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Abstract
In a classical work of the 1950s, Lee and Yang proved that for fixed nonnegative
temperature, the zeros of the partition functions of a ferromagnetic Isingmodel always
lie on the unit circle in the complex magnetic field. Zeros of the partition function in
the complex temperature were then considered by Fisher, when the magnetic field
is set to zero. Limiting distributions of Lee–Yang and of Fisher zeros are physically
important as they control phase transitions in the model. One can also consider the
zeros of the partition function simultaneously in both complex magnetic field and
complex temperature. They forman algebraic curve called theLee–Yang–Fisher (LYF)
zeros. In this paper, we continue studying their limiting distribution for the Diamond
Hierarchical Lattice (DHL). In this case, it can be described in terms of the dynamics of
an explicit rational function R in two variables (theMigdal–Kadanoff renormalization
transformation). We study properties of the Fatou and Julia sets of this transformation
and then we prove that the LYF zeros are equidistributed with respect to a dynamical
(1, 1)-current in the projective space. The free energy of the lattice gets interpreted
as the pluripotential of this current. We also prove a more general equidistribution
theorem which applies to rational mappings having indeterminate points, including
the Migdal–Kadanoff renormalization transformation of various other hierarchical
lattices.
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1 Introduction

1.1 Lee–Yang–Fisher Zeros

We will begin with providing a brief background on the Lee–Yang–Fisher zeros that
continues the discussion in Part I [4].

We consider the Ising model on a finite graph � and its partition function Z� ,
which is a Laurent polynomial in two variables (z, t), where z = e−h/T is a “field-
like” variable and t = e−2J/T is “temperature-like” one. They are expressed in terms
of the externally appliedmagnetic field h, the temperature T , and the coupling constant
J > 0; see [4, Section 2.1] for more details.

For a fixed t ∈ [0, 1], the complex zeros of Z(z, t) in z are called the Lee–Yang
zeros. The Lee–Yang Theorem [63,67] asserts that for the ferromagnetic Ising model
on any graph, the zeros of the partition function lie on the unit circle T in the complex
plane.

If we have a hierarchy of graphs �n of increasing size, then under fairly general
conditions, zeros of the partition functions Zn = Z�n will have a limiting distribution
μt on the unit circle. This distribution captures phase transitions in the model.

Instead of freezing temperature, one can freeze the external field, and study zeros
of Z(z, t) in the t-variable. They are called Fisher zeros as they were first studied by
Fisher for the regular two-dimensional lattice, see [55,58]. Similarly to the Lee–Yang
zeros, asymptotic distribution of the Fisher zeros is supported on the singularities of the
magnetic observables, and is thus related to phase transitions in the model. However,
Fisher zeros do not lie on the unit circle any more. For instance, for the regular 2D
lattice at zero field (corresponding to z = 1), the asymptotic distribution lies on the
union of two Fisher circles depicted on Fig. 1.

We can also consider the zeros of Zn(z, t) as a single object in C
2. While

{Zn(z, t) = 0} is an algebraic curve in C
2, we want to keep track of the multiplicities

to which Zn(z, t) vanishes along each irreducible component of this curve. We will do
this using the notion of divisor, which is a sum of finitely many irreducible algebraic
curves, eachwith integermultiplicities (see [4, AppendixA.3]). Thus, theway Zn(z, t)
vanishes in C

2 defines a divisor1 Sc
n on C

2 which we call the Lee–Yang–Fisher (LYF)
zeros.

To study the limiting distribution of the LYF zeros Sc
n , as n tends to infinity, we will

use the theory of currents; see [38,43]. A (1, 1)-current ν on C
2 is a linear functional

on the space of (1, 1)-forms that have compact support (see Appendix A.3). A basic
example is the current [X ] of integration over an irreducible algebraic curve X . Mean-
while, the current of integration [D] over a divisor D is the weighted sum of currents of
integration over each of the irreducible components, weighted according to the multi-

plicities.Aplurisubharmonic functionG is called apluripotentialofν if
i

π
∂∂̄G = ν, in

1 We will see in Remark 2.1 that each of these multiplicities is one, and hence there is no harm in thinking
in terms of the algebraic curve.
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Fig. 1 The Fisher circles:
|t ± 1| = √

2

t = 1

tc

t = 0

the sense of distributions. (Informally, this means that
1

2π
�(G| L) = ν| L for almost

any complex line L , so G| L is the electrostatic potential of the charge distribution
ν| L .)

Let dn be the degree of divisor Sc
n . It is natural to ask whether there exists a (1, 1)-

current Sc so that

1

dn
[Sc

n] → Sc. (1.1)

It would describe the limiting distribution of Lee–Yang–Fisher zeros. Within almost
any complex line L , the limiting distribution of zeros can be obtained as the restriction
Sc|L .

To justify existence of Sc, one considers the sequence of “free energies”

F#
n (z, t) := log |Žn(z, t)|,

where Žn(z, t) is the polynomial obtained by clearing the denominators of Zn . We will
say that the sequence of graphs �n has a global thermodynamic limit if

1

dn
F#

n (z, t) → F#(z, t)

in L1
loc(C

2). In Proposition 2.2 we will show that this is sufficient for the limiting
current Sc to exist and convergence (1.1) to hold.

The support of Sc consists of the singularities of the magnetic observables of the
model, thus describing “global phase transitions” in C

2. Connected components of
C
2

� suppSc describe the distinct “complex phases” of the system.

1.2 Diamond Hierarchical Model

The diamond hierarchical lattice (DHL) is a sequence of graphs �n illustrated on
Fig. 2. Part I [4] and much of the present paper are both devoted to study of this lattice.
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Fig. 2 Diamond hierarchical
lattice
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The Migdal–Kadanoff renorm-group RG equations for the DHL have the form:

(zn+1, tn+1) =
(

z2n + t2n
z−2

n + t2n
,

z2n + z−2
n + 2

z2n + z−2
n + t2n + t−2

n

)
:= R(zn, tn), (1.2)

where zn and tn are the renormalized field-like and temperature-like variables on �n .
The mapR that relates these quantities is also called the renormalization transforma-
tion.

To study the Fisher zeros, we consider the line Linv = {z = 1} in C
2. This line is

invariant under R, and R : Linv → Linv reduces to a fairly simple one-dimensional
rational map

R : t �→
(

2t

t2 + 1

)2

.

The Fisher zeros at level n are obtained by pulling back the point t = −1 under Rn .
As shown in [51], the limiting distribution of the Fisher zeros in this case exists and
it coincides with the measure of maximal entropy (see [6,24,39,40]) of R| L . The
limiting support for this measure is the Julia set forR|Linv, which is shown in Fig. 3.
It was studied by [51,56,57,60] and others.

In this paper, we will use the Migdal–Kadanoff RG equations to study the global
limiting distribution of Lee–Yang–Fisher zeros for the DHL in the complex projective
plane CP

2. (The divisors Sc
n are extended to CP

2 in the natural way.) The first main
result of this paper is:

Global Lee–Yang–Fisher Current Theorem For the DHL, the currents 1
2·4n [Sc

n] con-
verge distributionally to some (1, 1)-currentSc on CP

2 whose pluripotential coincides
with the free energy F# of the system.

It would seem natural to prove this theorem by extending R as a rational map
R : CP

2 → CP
2 and then considering the normalized pullbacks 1

2·4n (Rn)∗Sc
0 .

However, an important subtlety arises because the degrees ofR do not behave properly
under iteration:

4n < deg(Rn) < (deg(R))n = 6n .
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t = 1tct = 0

Fig. 3 On the left is the Julia set forR|Linv. On the right is a zoomed-in view of a boxed region around the
critical point tc . The invariant interval [0, 1] corresponds to the states with real temperatures T ∈ [0, ∞]
and vanishing field h = 0

This algebraic instability2 of R has the consequence that

Sc
n �= (Rn)∗Sc

0 .

The issue is resolved by working with another rational mapping R : CP
2 → CP

2

coming directly from the Migdal–Kadanoff RG Equations, without passing to the
“physical” (z, t)-coordinates. Thismap is semi-conjugate toR by a degree two rational
map � : CP

2 → CP
2. Moreover, R is algebraically stable, satisfying deg(Rn) =

(deg(R))n = 4n . For each n ≥ 0, we have:

Sc
n = �−1(R−n Sc

0),

where Sc
0 is an appropriate projective line.

Note that even though R is algebraically stable, it is still not well defined at two
indeterminate points a± which strongly influence the global dynamics.

1.3 Equidistribution of Curves to the Green Current

Associated to any (dominant, algebraically stable) rational mapping f : CP
2 → CP

2

is a canonically defined invariant current S, called the Green current3 of f . It satisfies
f ∗S = d · S, where d = deg f . Such invariant currents are a powerful tool of higher-
dimensional holomorphic dynamics: see Bedford–Smillie [2], Fornaess–Sibony [22],
Hubbard-Papadapol [33], and others (see [16,47] for surveys of this subject).

2 For the definition, see [47, §1.4] or [4, Appendix A.6].
3 It is common in the literature to denote the Green current by T , but we use S to avoid any confusion with
the temperature.
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Let A ⊂ CP
2 be an algebraic curve of degree deg(A). Since the early 1990s there

has been extensive research proving that

1

dn deg(A)
( f n)∗[A] → S (1.3)

under certain hypotheses on f and A. See [2,10,11,14,19–22,27,28,42,45,48] for a
sample of papers on the subject. Note also the recent survey [15].

If (1.3) holds for f = R (the Migdal–Kadanoff RG mapping for the DHL) and
A = Sc

0 (the principal LYF zeros), then we obtain the Global Lee–Yang–Fisher The-
orem by pulling everything back under �. In this way, the classical Lee–Yang–Fisher
theory gets linked to the contemporary Dynamical Pluripotential Theory.

However, the majority of the papers studying (1.3) focus on the case that either

1. f is birational ( f has a rational “inverse”), or
2. f is a holomorphic endomorphism (no indeterminate points),

to obtain the sharpest possible results. Otherwise, they either assume A is generic, or
they work with a more “diffused” current in place of A. In any case, because I (R) �= ∅
and dtop(R) > 1, there does not seem to be an existing result that applies to our setting:

Equidistribution Theorem for the DHL Convergence (1.3) holds for the Migdal–
Kadanoff Renormalization mapping R : CP

2 → CP
2 and any algebraic curve

A ⊂ CP
2.

Remark 1.1 The dynamical approach to studying the limiting distribution of Lee–
Yang–Fisher zeros for hierarchical lattices has independently been considered in [8]
and studied numerically in [9].

The strategy of the proof of the Equistribution Theorem for the DHL can be adapted
to prove a more general Equidistribution Theorem, also suitable for rational maps
whose indeterminacy locus satisfies certain properties.

Let f : CP
2 → CP

2 be a dominant algebraically stable rational mapping of
algebraic degree d. Denote the indeterminacy set of f by I ( f ). For any Y ⊂ CP

2 we
define f (Y ) and f −1(Y ) using a resolution of I ( f ); see Appendix A.1.

We say that an algebraic curve A is backward invariant4 if f −1(A) = A and we
say that A is collapsed by f if f (A \ I ( f )) is a single point. Let

I −( f ) := { f (A \ I ( f )) : A is a collapsed curve of f }.

Since each collapsed curve is critical for f , I −( f ) is finite.
Choose a volume form on CP

2 normalized so that vol(CP
2) = 1. For any z ∈ CP

2

we define the volume exponent σ(z, f ) to be the smallest positive number so that for
any γ > σ(z, f ) there is a constant K > 0 and a neighborhood N of z such that for
any measurable set Y ⊂ CP

2 we have

vol( f −1(Y ) ∩ N ) ≤ K (vol Y )1/γ . (1.4)

4 Note that such a curve is also forward invariant unless it contains an indeterminate point that blows-up
to a different curve.

123



Lee–Yang–Fisher Zeros for the DHL and 2D Rational Dynamics 783

In Sect. 5 we will give two estimates on σ(z, f ) in terms of how the complex Jacobian
Jac f := det D f vanishes at z. One of them is simply in terms of the order of vanish-
ing μ(z, f ) of Jac f at z, while the second is stronger, but requires a more detailed
assumption on Jac f near z.

A sequence of points {zn} ⊂ CP
2 is an orbit of f if zn+1 ∈ f ({zn}) for each n ≥ 0.

(If zn ∈ I ( f ), zn+1 can be any point on the algebraic curve f ({zn}).) If zn /∈ I ( f ) for
every n, we will refer to the orbit as a regular orbit. Otherwise, we will refer to it as
an indeterminate orbit.

If f n is holomorphic in a neighborhood of z ∈ CP
2 let c(z, f n) denote the order of

vanishing of the power series expansion for f n expressed in local coordinates centered
at z and f n(z), respectively. If z0, . . . , zk−1 is a regular periodic orbit of period k for f
then

c∞(z0, f ) := lim
n→∞ c(z0, f nk)1/nk

exists and satisfies c∞(z0, f ) ≤ d; see Sect. 7.2. We say that a regular periodic
point z0 is superattracting if c∞(z0, f ) > 1 and is maximally superattracting if
c∞(z0, f ) = d. In these cases, the orbit of z0 is attracting at superexponential rate in
all directions.

Let E be the finite set containing all

(a) maximally superattracting periodic points, and
(b) superattracting periodic points z0 of period k for which there is an algebraic curve

C that is backward invariant under f k , collapsed to z0 under some iterate of f k ,
and for which z0 is a singular point of C .

Denote the respective subsets of E where (a) or (b) holds as E(a) and E(b). We will
call E the exceptional set for f .

Equidistribution Theorem Let f : CP
2 → CP

2 be a dominant algebraically stable
rational map of degree d ≥ 2 and let S denote the Green Current of f . Assume that

(i) I ( f ) �= ∅,
(ii) σ(z, f ) < d for every z ∈ I ( f ), and
(iii) no periodic orbit passes through both the finite set

D>d := {z ∈ CP
2 : σ(z, f ) > d} and I ( f ) ∪ I −( f ).

Then, for any algebraic curve A that does not pass through the exceptional set E we
have

1

dn deg A
( f n)∗[A] → S.

Note that Hypotheses (i) and (ii) are verifiable algebraic conditions on the map
f itself. The last Hypothesis (iii) is more problematic as it is dynamical; still it is
amenable to verification under favorable circumstances as it requires that a certain
finite set of points (specified algebraically) is aperiodic. We illustrate application of
the Equidistribution Theorem to a few examples in Sect. 8.
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Let us also compare5 our result to the cases of birational maps and endomorphisms:

Equidistribution for Birational Mappings [10,19,20] Let f : CP
2 → CP

2 be an
algebraically stable birational mapping of degree d ≥ 2 and let S denote the Green
Current of f . Let A ⊂ CP

2 be an algebraic curve. Then, there is a exceptional set E
consisting of at most one point such that

1

dn deg A
( f n)∗[A] → S if and only if A does not pass through E .

The exceptional set E consists of a maximally superattracting fixed point through
which there passes a backward invariant curve. In the special case that f is a Hénon
mapping,

f [x : y : z] = [x2 + ayz : xz : z2],

we have that E = [1 : 0 : 0] is the superattracting fixed point at infinity, with the
totally invariant curve corresponding to the line at infinity {z = 0} [2,23].
Equidistribution for Endomorphisms [14,21] Let f : CP

2 → CP
2 be a holomorphic

endomorphism of degree d ≥ 2 and let S denote the Green Current of f . Then, there is
a totally invariant algebraic set E1 consisting of at most three projective complex lines
and a finite totally invariant set E2 with the following property: If A is an algebraic
curve such that

(i) A �⊂ E1, and
(ii) A ∩ E2 = ∅,

then

1

dn deg A
( f n)∗[A] → S.

The exceptional set E1 corresponds to curves on which the order of vanishing of
the Jacobian grows at rate ≥ dn under iteration, and hence the volume exponent
σ(z, f n) growing at rate ≥ dn as well. Meanwhile the set E2 consists of maximally
superattracting periodic points.

Our general strategy is similar to that in the above-mentioned works: We prove
the L1

loc-convergence of the potentials of the currents under consideration, which
requires estimates on the volume growth under the iterated pullbacks. (For the latter,
we have especially profited from the techniques developed by Favre and Jonsson [21]).
However, in our setting there is a possibility that the orbit of a point z recurs to I ( f ),
while also having bad growth of the volume exponent. In the case of birational maps,
this is eliminated since the only critical points are on collapsed curves, whose orbits
stay away from I ( f ) (by the algebraic stability assumption). In our case, Hypotheses
(i)–(iii) allow us to rule out the problematic scenario.

5 We will specialize the following two results to the case of pulling back a curve, instead of pulling back
an arbitrary closed positive (1, 1) current.
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k
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Fig. 4 Generating graphs for some other hierarchical lattices

The final punch line of our argument is an application of the Borel–Cantelli Lemma,
which makes it quite elementary and general.

1.4 Other Hierarchical Lattices

The Diamond Hierarchical Lattice has the merit of being one of the simplest non-
trivial hierarchical lattices. Instead of using the diamond to generate our sequence of
graphs {�n}∞n=0 (as shown in Fig. 2) we can use any finite graph � with two marked
vertices a and b that is symmetric under interchange of a and b. One obtains �n+1
by replacing each edge of �n with a copy of �, using the marked vertices a and b as
“endpoints”. We will call the sequence of graphs the hierarchical lattice generated by
�.

Associated to each generating graph� is aMigdal–Kadanoff renormalization map-
ping, which is a rational map R� : CP

2 → CP
2. In Sect. 8 we discuss the Migdal

Kadanoff renormalization mappings associated to the five different hierarchical lat-
ticeswhose generating graphs are shown in Fig. 4.Wewill see that the Equidistribution
Theorem applies to the Migdal Kadanoff renormalization mappings associated to the
k-fold DHL (k ≥ 2), the Triangle, and the Split Diamond thus proving the Global LYF
Theorem for each of those lattices. We find that the Equidistribution Theorem does
not apply to the Migdal Kadanoff renormalization mappings for the Linear Chain or
the Tripod, however, an easy argument directly shows that the Global LYF Theorem
holds for the Linear Chain. We do not know if it holds for the Tripod.

Problem 1.2 Does the Global LYF Theorem hold for every hierarchical lattice?

Several additional open problems are listed in Appendix C.

1.5 Structure of the Paper

We begin in Sect. 2 by recalling the definitions of free energy and the classical notion
of thermodynamic limit for the Ising model. We then discuss the notion of global
thermodynamic limit, which is sufficient to guarantee that some lattice have a (1, 1)-
current Sc describing its limiting distribution of LYF zeros in C

2. We also give an
alternative interpretation of the partition function as a section of (an appropriate tensor
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power of) the hyperplane bundle overCP
2 that will be central to the proof of theGlobal

LYF Current Theorem. We conclude Sect. 2 by summarizing material on the Migdal-
Kadanoff RG equations, including the details for reducing the proof of the Global LYF
Theorem to proof of (1.3) for A = Sc

n and f = R.
In Sect. 3 we summarize the global features of the mappings R and R on the

complex projective space CP
2 that were studied in [4], including their critical and

indeterminacy loci, superattracting fixed points and their separatrices.
In the next section, Sect. 4, we define the Fatou and Julia sets forR and show that the

Julia set coincides with the closure of preimages of the invariant complex line {z = 1}
(corresponding to the vanishing external field). It is based on M. Green’s criteria
for Kobayashi hyperbolicity of the complements of several algebraic curves in CP

2

[25,26] that generalize the classical Montel Theorem. We then use this result to prove
that points in the interior of the solid cylinder D × I are attracted to a superattracting
fixed point η = (0, 1) of R.

The proofs of the equidistribution theorems require estimates on the volume of a
tubular neighborhood of an algebraic curve and estimates on how volume is trans-
formed under a rational map. These estimates are presented in Sect. 5.

Section 5 is devoted to proving the Equidistribution Theorem for the DHL. In Sect.
7 we then show how to adapt its proof to prove the Equidistribution Theorem. In Sect. 8
we discuss applications of the Equidistribution Theorem to other hierarchical lattices.

Like Part I, this paper is written for readers from both complex dynamics and
statistical physics, so we provide backgroundmaterial in two appendices. Tominimize
overlap, we will refer the reader to appendices of Part I when possible. In Appendix A,
we collect needed background in complex geometry (line bundles over CP

2, currents
and their pluri-potentials, Kobayashi hyperbolicity, and normal families). In Appendix
B, we provide information on the Green current. In Appendix C, we collect several
open problems.

1.6 Basic Notation and Terminology

C
∗ = C � {0}, T = {|z| = 1}, Dr = {|z| < r}, D ≡ D1, and N = {0, 1, 2 . . . }.

Given two variables x and y, x � y means that c ≤ |x/y| ≤ C for some constants
C > c > 0.

2 Description of theModel

2.1 Free Energy and Thermodynamic Limit

The partition function of the Ising model on a graph � is a symmetric Laurent poly-
nomial in (z, t) of the form

Z� =
d∑

n=0

an(t)(zn + z−n) (2.1)

of degree d equal to the the number of edges in �. (See [4, Section 2.1] for the
definition.)
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Remark 2.1 Setting Ž(z, t) := zd td/2Z(z, t) clears the denominators of Z(z, t) and
results in a polynomial in z and t of degree 2d whose divisor of zeros is the same as
that of Z(z, t). It follows from the definition of Z(z, t) that Ž(z, 0) = z2d + 1, each
of whose zeros is simple. In particular the divisor of zeros assigns multiplicity one to
each irreducible component of {Z(z, t) = 0}.

The free energy of the system is defined as

F� = −T log |Z�|, (2.2)

where T is the temperature (related to the temperature-like variable by t = e−J/T ,
where J is the coupling constant of the model).

It will be more convenient to consider the following variant of the free energy:

F#
�(z, t) := − 1

T
F�(z, t) + d

(
log |z| + 1

2
log |t |

)
= log |Ž(z, t)|.

The advantage of using F#
� , instead of F� , is that it extends as a plurisubharmonic

function on all of C
2. We will also refer to F#

� as the “free energy”.
Assume that we have a lattice given by a hierarchy of graphs �n with dn → ∞

edges. Let us consider its partition functions Zn and free energies F#
n . To pass to

the thermodynamic limit we normalize the free energy per bond. One says that the
hierarchy of graphs has a (pointwise) thermodynamic limit if

1

2dn
F#

n (z, t) → F#(z, t) for any z ∈ R+, t ∈ (0, 1). (2.3)

In this case, the function F# is called the (modified) free energy of the lattice. For
many6 lattices (e.g. Zd ), existence of the thermodynamic limit can be justified by van
Hove’s Theorem [59,66]. If the classical thermodynamic limit exists, then one can
justify existence of the limiting distribution of Lee–Yang zeros and relate it to the
limiting free energy; see [4, Prop. 2.2].

To prove existence of a limiting distribution for the Fisher zeros, one needs to prove
existence of the thermodynamic limit in the L1

loc(C)-sense:

1

2dn
F#

n (1, t) → F#(1, t) in L1
loc(C). (2.4)

For the Z
2 lattice this is achieved by the Onsager solution, which provides an explicit

formula for the limiting free energy; see, for example, [50]. Similar techniques apply to
the triangular, hexagonal, and various homopolygonal lattices (see [64,65] for suitable
references and an investigation of the distribution of Fisher zeros for these lattices).
For various hierarchical lattices, (2.4) can be proved by dynamical means.

The situation is similar for the Lee–Yang–Fisher zeros.

6 Note that the DHL is not in this class—instead, dynamical techniques are used to justify its classical
thermodynamic limit.
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Proposition 2.2 Let (�n) be a lattice for which the thermodynamic limit exists in the
L1
loc(C

2)-sense:

1

2dn
F#

n (z, t) → F#(z, t) in L1
loc(C

2). (2.5)

Then, there is a closed positive (1, 1)-current Sc on C
2 describing the limiting dis-

tribution of Lee–Yang–Fisher zeros. Its pluripotential coincides with the free energy
F#(z, t).

For the DHL, we will prove existence of the limit (2.5) in the Global LYF Current
Theorem.

Remark 2.3 It is an open questionwhether the limit (2.5) exists for any classical lattice,
including the Z

2 lattice. Moreover, it seems to also be an open question whether the
limit (2.4) exists for the Z

d lattice, when d ≥ 3, and other classical three dimensional
lattices. See Problem C.1.

Proof of Proposition 2.2 The locus of Lee–Yang–Fisher zeros Sc
n are the zero set

(counted with multiplicities) of the degree 2dn polynomial Žn(z, t). The Poincaré–
Lelong Formula describes its current of integration:

[Sc
n] = i

π
∂∂̄ log |Žn(z, t)| = i

π
∂∂̄ F#

n (z, t).

Hypothesis (2.5) implies

1

2dn
[Sc

n] = i

π
∂∂̄

1

2dn
F#

n (z, t) → i

π
∂∂̄ F#(z, t) =: Sc.

��

2.2 Global Consideration of Partition Functions and Free Energy onCP
2

It will be convenient for us to extend the partition functions Zn and their associated free
energies F#

n from C
2 to CP

2. We will use the homogeneous coordinates [Z : T : Y ]
on CP

2, with the copy of C
2 given by the affine coordinates (z, t) �→ [z : t : 1].

For each n, we clear the denominators of Zn(z, t), obtaining a polynomial Žn(z, t)
of degree dn := 2|En|. It lifts to a unique homogeneous polynomial Ẑn(Z , T , Y ) of the
same degree that satisfies Žn(z, t) = Ẑn(z, t, 1). The associated free energy becomes
a plurisubharmonic function

F̂#
n (Z , T , Y ) := log |Ẑn(Z , T , Y )|

on C
3. It is related by the Poincaré–Lelong Formula to the current of integration over

the Lee–Yang–Fisher zeros: π∗[Sc
n] := i

π
∂∂̄ F̂#

n (Z , T , Y ).
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Both of these extensions are defined on C
3, rather than CP

2. In the proof of the
Global LYF Current Theorem, it will be useful for us to interpret the partition function
as an object defined on CP

2. Instead of being a function on CP
2, it gets interpreted as

a section sZn of an appropriate tensor power of the hyperplane bundle; See Appendix
A.2. The Lee–Yang–Fisher zeros Sc

n are described as the zero locus of this section.

2.3 Migdal–Kadanoff Renormalization for the DHL

The renormalized field-like and temperature-like variables zn and tn that appear in
the Migdal–Kadanoff RG equations (1.2) are defined through certain “conditional
partition functions of level n” in the following way:

z2n = Wn/Un, t2n = V 2
n

UnWn
. (2.6)

In the (U , V , W )-coordinates the Migdal–Kadanoff RG equation assumes the homo-
geneous form

Un+1 = (
U 2

n + V 2
n

)2
, Vn+1 = V 2

n (Un + Wn)2, Wn+1 = (
V 2

n + W 2
n

)2
,

and the total partition function becomes a linear form

Zn ≡ Z�n = Un + 2Vn + Wn .

(See Part I [4] for the derivation of these equations.) This leads us to a homogeneous
degree 4 polynomial map

R̂ : (U , V , W ) �→ ((
U 2 + V 2)2, V 2(U + W )2,

(
W 2 + V 2)2), (2.7)

called theMigdal Kadanoff Renormalization, such that (Un,Vn,Wn)=R̂n(U0,V0,W0).

(The corresponding map R : CP
2 → CP

2 will be referred to in the same way.)
Moreover, letting Y0 := U + 2V + W , we obtain:

Ẑn = Y0 ◦ R̂n, (2.8)

so the partition functions Ẑn are obtained by pulling the linear form Y0 ≡ Ẑ0 back by
R̂n .

We will often write R in the system of local coordinates u = U/V and w = W/V ,
in which it has the form

R : (u, w) �→
(

u2 + 1

u + w
,

w2 + 1

u + w

)2

. (2.9)

Notice that the form Y0 is not a function onCP
2 but rather a section sY0 of the hyper-

plane line bundle overCP
2, see Appendix A.2. Respectively, the partition functions Ẑn
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are sections of the tensor powers of this line bundle.Accordingly, theLee–Yang–Fisher
loci Sc

n are the zero divisors of these sections.
The free energy is also no longer a function on CP

2, rather it is lifted to become a
function on C

3, given by

F̂#
n := log |Ẑn|. (2.10)

The above formulae express the partition functions and free energies in terms of
the U , V , W coordinates. To re-express them in terms of the physical coordinates, we
pull each of them back by

� : CP
2 → CP

2, (U : V : W ) = �(z, t) = (
z−1t−1/2 : t1/2 : zt−1/2). (2.11)

This change of variables also semi-conjugates the map

R : (z, t) �→
(

z2 + t2

z−2 + t2
,

z2 + z−2 + 2

z2 + z−2 + t2 + t−2

)
, (2.12)

corresponding to RG equation (1.2), to R.

3 Global Properties of the RG Transformation in CP
2

We will now summarize (typically without proofs) results from [4] about the global
properties of the RG mappings.

3.1 Preliminaries

The renormalization mappingsR and R are semi-conjugate by the degree two rational
mapping � : CP

2 → CP
2 given by (2.6).

Both mappings have topological degree 8 (see Proposition 4.3 from Part I). How-
ever, as noted in the Introduction, their algebraic degrees behave differently: R is
algebraically stable, while R is not. Since deg(Rn) = 4n , for any algebraic curve D
of degree d, the pullback (Rn)∗ D is a divisor of degree d · 4n . (For background on
divisors, see [4, Appendix A.3].) For this reason, we will focus most of our attention
on the dynamics of R.

The semiconjugacy � sends the Lee–Yang cylinder C := T × [0, 1] to a Mobius
band C that is invariant under R. It is obtained as the closure in CP

2 of the topological
annulus

C0 = {(u, w) ∈ C
2 : w = ū, |u| ≥ 1}. (3.1)

Let T = {(u, ū) : |u| = 1} be the “top” circle of C , and let B be the slice of C at
infinity. In fact, � : C → C is a conjugacy, except that it maps the bottom B of C by
a 2-to-1 mapping to B (see Proposition 3.1 from Part I).
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3.2 Indeterminacy Points for R

In homogeneous coordinates on CP
2, the map R has the form:

R : [U : V : W ] �→ [(
U 2 + V 2)2 : V 2(U + W )2 : (

V 2 + W 2)2]. (3.2)

One can see that R has precisely two points of indeterminacy a+ := [i : 1 : −i]
and a− := [−i : 1 : i]. Resolving all of the indeterminacies of R by blowing-
up the two points a± (see [4, Appendix A.2]), one obtains a holomorphic mapping

R̃ : C̃P
2 → CP

2.
In coordinates ξ = u − i and χ = (w + i)/(u − i) near a+ = (i,−i), we obtain

the following expression for the map R̃ : C̃P
2 → CP

2 near Lexc(a+):

u =
(

ξ + 2i

1 + χ

)2

, w =
(

χ2ξ − 2iχ

1 + χ

)2

. (3.3)

(Similar formulas hold near a− = (−i, i).) The exceptional divisor Lexc(a+) is
mapped by R̃ to the conic

G := {(u − w)2 + 8(u + w) + 16 = 0}.

3.3 Superattracting Fixed Points and Their Separatrices

We will often refer to L0 := {V = 0} ⊂ CP
2 as the line at infinity. It contains two

symmetric superattracting fixed points, e = (1 : 0 : 0) and e′ = (0 : 0 : 1). LetWs(e)
andWs(e′) stand for the attracting basins of these points. It will be useful to consider
local coordinates (ξ = W/U , η = V /U ) near e.

The line at infinity L0 = {η = 0} is R-invariant, and the restriction R|L0 is the
power map ξ �→ ξ4. Thus, points in the disk {|ξ | < 1} in L0 are attracted to e, points
in the disk {|ξ | > 1} are attracted to e′, and these two basins are separated by the unit
circle B. We will also call L0 the fast separatrix of e and e′.

Let us also consider the conic

L1 = {ξ = η2} = {V 2 = U W } (3.4)

passing through points e and e′. It is an embedded copy of CP
1 that is invariant under

R, with R| L1(w) = w2, where w = W/V = ξ/η. Thus, points in the disk {|w| < 1}
in L1 are attracted to e, points in the disk {|w| > 1} are attracted to e′, and these two
basins are separated by the unit circle T (see §3.1 from Part I). We will call L1 the
slow separatrix of e and e′.

If a point x near e (resp. e′) does not belong to the fast separatrix L0, then its orbit is
“pulled” towards the slow separatrix L1 at rate ρ4n

, with some ρ < 1, and converges
to e (resp. e′) along L1 at rate r2

n
, with some r < 1.
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The strong separatrix L0 is transversally superattracting: all nearby points are pulled
towards L0 uniformly at rate r2

n
. It follows that these points either converge to one of

the fixed points, e or e′, or converge to the circle B.
Given a neighborhood � of B, let

Ws
C,loc(B) = {x ∈ CP

2 : Rn x ∈ � (n ∈ N) and R
n x → B as n → ∞} (3.5)

(where � is implicit in the notation, and an assertion involvingWs
C,loc(B) means that

it holds for arbitrary small suitable neighborhoods of B). It is shown in Part I (§9.2)
that Ws

C,loc(B) has the topology of a 3-manifold that is laminated by the union of
holomorphic local stable manifolds W s

C,loc(x) of points x ∈ B.
We conclude:

Lemma 3.1 Ws(e) ∪ Ws(e′) ∪ Ws
C,loc(B) fills in some neighborhood of L0.

3.4 Regularity ofWs
C,loc(x)

For a diffeomorphism, the existence and regularity of the local stable manifold for a
hyperbolic invariant manifold N has been studied extensively in [32]. To guarantee a
C1 local stable manifold Ws

loc(N ), a strong form of hyperbolicity known as normal
hyperbolicity is assumed. Essentially, N is normally hyperbolic for f if the expansion
of D f in the transverse unstable direction dominates the maximal tangent expansion
of D( f |N ) and the contraction of D f in the transverse stable direction dominates
the maximal tangent contraction of D( f |N ). See [32, Thm. 1.1]. If, furthermore, the
expansion of D f in the transverse unstable direction dominates the r -th power of the
maximal tangent expansion of D( f |N ) and the contraction of D f in the transverse sta-
ble direction dominates the r -th power of the maximal tangent contraction of D( f |N ),
this guarantees that the stable manifold is of class Cr . The corresponding theory for
endomorphisms is less developed, although note that some aspects of [32], related
to persistence of normally hyperbolic invariant laminations, have been generalized to
endomorphisms in [3].

In our situation, B is not normally hyperbolic because it lies within the invariant line
L0 and R is holomorphic. This forces the expansion rates tangent to B and transverse
to B (within this line) to coincide. Therefore, the following result does not seem to be
part of the standard hyperbolic theory.

Lemma 3.2 Ws
C,loc(B) is a C∞ manifold and the stable foliation is a C∞ foliation by

complex analytic discs.

Proof In Proposition 9.11 from Part I, we showed that within the cylinder C the stable
foliation of B has C∞ regularity and that the stable curve of each point is real analytic.
Mapping forward under �, we obtain the same properties for the stable foliation of B
within C .

Let us work in the local coordinates ξ = W/U and η = V /U . In these coordinates,
B = {η = 0, |ξ | = 1}. The stable curve W s

C,loc(ξ0) of any ξ0 ∈ B can be given by
expressing ξ as a holomorphic function of η:
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ξ = h(η, ξ0) =
∞∑

i=0

ai (ξ0)η
i . (3.6)

The right hand side is a convergent power series with coefficients depending on ξ0,
having a uniform radius of convergence over every ξ0 ∈ B. The series is uniquely
determined by its values on the real slice C , in which the leaves depend with C∞
regularity on ξ0. Therefore, each of the coefficients ai (ξ0) is C∞ in ξ0. This gives that
each W s

C,loc(ξ0) depends with C∞ regularity on ξ0, implying the stated result. ��
Remark 3.3 The technique from the proof of Lemma 3.2 applies to a more general
situation: Suppose that M is a real analytic manifold and f : M → M is a real
analytic map. Let N ⊂ M be a compact real analytic invariant submanifold for f ,
with f |N expanding and with N transversally attracting under f . Then N will have
a stable foliation Ws

loc(N ) of regularity Cr , for some r > 0 (see the beginning of
this subsection), with the stable manifold of each point being real-analytic. The stable
manifoldWs

C,loc(N ) for the extension of f to the complexification MC of M will then
also have Cr regularity.

Remark 3.4 It has been shown by Kaschner and the third author thatWs
C,loc(B) is not

real analytic at any point [34, Thm. B].

3.5 Critical Locus

The complex Jacobian of R̂ : C
3 → C

3 (2.7) is equal to

Jac R̂ ≡ det DR̂ = 32 V (U W − V 2) (U + W )2 (U 2 + V 2) (W 2 + V 2), (3.7)

and therefore, the critical locus of R consists of six complex lines and one conic:

L0 := {V = 0} = line at infinity,

L1 := {U W = V 2} = conic {uw = 1},
L2 := {U = −W } = {u = −w} = the collapsing line,

L±
3 := {U = ±iV } = {u = ±i},

L±
4 := {W = ±iV } = {w = ±i}.

(Here, the curves are written in the homogeneous coordinates (U : V : W ) and in the
affine ones, (u = U/V , w = W/V ).) The critical locus is schematically depicted on
Fig. 5, while its image, the critical value locus, is depicted on Fig. 6.

It will be helpful to also consider the critical locus for the lift R̃ : C̃P
2 → CP

2.
Each of the critical curves Li lifts by proper transform (see [4, Appendix A.2]) to a

critical curve L̃i ⊂ C̃P
2
for R̃. Moreover, any critical point for R̃ belongs to either

one of these proper transforms or to one of the exceptional divisors Lexc(a±).
By symmetry, it is enough to consider the blow-up of a+. We saw in Part I that there

are four critical points on the exceptional divisor Lexc(a+) occurring atχ = −1, 1,∞,
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c := [1 : 0 : −1]

Separatrix

e′

[1 : 0 : −1]

L0
Separatrix

Fixed point e

L−
4

L+
3

L2
collapsing

line

−(i, i)

(i, i)

L1

L+
4

a−

a+

L−
3

Fixed point e′

e L1

Fig. 5 Critical locus for R shown with the separatrix L0 at infinity

Fig. 6 Critical values locus of R

b0 = R̃(L̃2 )= [1 : 0: 1]

e = [1 : 0: 0]

e′ = [0: 0 : 1]

L1

0 = [0: 1 : 0]

R(L±
3 )

R(L±
4 )

L0

and 0, where χ = (w + i)/(u − i). They correspond to intersections of Lexc(a+) with
the collapsing line L̃2, the L̃1, and the critical lines L̃+

3 and L̃−
4 , respectively.

Remark 3.5 In Part I we showed that all of the critical points of R̃ except the fixed

points e, e′, the collapsing line L̃2, and two points {±(i, i)} = L̃3
± ∩ L̃4

±
, are degree

two Whitney folds, i.e. they can be brought into the normal form (x, y) �→ (x, y2) in
holomorphic coordinates. See [4, Appendix D.2] and also Lemma A.4.

3.6 Local Study of the Critical Locus of R and R̃

In the proof of the Equidistribution Theorem for the DHL we will need details about
how the Jacobian of R vanishes,when R is expressed in local coordinates; SeeLemmas
5.2 and 5.5.
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These details can be recovered from Formula (3.7) for Jac R̂ as follows: Suppose
z ∈ N ⊂ CP

2 \ I (R), with N an open set admitting a local section s : N → C
3 \ {0}

of the canonical projection π : C
3 \ {0} → CP

2. If we express R in local coordinates
on N (in the domain) and on R(N ) (in the codomain), then the complex Jacobian of
this local expression for R differs from Jac R̂ ◦ s by a non-vanishing analytic function.

For any z ∈ CP
2 \ I (R) define μ(z, R) to be the order of vanishing at z for the

complex Jacobian of any local coordinate expression for R. By the chain rule, the result
is independent of the choice of charts. Moreover, by the discussion in the previous
paragraph, μ(z, R) equals the order of vanishing of Jac R̂ ◦ s at z.

Lemma 3.6 Let c be the point of intersection between L0 and L2. We have

(a) μ(z, R) ≤ 2 for any z ∈ CP
2 \ {c, e, e′, a±},

(b) μ(c, R) = 3, moreover, there are local coordinates (x, y) centered at c in which
Jac R � xy2, and

(c) μ(e, R) = μ(e′, R) = 4.

Proof Any z ∈ CP
2 \ {±(i, i), c, a±, e, e′} is either regular or is a smooth point of the

critical locus; See Fig. 5. Since each of the irreducible factors of Jac R̂ occurs to the
first or second power, at any smooth point z of the critical locus we have μ(z, R) ≤ 2.

Since the lines L±
3 and L±

4 intersect transversally at ±(i, i), we can choose local
coordinates (x, y) centered at ±(i, i) so that L±

3 is given by {x = 0} and L±
4 is given

by {y = 0}. As the irreducible factors of Jac R̂ corresponding to L±
3 and L±

4 occur to
the first power, near the origin in these coordinates we have Jac R � xy, giving that
μ(±(i, i), R) = 2.

Similarly, we can choose local coordinates (x, y) centered at c with L0 correspond-
ing to {x = 0} and L2 corresponding to {y = 0}. As the irreducible factors of Jac R̂
corresponding to these two lines have first and second powers, respectively, in the
expression for Jac R̂ we have Jac R � xy2, implying μ(c, R) = 3.

The four separate critical lines L0, L1, L+
3 and L−

3 meet at e and Jac R̂ vanishes to
order one along each of them, so that μ(e, R) = 4. The same result holds at e′, by
symmetry. ��

To deal with the indeterminate points a± we need the following:

Lemma 3.7 For every z̃ ∈ Lexc(a+) ∪ Lexc(a−) we have μ(z̃, R̃) ≤ 2.

Proof By symmetry, we can focus on a+. There is a neighborhood N of the exceptional
divisor Lexc(a+) in which the critical locus of R̃ consists of the proper transforms L̃1,
L̃2, L̃+

3 and L̃−
4 and in which these curves are disjoint. As these four critical curves

of R̃ are smooth and disjoint in N , the order on vanishing of Jac R̃ is locally constant
on each of them. Since each of the defining equations for L1, L+

3 , and L−
4 occur to

the first power in Jac R̂, we have μ(z̃, R̃) = 1 for any z̃ ∈ N that is on L̃1, L̃+
3 or L̃−

4 .
Meanwhile, the defining equation for L2 occurs to the second power in Jac R̂, so that
μ(z̃, R̃) = 2 for any z̃ ∈ N ∩ L̃2. ��
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4 Fatou and Julia Sets and theMeasure of Maximal Entropy

4.1 Julia Set

For a rational map R : CP
n → CP

n , the Fatou set FR is defined to be the maximal
open set on which the iterates {Rm} are well-defined and form a normal family. The
complement of the Fatou set is the Julia set JR .

If R is dominant and has no collapsing varieties, Lemma A.1 from [4] gives that R
is locally surjective (except at indeterminate points), so that the Fatou set is forward
invariant and consequently, the Julia set is backward invariant.

If R has indeterminate points, then according to this definition they are in JR . In this
case, FR and JR are not typically totally invariant. One can see this by blowing up an
indeterminate point and observing that the image of the resulting exceptional divisor
typically intersects FR . Note also that any algebraic curve A that is mapped by some
iterate of R to an indeterminate point (such a curve exists iff R is not algebraically
stable) is in JR .

TheMigdal–Kadinoff renormalization R is not locally surjective at any x ∈ L2 � L0.
More specifically, if N is a small neighborhood of x that avoids L0, then

R(N ) ∩ L0 = b0 = R(x),

where b0 = [1 : 0 : 1], since any point of L0 � {b0} has preimages only in L0.
However, we still have the desired invariance.

Lemma 4.1 The Migdal–Kadinoff renormalization R has forward invariant Fatou set
and, consequently, backward invariant Julia set.

Proof It suffices to show that L2 ⊂ JR , since R is locally surjective at any other point,
by Lemma A.1 from [4]. By definition, {a±} ⊂ JR , so we consider x ∈ L2 � {a±}.
Let N be any small neighborhood of x . Note that R(x) = b0 is a fixed point of saddle-
type, with one-dimensional stable and unstable manifolds. Therefore, in order for the
iterates to form a normal family on N , we must have R(N ) ⊂ Ws(b0). However, this
is impossible, since there are plenty of regular points for R in N . ��

Lemmas 3.1 and 3.2 give a clear picture of JR in a neighborhood of the line at
infinity L0.

Proposition 4.2 Within some neighborhood N of L0 we have that JR ∩ N =
Ws

C,loc(B) ∩ N. Within this neighborhood, JR is a C∞ 3-dimensional manifold.

Let us consider the locus {h = 0} of vanishing magnetic field in CP
2 for the DHL.

In the affine coordinates, it is an R-invariant line L inv = {u = w}; in the physical
coordinates, it is anR-invariant line Linv = {z = 1}. The two maps are conjugated by

the Möbius transformation Linv → L inv, u = 1/t . Dynamics ofR : t �→
(

2t
t2+1

)2
on

Linv was studied in [51]. In particular, it is shown in that paper that the Fatou set for
R|Linv consists entirely of the basins of attraction of the fixed points β0 := {t = 0}
and β1 := {t = 1} which are superattracting within this line: see Fig. 3. Under the
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conjugacy, the Fatou set for R|L inv consists of the basins of attraction for the two fixed
points

b0 := {u = ∞} = [1 : 0 : 1] and b1 := {u = 1} = [1 : 1 : 1].

Proposition 4.3 JR = ⋃
n R−n(L inv).

Proof Since every point in the Fatou set of R|L inv is in the basin of attraction of either
b0 or b1 and since these points are of saddle-type in CP

2, the family of iterates Rn

cannot be normal in an open neighborhood of any point on L inv. Thus L inv ⊂ JR . It
follows that

⋃
n R−n(L inv) ⊂ JR since JR is closed and backward invariant.

We will now show that
⋃

n R−n(L inv) is dense in JR . Consider a configuration of
five algebraic curves

X0 := {V = 0} = the separatrix L0,

X1 := {U = W } = the invariant line L inv,

X2 := {U = −W } = the collapsed line L2 ⊂ R−1(L inv),

X3 := {U 2 + 2V 2 + W 2 = 0} = a component of R−1(L inv),

X4 := {U 4 + 2U 2V 2 + 2V 4 + 2W 2V 2 + W 4 = 0} = a component of R−1(X3).

We will use the results of M. Green to check that the complement of these curves,
M := CP

2
�

⋃
i Xi , is a complete Kobayashi hyperbolic manifold hyperbolically

embedded inCP
2 (see Appendix A.4). We will first check that M is Brody hyperbolic,

i.e., there are no non-constant holomorphic maps f : C → M . To this end, we will
apply Green’s Theorem A.7. It implies that the image of f must lie in a line L that
is tangent to the conic X3 at an intersection point with Xi , for one of the lines Xi ,
i = 0, 1, 2, and contains the intersection point X j ∩ Xl of the other two lines. It
is a highly degenerate situation which does not occur for a generic configuration.
However, this is exactly what happens in our case, as the lines X0, X1, X2 form a
self-dual triangle with respect to the conic X3 (see §A.5). However, one can check by
direct calculation that the last curve, X4, must intersect each of these tangent lines L
in at least one point away from X0, . . . , X3. Since any holomorphic map from C to
L �

⋃
i Xi must then omit 3 points in L , it must be constant.

Thus, M is Brody hyperbolic.Moreover, for each i = 0, . . . , 4 the remaining curves⋃
j �=i X j intersect Xi in at least three points so that there is no non-constant holomor-

phic map from C to Xi �
⋃

j �=i X j . Therefore, another of Green’s results (Thm. A.6)
applies showing that M is complete hyperbolic and hyperbolically embedded. It then
follows from Proposition A.5 that the family {Rn} is normal on any open set N ⊂ CP

2

for which Rn : N → M for all n.
Given any ζ ∈ JR and any neighborhood N of ζ , we will show that some preimage

R−n(L inv) intersects N . Since ζ ∈ JR , the family of iterates Rn are not normal on N ,
hence Rn(N ) must intersect

⋃
i Xi for some n. If the intersection is with Xi for i > 0

then Rn+2(N ) intersects L inv.
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Thus, some iterate Rn(N )must intersect X0 = L0. Suppose first that ζ ∈ L0. Then,
by Lemma 3.1, ζ ⊂ Ws(e) ∪ Ws(e′) ∪ T. Since the first two basins are contained in
the Fatou set, ζ ∈ T, where preimages of the fixed point b0 ∈ L inv are dense.

Finally, assume ζ /∈ L0. By shrinking N if needed, we can make it disjoint from
L0. Hence, there is n > 0 such that Rn(N ) intersects L0, while Rn−1(N ) is disjoint
from L0. But since R−1(L0) = L0 ∪ L2, we conclude that Rn−1(N ) must intersect
L2. But L2 collapses under R to the fixed point b0 ∈ L inv. Hence Rn(N ) intersects
L inv. ��
Remark 4.4 We thank the referee for pointing out that the above proof is similar to the
one that Bonifant and Dabija use to show that if an endomorphism f : CP

2 → CP
2

of positive degree has an invariant elliptic curve Q then any point of Q has backward
orbit under f that is dense in the Julia set J f ; see [5, Thm. 5.4].

We will now relate JR to the Green current S. (See Appendix B for the definition
and basic properties of S.)

Proposition 4.5 JR = supp S.

Proof The inclusion supp S ⊂ JR follows immediately from Theorem B.3. We will
use Proposition 4.3 to show that JR ⊂ supp S. Since supp S is a backward invariant
closed set, it is sufficient for us to show that L inv ⊂ supp S.

Note that L inv = Ws(b0) ∪ Ws(b1) ∪ JR|L inv . The basin Ws(b0) is open and
contained within the normal set for R (see Appendix B for the definition of normal
set). Therefore,Ws(b0) ⊂ JR ∩ N ⊂ supp S, by Theorem B.3. Since supp S is closed,
we also have that JR|L inv ⊂ supp S.

Consider the “top” unit circle T = {(u, ū) : |u| = 1} and note that R|T is the
squaring map u �→ u2. Since the fixed point b1 and indeterminate points a± are on T,
we therefore, have

b1 ∈
⋃
n≥0

R−n{a±},

implying that none of the points ofWs(b1) are normal. Hence, we cannot directly use
Theorem B.3 to conclude thatWs(b1) ⊂ supp S.

Notice that the points of L2 � {a±} are normal, since they are in Ws(L0). Theo-
rem B.3 gives that L2 � {a±} ⊂ supp S, since L2 ⊂ JR . Because supp S is closed,
L2 ⊂ supp S. Let D2 ⊂ L2 be a small disc centered around a+. Preimages of D2 under
appropriate branches of Rn will give discs intersecting L1 transversally at a sequence
of points converging to b1. By the Dynamical λ-Lemma (see [41, pp. 80–84]), this
sequence of discs will converge to Ws

0(b1) ⊂ L inv, where Ws
0(b1) is the immediate

basin of b1. Since each of the discs is in supp S, and the latter is closed, we find that
Ws

0(b1) ⊂ supp S. Further preimages show that all of Ws(b1) ⊂ supp S. ��

4.2 Fatou Set

Because JR = supp S, we immediately have:
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Corollary 4.6 The Fatou set of R is pseudoconvex.

For the definition of pseudoconvexity, see [36].

Proof It is well-known that in the complement in CP
2 of the support of a closed

positive (1, 1)-current is pseudoconvex. See [7, Thm. 6.2] or [49, Lem. 2.4]. ��
Remark 4.7 We thank the referee for pointing out that Corollary 4.6 can also be
obtained directly from Proposition 4.3. Suppose that L inv = {linv = 0} and
L0 = {l0 = 0}. For any N ≥ 0 one can define a holomorphic function which
does not extend to

⋃N
n=0 R−n L inv by

z �→
(
l0(ẑ)

)k(∏N
n=0 linv ◦ R̂n(ẑ)

) , where π(ẑ) = z and k =
N∑

n=0

4n .

Therefore, the Fatou set of R is the interior of the intersection of domains of holomor-
phy, so it is also a domain of holomorphy. Hence, it is pseudoconvex.

Computer experiments indicate that the Fatou set of R may be precisely the union
of the basins of attraction Ws(e) and Ws(e′) for the two superattracting fixed points
e and e′. See Problem C.4.

We can prove the following more modest statement. Consider the solid cylinders7

SC :=
{
[U : V : W ] : V 2

U W
∈ [0, 1] and

∣∣∣∣W

U

∣∣∣∣ < 1

}
and

SC ′ :=
{
[U : V : W ] : V 2

U W
∈ [0, 1] and

∣∣∣∣W

U

∣∣∣∣ > 1

}
.

Theorem 4.8 For the mapping R we have SC ⊂ Ws(e) and SC ′ ⊂ Ws(e′).

In the proof, we will need to use an important property of R : C → C that was proved
in Part I. Recall from Sect. 3.1 that C = �(C) is the invariant real Möbius band and
that C0 = C �B is the topological annulus obtained by removing the “core curve” B.

The key property is:

(P9′) Every proper path γ in C0 lifts under R to at least 4 proper paths in C0. If γ

crosses G at a single point, then R−1γ = ∪ δi .

Proof of Theorem 4.8 It suffices to prove the proposition for SC , since the statement
for SC ′ follows from the symmetry ρ.

We will decompose SC as a union of complex discs and show that each disc is in
Ws(e). Let

Pc :=
{
[U : V : W ] : V 2

U W
= c ∈ [0, 1]

}
,

7 They correspond to actual solid cylinders in the (z, t) coords; see Corollary 4.9.
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and

P∗
c :=

{
[U : V : W ] : V 2

U W
= c ∈ [0, 1] and

∣∣∣∣W

U

∣∣∣∣ < 1

}
,

so that SC = ⋃
c∈[0,1] P∗

c .
The discs P∗

0 and P∗
1 are in Ws(e) because they are each within the forward

invariant critical curves L0 and L1, respectively, on which the dynamics is given by
(W/U ) → (W/U )4 and (W/U ) → (W/U )2, respectively.

We now show that for any c ∈ (0, 1) we also have P∗
c ⊂ Ws(e). In fact e ∈ P∗

c ,
so it suffices to show that Rn forms a normal family on P∗

c . Consider any x ∈ P∗
c . If

x = e, then x ∈ Ws(e) so that Rn is normal on some neighborhood of x in P∗
c .

Now consider any x ∈ P∗
c � {e}. There is a neighborhood of N ⊂ P∗

c of x
with e /∈ N , on which we will show that Rn forms a normal family. Recall the
family of curves X0, . . . , X4 from the proof of Proposition 4.3, where we showed that
CP

2
�

⋃
i Xi is complete hyperbolic and hyperbolically embedded. We will show for

every n that Rn(N ) is in CP
2

�
⋃

i Xi , so that Rn is normal on N .
Since P∗

c ∩ X0 = {e}, and e /∈ N , we have that N ∩ X0 = ∅. Therefore, by
reasoning identical to that in the proof of Proposition 4.3, if Rn(N ) intersects Xi for
any i = 0, . . . , 4 we must have that some iterate Rm(N ) intersects X1 = L inv.

We will check that forward iterates of Rn(P∗
c ) are disjoint from L inv, which is

sufficient since N ⊂ P∗
c . The line L inv intersects the invariant annulus C0 in two

properly embedded radial curves, so Property (P9’) gives that (Rn)∗L inv intersects C
in at least 2 · 4n properly embedded radial curves.

One can check that Pc intersects the invariant annulus C in the horizontal curve

{
[U : V : W ] : V 2

U W
= c ∈ [0, 1] and

∣∣∣∣W

U

∣∣∣∣ = 1

}
,

which corresponds to |u| = 1/
√

c > 1 in the u coordinate for C . Therefore, the 2 · 4n

radial curves in C from (Rn)∗L inv intersect Pc in at least 2 · 4n distinct points within
C .

We will now show that these are the only intersection points between (Rn)∗L inv
and Pc in all ofCP

2. Since R is algebraically stable, Bezout’s Theorem gives deg(Pc) ·
deg((Rn)∗L inv) = 2 ·4n intersection points, counted with multiplicities, in all ofCP

2.
Therefore Pc ∩ (Rn)∗L inv ⊂ C .

Since P∗
c ⊂ Pc with P∗

c ∩ C = ∅, we conclude that P∗
c ∩ (Rn)∗L inv = ∅ for ever

n. In other words, Rn(P∗
c ) ∩ L inv = ∅ for ever n. Thus, the same holds for N ⊂ P∗

c ,
implying that Rn is a normal family on N . ��

Theorem 4.8 has an interesting consequence for R. The fixed point e′ for R has a
single preimage η′ = �−1(e′), which is a superattracting fixed point forR. However,
e has the entire collapsing line Z = 0 as preimage under �. Within this line is another
superattracting fixed point η = [0 : 1 : 1] for R and every point in {Z = 0} � {0, γ }
is collapsed by R to η.

We obtain:
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Corollary 4.9 For the mapping R, the solid cylinder {(z, t) : |z| < 1, t ∈ (0, 1]} is in
Ws(η) and, symmetrically, the solid cylinder {(z, t) : |z| > 1, t ∈ [0, 1]} is in Ws(η′).

Notice that we had to omit the “bottom”, t = 0, of the solid cylinder in Ws(η)

because points on it are forward asymptotic to the indeterminate point 0.

4.3 Measure of Maximal Entropy

There is a conjecture specifying the expected ergodic properties of a dominant rational
map of a projective manifold8 in terms of the relationship between various dynamical
degrees of the map; see [30].

Since the Migdal–Kadanoff renormalization R is an algebraically stable map of
CP

2, there are only two relevant dynamical degrees, the topological degree degtop R
and the algebraic degree deg R, which satisfy

degtop R = 8 > 4 = deg R.

This case of high topological degree was studied by Guedj [29], who made use of a
bound on topological entropy obtained by Dinh and Sibony [13]. In our situation, his
results give

Proposition 4.10 R has a unique measure ν of maximal entropy log 8 with the follow-
ing properties

(i) ν is mixing;
(ii) The Lyapunov exponents of ν are bounded below by log

√
2;

(iii) If θ is any probability measure that does not charge the postcritical set9 of R,
then 8−n(Rn)∗θ → ν;

(iv) If Pn is the set of repelling periodic points of R of period n then

8−n
∑
a∈Pn

δa → ν.

(In fact, it suffices to take just the repelling periodic points in supp ν.)

The measure ν satisfies the backwards invariance R∗ν = 8ν, hence its support is
totally invariant. In our situation, supp ν � JR because (for example) the points in
Ws(B) are not in supp ν. It can be thought of as the “little Julia set” within JR on
which the “most chaotic” dynamics occurs.

Remark 4.11 The statement of (iv) in [29, Thm. 3.1] does not emphasize that one can
restrict his or her attention to the periodic points within supp ν, but it follows from the
proof in [29] and the fact that supp ν is totally invariant. See [16, Thm. 1.4.13] for the
analogous argument for holomorphic f : CP

2 → CP
2.

Remark 4.12 We know very little about the support of ν. See Problem C.3.

8 It is stated more generally in [30], for meromorphic maps of compact Kähler manifolds.
9 Here, the postcritical set is defined without taking the closure.
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5 Volume Estimates

This section is devoted to estimating the volume exponent σ(z, f ) in terms of the
Jacobian J f and to studying the sets

D≥a := {z ∈ CP
2 : σ(z, f ) ≥ a} and D>a := {z ∈ CP

2 : σ(z, f ) > a} (5.1)

for various values of a > 0.

Lemma 5.1 Let h(x, y) be a non-constant holomorphic function vanishing with mul-
tiplicity � at (0, 0). Then, there is a neighborhood N of (0, 0) in C

2 and a constant
K > 0 such that for any s > 0 we have

vol({|h(x, y)| < s} ∩ N ) ≤ K s2/�.

Proof We can suppose that the coordinates (x, y) satisfy h(0, y) �≡ 0. TheWeierstrass
Preparation Theorem then gives that there is a sufficiently small bidisc D

2
ε centered at

(0, 0) in which

h(x, y) = α(x, y)
(

y� + β�−1(x)y�−1 + · · · + β0(x)
)

,

where α(x, y) is a non-vanishing holomorphic function and the coefficients β j (x) are
holomorphic in Dε .

Up to a multiplicative constant, we can suppose α(x, y) = 1. Then, in each vertical
slice we have

{x = x0} ∩ {|h(x0, y)| < s} ⊂ {x = x0} ×
�⋃

i=1

Ds1/� (ri )

where r1, . . . , r� are the roots of h(x0, y), listed with multiplicities. In particular,

area({x = x0} ∩ {|h(x0, y)| < s}) ≤ K1s2/�

for some constant K1. The result then follows by Fubini’s Theorem, after integrating
over all x0 ∈ Dε . ��

We now estimate the volume exponent σ(z, f ) in terms of the order of vanishing
μ(z, f ) of the complex Jacobian Jac f at z (see p. 6).

Lemma 5.2 (Favre–Jonsson [21, Prop. 6.3]) Let U , V ⊂ C
2 and f : U → V be

holomorphic and at most dtop-to-one off of a measure zero subset of U. Then for any
z ∈ U we have

σ(z, f ) ≤ μ(z, f ) + 1. (5.2)
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Proof Lemma 5.1 gives a neighborhood N of z and constant K0 > 0 for which

vol({| Jac f (x, y)|2 < s} ∩ N ) ≤ K0s1/μ,

where μ ≡ μ(z, f ). Let X be a measurable subset of N and choose s so that
K0s1/μ = 1

2 vol(X). The Chebyshev Inequality gives

vol f (X) ≥ 1

dtop

∫
X

| Jac f |2d vol ≥ s

dtop

(
vol X − vol

({| Jac f |2 < s
}))

≥ s

2dtop
vol X ≥ K (vol X)1+μ .

for an appropriate constant K > 0. ��
Lemma 5.3 Suppose f : U → V satisfies the hypotheses of Lemma 5.2. If z is a
smooth point of the critical locus of f , then σ(z, f ) = μ(z, f ) + 1, i.e. the estimate
from Lemma 5.2 is sharp at such points.

Proof It suffices to prove that σ(z, f ) ≥ μ(z, f )+ 1. We will do this by showing that
in any neighborhood N of z there is a constant C > 0 such that there are measurable
sets X ⊂ N of arbitrarily small measure for which vol f (X) ≤ C(vol X)μ+1.

Since z is a smooth point of the critical locus, one can choose local coordinates
(x, y) centered at z so that Jac f (x, y) � yμ. Given any neighborhood N of z we can
apply a linear rescaling to our coordinates in order to assume that the unit bidisc D

2

is contained in N . For any 0 < ε < 1 let X := D × Dε ⊂ N . We have

vol f (X) ≤
∫

X
|y|2μd vol = π

∫ 2π

0

∫ ε

0
r2μrdrdθ = 2π2 ε2μ+2

2μ + 2
� (vol X)μ+1.

��
Remark 5.4 Unlike in one-dimensional dynamics, one canhavepointswithσ(z, f )>d.

Consider f : C
2 → C

2 given by f (x, y) = (xy2, y3). One has Jac = 3y4 so that
σ(0, f ) = 5, by Lemma 5.3.

If the zero set of Jac f has a normal crossing singularity at z, then one has the
following stronger estimate

Lemma 5.5 Let U , V ⊂ C
2 and f : U → V be holomorphic and at most dtop-to-one

off of a measure zero subset of U. If Jac f � xa yb in suitable local coordinates (x, y)

centered at z ∈ U. Then

σ(z, f ) ≤ max(a, b) + 1. (5.3)

The proof of Lemma 5.5 will use:

Lemma 5.6 Let Q : w �→ wd . For any measurable set Y ⊂ C,

area(Q−1Y ) ≤ (area Y )1/d .
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Proof We can assume that area Y > 0. Let us take the radius r > 0 such that πr2 =
area Y . Let Y− = Y ∩ Dr , Y+ = Y � Y−, Yc = Dr � Y−. Then,

(area Y )1/d = (areaDr )
1/d = area(Q−1

Dr ) = area(Q−1Y−) + area(Q−1Yc)

≥ area(Q−1Y−)+d Jac Q−1(r) area Yc≥ area(Q−1Y−)+ area(Q−1Y+) = area(Q−1Y ).

Proof of Lemma 5.5 Let γ > max(a, b) + 1 and let N = {|x | < ε} × {|y| < ε}. For
any measurable set X ⊂ N we have:

vol f (X) ≥ 1
dtop

∫
X | Jac f |2d vol � ∫

Xv |y|2b
∫

Xh
y
|x |2a d area(x)d area(y),

where Xv is the projection of X onto the y-axis and Xh
y are the slices of X by hor-

izontal lines. The inner integral above is exactly area(Qa+1(Xh
y ))/(a + 1)2, where

Qa+1(x) = xa+1. By Lemma 5.6, it is bounded below by (area Xh
y )

a+1/(a + 1)2.
Using the Hölder inequality, with p = γ /(γ − 1) and q = γ , we find

(∫
Xv

1/|y|2b/(γ−1) d area(y)

)γ−1 ∫
Xv

|y|2b(area Xh
y )

a+1 d area(y)

≥
(∫

Xv

(area Xh
y )

(a+1)/γ d area(y)

)γ

≥ (vol X)γ .

The conclusion follows since b < γ −1 implies that 1/|y|2b/(γ−1) is locally integrable.
��

Remark 5.7 Favre and Jonsson prove a similar volume estimate within their study of
the the exceptional set E1; see [21, Prop. 7.1 and Lem. 7.2].

Let us return to the case that f : CP
2 → CP

2 is a rational map. For any z ∈ I ( f )

we can estimate σ(z, f ) by applying either Lemmas 5.2 or 5.5 at each point of the
exceptional divisor π−1(z):

Proposition 5.8 Consider the resolution of indeterminacy (A.1) for f . For any
z ∈ CP

2 the exponent σ(z, f ) exists and satisfies

σ(z, f ) ≤ max
z̃∈π−1({z})

σ (z̃, f̃ ). (5.4)

Proof Note that π : ˜
CP

2 → CP
2 decreases volumes. Therefore, for any z ∈ CP

2

and any γ > maxz̃∈π−1({z}) σ (z̃, f̃ ) it suffices for us to find a neighborhood Ñ of
π−1({z}) and a constant K > 0 so that for any measurable set Y ⊂ CP

2 we have

vol̃
CP

2

(
Ñ ∩ f̃ −1(Y )

)
≤ K (vol Y )1/γ . (5.5)

This follows by applying the definition of σ(z̃, f̃ ) at each point of π−1({z}) and using
that π−1({z}) is compact. ��
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Lemma 5.9 The volume exponent σ satisfies:

(i) σ(z, f ) is an integer away from I ( f ) and singular points of Crit( f ),
(ii) σ(z, f ) assumes finitely many values as z varies over CP

2, and
(iii) for any a > 1 the set D≥a and D>a (see Equation 5.1) is algebraic, consisting

of finitely many algebraic curves together with finitely many isolated points.

Proof Property (i) is a consequence of Lemma 5.3 and Property (ii) follows because
I ( f ) and the set of singular points of Crit( f ) are finite. Property (iii) follows from
Lemma 5.3 and upper semicontinuity of σ :

lim sup
z→z0

σ(z, f ) ≤ σ(z0, f ),

which is a consequence of the definition of σ . ��
Proposition 5.10 Suppose that C is an irreducible algebraic curve contained in D>d .
Then, C is collapsed by f .

Proof Suppose for contradiction that C is not collapsed by f . Then Lemma A.4 gives
that C is a Whitney Fold of f , i.e. there exists r ∈ Z+ and a finite S ⊂ C such that
for any p ∈ C \ S there are systems of holomorphic coordinates (x, y) centered at p
and (z, w) centered at f (p) in which

(z, w) = f (x, y) = (x, yr ). (5.6)

Moreover, for all p ∈ C \ S we have σ(p, f ) = r > d, since we suppose C ⊂ D>d .
In these coordinates, for any w0 �= 0 we have that f −1({w = w0}) intersects the

y-axis transversally in r > d points. Let L ⊂ CP
2 be a projective line through p that

is tangent to the y-axis in these local coordinates. If we let � be a complex projective
line in CP

2 that is tangent to {w = w0} at (0, w0) and take |w0| sufficiently small,
then f −1(�) will be an algebraic curve of degree d that intersects L transversally
in r > d points, by the stability of transverse intersections between analytic curves
under small perturbations. This contradicts the Bezout Theorem. ��

6 Proof of the Equidistribution Theorem for the DHL

6.1 Transformation of Volume by R

Proposition 6.1 There exist constants K > 0 and 1 < τ < deg(R2) = 42 such that

vol
(

R−2(Y )
)

≤ K (vol Y )1/τ

for any measurable Y ⊂ CP
2.
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Proof Let � be any forward invariant neighborhood of the two superattracting fixed
points e and e′. We will first prove that there exists K ′ > 0 such that

vol
(

R−1(Y )
)

≤ K ′ (vol Y )1/3 (6.1)

for any measurable Y ⊂ CP
2 \ �. By compactness, it suffices to prove that every

z ∈ CP
2 \ � has volume exponent σ(z, R) ≤ 3.

Lemma 3.6(a) gives that for any z ∈ CP
2 \ {c, e, e′, a±} we have μ(z, R) ≤ 2 and

hence σ(z, R) ≤ 3, by Lemma 5.2. Meanwhile, Lemma 3.6(b) gives local coordinates
(x, y) centered at {c} = L0 ∩ L2 in which Jac R � xy2, so that Lemma 5.5 gives
σ(c, R) ≤ 3.

We now use Proposition 5.8 to check that the indeterminate points a± sat-
isfy σ(a±, R) ≤ 3. By Lemmas 3.7 and 5.5 we have σ(z̃, R̃) ≤ 3 for every
z̃ ∈ Lexc(a+) ∪ Lexc(a−). This completes the proof of (6.1).

A calculation10 shows that μ(e, DR2) = 14 and hence Lemma 5.2 gives
σ(e, R2) ≤ 15. By symmetry, the same holds at e′. Combined with (6.1), this
completes the proof of Proposition 6.1. ��
Remark 6.2 In Lemma 3.6(c) we saw that μ(e, R) = 4, so that Lemma 5.2 gives
σ(e, R) ≤ 5, which is insufficient for our purposes. Meanwhile, the four separate
critical curves L0, L1, L+

3 and L−
3 meeting at e imply that det DR does not have the

form needed to apply Lemma 5.5. (The same holds at the symmetric fixed point e′.)
This is whywe needed to pass to the second iterate of R in the proof of Proposition 6.1.

6.2 Completing the Proof of the Equidistribution Theorem for the DHL

Let g := R2 and d := 16 = deg(g). It suffices to prove that

1

dn deg(A)
(gn)∗[A] → S (6.2)

for any algebraic curve A ⊂ CP
2 because the Green current S for R is also the Green

current for g = R2 and because the normalized pullback 1
4 R∗ acts continuously on

the space of closed positive (1, 1) currents and has S as a fixed point.
Let π : C

3 \ {0} → CP
2 denote the canonical projection. For any z ∈ CP

2 we will
denote by ẑ ∈ C

3 \ {0} any choice of a point of π−1(z). Let

A = {z ∈ CP
2 : P(ẑ) = 0},

with P a homogeneous polynomial of degree a = deg(A). We must show that the
limit

lim
n→∞

1

adn
log |P ◦ ĝn(ẑ)| (6.3)

10 We omit the calculation, but the reader can readily check it using Maple.
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exists in L1
loc(C

3) and is equal to the Green Potential

G(ẑ) := lim
n→∞

1

dn
log ‖ĝn ẑ‖ (6.4)

of g.
The homogeneous polynomial P determines a section sP of the a-th tensor power

of the hyperplane bundle; see Appendix A.2. For each n ≥ 0 we will consider the
function

φn : CP
2 → [−∞,∞) where φn(z) := 1

adn
log ‖sP (gn(z))‖,

with ‖ · ‖ denoting the Hermitian norm on this bundle. By definition of the norm,

φn(z) = 1

adn
log

|P ◦ ĝn(ẑ)|
‖ĝn ẑ‖a

= 1

adn
log |P ◦ ĝn(ẑ)| − 1

dn
log ‖ĝn ẑ‖.

The limit in (6.4) exists by the hypothesis that R (and hence g) is algebraically stable;
see Theorem B.1. Therefore, the desired convergence of currents (6.2) will follow
from:

Theorem 6.3 φn → 0 in L1
loc(CP

2) as n → ∞.

Proof We will use the following general convergence criterion:

Lemma 6.4 Let φn be a sequence of L2 functions on a finite measure space (X , m)

with bounded L2-norms. If φn → 0 a.e. then φn → 0 in L1.

Proof Take any ε > 0 and δ > 0. By Egorov’s Lemma, there exists a set X ′ ⊂ X with
m(X � X ′) < ε such that φn → 0 uniformly on X ′. So, eventually the sup-norms of
the φn on X ′ are bounded by δ. Hence

∫
|φn| dm =

∫
X ′

|φn| dm +
∫

X�X ′
|φn| dm ≤ δ · m(X) + B

√
ε,

where the last estimate follows from the Cauchy-Schwarz Inequality (with B the L2-
bound on the φn). The conclusion follows. ��
Lemma 6.5 There exists K > 0 such that for any s < 0 we have

vol({φ0 < s}) ≤ K e2s .

Proof Since A is compact, it suffices to work in a neighborhood of any point z ∈ A.
Without loss of generality, we can suppose z = [0 : 0 : 1] so that it is the origin in the
affine coordinates (x, y) �→ [x : y : 1]. In these coordinates,
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|P(x, y, 1)|
‖(x, y, 1)‖a

� |P(x, y, 1)|.

The local multiplicity of P(x, y, 1) at (0, 0) is less than or equal to a = deg(P). The
estimate then follows in a neighborhood of z from Lemma 5.1. ��
Lemma 6.6 For any measurable set Y ⊂ CP

2 there exists 1 < τ < d and K > 0
such that for any n ≥ 0 we have

vol g−nY ≤ K (vol Y )1/τ
n
. (6.5)

Proof The estimate for a single iterate of g = R2 is Proposition 6.1. The result then
follows inductively if we let K := K s

0, where s = ∑∞
n=0

1
τ n and K0 is the constant

given by Proposition 6.1. ��
We will estimate the distribution of the tails of the random variables φn :

Lemma 6.7 Let M = supφ0(z). Then,there exists K > 0 so that

vol{|φn| > r} ≤ K exp

(
−2r

(
d

τ

)n)
for any r > Md−n .

Proof We have:

Xn(r) := {|φn| > r} = {φ0 ◦ gn > rdn} ∪ {φ0 ◦ gn < −rdn}
= {φ0 ◦ gn < −rdn} = g−n{φ0 < −rdn}.

We have used that φ0 < rdn to see that the first term in the union is empty. According
to Lemma 6.5 there is a constant K1 > 0 such that

vol{φ0 < −rdn} ≤ K1 exp(−2rdn).

The result then follows from Lemma 6.6. ��
We can now show that the functions φn satisfy the conditions of Lemma 6.4.

Lemma 6.8 Assuming (6.5) holds for some 1 ≤ τ ≤ d, the sequence φn is L2-bounded.

Proof We have:

‖φn‖2 ≤
∞∑

�=0

(� + 1)2 vol{|φn| ≥ �}.

By Lemma 6.7, this sum is bounded by
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M+1∑
�=0

(� + 1)2 + K
∑
�>M

(� + 1)2 exp

(
−2�

(
d

τ

)n)

≤ K0 + K
∞∑

�=0

(� + 1)2 exp(−2�) < ∞.

��
Lemma 6.9 The sequence φn exponentially converges to 0 almost everywhere.

Proof Fix any λ ∈ (1, d/τ). For sufficiently large n, we have λ−n > Md−n , hence
Lemma 6.7 gives

vol{|φn| > λ−n} ≤ K exp

(
−2

(
d

τλ

)n)
.

Since the sum of these volumes converges, the Borel–Cantelli Lemma gives that for
a.e. x ∈ CP

2, we eventually have |φn(x)| ≤ λ−n . ��
This completes the proof of Theorem 6.3 and hence of the Equidistribution Theorem
for the DHL. ��

7 Proof of the Equidistribution Theorem

This section is devoted to proving:

Proposition 7.1 (Finding a good iterate) Suppose that f : CP
2 → CP

2 is a dominant
algebraically stable rational map with deg f = d that satisfies the hypotheses the
Equidistribution Theorem (see p. 6). For any forward invariant neighborhood � of
exceptional set E there exists an iterate n0 and constants K > 0 and 0 < τ < dn0

such that

vol
(

f −n0(Y )
) ≤ K (vol Y )1/τ . (7.1)

for any measurable Y ⊂ CP
2 \ �.

Once this proposition is proved, the remainder of the proof of the Equidistribution
Theorem follows in exactly the sameway as the proof of the Equidistribution Theorem
for the DHL (Sect. 6.2).

Throughout this section, we will suppose that f : CP
2 → CP

2 is a dominant
algebraically stable rational map with deg f = d. However, we will keep track of
which specific Hypotheses (i)–(iii) of the Equidistribution Theorem are used.

7.1 No Curves of Maximal Degeneracy

Proposition 7.2 Suppose f satisfies Hypothesis (ii). Then D>d is a finite set.
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Proof By Corollary 5.9, D>d is algebraic, so if it were an infinite set it would contain
some irreducible algebraic curve C . Then Proposition 5.10 implies that C is collapsed
by f , which results in C containing an indeterminate point for f , by Lemma A.1. This
violates Hypothesis (ii). ��
Proposition 7.3 Suppose f satisfies Hypotheses (i) and (ii) of the Equidistribution
Theorem. Then there exists N > 0 and a finite forward invariant “non-escaping set”
N≥d ⊂ D≥d such that if z ∈ D≥d \ N≥d then there exists 0 < n < N such that
f n(z) /∈ D≥d .

The proof of Proposition 7.3 relies on several basic lemmas about the structure of
one iterate of a rational map that are presented in Appendix A.1. We will also need
the following definition. Suppose p ∈ CP

2 \ I ( f ) is not on a collapsed curve. Then,
f induces a germ of an open mapping at p and the local topological degree e(p, f )

is the topological degree of that germ. It satisfies the chain rule

e(p, f 2) = e(p, f ) · e( f (p), f ), (7.2)

so long as e(p, f ) and e( f (p), f ) are defined.
The key step in the proof of Proposition 7.3 is:

Lemma 7.4 Suppose that f satisfies Hypothesis (i). Then, there is no irreducible alge-
braic curve C such that for some k ≥ 1 we have f k(C) ⊂ C, C ∩ I ( f k) = ∅, and
σ(z, f k) ≥ dk for all z ∈ C.

Proof Suppose for contradiction that such a curve C exists. Then, Lemma A.1 implies
that C is not collapsed by f k . Lemma A.4 then gives that C is a Whitney Fold and
that there is a finite S ⊂ C such that for every p ∈ C \ S we have

e
(

p, f k) = σ
(

p, f k) ≥ dk . (7.3)

Let us now consider the irreducible component C as a divisor (C), assigning it multi-
plicity one. (See [4, Appendix A] for basic background on divisors.) SinceC is disjoint
from I ( f k), the pushfoward of (C) by f k is defined by

(
f k)

∗(C) := degtop
(

f k |C : C → f k(C)
)(

f k(C)
) = degtop

(
f k |C : C → C

)
(C).

Meanwhile, we have that

deg
((

f k)
∗(C)

) = dkdeg((C));

see [4, Lem. A.5]. Therefore, we conclude that

degtop
(

f k |C : C → C
) = dk . (7.4)

Equation (7.4) implies that a generic z ∈ C will have dk preimages under f k |C and
Equation (7.3) then implies that a generic point z′ near z, but not on C , will have d2k
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preimages under f k . (There are dk preimages of z′ near each preimage of z under
f k |C .) By Hypothesis (i) I ( f ) �= ∅, so this violates the fact that degtop( f ) < d2k ; see
Lemma A.2. ��

Proof of Proposition 7.3 By Lemma 5.9, the set D≥d is algebraic. Moreover, none of
the irreducible components of D≥d is collapsed by f , using Hypothesis (ii) that D≥d

is disjoint from I ( f ) and Lemma A.1.
It suffices to show that for each irreducible component C ⊂ D≥d there is an iterate

n such that f n(C) �⊂ D≥d . In this case, the Bezout Theorem implies f n(C) ∩ D≥d

is finite. This implies that all but finitely many points of C are mapped out of D≥d by
f n , since f does not collapse any irreducible component of D≥d .
Suppose for the purpose of obtaining a contradiction that C ⊂ D≥d is some irre-

ducible component with f n(C) ⊂ D≥d for every n ≥ 1. As D≥d contains finitely
many irreducible components, we conclude that some iterate f n0(C) is periodic under
f . Therefore, without loss of generality, we can suppose that C itself is periodic under
f with some period k ≥ 1.
Let Cn := f n(C) for each 0 ≤ n < k. Lemma A.4 gives that there is a finite set

Sn ⊂ Cn and an exponent rn so that for each p ∈ Cn \ Sn we have

σ(p, f ) = e(p, f ) = rn ≥ d,

with the last inequality coming from the fact that Cn ⊂ D≥d . Meanwhile, applying
Lemma A.4 to f k and C , together with the chain rule (7.2), we see that there is a finite
S ⊂ C so that for all p ∈ C \ S we have

σ(p, f k) = e(p, f k) = e(p, f ) · e( f (p), f ) · · · e( f n−1(p), f ) ≥ dk . (7.5)

Using Hypothesis (i), we can now apply Lemma 7.4 to conclude that C contains a
point of I ( f k). However, this contradicts that for each 0 ≤ n < k the curveCn ⊂ D≥d

and is, therefore, disjoint from I ( f ) by Hypothesis (ii). ��

7.2 Superattracting Periodic Points

An important aspect of the work of Favre and Jonsson [21] is to consider asymptotic
versions of the multiplicitiesμ and c (defined in Sects. 3.6 and 1.3, respectively) along
the orbit of any z ∈ CP

2. In our paper, I ( f ) is not assumed to be empty, so that a
point for which an iterate lands on I ( f )will have uncountably many different forward
orbits, causing such an asymptotic multiplicity not to exist. However, we can apply
the results of [21] at regular periodic points, as we will now summarize.

Let g : (C2, 0) → (C2, 0) be a dominant holomorphic germ. Then μ̂(z, gn) :=
3 + 2μ(z, gn) is submultiplicative:

μ̂(z, gn+m) ≤ μ̂(z, gn)μ̂(gn(z), gm).
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In particular,

μ∞(z, g) := lim μ̂(z, gn)1/n

exists.
For any n ∈ N, let c(z, gn) be the order of the lowest order term in the

power series for gn centered at the origin. It follows directly from the definition
that c(z, gn+m) ≥ c(z, gn)c(gn(z), gm). Moreover, Favre and Jonsson proved that
c(z, gn) ≤ 1

2μ(z, gn) + 1. Therefore, the limit

c∞(z, g) := lim c(z, gn)1/n

exists and satisfies

c∞(z, g) ≤ μ∞(z, g). (7.6)

Suppose z is a regular periodic point of period k for the dominant rational map
f : CP

2 → CP
2. Then, in suitable local coordinates, f k defines a dominant holomor-

phic germ f k : (C2, 0) → (C2, 0). By the discussion of the previous two paragraphs,
we can define

μ∞(z, f ) := lim
n→∞ μ̂(z, f nk)1/nk and c∞(z, f ) := lim

n→∞ c(z, f nk)1/nk .

The total degree of the Jacobian divisor Jac f k on CP
2 is 3(dk − 1), so Jac f k cannot

vanish to more than this order at 0; see Remark A.3. This implies that

c∞(z, f ) ≤ μ∞(z, f ) ≤ d = deg( f ). (7.7)

In particular, this justifies the definition of maximally superattracting regular periodic
point from the Introduction.

Theorem 7.5 (Favre–Jonsson [21, Thm. 4.2]) Let g : (C2, 0) → (C2, 0) be a holo-
morphic germ. Let V1, . . . , Vk be the irreducible components of the critical set of g.
Assume that c∞(0, g) < μ∞(0, g). Then, there exists a1, . . . , ak ≥ 0 (not all zero)
such that

g∗
(∑

i

ai [Vi ]
)

≥ μ∞(0, g)

(∑
i

ai [Vi ]
)

. (7.8)

Inequality (7.8) means that if one subtracts the current on the right from the current
on the left, then the result is a weighted sum of currents of integration over finitely
many analytic curves, each assigned a non-negative weight.
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Corollary 7.6 Suppose that f : CP
2 → CP

2 is a dominant algebraically stable ratio-
nal map of degree d. If z is a regular periodic point of period k for f such that

c∞(z, f ) < μ∞(z, f ) = d, (7.9)

then f k has a backward invariant curve C through z. Each of the irreducible compo-
nents of C passes through z.

Proof Taking the k-th iterate, we can suppose z is a regular fixed point for f . Theo-
rem 7.5 implies that there exist weights a1, . . . , ak ≥ 0 (not all zero) such that (7.8)
holds with μ∞(0, f ) = d. Suppose two irreducible branches Vi and Vj of the crit-
ical locus of the germ f : (C2, 0) → (C2, 0) are obtained as the restriction of the
same algebraic curve from the critical locus of f : CP

2 → CP
2. In this case, it is

straightforward to check the proof of Theorem 7.5 from [21] the weights are equal:
ai = a j . Therefore, the local current

∑
i ai [Vi ] extends to a global closed positive

(1, 1) current

T =
∑

αk[Ck]

on CP
2 which also satisfies f ∗T ≥ d T . Since the pullback under f multiplies the

total mass of a closed positive (1, 1) current on CP
2 by exactly d, we conclude that

f ∗T = d T (see Appendix A.3). In particular, the support of T is a backward invariant
curve for f passing through z. ��

7.3 Backward Invariant Curves

Because of Corollary 7.6 we need a better understanding of algebraic curves that are
backward invariant under some iterate of f . This subsection is devoted to proving the
following:

Proposition 7.7 Suppose that f satisfies Hypotheses (i)–(iii) of the Equidistribution
Theorem and that z0 is a regular periodic point of period k for f . If C is a (possibly
reducible) algebraic curve that is backward invariant under f k , each of whose irre-
ducible components passes through z0, then z0 ∈ E(b) (see p. 6 for the definition of
E(b)).

Proof We will show that z0 is superattracting and that there is some algebraic curve
C ′ ⊂ C (possibly also reducible) satisfying the conditions necessary for z0 to be in
E(b).

Let C1, . . . , Cm denote the irreducible components of C and suppose for contra-
diction that none of them is collapsed under f k . In this case, we claim that f −k

induces a permutation on {C1, . . . , Cm}. Consider an arbitrary 0 ≤ i ≤ m and notice
that f −k(Ci ) is not reduced to an indeterminate point. Indeed, by considering Ci

as a divisor (Ci ) of multiplicity one, the fact that ( f k)∗(Ci ) is a divisor of degree
dk deg(Ci ) > 0 (see [4, Lem. A.5]) implies that f −k(Ci ) is a non-trivial algebraic
curve. Since C is backward invariant under f k , this implies that there is at least one
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1 ≤ j ≤ m such that C j ⊂ f −k(Ci ). Meanwhile, for each 1 ≤ n ≤ m the irreducible
component Cn is not collapsed by f k so that it can occur as a component of f −k(C p)

for at most one value of 1 ≤ p ≤ m. We conclude that, for each 1 ≤ i ≤ m there
exists a unique j such that f −k(Ci ) = C j .

In particular, there exists � ≥ 1 such that B := C1 is backward invariant under f �k .
If we consider B as a divisor (B) of multiplicity one, then this implies that

( f �k)∗(B) = d�k(B) (7.10)

(see again [4, Lem. A.5]).
Backward invariance under f �k also implies f �k(B \ I ( f �k)) ⊂ B. Moreover,

since we are supposing that none of the irreducible components of C is collapsed by
f k , we can use (7.10) and the Whitney Fold normal form given by Lemma A.4 to find
that σ(z, f �k) ≥ d�k for all z ∈ B. Using Hypothesis (i), it follows from Lemma 7.4
that that B contains a point of I ( f �k).

For each 0 ≤ j < �k we let B j := f j (B \ I ( f j )), which is a non-trivial irreducible
algebraic curve that is not collapsed by f . Proposition 5.10 gives that at most finitely
many points of B j are in D>d . Thus, in order to have σ(z, f �k) = d�k for generic
points of B, wemust have that B j ⊂ D≥d for each 1 ≤ j ≤ �k. Hypothesis (ii) implies
that B j is disjoint from I ( f ) for each 0 ≤ j < �k, contradicting that B contains a
point of I ( f �k).

We can, therefore, let C ′ ⊂ C denote the (non-trivial) union of all irreducible com-
ponents of C that are collapsed by some iterate of f k . Since each of these components
passes through the regular periodic point z0, each of them collapses to z0. Since C is
backward invariant under f k , C ′ is also backward invariant under f k .

Suppose for contradiction that z0 is a smooth point of C ′. Since every irreducible
component ofC passes through z0, this implies thatC ′ is itself irreducible. In particular,
backward invariance of C ′ under f k implies that

( f k)∗(C ′) = dk(C ′). (7.11)

Then, we can choose local coordinates (x, y) centered at z0 such that C ′ = {x = 0}.
Write f k in these local coordinates as

f k(x, y) = ( f k
1 (x, y), f k

2 (x, y)). (7.12)

Equation (7.11) implies that f k
1 (x, y) = xdk

g(x, y) for some non-vanishing holo-
morphic function g. From this, it is immediate that f k contracts the volume of a
small bidisc centered along C ′ with exponent dk , i.e. that for ever z ∈ C ′ we have
σ(z, f k) ≥ dk .

Let z0, . . . , zk−1 denote the periodic orbit of z0. Moreover, let 1 ≤ j0 ≤ k be the
smallest iterate for which C ′ is collapsed by f j . For each 0 ≤ j < j0 we let

C ′
j := f j (C ′ \ I ( f j )).
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Then C ′
j0−1 is collapsed by f and z j0 ∈ I −( f ), by definition. By Hypothesis (iii), we

have σ(z j , f ) ≤ d for each 0 ≤ j ≤ k − 1. Meanwhile, for each 0 ≤ j ≤ j0 − 1
the curve C ′

j �⊂ D>d , by Proposition 7.2. Therefore, to have σ(z, f k) ≥ dk for every
z ∈ C ′ we must have C ′

j0−1 ⊂ D≥d . This contradicts Hypothesis (ii) since C ′
j0−1

contains a point of I ( f ), by Lemma A.1.
Therefore, z0 is a singular point of C ′. We now use this to show that z0 is super-

attracting. Let (x, y) be local holomorphic coordinates centered at z0 and suppose
that C ′ is given in these coordinates as C ′ = {q(x, y) = 0} for some holomorphic
function q (more specifically, we choose q so that it defines the divisor (C ′) with
multiplicity one). Since z0 is a singular point of C ′ we have

q(0, 0) = ∂q

∂x
(0, 0) = ∂q

∂ y
(0, 0) = 0. (7.13)

Let � ≥ 1 be chosen so that f �k(C ′ \ I ( f �k)) = z0. Writing f �k(x, y) =
( f �k

1 (x, y), f �k
2 (x, y)) in these local coordinates we have that

f �k
1 (x, y) = q(x, y)g1(x, y) and f �k

2 (x, y) = q(x, y)g2(x, y), (7.14)

for some holomorphic functions g1(x, y) and g2(x, y). Equations (7.13) and (7.14)
imply that D f �k(0, 0) = 0, i.e. that z0 is a superattracting periodic point. We conclude
that z0 ∈ E(b). ��

7.4 Behavior of the Volume Exponent� Under Iteration

The exponents σ(z, f ) do not transform very well under iteration: if an iterate of z
lands on I ( f ), this leads to many different orbits of z, all of which we need to control.
Let Y ⊂ CP

2. Given a sequence of open sets N0, . . . , Nn−1 ⊂ CP
2 let

f −n
N0,N1,...,Nn−1

(Y ) = {z0 ∈ N0 : there exists orbit z = (z0, z1, . . . , zn)

with zi ∈ Ni for 1 ≤ i ≤ n − 1 and zn ∈ Y }.

If z = (z0, z1, . . . , zn−1) is an orbit of f we let σ(z, f n) ≡ σ(z0, z1, . . . , zn−1, f n)

be the smallest positive number such that for any γ > σ(z, f n) there is an K > 0 and
neighborhoods N0, . . . , Nn−1 of z0, . . . , zn−1 such that

vol( f −n
N0,··· ,Nn−1

Y ) ≤ K (vol Y )1/γ (7.15)

for any measurable Y ⊂ CP
2.

It is clear from the definition that for any orbit z0, . . . , zn−1 and any 1 ≤ k ≤ n − 1

σ(z0, z1, . . . , zn−1, f n) ≤ σ(z0, . . . , zk−1, f k)σ (zk, . . . , zn−1, f n−k) and

σ(z0, z1, . . . , zn−1, f n) ≤ σ(z0, f n),

where the exponent on the right-hand side of the second inequality is from (1.4).
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Lemma 7.8 For any z0 ∈ CP
2 we have

σ(z0, f n) ≤ sup
z

σ(z, f n), (7.16)

where the supremum is taken over all orbits z = (z0, . . . , zn−1).

Proof Since the indeterminate points of f i for each 1 ≤ i ≤ n are isolated, we can
find a neighborhood V of z0 containing no indeterminate points for each f i other than
(potentially) z0. We do a finite sequence of blow-ups over z0 forming π : Ṽ → CP

2

so that for each 1 ≤ i ≤ n the iterate f i lifts to a regular map f̃ i making the diagram

Ṽ

π

��

f̃ i

���
��

��
��

�

V
f i

�� CP
2,

commute wherever f i ◦ π is defined.
Let γ be any exponent greater than supz σ(z, f n). Any point z̃ ∈ π−1(z) determines

the following orbit of length n of z:

z ≡ (z0, . . . , zn−1) :=
(

z, f̃ 1(z̃), . . . , f̃ n−1(z̃)
)

. (7.17)

By choice of γ , there is a is a sequence of neighborhoods U0(z), . . . , Un−1(z) of
z0, . . . , zn−1, respectively, so that (7.15) holds. Associated to this sequence is a neigh-
borhood Ũ (z) of z̃ such that for any Y ⊂ CP

2 we have

f −n
U0(z),...,Un−1(z)

Y = π
((

f̃ n
)−1

Y ∩ Ũ (z)
)

. (7.18)

Since π−1{z0} is compact, there exist finitely many length n orbits z1, . . . , z� of z0
whose neighborhoods Ũ (z1), . . . , Ũ (z1) cover π−1(z0). If we let

U = ⋃�
i=1 π

(
Ũ (zi )

)
then (7.18) implies that for any Y ⊂ CP

2 we have

f −n(Y ) ∩ U ⊂
�⋃

i=1

f −n
U0(zi ),...,Un−1(zi )

Y .

The result follows since each f −n
U0(zi ),...,Un−1(zi )

Y satisfies (7.15) with some suitable
multiplicative constant. ��

We will also use a modified notation σ(z, f , W ) for the volume exponent in the
case that we require that (1.4) only holds for measurable Y ⊂ W . A straightforward
adaptation of the proof of Lemma 7.8 yields:
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Lemma 7.9 Let � ⊂ CP
2 be a forward invariant open set. For any z0 ∈ CP

2 \ � we
have

σ(z0, f n, CP
2 \ �) ≤ sup

z
σ(z, f n), (7.19)

where the supremum is taken over all orbits z = (z0, . . . , zn−1) ⊂ CP
2 \ �.

7.5 Proof of Proposition 7.1.

Let � be any forward invariant neighborhood of the exceptional set E . We will prove
that there exist B > 0 and 1 < α < d such that for any n ≥ 0 and any finite orbit
z0, . . . , zn−1 remaining in CP

2 \ � we have

σ(z0, . . . , zn−1, f n) ≤ Bαn . (7.20)

We can then let n0 be sufficiently large that τ := Bαn0 < dn0 . Then Lemma 7.9 will
imply that σ(z0, f n0 , CP

2 \�) < τ for any z0 ∈ CP
2 \�. Since CP

2 \� is compact,
it is then covered by finitely many neighborhoods such that on each neighborhood N
we have

vol( f −n0Y ∩ N ) ≤ KN (vol Y )1/τ ,

which will, therefore, prove the proposition.
To prove (7.20), we consider three types of finite orbits.

Type I Periodic orbits that pass through D>d \ E .
Let p be any point from such an orbit. We could11 have σ( f n(p), f ) ≥ d for every
n ≥ 0, but the hypothesis that p /∈ E and the results of Sects. 7.2 and 7.3 will imply
that σ(p, f n) decays sufficiently as we iterate and indeed grows at exponential rate
slower than d.

By Hypothesis (iii), p is a regular periodic point, i.e. the orbit of p is disjoint from
I ( f ). Since p /∈ E(a) it is not maximally superattracting, c∞(p, f ) < d. Therefore,
since p /∈ E(b), Corollary 7.6 and Proposition 7.7 imply that μ∞(p, f ) < d. Using
the volume estimate from Lemma 5.2, this implies that lim sup(σ (p, f n))1/n < d.
Hence, (7.20) holds for such an orbit.

Type II Periodic orbits contained in N≥d \ E .
Recall thatN≥d ⊂ D≥d is finite and forward invariant by Proposition 7.3. It is disjoint
from I ( f ) by Hypothesis (ii). Inequality (7.20) holds for these orbits using exactly
the same reasoning as for orbits of Type I.

Type III Finite orbits z = (z0, . . . , zn−1) ⊂ CP
2 \ � that are disjoint from orbits of

Type I and Type II.
Let k denote the number of elements ofN≥d , which is finite and forward invariant by
Proposition 7.3. Since N≥d is forward invariant and orbit z is disjoint from periodic

11 For example, p could be a fixed point in D>d .
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orbits of Type II, we have z0, . . . , zn−k−1 /∈ N≥d . Moreover, Proposition 7.3 gives
N ∈ N such that at least one out of every N points of z0, . . . , zn−k−1 is “good”,
landing in CP

2 \ D≥d . Moreover, Lemma 5.9 gives a uniform 1 ≤ σ0 < d such that
σ(p, f ) ≤ σ0 for these “good” points.

Let � denote the number of elements of D>d , which is finite by Proposition 7.2.
Since orbit z is disjoint from periodic orbits of Type I, it can only meet D>d at most
� times. In other words, σ(zi , f ) > d for at most � values of 0 ≤ i ≤ n − 1. If we
absorb the excess σ(zi , f )/d > 1 from these at most k points into the multiplicative
constant B, then the previous paragraph implies that (7.20) holds for an orbit of
Type III.

Let us now consider an arbitrary finite orbit z = (z0, . . . , zn−1) ⊂ CP
2 \ �. If it is

not of Type I, II, or III, then there is some 0 < m < n − 1 such that (z0, . . . , zm−1)

is of Type III and (zm, . . . , zn−1) is of either Type I or II. Inequality (7.20) holds for
such an orbit using the submultiplicativity

σ(z0, . . . , zn−1, f n) ≤ σ(z0, . . . , zm−1, f m)σ (zm, . . . , zn−1, f n−m).

This completes the proof of Proposition 7.1 andhence of theEquidistributionTheorem.
��

7.6 A Useful Proposition for Determining E

It is easy to detect collapsed curves by checking each irreducible component of the
critical locus, so it is usually easy to determine E(b). The following proposition makes
it easier to determine E(a).

Proposition 7.10 Let f : CP
2 → CP

2 satisfy the hypotheses of the Equidistribution
Theorem. Then, any maximally superattracting periodic orbit (i.e. any point of E(a))
has orbit passing through D≥d . Moreover, it either

(i) passes through the finite set D>d , or
(ii) is contained entirely in the finite non-escaping set N≥d ⊂ D≥d .

Proof Suppose z0 is amaximally superattracting periodic point so that d = c∞(z0, f ),
by definition. Iterating a round ball of small radius centered at z0, this implies that
lim inf(σ (p, f n))1/n = d. Using the submultiplicativity of the volume exponent σ ,
the only way this can happen is if (i) or (ii) holds. ��

8 Applications of the Equidistribution Theorem to Other Hierarchical
Lattices

We now consider the Migdal–Kadanoff renormalization mappings associated to the
five hierarchical lattices whose generating graphs are shown in Fig. 4 (in the introduc-
tion).
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8.1 Linear Chain

The hierarchical lattice generated by the double edge shown in Fig. 4 is the same as
the classical Z

1 lattice. The corresponding renormalization mapping is

R[U : V : W ] = [
U 2 + V 2 : V (U + W ) : W 2 + V 2].

Its critical locus consists of the curvesC1 := {U+W = 0} andC2 := {U W −V 2 = 0}.
Generic points z oneachof these curves havevolumeexponentσ(z, R) = 2 = deg(R).
Since these two curves meet at the indeterminate points a± := [±i : 1 : ∓i], this
implies that σ(a±, R) = deg(R), violating Hypothesis (ii) of the Equidistribution
Theorem.

Despite this, the Global LYF Theorem holds for this hierarchical lattice. Let F
denote the family of lines passing through the fixed point [1 : 0 : 1]. Each line
L ∈ F is invariant under R and all but finitely many lines from F intersect C2 at
two distinct points, neither of which is the intersection of the Principal LYF Locus
S0 = {U + 2V + W = 0} with C2. For such generic lines L we have R|L(z) = z2

in a suitable choice of local coordinate z. The exceptional points z = 0 and z = ∞
correspond to the intersections of L with the conic C2 and S0 ∩ L corresponds to a
non-exceptional point. Therefore, for all but finitely many L ∈ F we have that the
(normalized) iterated preimages of S0 ∩ L equidistribute to the measure of maximal
entropy for R|L , see [24,39,40], which is equal to the slice S|L , where S is the Green
current for R. This is sufficient to prove that 1

2n (Rn)∗[S0] → S. Pulling everything
back under� one finds that the Global LYFTheorem holds for this hierarchical lattice.

8.2 k-Fold DHL

One can consider a generalization of theDHLwith the generating graph having valence
k ≥ 2 at the marked vertices a and b; see Fig. 4. The renormalization mapping is

R[U : V : W ] = [(
U 2 + V 2)k : V k(U + W )k : (

W 2 + V 2)k]
,

whose lift R̂ : C
3 → C

3 has Jacobian

det DR̂ = 22k3 V k−1 (
U W − V 2) (U + W )k (

U 2 + V 2)k−1 (
W 2 + V 2)k−1

.

In particular, the critical locus of R is the same as for theDHL (see Sect. 3.5). However,
when considered as a divisor, the curves have higher multiplicities, depending on k.

This mapping has the same indeterminate points as for the DHL; I (R) = {a±}.
Since I (R) �= ∅, Hypothesis (i) is satisfied. The mapping R also has the same
superattracting fixed points {e, e′}. Just as in Sect. 6.1, one can check that for any
z ∈ CP

2 \ {e, e′} one has σ(z, R) < 2k = deg(R). Therefore, σ(a±) < deg(R),
giving that Hypothesis (ii) is satisfied. Meanwhile, the only curve collapsed by R is
{U + W = 0}, which is collapsed to the fixed point b0 := [1 : 0 : 1] /∈ {e, e′}. Since
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D>d ⊂ {e, e′} it is invariant under R and disjoint from I (R) ∪ I −(R) = {a±, b0},
Hypothesis (iii) is also satisfied.

We now determine the exceptional set E . Since D≥d ⊆ {e, e′} and since {e, e′}
is invariant, Proposition 7.10 gives that any point of E(a) is from {e, e′}. As for the
DHL, the curve {U W − V 2 = 0} is invariant and on it R is conjugate to z �→ zk ,
with z = 0 and z = ∞ corresponding to the superattracting fixed points e and e′,
respectively. Therefore, c∞(e, R) = c∞(e′, R) = k < 2k = deg R, giving that these
points are not maximally superattracting. Therefore, E(a) = ∅. Meanwhile, the fixed
point b0 ∈ I −(R) is not superattracting, so E(b) = ∅.

Therefore, the Equidistribution Theorem gives that the (normalized) iterated preim-
ages of any algebraic curve A ⊂ CP

2 equidistribute to the Green Current for R. In
particular, the Global Lee–Yang–Fisher Current Theorem holds for the k-fold DHL.

8.3 Triangles

The renormalization mapping for the hierarchical lattice generated by the triangle
shown in Fig. 4 is:

R[U : V : W ] = [
U 3 + U V 2 : U V 2 + V 2W : V 2W + W 3].

The lift R̂ : C
3 → C

3 has Jacobian

det DR̂ = 6 V (U + W )
(
U 2V 2 + 3U 2W 2 − V 2WU + V 2W 2),

so that the critical locus is the union of two lines and a quartic:

L1 := {V = 0},
L2 := {U + W = 0}, and

Q := {
U 2V 2 + 3U 2W 2 − U V 2W + V 2W 2},

each with multiplicity one.
Hypothesis (i) is satisfied because the indeterminacy locus I (R) is non-empty,

consisting of three points: p := [0 : 1 : 0] and q± := [±i : 1 : ∓i]. Point p is
resolved in one blow-up. In a neighborhood of Lexc(p) the lifted map R̃ has critical
locus consisting of Lexc(p) and the proper transforms L̃2 and Q̃, eachwithmultiplicity
one. Moreover, L̃2 and Q̃ intersect Lexc(p) at three distinct points, each of which is a
normal crossing singularity. Therefore, Lemma 5.5 gives that any point z ∈ Lexc(p)

has σ(z, R̃) = 2. Proposition 5.8 then gives σ(p, R) = 2 < deg(R).
Both of the indeterminate points q± are also resolved with one blow-up. The lift R̃

does not have Lexc(q±) as a critical curve. The proper transforms L̃2 and Q̃ become
disjoint and smooth in a neighborhood of the exceptional divisor Lexc(q±), so that
det DR̃ has multiplicity 0 or 1 at every point of Lexc(q±). Lemma 5.2 and Proposi-
tion 5.8 then imply that σ(q±, R) = 2 < deg(R). We conclude that Hypothesis (ii) is
satisfied.
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We now check Hypothesis (iii). Since each of the critical curves has multiplicity
one, Lemma 5.2 gives that σ(z, R) ≤ 2 at every smooth point of the critical locus. Let
r := [1 : 0 : −1] = L1 ∩ L2. Then the singular points of the critical locus are
{r , e, e′}∪ I (R). Moreover, one can choose local coordinates (x, y) in a neighborhood
of r such that det DR � xy. Hence Lemma 5.5 gives σ(r , R) = 2, so that r /∈ D≥d .
Thus, D≥d ⊂ {e, e′} is, therefore, invariant under R.

Both L1 and Q go through two superattracting fixed points e := [1 : 0 : 0] and
e′ := [0 : 0 : 1], so they are not collapsed by R. Meanwhile, a direct calculation
shows that L2 is collapsed by R to s := [1 : 0 : −1] ∈ I −(R), which is a fixed point
of R. Since D≥d is invariant under R and disjoint from I (R) ∪ I −(R) = {p, q±, s},
Hypothesis (iii) is satisfied.

By Proposition 7.10, any point of E(a) passes through D≥d ⊂ {e, e′}, which is
invariant under R.Moreover, the fixed points e and e′ are notmaximally superattracting
since the curve {U W − V 2 = 0} is invariant for this renormalization mapping as
well, and on it R is conjugate to z �→ z2. Therefore, E(a) = ∅. The only point of
I −(R) is the fixed point s, which is not superattracting. Therefore, E(b) = ∅.

Thus, the Equidistribution Theorem gives that the (normalized) iterated preimages
of any algebraic curve A equidistribute to the Green current for R. In particular,
the Global Lee–Yang–Fisher Current Theorem also holds for the hierarchical lattice
generated by the triangle.

8.4 Tripod

The renormalizationmapping for the hierarchical lattice generated by the tripod shown
in Fig. 4 is:

R[U : V : W ]
= [

U 3 + U 2V + V 3 + V 2W : V
(
U 2 + U V + V W + W 2) : U V 2 + V 3

+ V W 2 + W 3],
which has indeterminacy set I (R) = {[ω : 1 : ω] : ω3 = −1}.

One can resolve the indeterminacy point p = [−1 : 1 : −1] by doing three
blow-ups, each one on done on the previously created exceptional divisor. When one
applies Lemmas 5.2, 5.5, and Proposition 5.8 one finds σ(p, R) ≥ 3 = deg(R).
Therefore, Hypothesis (ii) of the Equidistribution Theorem fails for this mapping. In
particular, we do not know if the Global Lee–Yang–Fisher Current Theorem holds for
the hierarchical lattice generated by the tripod.

8.5 Split Diamond

The renormalizationmapping for the hierarchical lattice generated by the split diamond
shown in Fig. 4 is:

R[U : V : W ] =
[
U5 + 2U2V 3 + V 4W : V 2

(
U3 + 2U V W + W 3

)
: U V 4 + 2V 3W 2 + W 5

]
.
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The lift R̂ : C
3 → C

3 has Jacobian

det DR̂ =10V
(
U W − V 2)(

4V 3U 6 + 5W 3U 6 + 5V 2W 2U 5 + 5V 4WU 4 + 15V W 4U 4

+ V 6U 3 + 5V 3W 3U 3 + 5W 6U 3 + 5V 5W 2U 2 + 5V 2W 5U 2

− V 7WU + 5V 4W 4U + V 6W 3 + 4V 3W 6). (8.1)

One can check that I (R) = {[0 : 1 : 0], [ω : 1 : ω] : ω3 = −1}. Each of
these indeterminate points requires three blow-ups to resolve. One can work through
the details in Maple and check that the lifted mappings have Jacobian of the form
det DR̃ � xa yb with max(a, b) ≤ 3 at each of the points on each of the exceptional
divisors. Thus, Lemma 5.5 and Proposition 5.8 give σ(p, R) = 4 < deg(R) for each
p ∈ I (R). Therefore, Hypotheses (i) and (ii) are satisfied.

Let us check Hypothesis (iii). Since each of the critical curves has multiplicity 1,
we have σ(p, R) ≤ 2 for any point outside the singular locus of the critical set.
Meanwhile, each of the intersections of any two of the three critical curves and each
of the singular points of C3 lie in I (R) ∪ {e, e′}. We conclude that D≥d ⊂ {e, e′} and
is therefore invariant under R and disjoint from I (R).

Each of the irreducible components of the critical locus (corresponding to
the three factors of (8.1)) passes through the two superattracting fixed points
e = [1 : 0 : 0] and e′ = [0 : 1 : 0] of R and, therefore, there are no curves col-
lapsed by R. Therefore, I −(R) = ∅. Since D≥d is invariant under R and disjoint from
I (R) ∪ I −(R), Hypothesis (iii) is satisfied.

Since I −(R) = ∅ we have that E(b) = ∅. Meanwhile, the critical curve
{U W − V 2 = 0} is invariant under R and on it R is conjugate to z �→ z2, with z = 0
and z = ∞ corresponding to the superattracting fixed points e and e′, respectively.
Therefore, c∞(e, R) = c∞(e′, R) = 2 < 5 = deg R, giving that these points are not
maximally superattracting. Therefore, we also have that E(a) = ∅ and the Equidistri-
bution Theorem gives that the (normalized) iterated preimages of any algebraic curve
A ⊂ CP

2 equidistributes to the Green Current for R. In particular, the Global Lee–
Yang–Fisher Current Theorem also holds for the hierarchical lattice generated by the
split diamond.
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Appendix A: Elements of Complex Geometry

This appendix presents background on the material from complex geometry that we
need beyond what is described in [4, Appendix A]. We refer the reader there for
background on rational maps, blow-ups, and divisors.
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A.1: Structure of Rational Maps f : CP
2 → CP

2

Throughout this subsection, we suppose f : CP
2 → CP

2 is a dominant rational map
of degree d ≥ 2.

There is a finite sequence of blow-ups π : ˜
CP

2 → CP
2 done over the points of the

indeterminacy set I ( f ) so that f lifts to a regular map f̃ : ˜
CP

2 → CP
2, making the

following diagram commute

˜
CP

2

π

��

f̃

���
��

��
��

��

CP
2 f �� CP

2,

(A.1)

wherever f ◦π is defined (see [46, Ch. IV, §3.3]).We call such a commutative diagram
a resolution of the indeterminacy of f .

For any Y ⊂ CP
2 one can use the resolution of indeterminacy (A.1) to define

f (Y ) := f̃ (π−1(Y )) and f −1(Y ) := π
(

f̃ −1(Y )
)

. (A.2)

These definitions are independent of the choice of resolution.
The following two lemmas are well-known; see for example [22]:

Lemma A.1 Any curve that is collapsed by f passes through I ( f ).

Let Crit( f ) denote the critical locus of f |
CP

2\I ( f ) and let V := f (I ( f )∪Crit( f )).
Then the mapping

f |
CP

2\ f −1(V ) : CP
2 \ f −1(V ) → CP

2 \ V

is a finite degree covering map. The topological degree dtop( f ) is the degree of this
cover.

Lemma A.2 If I ( f ) �= ∅, then degtop( f ) < d2.

Remark A.3 Let f̂ : C
3 → C

3 denote a homogeneous lift of f . Then, the complex
Jacobian Jac( f̂ ) := det D f̂ is a homogeneous polynomial of degree 3(d − 1). It
induces a divisor Jac( f ) on CP

2 of the same degree.

Lemma A.4 (Whitney Fold Normal Form12) Suppose C is an irreducible component
of the critical locus that is not collapsed by f . Then, there is a finite set S ⊂ C and
r ≡ rC ∈ Z+ such that for any p ∈ C \ S there exist local holomorphic coordinates
(x, y) in a neighborhood of p and (z, w) in a neighborhood of f (p) in which

12 Here we are using a more general notion of “Whitney Fold” that was used in [4, Appendix D.2], where
only exponent rC = 2 was considered.
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(z, w) = f (x, y) = (x, yr ).

In particular, at every p ∈ C \ S we have σ(p, f ) = e(p, f ) = r and for every p ∈ C
we have σ(p, f ) ≥ r .

(The volume exponent σ(p, f ) is defined in Sect. 1.3 and the local topological degree
e(p, f ) in Sect. 7.1.)

Proof We include the following points from C in S:

(i) singular points of the critical locus of f ,
(ii) points p ∈ C for which TpC ⊂ KerD f (p), and
(iii) points of I ( f ).

Since C is not collapsed by f , the set S is finite and, since C is irreducible, C \ S
is connected. Essentially, the same proof as the characterization of Whitney Folds
presented in Lemma D.2 of [4] gives that for each point p0 satisfying (i) - (iii) we
can find local coordinates in some neighborhoods of p0 and f (p0) in which the
map has the normal form (z, w) = f (x, y) = (x, yr ) for some integer r ≥ 2.
Moreover, as C \ S is connected, we see that the exponent r is constant on C \ S.
From the normal form and Lemma 5.2, we see that at every point of C \ S we have
σ(p, f ) = μ(p, f ) + 1 = e(p, f ) = r . The fact that σ(p, f ) ≥ r for every p ∈ C

is because D≥r is algebraic, by Lemma 5.9. ��

A.2: Hyperplane Bundle

The hyperplane bundle and its tensor powers provide a convenient way to work with
divisors on CP

k .
The fibers of π : C

k+1
� {0} → CP

k are punctured complex linesC
∗. Compactify-

ing each of these lines at infinity, we add to C
k+1

� {0} the line at infinity L∞ ≈ CP
k

obtaining the total space

(Ck+1)∗ ∪ L∞ ≈ (CP
k+1)∗ := CP

k+1
� {0}.

The projection naturally extends to π : (CP
k+1)∗ → CP

k , whose fibers are complex
lines C. The resulting line bundle is called the hyperplane bundle over CP

k .
In homogeneous coordinates (z0 : · · · : zk : t) on CP

k+1, this projection is just

π : (z0 : · · · : zk : t) �→ (z0 : · · · : zk), (A.3)

with L∞ = {t = 0}, (Ck+1)∗ = {t = 1}, and the map (z : t) �→ t/‖z‖ parameterizing
the fibers (here ‖z‖ stands for the Euclidean norm of z ∈ C

k+1
�{0}). This line bundle

is endowed with the natural Hermitian structure: ‖(z : t)‖ = |t |/‖z‖.
Any non-vanishing linear form Y on C

k+1 determines a section of the hyperplane
bundle:

sY : z �→ (z : Y (z)), z ∈ C
k+1. (A.4)
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The divisor DY (a projective line counted with multiplicity 1) is precisely the zero
divisor of sY .

The dth tensor power of the hyperplane bundle can be described as follows. Its total
space Xd is the quotient of (Ck+2)∗ by the C

∗-action

(z0, . . . , zk, t) �→ (λz0, . . . , λzk, λ
d t), λ ∈ C

∗.

We denote the equivalence class of (ẑ, t) using the “homogeneous” coordinates (ẑ : t).
The projection Xd → CP

k is natural, as above (A.3). A non-vanishing homogeneous
polynomial P on C

k+1 of degree d defines a holomorphic section sP of this bundle
given by sP (z) = (ẑ : P(ẑ)). This bundle is endowed with the Hermitian structure:

‖(z : t)‖ = |t |/‖z‖d . (A.5)

More generally, any divisor D = DP − DQ defines a section sD of the deg(D)-th
tensor power of the hyperplane bundle, defined by sD(z) = (ẑ : P(ẑ)/Q(ẑ)). One can
recover D from sD by taking its zero divisor.

A.3: Currents

We will now give a brief background on currents; for more details see [38,43] and the
appendices from [16,47]. Currents are naturally defined on general complex (or even
smooth) manifolds, however, to continue our discussion of rational maps, divisors,
etc, we restrict our attention to projective manifolds.

A (1, 1)-current T on V is a continuous linear functional on (k − 1, k − 1)-forms
with compact support. It can be also defined as a generalized differential (1, 1)-form∑

Ti j dzi d z̄ j with distributional coefficients.
A basic example is the current [A] of integration over the regular points Areg of an

algebraic hypersurface A:

ω �→
∫

Areg

ω,

where ω is a test (k − 1, k − 1)-form. The current of integration over a divisor D is
defined by extending linearly.

The space of currents is given the distributional topology: Tn → T if
Tn(ω) → T (ω) for every test form ω.

A differential (k−1, k−1)-formω is called positive if its integral over any complex
subvariety is non-negative. A (1,1)-current T is called positive if T (ω) ≥ 0 for any
positive (1,1)-form. A current T is called closed if dT = 0, where the differential d
is understood in the distributional sense.

In this paper, we focus on closed, positive (1, 1)-currents. They have a simple
description in terms of local potentials, rather analogous to the definition of divisors.
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Recall that ∂ and ∂̄ stand for the holomorphic and anti-holomorphic parts of the
external differential d = ∂ + ∂̄ . Their composition i

π
∂∂̄ can be13 thought of as a kind

of “pluri-Laplacian” because, given a C2-function h, the restriction of i
π
∂∂̄h to any

non-singular complex curve X is equal to the form 1
2π �(h|X)dz ∧ dz̄, where z is a

local coordinate on X and � is the usual Laplacian in this coordinate.
If U is an open subset of C

k and h : U → [−∞,∞) is a plurisubharmonic
(PSH) function, then i

π
∂∂̄h is a closed (1,1)-current onU . Conversely, the ∂∂̄-Poincaré

Lemma asserts that every closed, positive (1, 1)-current on U is obtained this way.
Therefore, any closed positive (1, 1)-current T on a manifold V can be described

using an open cover {Ui } of V together with PSH functions hi : Ui → [−∞,∞) that
are chosen so that T = i

π
∂∂̄hi in each Ui . The functions hi are called local potentials

for T and they are required to satisfy the compatibility condition that hi − h j is
pluriharmonic (PH) on any non-empty intersection Ui ∩ U j �= ∅. The support of T is
defined by:

supp T := {z ∈ V : if z ∈ U j then h j is not pluriharmonic at z}.

The compatibility condition assures that that above set is well-defined.
The Poincaré–Lelong formula describes the current of integration over a divisor

D = {Ui , gi } by the system of local potentials hi := log |gi |. I.e., on each Ui we have
[D] = i

π
∂∂̄ log |gi |. The result is a closed (1, 1)-current, which is positive iff D is

effective (i.e. the multiplicities ki , . . . , kr are non-negative).
Suppose R : V → W is a dominant rational map and T is a closed-positive (1, 1)-

current on W . The pullback R∗T is closed positive (1, 1)-current on V , defined as
follows. First, one obtains a closed positive (1, 1)-current R∗T defined on V � I (R)

by pulling-back the system of local potentials defining T under R : V � I (R) → W .
One then extends R∗T trivially through I (R), to obtain a closed, positive (1, 1)-current
defined on all of V . (By a result of Harvey and Polking [31], this extension is closed.)
See [47, Appendix A.7] for further details. Pullback is continuous with respect to the
distributional topology.

Similarly to divisors, there is a particularly convenient descriptionof closed, positive
(1, 1)-currents on CP

k . Associated to any PSH function H : C
k+1 → [−∞,∞),

having the homogeneity

H(λẑ) = m log |λ| + H(ẑ), (A.6)

for some m > 0, is a closed, positive (1, 1)-current, denoted by TH ≡ π∗
( i

π
∂∂̄ H

)
that is defined as follows. For any open covering {Ui } of CP

k admitting local sections
si : Ui → C

k+1
� {0} of the canonical projection π , TH is defined by the system of

local potentials {Ui , H ◦ si }. i.e., in each Ui , TH is defined by TH = i
π
∂∂̄ H ◦ si .

Moreover, every closed positive (1, 1)-current on CP
k is described in this way; See

[47, Thm. A.5.1]. The function H is called the pluripotential of TH .

13 Many authors introduce real operators d = ∂ + ∂̄ and dc = i
2π (∂̄ − ∂) and write ddc instead of i

π ∂∂̄ .

We use i
π ∂∂̄ to avoid confusion between the operator d and the algebraic degree of a map.
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The mass of the current T is defined to be

‖T ‖ =
∫

CP
k

T ∧ ωk−1
FS ,

whereωFS is the Fubini-Study (1, 1) form onCP
k and T ∧ωk−1

FS is the positivemeasure
defined by

〈
T ∧ωk−1

FS , f
〉 := 〈

T , f ωk−1
FS

〉
. A calculation shows that the mass of TH can

be computed from the potential H as ‖TH ‖ = m, where m is the constant from (A.6).
If R : CP

k → CP
k is a rational map, the action of pull-back is described by

R∗TH = TH◦R̂ . (A.7)

If R has algebraic degree d, then the lift R̂ is a k+1-tuple of homogeneous polynomials
of degree d. It follows that the mass satisfies

‖R∗TH ‖ = d‖TH ‖.

A.4: Kobayashi Hyperbolicity and Normal Families

In Sect. 4 we use the Kobayashi metric to prove that the iterates Rn form a normal
family on certain subspaces of CP

2. Here, we recall the relevant definitions and some
important results that we use. The reader can consult the books [35,37] and the original
papers by Green [25,26] for more details. For more dynamical applications, see e.g.
[16,47].

The Kobayashi pseudometric is a natural generalization of the Poincaré metric on
Riemann surfaces. Let ‖ · ‖ stand for the Poincaré metric on the unit disk D. Let M
by a complex manifold. Pick a tangent vector ξ ∈ T M , and letH(ξ) be the family of
holomorphic curves γ : D → M tangent to the line C · ξ at γ (0). Then D f (v) = ξ

for some v ≡ vγ ∈ T0D, and the Kobayashi pseudometric is defined to be:

dsM (ξ) = infγ∈H(ξ)‖vγ ‖. (A.8)

The Kobayashi pseudometric is designed so that holomorphic maps are distance
decreasing: if f : U → M is holomorphic then dsM (D f (ξ)) ≤ dsU (ξ).

The reason for “pseudo-” is that for certain complexmanifolds M , ds(ξ) can vanish
for some non-vanishing tangent vectors ξ �= 0. For example, ds identically vanishes
on C

k or CP
k . A complex manifold M is called Kobayashi hyperbolic if ds is non-

degenerate: ds(ξ) > 0 for any non-vanishing ξ ∈ T M . Then, it induces a (Finsler)
metric on M .

Let N be a compact complex manifold. Endow it with some Hermitian metric
| · |N . A complex submanifold M ⊂ N is called hyperbolically embedded in N if
the Kobayashi pseudometric on M dominates the Hermitian metric on N , i.e., there
exists c > 0 such that dsM (ξ) ≥ c|ξ |N for all ξ ∈ T M . Obviously, M is Kobayashi
hyperbolic in this case.
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A complex manifold M is called Brody hyperbolic if there are no non-constant
holomorphic mappings f : C → M . If M is Kobayashi hyperbolic, it is also Brody
hyperbolic, but the converse is generally not true unless M is compact.

An open subset ofCP
2 that is Kobayashi hyperbolic, but not hyperbolically embed-

ded inCP
2 is described in [35, Example 3.3.11] and an open subset ofC

2 that is Brody
hyperbolic but not Kobayashi hyperbolic is described in [35, Example 3.6.6].

A family F of holomorphic mappings from a complex manifold U to a complex
manifold M is called normal if every sequence in F either has a subsequence con-
verging locally uniformly or a subsequence that diverges locally uniformly to infinity
in M . In the case that M is embedded into some compact manifold Z , a stronger
condition is that F is precompact in Hol(U , Z) (where Hol(U , Z) is the space of
holomorphic mappings U → Z endowed with topology of uniform convergence on
compact subsets of U ).

Proposition A.5 Let M be a hyperbolically embedded complex submanifold of a com-
pact complex manifold N. Then, for any complex manifold U, the family Hol(U , M)

is precompact in Hol(U , N ).

See Theorem 5.1.11 from [35].
The classical Montel’s Theorem asserts that the family of holomorphic maps

D → C � {0, 1} is normal (as C � {0, 1} is a hyperbolic Riemann surface). It
is a foundation for the whole Fatou-Julia iteration theory. Several higher dimensional
versions of Montel’s Theorem, due to M. Green [25,26], are now available. Though
their role in dynamics is not yet so prominent, they have found a number of interesting
applications. Below we will formulate two particular results used in this paper (see
Sect. 4). The following is Theorem 2 from [25]:

Theorem A.6 Let X be a union of (possibly singular) hypersurfaces X1, . . . , Xm in a
compact complex manifold N. Assume N � X is Brody hyperbolic and

Xi1 ∩ · · · ∩ Xik �
(
X j1 ∪ · · · X jl

)
is Brody hyperbolic

for any choice of distinct multi-indices {i1, . . . , ik, j1, . . . , jl} = {1, . . . , m}. Then
N � X is a complete hyperbolically embedded submanifold of N .

In the last section of [25], the following result is proved:

Theorem A.7 Let M = CP
2
� (Q ∪ X1 ∪ X2 ∪ X3), where Q is a non-singular conic

and X1, X2, X3 are lines. Then any non-constant holomorphic curve f : C → M
must lie in a line L that is tangent to Q at an intersection point with one of the lines,
Xi , and that contains the intersection point X j ∩ Xl of the other two lines.

The configurations that appear in this theorem are related to amusing projective
triangles:

A.5: Self-Dual Triangles

Let Q(z) = ∑
qi j zi z j be a non-degenerate quadratic form in E ≈ C

3, and X =
{Q = 0} be the corresponding conic inCP

2. The form Q makes the space E Euclidean,
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inducing duality between points and lines inCP
2. Namely, to a point z = (z0 : z1 : z2)

corresponds the line Lz = {ζ : Q(z, ζ ) = 0} called the polar of z with respect to
X (here we use the same notation for the quadratic form and the corresponding inner
product). Geometrically, this duality looks as follows. Given a point z ∈ CP

2, there are
two tangent lines from z to X . Then Lz is the line passing through the corresponding
tangency points. (In case z ∈ X , the polar is tangent to X at z).

Three points zi inCP
2 in general position are called a “triangle”�with vertices zi .

Equivalently, a triangle can be given by three lines Li in general position, its “sides”.
Let us say that � is self-dual (with respect to the conic X ) if its vertices are dual to
the opposite sides.

Lemma A.8 A triangle � with vertices zi is self-dual if and only if the corresponding
vectors ẑi ∈ E form an orthogonal basis with respect to the inner product Q.

All three sides of a self-dual triangle satisfy the condition of Theorem A.7, so they
can give us exceptional holomorphic curves C → CP

2
� (Q ∪ X1 ∪ X2 ∪ X3).

Appendix B: Green Current

B.1: Green Potential

A rational mapping R : CP
m → CP

m is called algebraically stable if there is no
integer n and no collapsing hypersurface V ⊂ CP

m so that Rn(V ) is contained within
the indeterminacy set of R, [47, p. 109]. (See also [4, Appendix A4 and A5].)

Theorem B.1 (see [47],Thm. 1.6.1). Let R : CP
m → CP

m be an algebraically stable
rational map of degree d. Then the limit

G = lim
n→∞

1

dn
log ‖R̂n‖

exists in L1
loc(C

3) and determines a plurisubharmonic function. This function satisfies
the following equivariance properties:

G(λz) = G(z) + log |λ|, λ ∈ C
∗,

G ◦ R̂ = dG. (B.1)

It is called the Green potential of R.

B.2: Green Current

Applying i
π
∂∂̄ to the Green potential, we obtain:

Theorem B.2 (see [47],Thm. 1.6.1). Let R : CP
m → CP

m be an algebraically stable
rational map of degree d. Then S = π∗( i

π
∂∂̄G) is a closed positive (1,1)-current on

CP
m satisfying the equivariance relation: R∗S = d · S.
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The current S is called the Green current of R.
The set of normal14 points for an algebraically stable rational map

R : CP
m → CP

m is:

N :=
{

x ∈ CP
m : there exits neighborhoods U of x and V of I (R)

so that f n(U ) ∩ V = ∅ for every n ∈ N.

}

The normal points form an open subset of CP
m .

One primary interest in the Green current S is the following connection between
its support supp S and the Julia set JR . (See Sect. 4 for the definitions of the Fatou and
Julia sets.) Note that supp S is closed and backwards invariant, R−1 supp S ⊂ supp S,
since R∗S = d · S.

Theorem B.3 (See [47],Thm. 1.6.5) Let f : CP
m → CP

m be an algebraically stable
rational map. Then:

JR ∩ N ⊂ supp S ⊂ JR .

An algebraically stable rational map R : CP
2 → CP

2 for which supp S � JR is given
in [22, Example 2.1].

Appendix C: Open Problems

Problem C.1 (Existence of Fisher and Lee–Yang–Fisher distributions)For which clas-
sical lattices (Zd for d ≥ 2, etc) does the limit (2.5) exist? As explained in Proposition
2.2, this would justify existence of the limiting distributions of Lee–Yang–Fisher zeros
for these lattices.

Similarly, for which classical three and higher-dimensional lattices (Zd for d ≥ 3,
etc) does the limit (2.5) exist? It would justify the existence of a limiting distribution
of Fisher zeros for these lattices.

Problem C.2 (Geometric properties of the Lee–Yang–Fisher current) The theory of
geometric currents has become increasingly useful in complex dynamics, see [1,11,
12,17,18,44] as a sample.

The Green current S is strongly laminar in a neighborhood of B. The structure is
given by the stable lamination of B (see Sect. 3.3) together with transverse measure
obtained under holomomy from the Lebesgue measure onB. However, S is not strongly
laminar in a neighborhood of the topless Lee–Yang “cylinder” C1.

One can see this also follows: a disc within the invariant line L inv centered at
L inv ∩B is within the stable lamination of B. Therefore, an open neighborhood within
L inv of L inv ∩ C1 would have to be a leaf of the lamination. However, S restricts to
L inv in a highly non-trivial way, coinciding with the measure of maximal entropy for
R|L inv. (It is supported on the Julia set shown in Fig. 3).

Does S have a weaker geometric structure? For example, is it non-uniformly laminar
[1,18] or woven [11,12,17]?

14 Not to be confused with the notion of normal families.
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Problem C.3 (Support for the measure of maximal entropy) What can be said about
the support of the measure of maximal entropy ν that was discussed in Sect. 4.3? Is
the critical fixed point bc ∈ L inv within supp ν? A positive answer to this question is
actually equivalent to C ∩ supp ν �= ∅ and also to supp ν ∩ L inv = JR|L inv .

Problem C.4 (Fatou Set) In Theorem 4.9 we showed that certain “solid cylinders” are
in Ws(e) and Ws(e′). Computer experiments suggest a much stronger result:

Conjecture Ws(e) ∪ Ws(e′) is the entire Fatou set for R.

Problem C.5 (Julia Set) Proposition 4.2 gives that in a neighborhood of B, JR is a
C∞ 3-manifold. What can be said about the global topology of JR?

Remark C.6 Note that each of the above Problems C.2–C.5 has a natural counterpart
forR.
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