
Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455

0

a

b

c

c
w

1

o

h
R

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Numerical algorithms and simulations of boundary dynamic control
for optimal mixing in unsteady Stokes flows
Xiaoming Zheng a,∗, Weiwei Hu b, Jiahong Wu c

Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, USA
Department of Mathematics, University of Georgia, Athens, GA 30602, USA
Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA

A R T I C L E I N F O

Keywords:
Optimal mixing
Boundary control
Unsteady Stokes flow
Gâteaux derivative
Steepest descent method
Conjugate gradient method

A B S T R A C T

This work develops an efficient and accurate optimization algorithm to study the optimal
mixing problem driven by boundary control of unsteady Stokes flows, based on the theoretical
foundation laid by Hu and Wu in a series of work. The scalar being mixed is purely advected
by the flow and the control is a force exerted tangentially on the domain boundary through
the Navier slip conditions. The control design has potential applications in many industrial
processes such as rotating wall driven mixing, mircomixers with acoustic waves, and artificial
cilia mixing.

The numerical algorithms have high complexity, high accuracy demand, and high computing
expense, due to the multiscale nature of the mixing problem and the optimization requirements.
A crucial problem is the computation of the Gâteaux derivative of the cost functional. To this
end, a hybrid approach based on variational formula and finite difference is built with high
accuracy and efficiency to treat various types of control input functions. We have experimented
with various optimization algorithms including the steepest descent algorithm, the conjugate
gradient method and two line search options (backtracking and exact line search). We are able
to identify and implement the best combinations.

The numerical simulations show that the mixing efficacy is limited when only one single
type of control is applied, but can be enhanced when more diverse control types and more
time segmentation are utilized. The mix-norm in the optimal mixings decays exponentially. The
numerical study in this work demonstrates that boundary control alone could be an effective
strategy for mixing in incompressible flows.

1. Introduction

Transport and mixing in fluids are of fundamental importance in many processes in nature and industry. A long-lasting and
entral problem is to design an optimal control that enhances transport and mixing or steers a scalar field to a desired distribution,
hich has drawn great attention to researchers in many fields.

.1. Motivations and applications

Boundary control, by implementing energy sources through the boundary of the mixer, has been observed or used individually
r synergistically with other approaches for transport and mixing in many scenarios. One straightforward boundary control protocol

∗ Corresponding author.
E-mail addresses: zheng1x@cmich.edu (X. Zheng), Weiwei.Hu@uga.edu (W. Hu), jwu29@nd.edu (J. Wu).
045-7825/© 2023 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.cma.2023.116455
eceived 8 June 2023; Received in revised form 12 September 2023; Accepted 13 September 2023

https://www.elsevier.com/locate/cma
http://www.elsevier.com/locate/cma
mailto:zheng1x@cmich.edu
mailto:Weiwei.Hu@uga.edu
mailto:jwu29@nd.edu
https://doi.org/10.1016/j.cma.2023.116455
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116455&domain=pdf
https://doi.org/10.1016/j.cma.2023.116455

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

b
g
o
t
l
a

1

v
v
t
t

a
f
a
b
b
v

c
(

Fig. 1. [a] Left: numerical solution of figure-eight internal stirring with a fixed wall where the arrows point to wall separatrices. Right: rotating wall breaks
the separatrices. Taken from [6] with permission. [b] Schematic of the velocity field generated by a micro air bubble activated by acoustic waves, which is
embedded in the polydimethylsiloxane (PDMS) sidewall. Taken from [7] with permission. [c] Scanning electron microscopy image of human tracheal epithelial
cilia. Taken from [8] with permission. [d] The mixing of mucus driven by cilia beating within the lumen of the airway organoids derived from human lung stem
cells. The cilia layer is located on the boundary of the lumen. Taken from the video https://www.youtube.com/watch?v=1Q8RL1g9txk related to the paper [9].

is moving or rotating the container walls to facilitate mixing. In the mixing of two immiscible viscous fluids under low Reynolds
numbers in a rectangular cavity [1,2], the top and bottom walls are moved where the moving velocity is employed as the control
input to steer mixing, measured by the area or length of the fluid interface. In a series of studies [3–6], it is discovered that the
fixed wall with no-slip boundary condition can slow down the internal mixing from exponential decay into power decay due to the
separatrices near the wall; however, rotating walls with a constant angular velocity can recover the exponential decay by removing
the separatrices (see Fig. 1[a]). These studies use theoretical analysis and/or scientific computing instead of real physical devices.

Instead of moving an entire piece of a sidewall, some boundary control strategies apply controls on individual spots of the
fixed sidewall. For example, some micromixers use acoustic waves to perturb mircobubbles embedded in the sidewall of the mixer,
whose oscillation can create high pressure and velocity in the bulk liquid in the mixer [7,10] (see Fig. 1[b]). This mixing method is
considered simple and effective to overcome the low Reynolds numbers in microfluids due to high viscosity and long microchannel.

Another example of the boundary control is the cilia induced mixing [11]. Cilia are microscopic hair-like structures extensively
present in vertebrates and they are located on the epithelial surfaces of internal organs such as the respiratory tract (see Fig. 1[c]).
The cilia beating generates metachronal waves, which is an effective way to transport fluid and perform mixing [12,13]. Attracted
y the functions of biological cilia, researchers have created artificial cilia, driven by magnetic or electric field, or pneumatics, to
enerate microfluidic flow, with possible practices in microfluidic devices like lab-on-chip [11]. There exist some numerical studies
f cilia mixing such as [14–17], where all of these work consider the direct interaction between fluid and the cilium structure and
he mixing is measured by the mixing number according to redistribution of tracer particles advected by the flow. When the cilium
ength is significantly smaller than the size of the mixer (see Fig. 1[d]), the cilia beating can be approximated as boundary conditions
pplied on the mixer.

.2. Objectives and challenges

Despite the motivations and applications mentioned above, boundary control for transport and mixing is still a new field with
ery few studies. Recently, Hu and Wu in [18–21] have established a theoretical framework of boundary control for optimal mixing
ia the incompressible flows, where the boundary control is the tangential force exerted on the mixer boundary (2.4). In addition,
he scalar or density being mixed is assumed to be driven by advection only and the diffusion is neglected, which corresponds to
he case of large Péclet number (the ratio of the rate of advection to the rate of diffusion).
The objective of this work is to develop efficient numerical algorithms for the optimization problem proposed by Hu and Wu

nd then use them to investigate the efficacy of boundary control for fluid mixing. This work, to the authors’ best knowledge, is the
irst numerical study of optimal mixing via boundary control of the unsteady Stokes flow. Indeed, there are barely any numerical
lgorithms developed for solving the optimal control for mixing governed by the coupled flow-transport system in a general open
ounded domain. Although the optimal mixing and stirring of passive scalars via pure advection has been extensively discussed
y means of theoretical analysis and numerical simulations in recent years (cf. [1,2,22–33]), all these studies focus on prescribed
elocity fields and none of them consider the real-time control of the unsteady flow dynamics driven by control forces.
The current work on optimal control for fluid mixing problems features high complexity, high accuracy demand, and high

omputing expense. The first complexity is a cascade of four events from the control to the objective cost function as shown in
1.1), in contrast to 3 steps from flow to cost in the existing work mentioned above.

control
unsteady Stokes

⟶ flow
advection
⟶ mixed scalar ⟶ cost functional. (1.1)
2

https://www.youtube.com/watch?v=1Q8RL1g9txk

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

w

a

H
b

The entire cascade will be called repeatedly in optimization algorithms, which would entail a high computing expense. However,
this can be partially relieved by utilizing a finite basis of the control space and the linear relation between flow velocity and the
control (given zero initial velocity field). From the viewpoint of real world applications, a finite number of control inputs is a more
realistic assumption since it is not practical to create arbitrarily distributed force fields for stirring. Through this approach, only the
velocity fields corresponding to the control basis are needed and stored before the optimization process. Indeed, a control input is
a linear combination of the control basis functions (see Eq. (3.2)) and the associated velocity field is a linear combination of the
velocity basis with the same coefficients (see Eq. (3.5)).

The mixing problem is intrinsically multiscale, where the optimal mixed scalar has delicate structures of thin filaments
everywhere in the domain. This complexity requires high accuracy in the flow and advection solvers. In the flow solver, one
complexity is how to enforce the divergence free condition in the numerical methods of the unsteady Stokes equations, which
is important in computing the transport equations and the gradient of the cost functional (see Eq. (3.13)). An iterative projection
method for solving the Navier–Stokes equations [34] is applied in this work, which obtains the weakly divergence free velocity with
the Taylor–Hood finite element method. In the evolution of the mixed scalar, the high order approximation is desirable due to its
better ability to capture the microscale structures. However, high order approximations would slow down the evolution and thus the
entire optimization process. Thus, a compromise between approximation order and evolution speed has to be made. Furthermore, a
better mixing quality is often related to a larger control input and thus a larger flow velocity magnitude (see details in Section 4.2),
which would induce small time steps in the advection solvers for stability reasons. If the velocity basis in all the time steps is stored
in hard drive, it will result in a large amount of data storage, where a care is needed to balance the data storage quota and accuracy
demand.

The development of optimization algorithms also has remarkable complexities. For instance, the accuracy of the gradient of the
cost functional is crucial to the convergence of the optimization algorithms. The finite difference method is accurate but has high
computing expense when the dimension of the control space is large. The variational formula is much more efficient but may give
disastrous results for a certain type of control functions. A hybrid approach will be proposed to combine the advantages of these
two methods based on extensive experiments. Another complexity is the choice of the line search method (for finding the step size
in a given descent direction) and the descent direction method. The backtracking line search method is fast but may not provide a
local minimizer. In the work [31], the exact line search is used with conjugate gradient method to solve an optimal mixing problem.
The exact line search is computationally expensive because it needs many iterations of the cascade of (1.1) but it provides a local
minimizer. In the optimal control problem of an advection–reaction–diffusion system, a linearization line search method is proposed
in [35], which will be examined in this work (see details in Section 3.5.3). Both the steepest descent and conjugate gradient methods
for finding descent directions, along with these line search choices, will be tested for convergence, efficiency, and robustness.

The rest of this paper is outlined as follows. Section 2 presents the optimization problem of boundary control design for optimal
mixing in unsteady Stokes flows, along with the derivation of the Gâteaux derivative of the cost functional and the first-order
necessary optimality conditions for solving the optimal control. Section 3 introduces the optimization algorithms, including the
choice of the control input basis, the computation of the velocity basis, the transport equations, the cost functional and its Gâteaux
derivative, the line search methods, and the descent direction methods. Section 4 first reports some basic properties of the control
functions used in this work, such as flow patterns and mixing characteristics, and then applies the optimization algorithms to
investigate the efficacy of boundary control in mixing optimization. The conclusions are presented in Section 5.

2. Boundary control design for optimal mixing

Here, we briefly introduce the mathematical model and the first-order optimality conditions established in [18].

2.1. Optimization problem

Consider a passive scalar field advected by an unsteady Stokes flow in an open bounded and connected domain 𝛺 ⊂ R𝑑 , 𝑑 = 2,
with a sufficiently smooth boundary 𝛤 . The governing equations for the scalar density 𝜃, velocity 𝑣, and pressure 𝑝 are described
by

𝜕𝜃
𝜕𝑡

+ 𝑣 ⋅ ∇𝜃 = 0, (2.1)
𝜕𝑣
𝜕𝑡

− 𝛥𝑣 + ∇𝑝 = 0, (2.2)

∇ ⋅ 𝑣 = 0, (2.3)

ith the Navier slip boundary conditions (cf. [36]),

𝑣 ⋅ 𝑛|𝛤 = 0 and (2𝑛 ⋅ D(𝑣) ⋅ 𝜏 + 𝑘𝑣 ⋅ 𝜏)|𝛤 = 𝑔, (2.4)

nd the initial condition

(𝜃(0), 𝑣(0)) = (𝜃0, 𝑣0). (2.5)

ere, D(𝑣) = (1∕2)(∇𝑣+(∇𝑣)𝑇) is the strain rate tensor, and 𝑛 and 𝜏 are the outward unit normal and tangential vectors to the domain
oundary 𝛤 . The Navier slip boundary conditions allow the fluid to slip along the boundary with resistance under the tangential
3

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

a

T
s
c
d

n
i

force and the friction between the fluid and the wall is proportional to −𝑣 with the positive coefficient of proportionality 𝑘. In this
model, the boundary control input 𝑔 is specialized in the tangential direction, that is, 𝑔𝜏 is the force exerted only in the tangential
direction. Physically, this boundary condition can be regarded as a model in the tangential direction of the cilia beating in the inner
membrane of vertebrate organs, as described at the end of Section 1.1.

The notation 𝐿2(𝐺) is used to denote the Lebesgue space of square integrable functions over a set 𝐺, and 𝐻𝑠(𝐺), 𝑠 ≥ 0, the subset
of 𝐿2(𝐺) of functions whose weak derivatives up to order 𝑠 are also square integrable. Note 𝐻0(𝐺) = 𝐿2(𝐺). Let

𝑉 𝑠
𝑛 (𝛺) = {𝑣 ∈ 𝐻𝑠(𝛺)∶div 𝑣 = 0, 𝑣 ⋅ 𝑛|𝛤 = 0}, for 𝑠 ≥ 0.

Throughout this paper, we use (⋅, ⋅) and ⟨⋅, ⋅⟩𝛤 for the 𝐿2-inner products in the interior of the domain 𝛺 and on the boundary 𝛤 ,
respectively.

The objective in this work is to seek a control input 𝑔 ∈ 𝑈𝑎𝑑 that minimizes the following cost functional at a given final time
𝑇 > 0:

𝐽 (𝑔) = 1
2
‖𝜃(𝑇)‖2

(𝐻1(𝛺))′
+
𝛾
2
‖𝑔‖2𝑈ad ,

subject to the PDE constraints (2.1)–(2.5), where 𝛾 > 0 is the control weight parameter and 𝑈𝑎𝑑 = 𝐿2(0, 𝑇 ;𝐿2(𝛤)) is the set of
dmissible controls equipped with the norm ‖ ⋅ ‖𝑈𝑎𝑑 given by

‖𝑔‖𝑈𝑎𝑑 =
(

∫

𝑇

0 ∫𝛤
|𝑔(𝑥, 𝑡)|2𝑑𝑥𝑑𝑡

)1∕2

, ∀𝑔 ∈ 𝑈𝑎𝑑 . (2.6)

he choice of 𝑈𝑎𝑑 is often determined based on the physical properties as well as the need to guarantee the existence of an optimal
olution. The detailed explanation can be found in [18]. In this work, we adopt the dual norm ‖ ⋅ ‖(𝐻1(𝛺))′ that quantifies the weak
onvergence as the mix-norm to quantify mixing [24,26,37], where (𝐻1(𝛺))′ is the dual space of 𝐻1(𝛺). To make it explicit, we
efine 𝑓 as the solution of

(−𝛥 + 𝐼)𝑓 = 𝜃 in 𝛺, 𝜕𝑓
𝜕𝑛

= 0 on 𝛤 . (2.7)

Let

𝛬 = (−𝛥 + 𝐼)1∕2.

Then 𝛬 is a self-adjoint and positive operator. Thus 𝑓 = 𝛬−2𝜃 and

‖𝜃‖(𝐻1(𝛺))′ = (𝛬−1𝜃, 𝛬−1𝜃)1∕2 = (𝛬−2𝜃, 𝜃)1∕2 = (𝑓, 𝜃)1∕2. (2.8)

We impose 𝜃0 to be a spatially mean-zero function, that is, 𝜃̄0 ≜
1
|𝛺|

∫𝛺 𝜃0(𝑥)𝑑𝑥 = 0. Then when perfect mixing is achieved, the mix-
orm is zero. This is the same treatment as in [24]. It is straightforward to show that the spatial mean value of 𝜃 is time-invariant,
.e., 𝜃̄(𝑡) = 𝜃̄0,∀𝑡 > 0.
With the help of (2.7)–(2.8), 𝐽 can be rewritten as

𝐽 (𝑔) = 1
2
(𝛬−2𝜃(𝑇), 𝜃(𝑇)) +

𝛾
2 ∫

𝑇

0
⟨𝑔, 𝑔⟩𝛤 𝑑𝑡. (2.9)

Note that the boundary control of the velocity field gives rise to a nonlinear control problem of the scalar equation, due to the
one-way coupling through the advective term 𝑣 ⋅∇𝜃. As a result, the problem (2.9) is no longer convex. The existence of an optimal
solution 𝑔 ∈ 𝑈𝑎𝑑 is proven in [18]. Moreover, when 𝑑 = 2 and 𝛾 is sufficiently large, the optimal solution is unique.

In this work, we set 𝑣0 = 0 for simplicity. Since the state variables 𝑣 and 𝜃 depend on 𝑔, we use the notations

𝑣 = 𝑣(𝑔) and 𝜃 = 𝜃(𝑔). (2.10)

Furthermore, we define the control-to-state operator

𝐿∶ 𝑔 ∈ 𝑈𝑎𝑑 ↦ 𝑣(𝑔) ∈ 𝐿2(0, 𝑇 ;𝑉 0
𝑛 (𝛺)), (2.11)

where 𝑣(𝑔) is solution of (2.2)–(2.5) with nonhomogeneous boundary input 𝑔. With the zero initial velocity condition, it is easy to
see that 𝐿 is a linear operator, that is,

𝐿(𝛼1𝑔1 + 𝛼2𝑔2) = 𝛼1𝐿(𝑔1) + 𝛼2𝐿(𝑔2), ∀𝛼1, 𝛼2 ∈ R, ∀𝑔1, 𝑔2 ∈ 𝑈𝑎𝑑 . (2.12)

The detailed properties of 𝐿 are introduced in [18,20].
In this work, the domain is a two dimensional unit disk, i.e., 𝛺 = {(𝑥, 𝑦)∶ 𝑥2 + 𝑦2 < 1}, the terminal time is 𝑇 = 1, the friction

coefficient is 𝑘 = 0.5, and the control weight is 𝛾 = 1e−6. We adopt a scientific notation with ‘e’ in many programming languages
to denote a very large or small floating point number, such as 6.23e−5 for 6.23×10−5. The initial value of 𝜃 is 𝜃0 = sin(2𝜋𝑦) (Fig. 12
at 𝑡 = 0), the same as in [31]. The choice of control functions is discussed in Section 3.2.1.
4

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

w

I
𝑈

w

T
n

∫

3

3

b
a

w
i

p
T

2.2. First-order necessary optimality conditions

To solve the optimal control problem (2.9), we apply a variational inequality [38], that is, if 𝑔 is an optimal solution, then

𝐷𝐽 (𝑔;𝜑) ≥ 0, ∀𝜑 ∈ 𝑈𝑎𝑑 , (2.13)

here 𝐷𝐽 (𝑔;𝜑) stands for the Gâteaux derivative of 𝐽 with respect to 𝑔 in the direction 𝜑 ∈ 𝑈𝑎𝑑 . A rigorous definition is given by

𝐷𝐽 (𝑔;𝜑) = lim
𝛿→0

𝐽 (𝑔 + 𝛿𝜑) − 𝐽 (𝑔)
𝛿

=
𝑑𝐽 (𝑔 + 𝛿𝜑)

𝑑𝛿
|𝛿=0, ∀𝜑 ∈ 𝑈𝑎𝑑 .

f the limit exists for all 𝜑 ∈ 𝑈𝑎𝑑 , then 𝐽 is called Gâteaux differentiable at 𝑔. The Riesz representation of the Gâteaux derivative in
𝑎𝑑 , denoted as 𝐷𝐽 (𝑔), which is the gradient of 𝐽 at 𝑔 [39], satisfies

(𝐷𝐽 (𝑔), 𝜑)𝑈𝑎𝑑 ≜ 𝐷𝐽 (𝑔;𝜑) = ∫

𝑇

0
𝛾⟨𝑔, 𝜑⟩𝛤 + (𝜃(𝑔)∇𝜌(𝑔), 𝐿𝜑) 𝑑𝑡, ∀𝜑 ∈ 𝑈𝑎𝑑 , (2.14)

here 𝜌(𝑔) is the adjoint state satisfying

𝜕
𝜕𝑡
𝜌 + 𝑣(𝑔) ⋅ ∇𝜌 = 0, (2.15)

𝜌(𝑇) = 𝛬−2𝜃(𝑔)(𝑇). (2.16)

he derivation of (2.14)–(2.16) is briefly stated in Appendix A.1. Since there are no local constraints on 𝑈𝑎𝑑 [38], the first-order
ecessary optimality condition for 𝑔 to be a local minimizer is given by

𝐷𝐽 (𝑔) = 0 in 𝑈𝑎𝑑 . (2.17)

In addition, the following relation between 𝜃 and 𝜌 holds, which is proven in Appendix A.2 and is used to verify the numerical
code as shown in Appendix A.5.

Proposition 2.1. For a fixed final time 𝑇 > 0 and 𝑔 ∈ 𝑈𝑎𝑑 , let 𝜌 be the solution to the adjoint system (2.15)–(2.16). Then the quantity
𝛺 𝜌(𝑥, 𝑡)𝜃(𝑥, 𝑡)𝑑𝑥 is invariant with respect to 𝑡 ∈ [0, 𝑇].

. Optimization algorithms

.1. General optimization algorithm

The gradient descent based optimization strategies such as the steepest descent method and the conjugate gradient method will
e used in solving the optimization problem. The fundamental idea used in this work is generating a sequence 𝑔𝑛, 𝑛 = 0, 1,… with
recursive relation

𝑔𝑛+1 = 𝑔𝑛 + 𝜂𝑛𝑑𝑛, (3.1)

here 𝑑𝑛 is a descent search direction of 𝐽 at 𝑔𝑛 (i.e., 𝐷𝐽 (𝑔𝑛; 𝑑𝑛) < 0) and 𝜂𝑛 > 0 is a step length. The entire optimization process
s outlined in Algorithm 3.1.

Algorithm 3.1 General Optimization Algorithm for the Mixing Problem

• Input: mesh of size ℎ, initial guess 𝑔0, control basis (see Section 3.2.1).
• Output: solution 𝑔.
1. Compute and store velocity basis for the control basis (see Section 3.2.2).
2. Optimization. For 𝑛 = 0, 1,…,

(1) If 𝑔𝑛 is a local minimizer, stop and output it as the solution.
(2) Compute a descent search direction 𝑑𝑛 of 𝐽 at 𝑔𝑛 (see Section 3.6).
(3) Compute a step length 𝜂𝑛 in the direction 𝑑𝑛 (see Section 3.5), then 𝑔𝑛+1 = 𝑔𝑛 + 𝜂𝑛𝑑𝑛.

A relay approach through a sequence of refined meshes is used to improve computational efficiency. That is, the optimization
roblem is first solved on a coarse mesh, whose solution is passed as the initial guess for the optimization process on a finer mesh.
he scheme is described in Algorithm 3.2. In this work, we use three meshes with resolution ℎ = 0.1, 0.05, 0.025 in a unit disk domain.
5

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

A

T
o
s

3

T

b
(
f

a
r

s

Algorithm 3.2 Relay Algorithm for the Mixing Problem

1. Fix a control basis and create a sequence of meshes of mesh size ℎ1 > ℎ2 >⋯.
2. Apply Algorithm 3.1 on mesh ℎ1 with initial guess 𝑔0 and denote the solution as 𝑔ℎ1 .
3. Apply Algorithm 3.1 on mesh ℎ2 with initial guess 𝑔ℎ1 and denote the solution as 𝑔ℎ2 .
4. Relay from mesh ℎ2 to mesh ℎ3, …

3.2. Control basis, velocity basis, and advection evolutions

3.2.1. Finite dimensional control basis
We focus on a finite dimensional control space 𝑈𝑀

𝑎𝑑 ≜ span{𝑔𝑏𝑗 }
𝑀
𝑗=1, where {𝑔𝑏1 ,… , 𝑔𝑏𝑀} ⊆ 𝑈𝑎𝑑 is a basis of 𝑈𝑀

𝑎𝑑 . Therefore, any
control 𝑔 ∈ 𝑈𝑀

𝑎𝑑 can be written as

𝑔 =
𝑀
∑

𝑗=1
𝛼𝑗𝑔

𝑏
𝑗 , (3.2)

where 𝛼𝑗 ∈ R, 𝑗 = 1,… ,𝑀 are the linear combination parameters. When the control basis is chosen, the true unknowns that we
want to solve for are these parameter values. In the relay algorithm, the control basis is fixed and it is these parameter values that
are relayed from a coarse grid to a fine grid.

In this work, the control basis functions 𝑔𝑏𝑗 are built by time segmenting the elementary functions 1, cos(𝑘𝜔), sin(𝑘𝜔), where
𝑘 = 1, 2 and 𝜔 is the polar angle of the point (𝑥, 𝑦) on the unit circle. The time segmentation is defined as follows. Let 𝑁 be the
number of time segments, and 𝛥𝑠 = 1

𝑁 is the uniform segment size. Define the time segmentation function 𝜒𝑁𝑖 (𝑡) as

𝜒𝑁𝑖 (𝑡) =
{

1, if 𝑡 ∈ ((𝑖 − 1)𝛥𝑠, 𝑖𝛥𝑠),
0, otherwise,

}

, 𝑖 = 1,… , 𝑁. (3.3)

control basis function 𝑔𝑏 is one of above elementary functions multiplying a time segmentation function, that is,

𝑔𝑏(𝑥, 𝑡) = 𝜒𝑁𝑖 (𝑡) ⋅ one of {1, cos(𝜔), sin(𝜔), cos(2𝜔), sin(2𝜔)}. (3.4)

he control basis functions generated by the same elementary function are called of the same Type. For example, Type 1 is the set
f functions generated by multiplying 1 with time segmentation functions, Type cos(𝜔) is generated by multiplying cos(𝜔) with time
egmentation functions, etc.

.2.2. Velocity basis: Generation and storage
Due to the linearity of the operator 𝐿 in (2.12), the velocity field generated by 𝑔 in (3.2) can be written as

𝑣(𝑔) = 𝐿(𝑔) =
𝑀
∑

𝑗=1
𝛼𝑗𝐿(𝑔𝑏𝑗). (3.5)

his linear relation produces a big advantage in computations: we only need to compute the velocity basis

𝑣𝑏𝑗 = 𝐿(𝑔𝑏𝑗), 𝑗 = 1,… ,𝑀, (3.6)

efore the optimization process and store it in the computer hard drive. Whenever there is a need to compute 𝐿(𝑔), the formula
3.5) will be used to compose the velocity for 𝑔 from the stored velocity basis. An iterative projection method with Taylor–Hood
inite elements is employed to solve the unsteady Stokes Eqs. (2.2)–(2.5), where the details are given in Appendix A.3.
The linearity of the operator 𝐿 holds only when the initial velocity 𝑣0 = 0. If 𝑣0 ≠ 0, we denote the velocity generated by 𝑣0

nd 𝑔 = 0 as 𝑣𝑏𝑣0 ,𝑔=0. Then the full solution 𝑣 can be written as 𝑣 =
∑𝑀
𝑗=1 𝛼𝑗𝑣

𝑏
𝑗 + 𝑣

𝑏
𝑣0 ,𝑔=0

. However, in our numerical experiments, we
estrict our discussion to the cases with 𝑣0 = 0.
Limited by storage, every basis velocity is saved with a not-too-small time step 𝛥𝑡𝑉 , which is typically several folds of the time

tep used in the Stokes solver. Denote 𝑁𝑉 = 𝑇
𝛥𝑡𝑉

. Thus, there are 𝑁𝑉 + 1 moments of velocity storage in the time window [0, 1]. In
other words, for each basis velocity 𝑣𝑏𝑗 , 𝑗 = 1,… ,𝑀 , its values at time 𝑡𝑖𝑉 = 𝑖𝛥𝑡𝑉 , 𝑖 = 0, 1,… , 𝑁𝑉 , are saved into files. In practice,
we use 𝑇 = 1 and 𝛥𝑡𝑉 = 0.01, so 𝑁𝑉 + 1 = 101.

If the Navier–Stokes equations with the nonlinear convection are considered, then the relation between 𝑣 and 𝑔 is no longer
linear even when 𝑣0 is zero, where a solver for the Navier–Stokes equations has to be called to obtain 𝑣(𝑔) whenever 𝑔 changes.
6

Therefore, the linearity of unsteady Stokes equation saves a lot of the computation time.

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

s
s

𝑡

3.2.3. Evolution of advection equations with sparsely stored velocity data
A discontinuous Galerkin (DG) method is employed to solve the advection equations for the density 𝜃 and its adjoint state 𝜌,

where a brief introduction is given in Appendix A.4. Due to the CFL condition (A.20), the time step of the DG method, 𝛥𝑡𝐷𝐺, is
generally far smaller than the velocity storage time step 𝛥𝑡𝑉 , where 𝛥𝑡𝑉 is often 20 to 40 folds larger than 𝛥𝑡𝐷𝐺. Therefore, the
tored velocity data is sparse relative to the requirement of the DG evolution method. We use the embedding and interpolation
cheme in Algorithm 3.3 to evolve 𝜃, where the one for 𝜌 is the similar.

Algorithm 3.3 Evolution of transport equation for 𝜃 (or 𝜌) with sparsely stored velocity data

• Input: control 𝑔 =
∑𝑀
𝑗=1 𝛼𝑗𝑔

𝑏
𝑗 , initial value 𝜃0, basis velocity data 𝑣

𝑏
𝑗 (𝑡

𝑖
𝑉), 𝑗 = 1,… ,𝑀 at time 𝑡𝑖𝑉 , 𝑖 = 0, 1,… , 𝑁𝑉 . Note: 𝑁𝑉 = 𝑇

𝛥𝑡𝑉
.

• Output: 𝜃 at time 𝑡𝑖𝑉 , 𝑖 = 0, 1,… , 𝑁𝑉 .
• Evolution: at time 𝑡𝑖𝑉 , 𝑖 = 0, 1,… , 𝑁𝑉 − 1,

(1) Compose velocity 𝑣(𝑔) at 𝑡𝑖𝑉 and 𝑡𝑖+1𝑉 : 𝑣(𝑔)(𝑡𝑖𝑉) =
∑𝑀
𝑗=1 𝛼𝑗𝑣

𝑏
𝑗 (𝑡

𝑖
𝑉), 𝑣(𝑔)(𝑡

𝑖+1
𝑉) =

∑𝑀
𝑗=1 𝛼𝑗𝑣

𝑏
𝑗 (𝑡

𝑖+1
𝑉).

(2) Compute 𝑉max = max(||𝑣(𝑡𝑖𝑉)||𝑚𝑎𝑥, ||𝑣(𝑡
𝑖+1
𝑉)||𝑚𝑎𝑥).

(3) Use the CFL condition (A.20) to compute a tentative DG time step 𝛥𝑡𝑖𝐷𝐺 =
ℎ⋅CFL𝐿2
𝑉max

. To get an integer number of steps

of evolution in the time interval [𝑡𝑖𝑉 , 𝑡
𝑖+1
𝑉], we let 𝑁𝑖 =

⌈

𝛥𝑡𝑉
𝛥𝑡𝑖𝐷𝐺

⌉

, the ceiling function of the time steps ratio. Afterwards,

define 𝛥𝑡𝑖𝐷𝐺 = 𝛥𝑡𝑉
𝑁𝑖
.

(4) Interpolate the velocity at any time 𝑡 ∈ [𝑡𝑖𝑉 , 𝑡
𝑖+1
𝑉], 𝑣𝐼 (𝑡), required by the DG method by 𝑣𝐼 (𝑡) =

𝑡𝑖+1𝑉 −𝑡
𝛥𝑡𝑉

⋅𝑣(𝑔)(𝑡𝑖𝑉)+
𝑡−𝑡𝑖𝑉
𝛥𝑡𝑉

⋅𝑣(𝑔)(𝑡𝑖+1𝑉).

(5) Use the DG method to evolve 𝜃 from 𝑡𝑖𝑉 to 𝑡𝑖+1𝑉 with time step size 𝛥𝑡𝑖𝐷𝐺 and the interpolated velocity 𝑣𝐼 (𝑡).

The backward evolution of 𝜌(𝑡) from 𝑡 = 𝑇 to 𝑡 = 0 through the advection Eq. (2.15) can be reformulated to a forward evolution
process by the following transformation. Let 𝑠 = 𝑇 − 𝑡 and 𝜌̃(𝑠) = 𝜌(𝑡) and 𝑣̃(𝑠) = −𝑣(𝑡). Then 𝜌̃ satisfies

𝜕𝜌̃(𝑠)
𝜕𝑠

+ 𝑣̃(𝑠) ⋅ ∇𝜌̃(𝑠) = 0, 𝜌̃(0) = 𝜌(𝑇). (3.7)

To evaluate the second integral in (3.13), both 𝜃 and 𝜌 are stored at the same time moments as the velocity basis, that is, time
𝑖
𝑉 , 𝑖 = 0, 1,… , 𝑁𝑉 as mentioned in Section 3.2.2. It turns out the majority time of the entire optimization process is spent on the
simulation of 𝜃 and 𝜌, because whenever there is a need to compute the cost functional or its gradient, the evolution of 𝜃 and/or
𝜌 will be computed. To balance the efficiency and accuracy, we choose to use a second order Runge–Kutta scheme in time for the
transport equations and a second degree polynomial approximation for 𝜃 and 𝜌 in space.

3.3. Computation of the cost functional 𝐽 (𝑔)

The cascade (1.1) or the computation from a control input to the cost functional is computed through Algorithm 3.4.

Algorithm 3.4 Computation of cost 𝐽 (𝑔)

• Input: control 𝑔, initial value 𝜃0, basis velocity data 𝑣𝑏𝑗 , 𝑗 = 1,… ,𝑀 .
• Output: cost 𝐽 (𝑔).
• Steps:

(1) Evolve 𝜃 with 𝑔, 𝜃0, and the basis velocity data by Algorithm 3.3 to obtain 𝜃(𝑇).
(2) Compute the adjoint state 𝜌(𝑇) from the Neumann elliptic problem (2.7). We use a continuous piecewise quadratic finite

element method to solve this problem.
(3) Compute the cost 𝐽 (𝑔) by computing the integrals in the first formula of (2.9).

3.4. Computation of the gradient 𝐷𝐽 (𝑔)

Recall from Section 2.2 that 𝐷𝐽 (𝑔) is the Riesz representation in the space 𝑈𝑎𝑑 of the Gâteaux derivative of 𝐽 at 𝑔. When 𝑈𝑎𝑑 is
chosen as 𝑈𝑀

𝑎𝑑 , the representation of 𝐷𝐽 (𝑔) becomes a linear combination of 𝑔
𝑏
𝑗 , 𝑗 = 1,… ,𝑀 . That is,

𝐷𝐽 (𝑔) =
𝑀
∑

𝐷𝐽 (𝑔)𝑗 ⋅ 𝑔𝑏𝑗 , 𝐷𝐽 (𝑔)𝑗 ∈ R, (3.8)
7

𝑗=1

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

w
o

3

o

u

o
a
s
t

where 𝐷𝐽 (𝑔)𝑗 , 𝑗 = 1,… ,𝑀 , are the linear combination coefficients.
Letting 𝜑 = 𝑔𝑏𝑖 , 𝑖 = 1,… ,𝑀 , in (2.14) (using the first equality), we get the following linear system

𝑀
∑

𝑗=1
(𝑔𝑏𝑖 , 𝑔

𝑏
𝑗)𝑈𝑎𝑑 ⋅𝐷𝐽 (𝑔)𝑗 = 𝐷𝐽 (𝑔; 𝑔𝑏𝑖), 𝑖 = 1,… ,𝑀. (3.9)

Let 𝐺 be the matrix 𝐺𝑖𝑗 ≜ (𝑔𝑏𝑖 , 𝑔
𝑏
𝑗)𝑈𝑎𝑑 , 𝑖, 𝑗 = 1,… ,𝑀 , and the vector 𝑏 = (𝐷𝐽 (𝑔)1,… , 𝐷𝐽 (𝑔)𝑀)𝑇 . Thereafter, the norm ‖𝐷𝐽 (𝑔)‖𝑈𝑎𝑑 is

given by

‖𝐷𝐽 (𝑔)‖𝑈𝑎𝑑 =

√

√

√

√

√

(𝑀
∑

𝑖=1
𝐷𝐽 (𝑔)𝑖𝑔𝑏𝑖 ,

𝑀
∑

𝑗=1
𝐷𝐽 (𝑔)𝑗𝑔𝑏𝑗

)

=
√

𝑏𝑇𝐺𝑏. (3.10)

3.4.1. Finite difference (FD) method
A simple method of computing the directional derivative is a Finite Difference (FD) approximation [40]:

𝐷𝐽 (𝑔;𝜑) ≈
𝐽 (𝑔 + 𝛿 ⋅ 𝜑) − 𝐽 (𝑔)

𝛿
, (3.11)

here 𝛿 is a small scalar. In our numerical implementations, a typical value of 𝛿 is 1e−5 or 1e−4. With this approach, the right side
f linear system (3.9) is replaced by

𝐷𝐽 (𝑔; 𝑔𝑏𝑖) =
𝐽 (𝑔 + 𝛿 ⋅ 𝑔𝑏𝑖) − 𝐽 (𝑔)

𝛿
, 𝑖 = 1,… ,𝑀. (3.12)

.4.2. Variational formula (VF) with adjoint system
This method uses the Variational Formula (VF) (2.14) (the second equality), where the right side of (3.9) becomes

𝐷𝐽 (𝑔; 𝑔𝑏𝑖) = 𝛾 ∫

𝑇

0
⟨𝑔, 𝑔𝑏𝑖 ⟩𝛤 𝑑𝑡 + ∫

𝑇

0

(

𝜃(𝑔)∇𝜌(𝑔), 𝐿(𝑔𝑏𝑖)
)

𝑑𝑡, 𝑖 = 1,… ,𝑀. (3.13)

The second integral in (3.13) is evaluated with the trapezoidal rule in each interval [𝑡𝑖𝑉 , 𝑡
𝑖+1
𝑉] for 𝑖 = 0, 1,… , 𝑁𝑉 − 1 by using the

data of 𝜃, 𝜌, and 𝐿(𝑔𝑏𝑖). The entire VF scheme is stated in Algorithm 3.5.

Algorithm 3.5 VF (Variational Formula) method of computing 𝐷𝐽 (𝑔)

• Input: control 𝑔, initial value 𝜃0, basis velocity data 𝑣𝑏𝑗 , 𝑗 = 1,… ,𝑀 .
• Output: 𝐷𝐽 (𝑔).
• Steps:

(1) Evolve 𝜃 from 𝑡 = 0 to 𝑡 = 𝑇 with Algorithm 3.3.
(2) Compute the adjoint state 𝜌(𝑇) from (2.16), that is, the Neumann elliptic problem (2.7) with 𝜃 = 𝜃(𝑇).
(3) Evolve 𝜌 with Algorithm 3.3 by solving the system (3.7).
(4) Compute 𝐷𝐽 (𝑔) with equations (3.9) and (3.13).

3.4.3. Comparison of VF and FD methods in 1-D control spaces
The finite difference method requires to compute a forward evolution process for each basis function 𝑔𝑏𝑖 , 𝑖 = 1,… ,𝑀 , in order

to compute 𝐽 (𝑔 + 𝛿𝑔𝑏𝑖). Plus another forward evolution of 𝜃 in 𝐽 (𝑔), the FD scheme requires 𝑀 + 1 forward evolutions to compute
𝐷𝐽 (𝑔). In contrast, using the variational formula takes only two evolutions: one forward for 𝜃 and one backward for 𝜌. In this sense,
the VF method is more appealing when 𝑀 is large. However, the VF method has much higher complexity: one elliptic solver for
𝜌(𝑇) and the integration of ∫ 𝑇0

(

𝜃(𝑔)∇𝜌(𝑔), 𝐿(𝑔𝑏𝑖)
)

𝑑𝑡. Especially, the calculation of 𝜃∇𝜌 involves the spatial derivative of 𝜌, which has
ne less order accuracy than 𝜌 itself. In certain cases, it may result in too large errors.
To compare the performance of the VF and FD methods, we give one experiment on the five elementary control functions

sed in this work: 𝑔𝑏 = 1, cos(𝜔), sin(𝜔), cos(2𝜔), sin(2𝜔). Because the mix-norm in the cost functional, 𝐽𝜃(𝑔) ≜ 1
2‖𝜃(𝑔)‖

2
(𝐻1(𝛺))′

,
is the only challenging part and the major source of error in the entire gradient calculation, this experiment just focuses on
this term. The derivatives of this term computed by these two methods are shown in Fig. 2, where the computations are
taken for integer values of 𝛼 ∈ [0, 100] in 𝑔 = 𝛼𝑔𝑏. Overall, both methods agree far better for the cosine and sine functions
than the function 1. We denote 𝐷𝑉 𝐹 𝐽𝜃(𝑔) and 𝐷𝐹𝐷𝐽𝜃(𝑔) as the gradient of 𝐽𝜃(𝑔) with VF and FD methods, respectively. Let
the average absolute error be AAE(𝑔𝑏) = 1

101
∑100
𝛼=0 |𝐷𝑉 𝐹 𝐽𝜃(𝛼𝑔𝑏) −𝐷𝐹𝐷𝐽𝜃(𝛼𝑔𝑏)| and the average relative error be ARE(𝑔𝑏) =

1
101

∑100
𝛼=0 |𝐷𝑉 𝐹 𝐽𝜃(𝛼𝑔𝑏) −𝐷𝐹𝐷𝐽𝜃(𝛼𝑔𝑏)|∕|𝐷𝐹𝐷𝐽𝜃(𝛼𝑔𝑏)|. These two errors for these control basis functions are shown in Table 1. We

bserve the first-order convergence of the average absolute errors when the mesh is refined, with the error of the control 1 is
t least twice of the errors of other control basis functions. The average relative error is not a well-defined metric since it is not
ymmetric, so we cannot expect any convergence. However, it shows that the average relative error of the control 1 is far larger
han those of other controls (at least 20 folds larger).
8

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

w

I
s
w
e

Fig. 2. Computed derivatives of the mix-norm 𝐽𝜃 (𝑔) =
1
2
‖𝜃(𝑔)‖2(𝐻1 (𝛺))′ by the VF method (red solid line) and the FD method (blue dashline) on mesh ℎ = 0.1 at

𝑡 = 1. The control 𝑔 = 𝛼, 𝛼 cos(𝜔), 𝛼 sin(𝜔), 𝛼 cos(2𝜔), 𝛼 sin(2𝜔), 𝛼 ∈ [0, 100] from left to right.

Table 1
Errors of derivatives of the mix-norm 𝐽𝜃 (𝑔) =

1
2
||𝜃(𝑔)||2(𝐻1 (𝛺))′ by VF and FD methods.

AAE AAE AAE AAE AAE ARE ARE ARE ARE ARE
ℎ 1 cos(𝜔) sin(𝜔) cos(2𝜔) sin(2𝜔) 1 cos(𝜔) sin(𝜔) cos(2𝜔) sin(2𝜔)

0.1 2.06e−4 6.47e−5 6.41e−5 4.36e−5 6.37e−5 3.65e+1 2.83e−1 1.25e0 5.45e−1 6.88e−1
0.05 8.01e−5 3.67e−5 2.58e−5 1.55e−5 2.81e−5 2.38e+2 2.05-e1 1.33e0 2.77e−1 6.71e−1
0.025 3.59e−5 1.69e−5 1.19e−5 7.77e−6 1.11e−5 2.33e+1 1.16e−1 7.05e−1 2.19e−1 6.74e−1

AAE = Average Absolute Error, ARE = Average Relative Error.

Table 2
Gradient approximated by VF and FD methods. The control 𝑔 = 𝛼11[0,0.5] + 𝛼21[0.5,1].

𝛼 = (15, 15) 𝛼 = (15, 15) Relative 𝛼 = (5, 5) 𝛼 = (5, 5) Relative
ℎ VF FD error VF FD error

0.1 (−6.67e−4, −2.13e−4) (8.49e−5, 1.64e−4) 455% (−7.68e−4, −4.45e−4) (−1.98e−5, −7.79e−5) 1036%
0.05 (−2.37e−4, 1.62e−6) (8.96e−5, 1.65e−4) 194% (−3.46e−4, −2.40e−4) (−2.76e−5, −8.18e−5) 412%
0.025 (−6.09e−5, 9.09e−5) (8.94e−5, 1.65e−4) 90% (−1.74e−4, −1.55e−4) (−2.77e−5, −8.17e−5) 190%

Fig. 3. [a]: 𝜃(𝑇) when 𝛼 = (5, 5). [b]: 𝜃(𝑇) when 𝛼 = (15, 15). [c]: cost map 𝐽 (𝑔) when the mesh size ℎ = 0.1 and 𝛾 = 1e−6. The red vectors are the derivatives
from the FD method, and the black vectors are the derivatives from the VF method. The vectors are scaled to have the same length. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

3.4.4. Comparison of VF and FD methods in 2-D control spaces
We further explore the different performance between VF and FD methods in two tests where in each test, the control space is

spanned by two time-segmented basis functions. We denote 𝑔 = 𝛼1𝑔𝑏1 + 𝛼2𝑔
𝑏
2 and 𝛼 = (𝛼1, 𝛼2). Here, we test on the whole gradient

here 𝛾 = 1e−6.
In the first test, 𝑔𝑏1 = 1[0,0.5] (1 when 𝑡 ∈ [0, 0.5] and 0 when 𝑡 ∈ (0.5, 1]) and 𝑔𝑏2 = 1[0.5,1]. The results are shown in Table 2.

n this table, the FD method gives consistent approximations when the mesh is refined. The FD results are also consistent when
ome different 𝛿 = 1e−5, 1e−4, 1e−3 values are used in (3.12) (data not shown). This suggests the FD results are more reliable
hen the exact derivative is unknown. The VF results have huge relative errors compared with those of the FD method and they
ven have opposite directions when 𝛼 = (15, 15) and ℎ = 0.1 (see Figure 3, the VF derivative at (15, 15)). The correctness of the
directional derivative from the FD method can be verified in Fig. 3 by checking with the cost map. The cost map is the colored plot
of the costs computed on integer points of 𝛼 = (𝛼1, 𝛼2). Therefore, the VA result in this case does not give a descent direction. The
wrong directional derivative is catastrophic in the optimization algorithms used in this work because the line search fails with a
non-descent search direction.

The second test is given to 𝑔𝑏1 = cos(𝜔) ⋅ 1[0,0.5] and 𝑔𝑏2 = sin(𝜔) ⋅ 1[0.5,1]. From the results shown in Table 3, the VF and FD methods
are very close. The morphologies of 𝜃 at 𝑡 = 𝑇 corresponding to two different 𝛼 values are shown in Fig. 4. Similar observations are
obtained when the control bases are cos(2𝜔) and sin(2𝜔) and their time segmentations (results not shown).

3.4.5. A hybrid approach
Because of the dramatically different performance of the VF method on Type 1 controls and other types of controls (cos(𝜔),

sin(𝜔), cos(2𝜔), sin(2𝜔)), we adopt an ad hoc hybrid approach: using the FD method to compute directional derivatives for Type 1
9

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

3

s

3

Table 3
Gradient approximated by VF and FD methods. The control 𝑔 = 𝛼1 cos(𝜔) ⋅ 1[0,0.5] + 𝛼2 sin(𝜔) ⋅ 1[0.5,1].

𝛼 = (50, 50) 𝛼 = (50, 50) Relative 𝛼 = (10, 10) 𝛼 = (10, 10) Relative
ℎ VF FD error VF FD error

0.1 (3.79e−4, 9.31e−5) (5.11e−4, 1.22e−4) 26% (−6.99e−4, 2.20e−4) (−6.27e−4, 2.84e−4) 14%
0.05 (6.31e−4, 1.39e−4) (6.55e−4, 1.41e−4) 3.59% (−6.51e−4, 2.44e−4) (−6.20e−4, 2.87e−4) 7.9%
0.025 (6.42e−4, 1.48e−4) (6.27e−4, 1.42e−4) 2.51% (−6.33e−4, 2.73e−4) (−6.20e−4, 2.86e−4) 2.69%

Fig. 4. [a]: 𝜃(𝑇) when 𝛼 = (10, 10). [b]: 𝜃(𝑇) when 𝛼 = (50, 50). [c]: cost map when the mesh size ℎ = 0.1 and 𝛾 = 1e−6 and the computed derivative 𝐷𝐽 (𝑔) at
𝛼 = (10, 10) and (50, 50). The red vectors are from the FD method and the black vectors from the VF method. At 𝛼 = (50, 50), the vectors from the two methods
are indistinguishable by eyes. The vectors are scaled to have the same length. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 4
Comparison of different methods for computing 𝐷𝐽 (𝑔). 𝑀 is the dimension of control basis and 𝑀𝑇 𝑦𝑝𝑒1 is the number of Type 1 control basis functions.

Method VF (Variational Formula) FD (Finite Difference) Hybrid (FD for Type 1 and VF for Type 2)

Evolution of 𝜃 and/or 𝜌 2 𝑀 + 1 3 +𝑀𝑇 𝑦𝑝𝑒1
Other computations 1 elliptic solver, 𝑀 integrals of

∫ 𝑇
0

(

𝜃(𝑔)∇𝜌(𝑔), 𝐿(𝑔𝑏𝑖)
)

𝑑𝑡
None 1 elliptic solver, 𝑀 −𝑀𝑇 𝑦𝑝𝑒1 integrals of

∫ 𝑇
0

(

𝜃(𝑔)∇𝜌(𝑔), 𝐿(𝑔𝑏𝑖)
)

𝑑𝑡
Accuracy in mix-norm derivative Poor in Type 1, accurate in other

types
Accurate in all types Accurate in all types

controls and the VA method for the other types. That is, in (3.9),

𝐷𝐽 (𝑔; 𝑔𝑏𝑖) =

{

𝐽 (𝑔+𝛿⋅𝑔𝑏𝑖)−𝐽 (𝑔)
𝛿 , 𝑔𝑏𝑖 ∈ Type 1 ;

𝛾 ∫ 𝑇0 ⟨𝑔, 𝑔𝑏𝑖 ⟩𝛤 𝑑𝑡 + ∫ 𝑇0
(

𝜃(𝑔)∇𝜌(𝑔), 𝐿(𝑔𝑏𝑖)
)

𝑑𝑡, 𝑔𝑏𝑖 ∈ other types,
(3.14)

.4.6. Summary of numerical methods for computing 𝐷𝐽 (𝑔)
A summary of these three computation methods for the Gâteaux derivative is given in Table 4. Note that the derivative of the

mix-norm is the only computationally demanding part and the main source of error.

3.5. Line search methods: Computation of step size 𝜂𝑛

The entire optimization algorithm, Algorithm 3.1, includes two essential parts: one is the descent direction method of finding
the descent direction 𝑑𝑛 of 𝐽 at 𝑔𝑛, which is described in Section 3.6. The other is the line search method of solely computing the
tep size 𝜂𝑛 in a given descent direction 𝑑𝑛, which is presented here.

.5.1. Backtracking method and Armijo condition
The backtracking technique (e.g., [40]) is finding 𝜂𝑛 such that it is the first value in the sequence

{𝜂𝑛𝑖 =
𝜖𝑏
2𝑖

∶ 𝑖 = 0, 1,…} (3.15)

satisfying the following sufficient descent condition (also called Armijo condition),

𝐽 (𝑔𝑛 + 𝜂𝑛𝑑𝑛) ≤ 𝐽 (𝑔𝑛) + 𝜂𝑛 ⋅ 𝜇 ⋅𝐷𝐽 (𝑔𝑛; 𝑑𝑛),

where 𝜖𝑛𝑏 , 𝜇 are positive constants. This method only guarantees the sufficient descent, not a local minimizer. Thus, it does not
produce an exact line search. The value of the first value 𝜖𝑛𝑏 is empirically determined and in our work, the values between 1 and 8
are good candidates when 𝑑 is a unit vector in the 𝑈𝑎𝑑−norm. The parameter 𝜇 ∈ (0, 1) according to [40] and we use 𝜇 = 0.3. The
backtracking scheme is summarized in Algorithm 3.6.
10

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

3

n

i

Algorithm 3.6 Backtracking line search with Armijo condition

• Input: control 𝑔𝑛, search direction 𝑑𝑛, 𝐽 (𝑔𝑛), parameters 𝜇, 𝜖𝑏, back_MAXITER.
• Output: 𝜂𝑛, 𝑔𝑛+1, 𝐽 (𝑔𝑛+1).
• Steps

(1) If 𝑑𝑛 is not a descent direction (that is, 𝐷𝐽 (𝑔𝑛; 𝑑𝑛) ≥ 0), then stop and report problem.
(2) Backtracking iteration. For 𝑖 = 1, 2,… , back_MAXITER,

1. 𝜂𝑛𝑖 = 𝜖𝑏∕2𝑖−1.
2. 𝑔𝑛+1𝑖 = 𝑔𝑛 + 𝜂𝑛𝑖 𝑑

𝑛.
3. Compute the cost 𝐽 (𝑔𝑛+1𝑖) by using Algorithm 3.4 with input 𝑔𝑛+1𝑖 .
4. If 𝐽 (𝑔𝑛+1𝑖) ≤ 𝐽 (𝑔𝑛) + 𝜂𝑛𝑖 𝜇𝐷𝐽 (𝑔

𝑛; 𝑑𝑛), stop and return 𝜂𝑛 = 𝜂𝑛𝑖 , 𝑔
𝑛+1 = 𝑔𝑛+1𝑖 , and 𝐽 (𝑔𝑛+1).

In this work, the backtracking method is typically combined with the steepest descent method, where 𝑑𝑛 = −∇𝐽 (𝑔𝑛). Therefore,
the Armijo formula for the steepest descent method becomes

𝐽 (𝑔𝑛 − 𝜂𝑛∇𝐽 (𝑔𝑛)) ≤ 𝐽 (𝑔𝑛) − 𝜂𝑛𝜇‖𝐷𝐽 (𝑔𝑛)‖2𝑈𝑎𝑑 . (3.16)

.5.2. Exact line search: A coupled bisection-secant method
In some descent direction methods, an exact line search is needed, such as in the conjugate gradient method, to guarantee the

ew search direction 𝑑𝑛+1 is a descent direction (see Section 3.6.2 Eq. (3.25)). That is, 𝜂𝑛 is a minimizer of

min
𝜂≥0

𝑓 (𝜂) ≜ 𝐽 (𝑔𝑛 + 𝜂𝑑𝑛). (3.17)

Note 𝑓 ′(𝜂) = 𝐷𝐽 (𝑔𝑛 + 𝜂𝑑𝑛; 𝑑𝑛).
To get an exact solution 𝜂 of (3.17), we use a coupled bisection and secant method. The strategy is first finding an interval [0, 𝜂1],

as small as possible, where 𝑓 ′(0) < 0 and 𝑓 ′(𝜂1) > 0, and then searching for a root of 𝑓 ′(𝜂) = 0 in this interval. The condition 𝑓 ′(0) < 0
is equivalent to that 𝑑𝑛 is a descent direction of 𝐽 at 𝑔𝑛. Because lim

‖𝑔‖→∞ 𝐽 (𝑔) = ∞, a value 𝜂𝑛1 satisfying 𝑓
′(𝜂1) > 0 must exist. To

find 𝜂1, we adopt a forward tracking process as shown in Algorithm 3.7 Step 2. When 𝑓 ′(0) < 0 and 𝑓 ′(𝜂1) > 0, there exists a root
of 𝑓 ′(𝜂) = 0 in (0, 𝜂1) with the continuity assumption of 𝑓 ′. To find a root, we first use several steps of bisection method in order to
reduce the search interval size, defined by the distance between the last two bisection solutions (|𝜂𝑛𝐵𝐼𝑆−1 − 𝜂

𝑛
𝐵𝐼𝑆 |), sufficiently small.

This is important to the secant method that has faster convergence but requires that the initial guess values are sufficiently close to
the exact root. The details of the bisection and secant methods of finding a root of a nonlinear function can be found, e.g., in [41].
The whole exact line search scheme is briefly described in Algorithm 3.7.

Algorithm 3.7 Exact line search with bisection-secant method

• Aim: finding a root of 𝑓 ′(𝜂) = 0 in an interval [0, 𝜂1] where 𝑓 ′(0) < 0 and 𝑓 ′(𝜂1) > 0. The value of 𝜂1 will be found in this
algorithm.

• Input: control 𝑔𝑛, search direction 𝑑𝑛, 𝐽 (𝑔𝑛), parameter 𝜖𝑏𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝜖𝑠𝑒𝑐𝑎𝑛𝑡.
• Output: 𝜂𝑛, 𝑔𝑛+1, 𝐽 (𝑔𝑛+1).
• Steps

(1) If 𝑑𝑛 is not a descent direction (that is, 𝐷𝐽 (𝑔𝑛; 𝑑𝑛) ≥ 0), then stop and report problem.
(2) Find an 𝜂𝑛1 > 0 such that 𝑓 ′(𝜂𝑛1) > 0. This is done by a forward tracking process: 𝜂𝑛1 is the first value of the sequence

𝜂 = {1, 2, 22,…} that satisfies 𝑓 ′(𝜂) > 0.
(3) Apply the bisection method of finding a root of 𝑓 ′(𝜂) = 0 in [0, 𝜂𝑛1] and stop when |𝜂𝑛𝐵𝐼𝑆−1 − 𝜂𝑛𝐵𝐼𝑆 | ≤ 𝜖𝑏𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛. Here,

𝜂𝑛𝐵𝐼𝑆−1, 𝜂
𝑛
𝐵𝐼𝑆 are the last two values of bisection solution. In practice, we use 𝜖𝑏𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 1.

(4) Apply the secant method of finding a root of 𝑓 ′(𝜂) = 0 with the initial values as 𝜂𝑛𝐵𝐼𝑆−1, 𝜂
𝑛
𝐵𝐼𝑆 . Stop when |𝐷𝐽 (𝑔𝑛 +

𝜂𝑑𝑛; 𝑑𝑛)| < 𝜖𝑠𝑒𝑐𝑎𝑛𝑡 and return 𝜂𝑛 = 𝜂, 𝑔𝑛+1 = 𝑔𝑛 + 𝜂𝑑𝑛, and 𝐽 (𝑔𝑛+1). In practice, we choose 𝜖𝑠𝑒𝑐𝑎𝑛𝑡 = 1e−10.

The forward tracking of finding 𝜂1, bisection, and secant are all iterative and in each iteration, the directional derivative
𝐷𝐽 (𝑔𝑛 + 𝜂𝑛𝑖 𝑑

𝑛; 𝑑𝑛) is computed for an iterative index 𝑖. Because this derivative is only in one direction 𝑑𝑛, we adopt the FD method
which uses two evolutions of 𝜃, one for 𝐽 (𝑔𝑛 + 𝜂𝑛𝑖 𝑑

𝑛), one for 𝐽 (𝑔𝑛 +(𝜂𝑛𝑖 + 𝛿)𝑑
𝑛). This is simpler than the VF method (see comparisons
11

n Table 4 when 𝑀 = 1). If 𝑁𝑒𝑥𝑎𝑐𝑡 steps are used in the whole algorithm, then there are 2𝑁𝑒𝑥𝑎𝑐𝑡 evolutions. From our experience,

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

I

L

N

𝑎
(

o
m
T
i
m
l
c

3

i

3

T
m

Table 5
Comparison of line search methods of computing the step size 𝜂.
Method Backtracking Exact line search Linearization

Evolutions of transport equations 2 to 3 on average 15 on average 1
Guarantee descent? Yes Almost yes No
Exact local minimizer? No Yes No
Comments Mainly used with steepest

descent method
Mainly used with conjugate
gradient method

Low efficiency: solution 𝜂 is often too
small. Not used in this work.

this whole process of the exact line search takes about 8 iterations on average, which is about 16 evolutions of 𝜃. This is far more
expensive than the backtracking method which uses only 2 evolutions on average in each line search.

To guarantee the step size 𝜂𝑛 is a local minimizer instead of a local maximizer or saddle point, the interval [0, 𝜂1] should be
small enough such that it does not contain any other roots of 𝑓 ′. But it is difficult to actualize it because it is too time consuming
to find all the roots in this interval. Fortunately, among over thousands of exact line searches in this work, we only find only one
case where the step size increases the cost value. Therefore, we claim this method ‘‘almost guarantees descent’’.

3.5.3. Linearization method
A linearization process has been proposed in [35] to approximate the step size in the line search in an optimal control problem

subject to an reaction–advection–diffusion system. This motivates us to develop a similar approach. We first linearize the relation
between 𝜃 and 𝑔𝑛 + 𝜂𝑑𝑛 as

𝜃(𝑔𝑛 + 𝜂𝑑𝑛) ≈ 𝜃(𝑔𝑛) + 𝜂 ⋅𝐷𝜃(𝑔𝑛; 𝑑𝑛) (3.18)

and denote 𝑧 ≜ 𝐷𝜃(𝑔𝑛; 𝑑𝑛). Then the objective function 𝐽 (𝑔𝑛 + 𝜂𝑑𝑛) is replaced by the linearized version

𝐽𝐿(𝑔𝑛 + 𝜂𝑑𝑛) =
1
2
(𝛬−2(𝜃(𝑔𝑛) + 𝜂𝑧), 𝜃(𝑔𝑛) + 𝜂𝑧)(𝑇) +

𝛾
2 ∫

𝑇

0
⟨𝑔𝑛 + 𝜂𝑑𝑛, 𝑔𝑛 + 𝜂𝑑𝑛⟩𝛤 𝑑𝑡. (3.19)

ts derivative on 𝜂 is

𝐷𝐽𝐿(𝑔𝑛 + 𝜂𝑑𝑛; 𝑑𝑛) = (𝛬−2(𝜃(𝑔𝑛) + 𝜂𝑧), 𝑧)(𝑇) + 𝛾 ∫

𝑇

0
⟨𝑔𝑛 + 𝜂𝑑𝑛, 𝑑𝑛⟩𝛤 𝑑𝑡. (3.20)

etting it be zero, we get the critical value

𝜂𝑛 = −
(𝛬−2𝜃(𝑔𝑛), 𝑧)(𝑇) + 𝛾 ∫ 𝑇0 ⟨𝑔𝑛, 𝑑𝑛⟩𝛤 𝑑𝑡

(𝛬−2𝑧, 𝑧)(𝑇) + 𝛾 ∫ 𝑇0 ⟨𝑑𝑛, 𝑑𝑛⟩𝛤 𝑑𝑡
= −

(𝐷𝐽 (𝑔𝑛), 𝑑𝑛)𝑈𝑎𝑑
(𝛬−2𝑧, 𝑧)(𝑇) + 𝛾 ∫ 𝑇0 ⟨𝑑𝑛, 𝑑𝑛⟩𝛤 𝑑𝑡

. (3.21)

To determine 𝑧, we take the Gâteaux derivative on Eq. (2.1) and the initial value (2.5) and obtain
𝜕𝑧
𝜕𝑡

+ 𝑣(𝑔𝑛) ⋅ ∇𝑧 + 𝑣(𝑑𝑛) ⋅ ∇𝜃(𝑔𝑛) = 0, (3.22)

𝑧(𝑡 = 0) = 0. (3.23)

ote 𝑣(𝑔𝑛) = 𝐿(𝑔𝑛) and 𝑣(𝑑𝑛) = 𝐿(𝑑𝑛). Thus, to evaluate 𝜂𝑛, we first evolve 𝑧 with (3.22)–(3.23) and then compute it from (3.21).
In this method, the product 𝜂𝑛𝑑𝑛 is scale invariant, i.e., if 𝑑𝑛 multiplies a positive number 𝑎, then 𝜂𝑛 value will be decreased by

. Indeed, if 𝑑𝑛 is increased by 𝑎 folds, then 𝑧 will be also increased by 𝑎 folds (because 𝑧 is linear on 𝑑𝑛 in (3.22)), and then 𝜂𝑛 in
3.21) will be decreased by 𝑎.
There are two issues with this linearization methods based on our numerical tests. First, the step sizes obtained by this method are

ften ten to a few hundred times smaller than those computed by the backtracking and exact line search methods, which makes this
ethod very inefficient. Second, when this method is combined with the conjugate gradient method, the cost value often increases.
his is because the combined method cannot guarantee that the new search direction is descent, that is, 𝐷𝐽 (𝑔𝑛+1; 𝑑𝑛+1) < 0. Indeed,
n the calculation in (3.24) and (3.25), 𝐷𝐽 (𝑔𝑛+1; 𝑑𝑛) is not guaranteed to be zero. Instead, 𝐷𝐽𝐿(𝑔𝑛+1; 𝑑𝑛) is zero in this linearization
ethod due to the choice of 𝜂𝑛 in (3.21). That is, 𝜂𝑛 is a local minimizer of 𝐽𝐿(𝑔𝑛 + 𝜂𝑑𝑛), instead of 𝐽 (𝑔𝑛 + 𝜂𝑑𝑛). Due to the nature of
inearization, this method should provide a good approximation of the exact line search only when the exact step size is sufficiently
lose to zero, which is not often the case. Therefore, this method is not used in our work.

.5.4. Summary of line search methods
Table 5 summarizes the performance of these line search methods based on the simulations of this work. The linearization method

s not used extensively in this work due to its low efficiency. We mainly use the backtracking and exact line search methods.

.6. Descent direction 𝑑𝑛 and the entire optimization algorithms

This section describes two choices of the descent directions: the steepest descent direction and the conjugate gradient direction.
o simplify the presentation, we use these two directions to name the entire optimization algorithms, that is, the steepest descent
12

ethod and the conjugate gradient method.

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

i
I

T
s
|

m
c

3.6.1. Steepest descent (SD) method
The steepest descent method uses the negative Gâteaux derivative as the descent search direction, i.e., 𝑑𝑛 = −𝐷𝐽 (𝑔𝑛). This

method is described in Algorithm 3.8. Through trials, we find the exact line search applied to the SD method not only requires many
evolutions in each line search, but also takes many steepest descent steps to converge. Therefore, we will only use backtracking with
steepest descent method. In this work, we set MAXITER = 10000 and 𝜖 = 1e−5 for both steepest descent and conjugate gradient
methods in most cases.

Algorithm 3.8 Steepest descent method

• Input: initial control 𝑔0, maximum iteration number MAXITER, stopping criterion 𝜖.
• Output: a local minimizer of 𝐽 .
• Before iteration: compute 𝐽 (𝑔0).
• For 𝑛 = 0, 1,… ,MAXITER,

(1) Compute 𝐷𝐽 (𝑔𝑛) with FD or VF or Hybrid method.
(2) If ||𝐷𝐽 (𝑔𝑛)||𝑈𝑎𝑑 ∕(1 + 𝐽 (𝑔

𝑛)) < 𝜖, stop and output 𝑔𝑛 as a local minimizer.
(3) Let 𝑑𝑛 = −𝐷𝐽 (𝑔𝑛).
(4) Use a line search method with 𝑔𝑛 and 𝑑𝑛 to compute 𝜂𝑛 and then obtain 𝑔𝑛+1 = 𝑔𝑛 + 𝜂𝑛𝑑𝑛 and 𝐽 (𝑔𝑛+1).

3.6.2. Conjugate gradient (CG) method
The conjugate gradient method (e.g. [40, Section 13.4]) is widely used in optimization and its application in this work is given

n Algorithm 3.9. Note the exact line search is used with the conjugate gradient method to ensure that 𝑑𝑛+1 is a descent direction.
ndeed,

𝐷𝐽 (𝑔𝑛+1; 𝑑𝑛+1) = 𝐷𝐽 (𝑔𝑛+1; −𝐷𝐽 (𝑔𝑛+1) + 𝛽𝑛𝑑𝑛) (3.24)
= −‖𝐷𝐽 (𝑔𝑛+1)‖2𝑈𝑎𝑑 + 𝛽

𝑛𝐷𝐽 (𝑔𝑛+1; 𝑑𝑛). (3.25)

o guarantee the negativity of 𝐷𝐽 (𝑔𝑛+1; 𝑑𝑛+1) when ‖𝐷𝐽 (𝑔𝑛+1)‖𝑈𝑎𝑑 approaches the tolerance 𝜖, the value |𝛽𝑛𝐷𝐽 (𝑔𝑛+1; 𝑑𝑛)| should be
maller than 𝜖2. In this work, we use 𝜖 = 1e−5 and the tolerance in the exact line search as 1e−10, that is, 𝑔𝑛+1 is accepted when
𝐷𝐽 (𝑔𝑛+1; 𝑑𝑛)| <1e−10 in the exact line search.

Algorithm 3.9 Conjugate gradient method

• Input: initial control 𝑔0, maximum iteration number MAXITER, stopping criterion 𝜖,
• Output: a local minimizer of 𝐽 .
• Before iteration: compute 𝐽 (𝑔0), 𝐷𝐽 (𝑔0), and let 𝑑0 = −𝐷𝐽 (𝑔0).
• For 𝑛 = 0, 1,… ,MAXITER,

(1) If ||𝐷𝐽 (𝑔𝑛)||𝑈𝑎𝑑 ∕(1 + 𝐽 (𝑔
𝑛)) < 𝜖, stop and output 𝑔𝑛 as a local minimizer.

(2) Use the exact line search Algorithm 3.7 with 𝑔𝑛 and 𝑑𝑛 to compute 𝜂𝑛 and then obtain 𝑔𝑛+1 = 𝑔𝑛 + 𝜂𝑛𝑑𝑛 and 𝐽 (𝑔𝑛+1).
(3) Compute 𝐷𝐽 (𝑔𝑛+1) with FD or VF or Hybrid method.

(4) Compute the parameter 𝛽𝑛 =
||𝐷𝐽 (𝑔𝑛+1)||2𝑈𝑎𝑑
||𝐷𝐽 (𝑔𝑛)||2𝑈𝑎𝑑

.

(5) Compute the new search direction 𝑑𝑛+1 = −𝐷𝐽 (𝑔𝑛+1) + 𝛽𝑛𝑑𝑛.

3.7. A convergence test of the optimization algorithms

In this convergence study, we compare the steepest descent method with the backtracking line search and the conjugate gradient
ethod with the exact line search. The control function space is chosen as 𝑈2

𝑎𝑑 = span{𝑔𝑏1 = 1[0,0.5], 𝑔𝑏2 = 1[0.5,1]}. In the stopping
riterion, ‖𝐷𝐽 (𝑔𝑛)‖𝑈𝑎𝑑 ∕(1 + 𝐽 (𝑔

𝑛)) < 𝜖 of Algorithms 3.8 and 3.9, 𝜖 is set as 1e−5, 5e−6, 1e−6 when ℎ = 0.1, 0.05, 0.025 respectively.
The initial guess is 𝛼0 = (15, 15). Both the steepest descent and conjugate gradient solutions converge approximately to the same
local minimizer 𝛼 = (−2.06, 11.81) (see Table 6), where the corresponding 𝜃 at 𝑡 = 1 is plotted in Fig. 5[c]. The steepest descent
method shows the typical zigzag path of solutions (Fig. 5[b]), as seen in [40, page 408]. Although the relayed conjugate gradient
method uses far less iteration steps towards the minimizer than the relayed steepest descent method (5 steps vs 44 steps), it indeed
takes roughly the same amount of CPU time (between 7 and 9 h). This is because the conjugate gradient method uses many more
evolutions in each line search, which results in roughly the same number of total evolutions (roughly 90). Most importantly, the
relay schemes significantly save the computational time: they converge within 9 h but the non-relayed schemes take one or two
13

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

m
i

𝜃

d
c
r
o

4

b
f
a

f
m
T
F

Fig. 5. [a, b, c]: Plots of 𝜃 at 𝑡 = 1 in the conjugate gradient algorithm. [d, e]: paths of iterative solutions 𝛼𝑛 = (𝛼𝑛1 , 𝛼
𝑛
2) of the relayed methods on the cost

ap. The red marker and line refer to the solutions on the mesh with ℎ = 0.1, the yellow ones with ℎ = 0.05, and the green ones with ℎ = 0.025. The iteration
nformation is given in Table 6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6
Convergence information of SD with backtracking line search and CG with exact line search.

non-relay SD relay SD non-relay CG relay CG

ℎ = 0.1 CPU time: 15 min ⇐ same as left 15 min ⇐ same as left
steps: 17 steps 3 steps
minimizer: (1.94, 10.19) (−2.81, 12.09)
cost: 3.07013e−02 3.06672e−02

ℎ = 0.05, CPU time: 5 hr 1 hr 49 min 2 hr 2 min 6 min
steps: 39 steps 24 steps 2 steps 0 steps
minimizer: (−1.01, 11.33) (−0.97, 11.31) (−2.11, 11.81) (−2.81, 12.09)
cost: 3.10956e−02 3.10957e−02 3.10929e−02 3.10941e−02

ℎ = 0.025, CPU time: 48 hr 41 min 5 hr 22 min 24 hr 8 hr 24 min
steps: 40 steps 3 steps 3 steps 2 steps
minimizer: (−1.66, 11.61) (−2.00, 11.77) (−2.06, 11.81) (−2.06, 11.81)
cost: 3.119671e−2 3.119639e−2 3.119638e−2 3.119638e−2

Relay total CPU time,
steps, evols in LS:

7 hr 26 min, 44
steps, 93 evols

8 hr 45 min, 5
steps, 88 evols

Abbreviations: SD = steepest descent, CG = conjugate gradient, 2 hr 30 min = 2 h 30 min, steps = SD or CG iteration steps, 93 eolvs in LS = 93 evolutions of
in line search.

ays on the finest mesh used in the relayed schemes. The solution paths (Fig. 5[de]) manifest the search on the coarsest mesh gets
lose to the final solution, which makes the remaining search on the finer meshes much easier. Although the mixed scalar looks
ough on the coarsest mesh (Fig. 5[a], it does not prevent the relay algorithm to converge to a local minimizer. This is a hallmark
f all the relay simulations in this work.

. Optimization simulations

This section applies the optimization algorithms developed in this work to study the boundary controlled mixing with the control
asis functions mentioned in Section 3.2.1 through extensive numerical experiments. We first describe the flow patterns and mixing
eatures of each control basis function, and then combine them together to study the optimal mixing. All the numerical simulations
re performed in Michigan State University’s High Performance Computing Center (HPCC).
The physical setup and the initial values are introduced at the end of Section 2.1. When the optimization algorithms are called

or a set of control basis {𝑔𝑏𝑖 ∶ 𝑖 = 1,… ,𝑀}, we apply the relay Algorithm 3.2 with three meshes of ℎ = 0.1, 0.05, 0.025. To handle
ultiple local minimizers, 5 different initial guesses of 𝛼 = (𝛼1,… , 𝛼𝑀) are tested on the coarsest mesh for each set of control basis.
hese initial vectors 𝛼 are randomly chosen where each component 𝛼𝑖, 𝑖 = 1,… ,𝑀 , is uniformly distributed from −100 to 100.
or each initial guess of 𝛼, we apply both the steepest descent and conjugate gradient methods to find the optimal solutions, where
14

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

c

t
i
s
A

4

𝜔

v
c

t

Fig. 6. Flow patterns for 𝑔 = 1, cos(𝜔), sin(𝜔), cos(2𝜔), sin(2𝜔) at time 𝑡 = 1 (from left to right).

Fig. 7. Evolution of the maximum speed of velocity for five elementary control functions. [a]: the controls are applied in the entire time interval [0, 1]. [b]: the
ontrols are only applied in the time interval [0, 0.1]. The fluid-wall friction parameter 𝑘 = 0.5.

hese two solutions are generally different. Afterwards, the one with the smallest cost is relayed to the intermediate mesh and finally
s sent to the finest mesh. The computation of the cost gradient is by the hybrid method in Section 3.4.5. The line search for the
teepest descent method is the backtracking Algorithm 3.6 and the one for the conjugate gradient method is the exact line search
lgorithm 3.7. The parameter 𝜖 in the stopping criterion of SD and CG methods is 𝜖 = 1e−5 for all the simulations in this section.

.1. Flow patterns of control basis functions

In this work, the controls are divided into five types based on five elementary functions: 1, cos(𝜔), sin(𝜔), cos(2𝜔), sin(2𝜔), where
∈ [0, 2𝜋) (see details in Section 3.2.1). The 𝑈𝑎𝑑 -norm is

√

2𝜋 for 𝑔 = 1 and
√

𝜋 for other functions. Their flow patterns at time
𝑡 = 1 are shown in Fig. 6. There exist one vortex for 𝑔 = 1, two vortices for cos(𝜔) and sin(𝜔), and four vortices for cos(2𝜔) and
sin(2𝜔).

When 𝑔 = 1, a radially symmetric analysis (Appendix A.6) shows the velocity field has a unique steady state with radial
component 𝑣𝑟 = 0 and angular component 𝑣𝜑 = 𝑔∕𝑘𝑟, along with a zero pressure field. Apparently this steady state velocity does not
induce any mixing because it is simply a rigid rotation. Therefore, the mixing for 𝑔 = 1 occurs only when the velocity is unsteady.
The evolution of the maximum speeds in the domain of these elementary control functions are shown in Fig. 7[a]. The flow of 𝑔 = 1
reaches the steady state around 𝑡 = 3.8, while the flows of cos(𝜔) and sin(𝜔) reach the steady states with maximum speed 0.4 around
𝑡 = 0.6. The flows of cos(2𝜔) and sin(2𝜔) reach the steady states with maximum speed 0.22 around 𝑡 = 0.3. Note when the initial
velocity is zero, the time scale for the flow induced by 𝛼𝑔, 𝛼 ≠ 0, to reach the steady state is independent of 𝛼, due to the linearity
of the flow to the control.

When the control is only applied in a time segmentation interval, the flow velocity will decay to zero over time after the control
is turned off due to viscous dissipation and boundary wall friction. Fig. 7[b] shows the evolution of the maximum speed where
the five elementary functions are applied only in the time interval [0, 0.1]. When the time segmentation interval is [0.1𝑛, 0.1(𝑛 + 1)],
𝑛 = 1,… , 9, the corresponding flow can be obtained by simply shifting by 0.1𝑛 units to the positive time direction the flow generated
by the same elementary function applied on [0, 0.1]. It is noticed that the flow decays to zero far faster when it is generated by a
cosine or sine function than by the function 1. This is produced by the extra dissipation between multiple vortices from a cosine or
sine control function, in contrast to only one vortex from the control 1 (see Fig. 6).

4.2. Optimization by each single control type

This part is devoted to the mixing properties of each of the five types of control basis functions. First, we compute the mix-norms
and costs at 𝑡 = 1 with Algorithm 3.4 for the controls 𝑔 = 𝛼𝑔𝑏, where 𝑔𝑏 is one of the five elementary functions and 𝛼 takes integer
alues in [0, 100]. This corresponds to the time segmentation number 𝑁 = 1. Afterwards, we use the optimization algorithms to
ompute the optimal solution when 𝑁 = 10 for each type of control basis functions.
The most striking property is the existence of multiple local minimizers of the mix-norm for most control basis functions when

he coefficient 𝛼 varies, according to Fig. 8[a]. When 𝛾 = 1e−6, the cost also has multiple local minimizers (Fig. 8[b]). Because one
15

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

a
s
d
i

a
s
t
c
m

Fig. 8. Mix-norms and costs of five elementary functions when 𝛼 ∈ [0, 100].

Fig. 9. Plotings of 𝜃 at 𝑡 = 1 on the mesh of ℎ = 0.025. The first row is when 𝛼 = 100 in 𝑔 = 𝛼𝑔𝑏, the second row is for the optimal solutions when 𝑁 = 1, and
the third row is for the optimal solutions when 𝑁 = 10.

Table 7
Mixing information of single type of control basis functions.

𝛼 = 100 and 𝑁 = 1 Optimal solution when 𝑁 = 1 Optimal solution when 𝑁 = 10 CRP

Mix-norm g-norm Cost Mix-norm g-norm cost Mix-norm g-norm Cost

1 6.34e−2 2.51e+2 3.34e−2 1.12e−1 1.23e+2 1.39e−2 1.10e−1 1.17e+2 1.30e−2 6%
cos(𝜔) 6.07e−2 1.77e+2 1.76e−2 1.18e−1 7.62e+1 9.84e−3 9.32e−2 9.44e+1 8.79e−3 11%
sin(𝜔) 1.15e−1 1.77e+2 2.24e−2 1.30e−1 1.06e+2 1.41e−2 1.11e−1 1.10e+2 1.22e−2 13%
cos(2𝜔) 1.84e−1 1.77e+2 3.27e−2 1.80e−1 9.57e+1 2.08e−2 1.82e−1 6.87e+1 1.89e−2 9%
sin(2𝜔) 9.93e−2 1.77e+2 2.06e−2 1.20e−1 5.67e+1 8.78e−3 1.13e−1 6.46e+1 8.42e−3 4%

CRP = Cost Reduction Percentage from 𝑁 = 1 case to 𝑁 = 10 case.

initial guess only leads to one local minimizer in an optimization algorithm, multiple initial guesses are needed in order to achieve
the global minimizer.

The second property is that the better mixing quality, identified with the lower mix-norm, corresponds to the larger control
strength in general (Fig. 8[a]), and thus the larger velocity magnitude because the flow velocity is linearly dependent on the control.
The mixed scalar fields at 𝑡 = 1 when 𝛼 = 100, the largest control strength considered, are shown in Fig. 9[a–e], each of which has
lmost the smallest mix-norm in the same control type. On the other hand, the scalar fields at 𝑡 = 1 with the smallest costs in the
ame control type when 𝑁 = 1 are shown in Fig. 9[f–j]. The data of the mix-norms, g-norms, and costs of these simulations are
isplayed in Table 7. From the relation between the scalar field renderings and their mix-norms, it appears that a better mixed field
s characterized by thinner and longer filaments.
The third property is that the mixing quality of one control type is limited by its specific flow pattern. By comparing Figs. 6

nd 9, we can tell Type 1 takes the entire domain as a single mixing zone, Type cos(𝜔) and Type sin(𝜔) divide the domain into two
eparate mixing zones, and Type cos(2𝜔) and Type sin(2𝜔) divide the domain into four isolated mixing zones. In each mixing zone,
he mixing is performed by rotating the scalar around the center. If a mixing zone is predominantly occupied by one value or one
olor, then the mixing would not be effective due to the lack of mass exchange between different zones. For example, in the four
16

ixing zones of the control cos(2𝜔), the color of 𝜃 is predominantly blue in the upper zone and predominantly yellow in the lower

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

W

m

c
s

A
e

4

s
e
m
b
o
c

Fig. 10. Optimal solutions 𝛼 for 𝑁 = 1 and 𝑁 = 10 for different control basis functions. The black dashlines are for 𝑁 = 1 and the red solid lines are for 𝑁 = 10.
hen 𝑁 = 1, 𝛼 = 49, 43, 60, 54, 32 from left to right.

Fig. 11. Optimal solutions 𝛼 = (𝛼1(𝑡),… , 𝛼5(𝑡)) in 𝑔 =
∑5
𝑖=1 𝛼𝑖(𝑡)𝑔

𝑏
𝑖 , where 𝑔𝑏1 = 1, 𝑔𝑏2 = cos(𝜔), 𝑔𝑏3 = sin(𝜔), 𝑔𝑏4 = cos(2𝜔), and 𝑔𝑏5 = sin(2𝜔).

Fig. 12. Snapshots of 𝜃 at 𝑡 = 0, 0.1,… , 1 of the optimal solutions with five types of control. First row: 𝑁 = 1. Second row: 𝑁 = 2. Third row: 𝑁 = 10.

zone all the time during the mixing process no matter how 𝛼 changes (see Fig. 12 at 𝑡 = 0 and Fig. 9[d, i, n]). This is why the
ix-norm refuses to decrease when 𝛼 exceeds 50 for cos(2𝜔) (see Fig. 8[a]).
The purpose of time segmenting is to provide control flexibility in time to reduce cost. This is modestly successful because the

ost reduction rates from 𝑁 = 1 to 𝑁 = 10 are only between 4% and 13%, as seen in Table 7. The mix-norms when 𝑁 = 10 are also
maller than those when 𝑁 = 1 in the same type of control except for Type cos(2𝜔). To easily plot the control solution, we express
the control as 𝑔 = 𝛼𝑔𝑏 where 𝛼 =

∑𝑁
𝑖=1 𝛼𝑖𝜒

𝑁
𝑖 (𝑡) and 𝑔𝑏 is one of the five elementary functions. The optimal solutions 𝛼 are plotted

in Fig. 10, which are very different between 𝑁 = 1 and 𝑁 = 10 cases for the same type of control. The scalar field of the optimal
solution when 𝑁 = 10 does not differ much from that when 𝑁 = 1 of the same control type (see Fig. 9 second and third rows).
ll of these facts indicate that under single control types investigated in this work, modulating the time segmentation is not very
fficient in cost reduction.

.3. Optimization by combined control types

In this section, all the five types of controls used in the last section are combined together to steer mixing, where the time
egmentation number 𝑁 is chosen as 𝑁 = 1, 2, 10. The optimal solutions of the control are shown in Fig. 11. The snapshots of time
volution of the density in the optimal mixing of each value of 𝑁 are illustrated in Fig. 12, which show that the morphology is
ore complicated when 𝑁 is larger. Furthermore, when 𝑁 is larger, the mix-norm, g-norm, and the cost of the optimal solution
ecome smaller (Table 8). The minimum cost of the combined control types is 2.37e−3, which is 28% of the smallest cost 8.42e−3
f only one control type, corresponding to 𝑔𝑏 = sin(2𝜔) in Table 7. This supports the usage of multiple control types to reduce the
ost. The mix-norms of these optimal solutions demonstrate the exponential decay in the time window [0.6, 1] (Figire 13). Fig. 14
illustrates the details how the mix-norm, g-norm, and cost decrease with the iteration number in the relay algorithm.
17

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.
Table 8
Information of optimal solutions when all five types of controls are combined.
𝑁 Mix-norm g-norm Cost

1 7.55e−2 8.71e+1 6.64e−3
2 6.20e−2 6.70e+1 4.17e−3
10 3.68e−2 5.83e+1 2.37e−3

Fig. 13. Mix-norm decay over time of three optimal solutions with the combined control types.

Fig. 14. Decays of the cost [a], mix-norm [b], and g-norm [c] with respect to iterations in the relay algorithm. The small vertical black bars represents the
relay moments when a coarse mesh is replaced with a fine mesh.

5. Conclusions

This work is the first numerical study of optimal mixing through tangential force exerted on the boundary in the unsteady Stokes
flows. In the absence of diffusion, transport and mixing occur due to pure advection. Built upon the theoretical foundation laid by
Hu and Wu, an accurate and efficient optimization algorithm is proposed. The entire algorithm is sophisticated due to the nature
of the problem and has many new techniques, which are summarized below.

(1) The boundary control is focused on a finite number of basis functions with time segmentation. Given the zero initial velocity
field, the linear relation between the flow and the control allows the generation of the velocity basis before the optimization
process, thus saving the simulation time.

(2) The computation of the gradient of the cost functional is crucial to the numerical accuracy, where a hybrid method is
developed to treat different control basis functions with appropriate methods (finite difference or variational formula).

(3) The combination of several line search methods and descent direction choices are investigated. Specifically, the following two
pairs work well: the steepest descent method with the backtracking line search, and the conjugate gradient method with the
exact line search. The simulations demonstrate that the latter performs slightly better than the former in most simulations,
but not significantly.

(4) A relay process is placed on the top of this optimization algorithm by repeatedly refining the search from a coarser mesh
to a finer one. Numerical tests in Section 3.7 show that this process produces accuracy results while significantly saving the
computational time.
18

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

t
v
o
z
a
f
r

b
t
e
c

t
b
a
i

D

t

D

A

b
W
s
S

A

A

a
s

T

The numerical simulations reveal the following physical features of mixing by the boundary control design.

(1) The mixing efficacy of only one single type of control function may be limited by the fixed flow pattern, as shown in
Section 4.2. The different control types derived from cos(𝜔), sin(𝜔), cos(2𝜔), sin(2𝜔) have separatrices in the domain. But
when these types are combined and added the Type 1 control, the separatrices are eliminated. This is consistent with the
observation in [6], where the wall rotation removes the separatrices produced by the internal mixing. Furthermore, the time
segmentation of a control, similar to the chaotic mixing strategy, can furthermore increase the mixing efficacy.

(2) The result of the boundary control can be comparable to that of the internal control, which can be seen from the comparison of
the mixed density in Section 4.3 with those in [31], where the velocity field is generated by the internal stirring. In addition,
it is observed that the mix-norm of the scalar field under the optimal boundary control reaches the exponential decay rate.

Another unique feature of this work is the use of the dynamic control, where a force is modulated to steer mixing. In contrast, all
he existing works from other researchers mentioned at the beginning of Section 1.2 have employed the kinematic control, that is, a
elocity field is directly modulated. One intrinsic difference between these two types of controls is the inertia, i.e., the perseverance
f the motion until it is changed by a force. In the case of dynamic controls, the velocity takes a certain time to accelerate from
ero to a field with effective mixing when the force is started, and another time duration to decelerate to negligible magnitude
fter the force is withdrawn. This can be seen clearly in Fig. 7. However, in the case of kinematic controls, a prescribed velocity
ield is modulated in an arbitrary manner without consideration of any inertia effects. Therefore, the dynamic control would better
epresent the reality in the mixing problems where the inertia effect is significant.
The optimal control model and numerical methods can be straightforwardly extended to the three dimensional case. First, the

oundary control design for the optimal mixing has been shown to be valid in both two and three spatial dimensions [18]. Second,
he numerical methods, including the optimization algorithms and the solvers for the unsteady Stokes equations and transport
quations can be directly extended to three dimensional space. The apparent challenge will be the more storage and computational
osts when one extra spatial dimension is added.
This work focuses on the tangential boundary force control with the Navier slip boundary conditions, which can model the

angential cilia beating in the inner membrane of vertebrate organs. As described in Section 1.1, there are many examples of
oundary driven mixing in nature and industry, including rotating wall driven mixing, mircomixers with acoustic waves, and
rtificial cilia mixing. Therefore, there is a big potential to extend this work to these applications and beyond. Furthermore, it
s interesting to study the effects of combining it with internal controls for optimal mixing problems.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

X. Zheng was partially supported by the National Science Foundation of USA Grant DMS-2309747. W. Hu was partially supported
y the National Science Foundation of USA grants DMS-2005696 (previously DMS-1813570), DMS-2111486 and DMS-2205117. J.
u was partially supported by the National Science Foundation of USA grants DMS-2104682 and DMS-2309748. This work was
upported in part by computational resources and services provided by HPCC of the Institute for Cyber-Enabled Research at Michigan
tate University, USA through a collaboration program of Central Michigan University, USA.

ppendix

.1. Derivation of the Gâteaux derivative

The rigorous derivation of the first-order optimality system for 𝑈𝑎𝑑 = 𝐿2(0, 𝑇 ;𝐿2(𝛤)) has been addressed in [18], using an
pproximating control approach. Here we provide a short and formal derivation by assuming that all the involved functions are
ufficiently smooth and all the operations are valid.

heorem A.1. With the governing Eqs. (2.1)–(2.5), the Gâteaux derivative of 𝐽 with respect to 𝑔 in the direction 𝜑 ∈ 𝑈𝑎𝑑 is given by

𝐷𝐽 (𝑔;𝜑) = ∫

𝑇

0
(𝜃(𝑔)∇𝜌(𝑔), 𝐿𝜑) 𝑑𝑡 + 𝛾 ∫

𝑇

0
⟨𝑔, 𝜑⟩𝛤 𝑑𝑡, (A.1)

where 𝜌(𝑔) is the adjoint state satisfying (2.15)–(2.16) and 𝐿𝜑 is the velocity field governed by the Stokes system (2.2)–(2.5) with 𝑣0 = 0
19

and the tangential boundary control 𝑔 replaced by 𝜑.

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.
Proof. Recall from (2.9) that 𝐽 (𝑔) = 1
2 (𝛬

−2𝜃(𝑇), 𝜃(𝑇)) + 𝛾
2 ∫

𝑇
0 ⟨𝑔, 𝑔⟩𝛤 𝑑𝑡. Taking the Gâteaux derivative of 𝐽 at 𝑔 in the direction 𝜑

gives

𝐷𝐽 (𝑔;𝜑) = (𝛬−2𝜃(𝑇), 𝐷𝜃(𝑔;𝜑)(𝑇)) + 𝛾 ∫

𝑇

0
⟨𝑔, 𝜑⟩𝛤 𝑑𝑡, (A.2)

where 𝐷𝜃(𝑔;𝜑)(𝑇) is the Gâteaux derivative of 𝜃 at 𝑔 in the direction 𝜑 at time 𝑇 . Let 𝑧 ≜ 𝐷𝜃(𝑔;𝜑) and 𝑤 ≜ 𝐷𝑣(𝑔;𝜑). Then 𝑧 satisfies
𝜕𝑧
𝜕𝑡

+ 𝑣 ⋅ ∇𝑧 +𝑤 ⋅ ∇𝜃 = 0, (A.3)

𝑧(0) = 0. (A.4)

Using the notation 𝑣(𝑔) = 𝐿(𝑔) and the linearity of 𝐿 when 𝑣0 = 0, we have 𝑤 = 𝐷𝐿(𝑔;𝜑) = 𝐿(𝜑), which is also divergence free and
𝐿(𝜑) ⋅ 𝑛|𝛤 = 0. Next, taking the inner produce of (A.3) with 𝜌 and integrating with respect to 𝑡 over [0, 𝑇], we get

∫

𝑇

0

(𝜕𝑧
𝜕𝑡
, 𝜌
)

𝑑𝑡 + ∫

𝑇

0
(𝑣 ⋅ ∇𝑧, 𝜌) 𝑑𝑡 + ∫

𝑇

0
(𝐿(𝜑) ⋅ ∇𝜃, 𝜌) 𝑑𝑡 = 0. (A.5)

Using (𝑣 ⋅ ∇𝑧, 𝜌) = −(𝑣 ⋅ ∇𝜌, 𝑧) and (A.4), the above equation becomes

(𝜌(𝑇), 𝑧(𝑇)) − ∫

𝑇

0

(

𝑧,
𝜕𝜌
𝜕𝑡

)

𝑑𝑡 − ∫

𝑇

0
(𝑣 ⋅ ∇𝜌, 𝑧) 𝑑𝑡 + ∫

𝑇

0
(𝐿(𝜑) ⋅ ∇𝜃, 𝜌) 𝑑𝑡 = 0. (A.6)

Since 𝜌 satisfies (2.15) and (2.16), it follows from (A.6) that

(𝛬−2𝜃(𝑇), 𝐷𝜃(𝑔, 𝜑)(𝑇)) = (𝜌(𝑇), 𝑧(𝑇)) = −∫

𝑇

0
(𝐿(𝜑) ⋅ ∇𝜃, 𝜌)𝑑𝑡. (A.7)

Finally, plugging (A.7) into (A.2) yields

𝐷𝐽 (𝑔;𝜑) = −∫

𝑇

0
(𝐿(𝜑) ⋅ ∇𝜃, 𝜌)𝑑𝑡 + 𝛾 ∫

𝑇

0
⟨𝑔, 𝜑⟩𝛤 𝑑𝑡 = ∫

𝑇

0
(𝜃∇𝜌, 𝐿(𝜑))𝑑𝑡 + 𝛾 ∫

𝑇

0
⟨𝑔, 𝜑⟩𝛤 𝑑𝑡.

Remark A.2. This theorem still holds when the initial velocity 𝑣0 ≠ 0. In this case, 𝑣(𝑔) = 𝐿(𝑔) + 𝑣̃ where 𝑣̃ is the velocity
field generated by 𝑣0 through the Stokes system (2.2)–(2.4) with 𝑔 = 0. Since 𝑣̃ is independent of 𝑔, 𝐷𝑣̃(𝑔;𝜑) = 0. Thus,
𝐷𝑣(𝑔;𝜑) = 𝐷𝐿(𝜑)(𝑔, 𝜑) +𝐷𝑣̃(𝑔, 𝜑) = 𝐿(𝜑). Then the same proof holds.

A.2. Proof of Proposition 2.1

Proof. For any 𝑠 ∈ [0, 𝑇], taking the inner product of (2.1) with 𝜌 over 𝛺 and integrating in time from 𝑠 to 𝑇 gives

∫

𝑇

𝑠
(𝜃𝑡, 𝜌) 𝑑𝑡 + ∫

𝑇

𝑠
(𝑣 ⋅ ∇𝜃, 𝜌) 𝑑𝑡 = 0. (A.8)

Integration by parts leads to

(𝑣 ⋅ ∇𝜃, 𝜌) = ⟨𝑣 ⋅ 𝑛, 𝜃𝜌⟩𝛤 − (∇ ⋅ 𝑣, 𝜃𝜌) − (𝜃, 𝑣 ⋅ ∇𝜌) = −(𝜃, 𝑣 ⋅ ∇𝜌),

where the conditions ∇ ⋅ 𝑣 = 0 and 𝑣 ⋅ 𝑛|𝛤 = 0 are used. Thus, (A.8) becomes

∫

𝑇

𝑠
(𝜃, 𝜌)𝑡 − (𝜃, 𝜌𝑡)𝑑𝑡 − ∫

𝑇

𝑠
(𝜃, 𝑣 ⋅ ∇𝜌)𝑑𝑡 = 0.

This turns to

(𝜌(𝑇), 𝜃(𝑇)) − (𝜌(𝑠), 𝜃(𝑠)) = ∫

𝑇

𝑠
(𝜃, 𝜌𝑡 + 𝑣 ⋅ ∇𝜌) 𝑑𝑡.

Since 𝜌𝑡 + 𝑣 ⋅ ∇𝜌 = 0,

(𝜌(𝑇), 𝜃(𝑇)) = (𝜌(𝑠), 𝜃(𝑠)). (A.9)

A.3. Unsteady Stokes equations: Iterative projection/BDF2/Taylor–Hood finite element method

The standard Taylor–Hood P2/P1 elements are employed to approximate the velocity and pressure in the Stokes Eqs. (2.2)–(2.4).
That is, the velocity is approximated by the continuous piecewise quadratic functions and the pressure by the continuous piecewise
linear functions. Denote the triangulated domain as 𝛺ℎ where all the elements are triangles. The finite element spaces are defined
as

𝑉ℎ = {𝑤 = (𝑤1, 𝑤2) ∈ (𝐶0(𝛺))2 ∶ 𝑤 ⋅ 𝑛|𝛤 = 0, 𝑤𝑖|𝐾 ∈ 𝑃 2(𝐾), 𝑖 = 1, 2,∀𝐾 ⊂ 𝛺ℎ}, (A.10)
𝑄ℎ = {𝑞 ∈ 𝐶0(𝛺) ∶ 𝑞|𝐾 ∈ 𝑃 1(𝐾),∀𝐾 ⊂ 𝛺ℎ}, (A.11)

where 𝑛 is the unit outward normal on the boundary.
20

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

w

s
𝑝

T
(

i

A

w

w
q

The basis functions of 𝑉ℎ are chosen as follow. Denote the inner nodes of the mesh as 𝑥𝑖, 𝑖 = 1,… , 𝑁𝐼 and the boundary nodes as
𝑥𝐵𝑗 , 𝑗 = 1,… , 𝑁𝐵 . Denote 𝜙𝑖 as the scalar basis function that is continuous in 𝛺, piecewise quadratic in each element, taking value
1 at node 𝑖 and zero on all other nodes. Let vectors 𝑒1 = (1, 0)𝑇 and 𝑒2 = (0, 1)𝑇 . At an inner node 𝑥𝑖, there are two basis functions
of velocity, which are 𝜙𝑖𝑒1 and 𝜙𝑖𝑒2. At a boundary node 𝑥𝐵𝑗 , there is only one basis function, 𝜙𝑗𝑒𝜏 , where 𝑒𝜏 is the unit tangential
vector at 𝑥𝐵𝑗 .

The weak form of equations of (2.2)–(2.5) is finding 𝑣 ∈ 𝑉ℎ and 𝑝 ∈ 𝑄ℎ such that for all 𝑤 ∈ 𝑉ℎ and 𝑞 ∈ 𝑄ℎ,

∫𝛺
𝜕𝑣
𝜕𝑡

⋅𝑤 + 2∫𝛺
D(𝑣) ⋅ D(𝑤) + ∫𝛤

𝑘(𝑣 ⋅ 𝜏)(𝑤 ⋅ 𝜏) − ∫𝛺
𝑝∇ ⋅𝑤 = ∫𝛤

𝑔(𝑤 ⋅ 𝜏), (A.12)

∫𝛺
𝑞∇ ⋅ 𝑣 = 0, (A.13)

here 𝑣 = (𝑣1, 𝑣2)𝑇 , 𝑤 = (𝑤1, 𝑤2)𝑇 , D(𝑣) ⋅ D(𝑤) =
1
4
∑

𝑖,𝑗=1,2(𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖)(𝜕𝑖𝑤𝑗 + 𝜕𝑗𝑤𝑖).
An iterative projection method with BDF2 time discretization is used to solve the velocity and pressure [34]. Denote the numerical

olution at the time step 𝑡𝑠 as (𝑣𝑠, 𝑝𝑠). To obtain (𝑣𝑠+1, 𝑝𝑠+1), we use the following iterations with index 𝑙. For 𝑙 = 0, 1, 2,…, let
𝑠+1,0 = (2𝑝𝑠 − 𝑝𝑠−1), and

∫𝛺
1.5𝑣̃𝑠+1,𝑙+1 − 2𝑣𝑠 + 0.5𝑣𝑠−1

𝛥𝑡
⋅𝑤 + 2∫𝛺

D(𝑣̃𝑠+1,𝑙+1) ⋅ D(𝑤) + ∫𝛤
𝑘(𝑣̃𝑠+1,𝑙+1 ⋅ 𝜏)(𝑤 ⋅ 𝜏)

= ∫𝛺
𝑝𝑠+1,𝑙∇ ⋅𝑤 + ∫𝛤

𝑔(𝑤 ⋅ 𝜏), ∀𝑤 ∈ 𝑉ℎ, (A.14)

∫𝛺
∇𝜙𝑙+1 ⋅ ∇𝑞 = − 1

𝛥𝑡 ∫𝛺
𝑞(∇ ⋅ 𝑣̃𝑠+1,𝑙+1), ∀𝑞 ∈ 𝑄ℎ, (A.15)

∫𝛺
𝑝𝑠+1,𝑙+1𝑞 = ∫𝛺

(𝑝𝑠+1,𝑙 + 1.5𝜙𝑙+1 − ∇ ⋅ 𝑣̃𝑠+1,𝑙+1)𝑞, ∀𝑞 ∈ 𝑄ℎ, (A.16)

∫𝛺
𝑣𝑠+1,𝑙+1 ⋅𝑤 = ∫𝛺

𝑣̃𝑠+1,𝑙+1 ⋅𝑤 − 𝛥𝑡𝜙𝑙+1(∇ ⋅𝑤), ∀𝑤 ∈ 𝑉ℎ. (A.17)

he stopping criterion for the iterations is chosen as when ‖𝑝𝑠+1,𝑙+1 − 𝑝𝑠+1,𝑙‖𝐿2(𝛺) < 𝜀𝑠. When convergent, we let (𝑣𝑠+1, 𝑝𝑠+1) =
𝑣𝑠+1,𝑙+1, 𝑝𝑠+1,𝑙+1) and have the estimate

|

|

|

|

∫𝛺
𝑞(∇ ⋅ 𝑣𝑠+1)

|

|

|

|

< 𝜀𝑠,∀𝑞 ∈ 𝑄ℎ. (A.18)

The threshold 𝜖𝑠 is set as 10−10 in this work. Therefore, although the divergence of the numerical velocity is not pointwise zero, it
s almost zero in the weak sense.

.4. Transport equations: Discontinuous Galerkin method

A standard Runge–Kutta Discontinuous Galerkin (RKDG) scheme [42] is used to solve the scalar 𝜃 governed by the transport
Eq. (2.1), and the adjoint quantity 𝜌 from (2.15). Define the discontinuous finite element space

𝑊 𝐷𝐺
ℎ,𝑀𝐷𝐺

= {𝑤ℎ ∈ 𝑃𝑀𝐷𝐺 (𝐾),∀𝐾 ⊂ 𝛺ℎ}, (A.19)

where 𝑃𝑀𝐷𝐺 (𝐾) denotes the set of 𝑀𝐷𝐺th degree polynomials in each triangle 𝐾 of the discrete domain 𝛺ℎ. To ensure stability, a
Courant–Fredrichs–Lewy (CFL) condition is used to determine the time step size 𝛥𝑡,

‖𝑣‖max ⋅
𝛥𝑡
ℎ

≤ CFL𝐿2 (A.20)

where the constant CFL𝐿2 for degree 𝑀𝐷𝐺 of polynomials is given in Table 2.2 of [42].
To show the idea, a first-order temporarily discretized numerical scheme is given as follows. Given the numerical solution

𝜃𝑠 ∈ 𝑊 𝐷𝐺
ℎ,𝑀𝐷𝐺

at time step 𝑡𝑠, we obtain 𝜃𝑠+1 ∈ 𝑊 𝐷𝐺
ℎ,𝑀𝐷𝐺

from

∫𝐾
𝜃𝑠+1 − 𝜃𝑠

𝛥𝑡
𝜙 + ∫𝑒⊆𝜕𝐾

(𝑣 ⋅ 𝑛̂)𝜃𝑠𝜙 − ∫𝐾
𝜃(𝑣 ⋅ ∇𝜙) = ∫𝐾

𝜃(∇ ⋅ 𝑣)𝜙, ∀𝜙 ∈ 𝑃𝑀𝐷𝐺 (𝐾), (A.21)

here 𝑛̂ is the unit outward normal on edge 𝑒 of 𝐾 and 𝜃̂𝑠 is the numerical flux. The Godunov flux (see [42] page 206) is used, i.e.,

𝜃̂𝑠|𝜕𝐾 =
{

𝜃𝑠|𝐾 𝑣 ⋅ 𝑛̂ > 0,
𝜃𝑠|𝐾+ 𝑣 ⋅ 𝑛̂ < 0,

(A.22)

here 𝐾+ is the neighbor triangle that 𝐾 bounds across the edge 𝑒. In practice, we use a second order TVD-RK scheme in time and
21

uadratic DG approximations in space (𝑀𝐷𝐺 = 2 in (A.19)), of which the details can be found in [42, page 190].

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

b

𝜃

t

ℎ
p

A

d

Table 9
Choices of basis functions and quadrature rule on a triangle for DG method.
𝑀𝐷𝐺 , order of polynomial 0 1 2 3 4 5

𝑀𝑡 = (𝑀𝐷𝐺 + 1)(𝑀𝐷𝐺 + 2)∕2, dimension of 𝑃𝑀𝐷𝐺 (𝐾) 1 3 6 10 15 21
𝐺, minimum number of quadrature points 1 3 6 10 15 21

A.4.1. Choices of basis functions of 𝑃𝑀𝐷𝐺 (𝐾) and quadrature rules
The basis functions of 𝑃𝑀𝐷𝐺 (𝐾), 𝑀𝐷𝐺 ≥ 0, 𝐾 ⊂ 𝛺ℎ are chosen as follows. Denote the center point of 𝐾 as (𝑥0, 𝑦0) and a generic

asis function as 𝜙𝑖,𝑗 = (𝑥 − 𝑥0)𝑖(𝑦 − 𝑦0)𝑗 , 𝑖 ≥ 0, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤ 𝑀𝐷𝐺. There are 𝑀𝑡 = (𝑀𝐷𝐺 + 1)(𝑀𝐷𝐺 + 2)∕2 such basis functions, or
𝑑𝑖𝑚(𝑃𝑀𝐷𝐺 (𝐾)) =𝑀𝑡. For any smooth function 𝜃(𝑥, 𝑦), its representation 𝜃ℎ ∈ 𝑃𝑀𝐷𝐺 (𝑘) has the expression 𝜃ℎ =

∑𝑖+𝑗≤𝑀
𝑖,𝑗≥0 𝜃𝑖,𝑗𝜙𝑖,𝑗 , where

𝑖,𝑗 =
1
𝑖!𝑗!

𝜕𝑖+𝑗𝜃(𝑥0 ,𝑦0)
𝜕𝑥𝑖𝜕𝑦𝑗 . Re-order these bases as 𝜓𝑠 = 𝜙𝑖,𝑗 where 𝑠 = (𝑖 + 𝑗)(𝑖 + 𝑗 + 1)∕2 + (𝑗 + 1), which is a one-to-one correspondence

from the double-index set {(𝑖, 𝑗) ∶ 𝑖 ≥ 0, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤𝑀𝐷𝐺} to the single-index set {1,… ,𝑀𝑡}.
The mass matrix 𝐴𝑀𝑡×𝑀𝑡

on each triangle 𝐾 is

𝐴𝑖,𝑗 = ∫𝐾
𝜓𝑖(𝑥, 𝑦)𝜓𝑗 (𝑥, 𝑦)𝑑𝑥𝑑𝑦, 𝑖, 𝑗 = 1,… ,𝑀𝑡. (A.23)

Suppose the above integral is approximated by the following quadrature rule,

∫𝐾
𝑓 (𝑥, 𝑦) ≈

𝐺
∑

𝑙=1
𝑤𝑙𝑓 (𝑥𝑙 , 𝑦𝑙), (A.24)

where all the weight 𝑤𝑙 > 0. Denote the resulting matrix generated from the above quadrature rule as 𝐴𝐺. The next lemma provides
a necessary condition to ensure the invertibility of 𝐴𝐺.

Lemma A.3. For the matrix 𝐴𝐺 to be invertible, the number of quadrature points in the triangular integral (A.24) which approximates
(A.23) must be greater than or equal to the number of basis functions of 𝑃𝑀 (𝐾), that is, 𝐺 ≥𝑀𝑡.

Proof. For any 𝑐 ∈ R𝑀𝑡 , 𝑐𝑇𝐴𝐺𝑐 =
∑𝐺
𝑙=1

∑𝑀𝑡
𝑖,𝑗=1𝑤𝑙𝑐𝑖𝜓𝑖(𝑥𝑙 , 𝑦𝑙)𝜓𝑗 (𝑥𝑙 , 𝑦𝑙)𝑐𝑗 . Let 𝑓𝑙 =

∑𝑀𝑡
𝑖=1 𝑐𝑖𝜓𝑖(𝑥𝑙 , 𝑦𝑙). Then 𝑐

𝑇𝐴𝐺𝑐 =
∑𝐺
𝑙=1𝑤𝑙𝑓

2
𝑙 ≥ 0 since

𝑤𝑙 > 0. It is clear that the matrix 𝐴𝐺 is symmetric and positive semi-definite. To be invertible, it requires that 𝐴𝐺 is positive definite
or 𝑐𝑇𝐴𝐺𝑐 = 0 has only the zero solution 𝑐 = 0. Because 𝑤𝑙 > 0 for 𝑙 = 1,… , 𝐺, it leads to 𝑓𝑙 = 0 for all 𝑙, i.e., ∑𝑀𝑡

𝑖=1 𝜓𝑖(𝑥𝑙 , 𝑦𝑙)𝑐𝑖 = 0.
This system has 𝐺 linear equations and 𝑀𝑡 variables (𝑐𝑖). If 𝐺 < 𝑀𝑡, then this system must have free variables and thus nonzero
solutions.

Some choices of basis functions and quadrature rules are given in Table 9. In the implementations with 𝑀𝐷𝐺 = 3 or 4, a 16-
point Gaussian quadrature rule on a triangle from [43] is used, which is exact for 8th degree polynomials. As for the line integral,
a 16-point quadrature rule in [44] is used, which is exact for polynomials of degree ≤ 31. In the implementations with 𝑀 = 0, 1,
or 2, a 7-point Gaussian quadrature rule on a triangle is used, which is exact for 5th degree polynomials, and a 3-point quadrature
rule is used for the line integral, which is exact for polynomials of degree ≤ 5.

A.5. A simple check of the numerical code for the solution of 𝑣, 𝜃 and 𝜌

We make use of Proposition 2.1 to check the code that solves the velocity 𝑣 from the Stokes equations from given controls,
evolves 𝜃 with 𝑣 from 𝑡 = 0 to 𝑡 = 𝑇 , computes 𝜌(𝑇) = 𝛬−2𝜃(𝑇), and transports 𝜌(𝑡) backward with 𝑣 from 𝑡 = 𝑇 to 𝑡 = 0. We set
𝜃0 = sin(2𝜋𝑦) and choose control 𝑔 = 10 cos(2𝜔) when 𝑡 ∈ [0, 0.5] and 𝑔 = 20 sin(2𝜔) when 𝑡 ∈ [0.5, 1]. The velocity 𝑣 is computed
using the iterative projection scheme in Appendix A.3 and 𝜃 and 𝜌 are solved by DGP2 (𝑀𝐷𝐺 = 2) method in Appendix A.4. The
est results are shown in Fig. 15, where

𝑀𝑒𝑎𝑛𝑇 = 1
𝑇 ∫

𝑇

0 ∫𝛺
𝜌(𝑥, 𝑡)𝜃(𝑥, 𝑡)𝑑𝑥𝑑𝑡. (A.25)

In this test, 𝑇 = 1. The maximum error of (∫ 𝑇0 ∫𝛺 𝜌
𝑇 (𝑥, 𝑡)𝜃(𝑥, 𝑡) 𝑑𝑥 −𝑀𝑒𝑎𝑛𝑇) over 𝑡 ∈ [0, 1] is 1.05e−4 when ℎ = 0.1, 3.15e−5 when

= 0.05, and 8.70e−6 when ℎ = 0.025, which shows roughly second order convergence to zero when the mesh is refined. This
artially verifies the code.

.6. Radially symmetric steady flow in the unit disk when 𝑔 = 1

In polar coordinates (𝑟, 𝜑), denote the velocity as 𝑣 = 𝑣𝑟𝑒𝑟 + 𝑣𝜑𝑒𝜑, where 𝑒𝑟 and 𝑒𝜑 are unit vectors in the direction 𝑟 and 𝜑. The
ivergence free condition is ∇ ⋅ 𝑣 = 1

𝑟
𝜕(𝑟𝑣𝑟)
𝜕𝑟 + 1

𝑟
𝜕𝑣𝜑
𝜕𝜑 = 0. Under the radial symmetry assumption, 𝑣𝑟 = 𝑣𝑟(𝑟), 𝑣𝜑 = 𝑣𝜑(𝑟), 𝑝 = 𝑝(𝑟), and

1 𝜕(𝑟𝑣𝑟) = 0, which gives 𝑣 (𝑟) = 0 in the disk.
22

𝑣𝑟(0) = 𝑣𝜑(0) = 0. Thus, the divergence free condition becomes 𝑟 𝜕𝑟 𝑟

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.

𝑀

R

Fig. 15. A test for Proposition 2.1: (∫𝛺 𝜌𝑇 (𝑥, 𝑡)𝜃𝑇 (𝑥, 𝑡)𝑑𝑥−𝑀𝑒𝑎𝑛𝑇) over time. Initial value 𝜃0 = sin(2𝜋𝑦), 𝑔 = 10 cos(2𝜔) if 𝑡 ∈ [0, 0.5] and 𝑔 = 20 sin(2𝜔) if 𝑡 ∈ [0.5, 1].
𝑒𝑎𝑛𝑇 is the mean value in time defined in (A.25).

In general, ∇𝑣 + (∇𝑣)𝑇 =
⎛

⎜

⎜

⎝

2 𝜕𝑣𝑟𝜕𝑟
1
𝑟
𝜕𝑣𝑟
𝜕𝜑 + 𝜕𝑣𝜑

𝜕𝑟 − 𝑣𝜑
𝑟

1
𝑟
𝜕𝑣𝑟
𝜕𝜑 + 𝜕𝑣𝜑

𝜕𝑟 − 𝑣𝜑
𝑟

2
𝑟
𝜕𝑣𝜑
𝜕𝜑 + 𝑣𝑟

𝑟

⎞

⎟

⎟

⎠

. With radial symmetry and 𝑣𝑟 = 0, the steady state momentum

equations become 𝜕𝑝
𝜕𝑟 = 0 and − 𝜕

𝜕𝑟

(

1
𝑟
𝜕(𝑟𝑣𝜑)
𝜕𝑟

)

= 0 when 0 < 𝑟 < 1. The Navier-slip boundary condition on the unit circle becomes
𝜕𝑣𝜑
𝜕𝑟 + (𝑘 − 1)𝑣𝜑 = 𝑔. These three equations admit a unique solution: 𝑣𝜑 = 𝑔

𝑘 𝑟 and 𝑝 is a constant.

eferences

[1] V.S. Chakravarthy, J.M. Ottino, Mixing of two viscous fluids in a rectangular cavity, Chem. Eng. Sci. 51 (14) (1996) 3613–3622.
[2] A. Vikhansky, Enhancement of laminar mixing by optimal control methods, Chem. Eng. Sci. 57 (14) (2002) 2719–2725.
[3] E. Gouillart, O. Dauchot, B. Dubrulle, S. Roux, J.-L. Thiffeault, Slow decay of concentration variance due to no-slip walls in chaotic mixing, Phys. Rev. E

78 (2) (2008) 026211.
[4] E. Gouillart, N. Kuncio, O. Dauchot, B. Dubrulle, S. Roux, J.-L. Thiffeault, Walls inhibit chaotic mixing, Phys. Rev. Lett. 99 (11) (2007) 114501.
[5] E. Gouillart, J.-L. Thiffeault, O. Dauchot, Rotation shields chaotic mixing regions from no-slip walls, Phys. Rev. Lett. 104 (20) (2010) 204502.
[6] J.-L. Thiffeault, E. Gouillart, O. Dauchot, Moving walls accelerate mixing, Phys. Rev. E 84 (3) (2011) 036313.
[7] D. Ahmed, X. Mao, B.K. Juluri, et al., A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles, Microfluid. Nanofluid. 7

(2009) 727.
[8] R. Nakamura, T. Katsunom, Y. Kishimoto, et al., A novel method for live imaging of human airway cilia using wheat germ agglutinin, Sci. Rep. 10 (2020)

14417.
[9] K.P.Y. Hui, R.H.H. Ching, S.K.H. Chan, et al., Tropism, replication competence, and innate immune responses of influenza virus: An analysis of human

airway organoids and ex-vivo bronchus cultures, Lancet Respir. Med. 11 (2018) 846–854.
[10] Y. Li, X. Liu, Q. Huang, A.T. Ohta, T. Arai, Bubbles in microfluidics: An all-purpose tool for micromanipulation, Lab Chip 21 (2021) 1016–1035.
[11] T. ul Islam, Wang Y., I. Aggarwal, et al., Microscopic artificial cilia - a review, Lab Chip 22 (2022) 1650–1679.
[12] W. Supatto, S.E. Fraser, J. Vermot, An all-optical approach for probing microscopic flows in living embryos, Biophys. J. 95 (2008) L29.
[13] J.C. Nawroth, H. Guo, E. Koch, et al., Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome, Proc. Natl.

Acad. Sci. 114 (2017) 9510.
[14] S. Lukens, X. Yang, L. Fauci, Using Lagrangian coherent structures to analyze fluid mixing by cilia, Chaos 20 (2010) 017511.
[15] Y. Ding, J. Nawroth, M. McFall-Ngai, E. Kanso, Mixing and transport by ciliary carpets: A numerical study, J. Fluid Mech. 743 (2014) 124–140.
[16] S. Chateau, U. d’Ortona, S. Poncet, J. Favier, Transport and mixing induced by beating cilia in human airways, Front. Physiol. (2018) 161.
[17] H. Guo, H. Zhu, S. Veerapaneni, Simulating cilia-driven mixing and transport in complex geometries, Phys. Rev. Fluids 5 (2020) 053103.
[18] W. Hu, An approximating control design for optimal mixing by Stokes flows, Appl. Math. Optim. 82 (2020) 471–498.
[19] W. Hu, Boundary control for optimal mixing by Stokes flows, Appl. Math. Optim. 78 (1) (2018) 201–217.
[20] W. Hu, J. Wu, Boundary control for optimal mixing via Navier–Stokes flows, SIAM J. Control Optim. 56 (4) (2018) 2768–2801.
[21] W. Hu, J. Wu, An approximating approach for boundary control of optimal mixing via Navier–Stokes flows, J. Differential Equations 267 (10) (2019)

5809–5850.
[22] G. Alberti, G. Crippa, A. Mazzucato, Exponential self-similar mixing by incompressible flows, J. Amer. Math. Soc. 32 (2) (2019) 445–490.
[23] T.M. Elgindi, A. Zlatoš, Universal mixers in all dimensions, Adv. Math. 356 (2019) 106807.
[24] Z. Lin, J.-L. Thiffeault, C.R. Doering, Optimal stirring strategies for passive scalar mixing, J. Fluid Mech. 675 (2011) 465–476.
[25] E. Lunasin, Z. Lin, A. Novikov, A. Mazzucato, C.R. Doering, Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy

flows, J. Math. Phys. 53 (11) (2012) 115611.
[26] J.-L. Thiffeault, Using multiscale norms to quantify mixing and transport, Nonlinearity 25 (2) (2012) R1.
[27] Y. Yao, A. Zlatos, Mixing and un-mixing by incompressible flows, J. Eur. Math. Soc. 19 (7) (2017) 1911–1948.
[28] G. Crippa, R. Lucà, C. Schulze, Polynomial mixing under a certain stationary Euler flow, Physica D 394 (2019) 44–55.
[29] G. Iyer, A. Kiselev, X. Xu, Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows, Nonlinearity 27 (5)

(2014) 973.
[30] O. Gubanov, L. Cortelezzi, Towards the design of an optimal mixer, J. Fluid Mech. 651 (2010) 27–53.
[31] G. Mathew, I. Mezić, S. Grivopoulos, U. Vaidya, L. Petzold, Optimal control of mixing in Stokes fluid flows, J. Fluid Mech. 580 (2007) 261–281.
[32] W. Liu, Mixing enhancement by optimal flow advection, SIAM J. Control Optim. 47 (2) (2008) 624–638.
23

[33] C. Seis, Maximal mixing by incompressible fluid flows, Nonlinearity 26 (12) (2013) 3279.

http://refhub.elsevier.com/S0045-7825(23)00579-0/sb1
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb2
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb3
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb3
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb3
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb4
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb5
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb6
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb7
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb7
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb7
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb8
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb8
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb8
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb9
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb9
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb9
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb10
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb11
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb12
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb13
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb13
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb13
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb14
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb15
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb16
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb17
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb18
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb19
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb20
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb21
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb21
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb21
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb22
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb23
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb24
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb25
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb25
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb25
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb26
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb27
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb28
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb29
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb29
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb29
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb30
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb31
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb32
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb33

Computer Methods in Applied Mechanics and Engineering 417 (2023) 116455X. Zheng et al.
[34] X. Zheng, K. Zhao, J. Wu, W. Hu, D. Du, Iterative projection method for unsteady Navier-Stokes equations with high Reynolds numbers, 2023, arXiv
preprint arXiv:2304.07963.

[35] R. Glowinski, Y. Song, X. Yuan, H. Yue, Bilinear optimal control of an advection-reaction-diffusion system, SIAM Rev. 64 (2) (2022) 392–421.
[36] J.P. Kelliher, Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane, SIAM J. Math. Anal. 38 (1) (2006) 210–232.
[37] G. Mathew, I. Mezić, L. Petzold, A multiscale measure for mixing, Physica D 211 (1) (2005) 23–46.
[38] J.L. Lions, Optimal Control of Systems Governed By Partial Differential Equations, Springer-Verlag, Berlin Heidelberg, 1971.
[39] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints, vol. 23, Springer Science & Business Media, 2008.
[40] I. Griva, S.G. Nash, A. Sofer, Linear and Nonlinear Optimization, SIAM, 2009.
[41] R.L. Burden, J.D. Faires, A.M. Burden, Numerical Analysis, tenth ed., Cengage Learning, 2016.
[42] B. Cockburn, C.-W. Shu, Runge-kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (3) (2001) 173–261.
[43] L. Zhang, T. Cui, H. Liu, A set of symmetric quadrature rules on triangles and tetrahedra, J. Comput. Math. 27 (2009) 89–96.
[44] P. Davis, P. Rabinowitz, Abscissas and weights for Gaussian quadratures of high order, J. Res. Natl. Bur. Stand. 56 (1956) 35–37, https://ia600701.us.

archive.org/3/items/jresv56n1p35/jresv56n1p35_A1b.pdf.
24

http://arxiv.org/abs/2304.07963
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb35
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb36
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb37
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb38
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb39
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb40
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb41
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb42
http://refhub.elsevier.com/S0045-7825(23)00579-0/sb43
https://ia600701.us.archive.org/3/items/jresv56n1p35/jresv56n1p35_A1b.pdf
https://ia600701.us.archive.org/3/items/jresv56n1p35/jresv56n1p35_A1b.pdf
https://ia600701.us.archive.org/3/items/jresv56n1p35/jresv56n1p35_A1b.pdf

	Numerical algorithms and simulations of boundary dynamic control for optimal mixing in unsteady Stokes flows
	Introduction
	Motivations and applications
	Objectives and challenges

	Boundary control design for optimal mixing
	Optimization problem
	First-order necessary optimality conditions

	Optimization algorithms
	General optimization algorithm
	Control basis, velocity basis, and advection evolutions
	Finite dimensional control basis
	Velocity basis: Generation and storage
	Evolution of advection equations with sparsely stored velocity data

	Computation of the cost functional J(g)
	Computation of the gradient DJ(g)
	Finite Difference (FD) method
	Variational Formula (VF) with adjoint system
	Comparison of VF and FD methods in 1-D control spaces
	Comparison of VF and FD methods in 2-D control spaces
	A hybrid approach
	Summary of numerical methods for computing DJ(g)

	Line search methods: Computation of step size ηn
	Backtracking method and Armijo condition
	Exact line search: A coupled bisection-secant method
	Linearization method
	Summary of line search methods

	 Descent direction dn and the entire optimization algorithms
	Steepest descent (SD) method
	Conjugate gradient (CG) method

	A convergence test of the optimization algorithms

	Optimization simulations
	Flow patterns of control basis functions
	Optimization by each single control type
	Optimization by combined control types

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	Derivation of the Gateaux derivative
	Proof of Proposition 2.1
	Unsteady Stokes equations: Iterative projection/BDF2/Taylor–Hood finite element method
	Transport equations: Discontinuous Galerkin method
	Choices of basis functions of PMDG(K) and quadrature rules

	A simple check of the numerical code for the solution of v, θ and ρ
	Radially symmetric steady flow in the unit disk when g=1

	References

