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Semi-supervised contrastive learning for remote sensing: 
identifying ancient urbanization in the south-central Andes
Jiachen Xu a*, Junlin Guob*, James Zimmer-Dauphineec, Quan Liub, Yuxuan Shia, 
Zuhayr Asadb, D. Mitchell Wilkesb, Parker VanValkenburghd, Steven A. Wernkec 

and Yuankai Huo b

aSchool of Engineering, Vanderbilt University, Nashville, USA; bDepartment of Electrical Engineering and 
Computer Science, Vanderbilt University, Nashville, USA; cDepartment of Anthropology, Vanderbilt 
University, Nashville, USA; dDepartment of Anthropology, Brown University, Providence, USA

ABSTRACT
Archaeology has long faced fundamental issues of sampling 
and scalar representation. Traditionally, the local-to-regional- 
scale views of settlement patterns are produced through sys
tematic pedestrian surveys. Recently, systematic manual survey 
of satellite and aerial imagery has enabled continuous distribu
tional views of archaeological phenomena at interregional 
scales. However, such ‘brute force’ manual imagery survey 
methods are both time- and labour-intensive, as well as 
prone to inter-observer differences in sensitivity and specifi
city. The development of self-supervised learning methods 
(e.g. contrastive learning) offers a scalable learning scheme 
for locating archaeological features using unlabelled satellite 
and historical aerial images. However, archaeological features 
are generally only visible in a very small proportion relative to 
the landscape, while the modern contrastive-supervised learn
ing approach typically yields an inferior performance on highly 
imbalanced datasets. In this work, we propose a framework to 
address this long-tail problem. As opposed to the existing 
contrastive learning approaches that typically treat the 
labelled and unlabelled data separately, our proposed method 
reforms the learning paradigm under a semi-supervised setting 
in order to fully utilize the precious annotated data (<7% in 
our setting). Specifically, the highly unbalanced nature of the 
data is employed as the prior knowledge in order to form 
pseudo negative pairs by ranking the similarities between 
unannotated image patches and annotated anchor images. In 
this study, we used 95,358 unlabelled images and 5,830 
labelled images in order to solve the issues associated with 
detecting ancient buildings from a long-tailed satellite image 
dataset. From the results, our semi-supervised contrastive 
learning model achieved a promising testing balanced accu
racy of 79.0%, which is a 3.8% improvement as compared to 
other state-of-the-art approaches.
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1. Introduction

Archaeological structures and settlements are essential sources of information that 
archaeologists use to study the economic, political, and social systems of ancient 
civilizations. Conventional approaches to mapping and recording settlement locations 
at local and regional scales have relied on field-based pedestrian survey methods, 
which require professionals to physically examine the landscape for evidence of 
ancient material culture (Banning 2002; Phillips and Willey 1953; Sanders 1961; 
Balkansky et al. 2000; Alcock and Cherry 2016). However, the scale of field-based 
surveys is ultimately limited by the physical impedances of fieldwork. Moreover, the 
distribution of both survey and excavation zones is often unsystematic, which further 
complicates efforts to synthesize findings across field projects. Since the early 2000s, 
archaeologists have made use of high-resolution satellite imagery to understand the 
spatial and structural patterns of the archaeological features at larger scales, including 
by step-wise visual identification of sites by trained specialists (Hanson and Oltean 
2012; Fowler 2002; Lasaponara and Masini 2012; Bewley et al. 2016; Casana 2014; Lin 
et al. 2014; Parcak 2019). Such research has produced novel insights into macro- and 
inter-regional scale settlement patterns (Casana 2014; Casana and Cothren 2013; 
Wernke, VanValkenburgh, and Saito 2020). However, such ‘brute force’ manual imagery 
survey methods are very labour intensive, time-consuming, and prone to inter- 
observer differences in feature detection sensitivity and specificity (Casana 2014). In 
part, these issues are inherent and can be attributed to the nature of the data, as 
archaeological features are generally very sparsely distributed across the landscape 
making manual identification and the labelling of archaeological features in satellite 
imagery a very low yield endeavour. Observational fatigue and inter-observer differ
ences in detection rates additionally pose unavoidable risks. The resulting datasets are 
thus generally quite large in aerial extent but come with few labels (Mnih and Hinton 
2012; Casana and Cothren 2013). Developing an effective machine learning algorithm 
for automating information extraction procedures on such large-scale, sparsely anno
tated, and unbalanced data is a long-standing machine-learning challenge in remote 
sensing.

In recent years, the rapid development of self-supervised contrastive learning has 
shown promise towards the task of utilizing large-scale, sparsely annotated data. 
However, the proportion of images containing archaeological settlements is often rela
tively low (<7% in our setting). Such an unbalanced data distribution is problematic for 
modern contrastive learning algorithms (Chen and Kaiming 2021; Grill et al. 2020), 
consequently leading to excessive favouring representations of the majority classes. By 
reforming contrastive learning in a semi-supervised setting, we emphasize the critical role 
of the sparse but valuable annotated positive instances in both training and fine-tuning 
stages.

In this work, we propose a novel self-supervised contrastive learning framework to 
identify ancient settlements through relict architectural feature detection in the south- 
central Andes. As opposed to existing self-supervised learning approaches, which typi
cally model labelled and unlabelled data separately, we introduce a holistic, end-to-end 
semi-supervised learning framework that utilizes the highly unbalanced nature of the 
data to form pseudo-negative pairs by ranking the similarities between unannotated 
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image patches and annotated anchor images. Specifically, pseudo-negative images are 
employed to calculate a supervised contrastive (SupCon) loss (Khosla et al. 2020), which is 
seamlessly integrated with the contrastive loss (Chen et al. 2020).

To test this approach, this project surveys an approximately 4,000 km2 region of the 
western cordillera of the southern Peruvian Andes (Figure 1). Utilizing images taken by 
Worldview 2 and Worldview 3 Satellite platforms, our dataset consists of 95,358 unla
belled images and 5,830 labelled images, where the ratio between positive and negative 
instances is roughly 1:100. We show that our semi-supervised contrastive learning model 
outperforms its self-supervised and fully-supervised counterparts, along with traditional 
supervised networks such as ResNet50.

There also have been recent general computer vision studies for semi-supervised con
trastive learning methods (Zhang et al. 2022; Yang et al. 2022) that allow for the optimal 
utilization of vast amounts of unlabelled data. These approaches tend to refine the quality 
of pseudo labels by continuously selecting positive samples. However, the primary chal
lenge in archaeological field lies in the extremely imbalanced proportion of positive and 
negative samples in the archaeological dataset (1:100). The highly imbalanced proportion of 
negative classes can lead to ineffective training in conventional self- and semi-supervised 
contrastive learning. In comparison, our proposed model offers several advantages: (1) 
Leveraging the foreground image, aligning with the class-specific few-shot learning design 

Figure 1. Survey Region. the study region encompasses approximately 4,000 km2 of the western 
cordillera of the southern Peruvian highlands, including portions of the modern Cusco and Arequipa 
districts. Sample tiles represent the diversity of land formation in the region and the sample locations 
are shown in black.

1924 J. XU ET AL.



for the self-supervised contrastive task. (2) The supervised contrastive task is balanced and 
further ensures the discriminative representation between the two classes in the latent 
space.

1.1. Innovation of the work

The innovation of this study is four-fold: 

● This study investigates a large, new survey region utilizing a cutting-edge represen
tative deep learning approach. The study region encompasses approximately 4,000  
km2 of the western cordillera of the southern Peruvian highlands, including portions 
of the modern Cusco and Arequipa districts.

● We propose a novel contrastive learning scheme which is optimized for the unique 
challenges faced in remote sensing image analyses, such as (1) effectively learning 
design from limited annotated data with large-scale unannotated data, and (2) the 
highly imbalanced data distribution (e.g., the foreground objects of interests are 
much less than the background).

● A new semi-supervised contrastive learning method was introduced by aggregating 
the advantages from previous (1) self-supervised and (2) supervised contrastive 
learning strategies. Compared with traditional approaches, the proposed method 
maximizes utilization of large-scale unlabeled image data and small-scale labeled 
image data under a probabilistic learning model.

● A similarity-based down-sampling approach is proposed for pseudo-label synthesis 
in both the latent space learning section, as well as the supervised learning section, 
of the semi-supervised model.

2. Background and related research

This section provides an overview of the background and related research for contrastive 
representation learning and satellite remote sensing. The following brief literature survey 
includes a summary of recent contrastive learning methods and a discussion of the 
applications of machine learning in remote sensing research.

2.1. Contrastive representation learning

In contrast to supervised learning (Cunningham, Cord, and Jane Delany 2008), 
which requires the presence of labelled inputs to predict outputs, self-supervised 
learning (Le 2013) refers to the identification of the hidden patterns of a dataset 
without the usage of any labels. Comprising what is a relatively new family of self- 
supervised learning methods, contrastive representation learning has recently 
become a key approach in solving various computer vision tasks with state-of- 
the-art performance (Zhirong et al. 2018; Noroozi and Favaro 2016; Zhuang, Lin 
Zhai, and Yamins 2019; Hjelm et al. 2018; Chuang et al. 2020; Tian et al. 2020; 
Khosla et al. 2020; Cui et al. 2021). Designed to learn the general features of large 
datasets without labels, contrastive learning aims to pull similar sample pairs 
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together while pushing dissimilar pairs apart. As a result, the model is capable of 
learning the high-level features of a dataset even with few or no labels available.

In recent years, various contrastive representation learning methods have been 
proposed with different implementations. SimCLR (Chen et al. 2020) aims to pull 
the representations of different views of the same image closer while repulsing the 
views of different images in the latent space. SwAV (Caron et al. 2020) applies 
online clustering on different augmentations of the same image instead of per
forming explicit pairwise feature comparisons. Wu et al. (Zhirong et al. 2018) 
proposes the use of an offline memory bank to store all data representations, 
with training data randomly selected for negative-pair minimization. Instead of 
utilizing an offline dictionary, MoCo (Kaiming et al. 2020) utilizes a momentum 
design to build a dynamic dictionary that stores a negative sample pool, which 
demands a large batch size. To further alleviate the cost of storing negative pairs, 
BYOL (Grill et al. 2020) is proposed to incorporate an asynchronous momentum 
encoder into the model so that it can use only the positive pairs for training. 
Recently, SimSiam (Chen and Kaiming 2021) has been proposed to save GPU 
memory consumption by fully eliminating the momentum encoder. In addition, 
various efforts have been made to modify the contrastive learning approach within 
a fully-supervised setting; an example would be the SupCon loss proposed by 
Khosla (Khosla et al. 2020).

2.2. Remote sensing with machine learning

Satellite remote sensing has contributed to the execution of a variety of tasks, 
including climate change measurement, crop condition monitoring, natural disaster 
alerts, and archaeological site detection (Harris 1987). Satellites were first introduced 
to the field of archaeology in the late 1900s, with Landsat and SPOT imagery being 
used for archaeological predictive modelling and archaeological feature detection 
(Leisz 2013). Since then, the usage of satellite remote sensing in the detection of 
archaeological sites has picked up rapidly, leveraging all available technologies, from 
decommissioned CORONA imagery (Ur 2013) to the latest in multi-spectral imagery 
(Abrams and Comer 2013).

Starting in the 2000s, the development of machine learning (and more particu
larly, representation learning) offered major breakthroughs towards the analytical 
approaches employed on satellite images; this in turn lead to seminal insights and 
discoveries in the field of archaeology (Lary et al. 2016; Camps-Valls 2009; Ali et al. 
2015; Cooner, Shao, and Campbell 2016; Comer and Harrower 2013; Parcak 2019). 
Depending on the specific problem, various types of machine learning algorithms 
have been employed, such as support vector machines (SVM), decision trees, 
random forests, etc. (Samui 2008; Azamathulla and Fu-Chun 2011; Friedl and 
Brodley 1997; Pal 2005). Recently, many deep learning (and more specifically, 
contrastive learning-based) methods have been utilized towards remote sensing 
applications (Hou et al. 2021; Yue et al. 2021; Wang et al. 2022; Liu et al. 2020; 
Xiang et al. 2021).
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3. Methods

The overall design of our framework is shown in Figure 2. An analysis of the backbone 
network and pseudo-label synthesis is presented below.

3.1. Overview of the SimSiam framework

In this work, SimSiam is chosen as our backbone network due to its simplicity and 
effectiveness. Compared to other widely-used self-supervised representation learning 
networks, SimSiam removes all additional structures such as negative samples 
(SimCLR), momentum encoder (BYOL), or clustering (SwAV) and still obtains great 
performance in its learning representations of unlabelled datasets. The overall loss 
function consists of two separate losses, namely (1) self-supervised contrastive loss 
(i.e. Cosine similarity) and (2) supervised contrastive loss. The rationale of employing 
both self-supervised and supervised loss is to form a new ‘semi-supervised’ learning 
scheme for remote sensing image learning. Compared with traditional self-supervised 
contrastive learning (Chen and Kaiming 2021) and supervised contrastive learning 
(Khosla et al. 2020) approaches, the proposed method maximizes utilization of large- 
scale unlabelled image data by incorporating the small-scale labelled image data. In 
addition, the recently introduced mixed-precision training feature is utilized to accel
erate the training process.
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Figure 2. Overall framework. This figure demonstrates the general structure of our semi-supervised 
contrastive learning framework. The upper panel shows the general flow of our framework, which was 
adopted from the SimSiam network. The lower panel describes the process of obtaining the 
supervised contrastive loss from predicted features. The detailed discussions can be found in the 
Methods section.
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3.2. Pseudo-label synthesis

For the synthesis of pseudo-labels, a mixed array of unlabelled and positive class features 
is used as the starting point. The first step is to normalize this array. Next, the array is 
decoupled into X features of unlabelled images (Group 1) and Y features of positively- 
labelled images (Group 2). Then, we divide the X unlabelled class features into subgroups 
of size k (16 in our case), and we end up with X=k subgroups. Meanwhile, a single feature 
is randomly selected from the Y positive class features for future use.

For each subgroup, we apply the cosine similarity function in order to compute the 
similarity between the previously selected positive feature and the features in the sub
group. Following this, the unlabelled image with the median similarity score is assigned 
a pseudo label (i.e. negative class) based on the hypothesis that negative images dom
inate the distribution of the entire cohort. The 1:100 ratio used in this paper follows the 
design from a previous publication (Yang and Zhi 2020). According to (Yang and Zhi 
2020), a higher imbalance ratio can impose an additional challenge towards the classifica
tion tasks as compared to a scenario with moderately imbalanced data.

The pseudo-code for generating such pseudo-labels is presented in Algorithm 1. As an 
example, it assumes that there are N unlabelled images. The ratio of positive images (Npos) 
to negative images (N � Npos) is roughly 1:100 in this study. Thus, if the size of the batch is 
B ðB � NÞ and the images are randomly selected, the probability of having exactly N 
positive image(s) in this batch is expressed as: 

p nð Þ ¼

Npos
n

� �

�
N � Npos

B � n

� �

N
B

� � (1) 

Following this, the probability of having one or less positive images (in other words, B or 
B � 1 negative images) among a randomly selected batch B, is: 

p n � 1ð Þ ¼
X1

n¼0

Npos
n

� �

�
N � Npos

B � n

� �

N
B

� � ¼

N � Npos
B

� �

þ Npos �
N � Npos

B � 1

� �

N
B

� � � 1 (2) 

Algorithm 1. Pseudo-Code for generating pseudo negative pairs.
Input: An array of unlabelled class features: f un 
Input: An array of positive class features: f pos 
Output: An array of pseudo-negative class features: f neg 
1: f un ¼ Normalizeðf unÞ
2: f pos ¼ Normalize f posð Þ

3: Divide f un into groups of 16 ! f un groups 
4: Randomly choose a feature from f pos ! f positive 
5: f neg ¼ ½ �
6: for f un group in f un groups do 
7: sim array ¼ Similarity Functionðf un group þ f positiveÞ

8: f neg:append Median sim arrayð Þð Þ

9: end for   

10: return f neg
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when N � N � Npos. Therefore, every batch contains almost all negative images, which 
ensures that the pseudo-labels are negative.

3.3. Semi-supervised contrastive learning

The key innovation of our method is our proposal of a new semi-supervised contrastive 
learning strategy. In short, we aggregate the standard cosine similarity loss with the 
supervised contrastive (SupCon) loss.

3.3.1. Self-supervised contrastive task
In each iteration of the training, X unlabelled images and Y positively-labelled images are 
utilized as inputs for our SimSiam model, and the generated symmetric loss is named 
loss_cosine. The formulas are defined as (Chen and Kaiming 2021): 

D p1; z2ð Þ ¼ �
p1

p1k k2
�

z2

z2k k2
(3) 

L ¼
1
2

D p1; z2ð Þ þ
1
2

D p2; z1ð Þ (4) 

The formulas above show the SimSiam symmetrized loss for a single data point 
(image) x. z1 and z2 denote the encoding vectors of the two augmented views x1 

and x2 (generated from x). Following, p1 and p2 denote the projection views of the 
encoding vectors z1 and z2 by adding an MLP head on top of the shared encoder. 
Equation 3 represents the negative cosine similarity. Equation 4 shows how 
a contrastive pair is generated through two augmented views and used for computing 
the cosine similarity loss.

3.3.2. Supervised contrastive task
Following the self-supervised contrastive task, the encoding features, z (that are men
tioned in the self-supervised task), are employed to calculate the supervised loss, which is 
named loss_super. The encoding features will go through the steps in the Pseudo-Label 
Synthesis subsection, and generate X=k pseudo-negative class features and Y positive 
class features (mentioned earlier in the subsection). Finally, these features are combined 
together as inputs to the SupCon (Khosla et al. 2020) loss function in order to calculate 
loss_super.

The formula for the SupCon loss is presented below (Khosla et al. 2020): 

L
sup
out ¼

P

i2I
L

sup
out;i

¼
P

i2I

�1
jPðiÞj

P

p2PðiÞ
log

exp zi�zp=τð ÞP
a2AðiÞ

exp zi�za=τð Þ

(5) 

Equation 5 presents a generalized form of the supervised contrastive loss within a multi- 
view batch, where i 2 I;f1 . . . 2Ng is the index of an arbitrary augmented sample (view). 
The ” � ” symbol denotes the dot product. The index i represents the anchor image, while 
PðiÞ represents all positive pairs of the anchor. AðiÞ;Infig, indicates the remaining 2N � 1 
views in the batch, excluding the anchor i. As shown in Equation 5, the contrastive 
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nominator maximizes the similarity between the anchor and its positive pairs. Meanwhile, 
the contrastive denominator differentiates the anchor from negative samples.

3.3.3. Semi-supervised multi-task loss
In the final step, the total loss function is modelled as a multi-task loss design with 
different weighting parameters on the self-supervised (loss_cosine) and supervised (loss_
super) losses. The optimization of the weighting parameters of the loss function is 
inspired by Kendall (Kendall, Gal, and Cipolla 2018), in which the weighting parameters 
(v1 and v2 in Equation 6) are obtained in a data-driven manner based on training 
performance. 

losstotal ¼ e�v1 � loss1 þ v1ð Þ þ e�v2 � loss2 þ v2ð Þ (6) 

Equation 6 is shown above, where the loss1 and loss2 represent the self-supervised 
contrastive loss and supervised contrastive loss, respectively. v1 and v2 denote the two 
weighting parameters that are automatically computed based on the training perfor
mance. Both two parameters are randomly initialized and included in the loss calculation 
per batch during the total loss optimization.

4. Data and experiments

The data used in the experiments are collected from WorldView 2 and WorldView 3 
satellite constellations. The Data subsection below provides the descriptions of data 
acquisition and the preprocessing pipeline. The Experiment Design subsection describes 
the experimental design, including data setup, hyperparameters, and validation metrics.

4.1. Data

The satellite images used in this analysis were collected by the WorldView 2 and 
WorldView 3 satellite constellations and were provided by the Digital Globe Foundation 
following colour correction and orthographic correction using a coarse digital elevation 
model (DEM). The data was then pan-sharpened using the Bayesian fusion algorithm from 
the Orfeo-Toolbox (Grizonnet et al. 2017) so as to increase the spatial resolution of the 
multi-spectral imagery to 0.5 m for the WorldView 2 imagery, and 0.3 m for the WorldView 
3 imagery. In this study, all spatial bands were dropped except for the Red, Green, and 
Blue spectral bands, and the imagery was re-sampled from 32 bits to 8 bits in order to 
reduce the storage size and computational requirements. In total, the images covered 
approximately 12,000 km2. Finally, the study region was divided into approximately 
1.6 million image tiles of size 76.8 � 76.8 metres (256 � 256 pixels at 0.3 m resolution).

Due to the semi-arid environment and limited vegetation coverage of the south- 
central Andes, satellites are able to capture clear and unobscured images of the ground 
and of the archaeological features of interest. Furthermore, ancient structures in this 
region were primarily constructed from stone, leading to relatively good preservation and 
consequently, a high visibility in satellite imagery. Of the 1.6 million image tiles produced, 
5,000 of were randomly selected and manually coded for the presence/absence of 
archaeological buildings. To better balance sample size for the sparsely distributed 
modern and ancient settlements on the landscape, an additional set of 830 images 
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known to contain examples of archaeological or modern structures was added to provide 
additional representation for the aforementioned categories.

Since ancient buildings were the objects of interest, all images were labelled into two 
classes: “ancient_building” (that is, “the presence of an archaeological structure”, defined 
as a human-made structures less than 30 m in its largest dimension without evidence of 
modern roofs or maintenance) and ”no_ancient_building” (that is, “no presence of an 
archaeological structure”). From the remaining unlabelled images, around 100,000 images 
were randomly selected to train the self-supervised deep learning models. Finally, those 
images were visually examined, and the defective ones (missing data) were abandoned, 
resulting in an unlabelled dataset of 95,358 images. Sample images are presented in 
Figure 3.

4.2. Experimental design

(1) For the Semi-supervised contrastive pre-training: the training dataset consists of 
95,358 unlabelled images and 258 labelled foreground images. (2) For the supervised 
downstream classification fine-tuning task: The 5,830 labelled images were divided into 
training, validation, and testing splits, ensuring that images from the nearby physical 
space were placed into the same split in order to avoid the issue of data contamination. 
Additionally, in order to alleviate the unbalanced nature of our data source, the under- 
representative positive class (with ancient builds) in our training dataset was up-sampled 
to have the roughly an equal distribution to the negative class. The details of the data split 
are shown in Table 1. As a last step, all of the labelled and unlabelled images were resized 
to 128 � 128 so as to expedite the training process.

4.2.1. Semi-supervised contrastive training
The proposed semi-supervised contrastive learning model was adopted from the SimSiam 
network with major modifications on the loss function. The optimizer used was the SGD 

Figure 3. Example of annotated classes. This figure demonstrates example classes of the annotated 
data. The left panel shows the various types of unannotated images with a mixture of contents, 
including ancient/modern buildings, rock, soil, and grass. Due to the variety of potential objects, it’s 
unrealistic to create a separate class for each unique combination of objects. Therefore, two classes 
were created based on the presence of ancient buildings, which is shown in the right panel.
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optimizer which was initialized with a learning rate = 0.1, weight decay = 0.0001, and 
momentum = 0.9. The training dataset of the unlabelled images had a batch size = 512, 
while the labelled dataset had a batch size = 16. The Mixed-precision training features 
were integrated into our network in order to boost the training process.

The model was trained for 200 epochs with approximately 100 training hours. The 100 
training hours were computed by a workstation with Intel Xeon Gold 5118 2.30 GHz CPU, 
383 GB memory, and two NVIDIA GeForce RTX 2080 Ti GPU (11.0 GB dedicated GPU 
memory).

4.2.2. Supervised fine-tuning and testing
After pre-training the model using the unannotated data, an additional single linear layer 
was fined tuned with the labelled data. The F1 score and the balanced accuracy (Wegier 
and Ksieniewicz 2020; Feng, Zhou, and Tong 2021) on the validation set were the metrics 
used to select the best performance epoch as well as the optimal hyper-parameters.

4.2.3. Evaluation metrics
According to (Wegier and Ksieniewicz 2020), the F1 score aggregates the sensitivity and 
precision, 

F1 score ¼ 2 �
Precision � Sensitivity
Precision þ Sensitivity

(7) 

where the sensitivity (or recall) determines the accuracy of the minority class classification 
and precision indicates the probability of correct detection.

Balanced accuracy is the arithmetic mean of the sensitivity and specificity, 

Balanced accuracy ¼
Specificity þ Sensitivity

2
(8) 

The specificity, in a binary case, indicates the accuracy of recognizing the negative 
(majority) class.

5. Results

Extensive experiments are then designed to verify the effectiveness of our proposed 
model. Thus, a performance comparison with other state-of-art methods is presented 
for an ablation study.

Table 1. Datasets Setup.
Dataset # of Ancient_Building # of No_Ancient_Building

Training 193 (Original) 4,272
3,088 (Upsampled)

Validation 65 610
Testing 71 619
Unannotated 95,358
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5.1. Ablation study

This ablation study consisted of two alternative versions of our proposed pre-trained 
model. The first version conducted self-supervised contrastive learning using only 
loss_cosine as discussed in the Methods section, inspired by the SimSiam network 
(Chen et al. 2020). By contrast, the second version conducted supervised contrastive 
learning using only loss_super as discussed in the Methods section. The corresponding 
testing results on the downstream labelled data have been presented in Table 2 
as SSL.

5.2. Comparison with Fully-Supervised Learning Benchmark

In addition to the contrastive learning framework discussed above, a fully supervised 
version of the experiment that was trained from scratch and used only the labelled images 
was also established, so as to further demonstrate the performance boost that is provided 
by the unlabelled data. Since our self-supervised framework employed ResNet50 as the 
backbone model, it’s also used here for the canonical fully-supervised learning bench
marks. An SGD optimizer and cross entropy loss were employed to create a standard 
training environment. The model was trained for 16 epochs. The trained model with the 
best validation performance was selected to run the testing dataset. The results of 
investigating canonical fully-supervised benchmarks are demonstrated in Table 2 as SL.

5.3. Experiments on Additional Contrastive Learning Frameworks

In order to further illustrate the effectiveness of our network design, two additional contrastive 
learning frameworks – BYOL and SimCLR – were utilized and modified to also incorporate the 
semi-supervised loss. The corresponding F1 score and balanced accuracy are indicated in 
Table 2. We then evaluated the accuracy of positive and negative images in this highly 
unbalanced scenario. Our semi-supervised loss mechanism yields an accuracy of 0.803 for 
positive images and 0.734 for negative images when using the SimCLR backbone. It sug
gested that our semi-supervised loss mechanism had a balanced performance for both 
positive and negative cases.

Table 2. Quantitative results of different learning methods. SL and SSL correspond to Supervised 
Learning and Self-Supervised Learning, respectively. CE is short for Cross Entropy.

Model Loss Function Balanced Accuracy F1 Score

SL ResNet 50a Supervised CE Loss (Zhang and Sabuncu 2018) 0.701 0.612
ResNet 50b Supervised CE Loss (Zhang and Sabuncu 2018) 0.790 0.718

SSL SimCLR Self-Supervised Loss (Chen and Kaiming 2021) 0.766 0.554
Semi-Supervised Loss (Ours) 0.769 0.613

BYOL Self-Supervised Loss (Grill et al. 2020) 0.731 0.681
Semi-Supervised Loss (Ours) 0.757 0.696

SimSiam Self-Supervised Loss Only (Chen and He 2021) 0.752 0.744
Supervised Loss Only (Khosla et al. 2020) 0.500 0.477
Semi-Supervised Loss (Ours) 0.790 0.762

aThis corresponds to model: ResNet 50 (from scratch). 
bThis corresponds to model: ResNet 50 (ImageNet pretrained).

INTERNATIONAL JOURNAL OF REMOTE SENSING 1933



6. Discussion

In this study, we developed a new, semi-supervised contrastive learning pseudo- 
label generation method based on the similarity matrix; in doing so, our ultimate 
goal was to enhance self-supervised training performance over a highly unba
lanced dataset. By integrating self-supervised and supervised loss functions, we 
designed a new learning framework that simultaneously learns from both unan
notated and annotated data.

The conducted experiments have yielded promising results. In the ablation 
study, the models trained using only loss_super were relatively ineffective in 
identifying ancient buildings, while the models trained using only loss_cosine 
produced competitive F1 scores and balanced accuracies; this indicated that hav
ing a model pre-trained on unlabelled data using self-supervised contrastive learn
ing was essential in distinguishing ancient buildings from other objects. 
Nonetheless, our proposed semi-supervised model that was trained with loss_co
sine + loss_super outperformed its self-supervised and fully-supervised counterparts 
by a decent margin. This result showed that the integration of fully-supervised and 
self-supervised networks was a complimentary aggregation. Furthermore, when 
comparing fully-supervised learning benchmarks (such as ResNet50) with our 
model, our solution exhibited superior performance on the downstream labelled 
dataset.

Figure 4 offered additional insights on the performance of our framework. The 
upper left and lower right corners indicate the correct classes prediction, while the 
upper right and lower left are the examples of false positives and false negatives. 
From the ablation study, the superior performance of our model can be attributed to 
the dynamic combination of fully-supervised and self-supervised information. The 
loss generated from the positive and pseudo-negative images serves as 
a complement to the other loss functions that were generated solely on unlabelled 
instances.

We believe there are several potential improvements for our semi-supervised 
contrastive learning framework. First, our proposed pseudo-labelling strategy would 

True Positive

True NegativeFalse Negative

False Positive

Figure 4. Testing Sample Results. This figure presents representative samples from the testing results. 
The left panel indicates the true positive examples while the right panel indicates the true negative 
cases. Likewise, the upper row indicates the predicted positive ones while the lower row indicates the 
predicted negative ones.
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only work for highly unbalanced data sets. Moreover, the current model has not 
been extended to multi-label classification scenarios. Meanwhile, the size of anno
tated training images in our study was still relatively small. To further facilitate the 
performance, we might need more training data especially with more positive 
images (ancient building) from our predicted positive class.

7. Conclusion

In this project, we proposed a new semi-supervised contrastive learning method 
for identifying relict architectural features in the south-central Andes from satellite 
imagery. As opposed to the existing solutions, we utilized the unbalanced nature 
of the large-scale unlabelled data to form pseudo-negative pairs. Using such 
negative pairs, we leveraged the contrastive learning method by introducing 
a holistic learning scheme with both cosine similarity loss and pseudo- 
supervision loss functions. According to the experimental results, our proposed 
framework yielded both superior accuracy and a higher F1 score as compared with 
its self-supervised and fully-supervised counterparts. The integrated model even
tually outperformed traditional supervised networks (e.g. ResNet50) by 15% in F1 
score and 8.9% in balanced accuracy.

These improved feature detection results show great promise for developing a machine- 
human teaming approach, in which human surveyors would not need to visually scan vast 
featureless areas, and instead could focus their efforts on categorizing, annotating, and 
enriching the attribute data on autonomously-identified features. This approach would also 
eliminate inter-observer differences in feature detection sensitivity and specificity, while also 
enabling greater transparency and reproducibility through the reporting of model 
parameters.
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