc-convergence of the potentials of the currents under consideration, which
requires estimates on the volume growth under the iterated pullbacks. (For the latter,
we have especially profited from the techniques developed by Favre and Jonsson [21]).
However, in our setting there is a possibility that the orbit of a point z recurs to I(f),
while also having bad growth of the volume exponent. In the case of birational maps,
this is eliminated since the only critical points are on collapsed curves, whose orbits
stay away from I (f) (by the algebraic stability assumption). In our case, Hypotheses
(i)—(iii) allow us to rule out the problematic scenario.

5 We will specialize the following two results to the case of pulling back a curve, instead of pulling back
an arbitrary closed positive (1, 1) current.
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a a a a a
b b b b b
Linear Chain k-fold DHL Triangle Tripod Split Diamond

Fig.4 Generating graphs for some other hierarchical lattices

The final punch line of our argument is an application of the Borel-Cantelli Lemma,
which makes it quite elementary and general.

1.4 Other Hierarchical Lattices

The Diamond Hierarchical Lattice has the merit of being one of the simplest non-
trivial hierarchical lattices. Instead of using the diamond to generate our sequence of
graphs {I",}2° ;) (as shown in Fig. 2) we can use any finite graph I' with two marked
vertices a and b that is symmetric under interchange of @ and b. One obtains I,
by replacing each edge of I';, with a copy of I, using the marked vertices a and b as
“endpoints”. We will call the sequence of graphs the hierarchical lattice generated by
.

Associated to each generating graph I" is a Migdal-Kadanoff renormalization map-
ping, which is a rational map Rr : CP> — CP?. In Sect. 8 we discuss the Migdal
Kadanoff renormalization mappings associated to the five different hierarchical lat-
tices whose generating graphs are shown in Fig. 4. We will see that the Equidistribution
Theorem applies to the Migdal Kadanoff renormalization mappings associated to the
k-fold DHL (k > 2), the Triangle, and the Split Diamond thus proving the Global LYF
Theorem for each of those lattices. We find that the Equidistribution Theorem does
not apply to the Migdal Kadanoff renormalization mappings for the Linear Chain or
the Tripod, however, an easy argument directly shows that the Global LYF Theorem
holds for the Linear Chain. We do not know if it holds for the Tripod.

Problem 1.2 Does the Global LYF Theorem hold for every hierarchical lattice?

Several additional open problems are listed in Appendix C.

1.5 Structure of the Paper

We begin in Sect. 2 by recalling the definitions of free energy and the classical notion
of thermodynamic limit for the Ising model. We then discuss the notion of global
thermodynamic limit, which is sufficient to guarantee that some lattice have a (1, 1)-
current S¢ describing its limiting distribution of LYF zeros in C2. We also give an
alternative interpretation of the partition function as a section of (an appropriate tensor
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786 P.Bleher et al.

power of) the hyperplane bundle over CIP? that will be central to the proof of the Global
LYF Current Theorem. We conclude Sect. 2 by summarizing material on the Migdal-
Kadanoff RG equations, including the details for reducing the proof of the Global LYF
Theorem to proof of (1.3) for A = §¢ and f = R.

In Sect. 3 we summarize the global features of the mappings R and R on the
complex projective space CP? that were studied in [4], including their critical and
indeterminacy loci, superattracting fixed points and their separatrices.

In the next section, Sect. 4, we define the Fatou and Julia sets for R and show that the
Julia set coincides with the closure of preimages of the invariant complex line {z = 1}
(corresponding to the vanishing external field). It is based on M. Green’s criteria
for Kobayashi hyperbolicity of the complements of several algebraic curves in CP?
[25,26] that generalize the classical Montel Theorem. We then use this result to prove
that points in the interior of the solid cylinder D x I are attracted to a superattracting
fixed point = (0, 1) of R.

The proofs of the equidistribution theorems require estimates on the volume of a
tubular neighborhood of an algebraic curve and estimates on how volume is trans-
formed under a rational map. These estimates are presented in Sect. 5.

Section 5 is devoted to proving the Equidistribution Theorem for the DHL. In Sect.
7 we then show how to adapt its proof to prove the Equidistribution Theorem. In Sect. 8
we discuss applications of the Equidistribution Theorem to other hierarchical lattices.

Like Part I, this paper is written for readers from both complex dynamics and
statistical physics, so we provide background material in two appendices. To minimize
overlap, we will refer the reader to appendices of Part I when possible. In Appendix A,
we collect needed background in complex geometry (line bundles over CP?, currents
and their pluri-potentials, Kobayashi hyperbolicity, and normal families). In Appendix
B, we provide information on the Green current. In Appendix C, we collect several
open problems.

1.6 Basic Notation and Terminology

Cr=C~{0}, T={z1 =1},D, ={lz| <r},D=Dj,and N = {0,1,2...}.
Given two variables x and y, x < y means that ¢ < |x/y| < C for some constants
C>c>0.

2 Description of the Model
2.1 Free Energy and Thermodynamic Limit

The partition function of the Ising model on a graph I" is a symmetric Laurent poly-
nomial in (z, t) of the form

d
Zr =) aOE"+27") @.1)

n=0

of degree d equal to the the number of edges in I'. (See [4, Section 2.1] for the
definition.)
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Remark 2.1 Setting 2(z. 1) 1= z%%27(z, 1) clears the denominators of Z(z, r) and
results in a polynomial in z and ¢ of degree 2d whose divisor of zeros is the same as
that of Z(z, 1). It follows from the definition of Z(z, 1) that Z(z, 0) = z>? + 1, each
of whose zeros is simple. In particular the divisor of zeros assigns multiplicity one to
each irreducible component of {Z(z, t) = 0}.

The free energy of the system is defined as

Fr = —Tlog|Zr|, 2.2)
where T is the temperature (related to the temperature-like variable by t = e¢=7//7
where J is the coupling constant of the model).

It will be more convenient to consider the following variant of the free energy:

1 1 v
F#(z, t) = —FFF(Z, t)+d <log lz| + 5 log |t|) =log|Z(z, 1)].

The advantage of using Fi, instead of FT, is that it extends as a plurisubharmonic
function on all of C2. We will also refer to Fl’f as the “free energy”.

Assume that we have a lattice given by a hierarchy of graphs I';, with d,, — oo
edges. Let us consider its partition functions Z, and free energies Ff. To pass to
the thermodynamic limit we normalize the free energy per bond. One says that the
hierarchy of graphs has a (pointwise) thermodynamic limit if

1

o Ffz,1) = F*(z,1) foranyz e Ry, 1 € (0, 1). (2.3)
n

In this case, the function F* is called the (modified) free energy of the lattice. For
many?® lattices (e.g. Z¢), existence of the thermodynamic limit can be justified by van
Hove’s Theorem [59,66]. If the classical thermodynamic limit exists, then one can
justify existence of the limiting distribution of Lee—Yang zeros and relate it to the
limiting free energy; see [4, Prop. 2.2].

To prove existence of a limiting distribution for the Fisher zeros, one needs to prove

existence of the thermodynamic limit in the LllOC (C)-sense:

1
—F*1,1) - F*(1,1) in LL(C). (2.4)
2d,

For the Z? lattice this is achieved by the Onsager solution, which provides an explicit
formula for the limiting free energy; see, for example, [50]. Similar techniques apply to
the triangular, hexagonal, and various homopolygonal lattices (see [64,65] for suitable
references and an investigation of the distribution of Fisher zeros for these lattices).
For various hierarchical lattices, (2.4) can be proved by dynamical means.

The situation is similar for the Lee—Yang—Fisher zeros.

6 Note that the DHL is not in this class—instead, dynamical techniques are used to justify its classical
thermodynamic limit.
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788 P.Bleher et al.

Proposition 2.2 Let (T',) be a lattice for which the thermodynamic limit exists in the
Llloc (C?)-sense:

1
- Ff(z, 1) = F*(z, 1) in L. (C?). (2.5)

Then, there is a closed positive (1, 1)-current S¢ on C?* describing the limiting dis-
tribution of Lee—Yang—Fisher zeros. Its pluripotential coincides with the free energy
F#(z,1).

For the DHL, we will prove existence of the limit (2.5) in the Global LYF Current
Theorem.

Remark 2.3 Itis an open question whether the limit (2.5) exists for any classical lattice,
including the Z? lattice. Moreover, it seems to also be an open question whether the
limit (2.4) exists for the 74 lattice, when d > 3, and other classical three dimensional
lattices. See Problem C.1.

Proof of Proposition 2.2 The locus of Lee—Yang—Fisher zeros S: are the zero set
(counted with multiplicities) of the degree 2d,, polynomial Z,(z, t). The Poincaré—
Lelong Formula describes its current of integration:

is i -
[S51 = —ddlog|Zy(z, 1) = —dIF] (z,1).
T T

Hypothesis (2.5) implies

1 i1 i -
—[8°1= —90—F*(z,1) > —00F"(z,1) =: S°.
Zdn[ = 2d, n@h = o @)

2.2 Global Consideration of Partition Functions and Free Energy on CP?

It will be convenient for us to extend the partition functions Z,, and their associated free
energies Ff from C? to CPP?. We will use the homogeneous coordinates [Z : T : Y]
on CP?, with the copy of C? given by the affine coordinates (z, 1) +— [z:7:1].

For each n, we clear the denominators of Z,(z, t), obtaining a polynomial 2,, (z,1)
of degree d,, := 2|&,|. It lifts to a unique homogeneous polynomial Z,(Z,T,Y) of the
same degree that satisfies Zn (z,t) = 2n (z,t, 1). The associated free energy becomes
a plurisubharmonic function

FHZ,T.Y) =10g|Z,(Z, T, V)|

on C3. It is related by the Poincaré-Lelong Formula to the current of integration over
the Lee—Yang—Fisher zeros: 7*[S)] := ~ 99 F,f(Z, T,Y).
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Both of these extensions are defined on C3, rather than CP?. In the proof of the
Global LYF Current Theorem, it will be useful for us to interpret the partition function
as an object defined on CP?. Instead of being a function on CP?, it gets interpreted as
a section sz, of an appropriate tensor power of the hyperplane bundle; See Appendix
A.2. The Lee—Yang—Fisher zeros S, are described as the zero locus of this section.

2.3 Migdal-Kadanoff Renormalization for the DHL

The renormalized field-like and temperature-like variables z,, and ¢, that appear in
the Migdal-Kadanoff RG equations (1.2) are defined through certain “conditional
partition functions of level n” in the following way:

2 2 V2
iy = Wn/Um L, = z

= : 2.6
AT (2.6)

In the (U, V, W)-coordinates the Migdal-Kadanoff RG equation assumes the homo-
geneous form

2 2
U1 = (Us + V)" Vit = VoW + Wa)? Wap = (V7 +W,)7,
and the total partition function becomes a linear form
Zy,=7Zr,=U, +2V, + W,.

(See Part I [4] for the derivation of these equations.) This leads us to a homogeneous
degree 4 polynomial map

R:WU, V. W) (U + V)2, VAW + W), (W2 +V2))), 2.7)

called the Migdal Kadanoff Renormalization, such that (U,,V,,, Wn)zﬁn (U, Vo, Wo).
(The corresponding map R : CP?> — CP? will be referred to in the same way.)
Moreover, letting Yo := U + 2V + W, we obtain:

Z, =Yoo R", (2.8)

so the partition functions Z,, are obtained by pulling the linear form Yy = Zo back by
R".

We will often write R in the system of local coordinatesu = U/V andw = W/V,
in which it has the form

2401 w241’
u-+ w—i-). 2.9)

u+w u+w

R:(u,w)r—><

Notice that the form Y is not a function on CP? but rather a section sy, of the hyper-
plane line bundle over CP?, see Appendix A.2. Respectively, the partition functions Z,
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are sections of the tensor powers of this line bundle. Accordingly, the Lee—Yang—Fisher
loci Sy, are the zero divisors of these sections.

The free energy is also no longer a function on CP?, rather it is lifted to become a
function on C3, given by

F¥:=1log|Z,|. (2.10)

The above formulae express the partition functions and free energies in terms of
the U, V, W coordinates. To re-express them in terms of the physical coordinates, we
pull each of them back by

WiCP? > CP:, (U:V:W)=W( 0= ("t 27 2)0 @1

This change of variables also semi-conjugates the map

(2.12)

412 2 +z7242
2412 242212 )

R:(z,t)r—><

corresponding to RG equation (1.2), to R.

3 Global Properties of the RG Transformation in CP2

We will now summarize (typically without proofs) results from [4] about the global
properties of the RG mappings.

3.1 Preliminaries

The renormalization mappings R and R are semi-conjugate by the degree two rational
mapping ¥ : CP> — CP? given by (2.6).

Both mappings have topological degree 8 (see Proposition 4.3 from Part I). How-
ever, as noted in the Introduction, their algebraic degrees behave differently: R is
algebraically stable, while R is not. Since deg(R") = 4", for any algebraic curve D
of degree d, the pullback (R")*D is a divisor of degree d - 4". (For background on
divisors, see [4, Appendix A.3].) For this reason, we will focus most of our attention
on the dynamics of R.

The semiconjugacy W sends the Lee—Yang cylinder C := T x [0, 1] to a Mobius
band C that is invariant under R. It is obtained as the closure in CIP? of the topological
annulus

Co={w,w)eC*: w=ua, |ul>1}. (3.1

Let T = {(u,u) : |u| = 1} be the “top” circle of C, and let B be the slice of C at
infinity. In fact, ¥ : C — C is a conjugacy, except that it maps the bottom B of C by
a 2-to-1 mapping to B (see Proposition 3.1 from Part I).
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3.2 Indeterminacy Points for R

In homogeneous coordinates on CP?, the map R has the form:

R:U:V:Wle [(U+ V) VO +W)?: (V2w (G2
One can see that R has precisely two points of indeterminacy ay = [i : 1 : —i]
and a_ = [—i : 1 : i]. Resolving all of the indeterminacies of R by blowing-

up the two points a4+ (see [4, Appendix A.2]), one obtains a holomorphic mapping
R:CP* - CP2.

In coordinates &£ = u —i and x = (w +1i)/(u — i) near a; = (i, —i), we obtain
the following expression for the map R : CP* = CP? near Lexc(aq):

;i 2 2 i 2
u:(é—l_l), w=<xs—’x>. (3.3)
14+ % I+ x
(Similar forr~nulas hold near a_ = (—i,i).) The exceptional divisor Lexc(a4) is
mapped by R to the conic

G :={u—w)?’+8u+w)+16=0}.

3.3 Superattracting Fixed Points and Their Separatrices

We will often refer to Ly := {V = 0} c CP? as the line at infinity. It contains two
symmetric superattracting fixed points,e = (1 : 0: 0)and e’ = (0: 0 : 1). Let W* (e)
and W* (¢’) stand for the attracting basins of these points. It will be useful to consider
local coordinates (¢ = W/U, n = V/U) near e.

The line at infinity Lo = {n = 0} is R-invariant, and the restriction R|L is the
power map & — & 4. Thus, points in the disk {|&| < 1} in L are attracted to e, points
in the disk {|&| > 1} are attracted to ¢/, and these two basins are separated by the unit
circle B. We will also call L the fast separatrix of e and ¢'.

Let us also consider the conic

Li={=n={(V?=UW)} (3.4)

passing through points e and ¢’. It is an embedded copy of CP! that is invariant under
R, with R| L{(w) = w?, where w = W/V = &/n. Thus, points in the disk {jw| < 1}
in L are attracted to e, points in the disk {|w| > 1} are attracted to ¢’, and these two
basins are separated by the unit circle T (see §3.1 from Part I). We will call L; the
slow separatrix of e and ¢’.

If a point x near e (resp. ¢’) does not belong to the fast separatrix L, then its orbit is
“pulled” towards the slow separatrix L; at rate p* , with some p < 1, and converges
to e (resp. ¢') along L at rate rzn, with some r < 1.
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The strong separatrix L is transversally superattracting: all nearby points are pulled
towards Lo uniformly at rate 2" . It follows that these points either converge to one of
the fixed points, e or ¢’, or converge to the circle B.

Given a neighborhood €2 of B, let

WE oe(B) ={x € CP*: R"x e Q(neN)and R"x — Basn — oo}  (3.5)

(where €2 is implicit in the notation, and an assertion involving W(SCJOC (B) means that
it holds for arbitrary small suitable neighborhoods of B). It is shown in Part I (§9.2)
that W(f:’loc(B) has the topology of a 3-manifold that is laminated by the union of
holomorphic local stable manifolds W((Sj,l oc(X) of points x € B.

We conclude:

Lemma 3.1 W¥(e) UW3 (') U WE 1oc(B) fills in some neighborhood of Lo.

3.4 Regularity of 1/\)(‘C x)

loc
For a diffeomorphism, the existence and regularity of the local stable manifold for a
hyperbolic invariant manifold N has been studied extensively in [32]. To guarantee a
C! local stable manifold Wi (N), a strong form of hyperbolicity known as normal
hyperbolicity is assumed. Essentially, N is normally hyperbolic for f if the expansion
of Df in the transverse unstable direction dominates the maximal tangent expansion
of D(f|n) and the contraction of Df in the transverse stable direction dominates
the maximal tangent contraction of D(f|x). See [32, Thm. 1.1]. If, furthermore, the
expansion of Df in the transverse unstable direction dominates the r-th power of the
maximal tangent expansion of D( f|x) and the contraction of Df in the transverse sta-
ble direction dominates the r-th power of the maximal tangent contraction of D(f|n),
this guarantees that the stable manifold is of class C”. The corresponding theory for
endomorphisms is less developed, although note that some aspects of [32], related
to persistence of normally hyperbolic invariant laminations, have been generalized to
endomorphisms in [3].

In our situation, B is not normally hyperbolic because it lies within the invariant line
Lo and R is holomorphic. This forces the expansion rates tangent to B and transverse
to B (within this line) to coincide. Therefore, the following result does not seem to be
part of the standard hyperbolic theory.

Lemma 3.2 W¢ |, (B) is a C* manifold and the stable foliation is a C* foliation by
complex analytic discs.

Proof In Proposition 9.11 from Part I, we showed that within the cylinder C the stable
foliation of 5 has C* regularity and that the stable curve of each point is real analytic.
Mapping forward under W, we obtain the same properties for the stable foliation of B
within C.

Let us work in the local coordinates € = W /U and n = V /U. In these coordinates,
B = {n = 0, |§] = 1}. The stable curve W((S:,loc(é()) of any & € B can be given by
expressing & as a holomorphic function of ,:
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E=h(.&) =Y aiE)n'. (3.6)
i=0

The right hand side is a convergent power series with coefficients depending on &,
having a uniform radius of convergence over every & € B. The series is uniquely
determined by its values on the real slice C, in which the leaves depend with C*®
regularity on &y. Therefore, each of the coefficients a; (§y) is C* in &y. This gives that
each WCSCVIOC(&)) depends with C* regularity on &y, implying the stated result. O

Remark 3.3 The technique from the proof of Lemma 3.2 applies to a more general
situation: Suppose that M is a real analytic manifold and f : M — M is a real
analytic map. Let N C M be a compact real analytic invariant submanifold for f,
with f|N expanding and with N transversally attracting under f. Then N will have
a stable foliation W}, (N) of regularity C", for some r > 0O (see the beginning of
this subsection), with the stable manifold of each point being real-analytic. The stable
manifold Wg:’l oc (V) for the extension of f to the complexification M¢ of M will then
also have C" regularity.

Remark 3.4 It has been shown by Kaschner and the third author that ch loc (B) is not
real analytic at any point [34, Thm. B].

3.5 Critical Locus
The complex Jacobian of R : C3 — C3 (2.7) is equal to

JacR=det DR =32V (UW = V) (U + W2 U>+ V> ) W?*+V?), (3.7
and therefore, the critical locus of R consists of six complex lines and one conic:

Lo := {V = 0} = line at infinity,

Ly :={UW = V?} = conic {uw = 1},

Ly :={U = —W} = {u = —w} = the collapsing line,
Ly ={U ==iV}={u =i},

L :=(W==iV}={w==i).

(Here, the curves are written in the homogeneous coordinates (U : V : W) and in the
affine ones, (u = U/V, w = W/V).) The critical locus is schematically depicted on
Fig. 5, while its image, the critical value locus, is depicted on Fig. 6.
L =2
It will be helpful to also consider the critical locus for the lift R : CP”~ — CP?.
Each of the critical curves L; lifts by proper transform (see [4, Appendix A.2]) to a

critical curve L; C (C~]P’2 for R. Moreover, any critical point for R belongs to either
one of these proper transforms or to one of the exceptional divisors Lexc(a4+).

By symmetry, it is enough to consider the blow-up of a. We saw in Part I that there
are four critical points on the exceptional divisor Lexc (a4 ) occurringat x = —1, 1, oo,
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Fixed point ¢’

Separatrix
L

Fixed point e

Fig.5 Critical locus for R shown with the separatrix L at infinity

Fig.6 Critical values locus of R e =1[0: 0:1]

bo = R(Ly )= [1:0: 1]

e=1[1:0: 0]

and 0, where y = (1~u +1i)/ (~u —i). They correspond to intersgctions of Lexc(ay) with
the collapsing line L;, the L1, and the critical lines L;” and L, , respectively.

Remark 3.5 In Part I we showed that all of the critical points of R except the fixed
points e, €', the collapsing line Ez, and two points {£(i, i)} = L~3jE N E4i, are degree
two Whitney folds, i.e. they can be brought into the normal form (x, y) — (x, y?) in
holomorphic coordinates. See [4, Appendix D.2] and also Lemma A.4.

3.6 Local Study of the Critical Locus of R and R

In the proof of the Equidistribution Theorem for the DHL we will need details about
how the Jacobian of R vanishes, when R is expressed in local coordinates; See Lemmas
5.2 and 5.5.
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These details can be recovered from Formula (3.7) for Jac R as follows: Suppose
z € N c CP?\ I(R), with N an open set admitting a local section s : N — C3\ {0}
of the canonical projection 77 : C3 \ {0} — CP?. If we express R in local coordinates
on N (in the domain) and on R(N) (in the codomain), then the complex Jacobian of
this local expression for R differs from Jac Ros by a non-vanishing analytic function.

For any z € CP? \ I(R) define u(z, R) to be the order of vanishing at z for the
complex Jacobian of any local coordinate expression for R. By the chain rule, the result
is independent of the choice of charts. Moreover, by the discussion in the previous
paragraph, 1 (z, R) equals the order of vanishing of Jac Rosatz.

Lemma 3.6 Let ¢ be the point of intersection between Lo and Ly. We have

(@) u(z, R) <2foranyz € CP? \{c,e, e, at},

(b) u(c, R) = 3, moreover, there are local coordinates (x, y) centered at ¢ in which
Jac R < xyz, and

(¢) m(e, R) = (e, R) =

Proof Any z € CP? \{%(, i), c, a+, e, €'} is either regular or is a smooth point of the
critical locus; See Fig. 5. Since each of the irreducible factors of Jac R occurs to the
first or second power at any smooth point z of the critical locus we have u(z, R) < 2.

Since the lines L and LT 1 intersect transversally at +(i, 1), we can choose local
coordinates (x, y) Centered at +(i, i) so that L3 is given by {x = 0} and L 4 is given
by {y = 0}. As the irreducible factors of Jac R corresponding to L3 and LE 1 occur to
the first power, near the origin in these coordinates we have Jac R =< xy, giving that
w(£@G,i), R) =2.

Similarly, we can choose local coordinates (x, y) centered at ¢ with L correspond-
ing to {x = 0} and L, corresponding to {y = 0}. As the irreducible factors of Jac R
corresponding to these two lines have ﬁrst and second powers, respectively, in the
expression for Jac R we have Jac R = xy?, unplylng u(e, R) =3.

The four separate critical lines Lo, L1, L3 and L3 meet at e and Jac R vanishes to
order one along each of them, so that (e, R) = 4. The same result holds at ¢’, by
symmetry. O

To deal with the indeterminate points a1+ we need the following:
Lemma 3.7 Forevery z € Lexc(ay) U Lexc(a—) we have u(z, R) <2.

Proof By symmetry, we can focus on a.y. There is aneighborhood N of the exceptional
divisor Lexc (a+) in which the critical locus of R consists of the proper transforms L1 s
Lz, L; and L and in which these curves are disjoint. As these four critical curves

of R are smooth and disjoint in N, the order on vanishing of Jac R is locally constant
on each of them. Since each of the defining equations for L1, L;“ ,and L, occur to

the first power in Jac R, we have w(z, R) = 1 for any Z € N that is on L, i or ﬂ_

Meanwhile, the defining equation for L; occurs to the second power in Jac R so that
w(, Ry =2foranyZ € NN L. |
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4 Fatou and Julia Sets and the Measure of Maximal Entropy
4.1 Julia Set

For a rational map R : CP" — CP", the Fatou set Fg is defined to be the maximal
open set on which the iterates { R} are well-defined and form a normal family. The
complement of the Fatou set is the Julia set Jg.

If R is dominant and has no collapsing varieties, Lemma A.1 from [4] gives that R
is locally surjective (except at indeterminate points), so that the Fatou set is forward
invariant and consequently, the Julia set is backward invariant.

If R has indeterminate points, then according to this definition they are in Jg. In this
case, Fg and Jg are not typically totally invariant. One can see this by blowing up an
indeterminate point and observing that the image of the resulting exceptional divisor
typically intersects Fr. Note also that any algebraic curve A that is mapped by some
iterate of R to an indeterminate point (such a curve exists iff R is not algebraically
stable) is in Jg.

The Migdal-Kadinoff renormalization R is notlocally surjectiveatany x € Ly \ Ly.
More specifically, if N is a small neighborhood of x that avoids L, then

R(N)N Ly = by = R(x),

where by = [1 : 0 : 1], since any point of Lo \ {bo} has preimages only in L.
However, we still have the desired invariance.

Lemma 4.1 The Migdal-Kadinoff renormalization R has forward invariant Fatou set
and, consequently, backward invariant Julia set.

Proof It suffices to show that Lo C Jg, since R is locally surjective at any other point,
by Lemma A.1 from [4]. By definition, {a+} C Jr, so we considerx € Ly ~ {a+}.
Let N be any small neighborhood of x. Note that R(x) = by is a fixed point of saddle-
type, with one-dimensional stable and unstable manifolds. Therefore, in order for the
iterates to form a normal family on N, we must have R(N) C W?*(bo). However, this
is impossible, since there are plenty of regular points for R in N. O

Lemmas 3.1 and 3.2 give a clear picture of Jg in a neighborhood of the line at
infinity Lg.

Proposition 4.2 Within some neighborhood N of Lo we have that Jg N N =
W(SC,IOC (B) N N. Within this neighborhood, Jg is a C* 3-dimensional manifold.

Let us consider the locus { = 0} of vanishing magnetic field in CPP? for the DHL.
In the affine coordinates, it is an R-invariant line Li,y = {# = w}; in the physical
coordinates, it is an R-invariant line Lipy = {z = 1}. The two maps are conjugated by

2t
12+1
Liny was studied in [51]. In particular, it is shown in that paper that the Fatou set for
R| Liny consists entirely of the basins of attraction of the fixed points By := {t = 0}

and B; := {r = 1} which are superattracting within this line: see Fig. 3. Under the

the Mobius transformation Liny — Ligy, # = 1/t. Dynamics of R : f — ( on
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conjugacy, the Fatou set for R|L;,y consists of the basins of attraction for the two fixed
points

b ={lu=o00}=[1:0:1] and by:={u=1}=[1:1:1].

Proposition 4.3 Jg = |, R (Liny).

Proof Since every point in the Fatou set of R|Li,y is in the basin of attraction of either
bo or by and since these points are of saddle-type in CP?, the family of iterates R”
cannot be normal in an open neighborhood of any point on Lj,y. Thus Lipy C Jg. It
follows that Un R~ (Liny) C Jg since Jp is closed and backward invariant.

We will now show that Un R™"(Ljny) is dense in Jg. Consider a configuration of
five algebraic curves

Xo = {V = 0} = the separatrix Lo,

X1 := {U = W} = the invariant line Lj,y,

X5 := {U = —W} = the collapsed line Ly C R~ (Lin,),

X3 = {U2 + 2V2 + w? = 0} = a component of R_I(Linv),

X4 = {U*+20°V> 42V 2w V2 4+ W =0} =a component of R (X3).

We will use the results of M. Green to check that the complement of these curves,
M = CP? \ \U; Xi, is a complete Kobayashi hyperbolic manifold hyperbolically
embedded in CP? (see Appendix A.4). We will first check that M is Brody hyperbolic,
i.e., there are no non-constant holomorphic maps f : C — M. To this end, we will
apply Green’s Theorem A.7. It implies that the image of f must lie in a line L that
is tangent to the conic X3 at an intersection point with X;, for one of the lines X;,
i = 0,1,2, and contains the intersection point X; N X; of the other two lines. It
is a highly degenerate situation which does not occur for a generic configuration.
However, this is exactly what happens in our case, as the lines Xy, X, X, form a
self-dual triangle with respect to the conic X3 (see §A.5). However, one can check by
direct calculation that the last curve, X4, must intersect each of these tangent lines L
in at least one point away from Xy, ..., X3. Since any holomorphic map from C to
L ~ |J; X; must then omit 3 points in L, it must be constant.

Thus, M is Brody hyperbolic. Moreover, foreachi = 0, . . ., 4 the remaining curves
(U, X intersect X; in at least three points so that there is no non-constant holomor-
phic map from C to X; . |, ; X ;. Therefore, another of Green’s results (Thm. A.6)
applies showing that M is complete hyperbolic and hyperbolically embedded. It then
follows from Proposition A.5 that the family { R} is normal on any open set N C CP?
for which R" : N — M for all n.

Given any ¢ € Jg and any neighborhood N of ¢, we will show that some preimage
R™"(Ljny) intersects N. Since ¢ € Jg, the family of iterates R" are not normal on N,
hence R"(N) must intersect Ui X; for some n. If the intersection is with X; fori > 0
then R"t2(N) intersects Lipy.
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Thus, some iterate R" (N) must intersect Xo = Lg. Suppose firstthat { € Lo. Then,
by Lemma 3.1, £ C W*(e) U WS (¢’) UT. Since the first two basins are contained in
the Fatou set, ¢ € T, where preimages of the fixed point by € Liny are dense.

Finally, assume ¢ ¢ Lo. By shrinking N if needed, we can make it disjoint from
Lo. Hence, there is n > 0 such that R"(N) intersects Lo, while R"~!(N) is disjoint
from Lg. But since R~1(L¢) = Lo U L,, we conclude that R”~!(N) must intersect
L. But L; collapses under R to the fixed point by € Liny,. Hence R"(N) intersects
Liny. ]

Remark 4.4 We thank the referee for pointing out that the above proof is similar to the
one that Bonifant and Dabija use to show that if an endomorphism f : CP? — CP?
of positive degree has an invariant elliptic curve Q then any point of Q has backward
orbit under f thatis dense in the Julia set J¢; see [5, Thm. 5.4].

We will now relate Jg to the Green current S. (See Appendix B for the definition
and basic properties of S.)

Proposition 4.5 Jr = supp S.

Proof The inclusion supp S C Jg follows immediately from Theorem B.3. We will
use Proposition 4.3 to show that Jg C supp S. Since supp S is a backward invariant
closed set, it is sufficient for us to show that Li,y C supp S.

Note that Liyy = W?*(bo) U W*(b1) U JR|L;,,- The basin W*(by) is open and
contained within the normal set for R (see Appendix B for the definition of normal
set). Therefore, W?* (bg) C JRNN C supp S, by Theorem B.3. Since supp S is closed,
we also have that Jg|z,,, C suppS.

Consider the “top” unit circle T = {(u, ) : |u| = 1} and note that R|T is the
squaring map u — u”. Since the fixed point »; and indeterminate points a- are on T,
we therefore, have

bi e | R{as),

n>0

implying that none of the points of YW’ (b;) are normal. Hence, we cannot directly use
Theorem B.3 to conclude that W*(b1) C supp S.

Notice that the points of Ly ~\ {a+} are normal, since they are in YWW*(L¢). Theo-
rem B.3 gives that L, \ {a+} C supp S, since L, C Jr. Because supp S is closed,
Ly C supp S.Let Dy C L be asmall disc centered around a . Preimages of D, under
appropriate branches of R" will give discs intersecting L transversally at a sequence
of points converging to b;. By the Dynamical A-Lemma (see [41, pp. 80—84]), this
sequence of discs will converge to W (b1) C Liny, where W;(b1) is the immediate
basin of b;. Since each of the discs is in supp S, and the latter is closed, we find that
Wy (b1) C supp S. Further preimages show that all of W*(b1) C supp S. O

4.2 Fatou Set

Because Jg = supp S, we immediately have:
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Corollary 4.6 The Fatou set of R is pseudoconvex.
For the definition of pseudoconvexity, see [36].

Proof It is well-known that in the complement in CP? of the support of a closed
positive (1, 1)-current is pseudoconvex. See [7, Thm. 6.2] or [49, Lem. 2.4]. ]

Remark 4.7 We thank the referee for pointing out that Corollary 4.6 can also be
obtained directly from Proposition 4.3. Suppose that Liyy = {lijny = 0} and
Lo = {lp = 0}. For any N > 0 one can define a holomorphic function which
does not extend to U,QV:O R™"Liyy by

(lo(®)" . A
v — wheren(z):zandk=24 .
(Hn:() liny o R" (Z)> n=0

Therefore, the Fatou set of R is the interior of the intersection of domains of holomor-
phy, so it is also a domain of holomorphy. Hence, it is pseudoconvex.

Computer experiments indicate that the Fatou set of R may be precisely the union
of the basins of attraction WW* (e) and W* (¢’) for the two superattracting fixed points
e and ¢’. See Problem C.4.

We can prove the following more modest statement. Consider the solid cylinders’

V2
uw

V2
Uuw

w
SC::{[U:V:W] : e[O,l]and‘U

< 1} and

-1},

Theorem 4.8 For the mapping R we have SC C W*(e) and SC’ C W*(€').

w
SC’ = {[U:V:W] : € [0, 1] and ‘U

In the proof, we will need to use an important property of R : C — C that was proved

in Part I. Recall from Sect. 3.1 that C = W (C) is the invariant real Mobius band and

that Cp = C . B is the topological annulus obtained by removing the “core curve” B.
The key property is:

(P9') Every proper path y in Cj lifts under R to at least 4 proper paths in Cy. If y
crosses G at a single point, then R~y = U ;.

Proof of Theorem 4.8 1t suffices to prove the proposition for SC, since the statement
for SC’ follows from the symmetry p.

We will decompose SC as a union of complex discs and show that each disc is in
WS (e). Let

V2
Pczz{[U:V:W] : W:ce[O,l]},

7 They correspond to actual solid cylinders in the (z, #) coords; see Corollary 4.9.
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< 1} ,
so that SC = U,.¢jo.1) P

The discs Py and P} are in JV°(e) because they are each within the forward
invariant critical curves Lo and L1, respectively, on which the dynamics is given by
(W/U) — (W/U)* and (W/U) — (W /U)?, respectively.

We now show that for any ¢ € (0, 1) we also have P C W*(e). Infacte € P},
so it suffices to show that R” forms a normal family on P}. Consider any x € P}. If
x = e, then x € WW¥(e) so that R" is normal on some neighborhood of x in P}.

Now consider any x € PF \ {e}. There is a neighborhood of N C P} of x
with ¢ ¢ N, on which we will show that R" forms a normal family. Recall the
family of curves X, . .., X4 from the proof of Proposition 4.3, where we showed that
CP? ~ \U; X; is complete hyperbolic and hyperbolically embedded. We will show for
every n that R"(N) is in CP? < \U; Xi, so that R” is normal on N.

Since P N Xo = {e}, and e ¢ N, we have that N N Xo = . Therefore, by
reasoning identical to that in the proof of Proposition 4.3, if R" (N) intersects X; for
any i =0, ..., 4 we must have that some iterate R” (/) intersects X| = Liyy-

We will check that forward iterates of R"(P}) are disjoint from Li,y, which is
sufficient since N C PJ. The line L;,, intersects the invariant annulus Cp in two
properly embedded radial curves, so Property (P9’) gives that (R")* Li,y intersects C
in at least 2 - 4" properly embedded radial curves.

One can check that P, intersects the invariant annulus C in the horizontal curve

and

v? w
Pr:={U:V:W]: — =ce[0,1] and |—
Uw U

{ 0 7=}
[U:V:W]: — =ce[0,1]and |—|=1¢,
uw U

which corresponds to |u| = 1/+/c > 1 in the u coordinate for C. Therefore, the 2 - 4"
radial curves in C from (R")*Lj,y intersect P, in at least 2 - 4" distinct points within
C.

We will now show that these are the only intersection points between (R")* Liny
and P. in all of CP?. Since R is algebraically stable, Bezout’s Theorem gives deg(P.)-
deg((R"™)*Liny) = 2-4" intersection points, counted with multiplicities, in all of CP>.
Therefore P. N (RM)*Liny C C.

Since P} C P. with P¥ N C = §, we conclude that P* N (R")*Lipny = ¥ for ever
n. In other words, R" (P}) N Liny = ¥ for ever n. Thus, the same holds for N C P},
implying that R" is a normal family on N. O

Theorem 4.8 has an interesting consequence for R. The fixed point ¢’ for R has a
single preimage ' = W~ !(¢’), which is a superattracting fixed point for R. However,
e has the entire collapsing line Z = 0 as preimage under W. Within this line is another
superattracting fixed point = [0 : 1 : 1] for R and every point in {Z = 0} \ {0, y}
is collapsed by R to 7.

We obtain:
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Corollary 4.9 For the mapping R, the solid cylinder {(z,t) : |z| < 1,t € (0, 1]} is in
WS () and, symmetrically, the solid cylinder {(z, t) : |z| > 1,t € [0, 11} is in W* (1').

Notice that we had to omit the “bottom”, r = 0, of the solid cylinder in W?* ()
because points on it are forward asymptotic to the indeterminate point 0.

4.3 Measure of Maximal Entropy

There is a conjecture specifying the expected ergodic properties of a dominant rational
map of a projective manifold® in terms of the relationship between various dynamical
degrees of the map; see [30].

Since the Migdal-Kadanoff renormalization R is an algebraically stable map of
CP?, there are only two relevant dynamical degrees, the topological degree deg,,, R
and the algebraic degree deg R, which satisfy

deg,,, R =8 >4 =degR.

This case of high topological degree was studied by Gued;j [29], who made use of a
bound on topological entropy obtained by Dinh and Sibony [13]. In our situation, his
results give

Proposition 4.10 R has a unique measure v of maximal entropy log 8 with the follow-
ing properties
(i) v is mixing;
(ii) The Lyapunov exponents of v are bounded below by log v/2;
(iii) If 0 is any probability measure that does not charge the postcritical set’ of R,
then 87" (R")*60 — v;
(iv) If P, is the set of repelling periodic points of R of period n then

8" Z 8q — V.

aebP,

(In fact, it suffices to take just the repelling periodic points in supp v.)

The measure v satisfies the backwards invariance R*v = 8v, hence its support is
totally invariant. In our situation, suppv C Jg because (for example) the points in
W9 (B) are not in supp v. It can be thought of as the “little Julia set” within Jz on
which the “most chaotic” dynamics occurs.

Remark 4.11 The statement of (iv) in [29, Thm. 3.1] does not emphasize that one can
restrict his or her attention to the periodic points within supp v, but it follows from the
proof in [29] and the fact that supp v is totally invariant. See [16, Thm. 1.4.13] for the
analogous argument for holomorphic f : CP?> — CP?.

Remark 4.12 We know very little about the support of v. See Problem C.3.

8 It is stated more generally in [30], for meromorphic maps of compact Kéhler manifolds.

9 Here, the postcritical set is defined without taking the closure.
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5 Volume Estimates

This section is devoted to estimating the volume exponent o (z, f) in terms of the
Jacobian J f and to studying the sets

D-, :={z ¢ CP? . o(z, f)>a} and D-,:={z € CP? : o(z, f)>a} (5.1)

for various values of a > 0.

Lemma 5.1 Let h(x, y) be a non-constant holomorphic function vanishing with mul-
tiplicity € at (0, 0). Then, there is a neighborhood N of (0, 0) in C? and a constant
K > 0 such that for any s > 0 we have

vol({lh(x, y)| < s} N N) < Ks*/*.

Proof We can suppose that the coordinates (x, y) satisfy 2(0, y) # 0. The Weierstrass
Preparation Theorem then gives that there is a sufficiently small bidisc ID)Z centered at
(0, 0) in which

h(x,y) = a(x,y) (yl + B )y T -+ ﬂo(x)) ,

where a(x, y) is a non-vanishing holomorphic function and the coefficients g (x) are
holomorphic in D.

Up to a multiplicative constant, we can suppose «(x, y) = 1. Then, in each vertical
slice we have

¢
{x = x0} N {7 (x0, y)| < s} C {x =xo} X U]D)sl/((”i)
i=1

where rq, ..., r¢ are the roots of h(xg, y), listed with multiplicities. In particular,

area({x = xo} N {|h(x0, y)| < s}) < K15%/*

for some constant K. The result then follows by Fubini’s Theorem, after integrating
over all xg € D.. O

We now estimate the volume exponent o (z, f) in terms of the order of vanishing
w(z, f) of the complex Jacobian Jac f at z (see p. 6).

Lemma 5.2 (Favre-Jonsson [21, Prop. 6.3]) Let U,V C C? and f:U — V be
holomorphic and at most dyop-to-one off of a measure zero subset of U. Then for any
z € U we have

oz, f) =z f)+ 1 (5:2)
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Proof Lemma 5.1 gives a neighborhood N of z and constant Ky > 0 for which
vol({| Jac f (x, y)I* < s} N N) < Kos'/",

where © = u(z, f). Let X be a measurable subset of N and choose s so that
Kos'/* = Jvol(X). The Chebyshev Inequality gives

1

dtop

N

vol £(X)

v

/ |Jac f|>d vol > y (vol X — vol ({Jac fI* < s}))
X

top

vol X > K (vol X)!T.

2 top
for an appropriate constant K > 0. O

Lemma5.3 Suppose f : U — V satisfies the hypotheses of Lemma 5.2. If 7 is a
smooth point of the critical locus of f, then o (z, ) = u(z, f) + 1, i.e. the estimate
from Lemma 5.2 is sharp at such points.

Proof 1t suffices to prove that o (z, f) > u(z, f)+ 1. We will do this by showing that
in any neighborhood N of z there is a constant C > 0 such that there are measurable
sets X C N of arbitrarily small measure for which vol f(X) < C(vol X yutl

Since z is a smooth point of the critical locus, one can choose local coordinates
(x, y) centered at z so that Jac f(x, y) < y*. Given any neighborhood N of z we can
apply a linear rescaling to our coordinates in order to assume that the unit bidisc D?
is contained in N. Forany 0 < € < 1let X := D x D, C N. We have

2n  pe E2u+2
vol f(X) < / ly|**d vol = 7[/ / r?rdrde = 27?
X o Jo 2u+2

= (vol X)*1,

O

Remark 5.4 Unlike in one-dimensional dynamics, one can have points witho (z, f)>d.
Consider f : C* — C? given by f(x,y) = (xy?, y3). One has Jac = 3y* so that
o (0, f) =5, by Lemma 5.3.

If the zero set of Jac f has a normal crossing singularity at z, then one has the
following stronger estimate

Lemma5.5 Let U,V C C?and f : U — V be holomorphic and at most dyop-to-one
off of a measure zero subset of U. If Jac f =< x®y in suitable local coordinates (x, y)
centered at z € U. Then

o(z, f) < max(a, b) + 1. (5.3)

The proof of Lemma 5.5 will use:

Lemma5.6 Let Q : w — w?. For any measurable set Y C C,

area(Q_lY) < (area Y)l/d.
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Proof We can assume that area Y > 0. Let us take the radius r > 0 such that 7r2 =
areaY.LetY_ =Y ND,, Y. =Y NY_, Y. =D, \ Y_. Then,

(area Y)]/d = (areaDr)l/d = area(Q’l]D),) = area(Q’lY_) + area(Q’lYC)
> area(Q’1 Y_)+d Jac Q’l(r) area Y.> area(Q71 Y_)+ area(Q*l Yy)= area(Q*1 Y).

Proofof Lemma 5.5 Let y > max(a,b) + 1 and let N = {|x| < €} x {|y| < €}. For
any measurable set X C N we have:

vol f(X) > ﬁfx |Jac f12d vol < [y, |y|* fxg |x|2¢ d area(x)d area(y),

where XV is the projection of X onto the y-axis and X i‘ are the slices of X by hor-
izontal lines. The inner integral above is exactly area( Qu+1(X£)) /(a + 1), where

Qu+1(x) = x**1. By Lemma 5.6, it is bounded below by (area X")**! /(a + 1),
Using the Holder inequality, with p = y/(y — 1) and ¢ = y, we find

y—1
(/ 1/|y|2b/<V”darea(y)) fX |y[* (area X})* ! d area(y)

v

Y
> ( (areaXif)(“H)/ydarea(y)) > (vol X)7.
XU

The conclusion follows since b < y — 1 implies that 1/|y|?*/=1 islocally integrable.
]

Remark 5.7 Favre and Jonsson prove a similar volume estimate within their study of
the the exceptional set £1; see [21, Prop. 7.1 and Lem. 7.2].

Let us return to the case that f : CP? — CIP? is a rational map. For any z € I(f)
we can estimate o (z, f) by applying either Lemmas 5.2 or 5.5 at each point of the
exceptional divisor 7 ! (z):

Proposition 5.8 Consider the resolution of indeterminacy (A.1) for f. For any
z € CP? the exponent o (z, ) exists and satisfies

oz, f) < max )0(2, . (5.4)

Zer—1({z}

—

Proof Note that 7 : CP?> — CP? decreases volumes. Therefore, for any z € CP?

and any y > maXze,-1((;)) 0 (2, f) it suffices for us to find a neighborhood N of

77 1({z}) and a constant K > 0 so that for any measurable set ¥ C CP? we have
vol— (1\7 n f—l(Y)> < K (vol )7 . (5.5)

This follows by applying the definition of o (Z, f) at each point of 7 ! ({z}) and using
that 7 ~1({z}) is compact. m|
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Lemma 5.9 The volume exponent o satisfies:

(1) o(z, f) is an integer away from I () and singular points of Crit(f),
(i1) o(z, f) assumes finitely many values as z varies over CP?, and
(iii) for any a > 1 the set D>, and D-, (see Equation 5.1) is algebraic, consisting
of finitely many algebraic curves together with finitely many isolated points.

Proof Property (i) is a consequence of Lemma 5.3 and Property (ii) follows because
I(f) and the set of singular points of Crit(f) are finite. Property (iii) follows from
Lemma 5.3 and upper semicontinuity of o'

limsupo(z, f) < o (20, f),

=20
which is a consequence of the definition of o. O

Proposition 5.10 Suppose that C is an irreducible algebraic curve contained in D- 4.
Then, C is collapsed by f.

Proof Suppose for contradiction that C is not collapsed by f. Then Lemma A.4 gives
that C is a Whitney Fold of f, i.e. there exists » € Z4 and a finite S C C such that
for any p € C \ S there are systems of holomorphic coordinates (x, y) centered at p
and (z, w) centered at f(p) in which

(zow) = fx,y) = (x,y"). (5.6)

Moreover, for all p € C \ S we have o(p, f) =r > d, since we suppose C C D-4.
In these coordinates, for any wy # O we have that f ~1({w = wp)) intersects the
y-axis transversally in » > d points. Let L C CP? be a projective line through p that
is tangent to the y-axis in these local coordinates. If we let A be a complex projective
line in CP? that is tangent to {w = wp} at (0, wp) and take |wg| sufficiently small,
then f~!(A) will be an algebraic curve of degree d that intersects L transversally

in r > d points, by the stability of transverse intersections between analytic curves
under small perturbations. This contradicts the Bezout Theorem. O

6 Proof of the Equidistribution Theorem for the DHL
6.1 Transformation of Volume by R

Proposition 6.1 There exist constants K > 0and1 < t < deg(R2) = 42 such that
vol (R—2(Y)) < K (vol )/

for any measurable Y C CP>.
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Proof Let 2 be any forward invariant neighborhood of the two superattracting fixed
points e and ¢’. We will first prove that there exists K’ > 0 such that

vol (R—l(Y)) < K’ (vol Y)!/3 6.1)

for any measurable ¥ C CP? \ . By compactness, it suffices to prove that every
z € CPP? \ € has volume exponent o (z, R) < 3.

Lemma 3.6(a) gives that for any z € CP? \ {c, e, e, at} wehave u(z, R) <2 and
hence o (z, R) < 3, by Lemma 5.2. Meanwhile, Lemma 3.6(b) gives local coordinates
(x, y) centered at {c} = Lo N L5 in which Jac R = xy?2, so that Lemma 5.5 gives
o(c, R) <3.

We now use Proposition 5.8 to check that the indeterminate points ayt sat-
isfy 0(a+, R) < 3. By Lemmas 3.7 and 5.5 we have o(Z, I§) < 3 for every
Z € Lexc(a4) U Lexc(a—). This completes the proof of (6.1).

A calculation'® shows that p(e, DR?) = 14 and hence Lemma 5.2 gives
o(e, R*) < 15. By symmetry, the same holds at ¢/. Combined with (6.1), this
completes the proof of Proposition 6.1. O

Remark 6.2 In Lemma 3.6(c) we saw that (e, R) = 4, so that Lemma 5.2 gives
o(e, R) < 5, which is insufficient for our purposes. Meanwhile, the four separate
critical curves Lo, L1, L; and L5 meeting at ¢ imply that det DR does not have the
form needed to apply Lemma 5.5. (The same holds at the symmetric fixed point ¢’.)
This is why we needed to pass to the second iterate of R in the proof of Proposition 6.1.

6.2 Completing the Proof of the Equidistribution Theorem for the DHL

Let g := R? and d := 16 = deg(g). It suffices to prove that

T degy €141 S 6.2)

for any algebraic curve A C CP? because the Green current S for R is also the Green
current for g = R? and because the normalized pullback }‘R* acts continuously on
the space of closed positive (1, 1) currents and has S as a fixed point.

Let 7 : C3\ {0} — CP? denote the canonical projection. For any z € CP? we will
denote by z € C\ {0} any choice of a point of 7 ~!(z). Let

A={zeCP*: P(?) =0},
with P a homogeneous polynomial of degree a = deg(A). We must show that the
limit |

n—oo qadn

10" We omit the calculation, but the reader can readily check it using Maple.
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exists in LI]OC (C?) and is equal to the Green Potential
. 1 R
G(z) := lim —log|lg"z|| (6.4)
n—oo dn

of g.

The homogeneous polynomial P determines a section sp of the a-th tensor power
of the hyperplane bundle; see Appendix A.2. For each n > 0 we will consider the
function

¢n : CP? — [—00,00) where @¢,(z) ==

_log lsp(g" (),
ad

with || - || denoting the Hermitian norm on this bundle. By definition of the norm,

1 |Pog" @)
= —1 —_—
#n(2) P i g"zll“ ad"

A 1 Ana
log|P o g"(2)] - d—nlog 18"l

The limit in (6.4) exists by the hypothesis that R (and hence g) is algebraically stable;
see Theorem B.1. Therefore, the desired convergence of currents (6.2) will follow
from:

Theorem 6.3 ¢, — 0 in L1 (CP?) as n — oo.

loc

Proof We will use the following general convergence criterion:

Lemma 6.4 Let ¢, be a sequence of L* functions on a finite measure space (X, m)
with bounded L*-norms. If ¢ — O a.e. then ¢, — 0 in L.

Proof Take any € > 0 and § > 0. By Egorov’s Lemma, there exists a set X’ C X with

m(X \ X’) < € such that ¢, — 0 uniformly on X’. So, eventually the sup-norms of
the ¢, on X’ are bounded by §. Hence

/|¢>n|dm=/ |¢>n|dm+/ |pnldm < 8- m(X) + B+/e,
X’ X\X'

where the last estimate follows from the Cauchy-Schwarz Inequality (with B the L2-
bound on the ¢,). The conclusion follows. O

Lemma 6.5 There exists K > 0 such that for any s < 0 we have
vol({go < s}) < Ke*.

Proof Since A is compact, it suffices to work in a neighborhood of any point z € A.
Without loss of generality, we can suppose z = [0 : 0 : 1] so that it is the origin in the
affine coordinates (x, y) + [x : y : 1]. In these coordinates,
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|P(x,y, DI

oy, e P@ . DI

The local multiplicity of P(x, y, 1) at (0, 0) is less than or equal to a = deg(P). The
estimate then follows in a neighborhood of z from Lemma 5.1. O

Lemma 6.6 For any measurable set Y C CP? there exists 1 < 1 < d and K > 0
such that for any n > 0 we have

volg™"Y < K (vol )/, (6.5)

Proof The estimate for a single iterate of g = R? is Proposition 6.1. The result then
follows inductively if we let K := Kg, where s = ZOO 1

: el n—o 7 and Ky is the constant
given by Proposition 6.1. O

We will estimate the distribution of the tails of the random variables ¢,,:

Lemma 6.7 Let M = sup ¢o(z). Then,there exists K > 0 so that

d n
vol{|¢p,| > r} < K exp (—Zr (—) ) for any r > Md™".
T
Proof We have:

Xn(r) :={lgn| > r} ={doog" > rd"}U{pgog" < —rd"}
={poog" < —rd"} =g "{¢o < —rd"}.

We have used that ¢g < rd" to see that the first term in the union is empty. According
to Lemma 6.5 there is a constant K| > 0 such that

vol{pg < —rd"} < Ky exp(—=2rd").
The result then follows from Lemma 6.6. O
We can now show that the functions ¢, satisfy the conditions of Lemma 6.4.

Lemma 6.8 Assuming (6.5) holds for some 1 < t < d, the sequence ¢, is L>-bounded.

Proof We have:

gnll> < Y (€ + 1> vol{lgn] > €}

£=0

By Lemma 6.7, this sum is bounded by
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M+1 d n
Y+ D2 +K D¢+ 1) exp <—2z (?) )
£=0

{>M

o0
<Ko+ K Z(ﬂ + 1)2 exp(—2¢) < oo.
£=0

Lemma 6.9 The sequence ¢, exponentially converges to 0 almost everywhere.

Proof Fix any A € (1,d/t). For sufficiently large n, we have ™" > Md™", hence

Lemma 6.7 gives
d n
vol{|¢u| > 17"} < K exp <—2 <—> > .
TA

Since the sum of these volumes converges, the Borel-Cantelli Lemma gives that for
ae. x € CP?, we eventually have |¢, (x)] < A7". O

This completes the proof of Theorem 6.3 and hence of the Equidistribution Theorem
for the DHL. O

7 Proof of the Equidistribution Theorem

This section is devoted to proving:

Proposition 7.1 (Finding a good iterate) Suppose that f : CP? — CP? is a dominant
algebraically stable rational map with deg f = d that satisfies the hypotheses the
Equidistribution Theorem (see p. 6). For any forward invariant neighborhood Q2 of
exceptional set & there exists an iterate ny and constants K > 0and 0 < 7 < d"0
such that

vol (f7"(Y)) < K (vol )!/7 (7.1)

for any measurable Y C CP? \ .

Once this proposition is proved, the remainder of the proof of the Equidistribution
Theorem follows in exactly the same way as the proof of the Equidistribution Theorem
for the DHL (Sect. 6.2).

Throughout this section, we will suppose that f : CP?> — CP? is a dominant
algebraically stable rational map with deg f = d. However, we will keep track of
which specific Hypotheses (i)—(iii) of the Equidistribution Theorem are used.

7.1 No Curves of Maximal Degeneracy

Proposition 7.2 Suppose f satisfies Hypothesis (ii). Then D~ 4 is a finite set.
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Proof By Corollary 5.9, D4 is algebraic, so if it were an infinite set it would contain
some irreducible algebraic curve C. Then Proposition 5.10 implies that C is collapsed
by f, which results in C containing an indeterminate point for f, by Lemma A.1. This
violates Hypothesis (ii). O

Proposition 7.3 Suppose f satisfies Hypotheses (i) and (ii) of the Equidistribution
Theorem. Then there exists N > 0 and a finite forward invariant “non-escaping set”
N=gq C Dsg such that if z € Dsq \ N>4 then there exists 0 < n < N such that
f(2) ¢ Dsa.

The proof of Proposition 7.3 relies on several basic lemmas about the structure of
one iterate of a rational map that are presented in Appendix A.1. We will also need
the following definition. Suppose p € CP? \ I(f) is not on a collapsed curve. Then,
f induces a germ of an open mapping at p and the local topological degree e(p, f)
is the topological degree of that germ. It satisfies the chain rule

e(p, [*) =ep, f)-e(f(p). /), (1.2)

solong as e(p, f) and e(f(p), f) are defined.
The key step in the proof of Proposition 7.3 is:

Lemma 7.4 Suppose that f satisfies Hypothesis (1). Then, there is no irreducible alge-
braic curve C such that for some k > 1 we have fk(C) cCc, Cn I(fk) =, and
oz, f* = d* forall z € C.

Proof Suppose for contradiction that such a curve C exists. Then, Lemma A.1 implies
that C is not collapsed by f*. Lemma A.4 then gives that C is a Whitney Fold and
that there is a finite S C C such that for every p € C \ S we have

e(p. f¥) =o(p. f*) = d". (1.3)
Let us now consider the irreducible component C as a divisor (C), assigning it multi-

plicity one. (See [4, Appendix A] for basic background on divisors.) Since C is disjoint
from 1 (f*), the pushfoward of (C) by f¥ is defined by

(£%),(C) = degyop (f¥lc : € = fXO)(FHO)) = degiop(f*1c : € — C)(O).
Meanwhile, we have that
deg((f*),(0)) = d*deg((C));
see [4, Lem. A.5]. Therefore, we conclude that
degp(f¥lc : € — C) =d". (7.4)

Equation (7.4) implies that a generic z € C will have d* preimages under f¥|c and
Equation (7.3) then implies that a generic point z’ near z, but not on C, will have d
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preimages under fX. (There are d* preimages of z’ near each preimage of z under
£¥|c.) By Hypothesis (i) I(f) # @, so this violates the fact that deg, (f) < d?*; see
Lemma A.2. O

Proof of Proposition 7.3 By Lemma 5.9, the set D>, is algebraic. Moreover, none of
the irreducible components of D is collapsed by f, using Hypothesis (ii) that D>
is disjoint from /(f) and Lemma A.1.

It suffices to show that for each irreducible component C C D=4 there is an iterate
n such that f"(C) ¢ Ds4. In this case, the Bezout Theorem implies f"(C) N D=4
is finite. This implies that all but finitely many points of C are mapped out of D>, by
f", since f does not collapse any irreducible component of D> .

Suppose for the purpose of obtaining a contradiction that C C D4 is some irre-
ducible component with f"(C) C Ds4 for every n > 1. As D=4 contains finitely
many irreducible components, we conclude that some iterate f"°(C) is periodic under
f. Therefore, without loss of generality, we can suppose that C itself is periodic under
f with some period k > 1.

Let C,, := f"(C) foreach 0 < n < k. Lemma A.4 gives that there is a finite set
S, C C, and an exponent r,, so that for each p € C, \ S, we have

o(p,f)=elp, f)=r =d,

with the last inequality coming from the fact that C,, C Ds,4. Meanwhile, applying
Lemma A.4 to f* and C, together with the chain rule (7.2), we see that there is a finite
S C Csothatforall p € C\ S we have

o(p, fOy=ep, Yy =elp, f-e(f(p), f)---e(f"(p), f)=d'.  (15)

Using Hypothesis (i), we can now apply Lemma 7.4 to conclude that C contains a
pointof I ( f k). However, this contradicts that for each 0 < n < k the curve C,, C D=y
and is, therefore, disjoint from 7 (f) by Hypothesis (ii). O

7.2 Superattracting Periodic Points

An important aspect of the work of Favre and Jonsson [21] is to consider asymptotic
versions of the multiplicities  and ¢ (defined in Sects. 3.6 and 1.3, respectively) along
the orbit of any z € CP2. In our paper, I(f) is not assumed to be empty, so that a
point for which an iterate lands on 7 ( f) will have uncountably many different forward
orbits, causing such an asymptotic multiplicity not to exist. However, we can apply
the results of [21] at regular periodic points, as we will now summarize.

Let g : (C?,0) — (C?,0) be a dominant holomorphic germ. Then (z, g") =
34 2u(z, g") is submultiplicative:

f(z, ") < iz, gMHg"(2), g™).
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In particular,

Ioo(z, §) i= lim Qu(z, gM)'/"

exists.
For any n € N, let c¢(z, g") be the order of the lowest order term in the
power series for g” centered at the origin. It follows directly from the definition

that ¢(z, ") > c(z, g")c(g"(z), g™). Moreover, Favre and Jonsson proved that
c(z,g") < %,u(z, g") + 1. Therefore, the limit

Coo(2. ) = limc(z, g")'/"
exists and satisfies

Coo(2, 8) = Ihoo(2, 8)- (7.6)
Suppose z is a regular periodic point of period k for the dominant rational map
f : CP? — CP?. Then, in suitable local coordinates, /¥ defines a dominant holomor-

phic germ f¥ : (C2,0) — (C2, 0). By the discussion of the previous two paragraphs,
we can define

Kooz, £) i= lim Az, V"™ and  cxolz, £) i= lim c(z, f™)V/,
n—oo n—o0

The total degree of the Jacobian divisor Jac f* on CP? is 3(d* — 1), so Jac ¥ cannot
vanish to more than this order at 0; see Remark A.3. This implies that

Coo(Z, f) = Moo(z, ) = d = deg(f). (1.7)

In particular, this justifies the definition of maximally superattracting regular periodic
point from the Introduction.

Theorem 7.5 (Favre—Jonsson [21, Thm. 4.2]) Let g : (C%,0) — (C2,0) be a holo-

morphic germ. Let Vi, ..., Vi be the irreducible components of the critical set of g.
Assume that c6(0, g) < oo(0, g). Then, there exists ay, ..., ar > 0 (not all zero)
such that

g (Z ai[vi]> > 1o 0. ) (Zai[m) . (78)

Inequality (7.8) means that if one subtracts the current on the right from the current
on the left, then the result is a weighted sum of currents of integration over finitely
many analytic curves, each assigned a non-negative weight.
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Corollary 7.6 Suppose that f : CP* — CP? is a dominant algebraically stable ratio-
nal map of degree d. If 7 is a regular periodic point of period k for f such that

Coo(2, ) < poo(z, f) =d, (1.9)

then f* has a backward invariant curve C through z. Each of the irreducible compo-
nents of C passes through z.

Proof Taking the k-th iterate, we can suppose z is a regular fixed point for f. Theo-
rem 7.5 implies that there exist weights aq, ..., ar > 0 (not all zero) such that (7.8)
holds with (0, f) = d. Suppose two irreducible branches V; and V; of the crit-
ical locus of the germ f : (C2%,0) — (CZ,0) are obtained as the restriction of the
same algebraic curve from the critical locus of f : CP? — CP2. In this case, it is
straightforward to check the proof of Theorem 7.5 from [21] the weights are equal:
a; = aj. Therefore, the local current Zi a;[V;] extends to a global closed positive
(1, 1) current

T =Y axlCi]

on CP? which also satisfies f/*T > d T. Since the pullback under f multiplies the
total mass of a closed positive (1, 1) current on CP? by exactly d, we conclude that
f*T =d T (see Appendix A.3). In particular, the support of 7' is a backward invariant
curve for f passing through z. O

7.3 Backward Invariant Curves

Because of Corollary 7.6 we need a better understanding of algebraic curves that are
backward invariant under some iterate of f. This subsection is devoted to proving the
following:

Proposition 7.7 Suppose that f satisfies Hypotheses (1)—(iii) of the Equidistribution
Theorem and that zg is a regular periodic point of period k for f. If C is a (possibly
reducible) algebraic curve that is backward invariant under f*, each of whose irre-
ducible components passes through zo, then zg € E(b) (see p. 6 for the definition of
ED)).

Proof We will show that z( is superattracting and that there is some algebraic curve
C’ C C (possibly also reducible) satisfying the conditions necessary for zg to be in
E).

Let Cy, ..., Cy denote the irreducible components of C and suppose for contra-
diction that none of them is collapsed under f¥. In this case, we claim that f—*
induces a permutation on {C1, ..., C;,}. Consider an arbitrary 0 < i < m and notice
that f~%(C;) is not reduced to an indeterminate point. Indeed, by considering C;
as a divisor (C;) of multiplicity one, the fact that (f ky*#(C;) is a divisor of degree
dk deg(C;) > 0 (see [4, Lem. A.5]) implies that f’k(C,') is a non-trivial algebraic
curve. Since C is backward invariant under f*, this implies that there is at least one
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1 <j<msuchthatC; C f —k (Ci). Meanwhile, for each 1 < n < m the irreducible
component C,, is not collapsed by f¥ so that it can occur as a component of f~*(C »)
for at most one value of 1 < p < m. We conclude that, for each 1 < i < m there
exists a unique j such that f~%(C;) = C;.

In particular, there exists £ > 1 such that B := C| is backward invariant under f b
If we consider B as a divisor (B) of multiplicity one, then this implies that

(f**(B) = a*(B) (7.10)

(see again [4, Lem. A.5]).

Backward invariance under f also implies f (B \ I(f%)) c B. Moreover,
since we are supposing that none of the irreducible components of C is collapsed by
f*, we can use (7.10) and the Whitney Fold normal form given by Lemma A .4 to find
that o (z, f tk ) > d* forall 7 € B. Using Hypothesis (i), it follows from Lemma 7.4
that that B contains a point of ().

ForeachO < j < tkwelet Bj := fJ(B\ I(f/)),whichisanon-trivial irreducible
algebraic curve that is not collapsed by f. Proposition 5.10 gives that at most finitely
many points of B; are in D. 4. Thus, in order to have o (z, f tky = q for generic
points of B, we must have that B; C D, foreach 1 < j < £k. Hypothesis (ii) implies
that B; is disjoint from I (f) for each 0 < j < £k, contradicting that B contains a
point of 1 (f%).

We can, therefore, let C’ C C denote the (non-trivial) union of all irreducible com-
ponents of C that are collapsed by some iterate of f*. Since each of these components
passes through the regular periodic point zq, each of them collapses to zq. Since C is
backward invariant under f*, C’ is also backward invariant under f*.

Suppose for contradiction that zq is a smooth point of C’. Since every irreducible
component of C passes through zo, this implies that C” is itself irreducible. In particular,
backward invariance of C’ under f¥ implies that

(foH*chy = ak«). (7.11)

Then, we can choose local coordinates (x, y) centered at z such that C’ = {x = 0}.
Write f* in these local coordinates as

R,y = (FF e v, e ). (7.12)

Equation (7.11) implies that flk (x,y) = xd g(x, y) for some non-vanishing holo-
morphic function g. From this, it is immediate that f* contracts the volume of a
small bidisc centered along C’ with exponent @, i.e. that for ever z € C’ we have
oz, f*) = d*.

Let zo, ..., zk—1 denote the periodic orbit of zg. Moreover, let 1 < jo < k be the
smallest iterate for which C’ is collapsed by f/. Foreach 0 < j < jo we let

= FICNI().
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Then C}O_l is collapsed by f and zj, € I~ (f), by definition. By Hypothesis (iii), we
have o (z;, f) < d foreach 0 < j < k — 1. Meanwhile, for each 0 < j < jo — 1
the curve C’ ¢ D-4, by Proposition 7.2. Therefore, to have o (z, f*) > d* for every
7z € C' we must have C’ _1 € Dxq4. This contradicts Hypothesis (ii) since C _1
contains a point of 7(f), by Lemma A.1.

Therefore, z is a singular point of C’. We now use this to show that z¢ is super-
attracting. Let (x, y) be local holomorphic coordinates centered at zo and suppose
that C’ is given in these coordinates as C’ = {g(x, y) = 0} for some holomorphic
function ¢ (more specifically, we choose ¢ so that it defines the divisor (C’) with
multiplicity one). Since zg is a singular point of C’ we have

q(0,0) = a—q(O, 0) = a—q(O, 0) =0. (7.13)
ax ay

Let £ > 1 be chosen so that f*(C’ \ I(f%*)) = zo. Writing f%*(x,y) =
( ffk (x,y), fzek (x, y)) in these local coordinates we have that

Ko, y) =g, gix,y)  and R, y) =g, g, y),  (7.14)

for some holomorphic functions g1 (x, y) and g2(x, y). Equations (7.13) and (7.14)
imply that Df (0, 0) = 0, i.e. that z is a superattracting periodic point. We conclude
that zo € £(b). O

7.4 Behavior of the Volume Exponent ¢ Under Iteration

The exponents o (z, f) do not transform very well under iteration: if an iterate of z
lands on I (f), this leads to many different orbits of z, all of which we need to control.
Let Y c CP2. Given a sequence of open sets Ny, ..., N1 C CP? let

flg()”’Nl """ v, (¥) ={z0 € No : there exists orbitz = (20, 21, - - -, Zn)

withz; € N; forl <i <n—1landz, € Y}.

If z = (z0,21,...,2n—1) is an orbit of f we let o (z, f*) = 0(20, 215 -+ Zn—1, ™)
be the smallest positive number such that for any y > o (z, f") thereis an K > 0 and
neighborhoods Ny, ..., Ny—1 of zg, ..., z,—1 such that
vol(fy. y._ ¥) < K(vol Y)Y (7.15)
for any measurable ¥ c CP?.
It is clear from the definition that for any orbit zg, ..., z,—jandany 1 <k <n—1
n k n—k
0(20, 2155 Zn—1, ) £ 0(20, -+ oy 2k=1, [)O (ks oo oy Zn—1, f777) and
U(ZO’ Z]a LR ] Z}’l*lv fn) S O—(ZOa fn)’

where the exponent on the right-hand side of the second inequality is from (1.4).
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Lemma 7.8 For any zg € CP? we have

o(zo, fM) <supo(z, "), (7.16)
¥4

where the supremum is taken over all orbits 7 = (2o, . . ., Zn—1)-

Proof Since the indeterminate points of f  for each 1 < i < n are isolated, we can
find a neighborhood V' of z containing no indeterminate points for each f? other than
(potentially) zo. We do a finite sequence of blow-ups over zo forming 7 : V —> CP?
so that for each 1 < i < n the iterate f' lifts to a regular map f! making the diagram

commute wherever f' o 7 is defined.
Let y be any exponent greater thansup, o (z, f"'). Any pointz € ~1(z) determines
the following orbit of length n of z:

2= zeD) = (2 1@, 71D (7.17)
By choice of y, there is a is a sequence of neighborhoods Uy(z), ..., U,—1(z) of
20 - - -, Zn—1, respectively, so that (7.15) holds. Associated to this sequence is a neigh-

borhood U (z) of Z such that for any ¥ C CP? we have

ol o @ (( ™7'yn U(z)) . (7.18)
Since 7~ !{zo} is compact, there exist finitely many length n orbits 7, .. 78 of 7o
whose  neighborhoods  U(z'),...,U zhH cover 7w l(zg). I we let

U= Ule b (lj(zi)) then (7.18) implies that for any ¥ C CP? we have

----- U,— I(Z)

4
—n —n
f (Y)ﬂUCLJl et
=

The result follows since each fU @... ,.)Y satisfies (7.15) with some suitable

multiplicative constant. O
We will also use a modified notation o (z, f, W) for the volume exponent in the

case that we require that (1.4) only holds for measurable Y C W. A straightforward
adaptation of the proof of Lemma 7.8 yields:
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Lemma 7.9 Let 2 C CP? be a forward invariant open set. For any zo € CP? \ © we
have

o(z0, f*,CP*\ Q) < supo(z, ™), (7.19)
z

where the supremum is taken over all orbits 7 = (20, ..., Zn—1) C CP? \ Q.

7.5 Proof of Proposition 7.1.

Let 2 be any forward invariant neighborhood of the exceptional set £. We will prove
that there exist B > 0 and 1 < o < d such that for any n > 0 and any finite orbit
20, - - - » Zn—1 Temaining in CP? \ © we have

0(20s ..., 2n—1, f") < Ba". (7.20)

We can then let ng be sufficiently large that 7 := Ba"® < d"°. Then Lemma 7.9 will
imply that o (zo, f"0, CP?\ Q) < 7 forany zg € CP?\ Q. Since CP? \ Q is compact,
it is then covered by finitely many neighborhoods such that on each neighborhood N
we have

vol(f Y N'N) < Ky (vol Y)/7,

which will, therefore, prove the proposition.
To prove (7.20), we consider three types of finite orbits.

Type I Periodic orbits that pass through D4 \ €.

Let p be any point from such an orbit. We could'! have o (f"(p), f) = d for every
n > 0, but the hypothesis that p ¢ £ and the results of Sects. 7.2 and 7.3 will imply
that o (p, f") decays sufficiently as we iterate and indeed grows at exponential rate
slower than d.

By Hypothesis (iii), p is a regular periodic point, i.e. the orbit of p is disjoint from
I(f). Since p ¢ £(a) it is not maximally superattracting, coo(p, f) < d. Therefore,
since p ¢ £(b), Corollary 7.6 and Proposition 7.7 imply that u~(p, f) < d. Using
the volume estimate from Lemma 5.2, this implies that lim sup(o (p, f*")/" < d.
Hence, (7.20) holds for such an orbit.

Type II Periodic orbits contained in N4 \ €.

Recall that V>4 C D> is finite and forward invariant by Proposition 7.3. It is disjoint
from I(f) by Hypothesis (ii). Inequality (7.20) holds for these orbits using exactly
the same reasoning as for orbits of Type L.

Type III Finite orbits z = (20, ..., 2n—1) C CP? \ 2 that are disjoint from orbits of
Type I and Type II.

Let k denote the number of elements of N- >d, which is finite and forward invariant by
Proposition 7.3. Since N> is forward invariant and orbit z is disjoint from periodic

1T For example, p could be a fixed point in D 4.
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orbits of Type II, we have zo, ..., zp—k—1 ¢ N>q. Moreover, Proposition 7.3 gives
N € N such that at least one out of every N points of zg, ..., Z,—k—1 1S “good”,
landing in CP? \ D= 4. Moreover, Lemma 5.9 gives a uniform 1 < op < d such that
o(p, ) < op for these “good” points.

Let £ denote the number of elements of D- 4, which is finite by Proposition 7.2.
Since orbit z is disjoint from periodic orbits of Type I, it can only meet D~ ; at most
£ times. In other words, o (z;, f) > d for at most £ values of 0 < i <n — 1. If we
absorb the excess o (z;, f)/d > 1 from these at most k points into the multiplicative
constant B, then the previous paragraph implies that (7.20) holds for an orbit of

Type 111
Let us now consider an arbitrary finite orbit z = (zg, ..., Zy—1) C CP? \ Q. Ifitis
not of Type I, 11, or III, then there is some 0 < m < n — 1 such that (z9, ..., Zm—1)

is of Type Il and (z, . . ., zn—1) is of either Type I or II. Inequality (7.20) holds for
such an orbit using the submultiplicativity

O-(Z()? ceesZn—1, fl‘l) S U(ZOv e Zm—1, fm)a(znls ceeyZn—1, fl’l*m).

This completes the proof of Proposition 7.1 and hence of the Equidistribution Theorem.
]

7.6 A Useful Proposition for Determining £

It is easy to detect collapsed curves by checking each irreducible component of the
critical locus, so it is usually easy to determine £(b). The following proposition makes
it easier to determine & (a).

Proposition 7.10 Let f : CP?> — CP? satisfy the hypotheses of the Equidistribution
Theorem. Then, any maximally superattracting periodic orbit (i.e. any point of €(a))
has orbit passing through D= .. Moreover; it either

(1) passes through the finite set D~ g4, or
(ii) is contained entirely in the finite non-escaping set N>4 C D>g4.

Proof Suppose z( is a maximally superattracting periodic point so thatd = coo (20, f),
by definition. Iterating a round ball of small radius centered at zg, this implies that
liminf(o (p, f"))!/" = d. Using the submultiplicativity of the volume exponent o,
the only way this can happen is if (i) or (ii) holds. O

8 Applications of the Equidistribution Theorem to Other Hierarchical
Lattices

We now consider the Migdal-Kadanoff renormalization mappings associated to the
five hierarchical lattices whose generating graphs are shown in Fig. 4 (in the introduc-

tion).
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8.1 Linear Chain

The hierarchical lattice generated by the double edge shown in Fig. 4 is the same as
the classical Z! lattice. The corresponding renormalization mapping is

RIU:V:W=[U*+V*:VU+W): W+ V?].

Its critical locus consists of the curves C1 := {U+W = 0}and C; := {UW—V? = 0}.
Generic points z on each of these curves have volume exponent o (z, R) = 2 = deg(R).
Since these two curves meet at the indeterminate points a4+ := [£i : 1 : Fi], this
implies that o (a+, R) = deg(R), violating Hypothesis (ii) of the Equidistribution
Theorem.

Despite this, the Global LYF Theorem holds for this hierarchical lattice. Let F
denote the family of lines passing through the fixed point [1 : O : 1]. Each line
L e F is invariant under R and all but finitely many lines from F intersect Cy at
two distinct points, neither of which is the intersection of the Principal LYF Locus
So = {U 4+ 2V + W = 0} with Cs. For such generic lines L we have R|; (z) = z>
in a suitable choice of local coordinate z. The exceptional points z = 0 and z = oo
correspond to the intersections of L with the conic C; and Sy N L corresponds to a
non-exceptional point. Therefore, for all but finitely many L € F we have that the
(normalized) iterated preimages of Sp N L equidistribute to the measure of maximal
entropy for R|r, see [24,39,40], which is equal to the slice S|, where S is the Green
current for R. This is sufficient to prove that %(R")*[So] — §. Pulling everything
back under W one finds that the Global LYF Theorem holds for this hierarchical lattice.

8.2 k-Fold DHL

One can consider a generalization of the DHL with the generating graph having valence
k > 2 at the marked vertices a and b; see Fig. 4. The renormalization mapping is

RIU:V:W]=[(U>+ V)" viw + Wk (W? +v?)1],

whose lift R : C3 — C3 has Jacobian

det DR = 22> V-1 (UW — V) (U + Wk (U2 + v (w2 4+ v2)*

In particular, the critical locus of R is the same as for the DHL (see Sect. 3.5). However,
when considered as a divisor, the curves have higher multiplicities, depending on k.
This mapping has the same indeterminate points as for the DHL; I(R) = {a4}.
Since 1(R) # {J, Hypothesis (i) is satisfied. The mapping R also has the same
superattracting fixed points {e, ¢'}. Just as in Sect. 6.1, one can check that for any
z € CP? \ {e, ¢’} one has o(z, R) < 2k = deg(R). Therefore, o(a+) < deg(R),
giving that Hypothesis (ii) is satisfied. Meanwhile, the only curve collapsed by R is
{U + W = 0}, which is collapsed to the fixed point by :=[1: 0 : 1] ¢ {e, ¢’}. Since
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D-4 C {e, €'} it is invariant under R and disjoint from I(R) U I~ (R) = {a+, bo},
Hypothesis (iii) is also satisfied.

We now determine the exceptional set £. Since D>4 C {e, ¢’} and since {e, ¢’}
is invariant, Proposition 7.10 gives that any point of £(a) is from {e, ¢'}. As for the
DHL, the curve {UW — V2 = 0} is invariant and on it R is conjugate to z +—> Z*,
with z = 0 and z = oo corresponding to the superattracting fixed points e and ¢/,
respectively. Therefore, coo(e, R) = coo(e’, R) = k < 2k = deg R, giving that these
points are not maximally superattracting. Therefore, £(a) = ¢J. Meanwhile, the fixed
point by € I~ (R) is not superattracting, so £(b) = @.

Therefore, the Equidistribution Theorem gives that the (normalized) iterated preim-
ages of any algebraic curve A C CP? equidistribute to the Green Current for R. In
particular, the Global Lee—Yang—Fisher Current Theorem holds for the k-fold DHL.

8.3 Triangles

The renormalization mapping for the hierarchical lattice generated by the triangle
shown in Fig. 4 is:

RU:V :W=[U+UV?: UV + VW : VW + W3],
The lift R : C3 — C3 has Jacobian
det DR=6V (U + W) (U>V? +3U*W? — V2WU + V>W?),
so that the critical locus is the union of two lines and a quartic:

Ly:={V =0},
={U+ W =0}, and
0 = |U*VI+3UW2 - UV?W + V2W?},

each with multiplicity one.

Hypothesis (i) is satisfied because the indeterminacy locus /(R) is non-empty,
consisting of three points: p := [0 : 1 : 0] and g4+ := [£i : 1 : Fi]. Point p is
resolved in one blow-up. In a neighborhood of Lexc(p) the lifted map R has critical
locus consisting of Lexc(p) and the proper transforms L, and Q, each with multiplicity
one. Moreover, Ez and Q intersect Lexc(p) at three distinct points, each of which is a
normal crossing singularity. Therefore, Lemma 5.5 gives that any point z € Lexc(p)
has o (z, Ié) = 2. Proposition 5.8 then gives o (p, R) = 2 < deg(R).

Both of the indeterminate points g+ are also resolved with one blow-up. The lift R
does not have Lexc(g+) as a critical curve. The proper transforms L2 and Q become
disjoint and smooth in a neighborhood of the exceptional divisor Lexc(g+), so that
det DR has multiplicity O or 1 at every point of Lexc(g+). Lemma 5.2 and Proposi-
tion 5.8 then imply that o (g4, R) = 2 < deg(R). We conclude that Hypothesis (ii) is
satisfied.
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We now check Hypothesis (iii). Since each of the critical curves has multiplicity
one, Lemma 5.2 gives that o (z, R) < 2 at every smooth point of the critical locus. Let
r:=1[1:0:—1] = L; N Ly. Then the singular points of the critical locus are
{r, e, ¢} UI(R). Moreover, one can choose local coordinates (x, y) in a neighborhood
of r such that det DR < xy. Hence Lemma 5.5 gives o (r, R) = 2, sothatr ¢ D>,.
Thus, D>4 C {e, €'} is, therefore, invariant under R.

Both L and Q go through two superattracting fixed points e :=[1 : 0 : 0] and
e := [0 :0 : 1], so they are not collapsed by R. Meanwhile, a direct calculation
shows that L; is collapsed by Rtos :=[1:0: —1] € I”(R), which is a fixed point
of R. Since D, is invariant under R and disjoint from /(R) U I~ (R) = {p, q+, s},
Hypothesis (iii) is satisfied.

By Proposition 7.10, any point of £(a) passes through Ds4 C {e, ¢'}, which is
invariant under R. Moreover, the fixed points ¢ and ¢’ are not maximally superattracting
since the curve {UW — V2 = 0} is invariant for this renormalization mapping as
well, and on it R is conjugate to z > z2. Therefore, £(a) = #. The only point of
I~ (R) is the fixed point s, which is not superattracting. Therefore, £(b) = @.

Thus, the Equidistribution Theorem gives that the (normalized) iterated preimages
of any algebraic curve A equidistribute to the Green current for R. In particular,
the Global Lee—Yang—Fisher Current Theorem also holds for the hierarchical lattice
generated by the triangle.

8.4 Tripod

The renormalization mapping for the hierarchical lattice generated by the tripod shown
in Fig. 4 is:

R[U :V : W]
=[P+ UV + VP + VW V(U + UV + VW + W) UV + V3
+ VWA 4+ W,
which has indeterminacy set I(R) = {[w: 1 : @] : @® = —1}.
One can resolve the indeterminacy point p = [—1 : 1 : —1] by doing three

blow-ups, each one on done on the previously created exceptional divisor. When one
applies Lemmas 5.2, 5.5, and Proposition 5.8 one finds o(p, R) > 3 = deg(R).
Therefore, Hypothesis (ii) of the Equidistribution Theorem fails for this mapping. In
particular, we do not know if the Global Lee—Yang—Fisher Current Theorem holds for
the hierarchical lattice generated by the tripod.

8.5 Split Diamond

The renormalization mapping for the hierarchical lattice generated by the split diamond
shown in Fig. 4 is:

RIU:V:W]= [US +202V3 4 viw i v2 (U3 +2UVW+W3) : Uv4+2V3W2+W5].
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The lift R : C3 — C3 has Jacobian

det DR =10V (UW — V?)
(4V3U° +5WU° +5VEW2U° + sviwut + 1svwiut
+ VU3 +5V3W3U3 +5WoUP 4+ 5vIWAU? 4 5vewOU?
— VWU +5V*W*HU + vOW? +4v3wO). (8.1)

One can check that I(R) = {[0 : 1 : 0, [w : 1 : @] : @ = —1}. Bach of
these indeterminate points requires three blow-ups to resolve. One can work through
the details in Maple and check that the lifted mappings have Jacobian of the form
det DR = x“ y? with max(a, b) < 3 at each of the points on each of the exceptional
divisors. Thus, Lemma 5.5 and Proposition 5.8 give o (p, R) = 4 < deg(R) for each
p € I(R). Therefore, Hypotheses (i) and (ii) are satisfied.

Let us check Hypothesis (iii). Since each of the critical curves has multiplicity 1,
we have o(p, R) < 2 for any point outside the singular locus of the critical set.
Meanwhile, each of the intersections of any two of the three critical curves and each
of the singular points of C3 lie in I (R) U {e, ¢’}. We conclude that D>, C {e, ¢’} and
is therefore invariant under R and disjoint from 7 (R).

Each of the irreducible components of the critical locus (corresponding to
the three factors of (8.1)) passes through the two superattracting fixed points
e=1[1:0:0]ande = [0 : 1 :0]of R and, therefore, there are no curves col-
lapsed by R. Therefore, I~ (R) = {. Since D is invariant under R and disjoint from
I(R) U I~ (R), Hypothesis (iii) is satisfied.

Since I7(R) = @ we have that £(b) = . Meanwhile, the critical curve
{(UW — V2 = 0} is invariant under R and on it R is conjugate to z — z2, with z = 0
and z = oo corresponding to the superattracting fixed points e and ¢’, respectively.
Therefore, coo (e, R) = coo(€’, R) = 2 < 5 = deg R, giving that these points are not
maximally superattracting. Therefore, we also have that £(a) = ¥ and the Equidistri-
bution Theorem gives that the (normalized) iterated preimages of any algebraic curve
A C CP? equidistributes to the Green Current for R. In particular, the Global Lee—
Yang—Fisher Current Theorem also holds for the hierarchical lattice generated by the
split diamond.
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Appendix A: Elements of Complex Geometry
This appendix presents background on the material from complex geometry that we

need beyond what is described in [4, Appendix A]. We refer the reader there for
background on rational maps, blow-ups, and divisors.
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A.1: Structure of Rational Maps f : CP? — CP?

Throughout this subsection, we suppose f : CP? — CP? is a dominant rational map
of degree d > 2.

—

There is a finite sequence of blow-ups 7 : CP? — CP? done over the points of the

indeterminacy set I (f) so that f lifts to a regular map f : CP?> — CP?, making the
following diagram commute

CP? (A.1)

CP? — CP?,

wherever f o is defined (see [46, Ch. IV, §3.3]). We call such a commutative diagram
a resolution of the indeterminacy of f.
For any ¥ C CP? one can use the resolution of indeterminacy (A.1) to define

f) = f@ oy and Ty =a (7o), (A2)

These definitions are independent of the choice of resolution.
The following two lemmas are well-known; see for example [22]:

Lemma A.1 Any curve that is collapsed by f passes through I (f).

Let Crit( f) denote the critical locus of f |CP2\I(f-) andlet V := f(I(f)UCrit(f)).
Then the mapping '

Flepzy p-1vy  CP\ f71(V) - CP2\ V

is a finite degree covering map. The topological degree dyp( f) is the degree of this
cover.

LemmaA2 If I(f) # ¥, then deg,,,(f) < d*.

Remark A.3 Let f :C = EC3 denote a homogeneous lift of f. Then, the complex
Jacobian Jac(f) := det Df is a homogeneous polynomial of degree 3(d — 1). It
induces a divisor Jac(f) on CP? of the same degree.

Lemma A.4 (Whitney Fold Normal Form'?) Suppose C is an irreducible component
of the critical locus that is not collapsed by f. Then, there is a finite set S C C and
r = rc € Z4 such that for any p € C \ S there exist local holomorphic coordinates
(x, y) in a neighborhood of p and (z, w) in a neighborhood of f(p) in which

12 Here we are using a more general notion of “Whitney Fold” that was used in [4, Appendix D.2], where
only exponent rc = 2 was considered.
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(z,w) = f(x,y) =(x,y").

In particular, at every p € C\ S we have o (p, ) = e(p, f) = r and forevery p € C
we have o (p, f) > r.

(The volume exponent o (p, f) is defined in Sect. 1.3 and the local topological degree
e(p, f)in Sect. 7.1.)

Proof We include the following points from C in S:

(i) singular points of the critical locus of f,
(ii) points p € C for which T),C C KerDf(p), and
(iii) points of I(f).

Since C is not collapsed by f, the set S is finite and, since C is irreducible, C \ S
is connected. Essentially, the same proof as the characterization of Whitney Folds
presented in Lemma D.2 of [4] gives that for each point pg satisfying (i) - (iii) we
can find local coordinates in some neighborhoods of py and f(po) in which the
map has the normal form (z, w) = f(x,y) = (x,y") for some integer r > 2.
Moreover, as C \ S is connected, we see that the exponent r is constant on C \ S.
From the normal form and Lemma 5.2, we see that at every point of C \ S we have
o(p, f) =ulp, f)+1=ce(p, f) =r. The fact that o (p, f) > r forevery p € C
is because D, is algebraic, by Lemma 5.9. O

A.2: Hyperplane Bundle

The hyperplane bundle and its tensor powers provide a convenient way to work with
divisors on CP*.

The fibers of 7 : CK*1 < {0} — CP* are punctured complex lines C*. Compactify-
ing each of these lines at infinity, we add to CKt1 < {0} the line at infinity Lo, ~ CPK
obtaining the total space

(Ck+1)* UL ~ (CPIH—I)* — (C]P)k-‘rl ~ {0}

The projection naturally extends to 7 : (CP*T1)* — CP¥, whose fibers are complex
lines C. The resulting line bundle is called the hyperplane bundle over CP*.
In homogeneous coordinates (zg : --- : zx : t) on CP**!, this projection is just

wi(zor izt D) > (2ot k), (A3)

with Lo = {t = 0}, (CK*1)* = {+ = 1}, and the map (z : 1) — 1/||z|| parameterizing
the fibers (here ||z|| stands for the Euclidean norm of z € CK1 {0}). This line bundle
is endowed with the natural Hermitian structure: ||(z : t)|| = |t]/||z]l.
Any non-vanishing linear form ¥ on C**! determines a section of the hyperplane
bundle:
sy 1z (2:Y(2), zeCHL (A.4)

@ Springer



Lee-Yang-Fisher Zeros for the DHL and 2D Rational Dynamics 825

The divisor Dy (a projective line counted with multiplicity 1) is precisely the zero
divisor of sy.

The dth tensor power of the hyperplane bundle can be described as follows. Its total
space X is the quotient of (CK+2)* by the C*-action

(20s -+ s 2k 1) > (AZ0, ..., Azk, A%D), A e C*.

We denote the equivalence class of (Z, t) using the “homogeneous” coordinates (Z : 7).
The projection X d 5 CP*is natural, as above (A.3). A non-vanishing homogeneous
polynomial P on C**! of degree d defines a holomorphic section sp of this bundle
given by sp(z) = (Z: P(z)). This bundle is endowed with the Hermitian structure:

Iz 0l = 111/l (A.5)

More generally, any divisor D = Dp — D defines a section sp of the deg(D)-th
tensor power of the hyperplane bundle, defined by sp(z) = (Z : P(2)/Q(z)). One can
recover D from sp by taking its zero divisor.

A.3: Currents

We will now give a brief background on currents; for more details see [38,43] and the
appendices from [16,47]. Currents are naturally defined on general complex (or even
smooth) manifolds, however, to continue our discussion of rational maps, divisors,
etc, we restrict our attention to projective manifolds.

A (1, 1)-current T on V is a continuous linear functional on (k — 1, k — 1)-forms
with compact support. It can be also defined as a generalized differential (1, 1)-form
ST, jdz;dz; with distributional coefficients.

A basic example is the current [A] of integration over the regular points Ayeg of an
algebraic hypersurface A:

w w,
Areg

where w is a test (k — 1, k — 1)-form. The current of integration over a divisor D is
defined by extending linearly.

The space of currents is given the distributional topology: 7, — T if
T,(w) — T(w) for every test form w.

A differential (k—1, k—1)-form w is called positive if its integral over any complex
subvariety is non-negative. A (1,1)-current 7T is called positive if T (w) > 0 for any
positive (1,1)-form. A current T is called closed if dT = 0, where the differential d
is understood in the distributional sense.

In this paper, we focus on closed, positive (1, 1)-currents. They have a simple
description in terms of local potentials, rather analogous to the definition of divisors.
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Recall that d and 9 stand for the holomorphic and anti-holomorphic parts of the
external differential d = 9 + 8. Their composition —88 can be'? thought of as a kind
of “pluri-Laplacian” because, given a C>-function 4, the restriction of ~ - ddh to any
non-singular complex curve X is equal to the form %A(MX )dz A dz, where z is a
local coordinate on X and A is the usual Laplacian in this coordinate.

If U is an open subset of Ckand h : U - [—o0, 00) is a plurisubharmonic
(PSH) function, then 7’148 dh isaclosed (1,1)-current on U. Conversely, the 33-Poincaré
Lemma asserts that every closed, positive (1, 1)-current on U is obtained this way.

Therefore, any closed positive (1, 1)-current 7 on a manifold V' can be described
using an open cover {U;} of V together with PSH functions h; : U; — [—00, 00) that
are chosen so that T = ;T—'aéhi in each U;. The functions h; are called local potentials
for T and they are required to satisfy the compatibility condition that ; — h; is
pluriharmonic (PH) on any non-empty intersection U; N U; # @. The support of T is
defined by:

suppT :={z € V : if z € U; then h; is not pluriharmonic at z}.

The compatibility condition assures that that above set is well-defined.
The Poincaré—Lelong formula describes the current of integration over a divisor
{U, ) 8i } by the system of local potentials /; := log |g;|. L.e., on each U; we have
[D] L 38 log|gi|- The result is a closed (1, 1)-current, Wthh is positive iff D is
effectlve (i.e. the multiplicities k;, . .., k, are non-negative).

Suppose R: V — Wisa dominant rational map and T is a closed-positive (1, 1)-
current on W. The pullback R*T is closed positive (1, 1)-current on V, defined as
follows. First, one obtains a closed positive (1, 1)-current R*T defined on V \ I(R)
by pulling-back the system of local potentials defining 7 under R : V . I(R) — W.
One then extends R*T trivially through 7 (R), to obtain a closed, positive (1, 1)-current
defined on all of V. (By a result of Harvey and Polking [31], this extension is closed.)
See [47, Appendix A.7] for further details. Pullback is continuous with respect to the
distributional topology.

Similarly to divisors, there is a particularly convenient description of closed, positive
(1, 1)-currents on CP¥. Associated to any PSH function H : CKt! — [—o0, 00),
having the homogeneity

H(Z) =mlog|Ar| + H(2), (A.6)

for some m > 0, is a closed, positive (1, 1)-current, denoted by Ty = (%Bé_)H )
that is defined as follows. For any open covering {U;} of CIP¥ admitting local sections
si : Up — CF+1 {0} of the canonical projection 77, Ty is defined by the system of
local potentials {U;, H o s;}. i.e., in each U;, Ty is defined by Ty = ]’7485 H os;.
Moreover, every closed positive (1, 1)-current on CP* is described in this way; See
[47, Thm. A.5.1]. The function H is called the pluripotential of Ty .

13 Many authors introduce real operators d = 3 + 9 and d = ﬁ(é — 9) and write dd€ instead of %35.
We use %85 to avoid confusion between the operator d and the algebraic degree of a map.
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The mass of the current T is defined to be
1T = / T Aowpg'
CP*

where wgs is the Fubini-Study (1, 1) form on CPFand T /\w{§g1 is the positive measure

defined by (T Awfg', f) := (T, fofg')- A calculation shows that the mass of Ty can

be computed from the potential H as || Ty || = m, where m is the constant from (A.6).
If R : CP¥ — CP* is a rational map, the action of pull-back is described by

R*Ty =T, p. (A7)

If R has algebraic degree d, then the lift Risak+ 1-tuple of homogeneous polynomials
of degree d. It follows that the mass satisfies

IR*Tyll =d| Ty

A.4: Kobayashi Hyperbolicity and Normal Families

In Sect. 4 we use the Kobayashi metric to prove that the iterates R" form a normal
family on certain subspaces of CP?. Here, we recall the relevant definitions and some
important results that we use. The reader can consult the books [35,37] and the original
papers by Green [25,26] for more details. For more dynamical applications, see e.g.
[16,47].

The Kobayashi pseudometric is a natural generalization of the Poincaré metric on
Riemann surfaces. Let || - || stand for the Poincaré metric on the unit disk D. Let M
by a complex manifold. Pick a tangent vector & € T M, and let H (&) be the family of
holomorphic curves y : D — M tangent to the line C - & at y(0). Then Df (v) = &
for some v = v, € TolD, and the Kobayashi pseudometric is defined to be:

dspy (§) = infy epye) llvy |- (A.8)

The Kobayashi pseudometric is designed so that holomorphic maps are distance
decreasing: if f : U — M is holomorphic then dsy (Df (§)) < dsy (§).

The reason for “pseudo-" is that for certain complex manifolds M, ds(§) can vanish
for some non-vanishing tangent vectors £ # 0. For example, ds identically vanishes
on Ck or CP*. A complex manifold M is called Kobayashi hyperbolic if ds is non-
degenerate: ds(£) > O for any non-vanishing & € T M. Then, it induces a (Finsler)
metric on M.

Let N be a compact complex manifold. Endow it with some Hermitian metric
| - |n. A complex submanifold M C N is called hyperbolically embedded in N if
the Kobayashi pseudometric on M dominates the Hermitian metric on N, i.e., there
exists ¢ > 0 such that dsy; (&) > c|&|n for all &€ € T M. Obviously, M is Kobayashi
hyperbolic in this case.
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A complex manifold M is called Brody hyperbolic if there are no non-constant
holomorphic mappings f : C — M. If M is Kobayashi hyperbolic, it is also Brody
hyperbolic, but the converse is generally not true unless M is compact.

An open subset of CP? that is Kobayashi hyperbolic, but not hyperbolically embed-
ded in CPP? is described in [35, Example 3.3.11] and an open subset of C? that is Brody
hyperbolic but not Kobayashi hyperbolic is described in [35, Example 3.6.6].

A family F of holomorphic mappings from a complex manifold U to a complex
manifold M is called normal if every sequence in F either has a subsequence con-
verging locally uniformly or a subsequence that diverges locally uniformly to infinity
in M. In the case that M is embedded into some compact manifold Z, a stronger
condition is that F is precompact in Hol(U, Z) (where Hol(U, Z) is the space of
holomorphic mappings U — Z endowed with topology of uniform convergence on
compact subsets of U).

Proposition A.5 Let M be a hyperbolically embedded complex submanifold of a com-
pact complex manifold N. Then, for any complex manifold U, the family Hol(U, M)
is precompact in Hol(U, N).

See Theorem 5.1.11 from [35].

The classical Montel’s Theorem asserts that the family of holomorphic maps
D — C~{0,1} is normal (as C \ {0, 1} is a hyperbolic Riemann surface). It
is a foundation for the whole Fatou-Julia iteration theory. Several higher dimensional
versions of Montel’s Theorem, due to M. Green [25,26], are now available. Though
their role in dynamics is not yet so prominent, they have found a number of interesting
applications. Below we will formulate two particular results used in this paper (see
Sect. 4). The following is Theorem 2 from [25]:

Theorem A.6 Let X be a union of (possibly singular) hypersurfaces X1, ..., X,y ina
compact complex manifold N. Assume N \. X is Brody hyperbolic and
Xi, NN X N (X, U---X},) is Brody hyperbolic
for any choice of distinct multi-indices {iy, ..., ik, j1,..., ji} = {1,...,m}. Then
N ~\ X is a complete hyperbolically embedded submanifold of N.
In the last section of [25], the following result is proved:

Theorem A.7 Let M = CP>~ (Q U X U X3 U X3), where Q isa non-singular conic
and X1, X7, X3 are lines. Then any non-constant holomorphic curve f : C — M
must lie in a line L that is tangent to Q at an intersection point with one of the lines,
X, and that contains the intersection point X j N X; of the other two lines.

The configurations that appear in this theorem are related to amusing projective
triangles:

A.5: Self-Dual Triangles

Let Q(z) = Y gijziz; be a non-degenerate quadratic form in E ~ C3, and X =
{O = 0} be the corresponding conic in CP?. The form QO makes the space E Euclidean,

@ Springer



Lee-Yang-Fisher Zeros for the DHL and 2D Rational Dynamics 829

inducing duality between points and lines in CP2. Namely, to a pointz = (o : z1 : 22)
corresponds the line L, = {¢ : Q(z,¢) = 0} called the polar of z with respect to
X (here we use the same notation for the quadratic form and the corresponding inner
product). Geometrically, this duality looks as follows. Given a point z € CP?, there are
two tangent lines from z to X. Then L, is the line passing through the corresponding
tangency points. (In case z € X, the polar is tangent to X at z).

Three points z; in CP? in general position are called a “triangle” A with vertices z;.
Equivalently, a triangle can be given by three lines L; in general position, its “sides”.
Let us say that A is self-dual (with respect to the conic X) if its vertices are dual to
the opposite sides.

Lemma A.8 A rriangle A with vertices z; is self-dual if and only if the corresponding
vectors z; € E form an orthogonal basis with respect to the inner product Q.

All three sides of a self-dual triangle satisfy the condition of Theorem A.7, so they
can give us exceptional holomorphic curves C — CP? ~ (Q U X U X, U X3).

Appendix B: Green Current
B.1: Green Potential

A rational mapping R : CP" — CP" is called algebraically stable if there is no
integer n and no collapsing hypersurface V.C CP" so that R" (V) is contained within
the indeterminacy set of R, [47, p. 109]. (See also [4, Appendix A4 and AS5].)

Theorem B.1 (see [47],Thm. 1.6.1). Let R : CP"" — CP" be an algebraically stable
rational map of degree d. Then the limit

.1 s
G—gg&zﬂ%an

Toc (C3) and determines a plurisubharmonic function. This function satisfies
the following equivariance properties:

exists in L
G(Az) = G(z) +1log|r|, A€ CF,
GoR=4dG. (B.1)
It is called the Green potential of R.

B.2: Green Current

Applying 7’1486_) to the Green potential, we obtain:

Theorem B.2 (see [47],Thm. 1.6.1). Let R : CP™ — CP"™ be an algebraically stable
rational map of degree d. Then S = 7,(-00G) is a closed positive (1,1)-current on
CP™ satisfying the equivariance relation: R*S = d - S.
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The current S is called the Green current of R.
The set of normal'* points for an algebraically stable rational map
R:CP" — CP"is:

No=1¥ € CIP" : there exits neighborhoods U of x and V of I(R)
T so that f"(U)NV = { forevery n € N.

The normal points form an open subset of CP".

One primary interest in the Green current S is the following connection between
its support supp S and the Julia set Jr. (See Sect. 4 for the definitions of the Fatou and
Julia sets.) Note that supp S is closed and backwards invariant, R~ supp S C supp S,
since R*S =d - S.

Theorem B.3 (See [47],Thm. 1.6.5) Let f : CP" — CP" be an algebraically stable
rational map. Then:

JrRNN CsuppS C Jg.

An algebraically stable rational map R : CP?> — CP? for which supp S C J is given
in [22, Example 2.1].

Appendix C: Open Problems

Problem C.1 (Existence of Fisher and Lee—Yang—Fisher distributions) For which clas-
sical lattices (Z2 for d > 2, etc) does the limit (2.5) exist? As explained in Proposition
2.2, this would justify existence of the limiting distributions of Lee—Yang—Fisher zeros
for these lattices.

Similarly, for which classical three and higher-dimensional lattices (Z¢ for d > 3,
etc) does the limit (2.5) exist? It would justify the existence of a limiting distribution
of Fisher zeros for these lattices.

Problem C.2 (Geometric properties of the Lee—Yang—Fisher current) The theory of
geometric currents has become increasingly useful in complex dynamics, see [1,11,
12,17,18,44] as a sample.

The Green current S is strongly laminar in a neighborhood of B. The structure is
given by the stable lamination of B (see Sect. 3.3) together with transverse measure
obtained under holomomy from the Lebesgue measure on B. However, S is not strongly
laminar in a neighborhood of the topless Lee—Yang “cylinder” C.

One can see this also follows: a disc within the invariant line Liny centered at
Liny N B is within the stable lamination of B. Therefore, an open neighborhood within
Liny of Liny N C1 would have to be a leaf of the lamination. However, S restricts to
Liny in a highly non-trivial way, coinciding with the measure of maximal entropy for
R|Liny. (It is supported on the Julia set shown in Fig. 3).

Does S have aweaker geometric structure? For example, is it non-uniformly laminar
[1,18] or woven [11,12,17]?

14 Not to be confused with the notion of normal families.
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Problem C.3 (Support for the measure of maximal entropy) What can be said about
the support of the measure of maximal entropy v that was discussed in Sect. 4.3? Is
the critical fixed point b, € Liny within supp v? A positive answer to this question is
actually equivalent to C N supp v # ¥ and also to suppv N Liny = JR|Ly,-

Problem C.4 (Fatou Set) In Theorem 4.9 we showed that certain “solid cylinders” are
in W3 (e) and W* (e'). Computer experiments suggest a much stronger result:

Conjecture W*(e) UWS(¢€') is the entire Fatou set for R.

Problem C.5 (Julia Set) Proposition 4.2 gives that in a neighborhood of B, Jg is a
C®° 3-manifold. What can be said about the global topology of Jg?

Remark C.6 Note that each of the above Problems C.2—C.5 has a natural counterpart
for R.
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