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Abstract

This work is concerned with nonlinear feedback control design for the problem of fluid mixing via ad-
vection. The overall dynamics is governed by the transport and Stokes equations in an open bounded and 
connected domain � ⊂ Rd , with d = 2 or d = 3. The feedback laws are constructed based on the ideas 
of instantaneous control as well as a direct approximation of the optimality system derived from an opti-
mal open-loop control problem. It can be shown that under appropriate numerical discretization schemes, 
two approaches generate the same sub-optimal feedback law. On the other hand, different discretization 
schemes may result in feedback laws of different regularity, which determine different mixing results. The 
Sobolev norm of the dual space (H 1(�))′ of H 1(�) is used as the mix-norm to quantify mixing based on 
the known property of weak convergence. The major challenge is encountered in the analysis of the asymp-
totic behavior of the closed-loop systems due to the absence of diffusion in the transport equation together 
with its nonlinear coupling with the flow equations. To address these issues, we first establish the decay 
properties of the velocity, which in turn help obtain the estimates on scalar mixing and its long-time be-
havior. Finally, mixed continuous Galerkin (CG) and discontinuous Galerkin (DG) methods are employed 
to discretize the closed-loop system. Numerical experiments are conducted to demonstrate our ideas and 
compare the effectiveness of different feedback laws.
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1. Introduction

The processes of mass transport and mixing of fluid flows comprise fundamental, yet highly 
challenging problems in engineering and natural sciences. These topics have broad applications 
ranging from industrial and chemical mixing on small and large scales, to preventing the spread-
ing of pollutants in geophysical flows. The question of what fluid flow maximizes mixing rate, 
slows it down, or even steers a quantity of interest towards a desired target distribution draws 
great attention from a broad range of scientists and engineers. The current work is aimed at 
achieving effective fluid mixing via an internal (distributed) control of the flow dynamics gov-
erned by the incompressible Stokes equations. The transport equation is used to describe the 
scalar field, where diffusion is negligible. In this case, transport and mixing are purely driven by 
flow advection. This naturally leads to a nonlinear control and optimization problem of a semi-
dissipative system (cf. [8]), which presents new and significant challenges arising from both 
analysis and computation.

Our recent work in [28,29,31,34] has applied optimal control design for fluid mixing through 
Navier slip boundary controls. Numerical schemes and experiments have been formulated and 
conducted in [32] via mixed continuous Galerkin (CG) and discontinuous Galerkin (DG) meth-
ods together with gradient descent. These tools are specific to the treatment of the parabolic and 
hyperbolic features of the semi-dissipative systems. However, as it is well-known, to solve the 
resulting optimality system, one has to solve the governing system forward in time, coupled with 
the adjoint system backward in time together with a nonlinear optimality condition. Furthermore, 
the small-scale structures and large gradients of the scalar field will develop during the mixing 
process. The mesh size must be sufficiently refined to capture the smallest spatial scales of the 
thin filaments that arise in the evolutions of the scalar distribution. Straightforward use of this 
theory can result in extremely to prohibitively high computational costs. The objective of the 
current work is to establish nonlinear feedback controls and the corresponding feasible compu-
tational methods for scalar transport and mixing. Such feedback laws are aimed at achieving 
a balance between the efficiency in real-time implementation and the accuracy in steering the 
system behavior.

Constructing an optimal feedback law for a nonlinear system and a useful approximation 
thereof are highly challenging problems. One of the well-known approaches is to solve the related 
Hamilton-Jacobi-Bellman (HJB) equation, however, it suffers from the curse of dimensionality. 
In this work, we consider a feasible synthesis of nonlinear state feedback control via interpolation 
of the optimality system resulting from the optimal open-loop control problem. This idea is 
motivated by the method of instantaneous control design and essentially leads to a sub-optimal 
feedback law. Instantaneous control design is a powerful tool for dealing with the computational 
limitations of open-loop control and provides a feedback law for flow control problems at a 
sustainable control cost [14,27,24,11,13,54]. The idea behind it is that it successively determines 
approximations of the objective functional while marching forward in time. The uncontrolled 
dynamical system is first discretized in time. Then, at the selected time slice an instantaneous 
version of the cost functional is approximately minimized subject to a stationary system, whose 
structure depends on the chosen discretization method. The control so obtained is used to steer the 
system to the next time slice, where the procedure is repeated [27]. This method is closely tied to 
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receding horizon control (RHC) or model predictive control (MPC) with finite time horizon [21,
45,47,7,38,4,22]. Essentially, instantaneous control is a discrete-in-time and suboptimal feedback 
control approach as shown in [12,27,24], and can be interpreted as the stable time discretization 
of a closed-loop control law [12,40,27,24,44,25].

Alternatively, if the optimality system from an optimal open-loop control problem is known, 
one may derive the feedback laws by first discretizing the optimality system in time and solving 
it at the selected time slice, and then marching forward in time successively. In the following, we 
will call the former “discretize-then-optimize (DTO)” or direct approach and the latter “optimize-
then-discretize (OTD)” or indirect approach. It is worth stressing that the OTD approach involves 
directly discretizing the optimality system over one step time sub-interval, and then carry the 
information to the next one. Then the state and the adjoint equations are solved forward and 
backward in time, respectively, but just for one time step, so that the adjoint state can be related 
to the state explicitly. Consequently, this procedure leads to a sub-optimal continuous feedback 
law. Establishing the well-posedness and asymptotic behavior of the nonlinear closed-loop is a 
second focus of this work.

On the other hand, it can be shown that different time discretization schemes may result in 
feedback laws of different regularity, and hence affect the regularity of flow velocity and the 
mixing decay rate in time. Understanding the relation between the regularity of the velocity and 
mixing decay rate in time is a prominent problem in the study of mathematical fluid mixing 
(cf. [2,9,16,19,23,35,42,48,58]. Loosely speaking, a less regular velocity field may lead to a 
faster mixing decay rate. Analyzing the well-posedness and asymptotic behavior of transport 
and mixing via feedback control of the flows of different regularity is at the core of this work. 
Finally, numerical experiments will be conducted with the aim of comparing the mixing decay 
rates in time using different feedback control designs.

The remainder of this paper is organized as follows. In section 2, the mathematical model 
and control designs are introduced for fluid mixing via Stokes flows. In section 3, the internal 
feedback control is constructed using both DTO and OTD approaches, which lead to the same 
feedback law under appropriate discretization schemes. The well-posedness and asymptotic be-
havior of the closed-loop system will be addressed in section 4. Numerical implementation of 
our control designs is presented in section 5, where the finite element formulation and nonlin-
ear iterative solvers are used to construct our numerical schemes. Several numerical experiments 
are conducted to demonstrate and compare the performances of different feedback laws for fluid 
mixing.

2. Mathematical model and control designs

Consider a passive scalar field governed by a transport equation that is advected by a con-
trolled incompressible Stokes flow in an open bounded and connected domain � ⊂Rd, d = 2, 3, 
with a smooth boundary � := ∂�. The passive scalar has no dynamical effect on the fluid mo-
tion itself. As a result of the one-way coupling between the scalar field and the velocity field, 
investigating the optimal control design for the flow-transport system is tied to the study of con-
trol problems for the Stokes equations. The current work mainly addresses an internal feedback 
control design for mixing.
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2.1. Internal control for fluid mixing via Stokes flows

In the absence of diffusion, transport and mixing occur due to pure advection. Applying an 
internal control means steering the advection by supplying energy to the system in the interior of 
the flow domain. For example, stirring a fluid back and forth can generate fluctuating velocities 
with respect to the flow barriers leading to transport across them and achieving a better mixing 
[55,56]. In order to formulate an internal control problem, let ω ⊂ � be a subdomain with a 
smooth boundary ∂ω. The controlled system in this case is given by

⎧⎪⎪⎨
⎪⎪⎩

∂t θ + v · ∇θ = 0,

∂t v = ν�v − ∇p + mωu, ∇ · v = 0,

v · n|� = 0 and (2νn ·D(v) · τ + κv · τ)|� = 0,

(M)

with the initial condition (v(0), θ(0)) = (v0, θ0), and where θ is the mass distribution or scalar 
concentration, v is the velocity of the flow, ν > 0 is the viscosity, p is the pressure, mω is a smooth 
function with compact support at ω, and u represents the internal control input. Moreover, n and 
τ denote the outward unit normal and tangential vectors with respect to the domain boundary �, 
respectively, and D(v) = (1/2)(∇v + (∇v)T ) is the deformation tensor. The friction between the 
fluid and the wall is proportional to −v with the positive coefficient κ .

Due to incompressibility and no-penetration boundary condition, i.e. v · n|� = 0, it can be 
easily verified that any Lp-norm of θ in � is conserved, i.e.,

‖θ(t)‖Lp = ‖θ0‖Lp, t ≥ 0, p ∈ [1,∞]. (2.1)

To quantify mixing, a classical measure is the spatial variance of the scalar concentration [17], 
which is related to the L2-norm of the scalar field. However, this measurement fails in the case of 
zero diffusivity since it is unable to quantify pure stirring effects: From (2.1) we know that every 
Lp-norm of θ is invariant with respect to time. Recently, the mix-norm and negative Sobolev 
norms have been adopted to quantify this process based on ergodic theory, which are sensitive to 
both stirring and diffusion [43,52,51]. In [43] Mathew et al. first showed the equivalence of the 
mix-norm to the H−1/2-norm on a d-dimensional torus T d . In fact, any negative Sobolev norm 
H−s , for s > 0, can be used as a mix-norm; see [51]. Since a general open and bounded domain 
will be considered in this paper, the negative Sobolev norm is replaced by the norm of the dual 
space (H s(�))′ of Hs(�) with s > 0, as in [28,29]. Without loss of generality, we use (H 1(�))′, 
following [28,29,31,34], to quantify mixing in this work.

Throughout this paper, we use (·, ·) and 〈·, ·〉 for the L2-inner product in the domain � and on 
the boundary �, respectively. For the convenience of our discussion, define

V s
n (�) = {v ∈ Hs(�) : div v = 0, v · n|� = 0}, s ≥ 0,

V s
n (�) = {g ∈ Hs(�) : g · n|� = 0}, s ≥ 0,

where H 0(�) = L2(�), and H 0(�) = L2(�).
In the sequel, the symbol C denotes a generic positive constant, which is allowed to depend 

on the domain as well as on indicated parameters without ambiguity.
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2.2. Preliminary

To proceed, we first rewrite the model (M) as an abstract Cauchy problem

{
∂t θ = −v · ∇θ,

∂tv = Av + Bu,
(2.2)

with (v(0), θ(0)) = (v0, θ0), where A = P� with domain

D(A) = {v ∈ V 2
n (�) : (2n ·D(v) · τ + κv · τ)|� = 0}

is the Stokes operator associated with the Navier slip boundary conditions, and P : L2(�) →
V 0

n (�) is the Leray projector (cf. [49, p. 18, Remark 1.6], [20, p. 37-38]). Note that A is self-
adjoint, strictly negative, and

(Av,φ) = −2(D(v),D(φ)) − k

ν
〈v,φ〉, ∀v,φ ∈ V 1

n (�).

Here B is the control input operator, which is defined by how control is introduced to the system. 
Stirring the fluids at the interior subdomain ω ⊂ � leads to an internal (distributed) control. In 
this case, let Uad = L2(0, T ; L2(ω)) and

B = Pmω : Uad → L2(0, T ;V 0
n (�)).

Moreover, the L2-adjoint operator of B is given by

B∗ = mωP : L2(0, T ;V 0
n (�)) → Uad. (2.3)

As a first step to construct the feedback control law, we consider the following optimal control 
problem for the flow-transport system (2.2): For a given T > 0, find a control u minimizing the 
cost functional

J (u, θ) = α

2
‖θ(T )‖2

(H 1(�))′ +
β

2

T∫
0

‖θ‖2
(H 1(�))′ dt + γ

2
‖u‖2

Uad
, (2.4)

subject to (2.2), where α, β ≥ 0 are the state weight parameters that do not vanish simultaneously, 
γ > 0 is the control weight parameter, and Uad is the set of admissible controls. The choice of 
Uad is often determined based on the physical properties as well as the need to guarantee the 
existence of an optimal solution. To compute the dual norm (H 1(�))′, we introduce a higher 
regularity counterpart of θ , denoted as η, and define it by

(−� + I )η = θ in �,
∂η

∂n
= 0 on �. (2.5)

Then

‖η‖W 2,p ≤ C(�,p)‖θ‖Lp , (2.6)
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for 1 < p < ∞. Let A = −� + I with domain D(A) = {η ∈ H 2(�) : ∂η
∂n

= 0}, and � = A1/2. 
Then ‖θ‖(H 1(�))′ = ‖�−1θ‖L2 = ‖�η‖L2 and the cost functional (2.4) can be rewritten as

J (u, θ) = α

2
‖�−1θ(T )‖2

L2 + β

2

T∫
0

‖�−1θ‖2
L2 dt + γ

2
‖u‖2

Uad
. (2.7)

Note that controlling of the velocity field gives rise to a bilinear control problem of the scalar 
equation due to the coupling via the advective term v · ∇θ . As a result, the optimal control 
problem (2.7) subject to (2.2) becomes non-convex, and the uniqueness of the optimal solution 
may not hold in general. Given θ0 ∈ L∞(�), the existence of an optimal solution to (2.7) can 
be obtained following the same procedure as in [29, Theorem 3.2] for v0 ∈ V 0

n (�) and u ∈
L2(0, T ; L2(ω)). However, the challenge arises in deriving the first order necessary conditions of 
optimality. As shown in [28,29], establishing the Gâteaux differentiability of the control to state 
map u �→ (θ, v) leads to the major obstruction in the design of boundary control. In this case, 
one needs supt∈[0,T ] ‖∇θ‖L2 < ∞, which in turn requires θ0 ∈ H 1(�) and the flow velocity to 
satisfy

T∫
0

‖∇v‖L∞ dt < ∞. (2.8)

Consequently, the initial conditions v0 and Uad have to be chosen such that this a priori esti-
mate is satisfied, which presents the major obstruction compared to the full dissipative system 
(with nonzero diffusivity in the scalar equation). To lower the regularity requirement on the ve-
locity, an approximating control design was used in [28] by first introducing a small diffusivity 
ε�θ , with ε > 0, to the transport equation associated with an appropriate boundary condition. 
Then, we established a rigorous analysis of convergence of the approximating control problem 
to the original one as the diffusivity approaches zero. Employing the same approach, we can 
derive the first-order optimality system for solving our current problem (2.7) with the inter-
nal control by setting θ0 ∈ L∞(�) ∩ H 1(�), v0 ∈ V

d/2−1+ε
n (�), d = 2, 3, for any ε > 0, and 

u ∈ Uad = L2(0, T ; L2(ω)). Given γ sufficiently large, and following the same procedure as in 
[28, Theorem 5.1], we can also obtain the uniqueness of the optimal solution for d = 2.

With these results at our disposal, in the following lemma we provide a formal derivation of 
the first-order optimality conditions using the Euler-Lagrange method (the so-called “Pontryagin 
maximum principle”; cf. [26, p. 63, 1.6.4], [6, p. 242, 4.1.3] and [53, p. 84, 2.10]). Again, the 
rigorous proof via an approximating approach can be found in [28, Theorems 5.2-5.5]. In the 
lemma we make use of the following: for a given u ∈ Uad , let (v, θ) be the solution of the state 
equations (2.2), then the associated adjoint state (ρ, w) is defined via the adjoint equations

{ −∂tρ = v · ∇ρ + β�−2θ,

−∂tw = Aw + P (θ∇ρ),
(2.9)

with final time condition

(ρ(T ),w(T )) = (α�−2θ(T ),0). (2.10)
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Lemma 2.1. Assume (θ0, v0) ∈ (L∞(�) ∩ H 1(�)) × V 1
n (�). If û is an optimal control to our 

problem of interest, that is, (û, θ̂ , v̂) solves minJ (u, θ) subject to (2.2), then it satisfies the opti-
mality condition

û = − 1

γ
B∗ŵ, (2.11)

where B∗ is given by (2.3) and ŵ is determined by (ρ̂, ŵ), the associated adjoint state to (v̂, θ̂ )

satisfying (2.9)–(2.10). Moreover,

(θ̂ , v̂) ∈ L∞(0, T ;L∞(�) ∩ H 1(�)) × C([0, T ];H 1(�)) ∩ L2(0, T ;H 2(�)), (2.12)

(ρ̂, ŵ) ∈ L∞(0, T ;L∞(�) ∩ H 1(�)) × C([0, T ];H 1(�)) ∩ L2(0, T ;H 2(�)), (2.13)

and û ∈ C([0, T ]; H 1(ω)) ∩ L2(0, T ; H 2(ω)).

A sketch of the derivation of the optimality conditions is given below. The basic idea is to 
convert the constrained optimization problem (2.4) to an unconstrained one (cf. [26, p. 63, 1.6.4], 
[6, p. 242, 4.1.3]). Define the Lagrangian

L(θ, v,u;w,ρ) =J (u, θ) −
T∫

0

(ρ, ∂t θ + v · ∇θ) dt −
T∫

0

(w, ∂tv − (Av + Bu))dt, (2.14)

where by Stokes formula we have

(ρ, v · ∇θ)) = (ρ,∇ · (vθ)) =
∫
�

ρ((vθ) · n)dx −
∫
�

∇ρ · (vθ) dx = −(v · ∇ρ, θ). (2.15)

Applying integration by parts to the last two terms of the right hand side of (2.14) together with 
(2.15) yields

L(θ, v,u;w,ρ) =J (u, θ) − [(ρ(T ), θ(T )) − (ρ0, θ0) +
T∫

0

(−∂tρ − v · ∇ρ, θ) dt]

− [(w(T ), v(T )) − (w0, v0) +
T∫

0

(−∂tw − Aw,v) − (B∗w,u)dt].

Moreover, due to the divergence-free condition of velocity, we have

(v · ∇ρ, θ) = (v, θ∇ρ) = (v,P (θ∇ρ)). (2.16)

The adjoint state (ρ, w) is chosen such that the first derivatives of L with respect to θ and v
vanish, i.e. ∂L

∂θ
= 0 and ∂L

∂v
= 0, which lead to (2.9). The final time condition (2.10) is derived 

by setting ∂L = 0. Finally, the equation ∂L = 0 yields the desired optimality condition (2.11). 

∂θ(T ) ∂u
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The detailed explanation on a Lagrangian-based view of the adjoint approach can be found in 
[26, p. 63, 1.6.4]. The optimality system (2.9)–(2.11) can be also obtained using a variational 
inequality as in [29, Theorem 4.1] and [28, Theorem 5.3].

Remark 2.2. The well-posedness and regularity of the solution (θ̂, v̂) to (2.2) for (θ0, v0) ∈
(L∞(�) ∩ H 1(�)) × V 1

n (�) and any Bû ∈ L2(0, T ; V 0
n (�)) can be established following sim-

ilar approaches as in [36, Theorem 4.1] and [30, Theorem 1.1] for the Boussinesq system with 
zero diffusivity. In fact, since we consider Stokes flow in the current work, the analysis is less 
involved compared to the Navier-Stokes case addressed in the references. Similarly we could 
claim (2.13) for the adjoint problem. The regularity of the optimal control û holds immediately 
as B∗ : L2(0, T ; V 0

n (�)) → Uad is a bounded operator given by (2.3).

3. Feedback control design

In this section, we discuss the feedback control design for system (2.2). We first utilize the 
idea of instantaneous control, which is a DTO (discretize-then-optimize) approach, and then 
compare it with the OTD (optimize-then-discretize) approach. The former, as mentioned earlier, 
is to first discretize the uncontrolled state equations in time and conduct the optimization proce-
dure over discrete time steps, and then progress recursively in time (cf. [24,27]). In contrast, the 
OTD approach is to directly discretize the optimality system (2.9)–(2.11) on one step time sub-
interval, and then carry the information for the next time sub-interval. Finally, we observe that 
under appropriate time discretization schemes, these two approaches lead to the same nonlinear 
continuous feedback law. In the following discussion, we set α = 0 and β = 1.

3.1. Discretize-then-optimize approach

With the understanding of the original optimal control of system (2.2), we now describe the 
moving horizon approach, which is at the core of the instantaneous control design. There are 
various ways to discretize the control system (2.2) in time. To focus on our discussion, we employ 
two Euler’s methods and compare the resulting feedback laws.

3.1.1. Semi-implicit Euler’s method I
Consider a uniform partition of [0, T ] and let h = T

N
for N ∈ N and ti = ih for i =

0, 1, . . .N − 1. Applying the semi-implicit Euler’s method to system (2.2) in time t gives

{
θi+1 − θi = −hvi+1 · ∇θi,

vi+1 − vi = hAvi+1 + Bui+1,
that is,

{
θi+1 = θi − hvi+1 · ∇θi,

(I − hA)vi+1 = vi + Bui+1,
(3.1)

where θi = θ(·, ti ), vi = v(·, ti ), and ui = u(·, ti ). The semi-implicit scheme is applied to the 
advection term v · ∇θ and the implicit scheme is applied to Av. The instantaneous version of the 
minimization problem over the subinterval Ii = [ti , ti+1] becomes

min J i(ui+1, θ i+1) = 1

2
‖�−1θi+1‖2

L2 + γ

2
‖ui+1‖2

Ui
, i = 0,1, . . . ,N − 1,

subject to (3.1), where Ui = L2(ω).
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Let (ρi+1, wi+1) be the adjoint state of (θ i+1, vi+1). Define the Lagrangian

Li(θ i+1, vi+1, ui+1;ρi+1,wi+1) = 1

2
(�−2θi+1, θ i+1) + γ

2
(ui+1, ui+1)

− (ρi+1, θ i+1 − (θ i − hvi+1 · ∇θi))

− (wi+1, (I − hA)vi+1 − (vi + Bui+1)). (3.2)

Rewriting the right hand side of (3.2) with the help of (2.16), we get

Li(θ i+1, vi+1, ui+1;ρi+1,wi+1) = 1

2
(�−2θi+1, θ i+1) + γ

2
(ui+1, ui+1)

− [(ρi+1, θ i+1) − (ρi+1, θ i) − h(vi+1,P (θ i∇ρi+1))]
− [((I − hA)wi+1, vi+1) − (wi+1, vi) − (B∗wi+1, ui+1)].

Setting ∂Li

∂θi+1 = 0 and ∂Li

∂vi+1 = 0, we obtain the adjoint system

{
ρi+1 = �−2θi+1 = ηi+1,

(I − hA)wi+1 = hP (θ i∇ρi+1),
(3.3)

where ηi+1 = η(·, ti+1). Setting ∂L
∂ui+1 = 0 yields the optimality condition

ui+1 = − 1

γ
B∗wi+1. (3.4)

The optimality system (3.1), (3.3), and (3.4) admits a unique solution due to the quadratic cost 
functional and the linearity and uniqueness of solutions to (3.1). Since there are several layers of 
couplings in the optimality conditions, if one follows the recursive procedures as in (cf. [24,27]) 
to solve ui+1 explicitly in terms of (θ i+1, vi+1) and ηi+1, one ends up with a highly nonlinear 
feedback law. In what follows, we adopt a different approach to overcome this obstacle.

First, from the adjoint system (3.3) we observe that

wi+1 = h(I − hA)−1P (θ i∇ρi+1) = h(I − hA)−1P (θ i∇ηi+1).

Thus, by the optimality condition (3.4), we obtain

ui+1 = − 1

γ
B∗h(I − hA)−1P (θ i∇ηi+1). (3.5)

As a result, the governing system (3.1) together with (3.5) is the semi-implicit time discretization 
of the closed-loop dynamical system

{
∂t θ = −v · ∇θ,

∂tv = Av − h
γ
BB∗(I − hA)−1P (θ∇η),

(3.6)

with initial condition (θ(0), v(0)) = (θ0, v0), where η is given by (2.5). Since the Stokes operator 
A is strictly negative, I − hA is strictly positive, and hence invertible for any h > 0.
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3.1.2. Semi-explicit Euler’s method II
If using an explicit scheme to discretize Av in the velocity equation in time, we have

{
θi+1 − θi = −hvi+1 · ∇θi,

vi+1 − vi = hAvi + Bui+1,
that is,

{
θi+1 = θi − hvi+1 · ∇θi,

vi+1 = (I + hA)vi + Bui+1.
(3.7)

Again by the Euler-Lagrange method, we can easily derive the adjoint system and the optimality 
condition as follows

{
ρi+1 = �−2θi+1 = ηi+1,

wi+1 = hP (θ i∇ρi+1),
(3.8)

and

ui+1 = − 1

γ
B∗wi+1. (3.9)

It is clear that (3.8)–(3.9) are the semi-implicit time discretization of the closed-loop dynamical 
system given by

{
θ̇ = −v · ∇θ,

v̇ = Av − h
γ
BB∗P (θ∇η),

(3.10)

with initial condition (θ(0), v(0)) = (θ0, v0).
Compared to the closed-loop (3.6), the control input becomes less regular and hence the ve-

locity of (3.10) has a lower regularity, which however, provides a better mixing effect as shown 
in our numerical experiments in Section 5.

3.2. Optimize-then-discretize approach

Since the optimality conditions are at our disposal, it is natural to consider a direct approxi-
mation to obtain the feedback law. To be more specific, we first discretize the optimality system 
(2.2) and (2.9)–(2.11) restricted to one time subinterval Ii = [ti , ti+1], i = 0, 1, . . . , N − 1, and 
then carry the information for the next time subinterval, where the state and the adjoint equations 
will be formulated forward and backward in time, respectively. This is done only for one step, so 
that the adjoint state can be related to the state explicitly.

Recall that (θ, v) and (ρ, w) are continuous in time according to (2.12)–(2.13). We now let 
(θ i, vi) = (θ(·, ti )|Ii

, v(·, ti )|Ii
), (ρi, wi) = (ρ(·, ti )|Ii

, w(·, ti )|Ii
), and ui = u(·, ti )|Ii

, denote the 
state, adjoint state, and optimal control on each Ii , respectively. We apply a semi-implicit Euler’s 
method with the same step size h in time as in section 3.1 to discretize the optimality conditions 
(2.2) and (2.9)–(2.11) on Ii . This procedure leads to

State Equations

{
θi+1 = θi − hvi+1 · ∇θi,

vi+1 = (I + hA)vi + Bui+1,

Adjoint Equations

{ −(ρi+1 − ρi) = hvi+1 · ∇ρi+1 + hηi+1

−(wi+1 − wi) = hAwi + hP (θ i∇ρi),
(3.11)
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where

(ρi+1,wi+1) = (0,0) (3.12)

and ηi+1 = �−2θi+1. The optimality condition is given by

ui+1 = 1

γ
B∗wi, i = 1,2, . . . ,N. (3.13)

Applying the final time condition (3.12) to (3.11) follows

{
ρi = hηi+1,

wi = h(I − hA)−1P (θ i∇ρi).
(3.14)

With the help of (3.14), (3.13) becomes

ui+1 = h

γ
B∗(I − hA)−1P (θ i∇ρi) = h2

γ
B∗(I − hA)−1P (θ i∇ηi+1).

Consequently, this procedure gives rise to a system which is the semi-implicit time discretization 
of the closed-loop dynamical system (3.6).

On the other hand, if we apply an implicit scheme for discretizing Aw(·, t)|Ii
in the adjoint 

velocity equation in (2.9), then we obtain

Adjoint Equations

{ −(ρi+1 − ρi) = hvi+1 · ∇ρi+1 + hηi+1,

−(wi+1 − wi) = hAwi+1 + hP (θ i∇ρi),

and hence by (3.12) we get

{
ρi = hηi+1,

wi = hP (θ i∇ρi).

Thus,

ui+1 = h2

γ
B∗P (θ i∇ηi+1).

This results in the semi-implicit time discretization of the same closed-loop dynamical system 
(3.10).

Remark 3.1. Both DTO and OTD designs allow for an interpretation as a nonlinear discrete-
in-time sub-optimal closed-loop control method. Under appropriate discretization schemes, they 
turn out to be the time discretization of certain continuous closed-loop controller. We are partic-
ularly interested in the long-time behavior of the corresponding closed-loop system. For such a 
semi-dissipative system, however, we can not simply set T = ∞ in the cost functional (2.7) in the 
first place, since ‖θ‖(H 1(�))′ may not even converge to zero as T → ∞. A discount factor e−ξ t

for some ξ > 0 may need to be taken into account in the second term of (P ) if setting T = ∞.
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4. Well-posedness and asymptotic behavior of the nonlinear closed-loop systems

In this section, we address the well-posedness and asymptotic behavior of the nonlinear 
closed-loop systems (3.6) and (3.10) incorporated with feedback laws of different regularity. 
In the current work, we mainly investigate the internal control design that is applied to the en-
tire domain, that is, ω = � and χω = I , and hence B = P . The main results are stated in the 
following theorems.

Theorem 4.1. For (θ0, v0) ∈ (L∞(�) ∩ H 1(�)) × D(A), where � ⊂ Rd , d = 2, 3, there exists 
a unique solution (θ, v) to the closed-loop system (3.6) satisfying

(θ, v) ∈ L∞(0, T ;L∞(�) ∩ H 1(�)) × L∞(0, T ;V 2
n (�)) ∩ L2(0, T ;V 3

n (�))

for any T > 0. Moreover, (θ, v) obeys the following asymptotic behavior

‖v‖L2 → 0, ‖∇v‖L2 → 0, ‖�v‖L2 → 0, ‖∂tv‖L2 → 0,

‖θ‖(H 1(�))′ → c0 as t → ∞, where

c0 <

√
‖�η0‖2

L2 + γ

h
‖v0‖2

L2 + γ (2‖Dv0‖2
L2 + k‖v0 · τ‖2

L2(�)
),

and

‖u‖L2 = ‖ − h

γ
(I − hA)−1P (θ∇η)‖L2 → 0 as t → ∞, (4.1)

which indicates

‖θ∇η − ∇q‖(H 2(�))′ → 0 as t → ∞, (4.2)

for some q ∈ L2(�).

Since the feedback law for the closed-loop system (3.10) has a much lower regularity com-
pared to (3.6), our discussion for (3.6) only focuses on d = 2.

Theorem 4.2. For (θ0, v0) ∈ (L∞(�) ∩ H 1(�)) × D(A), where � ⊂ R2, there exists a unique 
solution (θ, v) to the closed-loop system (3.10) satisfying

(θ, v) ∈ L∞(0, T ;L∞(�) ∩ H 1(�)) × L∞(0, T ;V 2
n (�)) ∩ L2(0, T ;V 3

n (�)), (4.3)

for any T > 0. Moreover,

‖v‖L2 → 0, ‖∇v‖L2 → 0, ‖∂tv‖L2 → 0, (4.4)

‖θ‖(H 1(�))′ → C0 as t → ∞, where C0 <

√
‖�η0‖2

L2 + γ

h
‖v0‖2

L2, (4.5)

and the feedback law satisfies
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‖u‖(V 1
n (�))′ = ‖ − h

γ
P (θ∇η)‖(V 1

n (�))′ → 0 as t → ∞, (4.6)

which indicates

‖θ∇η − ∇q‖(H 1(�))′ → 0 as t → ∞, (4.7)

for some q ∈ L2(�).

The critical step in the proofs of Theorems 4.1–4.2 lies in establishing the global-in-time a 
priori bound for (v, �η). The main difficulties are due to the lack of dissipation in the transport 
equation and the nonlinear couplings involved. To tackle these challenges, we first establish the 
decay properties of the velocity, which in turn help obtain the estimates on �η and its long-time 
behavior. The uniqueness of solution to the closed-loop system (3.6) for d = 2, 3, is straight-
forward to prove once velocity satisfies v ∈ L2(0, T ; V 3

n (�)) because the estimate (2.8) needs 
to hold. However, for the closed-loop system (3.6), the lower regularity of the feedback law 
demands a more delicate analysis in order to establish (4.3) even for d = 2.

To start with, we introduce the following lemma which will be often used in our discussion. 
Its proof is elementary and can be found in [39, Lemma 2.3] (also see [18, Lemma 3.1]).

Lemma 4.3. Let f = f (t) with t ∈ [0, ∞) be a nonnegative continuous function, and suppose 
that f is integrable on (0, ∞), i.e.,

∞∫
0

f (t) dt < ∞.

Assume further that for any ε > 0, there is δ > 0 such that for any 0 ≤ t1 < t2 with t2 − t1 < δ,

either f (t2) ≤ f (t1) or f (t2) ≥ f (t1) and f (t2) − f (t1) ≤ ε.

Then

f (t) → 0 as t → ∞.

Proof of Theorem 4.1. The critical ingredient in the proof is to establish the global-in-time a 
priori bound for (θ, v) in the Bochner-Sobolev space

θ ∈ L∞(0, T ;L∞(�) ∩ H 1(�)), v ∈ L∞(0, T ;V 2
n (�)) ∩ L2(0, T ;V 3

n (�)).

Once the global bound is established, the existence of solutions then follows from standard 
procedures such as the Galerkin approximation scheme. We shall present our arguments in the 
following steps.

Step 1. We show that ‖v‖L2 → 0 as t → ∞. To this end, we first establish the necessary a 
priori bounds. Applying γ (I − hA) to the velocity equation in (3.6) we get
h
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γ

h

d(I − hA)v

dt
= γ

h
(I − hA)Av − P (θ∇η). (4.8)

Now taking the inner product of (4.8) with v yields

γ

2h

d‖v‖2
L2

dt
+ γ

2

d

dt
(2‖Dv‖2

L2 + k‖v · τ‖2
L2(�)

)

+ γ

h
(2‖Dv‖2

L2 + k‖v · τ‖2
L2(�)

) + γ ‖Av‖2
L2 = −(P (θ∇η), v). (4.9)

Next by taking the inner produce of the transport equation in (3.6) with η it follows that

1

2

d‖�η‖2
L2

dt
= −

∫
�

(v · ∇θ)η dx =
∫
�

v · (θ∇η)dx = (v,P (θ∇η)). (4.10)

Adding (4.9) to (4.10) we have

1

2

d‖�η‖2
L2

dt
+ γ

2h

d‖v‖2
L2

dt
+ γ

2

d

dt
(2‖Dv‖2

L2 + k‖v · τ‖2
L2(�)

)

+ γ

h
(2‖Dv‖2

L2 + k‖v · τ‖2
L2(�)

) + γ ‖Av‖2
L2 = 0, (4.11)

which gives

‖�η‖2
L2 + γ

h
‖v‖2

L2 + γ (2‖Dv‖2
L2 + k‖v · τ‖2

L2(�)
)

+ 2
γ

h

t∫
s

(2‖Dv‖2
L2 + k‖v · τ‖2

L2) dσ + 2γ

t∫
s

‖Av‖2
L2 dσ

= ‖�η(s)‖2
L2 + γ

h
‖v(s)‖2

L2 + γ (2‖Dv(s)‖2
L2 + k‖v(s) · τ‖2

L2(�)
). (4.12)

(4.12) implies that Y(t) = ‖�η‖2
L2 + γ

h
‖v‖2

L2 + γ (2‖Dv‖2
L2 + k‖v · τ‖2

L2(�)
) is a decreasing 

function of t ∈ [0, ∞) and

0 < Y(t) ≤ Y0 = ‖�η0‖2
L2 + γ

h
‖v0‖2

L2 + γ (2‖Dv0‖2
L2 + k‖v0 · τ‖2

L2(�)
). (4.13)

As a result, there exists c0 > 0 such that

Y(t) → c0 < Y0. (4.14)

Note that (4.11) also implies

∞∫
0

γ

h
(2‖Dv‖2

L2 + k‖v · τ‖2
L2(�)

) + γ ‖Av‖2
L2 dt ≤ Y0. (4.15)
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Using the Poincaré inequality stating that ‖v‖L2 ≤ C‖Av‖L2 for v ∈ D(A) and some constant 
C > 0, we immediately obtain

‖v‖2
L2 ∈ L1(0,∞). (4.16)

On the other hand, a direct L2-estimate of the velocity equation in (3.6) gives

1

2

d‖v‖2
L2

dt
+ 2‖Dv‖2

L2 + k‖v · τ‖2
L2(�)

≤ h

γ
‖(I − hA)−1P (θ∇η)‖L2‖v‖L2

≤ C
h

γ
‖θ0‖L∞‖∇η‖L2‖v‖L2 ≤ C

h2

γ 2 ‖θ0‖2
L∞‖θ0‖2

L2 + ‖Dv‖2
L2,

from which it follows that

d‖v‖2
L2

dt
+ 2‖Dv‖2

L2 + 2k‖v · τ‖2
L2(�)

≤ C
h2

γ 2 ‖θ0‖2
L∞‖θ0‖2

L2 .

Thus for any 0 ≤ s ≤ t < ∞, integrating in time yields

‖v(t)‖2
L2 − ‖v(s)‖2

L2 ≤ C
h2

γ 2 ‖θ0‖2
L∞‖θ0‖2

L2 |t − s|. (4.17)

Combining (4.17) with (4.16) and Lemma 4.3, we obtain

‖v‖L2 → 0 as t → ∞. (4.18)

Step 2. We show that ‖Dv‖L2 → 0 as t → ∞. Applying an H 1-estimate of the velocity 
equation in (3.6), we get

1

2

d

dt
(2‖Dv‖2

L2 + k‖v · τ‖2
L2(�)

) + ‖Av‖2
L2 ≤ h

γ
‖(I − hA)−1P (θ∇η)‖L2‖Av‖L2

≤ C
h

γ
‖θ0‖L∞‖∇η‖L2‖Av‖L2 ≤ C

h2

γ 2 ‖θ0‖2
L∞‖θ0‖2

L2 + 1

2
‖Av‖2

L2,

from which we observe

d

dt
(2‖Dv‖2

L2 + k‖v · τ‖2
L2(�)

) + ‖Av‖2
L2 ≤ C

h2

γ 2 ‖θ0‖2
L∞‖θ0‖2

L2 .

Again, integrating in time yields

2‖Dv(t)‖2
L2 + k‖v(t) · τ‖2

L2(�)
− (2‖Dv(s)‖2

L2 + k‖v(s) · τ‖2
L2(�)

)

≤ C
h2

γ 2 ‖θ0‖2
L∞‖θ0‖2

L2 |t − s|, (4.19)

where 0 ≤ s ≤ t < ∞. With the help of (4.15) and Lemma 4.3 we obtain that
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‖Dv‖L2 → 0 and ‖v · τ‖L2(�) → 0 as t → ∞. (4.20)

As a result of (4.18), (4.20) and (4.14), we can conclude that

‖θ‖(H 1(�))′ = ‖�η‖L2 → c0 as t → ∞.

Step 3. We further prove that ‖Av‖L2 → 0 as t → ∞. Taking the inner product of (4.8) with 
−Av leads to

γ

h
(

d

dt
(I − hA)v,−Av) = γ

h
((I − hA)Av,−Av) − (P (θ∇η),−Av),

which implies that

γ

h

1

2

d

dt
(2‖Dv‖2

L2 + k‖v · τ‖2
L2(�)

) + γ

2

d

dt
‖Av‖2

L2 + γ

h
‖Av‖2

L2

+ γ (2‖D(Av)‖2
L2 + k‖(Av) · τ‖2

L2(�)
)

= (P (θ∇η),Av) ≤ C‖θ0‖2
L∞‖θ0‖2

L2 + γ

2h
‖Av‖2

L2,

and thus

γ

h

d

dt
(2‖Dv‖2

L2 + k‖v · τ‖2
L2(�)

) + γ
d

dt
‖Av‖2

L2 + γ

h
‖Av‖2

L2

+ 2γ (2‖D(Av)‖2
L2 + k‖(Av) · τ‖2

L2(�)
) ≤ C‖θ0‖2

L∞‖θ0‖2
L2 . (4.21)

This indicates that

γ

h

(
2‖Dv(t)‖2

L2 + k‖v(t) · τ‖2
L2(�)

) + γ ‖Av(t)‖2
L2

−
[γ

h

(
2‖Dv(s)‖2

L2 + k‖v(s) · τ‖2
L2(�)

) + γ ‖Av(s)‖2
L2

]
≤ C‖θ0‖2

L∞‖θ0‖2
L2 |t − s|.

Again by (4.15) and Lemma 4.3 we have

γ

h
(2‖Dv(t)‖2

L2 + k‖v(t) · τ‖2
L2(�)

) + γ ‖Av(t)‖2
L2 → 0, as t → ∞,

so that ‖Av‖L2 → 0 as t → ∞. Furthermore, (4.21) also implies that

T∫
0

‖(−A)3/2v‖2
L2 dt =

T∫
0

2‖D(Av)‖2
L2 + k‖(Av) · τ‖2

L2(�)
dt ≤ C(h,γ, θ0, v0, T ) (4.22)

for any 0 < T < ∞.
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As we show next, with the help of (4.22), it is direct to obtain that

θ ∈ L∞(0, T ;H 1(�)).

In fact, applying ∇ to the transport equation in (3.6) and taking the inner product with ∇θ yield

1

2

d

dt
‖∇θ‖2

L2 = −
∫
�

∂j (vi∂iθ)∂j θ dx = −
∫
�

∂jvi∂iθ∂j θ dx − 1

2

∫
�

vi∂i(∂j θ∂j θ) dx

= −
∫
�

∂jvi∂iθ∂j θ dx + 1

2

∫
�

∂ivi∂j θ∂j θ dx − 1

2

∫
�

vini∂j θ∂j θ dx

= −
∫
�

∂jvi∂iθ∂j θ dx ≤ ‖∇v‖L∞‖∇θ‖2
L2 .

By virtue of (4.22), we have

‖∇θ‖2
L2 ≤ ‖∇θ0‖2

L2e
∫ T

0 ‖∇v‖L∞ dt ≤ ‖∇θ0‖2
L2e

c
∫ T

0 ‖v‖
H3 dt ≤ C(h,γ, θ0, v0, T ), (4.23)

where in the second inequality we have used Agmon’s inequality (cf. [50, (2.21), p. 11]) that

‖∇v‖L∞ ≤ c‖v‖H 1+d/2+ε , d = 2,3,

for some ε > 0,
Step 4. We establish that ‖∂tv‖ → 0 as t → ∞. Applying ∂t to the velocity equation in (3.6)

and making use of the transport equation yield

∂tt v = A∂tv − h

γ
(I − hA)−1P∂t (θ∇η)

= A∂tv − h

γ
(I − hA)−1P (∂t θ∇η + θ∂t∇η)

= A∂tv − h

γ
(I − hA)−1P ((−v · ∇θ)∇η + θ∂t∇η). (4.24)

Taking the L2-inner product of (4.24) with ∂tv gives

1

2

d‖∂tv‖2
L2

dt
+ 2‖D(∂tv)‖2

L2 + k‖(∂tv) · τ‖2
L2(�)

= − h

γ

(
(−v · ∇θ)∇η + θ∂t∇η,P (I − hA)−1∂tv

)

= − h

γ

(∫
(−∇ · (vθ))(∇η · (I − hA)−1∂tv) dx +

∫
θ∂t∇η · (I − hA)−1∂tv dx

)

� �
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= − h

γ

∫
�

(vθ) · ∇(∇η · (I − hA)−1∂tv) dx − h

γ

∫
�

θ∇∂tη · (I − hA)−1∂tv dx)

= I1 + I2, (4.25)

where

I1 ≤ h

γ
‖v‖L2‖θ‖L∞‖∇(∇η · (I − hA)−1∂tv)‖L2

≤ h

γ
‖v‖L2‖θ‖L∞(‖∇∇η‖L4‖(I − hA)−1∂tv‖L4

+ ‖∇η‖L∞‖∇(I − hA)−1∂tv‖L2) (4.26)

≤ C
h

γ
‖v‖L2‖θ‖L∞(‖θ‖L4‖∂tv‖L2 + ‖∇∇η‖Lr ‖∇(I − hA)−1∂tv‖L2)

≤ C
h

γ
‖v‖L2‖θ0‖L∞(‖θ0‖L4‖∂tv‖L2 + ‖θ0‖Lr ‖∂tv‖L2) (4.27)

≤ C
h

γ
‖v‖L2‖θ0‖L∞‖θ0‖L4‖∂tv‖L2,

≤ C
h2

γ 2 ‖v‖2
L2‖θ0‖2

L∞‖θ0‖2
L4 + 1

4
‖D∂tv‖2

L2 . (4.28)

From (4.26) to (4.27) we used Sobolev embedding, (2.1) and (2.6), that is, ‖∇η‖L∞ ≤
C‖∇∇η‖Lr ≤ C‖θ‖Lr = C‖θ0‖Lr for d < r < ∞.

To estimate I2, we first recall that η =A−1θ , and hence

∂tη = ∂tA−1θ = −A−1(v · ∇θ).

Therefore,

I2 = − h

γ

∫
�

θ∇(−A−1(v · ∇θ)) · (I − hA)−1∂tv) dx

≤ C
h

γ
‖θ‖L∞‖A−1(v · ∇θ)‖L2‖∂tv‖L2

≤ C
h

γ
‖θ0‖L∞‖v · ∇θ‖(H 1(�))′ ‖∂tv‖L2, (4.29)

where

‖v · ∇θ‖(H 1(�))′ = sup
0�=φ∈H 1(�)

| ∫
�

v · ∇θφ dx|
‖φ‖H 1

= sup
0�=φ∈H 1(�)

| ∫
�

θv · ∇φ dx|
‖φ‖H 1

≤ sup
0�=φ∈H 1(�)

C‖θ‖L∞‖v‖L2‖φ‖H 1

‖φ‖H 1
≤ C‖θ0‖L∞‖v‖L2 .
143



W. Hu, C.N. Rautenberg and X. Zheng Journal of Differential Equations 374 (2023) 126–153
Finally, we get

I2 ≤ C
h

γ
‖θ0‖2

L∞‖v‖L2‖∂tv‖L2 ≤ C
h2

γ 2 ‖θ0‖4
L∞‖v‖2

L2 + 1

4
‖D∂tv‖2

L2 . (4.30)

Combining (4.25) with (4.28)–(4.30) follows

d‖∂tv‖2
L2

dt
+ 2‖D(∂tv)‖2

L2 + k‖(∂tv) · τ‖2
L2(�)

≤ C
h2

γ 2 ‖θ0‖2
L∞(‖θ0‖2

L∞ + ‖θ0‖2
L4)‖v‖2

L2 . (4.31)

With the help of (4.15)–(4.16), we obtain

‖∂tv‖2
L2 +

t∫
0

2‖D(∂tv)‖2
L2 + k‖(∂tv) · τ‖2

L2(�)
dτ ≤ C(h,γ, θ0, v0),

which by Poincaré and Korn’s inequalities yields

∞∫
0

‖∂tv‖2
L2 dτ ≤ C

∞∫
0

‖D∂tv‖2
L2 dτ ≤ C(h,γ, θ0, v0).

Moreover, by (4.31) and the uniform boundedness of ‖v‖2
L2 in time shown in (4.13), we have for 

any 0 ≤ s ≤ t < ∞ that

‖∂tv(t)‖2
L2 − ‖∂tv(s)‖2

L2 ≤ C
h2

γ 2 ‖θ0‖2
L∞(‖θ0‖2

L∞ + ‖θ0‖2
L4)

t∫
s

‖v‖2
L2 dτ

≤ C(h,γ, θ0, v0)|t − s|.

In light of Lemma 4.3, we conclude that ‖∂tv(t)‖2
L2 → 0 as t → ∞. Consequently, it follows 

from the velocity equation in (3.6) that

‖ h

γ
(I − hA)−1P (θ∇η))‖L2 ≤ ‖∂v

∂t
‖L2 + ‖Av‖L2 → 0,

and hence

‖P (θ∇η)‖(V 2
n (�))′ → 0 as t → ∞, i.e.,

‖θ∇η − ∇q‖(H 2(�))′ → 0 as t → ∞,

for some q ∈ L2(�), which establishes (4.1)–(4.2).
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Step 5. Uniqueness: Finally, to show the uniqueness of the solution, we assume that there are 
two pairs of solutions to system (3.6), denoted by (θi, vi), i = 1, 2. Let ϑ = θ1 − θ2, V = v1 −v2, 
and H = η1 − η2. Then (ϑ, V ) satisfies

∂ϑ

∂t
+ V · ∇θ1 + v2 · ∇ϑ = 0, ϑ(0) = 0, (4.32)

∂V

∂t
= AV − γ

h
(I − hA)−1(P (ϑ∇η1 + θ2∇H)) (4.33)

with V (x, 0) = 0 and H(x, 0) = 0. Multiplying (4.33) by I − hA follows

∂(I − hA)V

∂t
= (I − hA)AV − γ

h
(P (ϑ∇η1 + θ2∇H)). (4.34)

Taking the inner produce of (4.32) with ϑ , we obtain

1

2

d‖ϑ‖2
L2

dt
=

∫
�

(V · ∇θ1)ϑ dx ≤ ‖V ‖L∞‖∇θ1‖L2‖ϑ‖L2

≤ h

2
‖AV ‖2

L2 + CM2‖ϑ‖2
L2, (4.35)

where M = supt∈[0,T ] ‖∇θ1‖L2 . Taking the inner product of (4.34) with V yields

1

2

d‖V ‖2
L2

dt
+ h

2

d

dt
(2‖DV ‖2

L2 + k‖V · τ‖2
L2(�)

) + 2‖DV ‖2
L2 + k‖V · τ‖2

L2(�)
+ h‖AV ‖2

L2

≤ γ

h
(‖(ϑ‖L2‖∇η1‖L∞‖V ‖L2 + ‖θ2‖L∞‖∇H‖L2‖V ‖L2)

≤ C
γ 2

h2 ‖ϑ‖2
L2‖θ0‖2

Lr + 1

2
‖DV ‖2

L2 + C
γ 2

h2 ‖θ0‖2
L∞‖ϑ‖2

L2 + 1

2
‖DV ‖2

L2,

for d < r < ∞. Therefore,

1

2

d‖V ‖L2

dt
+ h

2

d

dt
(2‖DV ‖2

L2 + k‖V · τ‖2
L2(�)

) + ‖DV ‖2
L2 + k‖V · τ‖2

L2(�)
+ h‖AV ‖2

L2

≤ C
γ 2

h2 ‖ϑ‖2
L2(‖θ0‖2

Lr + ‖θ0‖2
L∞). (4.36)

Combining (4.36) with (4.35) yields

1

2

d‖V ‖2
L2

dt
+ h

2

d

dt
(2‖DV ‖2

L2 + k‖V · τ‖2
L2(�)

) + 1

2

d‖ϑ‖2
L2

dt

+ ‖DV ‖2
L2 + k‖V · τ‖2

L2(�)
+ h

2
‖AV ‖2

L2 ≤ C(γ,h,M,θ0)‖ϑ‖2
L2,

which implies
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d

dt
(‖V ‖L2 + h(2‖DV ‖2

L2 + k‖V · τ‖2
L2(�)

) + ‖ϑ‖2
L2)

≤ C(γ,h,M,θ0)(‖V ‖2
L2 + h(2‖DV ‖2

L2 + k‖V · τ‖2
L2(�)

) + ‖ϑ‖2
L2).

By the Gronwall inequality, it follows ‖V ‖L2 +h(2‖DV ‖2
L2 +k‖V ·τ‖2

L2(�)
) +‖ϑ‖2

L2 = 0, which 
indicates V = 0 and ϑ = 0. The uniqueness of the solution is thus obtained which completes the 
proof. �
Proof of Theorem 4.2. Due to the low regularity of the feedback law u = − h

γ
P (θ∇η) for the 

velocity equation in the closed-loop system (3.10), it is not straightforward to obtain

T∫
0

‖v‖H 3 < ∞,

as in the proof of Theorem 4.1. In fact, it is technically challenging to establish such an a prior
estimate and the global-in-time boundedness of ∇θ . As shown in our previous work [33, The-
orem 2.1 ] (see also [18, Theorem 1.1]) and [36, Section 3]), it requires a delicate analysis by 
combining the following Brezis-Gallouet inequality (cf. [10] and [33, (2.41)]) together with a 
new nonlinear Gronwall inequality [33, Lemma 2.3] to get ‖∇θ‖L2 bounded in a 2D domain:

‖∇v‖L∞ ≤ C‖Av‖L2

(
1 + log

‖(−A)3/2v‖2
L2

λ1‖Av‖2
L2

)1/2

,

where λ1 > 0 is the lowest eigenvalue of −A. For the detailed proof of (θ, v) satisfying (4.3), 
the reader is referred to the aforementioned references. Further discussion on the growth rate of 
‖∇θ‖L2 in time can be found in [36, Theorem 3.2] and [37, Theorem 4.1].

The statements (4.4)–(4.7) can be obtained following the similar fashion as in Theorem 4.1. 
To establish the global-in-time a priori bound for (v, �η) and show that

‖v‖L2 → 0 as t → ∞,

we take the inner product of the velocity equation in (3.10) with γ
h
v and add the resulting equa-

tion to (4.10). The results follow easily by using the same approaches as in Step 1 of Theorem 4.1. 
The arguments for showing

‖∇v‖L2 → 0 and ‖∂tv‖ → 0 as t → ∞, (4.37)

also utilize the similar procedures as in Step 2 and Step 3 of Theorem 4.1. The details are omitted 
here. The uniform boundedness of ‖Av‖L2 for t ∈ [0, ∞) follows immediately from

‖Av‖L2 ≤ ‖∂tv‖L2 + ‖ h

γ
P (θ∇η)‖L2 ≤ C(h,γ, θ0, v0).

However, because of the low regularity of the feedback law, one can not claim that ‖Av‖L2 → 0
as t → ∞, as in Theorem 4.1.
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Consequently, combining the velocity equation in (3.10) with (4.37) follows

‖ h

γ
(−A)−1/2P (θ∇η))‖L2 ≤ ‖(−A)−1/2∂tv‖L2 + ‖(−A)1/2v‖L2

≤ C(‖∂tv‖L2 + ‖∇v‖L2) → 0,

which verifies (4.6), and hence (4.7) holds for some q ∈ L2(�).
Lastly, the proof of uniqueness can be obtained by using the same techniques as in Step 5 of 

Theorem 4.1. This completes the proof. �
In the next section, numerical experiments are conducted to demonstrate and validate our 

ideas and designs for closed-loop systems (3.6) and (3.10).

5. Numerical implementation

One of the major obstacles encountered in numerical schemes is due to mass conservation of 
the scalar transport in incompressible flows. Specifically, the approximate velocity being diver-
gence free is critical to preserving the accuracy, stability, and global conservation properties of 
the scalar. In this work, we employ mixed continuous Galerkin (CG) and discontinuous Galerkin 
(DG) methods to solve the closed-loop systems (3.6) and (3.10) as in our recent work [32], and 
compare the effectiveness of the feedback laws of different regularity.

Without loss of generality, let viscosity be ν = 1. With internal control B = P , we can rewrite 
the closed-loop system (3.6) resulting from the semi-implicit Euler’s Method I succinctly as

θt = −v · ∇θ, (5.1)

vt = �v − ∇p + u, ∇ · v = 0. (5.2)

(I − �)η = θ,
∂η

∂n
|� = 0, (5.3)

− h�u + ∇q + u = − h

γ
θ∇η, ∇ · u = 0 (5.4)

where q ∈ L2(�) stands for the pressure and h and γ are fixed parameters. The algorithm for 
solving (5.1)–(5.4) is described below.

1. Assign the initial value of θ0 and v0 at t = 0. Set the time step �t .
2. At time step tn = n�t , suppose θn and vn are known.

(a) Solve ηn from (5.3);
(b) Solve un from (5.4) with θn and ηn;
(c) Solve vn from (5.2) with un;
(d) Solve θn+1 from (5.1);
(e) Let n = n + 1 and go back to (a).

To solve the above saddle point problems for two pairs, (u, q) in (5.4) and (v, p) in (5.2), an iter-
ative projection BDF2/Taylor-Hood Finite element method introduced in [32] is used. A standard 
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Runge-Kutta Discontinuous Galerkin (RKDG) scheme [15], 3rd order accurate in time and piece-
wise quadratic in space, is used to solve the scalar θ governed by the transport equation (5.1). 
The detailed discussion regarding the numerical schemes can be found in [32].

Since the only difference between the closed-loop systems (3.6) and (3.10) is that the control 
u of (3.10) satisfies the following equations

u + ∇q = − h

γ
θ∇η, ∇ · u = 0, (5.5)

to solve (3.10) it suffices to replace 2(b) by the solution of u from (5.5). To this end, we first 
apply divergence to (5.5) and then solve the resulting elliptic problem for q . After q is obtained, 
we solve u from (5.5) directly.

5.1. Numerical results

In our numerical experiments, we let the boundary friction κ = 0.5. Here we choose a 
relatively small control parameter γ = 1e-6, as large control weight turns out to have weak 
mixing effects as shown in [32]. The initial distribution of the scalar field is given by θ(x, y) =
tanh(y/0.1), which is shown in Fig. 1[a]. For each feedback control design, we choose three 
values of h. Specifically, for the closed-loop system (3.6), we set h = 0.01, 0.1, 1. For the 
closed-loop system (3.10), we set h = 0.01, 0.05, 0.1. The spacial and temporal step sizes for 
the simulations are taken as 0.0125 and 0.01, respectively.

The evolution of the system state of different norms is plotted in Fig. 1. It is observed that 
all the norms decay in power rates, approximately. Especially, the velocity norms ||v||L2 and 
||∇v||L2 of both systems, shown in Fig. 1 [b]-[c], decay to zero at the rates of t−1.5 and t−1, 
respectively. The mixing-norm ||θ ||(H 1(�))′ of both systems, shown in Fig. 1 [d], converges at 
the rates of t−0.4 and t−0.65, respectively. To compare the feedback laws, we note that the second 
control law for the closed-loops system (3.10) only weakly decays to 0. Numerically, as we 
can see in Fig. 1 [e]-[f], both ‖P (θ∇η)‖L2 and ‖u‖L2 converge. These numerical experiments 
confirm the convergence results of Theorem 4.1 and 4.2 and further suggest that the rates of 
convergence obey power rules.

The time snapshots of scalar evolutions are shown in Fig. 2 and Fig. 3 for closed-loop systems 
(3.6) and (3.10), respectively. It is clear that the latter demonstrates much better mixing results. 
This is also reflected in the comparison of the decay rates of the mix-norm ||θ ||(H 1(�))′ in time 
(see Fig. 1[d]). From Fig. 3, we can see that the feedback control of system (3.10) produces faster 
and thinner foldings than those of system (3.6). This is expected because the flow induced by the 
second feedback law is much more irregular over the entire domain, which enhances chaotic 
mixing (cf. [3,46,23,41,42,57,1,5]), and the control input does not necessarily vanish. However, 
the spatial scale of the thin filaments generated in mixing tends to approach infinitely small over 
time. The mesh size must be sufficiently small to capture the smallest spatial scales of the thin 
filaments for longer time simulations, which poses a significant difficulty to numerical methods. 
In addition, from Figs. 2 and 3 we also notice that a better homogenization of the mixing process 
is achieved when increasing the parameter h for both closed-loop systems.
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Fig. 1. [a]: Initial density distribution. [b]-[f]: Evolution of norms in time.

6. Conclusions

The current work considers a sub-optimal feedback control design for a fluid mixing problem 
governed by a flow-transport system. This essentially leads to a problem of nonlinear feedback 
control of a semi-dissipative system. The feedback law is established utilizing the ideas of in-
stantaneous control method and a direct approximation of the optimality system derived from an 
optimal control problem. Rigorous analysis is presented to show the asymptotic behavior of the 
nonlinear closed-loop system subject to the feedback laws of different regularity. Numerical ex-
periments show that when the flow has less regularity, the better mixing can be possibly achieved. 
Moreover, it is observed that the mixing decay rates of the closed-loop systems in terms of the 
(H 1(�))′-norm obey power rule in time.

However, a rigorous proof of optimality of such a nonlinear feedback law is still an open 
problem. Understanding how exactly the mechanism of the nonlinear feedback law plays in the 
enhancement of homogenization of a general scalar field, especially, its relation to the parameter 
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Fig. 2. Density snapshots of semi-implicit Euler method I. First row: h = 0.01. Second row: h = 0.1. Third row: h = 1. 
All the time frames are at t = 1, 3, 5, 7, 10.

Fig. 3. Density snapshots of semi-implicit Euler method II. First row: h = 0.01. Second row: h = 0.05. Third row: 
h = 0.1. All the time frames are at t = 1, 3, 5, 7, 10.

h and the control weight γ requires a more in-depth analysis. Also, whether it is possible to 
establish the global-in-time a priori bound for (v, �η) by using the internal control only exerted 
on a subdomain or boundary control will need a further investigation. These topics present new 
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and significant challenges and call for innovative analytical techniques from control theory and 
nonlinear analysis of semi-dissipative systems.
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