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Abstract

This work is concerned with nonlinear feedback control design for the problem of fluid mixing via ad-
vection. The overall dynamics is governed by the transport and Stokes equations in an open bounded and
connected domain  c RY , with d = 2 or d = 3. The feedback laws are constructed based on the ideas
of instantaneous control as well as a direct approximation of the optimality system derived from an opti-
mal open-loop control problem. It can be shown that under appropriate numerical discretization schemes,
two approaches generate the same sub-optimal feedback law. On the other hand, different discretization
schemes may result in feedback laws of different regularity, which determine different mixing results. The
Sobolev norm of the dual space (H 1 (Q)) of H 1 (£2) is used as the mix-norm to quantify mixing based on
the known property of weak convergence. The major challenge is encountered in the analysis of the asymp-
totic behavior of the closed-loop systems due to the absence of diffusion in the transport equation together
with its nonlinear coupling with the flow equations. To address these issues, we first establish the decay
properties of the velocity, which in turn help obtain the estimates on scalar mixing and its long-time be-
havior. Finally, mixed continuous Galerkin (CG) and discontinuous Galerkin (DG) methods are employed
to discretize the closed-loop system. Numerical experiments are conducted to demonstrate our ideas and
compare the effectiveness of different feedback laws.
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1. Introduction

The processes of mass transport and mixing of fluid flows comprise fundamental, yet highly
challenging problems in engineering and natural sciences. These topics have broad applications
ranging from industrial and chemical mixing on small and large scales, to preventing the spread-
ing of pollutants in geophysical flows. The question of what fluid flow maximizes mixing rate,
slows it down, or even steers a quantity of interest towards a desired target distribution draws
great attention from a broad range of scientists and engineers. The current work is aimed at
achieving effective fluid mixing via an internal (distributed) control of the flow dynamics gov-
erned by the incompressible Stokes equations. The transport equation is used to describe the
scalar field, where diffusion is negligible. In this case, transport and mixing are purely driven by
flow advection. This naturally leads to a nonlinear control and optimization problem of a semi-
dissipative system (cf. [8]), which presents new and significant challenges arising from both
analysis and computation.

Our recent work in [28,29,31,34] has applied optimal control design for fluid mixing through
Navier slip boundary controls. Numerical schemes and experiments have been formulated and
conducted in [32] via mixed continuous Galerkin (CG) and discontinuous Galerkin (DG) meth-
ods together with gradient descent. These tools are specific to the treatment of the parabolic and
hyperbolic features of the semi-dissipative systems. However, as it is well-known, to solve the
resulting optimality system, one has to solve the governing system forward in time, coupled with
the adjoint system backward in time together with a nonlinear optimality condition. Furthermore,
the small-scale structures and large gradients of the scalar field will develop during the mixing
process. The mesh size must be sufficiently refined to capture the smallest spatial scales of the
thin filaments that arise in the evolutions of the scalar distribution. Straightforward use of this
theory can result in extremely to prohibitively high computational costs. The objective of the
current work is to establish nonlinear feedback controls and the corresponding feasible compu-
tational methods for scalar transport and mixing. Such feedback laws are aimed at achieving
a balance between the efficiency in real-time implementation and the accuracy in steering the
system behavior.

Constructing an optimal feedback law for a nonlinear system and a useful approximation
thereof are highly challenging problems. One of the well-known approaches is to solve the related
Hamilton-Jacobi-Bellman (HJB) equation, however, it suffers from the curse of dimensionality.
In this work, we consider a feasible synthesis of nonlinear state feedback control via interpolation
of the optimality system resulting from the optimal open-loop control problem. This idea is
motivated by the method of instantaneous control design and essentially leads to a sub-optimal
feedback law. Instantaneous control design is a powerful tool for dealing with the computational
limitations of open-loop control and provides a feedback law for flow control problems at a
sustainable control cost [14,27,24,11,13,54]. The idea behind it is that it successively determines
approximations of the objective functional while marching forward in time. The uncontrolled
dynamical system is first discretized in time. Then, at the selected time slice an instantaneous
version of the cost functional is approximately minimized subject to a stationary system, whose
structure depends on the chosen discretization method. The control so obtained is used to steer the
system to the next time slice, where the procedure is repeated [27]. This method is closely tied to
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receding horizon control (RHC) or model predictive control (MPC) with finite time horizon [21,
45,47,7,38,4,22]. Essentially, instantaneous control is a discrete-in-time and suboptimal feedback
control approach as shown in [12,27,24], and can be interpreted as the stable time discretization
of a closed-loop control law [12,40,27,24,44,25].

Alternatively, if the optimality system from an optimal open-loop control problem is known,
one may derive the feedback laws by first discretizing the optimality system in time and solving
it at the selected time slice, and then marching forward in time successively. In the following, we
will call the former “discretize-then-optimize (DTO)” or direct approach and the latter “optimize-
then-discretize (OTD)” or indirect approach. It is worth stressing that the OTD approach involves
directly discretizing the optimality system over one step time sub-interval, and then carry the
information to the next one. Then the state and the adjoint equations are solved forward and
backward in time, respectively, but just for one time step, so that the adjoint state can be related
to the state explicitly. Consequently, this procedure leads to a sub-optimal continuous feedback
law. Establishing the well-posedness and asymptotic behavior of the nonlinear closed-loop is a
second focus of this work.

On the other hand, it can be shown that different time discretization schemes may result in
feedback laws of different regularity, and hence affect the regularity of flow velocity and the
mixing decay rate in time. Understanding the relation between the regularity of the velocity and
mixing decay rate in time is a prominent problem in the study of mathematical fluid mixing
(cf. [2,9,16,19,23,35,42,48,58]. Loosely speaking, a less regular velocity field may lead to a
faster mixing decay rate. Analyzing the well-posedness and asymptotic behavior of transport
and mixing via feedback control of the flows of different regularity is at the core of this work.
Finally, numerical experiments will be conducted with the aim of comparing the mixing decay
rates in time using different feedback control designs.

The remainder of this paper is organized as follows. In section 2, the mathematical model
and control designs are introduced for fluid mixing via Stokes flows. In section 3, the internal
feedback control is constructed using both DTO and OTD approaches, which lead to the same
feedback law under appropriate discretization schemes. The well-posedness and asymptotic be-
havior of the closed-loop system will be addressed in section 4. Numerical implementation of
our control designs is presented in section 5, where the finite element formulation and nonlin-
ear iterative solvers are used to construct our numerical schemes. Several numerical experiments
are conducted to demonstrate and compare the performances of different feedback laws for fluid
mixing.

2. Mathematical model and control designs

Consider a passive scalar field governed by a transport equation that is advected by a con-
trolled incompressible Stokes flow in an open bounded and connected domain Q2 C Rd, d=2,3,
with a smooth boundary I' := 9€2. The passive scalar has no dynamical effect on the fluid mo-
tion itself. As a result of the one-way coupling between the scalar field and the velocity field,
investigating the optimal control design for the flow-transport system is tied to the study of con-
trol problems for the Stokes equations. The current work mainly addresses an internal feedback
control design for mixing.
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2.1. Internal control for fluid mixing via Stokes flows

In the absence of diffusion, transport and mixing occur due to pure advection. Applying an
internal control means steering the advection by supplying energy to the system in the interior of
the flow domain. For example, stirring a fluid back and forth can generate fluctuating velocities
with respect to the flow barriers leading to transport across them and achieving a better mixing
[55,56]. In order to formulate an internal control problem, let w C Q be a subdomain with a
smooth boundary dw. The controlled system in this case is given by

00 +v-V6 =0,
tv=vAv—Vp+myu, V-v=0, M)
v-nlr=0 and Qvn-DWw)-t+«kv-17)|r =0,

with the initial condition (v(0), 6(0)) = (vg, 8g), and where 0 is the mass distribution or scalar
concentration, v is the velocity of the flow, v > 0 is the viscosity, p is the pressure, m,, is a smooth
function with compact support at @, and u represents the internal control input. Moreover, n and
T denote the outward unit normal and tangential vectors with respect to the domain boundary T,
respectively, and D (v) = (1/2)(Vv+ (V v)T) is the deformation tensor. The friction between the
fluid and the wall is proportional to —v with the positive coefficient «.

Due to incompressibility and no-penetration boundary condition, i.e. v - n|r = 0, it can be
easily verified that any L”-norm of 6 in €2 is conserved, i.e.,

6@lcr =116ollLr, t=0, pel[l, ool 2.1
To quantify mixing, a classical measure is the spatial variance of the scalar concentration [17],
which is related to the L2-norm of the scalar field. However, this measurement fails in the case of
zero diffusivity since it is unable to quantify pure stirring effects: From (2.1) we know that every
L?-norm of 6 is invariant with respect to time. Recently, the mix-norm and negative Sobolev
norms have been adopted to quantify this process based on ergodic theory, which are sensitive to
both stirring and diffusion [43,52,51]. In [43] Mathew et al. first showed the equivalence of the
mix-norm to the H~!'/2-norm on a d-dimensional torus T¢. In fact, any negative Sobolev norm
H™5, for s > 0, can be used as a mix-norm; see [51]. Since a general open and bounded domain
will be considered in this paper, the negative Sobolev norm is replaced by the norm of the dual
space (H* (2))' of HS(Q2) with s > 0, as in [28,29]. Without loss of generality, we use (HY(Q)Y,
following [28,29,31,34], to quantify mixing in this work.

Throughout this paper, we use (-, -) and (-, -) for the L2-inner product in the domain €2 and on
the boundary T, respectively. For the convenience of our discussion, define

ViIQ)={ve H(Q):divv=0, v-nlr =0}, s5>0,
VD) ={geH'): g -nlr=0}, s=0,
where HO(Q) = L2(), and HO(I') = L2(I).
In the sequel, the symbol C denotes a generic positive constant, which is allowed to depend

on the domain as well as on indicated parameters without ambiguity.
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2.2. Preliminary

To proceed, we first rewrite the model (M) as an abstract Cauchy problem

{a,e =—v-V0, 22)

0;v = Av + Bu,

with (v(0), 8(0)) = (vg, 8g), where A = P A with domain
DA)={weV>Q): 2n-D) -t +kv-7)|r =0}
is the Stokes operator associated with the Navier slip boundary conditions, and P: L*(2) —

V,?(Q) is the Leray projector (cf. [49, p. 18, Remark 1.6], [20, p. 37-38]). Note that A is self-
adjoint, strictly negative, and

k
(Av, ¢) = -2(D(v). D(@)) — —{v.¢), Vv.¢¢€ v, (Q).

Here B is the control input operator, which is defined by how control is introduced to the system.
Stirring the fluids at the interior subdomain w C 2 leads to an internal (distributed) control. In
this case, let Uyg = L(0, T; L*(w)) and

B=Pmy: Uyg — L*0,T; VO(Q)).
Moreover, the L2-adjoint operator of B is given by
B*=m,P: L*0,T; VY(Q)) = Usa. (2.3)
As a first step to construct the feedback control law, we consider the following optimal control

problem for the flow-transport system (2.2): For a given T > 0, find a control # minimizing the
cost functional

T
o B 14
J@,0) = S0 (D gy + 5[ 1011y 4 + 7 Il 2.4)
0

subject to (2.2), where o, B > 0 are the state weight parameters that do not vanish simultaneously,
y > 0 is the control weight parameter, and U, is the set of admissible controls. The choice of
U,q is often determined based on the physical properties as well as the need to guarantee the
existence of an optimal solution. To compute the dual norm (H'(2))’, we introduce a higher
regularity counterpart of 6, denoted as 7, and define it by

3
(—A+ D=6 ing, a—"zo onT. (2.5)
n
Then
Inllw2r < C(2, p)IIO|lLr, (2.6)
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for 1 < p < oo. Let A= —A + I with domain D(A) = {n € H*(Q): S—Z =0}, and A = A2,

Then (101l (g1 (@) = A= ;2 = |Anll;2 and the cost functional (2.4) can be rewritten as
8 T
o _ Y
Jw,0) = SIA DI + Ef 1A~01%,dr 4 @.7)
0

Note that controlling of the velocity field gives rise to a bilinear control problem of the scalar
equation due to the coupling via the advective term v - VO. As a result, the optimal control
problem (2.7) subject to (2.2) becomes non-convex, and the uniqueness of the optimal solution
may not hold in general. Given 6y € L°°(£2), the existence of an optimal solution to (2.7) can
be obtained following the same procedure as in [29, Theorem 3.2] for vy € Vno(Q) and u €
L?(0, T; L*(w)). However, the challenge arises in deriving the first order necessary conditions of
optimality. As shown in [28,29], establishing the Gateaux differentiability of the control to state
map u — (6, v) leads to the major obstruction in the design of boundary control. In this case,
one needs sup, o 77 VOl 2 < 0o, which in turn requires 6y € H 1(Q) and the flow velocity to
satisfy

T
f Vvl L dt < o0. (2.8)
0

Consequently, the initial conditions vy and Uy have to be chosen such that this a priori esti-
mate is satisfied, which presents the major obstruction compared to the full dissipative system
(with nonzero diffusivity in the scalar equation). To lower the regularity requirement on the ve-
locity, an approximating control design was used in [28] by first introducing a small diffusivity
eAf, with ¢ > 0, to the transport equation associated with an appropriate boundary condition.
Then, we established a rigorous analysis of convergence of the approximating control problem
to the original one as the diffusivity approaches zero. Employing the same approach, we can
derive the first-order optimality system for solving our current problem (2.7) with the inter-
nal control by setting 6y € L>°(2) N HY(Q), vo € Vndﬂ_HG(Q),d = 2,3, for any € > 0, and
u € Uyg = L*(0, T; L?>(w)). Given y sufficiently large, and following the same procedure as in
[28, Theorem 5.1], we can also obtain the uniqueness of the optimal solution for d = 2.

With these results at our disposal, in the following lemma we provide a formal derivation of
the first-order optimality conditions using the Euler-Lagrange method (the so-called “Pontryagin
maximum principle”; cf. [26, p. 63, 1.6.4], [6, p. 242, 4.1.3] and [53, p. 84, 2.10]). Again, the
rigorous proof via an approximating approach can be found in [28, Theorems 5.2-5.5]. In the
lemma we make use of the following: for a given u € U,q, let (v, 0) be the solution of the state
equations (2.2), then the associated adjoint state (o, w) is defined via the adjoint equations

{—a,p=v.vp+5A29, 2.9)
—d,w=Aw+P(@6Vp), ’

with final time condition
(p(T), w(T)) = (@ A~26(T), 0). (2.10)

131



W. Hu, C.N. Rautenberg and X. Zheng Journal of Differential Equations 374 (2023) 126-153

Lemma 2.1. Assume (8, vo) € (L®(2) N H(Q)) x an (). If i is an optimal control to our
problem of interest, that is, (i, 2 , 0) solves min J (u, 0) subject to (2.2), then it satisfies the opti-
mality condition

N L ..
i =——B*W, (2.11)
14

where B* is given by (2.3) and W is determined by (p, W), the associated adjoint state to (0, 0)
satisfying (2.9)—(2.10). Moreover,

@,0)e L0, T;: L Q)N H"(Q) x C(0,T]; H'(Q) N L*0, T; HX(RQ)), (2.12)
(5, W) € L0, T; L () NHY(Q)) x C([0, T]; H{(Q)) N L*(0, T; H*(R)), (2.13)
and it € C([0, T]; H' (w)) N L3(0, T; H*(w)).

A sketch of the derivation of the optimality conditions is given below. The basic idea is to
convert the constrained optimization problem (2.4) to an unconstrained one (cf. [26, p. 63, 1.6.4],
[6, p. 242, 4.1.3]). Define the Lagrangian

T T
LO,v,u;w, p)=Ju,0)— f(,o, 0:0 +v-VO)dt — /(w, 0:v — (Av + Bu))dt, (2.14)
0 0

where by Stokes formula we have

(p,v~V9)):(,o,V~(v9)):/p((v9)-n)dx—/Vp-(v@)dx:—(v~Vp,9).(2.15)
r Q

Applying integration by parts to the last two terms of the right hand side of (2.14) together with
(2.15) yields

T
LO,v,u;w, p)=J(u,0) —[(p(T),0(T)) — (o, o) + /(—&p —v-Vp,0)dr]
0

T

— [(w(T), v(T)) — (wo, vo) + /(—8,w — Aw,v) — (B*w, u) dt].
0

Moreover, due to the divergence-free condition of velocity, we have
(v-Vp,0)=,0Vp)=(v,P(OVp)). (2.16)

The adjoint state (p, w) is chosen such that the first derivatives of £ with respect to 6 and v
vanish, i.e. % =0 and % = 0, which lead to (2.9). The final time condition (2.10) is derived
by setting #(LT) = 0. Finally, the equation % = 0 yields the desired optimality condition (2.11).
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The detailed explanation on a Lagrangian-based view of the adjoint approach can be found in
[26, p. 63, 1.6.4]. The optimality system (2.9)—(2.11) can be also obtained using a variational
inequality as in [29, Theorem 4.1] and [28, Theorem 5.3].

Remark 2.2. The well-posedness and regularity of the solution (é, v) to (2.2) for (8, vo) €
(L®(Q) N H'(Q)) x VI(Q) and any Bii € L*(0, T; V2(2)) can be established following sim-
ilar approaches as in [36, Theorem 4.1] and [30, Theorem 1.1] for the Boussinesq system with
zero diffusivity. In fact, since we consider Stokes flow in the current work, the analysis is less
involved compared to the Navier-Stokes case addressed in the references. Similarly we could
claim (2.13) for the adjoint problem. The regularity of the optimal control & holds immediately
as B*: L%(0, T; V)(R)) — U,g is a bounded operator given by (2.3).

3. Feedback control design

In this section, we discuss the feedback control design for system (2.2). We first utilize the
idea of instantaneous control, which is a DTO (discretize-then-optimize) approach, and then
compare it with the OTD (optimize-then-discretize) approach. The former, as mentioned earlier,
is to first discretize the uncontrolled state equations in time and conduct the optimization proce-
dure over discrete time steps, and then progress recursively in time (cf. [24,27]). In contrast, the
OTD approach is to directly discretize the optimality system (2.9)—(2.11) on one step time sub-
interval, and then carry the information for the next time sub-interval. Finally, we observe that
under appropriate time discretization schemes, these two approaches lead to the same nonlinear
continuous feedback law. In the following discussion, we set« =0 and f = 1.

3.1. Discretize-then-optimize approach

With the understanding of the original optimal control of system (2.2), we now describe the
moving horizon approach, which is at the core of the instantaneous control design. There are
various ways to discretize the control system (2.2) in time. To focus on our discussion, we employ
two Euler’s methods and compare the resulting feedback laws.

3.1.1. Semi-implicit Euler’s method I
Consider a uniform partition of [0, T] and let h = % for N e N and t; =ih for i =
0,1,... N — 1. Applying the semi-implicit Euler’s method to system (2.2) in time ¢ gives

9i+] =9 — hvi+1 . V@i,

(I — hA)t =i + Buit!, (3.1)

9i+] _91' — _hvi+l . V@i,
{ vi+1 _ vi :hAUH_l 4 Bui—l—l

that is, {

where 0/ = 0(-,#;), v/ =v(-, ;), and u’ = u(-, ;). The semi-implicit scheme is applied to the
advection term v - VO and the implicit scheme is applied to Av. The instantaneous version of the
minimization problem over the subinterval I; = [¢;, t;+1] becomes

o . 1 . .
min Jl(ul“,@l“):5||A*19’+1||iz+%||u‘“||%,i, i=0,1,...,N—1,

subject to (3.1), where U; = L*(w).
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Let (p'*!, w'*!) be the adjoint state of (9’*!, vi*+1). Define the Lagrangian

LIyt il pitl ity = %(A—29i+1’9i+1) i %(ui+1’ui+l)
— (0 — (0 — hoit! . veY)
— @ (I = AT — (0 + Bu'T)). 3.2)
Rewriting the right hand side of (3.2) with the help of (2.16), we get
L@+, yitl i+l pitl ity = %(A729i+179i+1) + %(Mi+l,ui+l)
— [0 = (o1 6) — L POV )]

— [(( = hAYW Wy — (o) — (B W]

Setting ag,—ﬁll =0 and adv%l =0, we obtain the adjoint system

pit! = A—%9i+l _ ni+.l7 | (33)
(I —hAw T =hP @O Vpith, '
where n't! = 5(-, t;41). Setting 63,% =0 yields the optimality condition
i+1 |
't =——B*w'". (3.4
14

The optimality system (3.1), (3.3), and (3.4) admits a unique solution due to the quadratic cost
functional and the linearity and uniqueness of solutions to (3.1). Since there are several layers of
couplings in the optimality conditions, if one follows the recursive procedures as in (cf. [24,27])
to solve u'*! explicitly in terms of (6'*!, vi*!) and 5'*!, one ends up with a highly nonlinear
feedback law. In what follows, we adopt a different approach to overcome this obstacle.

First, from the adjoint system (3.3) we observe that

Wl =h(I —hA)'PO' VT =h(I — hA) PO VT,
Thus, by the optimality condition (3.4), we obtain
. 1 , .
Wt = _—ZB*h(I —hA)~'P@ vy . (3.5)
Y

As aresult, the governing system (3.1) together with (3.5) is the semi-implicit time discretization
of the closed-loop dynamical system

30 =—v-V6,
(3.6)

dv=Av— gBB*(I —hA) POV,

with initial condition (6(0), v(0)) = (6, vo), where 1 is given by (2.5). Since the Stokes operator
A is strictly negative, I — hA is strictly positive, and hence invertible for any & > 0.
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3.1.2. Semi-explicit Euler’s method II
If using an explicit scheme to discretize Av in the velocity equation in time, we have

9i+l =0i _ hvi+] . V@i,

9i+l _ei z_hvi+1 ~V9i, (3 7)
Vit = (I + hA)v' + Bult!, '

vit! — i = hAv 4 Bult! that is, {
Again by the Euler-Lagrange method, we can easily derive the adjoint system and the optimality
condition as follows

pitl = A=2giH! = i+l
{ wi+1 :hP(in,Oi+]), (38)
and
i+1 1 * o i+1
't =——BTw'T". 3.9
14

It is clear that (3.8)—(3.9) are the semi-implicit time discretization of the closed-loop dynamical
system given by
6=—v-V0, 310
i;=Au—§BB*IP>(9vn), (3.10)

with initial condition (6 (0), v(0)) = (g, vg).

Compared to the closed-loop (3.6), the control input becomes less regular and hence the ve-
locity of (3.10) has a lower regularity, which however, provides a better mixing effect as shown
in our numerical experiments in Section 5.

3.2. Optimize-then-discretize approach

Since the optimality conditions are at our disposal, it is natural to consider a direct approxi-
mation to obtain the feedback law. To be more specific, we first discretize the optimality system
(2.2) and (2.9)—(2.11) restricted to one time subinterval I; = [#;,+1],i =0,1,..., N — 1, and
then carry the information for the next time subinterval, where the state and the adjoint equations
will be formulated forward and backward in time, respectively. This is done only for one step, so
that the adjoint state can be related to the state explicitly.

Recall that (0, v) and (p, w) are continuous in time according to (2.12)—(2.13). We now let
@ ) = OC. 1)1, v, 1)1, (. w) = (pC. 1)1 w(, 1)1, and ul = u(-, 17)] ;. denote the
state, adjoint state, and optimal control on each I;, respectively. We apply a semi-implicit Euler’s
method with the same step size 4 in time as in section 3.1 to discretize the optimality conditions
(2.2) and (2.9)—(2.11) on ;. This procedure leads to

) 9i+1 — ei _ hvi+1 . v@i’
State Equatlons{ Vit = (I + hA)W + Bui ™!,

o ) _(pi-H _ ,Oi) :hvi-i-l ~V,0i+1 +h7}i+1
Adjoint Equations { —(w't —w) =hAw' + hP(©O'Vp'), (3.11)
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where
(P wth =(0,0) (3.12)

and n't! = A=20'*+!, The optimality condition is given by

. 1 ,
Wt = —B*wi, i=1,2,...,N. (3.13)
14

Applying the final time condition (3.12) to (3.11) follows

pi =h7]i+1,
{wi=h(1—hA)‘]P>(9fvpf). (3.14)

With the help of (3.14), (3.13) becomes

. h S h2 L
uitl :;B*(l —hA)" POV = 719*(1 —hA)" PO V.

Consequently, this procedure gives rise to a system which is the semi-implicit time discretization
of the closed-loop dynamical system (3.6).

On the other hand, if we apply an implicit scheme for discretizing Aw(-, #)|; in the adjoint
velocity equation in (2.9), then we obtain

- [T = o) = RV g
Adjoint Equatlons{ —wi T — i) = hAwi ! +hP(6ini),

and hence by (3.12) we get

IOi — h?’]H_l,
{wi =hP©O'Vp').

Thus,

. h? .
Ml+] — 7B*P(lenl+l)

This results in the semi-implicit time discretization of the same closed-loop dynamical system
(3.10).

Remark 3.1. Both DTO and OTD designs allow for an interpretation as a nonlinear discrete-
in-time sub-optimal closed-loop control method. Under appropriate discretization schemes, they
turn out to be the time discretization of certain continuous closed-loop controller. We are partic-
ularly interested in the long-time behavior of the corresponding closed-loop system. For such a
semi-dissipative system, however, we can not simply set T = oo in the cost functional (2.7) in the
first place, since [|6|g1(q)y may not even converge to zero as T — o0o. A discount factor e &t
for some & > 0 may need to be taken into account in the second term of (P) if setting T = oo.
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4. Well-posedness and asymptotic behavior of the nonlinear closed-loop systems

In this section, we address the well-posedness and asymptotic behavior of the nonlinear
closed-loop systems (3.6) and (3.10) incorporated with feedback laws of different regularity.
In the current work, we mainly investigate the internal control design that is applied to the en-
tire domain, that is, w = Q2 and x, = I, and hence B = IP. The main results are stated in the
following theorems.

Theorem 4.1. For (6y, vy) € (L*°(2) N H! () x D(A), where Q C R4, d =2, 3, there exists
a unique solution (0, v) to the closed-loop system (3.0) satisfying

6, v) € L¥(O0, T; L(Q) N H' () x L0, T; V(@) N L*0, T; V,} (Q)
forany T > 0. Moreover, (0, v) obeys the following asymptotic behavior

vl =0, [IVollg2 =0, [Avllp2 =0, I vlz2 =0,

”9"(1‘11(9))’ —co ast— oo, where

4
co < \/nAnoniz + vl + v @IDvol 7, + kllvo - Tl ),
and

h
lull2 = — ;(1 — hA)7]P(0Vn)||Lz —-0 as t— o0, 4.1

which indicates
10Vn —Vall g2y —> 0 as t— o0, “4.2)
for some q € L*().

Since the feedback law for the closed-loop system (3.10) has a much lower regularity com-
pared to (3.6), our discussion for (3.6) only focuses on d = 2.

Theorem 4.2. For (6, vo) € (L®(Q2) N HY(Q)) x D(A), where 2 C R2, there exists a unique
solution (0, v) to the closed-loop system (3.10) satisfying

(0,v) € L0, T; L®(Q2) N HY(Q)) x L®0, T; VZ(Q)NL*0,T; V(Q)), (4.3)
forany T > 0. Moreover,

lvll2 =0, IIVollg2 =0, [|8:vll2 — 0, (4.4)

Y
161l g1y — Co as t— oo, where Co<\/I|Anolliz+ﬁllvolliz, (4.5)

and the feedback law satisfies

137



W. Hu, C.N. Rautenberg and X. Zheng Journal of Differential Equations 374 (2023) 126-153
h

which indicates

for some q € L%().

The critical step in the proofs of Theorems 4.1-4.2 lies in establishing the global-in-time a
priori bound for (v, An). The main difficulties are due to the lack of dissipation in the transport
equation and the nonlinear couplings involved. To tackle these challenges, we first establish the
decay properties of the velocity, which in turn help obtain the estimates on An and its long-time
behavior. The uniqueness of solution to the closed-loop system (3.6) for d = 2, 3, is straight-
forward to prove once velocity satisfies v € L%, T; Vn3 (2)) because the estimate (2.8) needs
to hold. However, for the closed-loop system (3.6), the lower regularity of the feedback law
demands a more delicate analysis in order to establish (4.3) even for d = 2.

To start with, we introduce the following lemma which will be often used in our discussion.

Its proof is elementary and can be found in [39, Lemma 2.3] (also see [18, Lemma 3.1]).

Lemma 4.3. Let f = f(t) with t € [0, 00) be a nonnegative continuous function, and suppose
that f is integrable on (0, ), i.e.,

/f(t)dt < 0.
0

Assume further that for any € > 0, there is § > 0 such that for any 0 <t; < tp witht, — t; <6,

either f() < f(t1) or f(t)=ft1) and f()— f(t) <e.

Then

f@&)—0 as t— oo.

Proof of Theorem 4.1. The critical ingredient in the proof is to establish the global-in-time a
priori bound for (0, v) in the Bochner-Sobolev space

6 e L®0,T; L°(QNHY(Q), velL>®©0,T;V(Q)NLX0,T; V> (Q).

Once the global bound is established, the existence of solutions then follows from standard
procedures such as the Galerkin approximation scheme. We shall present our arguments in the
following steps.

Step 1. We show that ||[v]|;2 — 0 as t — oo. To this end, we first establish the necessary a
priori bounds. Applying %(1 — hA) to the velocity equation in (3.6) we get
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v d(l — hA)v

T (1 —hA)Av —P(OVn). 4.8)

Now taking the inner product of (4.8) with v yields

v dlviiz
2h  dt

14
+ Z(ZIIDUII 2 kv flle(r)) +7IlAv[7, = —(P©OV), v). 4.9)

y d 2 2
EE@IIDUHH +kllv- Tl )

Next by taking the inner produce of the transport equation in (3.6) with 7 it follows that

1d]Anl3,
ET:—/(v~V0)77dx='/‘v~(9V17)dx=(1),]P’(9Vn)). 4.10)

Q
Adding (4.9) to (4.10) we have
1dlAnlG, y dlvlg,
2 dt 2h  dt
+ L @IDvI2, +kllv - T, + Y1 AV]Z, =0 4.11)
h L2 LZ(F) V L2_ ) .

y d
5 77 QDI + kv Tl )

which gives

IIAnlle+ ||v||iz+y(2||Dv||iz+k||v-r||iz(r)>
t

t
14
25/(2||Dv||iz+k||v-r||iz)da+2y/||Av||izda

N

= 1A0©) 122 + IO 122 + 7 QIDVO I +kI6) - Tl @12)

(4.12) implies that Y (t) = ||A77||%2 + %Ilvlli2 + y(2||]D)v|| + kv - 7|2
function of ¢ € [0, co) and

12 (F)) is a decreasing

14
0 <Y =Yo=lAnolz. + - lvolizs + ¥ QIDwoll, +kllvo - Tlizar)-  (13)

As a result, there exists ¢y > 0 such that

Y(t) = ¢y < Yp. (4.14)
Note that (4.11) also implies
o0
Y oIDvl2, +k 2 Av|?,dt <Y, 4.15
ﬁ vlipe +klv-tlip2 ) + vIAvli 2 di < Yo. (4.15)
0
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Using the Poincaré inequality stating that ||v||;> < C||Av||;2 for v € D(A) and some constant
C > 0, we immediately obtain

lv]7, € L'(0, 00). (4.16)

On the other hand, a direct L?-estimate of the velocity equation in (3.6) gives

1d(vl7, ) ) h "
T AP kT < 1T = AT POV ol
h h2 2 2 2
SC;H@ollmIIanlelleILzSCWIIOOIILooII90||Lz+IIDvlle,
from which it follows that
dlvl?, h?

Jr 2DVl + 2600 Ty < €5 Wl 601l

Thus for any 0 < s <t < oo, integrating in time yields

hZ
@72 — v, < c;neouiooueonim —sl. (4.17)

Combining (4.17) with (4.16) and Lemma 4.3, we obtain

lvll;2—0 as t— oo. (4.18)

Step 2. We show that [|[Dvl[;2 — 0 as t — oo. Applying an H'-estimate of the velocity
equation in (3.6), we get

1d h _
M@HDvniz +kllv-Tlag) + 1AV, < SN —hd) POV 2] Av] 2
h h? ) , 1 )
< C ol Va2 Avl 2 < € 25 Mol ol + Z1 AV,

from which we observe
2
izﬂ)zk 2 A2<Ch—9202
g IV kv - Tl ) + IAVIT: < O 6ol 6o 7.
Again, integrating in time yields
2Du)I3 5 +klv@) - T3a 0 — CIDv(s) 2, +klv(s) - Tl )
12 L2(I) L2 LX(T)
2

h
SCﬁH@oII%mII@oIIile—SI, (4.19)

where 0 <s <t < oo. With the help of (4.15) and Lemma 4.3 we obtain that
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IDvll;2—0 and [v-tl2qp)—>0 as 7— oo. (4.20)

As aresult of (4.18), (4.20) and (4.14), we can conclude that

||9||(HI(Q))/ = ||An||L2 e ()] as t — O0.

Step 3. We further prove that ||Av| ;2 — 0 as t — oco. Taking the inner product of (4.8) with
—Av leads to

ré Y- —Av)— —
o G U = A, —Av) = S (I = hA)Av, —Av) = (P(OVn), —Av),

which implies that

yld
___(2||DU||L2 +k||l} T”LZ(I‘)) +

T ||Av||L2 ||Av||iz

2 dt
+y QDAY 2, + kIl (Av) ranm)

= (P(Vn), Av) < Cl16ol1% II90|IL2 + IIAvlle,
and thus

(2||DU||L2+k||U T||L2(r))‘|'1/ lAvIZ + Zjavi2,
+2y 2ID(AV)[I7, + kI (AV) - 71175 ) < CllbolI < 160117 4.21)

This indicates that

=

2IDv@72 + kllv(@) - Tli72p) + ¥ 1AV 175

14
— [F @DV + kI - Tl ) + ¥ 1AV
< Cllfoll7< 160131t — 5.

Again by (4.15) and Lemma 4.3 we have
Y oD@ 12, + ko) - l2s0) + vl Av@)]2, — 0, as 1 — oo
h L2 LZ(F) 7/ L2 ) )

so that ||Av||;2 — 0 as t — oo. Furthermore, (4.21) also implies that

T

f (=AY 2|3, dt = / 2D (AV) I35 + kIl (AV) - Tl oy di < Clh, v, 60, w0, T) (4.22)
0

forany 0 < T < oo.
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As we show next, with the help of (4.22), it is direct to obtain that
0eL>®0,T; H (Q)).
In fact, applying V to the transport equation in (3.6) and taking the inner product with V@ yield

1d 1
EEHV@H%Z =—f3j(viai9)aj9dx= —/ajv,-a,-eajedx — E/Uﬁ),-(ajeaj@)dx
Q Q Q

1 1
:—/8jvl~8,~98.,9dx+E/aiviajeajedx—E/U,-niajeajedx
Q Q r

—— [aua60,0dx < 10l 1901
Q

By virtue of (4.22), we have
IVO12, < IVl 2,eho 1714t < 9y |12,e¢ o M3 4 < C(h, y, 69, 00, T),  (423)
where in the second inequality we have used Agmon’s inequality (cf. [50, (2.21), p. 11]) that

VullLe < cllvllgi+apre, d =2,3,

for some € > 0,
Step 4. We establish that ||9,v|| — 0 as t — oco. Applying 0; to the velocity equation in (3.6)
and making use of the transport equation yield

h
dv=Adv——( —hA)"'P3,6Vn)

%
h -1

= Adv— —(I — hA)"'P(3,0Vn+600,Vn)
%
h —1

=Adv——( —hA) " '"P((—=v-VO)Vn+60,Vn). (4.24)
%

Taking the L2-inner product of (4.24) with d;v gives

1dlov]?,

st 20D @ )17 + kN @v) - Tl 2,

h
= _; ((—v -VOVn+600,Vn, P — hA)"azv)

= —g(/(—v SO (Vn- (I —hA) ') dx +fea,vn (I - hA)_IE)tvdx)
Q Q
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h h
=—— /(v@) V(Vn-(I—hA) " '9v)dx — —/wam (I —hA) '9vdx)

vy %
=L+ Db, (4.25)

where
h -1
I < ;”U”LZ”Q”LO"”V(VU'(I —hA) )| 2

h _
< ;uanz||e||Loo<||Wn||L4||(1 —hA) ' Bvll 4
+ IVl VU —hA) " 8,0l 2) (4.26)

h _
= C;Ilvlle||9||L<>°(||9||L4||3:v||L2 + IVl VU = hA) ™ dvll2)
h
=< C;”U”LZ||90||L°°(||00”L4”atv”Lz + 6ol 19; vl 2) 4.27)

h
=< C;I|v||L2||90||L°° 6ol 24110 vl 2,

2

h
SCﬁllvllizll%llim||90||i4+ IDdv|?,. (4.28)

1|
4
From (4.26) to (4.27) we used Sobolev embedding, (2.1) and (2.6), that is, ||Vn|lpe <

CIVVnllLr =Cll@|lLr =Cll0o|lLr ford <r < o0.
To estimate I, we first recall that n = A~19, and hence

dn=09A"10=—-A""(v Vo).

Therefore,
__r e -l
L = OV(—A " (v-VO))-(I —hA)" 'd,v)dx
14
h -1
EC;HQHLWHA (- VOl 2l10:vll 2
h
< C; 100l o< llv - VOl g1y 10Vl L2, (4.29)
where
| [ov-VOpdx| | [oOv-Vodx|
lv- VOl (miqy= sup /Q— = su fg—
0£peH (Q) ||¢||H1 0#£peH () ||¢||H1
ClOllLellvll 2@l g
< sup L= < Clollzeollvll e
0£pe H () Pl £
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Finally, we get

h h? 1
L< c;ueon%oo||v||Lz||a,v||Lz < Cﬁ”‘%”iw”””iz + 7 ID3 vl (4.30)
Combining (4.25) with (4.28)—(4.30) follows
dd,v]?,
— o H DO + kI @) Tl
<ch—2||9 17 (160l + 16017 D 110117 4.31)
= )/2 01l Lo VP01 oo 0ll 74 12° .

With the help of (4.15)—(4.16), we obtain

t
19,0117 +/2||D(azv>||iz +kll @) - Tl dT < C(h, y, 60, v0),
0

which by Poincaré and Korn’s inequalities yields
oo o0
/ l;vl17,dr < C/ D37, dr < C(h, y. 60, vo).
0 0

Moreover, by (4.31) and the uniform boundedness of ||v ||i2 in time shown in (4.13), we have for
any 0 <s <t < oo that

t
hZ
B vN172 = 19v()17, < C?H@oll%w(ll%lliw + ||eo||i4)/ lvll3,dt
N

=< C(hs Y, 907 U0)|t _S|.

In light of Lemma 4.3, we conclude that ||8,v(t)||i2 — 0 as t — oo. Consequently, it follows
from the velocity equation in (3.6) that

h _ ov
|I;(1 —hA) POVl < IIEIILZ + [[Av]l 2 — 0,

and hence

IPOVD2@y =0 as t—o0, ie.

”9V7] - Vq”(HZ(Q))/ —0 as t— o0,
for some ¢ € L2(2), which establishes (4.1 )—(4.2).
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Step 5. Uniqueness: Finally, to show the uniqueness of the solution, we assume that there are
two pairs of solutions to system (3.6), denoted by (6;,v;),i =1,2.Let 9y =01 — 6>, V = v — v,
and H =11 — n2. Then (9, V) satisfies

av

S, TV V0 V=0, 9(0)=0. 4.32)
v
S =AV - —(1 —hA) NP @OV +6,VH)) (4.33)

with V(x,0) =0 and H (x, 0) = 0. Multiplying (4.33) by I — h A follows

(I —hAV

5 = (I —hA)AV — %(]P’(ﬁvm + 6, VH)). (4.34)

Taking the inner produce of (4.32) with %, we obtain

1d||19||

2
3 — f(V Voo dx < ||VIL=lIVOi 219l 2

= L JAVIE, + a2, (4.35)
where M = sup,¢(o 77 [IVO1 ;2. Taking the inner product of (4.34) with V yields

14V,

hd
2 dt 2
<

QIDVIIZ: +kIV - tl3a ) + 20DV IZ2 +KIV - Tl7a 0y +AIAVI

dt
14
7 U2Vl V2 + 10212 IV H 1 21V ]| .2)

y 1
< ch2 191221160013 + 5||DV||§2 +C ozl 19172 + S 1DV,

for d < r < o0o. Therefore,

Ld|[Vz2
2 dt

+ ——<2||DV||L2 IV Tl ) + IDVIZ, + KV - 2l2a ) +RIAV2,
=cls ||l9||Lz(||90||L» + 160 113)- (4.36)

Combining (4.36) with (4.35) yields

14 VI3, Lk
2 dt

141913,

d
ZQIDV I +KIV - Tl ) + 5 —

- ||ID>V||iz +EIV Tl + 5||AV||iz <C(y.h. M. 61912,
which implies
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d
T IVIz2 +hQIDV T, + IV - Tl ) + 19172)

< Cly,h, M, 00)(IVII72 +hQIDVIIZ: + IV - Tl 7o) + 121175).

By the Gronwall inequality, it follows ||V || 2 + 22DV |7, +k[|V - 7|13, o) TI? I, =0, which
indicates V =0 and ¢ = 0. The uniqueness of the solution is thus obtained which completes the
proof. 0O

Proof of Theorem 4.2. Due to the low regularity of the feedback law u = —%]P’(@Vn) for the
velocity equation in the closed-loop system (3.10), it is not straightforward to obtain

T
/Ilvllm < 00,
0

as in the proof of Theorem 4.1. In fact, it is technically challenging to establish such an a prior
estimate and the global-in-time boundedness of V6. As shown in our previous work [33, The-
orem 2.1 ] (see also [18, Theorem 1.1]) and [36, Section 3]), it requires a delicate analysis by
combining the following Brezis-Gallouet inequality (cf. [10] and [33, (2.41)]) together with a
new nonlinear Gronwall inequality [33, Lemma 2.3] to get || V6| ;2 bounded in a 2D domain:

1/2
||(—A)3/2v||§2> /

Vvl < C|lAv];2 | 1 +1og
Ml A7,

where A1 > 0 is the lowest eigenvalue of —A. For the detailed proof of (0, v) satisfying (4.3),
the reader is referred to the aforementioned references. Further discussion on the growth rate of
VO] ;2 in time can be found in [36, Theorem 3.2] and [37, Theorem 4.1].

The statements (4.4)—(4.7) can be obtained following the similar fashion as in Theorem 4.1.
To establish the global-in-time a priori bound for (v, An) and show that

lvll;j2—0 as ¢— oo,
we take the inner product of the velocity equation in (3.10) with %v and add the resulting equa-

tion to (4.10). The results follow easily by using the same approaches as in Step I of Theorem 4.1.
The arguments for showing

IVvll;2—0 and |0;v]| >0 as ¢— oo, 4.37)

also utilize the similar procedures as in Step 2 and Step 3 of Theorem 4.1. The details are omitted
here. The uniform boundedness of ||Av||;2 for ¢ € [0, oo) follows immediately from

h
lAvliz2 < ll0:vli2 + ”;P(QVW)HLZ = C(h, .60, vo).

However, because of the low regularity of the feedback law, one can not claim that ||Av|[;2 — 0
as t — 00, as in Theorem 4.1.
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Consequently, combining the velocity equation in (3.10) with (4.37) follows

h _ _
||;(—A) 2P@Vm)ll2 < 1(=A) Y280l 12 + 1 (= A) 0] 12
<C0vll2 + IVull;2) = 0,

which verifies (4.6), and hence (4.7) holds for some ¢ € L2(2).
Lastly, the proof of uniqueness can be obtained by using the same techniques as in Step 5 of
Theorem 4.1. This completes the proof. O

In the next section, numerical experiments are conducted to demonstrate and validate our
ideas and designs for closed-loop systems (3.6) and (3.10).

5. Numerical implementation

One of the major obstacles encountered in numerical schemes is due to mass conservation of
the scalar transport in incompressible flows. Specifically, the approximate velocity being diver-
gence free is critical to preserving the accuracy, stability, and global conservation properties of
the scalar. In this work, we employ mixed continuous Galerkin (CG) and discontinuous Galerkin
(DG) methods to solve the closed-loop systems (3.6) and (3.10) as in our recent work [32], and
compare the effectiveness of the feedback laws of different regularity.

Without loss of generality, let viscosity be v = 1. With internal control B = P, we can rewrite
the closed-loop system (3.6) resulting from the semi-implicit Euler’s Method I succinctly as

6, =—v- Vo, 5.1
vw=Av—Vp+u, V.-v=0. 5.2)
0
(I—Am=0, —|p=0, (5.3)
on
h
—hAu+Vg+u=——60Vn, V.-u=0 5.4
14

where g € L?(2) stands for the pressure and & and y are fixed parameters. The algorithm for
solving (5.1)—(5.4) is described below.

1. Assign the initial value of #° and v° at # = 0. Set the time step Ar.
2. Attime step f, = nAt, suppose 0" and v” are known.

(a) Solve n™" from (5.3);

(b) Solve u" from (5.4) with " and n";

(c) Solve v" from (5.2) with u";

(d) Solve 8"*! from (5.1);

(e) Letn =n+ 1 and go back to (a).

To solve the above saddle point problems for two pairs, (u, g) in (5.4) and (v, p) in (5.2), an iter-
ative projection BDF2/Taylor-Hood Finite element method introduced in [32] is used. A standard
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Runge-Kutta Discontinuous Galerkin (RKDG) scheme [15], 3rd order accurate in time and piece-
wise quadratic in space, is used to solve the scalar 6 governed by the transport equation (5.1).
The detailed discussion regarding the numerical schemes can be found in [32].

Since the only difference between the closed-loop systems (3.6) and (3.10) is that the control
u of (3.10) satisfies the following equations

h
u+Vg=——60Vn, V-u=0, (5.5)
14

to solve (3.10) it suffices to replace 2(b) by the solution of u from (5.5). To this end, we first
apply divergence to (5.5) and then solve the resulting elliptic problem for g. After g is obtained,
we solve u from (5.5) directly.

5.1. Numerical results

In our numerical experiments, we let the boundary friction x = 0.5. Here we choose a
relatively small control parameter y = le-6, as large control weight turns out to have weak
mixing effects as shown in [32]. The initial distribution of the scalar field is given by 8 (x, y) =
tanh(y/0.1), which is shown in Fig. 1[a]. For each feedback control design, we choose three
values of h. Specifically, for the closed-loop system (3.6), we set = = 0.01,0.1, 1. For the
closed-loop system (3.10), we set h = 0.01, 0.05, 0.1. The spacial and temporal step sizes for
the simulations are taken as 0.0125 and 0.01, respectively.

The evolution of the system state of different norms is plotted in Fig. 1. It is observed that
all the norms decay in power rates, approximately. Especially, the velocity norms ||v||;2 and
[IVv|| 2 of both systems, shown in Fig. 1 [b]-[c], decay to zero at the rates of t~15 and 71,
respectively. The mixing-norm [[0]| g1 (), of both systems, shown in Fig. | [d], converges at
the rates of 1 =04 and 1 =09 respectively. To compare the feedback laws, we note that the second
control law for the closed-loops system (3.10) only weakly decays to 0. Numerically, as we
can see in Fig. 1 [e]-[f], both |P(6Vn)l|l;2 and |lu| ;2> converge. These numerical experiments
confirm the convergence results of Theorem 4.1 and 4.2 and further suggest that the rates of
convergence obey power rules.

The time snapshots of scalar evolutions are shown in Fig. 2 and Fig. 3 for closed-loop systems
(3.6) and (3.10), respectively. It is clear that the latter demonstrates much better mixing results.
This is also reflected in the comparison of the decay rates of the mix-norm [|0|| g1 gy in time
(see Fig. 1[d]). From Fig. 3, we can see that the feedback control of system (3.10) produces faster
and thinner foldings than those of system (3.6). This is expected because the flow induced by the
second feedback law is much more irregular over the entire domain, which enhances chaotic
mixing (cf. [3,46,23,41,42,57,1,5]), and the control input does not necessarily vanish. However,
the spatial scale of the thin filaments generated in mixing tends to approach infinitely small over
time. The mesh size must be sufficiently small to capture the smallest spatial scales of the thin
filaments for longer time simulations, which poses a significant difficulty to numerical methods.
In addition, from Figs. 2 and 3 we also notice that a better homogenization of the mixing process
is achieved when increasing the parameter 4 for both closed-loop systems.
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Fig. 1. [a]: Initial density distribution. [b]-[f]: Evolution of norms in time.

6. Conclusions

The current work considers a sub-optimal feedback control design for a fluid mixing problem
governed by a flow-transport system. This essentially leads to a problem of nonlinear feedback
control of a semi-dissipative system. The feedback law is established utilizing the ideas of in-
stantaneous control method and a direct approximation of the optimality system derived from an
optimal control problem. Rigorous analysis is presented to show the asymptotic behavior of the
nonlinear closed-loop system subject to the feedback laws of different regularity. Numerical ex-
periments show that when the flow has less regularity, the better mixing can be possibly achieved.
Moreover, it is observed that the mixing decay rates of the closed-loop systems in terms of the
(HY(2))'-norm obey power rule in time.

However, a rigorous proof of optimality of such a nonlinear feedback law is still an open
problem. Understanding how exactly the mechanism of the nonlinear feedback law plays in the
enhancement of homogenization of a general scalar field, especially, its relation to the parameter
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Fig. 2. Density snapshots of semi-implicit Euler method I. First row: & = 0.01. Second row: & = 0.1. Third row: h = 1.
All the time frames are att =1, 3, 5,7, 10.

Fig. 3. Density snapshots of semi-implicit Euler method II. First row: & = 0.01. Second row: # = 0.05. Third row:
h =0.1. All the time frames are at t =1, 3, 5, 7, 10.

h and the control weight y requires a more in-depth analysis. Also, whether it is possible to
establish the global-in-time a priori bound for (v, An) by using the internal control only exerted
on a subdomain or boundary control will need a further investigation. These topics present new
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and significant challenges and call for innovative analytical techniques from control theory and
nonlinear analysis of semi-dissipative systems.
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