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ABSTRACT. In this paper, we continue exploration of the dynamical and param-
eter planes of one-parameter families of Schwarz reflections that was initiated in
[LLMM18a, LLMM18b]. Namely, we consider a family of quadrature domains
obtained by restricting the Chebyshev cubic polynomial to various univalent
discs. Then we perform a quasiconformal surgery that turns these reflec-
tions to parabolic rational maps (which is the crucial technical ingredient of
our theory). It induces a straightening map between the parameter plane of
Schwarz reflections and the parabolic Tricorn. We describe various properties
of this straightening highlighting the issues related to its anti-holomorphic
nature. We complete the discussion by comparing our family with the classical
Bullett-Penrose family of matings between groups and rational maps induced
by holomorphic correspondences. More precisely, we show that the Schwarz
reflections give rise to anti-holomorphic correspondences that are matings of
parabolic anti-rational maps with the abstract modular group. We further
illustrate our mating framework by studying the correspondence associated
with the Schwarz reflection map of a deltoid.
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As we know from classical geometric function theory, any analytic curve (and some
piecewise analytic curves) in C can serve as a mirror for a local anti-holomorphic
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reflection map, called the Schwarz reflection map. If the curve bounds some domain 2
then it can happen that this reflection can be extended to a (generally non-invertible)
anti-holomorphic map in . Such a domain is called a quadrature domain.

Quadrature domains first appeared in the work of Aharonov and Shapiro [AS73,
AST78, AS76], and since then have been extensively studied in connection with various
problems of complex analysis, field theory, and fluid dynamics (see [LLMM18a, §1.1]
for more references). Dynamics of Schwarz reflections was first used in [LM16] to
address some questions of interest in statistical physics concerning topology and
singular points of quadrature domains. In [LLMM18a, LLMMI18b], a systematic
exploration of Schwarz dynamics was launched. These works demonstrated that
Schwarz dynamics can combine features of dynamics of rational maps and Fuchsian
groups, and provided explicit models for the corresponding dynamical and parameter
loci.

The phenomenon of “mating” of rational maps with Fuchsian groups was dis-
covered in the 1990s by Bullett and Penrose in the context of iterated algebraic
correspondences [BP94]. Tt appears that Schwarz dynamical systems provide a
general framework for this phenomenon. Indeed, in the current paper we will
describe one more family of Schwarz reflections with similar features, which gives
rise to anti-holomorphic versions of the Bullett-Penrose correspondences. Note that
together with the families considered in [LLMM18a, LLMM18b], this family will
exhaust the list of one-parameter families of quadratic Schwarz reflection maps.

To put the contents of the present paper in perspective, let us briefly recall
the principal results of [LLMM18a, LLMM18b]. In these papers, we carried out
a detailed dynamical study of Schwarz reflection with respect to a deltoid, and a
one-parameter family of Schwarz reflections with respect to a cardioid and a family
of circumscribing circles (referred to as the C&C family). The simplest example of
the aforementioned mating phenomenon comes from the Schwarz reflection map of
a deltoid, which produces a conformal mating of the anti-holomorphic polynomial
z? and the ideal triangle reflection group [LLMM18a, §5]. The main results on the
C&C family include a description of the geometrically finite maps in this family as
conformal matings of quadratic anti-holomorphic polynomials and the ideal triangle
group, and the construction of a homeomorphism between the combinatorial models
of the connectedness locus of the C&C family and the basilica limb of the Tricorn
[LLMM18b, Theorems 1.1, 1.4].

In this paper, we focus on a family S of Schwarz reflections associated with simply
connected bounded quadrature domains that appear as univalent images of round
disks under a fixed cubic polynomial f. For such a (maximal) round disk centered
at a, the corresponding Schwarz reflection map is denoted by o,,.

In accordance with the general dynamical decomposition of Schwarz reflections
indicated in [LLMM18a, §1.5], the dynamical plane of each o, € S can be partitioned
into two invariant sets: the tiling set and the non-escaping set (see Subsection 4.1).
A careful study of the mapping properties of the members of S shows that each
Schwarz reflection map o, gives rise to a pinched anti-quadratic-like map (see
Definition 5.1), which can be thought of as a degenerate version of (anti-)quadratic-
like maps. This pinched anti-quadratic-like map completely captures the dynamics
of 0, on its non-escaping set. Since every (anti-)polynomial-like map is hybrid
conjugate to an actual (anti-)polynomial [DH85], it is natural to expect that an
analogous statement should hold true for pinched anti-quadratic-like maps. However,
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the existence of the pinching point (which results in the fundamental domain of
a pinched anti-quadratic-like map being a degenerate annulus) adds significant
subtlety to the situation. At the technical heart of the paper lies a “straightening
theorem” for pinched anti-quadratic-like maps that allows one to find a quadratic
anti-holomorphic rational map with a parabolic fixed point that is hybrid conjugate
to a pinched anti-quadratic-like map (see Lemma 5.3 and Theorem 5.4). We should
mention that in [Lom15], Lomonaco proved a related straightening theorem for
parabolic-like maps. However, since the maps o, do not have an (anti-)holomorphic
extension in a neighborhood of the pinching point, the main result of [Lom15]
cannot be directly applied to our setting. On the contrary, our definition of pinched
anti-quadratic-like maps does not require a local (anti-)holomorphic extension in a
neighborhood of the pinching point, and the corresponding straightening theorem
handles this difficulty by an analysis of boundary behavior of conformal maps which
allows for quasiconformal interpolation in infinite strips.

At the level of parameter spaces, this defines a straightening map x from the
connectedness locus C(S) of the family S (i.e., the set of maps in & with connected
non-escaping set, see Subsection 4.3) to the parabolic Tricorn, which is the con-
nectedness locus C(£g) of a suitable slice £y of quadratic anti-holomorphic rational
maps with a (persistent) parabolic fixed point (see Appendix A for details on the
persistently parabolic family £y). It is well-known that continuity of straightening
maps is a “miracle” that one typically cannot expect in general parameter spaces.
This is indeed the case in our setting. However, a thorough analysis of the continuity
and surjectivity properties of the straightening map (defined above) permits us to
prove that the straightening map induces a homeomorphism between the locally
connected models of the above two connectedness loci.

Theorem 1.1 (Combinatorial Model of Connectedness Locus). The abstract con-

nectedness locus C(S) (of the family S) is homeomorphic to the abstract parabolic
Tricorn C(£y).

A few words on the proof of the above theorem are in order. Since every member
of C(S) has the same “external map” (i.e., they are conformally conjugate to each
other on the tiling set, see Proposition 4.15), it is easy to adapt the classical proof
of injectivity of straightening maps for the current setting (Proposition 5.9). The
first step towards “almost surjectivity” of the straightening map x is to construct a
uniformization of the escape locus of S (i.e., the complement of the connectedness
locus in the parameter space) in terms of the conformal position of the escaping
critical point, which is carried out in Theorem 7.1. This uniformization (more
precisely, the parameter rays coming from it) is then used to show that certain
critically pre-periodic maps in the parabolic Tricorn C(£y) lie in the image of x
(Proposition 8.16). Subsequently, approximating parabolic parameters by these
critically pre-periodic ones, and using our knowledge of the hyperbolic components
and their bifurcation structure (see Section 6), we conclude that the image of x
contains the closure of all “hyperbolic parameters” in C(£y).

As mentioned earlier, the map x is not everywhere continuous on C(S) (see
Subsection 8.1.3). On the other hand, in Subsection 8.1.2, we use classical arguments
to show that  is continuous at all hyperbolic and quasiconjg@ally rigid parameters.

Finally, defining the abstract connectedness loci E(TS'/) and C(£y) as locally connected
combinatorial models of the corresponding connectedness loci, we show that x
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descends to a homeomorphism between C(S) and C(£y). Intuitively speaking,
passing to the abstract connectedness loci ‘tames’ the straightening map .

To obtain our desired mating description, we define a 2 : 2 anti-holomorphic
correspondence 7, on the Riemann sphere C (for every a € C (8)) by lifting the
action of o, by the cubic polynomial f (see Section 10). The correspondences o,
can be viewed as anti-holomorphic analogues of Bullett-Penrose correspondences,
and have several similarities with their holomorphic counterparts (see [BP94] and
the recent work of Bullett and Lomonaco [BL20] where it is shown that each Bullett-
Penrose correspondence is a mating between the modular group and a parabolic
quadratic rational map). In particular, the two branches of the correspondence
o, (respectively, of a Bullett-Penrose correspondence) are given by compositions
of the (non-trivial) “deck maps” of f with an anti-holomorphic involution of C
(respectively, a holomorphic involution of @) A key difference between the two
settings is that our correspondences o, naturally arise from the maps o, and
hence can be profitably studied by looking at the dynamics of o,. This allows us to
apply the above straightening theorem to suitable branches of the correspondences
in question. This, combined with a careful analysis of the “deck maps” of the cubic
polynomial f, yields the following mating theorem, an expanded version of which is
proved in Theorem 10.7.

Theorem 1.2 (Anti-holomorphic Correspondences as Matings). For each a € C(S),
the Riemann sphere C can be decomposed into two o, -invariant subsets; namely, the
lifted tiling set and the lifted non-escaping set. On the lifted tiling set, the dynamics
of the correspondence oo is equivalent to the action of the abstract modular group
Z/27 % 7Z/3Z, and on a suitable subset of the lifted non-escaping set, a forward
branch of the correspondence is conjugate to the anti-rational map Ry (q)-

Finally, our knowledge of the image of the straightening map x (Corollary 8.19)
combined with the mating description of the correspondence o, given in Theo-
rem 10.7 readily imply the following.

Theorem 1.3 (Realizing Matings as Correspondences). For every (a, A) € C(£o)
that lies in the closure of hyperbolic parameters, there exists a unique a € C(S) such
that the correspondence o, is a mating of the rational map R, 4 and the abstract
modular group Z /27 x 7./ 3.

We end the paper with the simplest examples of d : d anti-holomorphic correspon-
dences that are matings of anti-polynomials and groups. These correspondences
arise from univalent restrictions of suitable rational maps of degree d+ 1, and realize
matings of the anti-polynomial ¢ with the abstract Hecke group Z/2Z % Z/(d +1)Z.

Let us now elaborate on the organization of the paper. In Section 2, we recall
some basic definitions and results on quadrature domains, and give a classification
of one-parameter families of quadratic Schwarz reflection maps. This shows that
from the point of view of mating rational maps with groups, the only one-parameter
families (of quadratic Schwarz reflections) of interest are the C&C family and the
family S studied in this paper. Section 3 is devoted to the definition of the family
S. More precisely, in Subsection 3.1, we give a complete description of the set of
parameters a (in the right half-plane) for which the cubic polynomial f(u) = u3 —3u
is univalent on the round disk A, := B(a, |a — 1|). For such parameters, the image
of the disk A, under f is a simply connected quadrature domain 2, with a cusp
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point on its boundary (the corresponding Schwarz reflection map is denoted by
04). In Subsection 3.2, we study some basic mapping properties of the maps o,
which allow us to define the family S. An important feature of the maps o, in
S is that 0, : 0,1(Q4) — Q4 is a 2 : 1 branched covering branched at a unique
simple critical point (this mapping behavior and the existence of a fixed cusp on
the boundary of €2, are precursors to the anti-quadratic-like restriction of ¢,). In
Section 4, we first describe the decomposition of the dynamical plane of o, into non-
escaping and tiling sets. In Subsection 4.2, we compute the asymptotic development
of o, near the cusp point on 0),. Subsequently, in Subsection 4.3, we define
the connectedness locus C(S) of the family S, and study some of its elementary
properties. We conclude Section 4 by giving a dynamical uniformization of the tiling
set of the maps o, in . Among other things, it is shown here that all maps in
C(S) are conformally conjugate on their tiling sets. Section 5 contains a general
straightening theorem for pinched anti-quadratic-like maps (which is introduced
in Definition 5.1), and its application to the maps o, in §. The asymptotics of
04 near the cusp point on 0, (obtained in Subsection 4.2) are of fundamental
importance in the proof of the Straightening Theorem 5.4. In Section 6, we study
(the closures of) the hyperbolic components in S and their bifurcation structure.
The next Section 7 uses the dynamical uniformization of the tiling set of o, (given
in Subsection 4.4) to furnish a uniformization of the exterior of the connectedness
locus of S. Section 8 is dedicated to a detailed study of the straightening map
X (defined in Section 5) from C(S) to the parabolic Tricorn C(£y), which is the
connectedness locus of a suitable slice £y of quadratic anti-holomorphic rational
maps with a persistent parabolic fixed point (the family £y is introduced and studied
in Appendix A). In Subsection 8.1, we analyze (dis)continuity properties of the
map x at various parameters. After proving continuity of x at the hyperbolic
and quasiconformally rigid parameters of C(S), we show that discontinuity of x
may occur on quasiconformally deformable parabolic parameters. To conclude
our analysis of the straightening map x, we study its surjectivity properties in
Subsection 8.2 which culminates in the statement that the image of x contains the
closure of all hyperbolic parameters in C(£g). The proof of this fact uses the results
of Sections 6 and 7 iw essential way. In Section 9, we construct the abstract

connectedness locus C(S) as a locally connected topological model of C(S), and
use the results of Section 8 to show that x induces a homeomorphism between

5—(\8/) and the abstract connectedness locus of E(_i\):) of C(£y) (the construction of

—~—

C(Lo) is carried out in Appendix A). This completes the proof of Theorem 1.1. In
the final Section 10, we define the anti-holomorphic counterpart of Bullett-Penrose
correspondences by taking all possible lifts of oX! under the cubic polynomial f
(and throwing away the anti-diagonal). This is followed by a meticulous study of
the dynamics of these correspondences on the two dynamically invariant subsets
(i.e., the lifted tiling set and the lifted non-escaping set), which requires a good
understanding of the deck maps of f on suitable regions. Combining this with the
Straightening Theorem 5.4, we give a proof of our Mating Theorem 1.2 (in fact, we
prove a more detailed version of this theorem in Theorem 10.7). Putting together
the Mating Theorem and the surjectivity results on x (from Subsection 8.2), the
proof of Theorem 1.3 follows immediately. Appendix B contains the construction of
a d : d anti-holomorphic correspondence that is a mating of the anti-polynomial z¢
with the abstract Hecke group Z/27Z * Z/(d + 1)Z.
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2. QUADRATURE DOMAINS, AND SCHWARZ REFLECTION MAPS

Although we will deal with explicit quadrature domains and Schwarz reflection
maps in this paper, we would like to remind the readers the general definitions of
these objects. For a more detailed exposition on quadrature domains and Schwarz
reflection maps, and their connection with various areas of complex analysis and
statistical physics, we refer the readers to [LLMM18a, §1, §4] and the references
therein.

2.1. Basic definitions.

Definition 2.1 (Schwarz Function). Let Q C C be a domain such that oo ¢ 0N
and int Q = Q. A Schwarz function of {2 is a meromorphic extension of Z|sq to all
of €. More precisely, a continuous function S : Q — C is called a Schwarz function
of Q if it satisfies the following two properties:

(1) S is meromorphic on €2,
(2) S(2) =% on 00

It is easy to see from the definition that a Schwarz function of a domain (if it
exists) is unique.

Definition 2.2 (Quadrature Domains). A domain 2 C C with oo ¢ 00 and
int ) = Q is called a quadrature domain if  admits a Schwarz function.

Therefore, for a quadrature domain €, the map o : Q — @, Z = % is an
anti-meromorphic extension of the Schwarz reflection map with respect to 992 (the
reflection map fixes 9 pointwise). We will call o the Schwarz reflection map of .

Simply connected quadrature domains are of particular interest, and these admit
a simple characterization (see [AS76, Theorem 1]).

Proposition 2.3 (Simply Connected Quadrature Domains). A simply connected
domain Q C C with co ¢ O and int Q = Q is a quadrature domain if and only if
the Riemann uniformization @ : D — Q extends to a rational map on C.

In this case, the Schwarz reflection map o of Q is given by po (1/Z) o (¢|p)~'.
Moreover, if the degree of the rational map ¢ is d, then o : o= 1(Q) — Q is a
(branched) covering of degree (d — 1), and o : o~ (int Q°) — int Q¢ is a (branched)
covering of degree d.

Remark 1. 1) For a simply connected quadrature domain, the Riemann map ¢
semi-conjugates the reflection map 1/Z of the unit disk to the Schwarz reflection
map o of Q (see Figure 1). This yields an explicit description of o.

2) If Q2 is a simply connected quadrature domain with associated Schwarz reflection
map o, and M is a Mobius transformation, then M () is also a quadrature domain
with Schwarz reflection map M oo o M1,
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FIGURE 1. The rational map ¢ semi-conjugates the reflection map
1/Z of D to the Schwarz reflection map o of 2 .

2.2. Classification of One-parameter Families of Quadratic Schwarz Re-
flection Maps. In this subsection, we will classify one-parameter families of
Schwarz reflection maps of “degree” two associated with disjoint unions of simply
connected quadrature domains. This will lead to the family of Schwarz reflection
maps that is the principal object of study of this paper.

Consider a finite collection of disjoint simply connected quadrature domains
Q;(C C) (j = 1,---, k) with associated Schwarz reflection maps o;. We define

k

Q= |_| 5, and the Schwarz reflection map
j=1

c:0—C, w— oj(w) fweq; .
Let us also set T := C\ Q;, T := C\ ©, and T° := T\ { Singular points on dT'}.

We define the tiling set T™ of o as the set of all points that eventually land in 7°;
ie.,

o)
T = U o ™(T").
n=0

The non-escaping set of o is its complement C \ T°.

Let ¢; : D — Q; be the Riemann uniformizations of the simply connected
quadrature domains €); such that each ¢; extends as a rational map of C of degree
d;. It follows that o; : U;l(Qj) — 5 is a branched covering of degree (d; — 1),
and o; : int 0]71(T ) — intT}; is a branched covering of degree d;. Therefore,

k
o:07 Q) — Qis a (possibly branched) covering of degree (Z d; —1).
j=1

We will now focus on the case when o : 071(2) — Q has degree 2; i.e.,

k k
ddi-1=2 = > d;j=3.
j=1 j=1

Since each d; > 1, we have that £ < 3. We also restrict our attention to families of
Schwarz reflection maps for which o : 0=1(Q2) — Q has at least one critical point,
and such that the connectedness loci of the families are non-empty.

Case 1: k = 3. In this case, each ¢; is a Mobius map, and hence each Q; is a
round disk. In particular, each o; is the reflection in a round circle (thus, o has no
critical point), and the resulting dynamics of o is completely understood.
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Case 2: k= 2. We can assume that degy; = 2, and deg 2 = 1. Note that post-
composing ¢; and 2 with a (common) Mdbius map does not alter the conformal
conjugacy class of o (see Remark 1). Hence, after a non-dynamical change of
coordinates (i.e., different change of coordinates in the domain and the range), we
can assume that ¢1(w) = w?,  is the univalent image of a round disk of the form
B(1,7) (where r € (0,1]) under 1, and € is a round disk in C. If the boundaries
of the domains €7 and €25 are disjoint, then the non-escaping set of o is necessarily
disconnected. To avoid this, we will assume that 92y N 9N is a singleton.

Subcase 2.1: r € (0,1). The moduli space of this family has real dimension 3.

Subcase 2.2: r = 1. In this case, 9y has a singularity (which is a simple cusp
at 0), and ©Q; is a cardioid. Now if Q5 C C, then o : 071(Q2) — Q has no critical
point (the only critical point of ¢ in this case is c0), and the non-escaping set of
o is necessarily disconnected (more precisely, 0~1(£23) is the disjoint union of two
domains each of which maps univalently onto €25, and these two domains disconnect
the non-escaping set). So we may assume that Qs is an exterior disk; i.e., 95 is a
circumcircle of 9€; with a single point of intersection. Therefore, up to conformal
conjugacy, the moduli space of such maps is obtained by fixing a cardioid as 2, and
varying the center of the exterior disk Q5 that touches 2; at a unique point. This
one-parameter family has been studied in our earlier work [LLMM18a, LLMM18b].

Case 3: k£ = 1. In this case, 2 = Q; is a singe quadrature domain that is the
univalent image of D under some cubic rational map. We need to consider three
cases here.

Subcase 3.1. Suppose that the rational map ¢; has two double critical points.
Then under a non-dynamical change of coordinates, we can assume that ¢ (w) = w?.
Remark 1 now implies that up to conformal equivalence, o is the Schwarz reflection
map of 2, where (2 is the univalent image of some round disk under ;. It now easily
follows from the commutative diagram in Figure 1 that in this case, 0~(f2) is the
disjoint union of two topological disks compactly contained in €2, and o maps each
of these two disks univalently onto © (in particular, o : 0~1(Q) — Q has no critical
point). Moreover, o : 0~ 1(2) — Q is an expanding map, and the corresponding
non-escaping set is a Cantor set.

Subcase 3.2. Now suppose that the rational map ¢; has a unique double critical
point. Then under a non-dynamical change of coordinates, we can assume that
¢1(w) = w® — 3w; and up to conformal equivalence, o is the Schwarz reflection map
of 2, where 2 is the univalent image of a round disk under ;. Suitably varying
the round disk (whose image under ¢; is ) now leads to a one-parameter family of
Schwarz reflection maps. The current paper is dedicated to the study of this family.

Subcase 3.3. In the last remaining case, ¢ is a rational map with four simple
critical points. A specific example of this type of quadrature domains is the exterior
of a deltoid, whose associated Schwarz reflection map was studied in [LLMM18a,
§5]. The full moduli space of such Schwarz reflection maps arises from all possible
univalent images of round disks in C under a one-parameter family of cubic rational
maps with fixed critical points at 0,1, and co. Thus, the moduli space has real
dimension 5.
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3. A FAMILY OF SCHWARZ REFLECTIONS

The main goal of this paper is to study the dynamics and parameter plane of the
family of Schwarz reflection maps arising from Subcase 3.2 above.

Let f(u) = u® — 3u. Note that the map f is the cubic Chebychev polynomial.
In particular, the finite critical points +1 of f map to the repelling fixed points
F2 in one iterate; i.e., the critical orbits are given by +1 — F2 . Moreover,
f:1-2,2] — [-2,2] is a triple branched cover such that each of the intervals
[—2,—1],[—1,1], and [1, 2] map monotonically onto [—2,2]. It follows that the Julia
set of f is [—2,2]. These properties of the map f will be useful in what follows.

3.1. Univalence Properties of The Cubic Chebychev Polynomial. We will
consider suitable maximal disks on which f is univalent. Clearly, such a disk must
not contain any critical point of f. We will focus on the case where the disk has
exactly one critical point on the boundary.

To this end, consider a € C with Re(a) > 0, a # 1, and set A, := B(a, |a — 1).
We define

S:={aeC:Re(a) >0, a#1, and f(dA,) is a Jordan curve}.
Note that when Re(a) > 0, none of the critical points of f lies in A,, and hence,

the requirement that f(90A,) is a Jordan curve implies that f is univalent on A,.

For a € S, we set , := f(A,). Since A, contains the simple critical point 1 of f,
its image 0, has a conformal cusp at f(1) = —2.

Proposition 3.1.
Sc{aeC:0<Re(a) <4, a#1}.
Proof. Let us fixa € S, and set a = 1 + la — 1]e%, for some 6y € (—7,7]. Then,
F(1+ee’) = —2 4 £2e2%0(3 4 eei) € Q,,

for e > 0 sufficiently small. It follows that (—2 + §e?%) € Q,, for § > 0 sufficiently
small.

We parametrize the circle A, as {z(t) := a+ (1 —a)e®® : —r <t < 7w}. Then,
z(0) =1, and z(7w) = z(—7) = 2a — 1. A straightforward computation shows that

F(8) = 2(t)* = 32()
= (a® —3a) — 3¢"(1 + a)(a — 1) + 3ae**(a — 1)* — **(a — 1)*
= —2 —3e%%|q — 1242 4 ie?%|a — 11%(a — 4)t* + O(t*).

By way of contradiction, let us assume that Re(a) > 4; i.e., a =4 + p + ig, for
some p > 0, and ¢ € R. The above computation yields that

(1) f2(t) = =2 — 2 la — 1(3t2 + ¢t®) + ipe*®]a — 12 + O(t).

For the remainder of the proof, we will choose the argument of a complex number
z in the interval [26,260 + 27), and denote it by argz. Relation 1 shows that
for t > 0 small enough, arg (f(z(t)) +2) € (2600,26y + m); while for ¢ < 0 small
enough, arg (f(z(t)) +2) € (200 + 7,200 + 27). If f|a, is univalent with f(9A,) a
Jordan curve, then f will be orientation-preserving on 0A,. But this implies that
f(0A,) must have a self-crossing; i.e., f(z(—m,0)) and f(2(0, 7)) must intersect (see
Figure 2). This contradicts the fact that f(0A,) is a Jordan curve, and completes
the proof. O
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f(2a-1)
f(z(0,m)

f(@(-m,0))

7\

FIGURE 2. Left: The disk A, for some parameter a with Re(a) > 4
is shown. The diameter connecting 1 and 2a — 1 makes an angle 6
with the positive real axis. The green (respectively, blue) part of
the boundary circle A, is z(—m,0) (respectively, z(0,7). Right:
The image of A, under f with the image of z(—m,0) (respectively,
2(0,7)) shaded in green (respectively, blue). Near the cusp point
—2, these two smooth branches of f(0A,) \ {f(2a — 1)} cross.

Proposition 3.2. SNR = (0,4]\ {1}. In particular, S # (.

Proof. Note that the map h(w) = w4+ i is a conformal isomorphism from the basin
of infinity C\ D of the polynomial g(w) = w3 onto the basin of infinity C \ [~2, 2] of
f(u) = u® — 3u. Moreover, h conjugates g to f on their respective basins of infinity.
In other words, h is the Bottcher coordinate for the basin of infinity of f, normalized
to be tangent to the identity at co. We define the external ray of f at angle 6 to be
the image of the radial ray at angle 6 in C \ D under h.

It clearly follows from the definition of external rays that the 0-ray (respectively,
the 1/2-ray) of f lands at 2 (respectively, at —2). Pulling back the 0 and 1/2-rays
under f, it is easy to see that the 1/3 and 2/3-rays (respectively, the 1/6 and
5/6-rays) of f land at —1 (respectively, at 1). Moreover, the explicit description of
the external rays (of f) given in the previous paragraph also shows that the union of

the (closures of the) 1/6 and 5/6-rays of f are given by the branch of the hyperbola

z? — y—; =1 in the right half-plane.

There are six unbounded complementary components of the union of the fixed
and pre-fixed rays of f and its Julia set [—2,2]. It is easy to see from the mapping
properties of f that f is univalent on each such unbounded component. More
precisely, the closure of every white (respectively, gray) component shown in Figure 3
maps univalently onto the closed upper (respectively, lower) half-plane under f.

A simple computation now shows that for a € (0,4] \ {1}, the closed disk A,
does not intersect the 1/6 and 5/6-rays of f. It follows that f is injective on Ag;
ie., aé€ S. This completes the proof. O

Note that the boundary of S in {0 < Re(a) < 4,a # 1} is contained in the set
of parameters for which either f(9A,) has a tangential self-intersection, or —2 is a
higher order cusp (i.e., not a simple cusp) of 9€,.
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1/6
13

-
O
=
N
o

1/2 -2

2/3 5/6

FIGURE 3. The dynamical plane of f with the critical points +1
and the critical values £2 marked on the Julia set. The dynamical
rays at angles 1/6,5/6 (which land at 1), and 1/2 (which lands at
—2) are shown in blue; while the dynamical rays at angles 1/3,2/3
(which land at —1), and 0 (which lands at 2) are shown in red.
The closure of every white (respectively, gray) component maps
univalently onto the closed upper (respectively, lower) half-plane
under f.

A direct (but tedious) computation shows that the locus of parameters in {0 <
Re(a) < 4,a # 1} for which f(0A,) has a tangential self-intersection is the union of
two real-symmetric arcs TF that are contained in the upper (respectively, lower)
half-plane. In fact, we have

Tt={a=ga+iy:z>0y>V3 R(zx,y) =0},

where R(x,y) = 25+ 3z%y? + 322y* + 9 — 62° — 1223y — 629* + 62* — 6y* + 1623 —
30zy? — 1222 — 15y% — 242 — 8.1
It is easy to see that Tt is a real-algebraic arc connecting 2v/2i and 4 + iy/3. In
fact, Tt is completely contained in {0 < Re(a) < 4,Im(a) > v/3} (see Figure 4).
The proof of Proposition 3.1 implies that the set of parameters in {0 < Re(a) <
4, a # 1} for which —2 is a higher order cusp of 99, is {Re(a) = 4}. It follows that

(2) 85 = {Re(a) = 0,|Im(a)| < 2v2} UT* U {Re(a) = 4, |Im(a)| < V3}.

Also, TN 5 =0, and {Re(a) = 4, |Im(a)| < v3} C S.
Notation: We will denote the closed interval {Re(a) = 4, |Im(a)| < v/3} by Z,
and the open interval {Re(a) = 4, |Im(a)| < v/3} by Z°.

We would like to thank Bernhard Reinke for helping us with this computation.



12 S.-Y. LEE, M. LYUBICH, N. G. MAKAROV, AND S. MUKHERJEE

g+
2/2i /
4403
0 3 4
2
4-—i\/3
_Z\Ei \
T

FIGURE 4. The interior of S is the open region bounded by the
vertical line segments {Re(a) = 0,|Im(a)] < 2v2}, {Re(a) =
4,|Tm(a)| < V/3}, and the curves T+ (with a puncture at the
point 1). S is the union of int S and the vertical line segment
{Re(a) = 4,|Im(a)| < v/3}. Our parameter space S is the open
subset of S lying between the vertical lines {Re(a) = 3} and
{Re(a) = 4}.

3.2. The Corresponding ScAhwarz Reflections and Their Critical Points.
We will now assume that a € S.
Let T, = C\ Q,. Since

fla, = : A0 = Qq

is a biholomorphism, Proposition 2.3 implies that 2, is a quadrature domain.

We will denote the reflection in the circle 0A, by t4.

It will be convenient to introduce the new coordinate z = {=2 to study the
Schwarz reflection map of Q,. The disk B(a,|1 — a|) in the u-coordinate becomes
the unit disk D in the z-coordinate.

Define f,(2) := f(u) = f(a+ (1 — a)z). Note that f,(0) = f(a), and f,(1) = —2.
Moreover, the critical points of f, are 1, Z—ﬂ, and oo with associated critical values

—2,2, and oo respectively. By our choice of a, the critical point Z—ﬂ of f, lies
outside the unit disk. Since f, : D — €, is univalent, the Schwarz reflection map
04 of Qg is given by fot, 0 (f\zu)71 = f,oL0 (fa|ﬁ)71, where ¢ is the reflection in
the unit circle, and ¢, is the reflection in the circle 9A,.
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0.6 .
- , int T,
e N 0.0010
0.4 / |
.‘ o (int T,) ,
o2 | ‘ 0.0005-
00l —25% ) |
/5 KF | 0.0000" . =
/ / Cq Ca
02 | 0z (Qa) :
\ -0.0005
-0.4 N\ g |
" x/ 3:1 ,
-0.6 R ~0.0010".
-2.2 =-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 —1-83 —1-829 —1-828 —1-827

FIGURE 5. Left: For parameters a € S with 0 < Re(a) < %, the
unique tile of rank one (in blue) is a conformal annulus which
contains the double critical point ¢}, and the simple critical point ¢,
(of 0,). The Schwarz reflection map o, maps o, !(int7,) as a 3 : 1
branched covering onto int 7,. On the other hand, Q, = o, 1(£2,)
consists of two simply connected components each of which is
mapped univalently onto §2, by o,. One of these components, which
is visible in the picture, has the cusp point —2 on its boundary.
The other component, which is too small to be seen in this scale,
lies in the box shown. Right: A blow-up of the box shows the other
component of Q.

It follows from the definition of o, that the map o, has two distinct critical
points; namely, ¢ = ¢q := f(ta(=1)) = fa(Z57) and ¢* = ¢} := f(ta(0)) = fa(0).
In fact, ¢, is a simple critical point, while ¢ is a double critical point. Moreover,

0a(ca) =2, and o,(c}) = 0.
Since f is a degree 3 polynomial which sends A, univalently onto €, it follows
that o, : Q) := 0, 1(Qa) — Q4 is a two-to-one (possibly branched) covering. On the
other hand, o, : o, !(int T,) — int T, is a branched covering of degree three. (In

the language of [LM16, Lemma 4.1], , is a bounded quadrature domain of order
three.)

Note that for each parameter a € S , the set o, 1(intT,) contains the critical
point ¢ of o,. Let us denote the set of parameters a € S for which the free critical
point ¢, lies in Q) by X. We will now give a precise description of X.

X={aecS:c,e}={aecS:0,(ca) €N}
={aeS:2€Q, ={ae8:2cA,}

:{aeg:|a—2|<|a—1|}:{a6§:Re(a)>g},

where we used the fact that f=1(2) = {—1,2}, and —1 ¢ A, (in the second line of
the above chain of equalities).

It now follows by the Riemann-Hurwitz formula that for parameters a € S with
Re(a) > %, the set Q/, is a simply connected domain which maps onto €, as a
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- - int Ta 0.6F
7 N
/ 1/
/ O, (mt Ta) \. 0.4
1
0.27
o A S 0.0t .
: c
_1 -0.2
\ -0.4
- \ /
TN \3 01
. -0.6t .
2 1 0 1 2 -2.5 =2.0 -1.5 -1.0

FIGURE 6. For parameters a € S with Re(a) = 3, the boundary of
the unique tile of rank one (in blue) is pinched at the simple critical
point ¢, (of 0,). In particular, this tile is not simply connected
(although its interior is so). On the other hand, Q! = o, 1(9,)
consists of two simply connected domains, each of which is mapped
univalently onto §2,. In particular, !, does not contain any critical
point of o,. (The figure on the right is a blow-up of the left figure
around € .)

two-to-one branched cover (branched only at ¢,) under o, (see Figure 8(left)).
Moreover for such parameters, o, !(int7,) is a simply connected domain which
maps (under o,) onto int T, as a three-to-one branched cover branched only at c.

Remark 2. For a € S with Re(a) < %, the set €2/, contains no critical point of o,
and hence is a union of two disjoint simply connected domains each of which maps
univalently onto €2, under o, (see Figures 5 and 6).

3.3. Quasiconformal Deformations. We will now prove a lemma that will allow
us to talk about quasiconformal deformations of the Schwarz reflection maps under
consideration.

Proposition 3.3 (Quasiconformal Deformation of Schwarz Reflections). Let a €
S with Re(a) > %, i be a og-invariant Beltrami coefficient on @, and ® be a
quasiconformal map satisfying ®z/P, = p a.e. such that ® fires +2 and co. Then,
there exists b € S with Re(b) > % such that ®(Q,) = Qp, and Po o, 0 ®~ 1 =0y on
Qp.

Proof. The assumption that p is o,-invariant implies that ® o o, 0 ®~! is anti-
meromorphic on € := ®(€,) that continuously extends to the identity map on
d(99,) = 9. Since ® fixes oo, it follows that € is a bounded simply connected
quadrature domain with Schwarz reflection map & := ® o g, 0 &~ 1.

The Schwarz reflection map & of € has a double critical point at ®(c%), and a
simple critical point at ®(c,). Moreover, by our normalization of ®, the correspond-
ing critical values are oo and 2 respectively. Also note that & maps 6~ '(Q) = ®(Q/,)

onto €2 as a two-to-one branched cover.
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By Proposition 2.3, there exists a rational map R of degree 3 on C such that
R :D — € is a Riemann uniformization of 2. We can assume that R(0) = ®(c}),
and R(1) = —2.

FIGURE 7. Left: The pre-image of € under the cubic polynomial
R is DUV. The set D is mapped univalently onto Q by R. On
the other hand, V contains a simple critical point Z'_"—i (where
Re(b) > 0) of R, and hence is simply connected. V is mapped as
a two-to-one branched covering onto . Right: & is a two-to-one
branched covering from () = R(¢(V')) onto © branched only
at the simple critical point R(¢(2)) of &.

Since 99, has a cusp at —2, it follows that { has a cusp at —2 as well. Hence,
R/'(1) = 0. Moreover, by the commutative diagram in Figure 1, we deduce that
R has a double critical point at co with R(c0) = co. Hence, R is a polynomial of
degree 3.

The assumption that Re(a) > % implies that ¢, € Q, and hence the simple
critical point ®(c,) of & lies in 71(Q2). Hence, R has a simple critical point in
(C\D) N R~*(2) with corresponding critical value 2. Let us denote this critical
point by 2t} for some b with Re(b) > 0, and b # 1 (see Figure 7).

We will now bring the critical points of R to £1 by pre-composing it with an
affine map. To this end, let us set u = b+ (1—b)z, and define f(u) = R(z) = R(%=2).
The finite critical points of f are easily seen to be +1 with corresponding critical
values F2 (respectively). Therefore, f(u) = u® — 3u, and R = f;.

It follows that Q = f,(D) = Qp, and & = 0, on Q. As €y, is a Jordan curve,
it follows that b € S. Moreover, the fact that the simple critical point of oy lies in
o, (%) implies that Re(b) > 3.

This completes the proof. O

4. THE FAMILY S

For a € S, we define TO := T, \ {—2}, and call it the desingularized droplet or
the fundamental tile.

One of the main goals of this paper is to demonstrate that suitable Schwarz
reflection maps defined in Subsection 3.2 produce matings of the abstract modular
group Z/27 x 7./37 with certain anti-holomorphic rational maps (anti-rational maps
for short). The group structure will essentially appear in the iterated pre-images of
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T?. For this, we will need o, '(T?) to be a topological triangle (with its vertices
removed). Equivalently, the “rational map” feature will essentially come from
0a : Q) — Q,, and hence we need to focus on parameters for which 2/, contains a
critical point (note that the dynamics of a rational map is dictated by that of its
critical points). Therefore, we will only focus on parameters a € S with Re(a) > %

This leads to the parameter space; i.e., the set of parameters a € S that we will
be interested in:

S::{a€§:g<Re(a)<4}.
(See Figure 4.)

Remark 3. The reason for not considering parameters on Z C S will become apparent
in Subsection 4.2.

Definition 4.1. The family S of Schwarz reflection maps is defined as
S:={0,:9 —C|ac5}

4.1. Invariant Partition of The Dynamical Plane. Since the critical point ¢

is mapped to co in one iterate for all a € S, this critical point is “passive” throughout

the parameter space. Thus, the dynamics of o, is largely controlled by the unique
free critical point ¢,.

o, (int )

FIGURE 8. Left: For parameters a with Re(a) > %, the unique tile
of rank one (in yellow) contains the double critical point ¢ of o,.
The Schwarz reflection map o, maps o !(int T},) (respectively, the
rank one tile) as a 3 : 1 branched covering onto int T, (respectively,
onto T?) branched only at ¢:. On the other hand, €, (in gray) is
mapped as a 2 : 1 branched cover onto 2, by o, branched only at
cq- Right: A zoom of the non-escaping set K,, which is contained
in o, 1(Q, U{-2}). The fixed point —2 is on the boundary of K,.

Definition 4.2 (Tiles, Tiling set, and Non-escaping Set).
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(1) Connected components of o, "(T2) are called tiles of o, of rank n.
(2) The tiling set T>° is defined as U o, "(TY); i.e., it is the union of tiles of
n>0
all ranks.
(3) The non-escaping set K, is defined as the complement of 7.>° in the Riemann
sphere. In other words,

K,={z€Q,U{-2}:0"(2) € QuU{-2} Vn >0}
Connected components of int K, are called Fatou components of o,.

Remark 4. Note that the critical point ¢}, lies in the tiling set, more precisely in the
tile of rank one, for all a € S. In fact, o, is a three-to-one branched cover from the
tile of rank one onto the fundamental tile branched only at c;.

Proposition 4.3 (Tiling Set is Open and Connected). For each a € S, the tiling
set T2° is an open, connected set, and the non-escaping set K, is a full, compact
subset of C.

Proof. Let us denote the union of the tiles of rank 0 through k by E¥. Since every
tile of rank k > 1 is attached to a tile of rank (k — 1) along a boundary curve and
int £ is connected, it follows that int E¥ is connected. Moreover, int E¥ C int EX+1
for each k£ > 0.

Also note that if z € T2° belongs to the boundary of a tile of rank &, then it lies
in the interior of E¥*!. Hence,

T = | int B
k>0

Thus, T2° is an increasing union of open, connected sets, and hence itself is such.
Finally, since oo € int7:°, it follows that the complement K, of T:° is a full,

a

compact subset of C. O

Note that the non-escaping set of each a € S has the fixed point —2 on its
boundary (see Figure 8(right)).

4.2. Dynamics Near Cusp Point. Since 99, \ {—2} is a real-analytic curve, it
follows that the Schwarz reflection map o, is anti-holomorphic in a neighborhood of
00, \ {—2}. We will now analyze the behavior of o, near the cusp point —2.

Recall that for a € S, we have 4 = f, 010 (fa|ﬁ)71 =foui.0 (f\Za)il, where
Lg is the reflection in the circle 0A,. Near 1, f has a Taylor series

(3) f(l4e)=—-2432 45
It follows that near f(1) = —2, the inverse function (f ‘Za)_l can be expanded as a
Puiseux series
1
. 5% 5 5 s 1., T s s
4 = —240)=14+—=—-—+—=02 — 50"+ ——=02+0(¢
( ) (f|Aa) ( ) \/g 18 216\/§ 243 31104\/§ ( )

where § ~ 0, (=2 + ) € Q,, and the branch of square root has been chosen so that
—1 —_
(f|Za) (=2+49) € A,.
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421. Case I: a € S, 3 < Re(a) < 4. By Relation (4), and the definition of o,, we
have that

3

53 6 5 1 7 s
1= =+ ——5> - — 52+ —— 52 4+0(°
/ (L ( V3 18 2163 243 311043 ( )>>

2 9 .
21 (150 5 g o

Let arg(a — 1) = 6y € (—m, . Since Re(a) > 2, we have that |y| < Z. Since
F(1+eei) = —2 4 £26290(3 4 ge?) it follows that arg(f(1+ce?) +2) ~ 26y, for
£ > 0 small enough. In particular, (—2 + de?%%) € Q,, for § = §(6y) > 0 sufficiently

small. Now,

0a(—2+9)

, , 2 (4—Re(a)) .2 9
5 0a(—2 4 0e¥0) = —2 4 §e?i0 4 252700 4 O(§7),
() ol ) N R (5*)
for sufficiently small positive §.

For a € 5, it follows that —2 repels nearby points in the direction 26y under
application of o,. In particular, points in K, close to —2 are repelled from —2 under

iterates of o,.

4.2.2. Case II: a € T C S. Here we will explain the reason for not considering
parameters lying on the segment {a : Re(a) = 4, | Im(a)| < v/3}.
First let a € 7% i.e., Re(a) = 4, and |Im(a)| < v/3. Set arg(a — 1) = . Then,

2(3 — Im(a)?)

2025 4 O(6%),
9v/3la — 1|3 %)

(6) 0% (=2 + 6e”%) = —2 4 e —
for sufficiently small positive §.

Hence, for parameters a € I, the fixed point —2 attracts nearby points in
the direction 26, under application of 02?; i.e., there is a forward invariant Fatou
component for o, such that the forward orbit of every point in this component
converges to the fixed point —2 on its boundary (see Figure 9).

Now suppose that a = 4 4 iv/3. Then,

(V3 +1)

0294 ) =245 Yo "3 54
(7) oo (=2 +9) + 973 +0(0%),

for 6 with sufficiently small absolute value such that (—2 + §) € Qf (where the
chosen branch of square root sends the radial line at angle 26, to the radial line
at angle ). It follows that —2 has two attracting directions, which are permuted
by 4. Therefore, for a = 4 + iy/3, there is a 2-cycle of Fatou components with
the fixed point —2 on their common boundary such that the forward orbit of every
point in these components converges to —2 (see Figure 9).

A completely analogous analysis shows that for a = 4 — iy/3, there is a 2-cycle of
Fatou components with the fixed point —2 on their common boundary such that
the forward orbit of every point in these components converges to —2.

To sum up, we ignore parameters a with Re(a) = 4 and |Im(a)| < v/3 so that
all maps in the parameter space have the same qualitative dynamics near the fixed
point —2; namely, they repel nearby points in K.

We end this subsection with a couple of consequences of the above analysis on
the local dynamics of o, near —2.
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FIGURE 9. Top: The dynamical planes of o,, where a = 4 (left)
and @ = 4 + i (right), show the unique invariant Fatou component
U with —2 € 9U. The forward orbit of every point in U converges
to the fixed point —2. The critical value 2 lies in U. For a = 4,
the critical Ecalle height of o, is 0; while for a = 4 + 4, the critical
Ecalle height of o, is some large positive real number. Bottom:
The dynamical plane of o, where a = 4 + iy/3, shows the 2-cycle
of Fatou components {U,c,(U)} with —2 € U N do,(U). The
forward orbit of every point in U U 0,(U) converges to the fixed
point —2. The critical value 2 lies in U.

19
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Proposition 4.4. 1) Let a € S, u be a o,-invariant Beltrami coefficient on @, and
O be a quasiconformal map satisfying ®z/®, = p a.e. such that ¢ fixres +2 and co.
Then, there exists b € S such that ®(Qy) = Qp, and ® oo, 0P~ =0y, on Q.

2) Let a € S with Re(a) = 4 and |Im(a)| < v/3. Let p be a o4-invariant Beltrami
coefficient on ([A:, and ® be a quasiconformal map satisfying ®z/P, = p a.e. such
that ® fires +2 and co. Then, there exists b € S with Re(b) = 4 and |Im(b)| < v/3
such that ®(Q,) = Qp, and ® ooy 0 ®~ 1 =0y on Q.

Proof. 1) By Proposition 3.3, there exists some b € S with Re(b) > % satisfying the
desired properties.

Since a € S, the fixed point —2 repels nearby points in K, (under application of
04). This property is preserved under the quasiconformal conjugacy ®, and hence
the same is true for the map o}. It now follows that b € S.

2) Once again by Proposition 3.3, there exists some b € S with Re(b) > 3
satisfying the desired properties.

Since Re(a) = 4 and |Im(a)| < v/3, the map o, has a forward invariant Fatou
component such that the forward orbit of every point in this component converges to
the fixed point —2 on its boundary. The quasiconformal conjugacy ® preserves this
property, and hence the same is true for the map o,. It now follows that Re(b) = 4
and |Im(b)| < v/3. O

Proposition 4.5. For all maps o, with a € T C §, the forward critical orbit
{o3™"(2)}n converges to —2.

Proof. Let us fix some a € Z. Note that the second iterate 022 has at least one
attracting direction at the fixed point —2. Let U C §2, be an immediate basin of
attraction of —2; i.e., a connected component of the set of all points converging
to —2 (under iterates of 02?) having —2 on its boundary. Using the asymptotics
of 052 near the cusp point —2 (see Subsection 4.2.2), one can easily adapt the
proof of existence of attracting Fatou coordinates at parabolic fixed points (for
instance, see [Mil06, Theorem 10.9]) to show that there exists a o2%-invariant open
set P C U with —2 € 9P and a conformal map from P onto some right half-plane
that conjugates 022 to the translation ¢ + ¢ + 1 (this conformal coordinate is
unique up to addition by a complex constant). One can now argue as in [Mil06,
Theorem 10.15] to conclude that the boundary of the maximal domain of definition
of this conjugacy contains a critical point of 022, Hence, U contains an infinite
critical orbit of o22.

Clearly, the sequence {09"(2)}, is the union of two infinite critical orbits of
022, Moreover, these are the only infinite critical orbits of 052, and these orbits
are related by o,. It follows that if a € Z°; i.e., if 052 has exactly one attracting
direction at the fixed point —2, then o,(U) = U, and hence, {c2"(2)},, C U. On
the other hand, if a = 4 +1i+/3, then 622 has exactly two attracting directions at the
fixed point —2, and these two attracting directions are permuted by o,. In this case,
the sequence {c2™(2)},, is contained in the immediate basin of attraction U U o, (U)
of —2 (see Figure 9). Hence, in both cases, the critical orbit {2"(2)},, converges to
—2. O

4.3. The Connectedness Locus.

Proposition 4.6. For a € S, K, is connected if and only if 2 € K,.
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Proof. Let E¥ be the union of the tiles of rank < k. Note that although the tile of
rank one is mapped to T under o, as a ramified cover, C\ int E! is a full continuum.

If 2 € T?°, then the tile containing the free critical point ¢, is ramified and it
disconnects K,. On the other hand, if ¢, does not escape to T under iterates of
04, then every tile of rank > 2 is unramified, and C \ int E¥ is a full continuum for

each k > 0. Therefore,
K,= (@\intEf;)
k>0

is a nested intersection of full continua, and hence is a full continuum itself. O

FIGURE 10. A part of the connectedness locus C(S) is shown in blue.

Proposition 4.6 leads to the following definition.

Definition 4.7 (Connectedness Locus and Escape Locus). The connectedness locus
of the family S is defined as

C(8)={aeS:2¢T>X}={a€S: K, is connected}.

The complement of the connectedness locus in the parameter space is called the
escape locus. (See Figure 10 for a part of the connectedness locus.)

We now record some basic properties of the connectedness and escape loci.
Proposition 4.8. (2,2) c S\ C(S). In particular, S\ C(S) # 0.

Proof. By Proposition 3.2 and the definition of S, we know that (% g)
Note that for a > 3 , the critical value 2 lies in Q,, and hence 2 € A Also,
—1¢ A,. Tt follows by the commutative diagram in Figure 1 that 0,(2) = f(14(2)) =

()
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Case 1: a € (2,2). In this case, we have

9
(@) +2=2"20 0 2) < —2

2—a
= f(ta(2)) < f(-2) = -2
= 0,(2) < —2.

By the proof of Proposition 3.2, we see that (—oco,—2) N Q, = 0. Therefore,
0a(2) € T? C T°. 1t follows that (2,2) € S\ C(S).
Case 2: a = 2. For this parameter, we have 0,(2) = f(00) = oo € TY. Hence,
2e 8\ C(S).

Case 3: a € (2,2). In this case, we have
2

2(a—1)(a—32) 1
—== >0 — 2a — 1 2
- > =>2_a>(a ) >

1

= f<2—a> > f(2a—1) > f(2)
= 04(2) > f(2a—1) > 2.

The proof of Proposition 3.2 shows that (f(2a — 1), 4+00) N Q, = 0, and hence,

04(2) € T?. Therefore, a lies in the escape locus. It follows that (3,2) C 5\ C(S).

This completes the proof. (I

Proposition 4.9. C(S)NR = [g, 4). In particular, C(S) # 0.

1
5, —(2a-1)

Proof. In view of Proposition 4.8, it suffices to show that [g, 4) C C(S).

Let us now fix a € [2,4).

Note that —2 ¢ A,, and hence ¢,(—2) = 4;1_21 € A,. A direct computation using
the commutative diagram in Figure 1 now shows that

Fta(=2)) = f (4&”;;) €0, and o, (f (4&”;;)) )

We also have

3a—1 4a-1

le Xl — 22 -
<a+1<a+2 < a,
and hence,
3a—1 4a —1
—-2=f(1 = =c.
< f(Bp) =< (g < s =a

Moreover, o, is a monotone increasing function from [—2, ¢,] onto [—2, 2], and a

monotone decreasing function from [ca, f (4;_:21)] onto [—2,2].

The assumption that a > g implies that

4a — 1 4a — 1
>2 = > f(2) = 2.
a+2 f<a+2>_f()

Therefore, the interval [—2, f (4;‘;21” contains 2, and is invariant under o,. It

follows that the critical value 2 (of 0,) does not escape to T>° under the iterates of
0aq; ie., a € C(S). Therefore, [5,4) C C(S). O

Corollary 4.10. For a € [3,4), the critical orbit {o3™(2)}, converges to a fized
point different from —2.
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Proof. This is a simple extension of the arguments of Proposition 4.9.
For a € [3,4), we have that

3a—1 3a—1
> f(2) =2.
a+1 a+1>_f()

Since o, is monotone increasing on [—2, ¢,], it follows that the sequence {c5"(2)},, C
[—2, 2] is monotonically decreasing and hence converges to a (real) fixed point of
0. By Subsection 4.2.1, the fixed point —2 repels real points on its right side; and
hence the fixed point that the critical orbit {o2"(2)},, converges to is different from
—2. (]

>2 = Ca:f<

FIGURE 11. Left: The quadrature domain 2,, for the unique

intersection point ag = % + iivn';l&/g of the curve T+ and the

vertical line {Re(a) = 2}. Right: A zoom of Q,, around the cusp
—2 shows a double point on 9€),,. Moreover, the critical value 2 of
the Schwarz reflection map o,, lies on the boundary of the bounded

connected component bTC?O of the desingularized droplet.

Proposition 4.11. C(S) is closed in the parameter space S.

Proof. Note that the fundamental tile T varies continuously with the parameter as
a runs over S. Now let ag € S be a parameter outside the connectedness locus C(S).
Then there exists some integer ng > 0 such that o370 (2) € TSO. It follows that for

ap
all a € S sufficiently close to ag, we have 020 (2) € T2 or 02(”0“)(2) € TY. Hence,

C(8S) is closed in S. O
Proposition 4.12. Every limit point of C(S) outside S must lie on T.

Proof. First note that for parameters on the line {Re(a) = %}, the critical value 2
lies on 0€2,. Hence, for parameters with real part greater than but sufficiently close
to %, the critical value 2 lies in the rank one tile; i.e., such parameters belong to the
escape locus S\ C(S). Therefore, C(S) has no limit point on the line {Re(a) = 3}.
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To show that C(S) does not accumulate on T+ N A5, we need to analyze the
structure of T¥NAS in greater detail. To this end, first note that for each a € T+NAS
(see Figure 4), the cubic polynomial f is univalent on A,, but 0Q, = f(9A,) is
not a Jordan curve. More precisely, there exists a double point (i.e., a point of
tangential self-intersection) on 9,. Hence for such a parameter a, Q, = f(A,)
is a simply connected quadrature domain, and the corresponding desingularized
droplet (i.e., the set obtained by removing the cusp —2 and the point of tangential
self-intersection from the droplet T, = C \ ©,) has two connected components. We
denote the corresponding bounded component by °TY.

Lemma 4.13. N 3S =, 5V, where

Yo ={a € TTNAS:0"(2) € °TOY.
Proof of Lemma. The curve T N 0S5 intersects the vertical line {Re(a) = 3} at
ag = %+ iivlp;ls‘/g. Since Re(ag) = 2, it follows that 2 € dA,,, and hence,

2
2 = f(2) € 0Qq, = OT2,. In fact, we claim that 2 lies on the boundary of *T7 .
To see this, let us denote the point of tangential self-intersection on 8T(?0 by p,
and set f~(p) NOA,, = {p1,p2}. Then, an explicit computation using the value
of ap shows that the points 1 and 2 lie in the shorter connected component of
00 \ {p1,p2}. As f is an orientation-preserving continuous map from 0A,,
onto T2 with f(p1) = f(p2) = p (and injective elsewhere), it carries the shorter
component of dA,, \ {p1,p2} onto the boundary of *T? , and the longer one onto

the boundary of T, \ *T9 . It follows that both f(1) = —2 and f(2) = 2 lie on the
boundary of *T (see Figure 11). Moreover, since 2 is different from the singular
points —2 and p on 9Ty, it follows that 2 € T2 . In particular, ag € 7o.

Let us choose a continuous parametrization v : [0,1] — T+ N dS such that
7(0) = ag, and (1) = 4 +14v/3. As the desingularized droplet and the Schwarz
reflection map vary continuously with the parameter, it follows that for s > 0
sufficiently small, either 2 € bTS(s) or2e a;(lg) (bT,?(S)). However, since Re(y(s)) > 2
for s > 0, we know that 2 must lie in the quadrature domain €2,,); i.e., 2 ¢ bTS(S)7

and hence, 0.,(4)(2) € bTS(S) (for s > 0 sufficiently small). We set so = 0, and define
51 1= sup{s > s0 : 0,(4)(2) € bT,(Y)(t) Vite (0,9)}.

It is now easy to see that y((so, 51]) C 71, and 0y(5,)(2) € 0 bTS(sl). Once again, since
the desingularized droplet and the Schwarz reflection map vary continuously with the
parameter, it follows that for s > s7 sufficiently close to si, either 2 € 0;(18)(171;0(5))7

or2e a;(i)(ng(s)). By definition of s;, we must have that Uf;%s) (2) € bT,?(S) (for

s > s sufficiently close to s1). Defining
S :=sup{s > s : oi’y%t) (2) € st(t) Vite(s,9)},

we now see that v((s1, s2]) C 72, and 03/%32)(2) €o bTS(SQ). This way, we inductively
define s, once s,_; has already been defined. If some s, is equal to 1, then
TT N OS is the union of finitely many +,,, and we are done. Otherwise, we obtain a

strictly increasing infinite sequence {s, }n>0 C [0,1) such that ¥((sn, Sn+1]) C Ynt1,

o(n+1) b0
and UW(SHI)(?) €0 T’v(sn+1)'
it converges to some so, € (0,1]. As the critical value 2 of 0., .,) escapes to

Since {sn}n>0 C [0,1) is an increasing sequence,
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0y (s,.,) in n + 1 iterates, it follows that in the dynamical plane of o, _), the
infinite forward orbit of the critical value 2 is well-defined, and this orbit accumulates
on the boundary of Q. ). By Subsection 4.2, this can happen only if the cusp
point —2 has an attracting direction (for o, (,_)), and if 2 lies in one of its attracting
petals. In particular, we must have that y(ss) € Z. As TF intersects Z only at
4 +iv/3, we conclude that v(ss) = 4 +V/3; i.e., 550 = 1. Therefore, T+ N IS =

~(s0) Unzo Y((Sp,y Sn+1])- Since ¥(so) € Yo, and Y((sn, Sn+1]) C Ynt1, the proof is
now complete. ([l

By Lemma 4.13, for all ' € T+ N A8, the critical value 2 lies in the tiling set 7.
The arguments of Proposition 4.11 now apply verbatim to show that for parameters
a € S sufficiently close to T, the critical value 2 lies in the tiling set 7.>°. Hence,
C(S) does not accumulate on TH N AS. A completely analogous argument shows
that C(S) does not accumulate on T~ N 9S.

It follows from the above and the description of the boundary of S given in (2)
(compare Figure 4) that any limit point of C(S) outside S must lie on 7. O

4.4. Dynamics on The Tiling set. The goal of this subsection is to construct a
conformal model of o, on a suitable subset of its tiling set. To this end, we first
need to define a reflection map on a suitable simply connected domain.

4.4.1. The Reflection Map p. Consider the open unit disk D in the complex plane.
Let C4, Oy, C3 be the circles with centers at (1,v/3), (—2,0), and (1, —v/3) of radius
v/3 each. We denote the intersection of D and C; by CN'Z Then C~'1, 527 and 63 are
hyperbolic geodesics in D, and they form an ideal triangle which we call T (see
Figure 12). They bound a closed (in the topology of D) region II.

FIGURE 12. Left: The hyperbolic geodesics C~'1, 52 and C~'3, which
are sub-arcs of the circles C7, Cy and Cj respectively, form an ideal
triangle in . Right: The image of IT under ps, and the fundamental
domain I,y are shown.

Let p; be the reflection with respect to the circle C;, and D; be the connected
component of D\ II containing int p;(ITI). The maps p1, p2, and ps generate a



26 S.-Y. LEE, M. LYUBICH, N. G. MAKAROV, AND S. MUKHERJEE

subgroup G of Aut(D). The group G is called the ideal triangle group. As an
abstract group, it is given by the generators and relations

(p1,p2.p3 : pT = p3 = p3 = id).

27mi

We consider the Riemann surface Q := ID/ ) where w = e3 . Note that a

(w
fundamental domain of D under the action of (w) is given by
2 4
Dy = {ls| <1, = <argz< -} U {0},

and hence Q is biholomorphic to the surface obtained from D,y by identifying the
radial line segments {re*s" : 0 <7 < 1} and {re’s" : 0 <r < 1} by z — wz. This
endows Q with a preferred choice of conformal coordinates. In these coordinates,
the identity map is an embedding of the surface Dy U 52 into Q.

The map py induces a map p : DoUCy — Q. Connected components of p~" (p2(IT))
are called tiles of rank n of Dy, and each such component is of the form pgo- -0 p;(II).

Clearly, p extends continuously as an orientation-reversing double covering of 9Q
with three neutral fixed points. Note that 9Q is obtained by gluing the end-points
w and w? of the arc {ew : %’T <f< 4?”} Moreover, the map p : 9Q — JQ admits
a Markov partition 0Q = {e? : ¥ <0 < n} U {e" : 7 < ¢ < 2T} with transition

matrix
1 1
w1

ol . al 327 +1

(8) B:S" =S, B(z) = 537

which models the dynamics of maps in C(£¢) on their Julia sets (see Appendix A),
admits a Markov partition S! = {e? : 0 < 0 < 7}U{e’® : 7 < § < 27} with the same
transition matrix M as above. Using expansiveness of the maps plsg and Bls:, one
now easily sees that p|sg and Blg: are topologically conjugate by a homeomorphism
£ :09 — S! which maps w,—1 € 9Q to 1,—1 € S' respectively.

Incidentally, the map

We will denote the set of all angles in 0Q = [%’ %}/{; ~ 2} (respectively, in
R/Z) that are pre-periodic under p (respectively, under B)3by E’er(p) (respectively,
by Per(B)). Clearly, £ maps Per(p) onto Per(B).

Note that in [LLMM18a, § 3.1], we defined G-rays of D. G-rays of D with angles
in [é, %] yield rays in Q such that the image of the ray at angle § under p is the
ray at angle p(6).

The map p will be used below to describe a conformal model of o, on its tiling
set.

4.4.2. Dynamical Uniformization of The Tiling set.

Definition 4.14 (Depth). For any a in the escape locus of S, the smallest positive
integer n(a) such that o™ (2) € T? is called the depth of a.

Let us denote the sub-surface H/<w> of @ by Q;. Note that H/<w> is homeomorphic
to the surface obtained from Il := {z € II : 27/3 < argz < 47/3} U {0} by
identifying the radial line segments {re?™/3 : 0 < r < 1} and {re*™/3 .0 <r < 1}
under z — wz (see Figure 12).
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Proposition 4.15. 1) Fora € C(S), the map 0, : T \int TO — T is conformally
conjugate to p : Dy U Cy — Q.
2) For a € S\ C(S),
n(a) n(a)—1
oa: Jo M@~ U 0T

n=1 n=0

s conformally conjugate to
n(a) n(a)—1

p:Jr @) - |J pm(Qu).
n=1 n=0
Proof. Since Q; is simply connected, we can choose a homeomorphism 1, between
Tfl) and @Q; such that it is conformal on the interior. We can further assume that
1a(00) = 0, and its continuous extension sends the cusp point —2 € 972 to the
point w on 0Q7.

Note that o, : 071 (T2) — T is a three-to-one branched cover branched only at
*,and p : pa(II) — Q; is a three-to-one branched cover branched only at p2(0).
Moreover, o, fixes OT? pointwise, and p fixes Cy U {w} = §Q; pointwise.

This allows one to lift v, to a conformal isomorphism from o, *(T?) onto po(II)
such that the lifted map sends ¢} to p2(0), and continuously matches with the
initial map 1, on TY. We denote this extended conformal isomorphism by v,. By
construction, 1, is equivariant with respect to the actions of o, and p on do, 1 (T?).

1) If a € C(S), then every tile of T2° (of rank greater than one) maps diffeomor-
phically onto o, }(7?) under some iterate of o,, and each tile of Dy (of rank greater
than one) maps diffeomorphically onto ps(II) under some iterate of p. This fact,
along with the equivariance property of 1, mentioned above, enables us to lift v,
to all tiles using the iterates of o, and p. This produces the desired biholomorphism
1o between T7° and Q which conjugates o, to p.

2) For a € S\ C(S), the above construction of ¢, can be carried out on the tiles
of T>° that map diffeomorphically onto o, *(7), which includes all tiles of rank up
to n(a). This completes the proof. O

C

Remark 5. Since v, (obtained in Proposition 4.15) conjugates o, to the model map
p “outside” the non-escaping set, the conjugacy v, is referred to as the “external
conjugacy”, and the model map p is called the “external map” of o,.

Remark 6. p maps each of the two connected components of Da \ po2(II) univalently
onto Dy. These two univalent restrictions of p as well as their inverses act on
Dy \ p2(II) and generate a partially defined dynamical system. A fundamental
domain of Dy \ p2(IT) under the action of the conformal maps (i.e., under words of
even length) of this dynamical system can be identified with int pspq (IT) U pap1 p2 (T1).
The quotient of Dy \ p2(II) by this conformal dynamical system is a thrice punctured
sphere. For a € C(S), the Schwarz reflection map o, induces an anti-conformal
involution on the thrice punctured sphere fixing the punctures.

We can use the map ), to define dynamical rays for the maps o,.

Definition 4.16 (Dynamical Rays of 0,). The pre-image of a ray at angle 6 in Q
under the map v, is called a #-dynamical ray of o,.

Clearly, the image of a dynamical 8-ray under o, is a dynamical ray angle p(6).



28 S.-Y. LEE, M. LYUBICH, N. G. MAKAROV, AND S. MUKHERJEE

Proposition 4.17 (Landing of Pre-periodic Rays). Let a € C(S), and 0 € Per(p).
Then the following statements hold true.

1) The dynamical 8-ray of o, lands on OTS°.

2) The % = %-my of o4 lands at —2, and no other ray lands at —2. The iterated
pre-images of the %—my land at the iterated pre-images of —2 (under o).

1
3) Let 6 € Per(p) \ U p" ({3}) Then, the dynamical ray of o, at angle 0
n>0
lands at a repelling or parabolic (pre-)periodic point on OTS°.

Proof. The proof of [LLMM18a, Proposition 6.34] applies mutatis mutandis to the
present setting. ([l

Let us also state a converse which can be proved following [Lyu20, Theorem 24.5,
Theorem 24.6].

Proposition 4.18 (Repelling and Parabolic Points are Landing Points of Rays).
Let a € C(S). Then, every repelling and parabolic periodic point of o, is the landing
point of finitely many (at least one) dynamical rays. Moreover, all these rays have
the same period under o22.

5. A STRAIGHTENING THEOREM

The goal of this section is to prove a straightening theorem that will allow us
to show that the dynamics of o, on its non-escaping set is topologically equivalent
to a suitable anti-rational map. We will prove our straightening theorem for a
class of pinched anti-quadratic-like maps with controlled geometry and prescribed
asymptotics at the pinching point.

Definition 5.1 (Pinched Anti-quadratic-like Map). A continuous map F : (ﬁ, oo) —
(V, oo) of degree 2 is called a pinched anti-quadratic-like map if

(1) F(0U) =9V,

(2) Fis antl-holomorphlc on U,

(3) UcV(c (C) are Jordan domains, and (—oo, —x) C U for some = > 0,

(4) there exists M > 0 such that OV N {|z| > M} = {me* :m > M},

(5) OUNJIV = {oo}

(6) F(z )*z+2+0(3) as z — 00,

(7) OV is smooth except at oo, and U is smooth except at F~1(00).

(see Figure 13).

Remark 7. 1) Tt follows from the definition that F~1(c0) C 9U, and dU meets
the circle at infinity {oo - €2 : § € R/Z} at oo - eX*5". Moreover, near co, the
boundaries OU and dV bound two infinite strips each of asymptotic width @.

2) The assumption that OV contains two infinite rays at angles i%” is not a
serious restriction. In fact, any unbounded Jordan domain (containing the negative
real axis) whose boundary meets the circle at infinity at oo - eT%" can be mapped
to a domain V of the above type by a conformal map that is asymptotically linear
near oo.

3) The negative real axis is a repelling direction of F at co; i.e., points on the
negative real axis with large absolute value are repelled away from oo under the
action of F.
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F1cURE 13. Left: A pinched anti-quadratic-like map F. Right:
The same map in different coordinates, where the pinching point
corresponds to co. The filled Julia set (schematic) is shown in
black.

Definition 5.2 (Filled Julia Set, and Hybrid Conjugacy). 1) The filled Julia set
Ky of a pinched anti-quadratic-like map F : U — V is defined as

Kr:={2€U:F°"(2) e UVYn>0}.

2) Two pinched anti-quadratic-like maps F; : U; —>E, ) i{l, 2}, are said to be
hybrid conjugate if there exists a homeomorphism ® : Vi — V3, quasiconformal on
Vi and 0® =0 a.e. on KF,, that conjugates F; to F.

We now prove one of our key results that allows us to “straighten” pinched
anti-quadratic-like maps to quadratic anti-rational maps with a simple parabolic
fixed point (see Appendix A for a detailed description of the family of such maps).

Lemma 5.3. FEvery pinched anti-quadratic-like map F is hybrid conjugate to a
pinched anti-quadratic-like restriction of some member of the family L.

Proof. We will glue a suitably chosen attracting petal of the model parabolic map
q(z) = Z + z% outside U (note that ¢ restricted to its parabolic basin is conformally
conjugate to the anti-Blaschke product B on D, see (8)). The change of coordinates
n:z— —i conjugates g to z — z + % + O(%) as z — oo. Let us choose an
attracting petal P that subtends an angle 4?“ at the parabolic fixed point 0 of ¢ and
such that OP contains the critical point —% (see Figure 14). We can also require
that OP is smooth except at 0, and ¢~ !(P) is simply connected. Then, we have

that ¢ : ¢~ *(P) — P is a two-to-one branched covering. Moreover, P can be chosen
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so that the change of coordinate 7 maps P to an unbounded domain containing a
part of the positive real axis such that the domain is bounded by the infinite rays

27i

{re**" . r > My} (for some My > 0) and some smooth curve connecting Moye® 5",

s

FIGURE 14. The filled Julia set of ¢(z) = z + 2% is shown. The
attracting petal P subtends an angle %’r at the parabolic fixed point
0. The critical point —% (of ¢) lies on the boundary of the petal P.
The pre-image of P (under ¢) is a simply connected domain, which
maps two-to-one onto P branched only at —%.

Let us choose a conformal map ¢ from C \ V onto P := n(P) which sends oo
to oo (see Figure 15). Then, ¢ extends as a homeomorphism between OV and

OB. Moreover, since the boundaries 0V and O of both the domains (here, the

boundaries are taken in the Riemann sphere (E) make a corner angle 4?” at oo, the

extended map ¢ is approximately linear near oo; i.e., £(z) = Mgz + o(2) (for some
Ao > 0) as z € OV and |Im(z)| — +oo.

We take the pre-image of the curve JV under F, and the pre-image of 93 under
q := nogqgon~t. The homeomorphism & : 9V — &P can be lifted to obtain a
homeomorphism ¢ : U — q~1(dP) fixing oo (see Figure 15). Since the covering
maps F : 90U — 9V and q: q~ (%) — P are tangent to Z near oo, it follows that
&(z) is of the form Aoz + o(z) where z € OU and |Im(z)| — +o0.

Let us denote the strip between U and dV by S. We claim that £ can be
quasiconformally interpolated on S so that the image of S under the interpolating
map is the strip & bounded by B and q~1(O%).
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q ' (0R)

F1GURE 15. The map £ is quasiconformally interpolated on the
strip S bounded by dU and 9V such that it maps S onto the
strip & bounded by &P and q~1(9B). The interpolation is done by
mapping the top and bottom accesses of S and & (to co) conformally

onto the right-half of the horizontal strip {z + iy : |y| < \/Tg}

We will first justify the existence of such an interpolating map in two accesses of
S to oo (shaded in yellow in Figure 15). To this end, let us consider the bottom
access of S to co. Rotating the bottom access of S to oo anti-clockwise by an angle
2?”, we obtain a horizontal strip bounded by suitable right halves of the curves
y=20,and y = —3§ + O(%) as ¢ — +oo (this follows from Property (6) of a
pinched anti-quadratic-like map). It now follows from [War42] that this horizontal
strip can be mapped onto the right-half of the horizontal strip {x + iy : |y| < ‘/?5}
by a conformal map J; such that 31 (w) = w 4 o(w) as Re(w) — +o0. Therefore,
the conformal map f£1(z) = By (wz) sends the bottom access of S to co onto the
right-half of the horizontal strip {z + iy : |y| < ‘/Tg} such that () = wz + o(z) as
z = 0.

The same is true for the bottom access of G to co. More precisely, there exists
a conformal map (o from the bottom access of G to oo onto the right-half of the

horizontal strip {x + iy : |y| < \/Tg} such that 82(z) = wz + o(2) as z — oo.
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Thus, we obtain two maps between pairs of horizontal rays

3 3
ﬁzofoﬁflz{xii%:x>0}—>{xii%:x>0}.
Clearly, the two maps are of the form x + i% = gy(z) £ i%. Moreover, it follows
from our analysis of the asymptotics of &, 51, and B3 that

g+ (z) = g(x) + O(1), where g(x) = Aoz + o(x) as x — +o0.

Therefore, we can linearly interpolate between these two maps to obtain a quasicon-
formal homeomorphism

T+ iy ((; - 4\3/§y> g—(v) + (; + 4\3/§y> g+(w)> + iy

on the right-half of the horizontal strip {z + iy : |y| < %}

Going back by the change of coordinates ; and 2, we obtain our desired
quasiconformal map defined on the bottom access of S to oco. This proves that
& can be quasiconformally interpolated on the bottom access to co of S so that
the image of the interpolating map is the bottom access to oo of the strip &. A
completely analogous argument shows that a similar interpolating quasiconformal
homeomorphism exists on the top access to oo of S. These extensions define a
quasisymmetric map £ on the boundary of a bounded Jordan domain with piecewise
smooth boundary and no cusp (the blue region in Figure 15). The quasiconformal
extension of £ to this bounded part of S now follows from the Ahlfors-Beurling
extension theorem on quasidisks [BF14, §2.3, Proposition 2.30]. This completes the
proof of the claim that & can be quasiconformally interpolated on S so that the image
of S under the interpolating map is the strip &. Moreover, this quasiconformal map,
which we denote by &, is equivariant on the boundary (with respect to F and q).

We now define a quasiregular map G of degree two on C as follows:

F on U,
9) G:{f_loqof On(a\U.

The fact that F and £ ~! o qo & match on the boundary of their domains of definition
follows from the equivariance property of £ mentioned above.

Let us now define an ellipse field u (i.e., a Beltrami form) on C. On ((@ \ V) UKF,

we define p as circles. On V \ Ky, we define i in a G-invariant manner. Since G is
conformal outside of V \ U, it follows that u is a G-invariant Beltrami form with
lplloe <k <1.

By the Measurable Riemann Mapping Theorem, we get a quasiconformal map ®
which straightens p. We can normalize @ so that it fixes 0o, sends the unique finite
pole of G to 0, and sends the critical point £~%(1) of G to +1. Then, ® conjugates
G to a degree two anti-rational map R with a fixed point at co. By construction, G
has a unique attracting direction (coming from the attracting direction of q at co),
and a unique repelling direction (coming from the repelling direction of F' at co) at
oo each of which is invariant under G. Hence, the same is true for R. Therefore,
R°? has a simple parabolic fixed point of multiplier 1 at co. Moreover, R has a
pole at 0, and a critical point at +1. Hence, R € F (see Subsection A.1). Finally,
since the critical Ecalle height of the map q(z) =7z + 7% is 0 (see Appendix A.3 for
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the definition of critical Ecalle height), the Ecalle height of the critical value R(1)
(which lies in an attracting petal of the neutral fixed point co of R) is 0 as well.
Therefore, R € £.

Note that by our construction, 9® = 0 a.e. on Kg. Therefore, ® is the desired
hybrid conjugacy between F : U — V and a pinched anti-quadratic-like restriction
of R. O

We will now apply Lemma 5.3 to extract parabolic quadratic anti-rational maps
from the Schwarz reflection maps in the family S.

Theorem 5.4 (Straightening Schwarz Reflections). 1) For a € S, there exists
V. C Qp and a univalent map n, on V, sending —2 to oo such that with the
notations

04 =1400,0 na_l, Vo :=1.Va), and U, := na(aa_l(Va)),

the map
0u: (Unyo0) = (Vayo0)

is a pinched anti-quadratic-like map with filled Julia set n,(K,). Hence, o, is hybrid
conjugate to a pinched anti-quadratic-like restriction of some member of the family
£o.

2) If a € C(S), then o4 : 04 (V) — V, is hybrid conjugate to a unique member
Ro. 4 of the parabolic Tricorn C(Lo). This unique map in C(Lo) (equivalently, this
unique parameter) is called the straightening of o,.

Proof. 1) Note that 99, has a cusp at —2. We will now create a wedge on the
boundary of €2, which will produce the desired pinched anti-quadratic-like restriction
of o,.

Let arg (a — 1) = 0 € (—m, 7). We consider a closed curve ~, that is the union of
some curve v/, C 98, the line segments L* := {—2 + 6’05 : 5 € [0,60)} (for
some d > 0), and a pair of curves joining the end-points of LT to the end-points
of ~/,. Let us denote the bounded complementary component of v, by V,. We can
choose 7, such that K, is contained in V, U B(—2,d¢), and 7, is smooth except at
—2 (see Figure 16).

We will now argue that K, N B(—2,8y) is contained in Vj; i.e., K, does not
intersect B(—2,00) \ Va. To this end, let us introduce a change of coordinate

Na(w) 1= 35([?1’;952)‘“_2)1 | \/ﬁ (where the branch of the square root sends the radial line

at angle 26, to the radial line at angle ). Then, we have that 6,(2) =Z+ 1 +O(2)
near oo (this follows from the asymptotics of o, near —2 obtained in Subsection 4.2.1).
The change of coordinate 7, maps points of the form (—2 + §e2¥%) to the negative
real axis so that 7,(—2 + 6e?%0) — —co as § — 0.

Moreover, under the change of coordinate 7,, the line segments L* map to the
infinite rays at angles :i:%”. Since o, is approximately E—Q—% for | Im(z)| large enough,
it follows that points between 7, (L*) and 1,(95,) with sufficiently large imaginary
part eventually escape 1,(2,). Therefore, we can choose dg > 0 sufficiently small
so that points in B(—2,4p) \ V, eventually escape €,. It now follows that K, is

contained in o, !(V,). Hence, we have that

K,={2€0.'(V,):02"(2) € 0a ' (Va) V >0}
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Vo C 08

FIGURE 16. Left: The brown curve is v/, the blue line segments
are LT, and the green curves connect the end-points of v/ to those
of L*. The curve v, is the union of the brown, green, and blue
curves. It is obtained from 0f2, by replacing the black curves by
the union of the green and blue curves. The grey region indicates
Q4 \ V4. These points escape €2, in finitely many steps. Right:
The bounded complementary component of the red curve 7, is
V,. The domain V, subtends an angle 47” at the point —2. The
Schwarz reflection map o, is a two-to-one covering from the blue

curve o, 1(7,) to the red curve ~,.

It is now easy to see that o, : (Ui(Z, oo) — (Va, oo) is a pinched anti-quadratic-
like map (in the sense of Definition 5.1) with filled Julia set 7, (K,). The result now
follows from Lemma 5.3.

2) We now assume that K, is connected. Therefore, K, contains the critical
point ¢, of o,. It now follows that the basin of attraction of the parabolic fixed
point co (of R) contains exactly one critical point of R, and hence the filled Julia
set of R is connected. Moreover, since the critical Ecalle height of q is 0, and since
the hybrid conjugacy is conformal on the non-escaping set of o,, we conclude that
the critical Ecalle height of R (associated with the parabolic fixed point oo) is also
0. Therefore, up to Mobius conjugation, R € C(£).

To finish the proof of the theorem, we need to prove uniqueness of R. The proof
follows the standard argument for uniqueness of straightening of polynomial-like
maps with connected Julia sets (see [DH85, §1.5]).

Let us fix a € C(S), and suppose that there exist (o, 4;) € C(£Lo), and hybrid
conjugacies ®; between G, (where G, is the quasiregular extension of the pinched
anti-quadratic-like map o, : U, — V, constructed in the first part of this theorem
and Lemma 5.3) and the anti-rational maps Ry, 4, (i = 1,2).

Then, d = Py 0 <I>1_1 is a quasiconformal homeomorphism of the plane that is
conformal on Kq, 4, (where Ky, a, is the complement of the basin of attraction of
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the parabolic fixed point at 0o of Rq, 4,), and conjugates Rq, 4, : Koy a4, — Koy a,
t0 Ray, 4yt Koo, 4y = Koy, 4s-

Note that by Appendix A, the basin of attraction B,, a, of the parabolic fixed
point at infinity (of R, 4,) is simply connected. Moreover by Proposition A.3, there
exists a conformal isomorphism 9., 4, : Ba, 4, — D that conjugates Rq,, 4, to the

(anti-)Blaschke product B(z) = 3;2_;21. Hence, the map ¢gfﬁf = "/);21,,42 0y, 4, IS
a conformal isomorphism from B, 4, onto Ba, a, that conjugates Ra, 4, to Ra,, 4,-

Since Rq, 4, : Bay, 4, = Bay,a, is conformally conjugate to the (anti-)Blaschke
product B : D — D (and B is topologically conjugate to z2 on S!), it follows that
Rq, 4, has three fixed accesses to 0B, 4,. As both maps ® and '(bsz‘f send the
parabolic fixed point at co of R, 4, to the parabolic fixed point at oo of R, a,, the
arguments of [DHS85, §1.5, Lemma 1] imply that & and 1/12??? match continuously
on 0K, 4,- By the Bers-Rickman lemma [DH85, §1.5, Lemma 2], this defines a
quasiconformal homeomorphism

(10) H:= { @ on Koy, 41,

¥l onBaya,,
that conjugates Ry, 4, to Ra, a,. Moreover, 0H = 9P = 0 a.c. on Kay,a,- By
Weyl’s lemma [Ahl06, §I1.B, Corollary 2], H is conformal on C and hence a Mébius
map.

The fact that H conjugates Ry, 4, to Ra, 4, implies that H fixes the parabolic
point 0o, the pre-parabolic point 0, and the critical point 1. Therefore, H = id, and
(OéhAl) = (Oég,Az). O

Corollary 5.5. (1) Ewvery Fatou component of o, is eventually periodic.
(2) Ewvery periodic Fatou component of o, is either the immediate basin of
attraction of a (super-)attracting/parabolic periodic point or a Siegel disk.

Proof. This follows from Theorem 5.4 and classification of Fatou components for
rational maps combined with the fact that maps in £y do not have Herman rings
(this follows from the fact that for any R, 4 € £o, the basin of attraction Bg, a
of the parabolic fixed point at infinity is connected, and hence every connected
component of int K, 4 is simply connected). O

Corollary 5.6. If o, has a non-repelling cycle, then a € C(S). More precisely, the
following statements hold true.

(1) If o4 has an attracting or parabolic cycle, then the forward orbit of the
critical value 2 (of o,) converges to this cycle.

(2) If zo is a parabolic periodic point of o, of period n, and if there is an
attracting direction to zo that is invariant under oy, then it is the only
attracting direction to zg.

(3) If 04 has a Siegel disk, then the boundary of the Siegel disk is contained in
the closure of the forward orbit of 2.

(4) If o, has a Cremer cycle, then this cycle lies in the closure of the forward
orbit of 2.

Proof. This follows from Theorem 5.4 and well-known relations between the non-
repelling cycles and critical points of a rational map. [
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Recall from Subsection 4.4 that £ : 9Q — S! is a homeomorphism that conjugates
the external map p (of the Schwarz family C(S)) to the anti-Blaschke product B
(which is the external map of the family C(£o)), and sends w, —1 € 9Q to 1,—1 € S!
respectively.

Proposition 5.7. Let a € C(S), and w € 0K, be a (pre-)periodic point. Then, £
maps the angles of the dynamical rays (of o,) landing at w onto the angles of the
dynamical rays (of Ry(a)) landing at @4 0 nq(w) € Ty(a) = OBy(a), where 0 1q is
the hybrid equivalence between o, and Ry (q).

Oq ® Rx(a)
C(Prcf)periodic accesses to K, —-"% (Pre—)periodic accesses to Ky(a)

lwa L‘px(a)

CPer(p) CR/Z ey Per(B) C R/Z\j
P B

FIGURE 17. The commutative diagram shows the external straight-
ening map &£ between the external map p of the pinched anti-

quadratic-like restriction of o, and the external map B of Ry (q)-

Proof. Recall that the action of o, on angles of (pre-)periodic accesses to K, is
conjugated to p : Per(p) C R/Z — Per(p) via the external conjugacy t,. Similarly,
the action of R, () on angles of (pre-)periodic accesses to Ky, is conjugated
to B : Per(B) — Per(B) via the Riemann map ,,) of B,(,). Finally, ®, 0,
conjugates the action of o, on angles of accesses to K, to the action of R, ) on
angles of accesses to K, (,), and sends the accesses to K, at angles %,% to the
accesses to Ky (q) at angles 0, % respectively.

Thus, we get a conjugacy between p : Per(p) C R/Z — Per(p) and B : Per(B) —
Per(B) that respects the corresponding Markov partitions. It follows that if 6 is
the angle of a (pre-)periodic access to w € 0K, and ¢’ is the angle of the image
access to @, 014 (w) € 0Ky (q), then the p-orbit of § and the B-orbit of " have the
same symbolic representation with respect to the Markov partitions described in
Subsection 4.4. But this implies that §' = £(6). Since ®, o n,(w) is a (pre-)periodic
point on Jy(q), it follows that the dynamical ray of R, ,) at angle £(#) lands at
Py 0 Mg (w) on Jy(a)-

Finally, since o, and R, 4) are topologically conjugate around their non-escaping
set and filled Julia set (respectively), it follows that the number of accesses to
w € 0K, is equal to the number of accesses to @, 0 7, (w) € Jy(q). This shows that
the angles of the dynamical rays landing at w € 0K, are mapped onto the angles of
the dynamical rays landing at ®4 o 1q(w) € Jy(q) by &. O

Definition 5.8 (Straightening Map). The straightening map
X : C(S) = C(Lo)

is defined as x(a) := (a, A), where o, : 04 *(V,) — V, is hybrid conjugate to the
quadratic anti-rational map R, 4 € C(£o).
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Proposition 5.9 (Injectivity of Straightening). The map x : C(S) — C(£o) is
mjective.
Proof. Let us assume that x(a1) = x(a2) = (o, 4).

We choose (the homeomorphic extension of) a conformal isomorphism xk between

C \ Vo, and C \ Va, with x(—2) = —2. Since both of these domains make an angle
%” at —2, it follows that x is asymptotically linear near —2.

Again, @ :=n o @, 0o @y, 0ny, 00, (Va,) = 0oy (Va,) is a hybrid conjugacy

between 04, and 04,. Since the conformal map @, o @, : C\ 7y (Var) = C\ 1y (V)
is asymptotically linear near oo, the same is true for @, o @4, : 14, (05 (Ya,)) —
Nas (02, (Yaz))- 1t follows that @ : o ' (va,) = 04, (7a,) is also asymptotically linear
near —2.

Following the arguments of Lemma 5.3, we can now interpolate between ¢ and
to obtain a quasiconformal homeomorphism of the sphere as an extension of ®.

Since ay, as € C(S), their dynamics on the tiling sets are conjugate to the reflection
map p via the conformal maps 1, and 9, respectively. Then, ¥3? := ;21 01, is
a conformal conjugacy between o, |Ta°§’ and og, |T§§7 which matches continuously
with ® on 0K,,.

Finally, we define a map on the sphere as follows

] on K,,,
(11) H .—{ pe2 on T2,

By the Bers-Rickman lemma, H is a quasiconformal homeomorphism of the
sphere that conjugates o,, to 04,. Moreover, 0H = 0% = 0 a.e. on K,,. By Weyl’s
lemma, H is conformal on C and hence a M&bius map. Since such an H must fix
—2, 2, and oo, we have that H = id. Hence, a1 = as. ([l

6. HYPERBOLIC COMPONENTS IN S, AND THEIR BOUNDARIES

We say that a parameter a € S is hyperbolic if o, has an attracting cycle. By
Corollary 5.6, a hyperbolic parameter of S belongs to C(S).

We now discuss the structure of the closures of hyperbolic components in C(S).
Since the results (and the proof techniques) of this section are similar to those for
the family of Schwarz reflection maps with respect to a circle and a cardioid which
was considered in [LLMM18a, LLMM18b], we only sketch the proofs.

6.1. Uniformization of Hyperbolic Components. Since o, depends real-analy-
tically on a, a straightforward application of the implicit function theorem shows
that attracting periodic points can be locally continued as real-analytic functions
of a. Hence, the set of all hyperbolic parameters is an open set. A connected
component of the set of all hyperbolic parameters is called a hyperbolic component.
It is easy to see that every hyperbolic component H has an associated positive
integer k such that each parameter in H has an attracting cycle of period k. We
refer to such a component as a hyperbolic component of period k.

A center of a hyperbolic component is a parameter a for which o, has a super-
attracting periodic cycle; i.e., the critical value 2 is periodic.

If 0, has an attracting cycle, then this attracting cycle must lie in K,. By
Corollary 5.6, the attracting cycle of o, attracts the free critical point, and a € C(S).
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Moreover, we can associate a dynamically defined conformal invariant to every
hyperbolic map o,; namely multiplier if the attracting cycle (of o) has even period,
and Koenigs ratio if the attracting cycle (of o,) has odd period (see [LLMM18Db,
§2.1.1] for the corresponding definitions for anti-polynomials, since the definitions
are local, they apply to any anti-holomorphic map).

Let us now fix a hyperbolic component H of odd (respectively, even) period k in
C(S). For a € H, the restriction of o2* to the connected component U, of int(K,)
containing ¢, is a degree 2 proper anti-holomorphic (respectively, holomorphic)
map. Moreover, o2* has exactly three fixed points (respectively, has a unique fixed
point) on AU, . Exactly one of them is a cut point of 9K, this point is called the
dynamical root point of o, on OU, (when k = 1, all these fixed points are non-cut
points of 0K,; in this case, we call the cusp point —2 the root point). Choosing a
Riemann map of U, that maps the attracting periodic point to 0 and the dynamical
root point to 1, we obtain a conjugacy between o¢*|;;. and an anti-holomorphic
(respectively, holomorphic) Blaschke product of degree 2 on D. By construction,
such a Blaschke product must be of the form

B, \(2) = )\z((lz_sz)), or B;A(z) = /\Z((lz—ci))’
with @ € D and A € S! such that z = 1 is fixed by B;t_/\. The unique such Blaschke
product with a super-attracting fixed point is B(jfr /
Let BT be the space of all (anti-)holomorphic Blaschke products B;f \ witha € D
and )\ € S! such that z = 1 is fixed by Baﬂf - The following proposition describes
the topology and dynamical uniformizations of hyperbolic components in C(S).

0.5
0.0

-0.5

) -1 0 1 2 3 -4 -2 0 2 4

FIGURE 18. Left: The non-escaping set of the center %@ of the
unique period two hyperbolic component intersecting the real line.

Right: The non-escaping set of the center % + # of the unique
period two hyperbolic component contained in the upper half-plane.

Proposition 6.1 (Dynamical Uniformization of Hyperbolic Components). Let H
be a hyperbolic component in C(S).
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(1) If H is of odd period, then there exists a homeomorphism g : H — B~ that
respects the Koenigs ratio of the attracting cycle. In particular, the Koenigs
ratio map is a real-analytic 3-fold branched covering from H onto the open
unit disk, ramified only over the origin.

(2) If H is of even period, then there exists a homeomorphism 1y : H — BT that
respects the multiplier of the attracting cycle. In particular, the multiplier
map is a real-analytic diffeomorphism from H onto the open unit disk.

In both cases, H is simply connected and has a unique center.

Proof. See [NS03, Theorem 5.6, Theorem 5.9] for a proof of the corresponding facts
for unicritical anti-polynomials. It is straightforward to adapt the proof in our
case. The main idea is to change the conformal dynamics of the first return map of
a periodic Fatou component. More precisely, one can glue any Blaschke product
belonging to the family BT in the connected component of int(K,) containing ¢, by
quasiconformal surgery. This gives the required homeomorphism between H and
B*.

However, there is an important detail here. Since the original dynamics o, is
modified only in a part of the connected component of int(K,) containing ¢, (this
is precisely where an iterate of o, is replaced by a Blaschke product), the resulting
quasiregular modification G, shares some of the mapping properties of o,. In
particular, G, sends G;1(€,) onto 2, as a two-to-one branched covering, and
G, 1(T?) onto T? as a three-to-one branched covering. Hence, we can adapt the
proof of Proposition 4.4 to show that G, is quasiconformally conjugate to some
map oy in our family S. (]

Remark 8. a = 3 is the only parameter for which the critical point ¢, is equal to 2.
Hence, 3 is the center of the unique hyperbolic component of period one of C(S).
On the other hand, the centers of the hyperbolic components of period two are

%7 and % + “2/§ (see Figure 18 for the non-escaping sets of the centers of two

period two components).

6.2. Boundaries of Hyperbolic Components. We will start this subsection with
a brief description of neutral parameters and boundaries of hyperbolic components
of even period of C(S).

A parameter a € C(S) is called a parabolic parameter if o, has a periodic cycle
with multiplier a root of unity. The following proposition states that every neutral
(in particular, parabolic) parameter lies on the boundary of a hyperbolic component
of the same period.

Proposition 6.2 (Neutral Parameters on Boundary). If o,, has a neutral periodic
point of period k, then every neighborhood of ag in S contains parameters with
attracting periodic points of period k, so the parameter ag is on the boundary of a
hyperbolic component of period k of C(S).

Proof. See [MNS17, Theorem 2.1] for a proof in the Tricorn family. Since the proof
given there only uses local dynamical properties of anti-holomorphic maps near
neutral periodic points, it applies to the family S as well. (]

The next result describes the bifurcation structure of even period hyperbolic
components of C(S). Once again, its proof in the Tricorn family is given in [MNS17,
Theorem 1.1], which can be easily adapted for our setting.
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Proposition 6.3 (Bifurcations From Even Period Hyperbolic Components). If o,
has a 2k-periodic cycle with multiplier €™/ with ged(p, q) = 1, then the parameter
a sits on the boundary of a hyperbolic component of period 2kq (and is the root
thereof) of C(S).

By Theorem 6.1, each hyperbolic component of period k in C(S) contains a unique
parameter with a superattracting cycle of period k (i.e., a unique center). According
to Remark 8, there is a unique hyperbolic component of period one in C(S) and the
center of this component is 3. We will denote this hyperbolic component by H.

Proposition 6.4 (Neutral Dynamics of Odd Period). 1) The boundary of a hyper-
bolic component of odd period k > 1 of C(S) is contained in S, and consists entirely
of parameters having a parabolic orbit of exact period k. In suitable local conformal
coordinates, the 2k-th iterate of such a map has the form z — z + 2971 + ... with
g €{1,2}.

2) Every parameter on the boundary of the hyperbolic component H of period
one is either contained in T or has a parabolic fized point (with local power series as
above).

Proof. 1) Let H be a hyperbolic component of period k& > 1. By Proposition 4.12,
if H has a boundary point a’ outside S, then a’ must be contained in Z. But then
des , and the corresponding Schwarz reflection map o,/ is well-defined. Hence,
the arguments of [MNS17, Lemma 2.5] show that o, must have a parabolic cycle of
period k > 1 that attracts the forward orbit of the critical point ¢,,. However, this
is impossible as the forward orbit of the critical point ¢,/ (under o,/) converges to
the fixed point —2, for all parameters a’ € Z (see Proposition 4.5). This proves that
H has no boundary point outside S. Finally, [MNS17, Lemma 2.5] combined with
the fact that the Schwarz reflection maps under consideration have unique critical
points also show that for every parameter on the boundary of H, the k-cycle to
which the critical orbit converges must be parabolic with the desired local Taylor
series expansion.

2) The proof is similar to that of the previous part. The only difference is that
the boundary of H may contain points on the interval Z. ([

This leads to the following classification of odd periodic parabolic points.

Definition 6.5 (Parabolic Cusps). A parameter a will be called a parabolic cusp
if it has a parabolic periodic point of odd period such that ¢ = 2 in the previous
proposition. Otherwise, it is called a simple parabolic parameter.

Let us now fix a hyperbolic component H of odd period k, and let a € H.
Note that the first return map oS* of a k-periodic Fatou component of o, has
precisely three fixed points (necessarily repelling when k > 1) on the boundary
of the component. As a tends to a simple parabolic parameter on the boundary
OH, the unique attracting periodic point of this Fatou component tends to merge
with one of the repelling periodic points on its boundary. Similarly, as a tends to a
parabolic cusp on the boundary 0H, the unique attracting periodic point of this
Fatou component and two boundary repelling periodic points merge together.

Now let @ € Z° or a be a simple parabolic parameter of odd (parabolic) period k.
Consider an attracting petal of o, that contains the critical value 2 (for a € Z°, the
existence of such petals follows from the proof of Proposition 4.5). The arguments
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of [MNS17, Lemma 3.1] (also see [LLMM18a, §7.1]) imply that there exists a Fatou
coordinate defined on the attracting petal which conjugates the first anti-holomorphic
return map o°* (of the attracting petal) to the map ¢ + (+1/2 on a right half-plane.
This coordinate is unique up to addition of a real constant. The pre-image of the
real line (which is invariant under ¢ — ¢ +1/2) under this Fatou coordinate is called
the attracting equator. By construction, the attracting equator is invariant under
the dynamics o2*.

The imaginary part of the critical value 2 (whose forward orbit converges to the
parabolic cycle or to the fixed point —2 when a € Z°) under this special Fatou
coordinate is called the critical Ecalle height of o4 (since this Fatou coordinate is
unique up to addition of a real constant, the critical Ecalle height is well-defined). Tt
is easy to see that critical Ecalle height is a conformal conjugacy invariant of simple
parabolic parameters of odd period (respectively, of parameters on Z°). One can
change the critical Ecalle height of simple parabolic parameters by a quasiconformal
deformation argument to obtain real-analytic arcs of parabolic parameters on the
boundaries of odd period hyperbolic components. An analogous deformation can be
performed for parameters on Z° as well.

Proposition 6.6 (Parabolic Arcs). 1) Let a be a simple parabolic parameter of
odd period. Then a is on a parabolic arc in the following sense: there exists a real-
analytic arc of simple parabolic parameters a(h) (for h € R) with quasiconformally
equivalent but conformally distinct dynamics of which a is an interior point, and the
Ecalle height of the critical value 2 of o4y is h. This arc is called a parabolic arc.

2) All maps o, with a € I° C S are quasiconformally conjugate.

Proof. 1) See [MNS17, Theorem 3.2] for a proof in the case of unicritical anti-
polynomials (also compare [HS14, Figure 2.6] for an illustration of the quasicon-
formal deformation used to change the critical Ecalle height). One uses the same
quasiconformal deformation in the attracting petal at —2 for the map oz, and
Proposition 4.4 guarantees that the quasiconformal deformations of o5 also lie in
the family S.

2) Let us start with the parameter a := 4 € Z°. Since oz commutes with complex
conjugation, the Ecalle height of the critical value 2 is 0 for this map; i.e., the critical
Ecalle height of o is 0. As in the previous case, one can change the critical Ecalle
height by a quasiconformal deformation argument as in [MNS17, Theorem 3.2] (and
invoking Proposition 4.4), and prove the existence of a real-analytic arc IcS
such that as a runs over f, the critical Ecalle height of o, varies from —oo to +oo.
Moreover, since all maps on T are quasiconformally conjugate, it follows that for
every parameter a € ./T\, the map o, has a unique attracting direction at —2. Hence,
by Subsection 4.2, the arc T is contained in Z°. Therefore, the closure of Tis
contained in Z0 = Z C S. We claim that the limit points of this arc, as the critical
Ecalle height goes to 00, must lie outside Z°. Indeed, for each a € Z°, there is a
unique attracting direction at —2 (under o,), and hence all such maps have finite
critical Ecalle heights. Hence, no a € Z° can be an accumulation point of a sequence
of parameters on T with critical Ecalle height diverging to +oco. Thus, the limit
points of 1/'\, as the critical Ecalle height goes to +oo, must lie in T\Z° = {4+iV/3};
ie., I =10 0
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Let us fix a parabolic arc C C C(S) of period k > 1, and its critical Ecalle
height parametrization a : R — C. By Propositions 6.2, the arc C must lie on the
boundary of a single hyperbolic component of period k. By Proposition 6.4, every
accumulation point of C is contained in S. Arguing as in [MNS17, Lemma 3.3], we
see that such an accumulation point is a parabolic cusp of period k. In particular,
C is a compact connected set in S. Moreover, y maps parabolic cusps in C(S) to
parabolic cusps of the same period in C(£p). Since there are only finitely many
cusps of a given period in C(£y) and y is injective, it follows that there are only
finitely many cusps of a given period in C(S). Hence, C limits at parabolic cusp
points on both ends. This allows one to adapt the arguments of [HS14, Proposition
3.7] for our setting to prove the following result.

Proposition 6.7 (Fixed Point Index on Parabolic Arc). Along any parabolic arc
of odd period greater than one, the holomorphic fixed point index of the parabolic
cycle is a real valued real-analytic function that tends to +oo at both ends.

It now follows by arguments similar to the ones used in [HS14, Theorem 3.8,
Corollary 3.9] that:

Proposition 6.8 (Bifurcations Along Arcs). Every parabolic arc of odd period
k > 1 intersects the boundary of a hyperbolic component of period 2k along an arc
consisting of the set of parameters where the parabolic fized point index is at least 1.
In particular, every parabolic arc has, at both ends, an interval of positive length
at which bifurcation from a hyperbolic component of odd period k to a hyperbolic
component of period 2k occurs.

Proposition 6.9. Let H be a hyperbolic component of odd period k in C(S), C be
a parabolic arc on OH, a : R — C be the critical Ecalle height parametrization of
C, and let H' be a hyperbolic component of period 2k bifurcating from H across C.
Then there exists some hg > 0 such that

CNOH' = a[hg,+00).
Moreover, the function
inde :  [ho,+o0) —  [1,+00)
h — indc(as%h))
is strictly increasing, and hence a bijection (where inde (O’;%h)) stands for the holo-
morphic fixed point index of the k-periodic parabolic cycle of O'Z%h)).

Proof. The proof of IM21, Lemma 2.13, Corollary 2.21] can be applied mutatis
mutandis to our setting. a

Recall that there are exactly three distinct combinatorial ways in which parabolic
arcs (respectively parabolic cusps) are formed on the boundary dH. One can now
argue as in [LLMM18Db, § 7] to prove the following structure theorem for boundaries
of odd period hyperbolic components of C(S) (see Figure 19).

Proposition 6.10 (Boundaries Of Odd Period Hyperbolic Components). The
boundary of every hyperbolic component of odd period k > 1 of C(S) is a topological
triangle having parabolic cusps as vertices and parabolic arcs as sides.

The situation for the hyperbolic component H of period one is slightly different.
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FIGURE 19. A period three hyperbolic component in C(S).

Proposition 6.11. The boundary Ojij‘.vf consists of two parabolic arcs, a parabolic
cusp, and the arc Z. In particular, OH is not contained in S.

Proof. Note that for any a € H , the map o, has precisely three fixed points on the
boundary of the unique Fatou component. Two of these are repelling, and the other
one is —2. As a tends to the boundary of OH , the unique attracting fixed point of
0, tends to merge with these boundary fixed points. The merger of the attracting
fixed point with one of the (two) repelling fixed points happens on a parabolic arc on
OH. This accounts for the two parabolic arcs on OH , and they meet at a parabolic
cusp such that in the corresponding dynamical plane, the two repelling fixed points
and the attracting fixed point meet to produce a double parabolic fixed point.

On the other hand, the merger of the attracting fixed point with the fixed point
—2 happens precisely along the arc Z which is the set of parameters for which —2
attracts the forward orbit of the free critical point. Moreover, the two parabolic arcs
on OH (described above) meet Z at parameters for which —2 has two attracting
directions; hence these parameters are 4 + iv/3. ([

7. TESSELLATION OF THE EscAPE Locus

The goal of this section is to prove a uniformization theorem for the escape locus
of the family §. The uniformizing map will be defined in terms of the conformal
position of the critical value 2 (of o,) under v, (see Proposition 4.15).

Theorem 7.1 (Uniformization of The Escape Locus). The map
¥: S\ C(S) — Do,

a— 1,(2)
is a homeomorphism.

Proof. The proof is analogous to that of [LLMM18b, Theorem 1.3]. We only indicate
the key differences.

Note that for all @ € S, the critical value 2 of o, lies in Qg; i.e., 2 ¢ T°. It now
follows from the definition of 1, that ¢,(2) € Do for each a € S\ C(S).

The map W is easily seen to be continuous. We will show that ¥ is proper,
and locally invertible. This will imply that ¥ is a covering map from S \ C(S)
onto the simply connected domain Dy, and hence a homeomorphism from each
connected component of S\ C(S) onto Ds. However, ag = 2 is the only parameter
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in S\ C(S) satistying ¥(ag) = p2(0). So, S\ C(S) must be connected; i.e., ¥ is a
homeomorphism.

Local invertibility follows from a quasiconformal deformation/surgery argument
as in [LLMM18b, Theorem 1.3].

We need to consider several cases to show that W is proper. Let us first assume that
{ax}r is a sequence in S\ C(S) such that Re(ay) — 2. It follows from Subsection 3.2
that the critical point ¢,, tends to aa;,j(Qak), and hence dypn (04 (Cay) s 00, ) =
dspn (2,004, ) tends to 0 as k — +o0o. Therefore, W(ay) = 14, (2) accumulates on

Cy C ODs.

Now suppose that {ax}r C S\ C(S) is a sequence with {ay}r — o’ € TF with
Re(a’) € (2,4). Then, fq|p is univalent and f, (S') is a closed curve with a point
of tangential self-intersection (compare the proof of Proposition 4.12 and Figure 11).
It also follows from the proof of Lemma 4.13 that the critical value 2 of o,/ lands in
the bounded component ng/ of the corresponding desingularized droplet (where
the desingularized droplet is the set obtained by removing the cusp —2 and the
point of tangential self-intersection from the droplet T, = C \ Q) under exactly
n' iterates of o,/ (for some n’ = n'(a’) > 1). Note that for k sufficiently large, o,
is a small perturbation of o4. We set Uy, := int (T U o, H(T7 ), where T, is the
desingularized droplet. Then, for k large enough, the critical value 2 of o,, lands
in T;) under agk”” (where n” € {n’,n’ 4+ 1}), and the hyperbolic geodesic in Uy
connecting O'g:'“ (2) and oo passes through an extremely narrow channel formed by
the splitting of the double point on 97, (the thickness of this channel decreases as
k — 400, and gets pinched in the limit). Since this part of the geodesic lies extremely
close to the boundary of Uy, the hyperbolic distance between USZ” (2) and oo (in Uy)
tends to oo as k increases. Furthermore, as 1),, is a conformal isomorphism from Uy
onto Q1 Up~1(Q1), we have that the hyperbolic distance between 1, (agg” (2)) and 0

on”’

(in Q1 Up~1(Q1)) tends to oo as k increases. Consequently, {tpq, (05" (2))}x escapes
to the boundary of Q; U p~!(Q1) as k — +oo. But the sequence {1, (023” (2)}x
is contained in Qp, and hence, {9, (02:”(2))}k must converge to w € 09;. In
fact, the dynamical properties of o,, and the geometry of Tgk now imply that for
k sufficiently large, each 1, (037 (2)) (0 < j < n”) is close to w € D3, and hence
¥ (ay) = 14, (2) converges to w € 9Dy as k — +o0.

Finally let {ax}r C S\ C(S) be a sequence accumulating on C(S). Suppose that
{¥(ar)}r converges to some u € Dy. Then, {14, (2)}x is contained in a compact
subset X' of Dy. After passing to a subsequence, we can assume that X is contained
in a single tile of Dy. But this implies that each a; has a common depth ng (see
Definition 4.14), and v, (05°(2)) is contained in the compact set p°"°(X') C Q; for
each k. Note that the map o,, the fundamental tile 7)) as well as (the continuous
extension of) the Riemann map ¢, : Q; — T change continuously with the
parameter as a runs over S. Therefore, for every accumulation point a’ of {ay }x, the
point 02/ (2) belongs to the compact set ' (p°™°(X)). In particular, the critical
value 2 of o, lies in the tiling set 72°. This contradicts the assumption that {ay }«
accumulates on C(S), and proves that {¥(ax)}r must accumulate on the boundary
of ]D)Q. U

Definition 7.2 (Parameter Rays of S). The pre-image of a ray at angle 6 € (3, 2)
in Dy under the map W is called a O-parameter ray of S.
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8. PROPERTIES OF THE STRAIGHTENING MAP

In this section, we will study continuity and surjectivity properties of the straight-
ening map x. The results of this section will allow us to show that x is “almost” a
homeomorphism between C(S) and the parabolic Tricorn C(£o).

8.1. Continuity Properties. The goal of this subsection is to demonstrate that
the straightening map is continuous at most parameters. Let us first discuss some
basic topological properties of x.

8.1.1. Properness of x. There are three period 2 hyperbolic components bifurcating
from H with centers at %—f— @, and g + # Let a be a parameter on the boundary
of any of these period two hyperbolic components (say, H) with a 2-periodic cycle
of multiplier €**#/4, where ged(p,q) = 1. By Proposition 6.3, a is the root of a
hyperbolic component of period 2¢q that bifurcates from H. In particular, C(S) \ {a}
consists of two distinct connected components. We define the p/g-limb of H as the

closure of the connected component of C(S) \ {a} not containing H.

Proposition 8.1. The topological closure (in C) of every limb of the period two
hyperbolic components of C(S) is contained in S.

Proof. 1t follows from Propositions 4.12 and 6.11 that if a limit point of a limb of
a period two hyperbolic component of C(S) lies outside S, then such a limit point
must be 4 + iy/3. Since T C OH, it follows that if the closure (in C) of such a limb
contains 4 + iy/3, then S\ C(S) must have at least two connected components. But
this contradicts Theorem 7.1. Hence, the topological closure of every limb of a
period two hyperbolic component of C(S) is contained in S. O

Lemma 8.2 (Properness of of xy and x~1). Let {a,}, C C(S).

(1) If ap = a € C(S)\ C(S), then every accumulation point of {x(an)}n lies in
C(£o) \ C(£o)-

(2) If x(an) — (o, A) € C(£o) \ C(£o), then every accumulation point of {an}n
lies in C(S) \ C(S).

Proof. 1) Tt follows by Propositions 4.11 and 4.12 that if a sequence {ay}, C C(S)
has a limit point a’ € C(S)\C(S), then a’ € Z. Moreover, the proof of Proposition 8.1
implies that possibly after passing to a subsequence, {a,}, is either contained in
(the closures of) the hyperbolic components of period one or two; or each a,, belongs

to some %Aimb of a period two hyperbolic component with ¢, — 4+00 as n — +oo.

n

Since Y maps the %flimb of a period two hyperbolic component of C(S) to the
%Jimb of a period two hyperbolic component of C(£p), it follows that for every
finite accumulation point of {x(a,)}n», the point at oo is a multiple parabolic fixed
point. But such parameters do not lie in C(£y); i.e., every accumulation point of

{x(an)}n belongs to C(£y) \ C(Lo).

2) Let {an}n C C(£o) be a sequence such that x(a,) = (a, A) € C(£y) \ C(Lo)-
It follows that R, 4 has a multiple parabolic fixed point at co, and possibly passing
to a subsequence, {x(a,)}, is either contained in (the closures of) the hyperbolic
components of period one or two; or each x(a,) belongs to some 2’—:7limb of a period
two hyperbolic component of C(£y) with ¢, — +o0c0 as n — +o00. Therefore, every
accumulation point of {a,}, lies on Z = C(S) \ C(S). O
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8.1.2. Continuity on Rigid and Hyperbolic parameters. A parameter a € C(S) is
called gc rigid if no map in C(S) \ {a} is quasiconformally conjugate to o,.

Lemma 8.3. Let a € C(S). Then, a is qc rigid in C(S) if and only if x(a) is gc
rigid in C(Lo).

Proof. Note that a (respectively, x(a)) is not qc rigid in C(S) (respectively, in C(£o))
if and only if there exists a non-trivial o,-invariant (respectively, R, ,)-invariant)
Beltrami coefficient supported on K, (respectively, on Ky (,)). Moreover, such a
non-trivial Beltrami coefficient can be pulled back by the hybrid conjugacy between
the pinched anti-quadratic-like restrictions of o, and Ry, (or its inverse), and the
resulting Beltrami coefficient will be non-trivial, invariant under the dynamics, and
supported on the non-escaping set (or the filled Julia set). The result follows. O

The next proposition shows that the straightening map x : C(S) — C(£o) is
continuous at qc rigid parameters.

Proposition 8.4 (Continuity at Rigid Parameters). Let a € C(S) be a gc rigid
parameter in C(S). Then x is continuous at a.

Proof. Let a € C(S) be a qc rigid parameter. By Lemma 8.3, the map R, (5) admits
no non-trivial quasiconformal deformation. Let us pick a sequence {a,} in C(S)
converging to @ € C(S). By Lemma 8.2, we can extract a convergent subsequence
{x(an,)} = (a, A) € C(Ly). By our construction of the anti-quasiregular extension
G, of the pinched anti-quadratic-like map 7,,, © 0q,, © n;n1k7 it follows that
the dilatation ratios of the quasiconformal conjugacies ®,, between G, and
Rx(ank) stay uniformly bounded. By compactness of families of quasiconformal maps
with uniformly bounded dilatation, we conclude that there is a subsequential limit
of {®,,, }, that quasiconformally conjugates Gg to Ra,a (compare [DHS85, §IL.7,
Lemma, Page 313]). On the other hand, by definition of x, the maps G and R, )
are quasiconformally conjugate. Therefore, R, 4 and R, ) are quasiconformally
conjugate. By the rigidity assumption on x(a), it follows that x(a) = («a, A).
Therefore, for every sequence {a,} converging to a, there exists a convergent
subsequence {x(an,)} converging to x(a). Hence, x(a,) — x(a), whenever a,, — a.
This proves that x is continuous at a. O

Although hyperbolic parameters are not qc rigid (except the centers) in C(S),
we can prove continuity of x on hyperbolic components thanks to the dynamical
parametrization of hyperbolic components in C(S) and C(£p).

Proposition 8.5 (Continuity at Hyperbolic Parameters). Let H be a hyperbolic
component in C(S). Then the straightening map x is a real-analytic diffeomorphism
from H onto a hyperbolic component in C(£).

Proof. Let a be the center of H, and (a, A) := x(a). Then («, A) is the center of
some hyperbolic component H* of C(£y). Let 5y : H — BT and ny: : HY — Bt
be the dynamical uniformizations of the hyperbolic components H and H* (see
Propositions 6.1 and A.9). It is now easy to see that x = n;ﬁ ong on H. It follows

that  is a real-analytic diffeomorphism from H onto the hyperbolic component H*
in C(So) [



SCHWARZ REFLECTIONS AND CORRESPONDENCES 47

8.1.3. Discontinuity of x on Parabolic Arcs. Since parabolic parameters of even pe-
riod (respectively, parabolic cusps of odd period) are qc rigid in C(S), Proposition 8.4
implies that y is continuous at all parabolic parameters of even period (respectively,
parabolic cusps of odd period) of C(S). However, note that the simple parabolic
parameters of odd period in C(S) admit non-trivial quasiconformal deformations,
and hence the above results do not say anything about continuity of y at the simple
parabolic parameters of odd period of C(S). Recall that by Proposition 6.8, every
parabolic arc has, at both ends, an interval of positive length at which bifurcation
from a hyperbolic component of odd period k to a hyperbolic component of period
2k occurs. We will now carry out a finer analysis of continuity properties of x near
these bifurcating sub-arcs.

Let H be a hyperbolic component of odd period k in C(S), C be a parabolic arc
of 0H, a : R — C be the critical Ecalle height parametrization of C, and H' be a
hyperbolic component of period 2k bifurcating from H across C. Let us start with
an easy observation.

Lemma 8.6. Let C be a parabolic arc in C(S). Then the following hold true.

1) x is a homeomorphism from C onto a parabolic arc in C(Lo).

2) If {an} C C(S) converges to a € C, then every accumulation point of {x(an)}
lies on the parabolic arc x(C) in C(£o).

Proof. 1) Let a = a(0) be the parameter on C with critical Ecalle height 0, and
(o, A) := x(a). Then (a, A) lies on some parabolic arc C* of C(£y), and has critical
Ecalle height 0. Since critical Ecalle heights are preserved under hybrid equivalences,
it is now easy to see that for each a(h) € C (for h € (—o0, +0), its image under y
is the unique parameter on C* with critical Ecalle height h. It follows that x is a
homeomorphism from C onto the parabolic arc C* in C(£y).

2) Let {a,} C C(S) be a sequence converging to a € C. By Lemma 8.2, we can
extract a convergent subsequence {x(an,)} — (o, A) € C(£y). By our construction
of the anti-quasiregular extension Gy, —of the pinched anti-quadratic-like map
Nan, O an, on;}k , it follows that the dilatation ratios of the quasiconformal conjugacies
®q,, between G, and R,(q,, ) are uniformly bounded. By compactness of families
of quasiconformal maps with uniformly bounded dilatation, we conclude that there
is a subsequential limit of {®,, }, that quasiconformally conjugates G, to Ra, 4
(compare [DHS85, §11.7, Lemma, Page 313]). On the other hand, by definition of ¥,
the maps G, and R, (,) are quasiconformally conjugate. Therefore, Ry 4 and R, (q)
are quasiconformally conjugate.

Let ® be a quasiconformal map conjugating Ry (q) to Ra 4. We set pi:= 856/026,
and define the Beltrami path {tu : ¢t € [0,1]}. By construction, each tu is Ry (q)-
invariant. By the parametric version of the measurable Riemann mapping theorem,
there exists a continuous family of quasiconformal homeomorphisms {‘T)t}te[o,l] such
that a;&)t/@z%t = tu, and @1 — 3. Tt follows from the Ry (q)-invariance of the
Beltrami coefficients that ®; o Ry(a) © @;1 = Ra),a@) € C(£Lo), for t € [0, 1] with
Ro1y,a01) = Ra,a, and t — (a(t), A(t)) is continuous. Since Dy is conformal; i.e., a
Mobius map, and no two distinct maps in C(£q) are Mobius conjugate, we conclude
that Ru(0),4(0) = Ry(a)- Therefore, Ry 4 and R, (,) are connected by a path of
quasiconformally conjugate parameters in C(£y). Since x(a) lies in the parabolic
arc x(C) C C(£y) (by part 1), it follows from the definition of parabolic arcs that
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(o, A) € x(C). Therefore, every subsequential limit of {x(ay)} lies on the parabolic
arc x(C) C C(Lo). O

We will denote the critical Ecalle height parametrization of the parabolic arc x(C)
by c. For any h in R, let us denote the fixed point index of the unique parabolic
cycle of ag?h) (respectively, the unique parabolic cycle of Rg(Qh) other than the fixed
point at co) by inde (U;%h)) (respectively, by indx(c)(R‘c)(Qh))). This defines a pair of
real-analytic functions (which we will refer to as index functions)

inde: R — R
h — inde (O’;(Qh))

and
indy¢y: R — R
h — indx(c)(Rz(Qh)).

Our next goal is to use Proposition 6.9 to show that x|g has a dynamically
defined continuous extension to C N OH'. By Propositions 6.9 and A.13, we can
define a map £ : CNAOH' — x(C) Ndx(H') by sending the parabolic cusp on CNOH’
to the parabolic cusp on x(C) N dx(H'), and the unique parameter on C N OH’
with a parabolic cycle of index 7 to the unique parameter on x(C) N dx(H') with a

parabolic cycle of index 7 (compare [IM21, §8]).

Proposition 8.7. ¢ extends x|g continuously to C NOH' preserving the index of
the parabolic cycle.

Proof. Let us pick the unique parameter a on C N 9H' having parabolic fixed
point index 7. Consider a sequence {a,} € H’ with a, — a. Suppose that
{x(an)} C x(H") converges to some (a, A) € £9. By Proposition 8.6 (part 2), we
have that (o, A) € x(C). Furthermore, since the sequence {x(a,)} is contained in
X(H"), its limit (o, A) must lie in x(H'). It follows that (o, A) € x(C)NIx(H') (see
Figure 20).

For any n, the map 023 has two distinct k-periodic attracting cycles (which are
born out of the parabolic cycle) with multipliers \,, and ),,. Since a,, converges
to a, we have that

(12) — + — T

as n — o0o.
Since the multipliers of attracting periodic orbits are preserved by Yy, it follows

that R;Q(an) has two distinct k-periodic attracting cycles with multipliers A,, and

Aa, - As {x(an)} converges to the odd period parabolic parameter (a, A), the same
limiting relation (12) holds for the fixed point index of the parabolic cycle of RS,
as well. In particular, the parabolic fixed point index of R(‘;? 4 is also 7. Therefore,
(ar, A) must be the unique parameter on x(C) N dx(H') with a parabolic cycle of
index 7.

On the other hand, parabolic cusps are qc rigid in C(£p). Hence, x sends the
parabolic cusp on CNAIH’ to the parabolic cusp on x(C)Ndx(H'), and is continuous
at the cusp.

It now follows that ¢ is the required continuous extension of x|z to CNAH'. O
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FIGURE 20. The straightening map , restricted to H, is a homeo-
morphism. On the other hand, a continuous extension & of x|g+ to
C NOH’ must respect the fixed point indices of the parabolic cycles
of Tq and Rf(a)-

As a complementary result, let us mention that x is a homeomorphism restricted
to the closure H of every hyperbolic component H of odd period. We denote
the Koenigs ratio map of the hyperbolic component H (respectively, x(H)) by Z H
(respectively, Cy(m))-

Proposition 8.8. Asa in H (respectively, ¢ is x(H)) approaches a simple parabolic
parameter with critical Ecalle height h on the boundary of H (respectively, x(H)), the

% (respectively, %} converges to % — 2ih. Consequently,

x maps the closure H of the hyperbolic component H homeomorphically onto the
closure x(H) of the hyperbolic component x(H).

quantity

Proof. The proof of the first statement is similar to that of [IM21, Lemma 6.3].
Since x preserves Koenigs ratio (of parameters in H) and critical Ecalle height
(of simple parabolic parameters on dH), it follows that x extends continuously
to OH. By Proposition 8.5 and Lemma 8.6, x(H) is indeed the closure of the
hyperbolic component x(H). Since x is injective, it is a homeomorphism from H

onto x(H). O

We are now in a position to show that continuity of x on C imposes a severe
restriction on the index functions ind¢ and indy ).

Lemma 8.9 (Uniform Height-Index Relation). Let C be a parabolic arc in C(S). If
X s continuous at every parameter on C, then the functions indc and ind, ) are
identically equal.

Proof. Recall that x preserves critical Ecalle height of simple parabolic parameters.
By Proposition 8.7, continuity of x on C would imply that x also preserves the index
of simple parabolic cycles (for parameters in C N 9H'). But this means that the
indices of the parabolic cycles of O'Z?h) and R‘C’(Qh) are equal for all values of h in an
unbounded interval. Since the index functions inde and ind, ¢ are real-analytic,
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we conclude that the indices of the parabolic cycles of 02(2,1) and R2(2h) are equal for
all real values of h; i.e., ind¢ = ind,(c). O

Remark 9. The above condition on index functions seems unlikely to hold in general.
This criterion can be used to prove discontinuity of y on certain low period parabolic
arcs of C(S).

For an analogous discussion of discontinuity of straightening maps for the Tricorn,
see [IM21, Proposition 8.1].

8.1.4. Possible Discontinuity on QQC Non-rigid Parameters. We have seen so far
that  is continuous at all qc rigid parameters of C(S). This includes parameters
with an even-periodic neutral cycle, and parabolic cusps of odd period. It was also
shown that x is continuous at hyperbolic parameters (which are not qc rigid, except
for the centers). On the other hand, we analyzed the behavior of x at odd period
simple parabolic parameters (which are also not qc rigid in C(S)), and concluded
that x is not necessarily continuous at such parameters. We now turn our attention
to the remaining gc non-rigid parameters in C(S).

Let us assume that o, € C(S) admits a real one-dimensional quasiconformal
deformation space in C(S), and p is a non-trivial o,-invariant Beltrami coefficient
which is supported on K,. Set m :=||u||co € (0,1). Then, tu is also a non-trivial
og-invariant Beltrami coefficient supported on 0K,, for t € (—i i). By the

measurable Riemann mapping theorem with parameters, we obtainnaugsiconformal
maps {h;} (where t € (=1, L)) with associated Beltrami coefficients ¢u such
that h; fixes £2 and oo, and {h;} depends real-analytically on ¢. According to
Proposition 4.4, hy 0 o, 0 by " € C(S) for all t € (—L, L), This produces a real-
analytic arc of quasiconformally conjugate parameters in C(S) which contains a in
its interior. This arc, which is the full quasiconformal deformation space of o, in
C(8S), is called the queer Beltrami arc containing a.

The following proposition can be proven following the arguments of Lemma 8.6.

Lemma 8.10. Let I" be a queer Beltrami arc in C(S). Then,
1) x is a homeomorphism from T onto some queer Beltrami arc in C(£y), and
2) if {an} C C(S) converges to a € T, then every accumulation point of {x(an)}
lies on the queer Beltrami arc x(T') in C(Ly).

Finally, let o, € C(S) admit a real two-dimensional quasiconformal deformation
space C(S), and p1, ue be R-independent non-trivial o,-invariant Beltrami coef-
ficients supported on 0K,. Then, (t1u1 + toue) is also a non-trivial o,-invariant
Beltrami coefficient supported on 0K, whenever t1,t2 € R, and ||t1 11 +t22]00 < 1.
As in the previous case, this produces an open set of quasiconformally conjugate
parameters in C(S) containing a. This open set, which is the full quasiconformal
deformation space of o, in C(S), is called the queer component containing a.

Lemma 8.11. x is a homeomorphism from a queer component of C(S) onto some
queer component of C(£o).

8.2. Almost Surjectivity. We will now describe the image of the straightening
map X. Let us start with some preliminary results.

Lemma 8.12. x(C(S)) is closed in C(£Ly).

Proof. Let (ag, Ag) € C(Lo), and {(an, An)}n be asequence in x(C(S)) converging to
(a0, Ag). By assumption, there exists {a,}, € C(S) such that x(a,) = (@, Ay), for
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all n € N. By Lemma 8.2, we can assume (possibly after passing to a subsequence)
that a, — a € C(S). It now follows by the arguments used in the proof of
Proposition 8.4 that R, ) and Ry, 4, are quasiconformally conjugate.

Let v be a quasiconformal conjugacy between R, (q) and Ra,, a,, and u be the
Beltrami form defined by v. Since R,(,) has a connected Julia set, the Beltrami
form p can be selected so that it is supported on K, (,) and is R, (,)-invariant.
Pulling p back by a hybrid equivalence ®, o7, between a pinched anti-quadratic-like
restriction of o, and R, (), we obtain an o,-invariant Beltrami form pg supported
on K, such that p and pg have the same dilatation at corresponding points. By
Proposition 4.4, there exists a quasiconformal homeomorphism Y integrating pg and
conjugating o, to some map oy in the family S. Clearly, a € C(S). It is now easy
to see that v o (P, 01,) 0 Y=o (B50nz) " is a hybrid equivalence between R\ @)
and Rg,, 4,- Since each hybrid equivalence class in C(£y) is a singleton (compare
Remark 18), we have that (ag, Ag) = x(a) € x(C(S)). This completes the proof. O

Here is an important corollary of the proof of the above lemma.

Corollary 8.13. Let (a1, A1), (ag, A2) € C(Lo) be such that Ra, 4, and R, 4, are
quasiconformally conjugate. If (a1, A1) € x(C(S)), then (ag, A2) € x(C(S)) as well.

Recall that in Subsection 7, we described a uniformization ¥ : S\ C(S) — Do
of the exterior of the connectedness locus C(S) (in the parameter space). Using
the map ¥, we defined the parameter rays of S (see Definition 7.2). As the first
step towards a description of the image of y, we will now use these parameter rays
to show that x(C(S)) contains all dyadic tips of C(£g) (see Definition A.15 for the
definition of dyadic tips).

Similar to Definition A.15, we will call a parameter a € C(S) a dyadic tip of
pre-period k if the critical value 2 (of o,) maps to the cusp point —2 in exactly k
steps; i.e., k > 1 is the smallest integer such that ¢°%(2) = —2.

Remark 10. The only dyadic tip of pre-period 1 in C(S) is a = %

We say that a parameter a € C(S) is critically pre-periodic if the critical point ¢,
(or equivalently, the critical value 2) of o, is strictly pre-periodic.

Lemma 8.14.

(1) If 6 € (3, 2) is strictly pre-periodic under p, then the parameter ray of
S at angle 0 lands at a critically pre-periodic parameter such that in the
corresponding dynamical plane, the dynamical ray at angle 6 lands at the
critical value 2.

(2) For every critically pre-periodic parameter ag of C(S), the arguments of the
parameter rays (at pre-periodic angles) of S landing at ag are exactly the
arguments of the dynamical rays that land at the critical value 2 in the

dynamical plane of o,,.

Proof. 1) Let ag be an accumulation point of the parameter ray of S at angle 6.
Standard arguments from polynomial dynamics (for instance, see [Lyu20, Theo-
rem 37.35]) can be used to show that ag is a critically pre-periodic parameter such
that in the dynamical plane of o,,, the dynamical ray at angle 6 lands at the critical
value 2. We include the details for completeness.

By Proposition 4.17, the dynamical ray of o,, at angle  lands at some repelling
or parabolic pre-periodic point w (as € is strictly pre-periodic under p, the landing
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point cannot be periodic). Let us suppose that o,, is a parabolic map. Note that
as the landing point of the dynamical 6-ray of o,, is not periodic, the ray does not
land on the parabolic periodic point on the boundary of the Fatou component of o,
containing the critical value 2. Since 0K, is locally connected and repelling periodic
points are dense on the limit set (these properties hold true for the straightened map
R, (40, and are preserved under hybrid equivalences), it follows that there exists a
cut-line through repelling periodic points on 0K,, separating the -dynamical ray
from the critical value 2. But such cut-lines remain stable under small perturbation.
Therefore, for parameters sufficiently close to ag, the #-dynamical ray stays away
from the critical value 2. However, this is impossible as there are parameters near
ap on the f-parameter ray for which the critical value 2 lies on the #-dynamical ray.
This contradiction shows that o,, is not parabolic; i.e., the dynamical ray of o,, at
angle 0 lands at some repelling pre-periodic point w.

We suppose that w is not the critical value 2 of o,,, and will arrive at a con-
tradiction. If w is not a pre-critical point either, then for nearby parameters, the
f-dynamical ray would land at the real-analytic continuation of the repelling pre-
periodic point w, and would stay away from the critical value 2. But there are
parameters near ag on the f-parameter ray for which the critical value 2 lies on the
f-dynamical ray, a contradiction. Hence w must be a pre-critical point implying that
the critical value 2 of o,, is strictly pre-periodic. So ag is a critically pre-periodic
parameter. This implies that 0K,, is a dendrite and repelling periodic points are
dense on it (once again, these properties hold true for the straightened map Ry (q,),
and are preserved under hybrid equivalences). Hence, the dynamical ray at angle
f landing at w can be separated from the critical value 2 by a pair of dynamical
rays landing at a common repelling periodic point. Once again, this separation line
remains stable under perturbation, contradicting the existence of parameters near
ap on the f-parameter ray. Hence, w must be the critical value 2 of g,,.

We claim that ag is the unique parameter in C(S) with the property that the
dynamical ray at angle 6 lands at the critical value 2. Since the limit set of a ray is
connected, this will prove that the parameter ray at angle 6 indeed lands at ag.

To prove the claim, let us assume that there exists another parameter a; with
the same property. Clearly, for each of the maps R, (4, and R,(,,), the critical
value —1 is strictly pre-periodic. Moreover, by Proposition 5.7, the £(6)-dynamical
rays of R, (,,) and Ry (,,) land at the corresponding critical values R, (4,)(—1) and
Ry(a,)(—1). Tt now follows that the external parameter ray of the parabolic Tricorn
at angle £(0) lands both at x(ag) and x(a;) implying that x(ag) = x(a1). Since x
is injective (Proposition 5.9), we conclude that ap = a;. This completes the proof.

2) Let A C (1/3,2/3) be the set of angles of the dynamical rays of o,, that
land at the critical value 2. By the first part of this proposition, the angles of the
parameter rays (at pre-periodic angles) of S landing at ag are contained in A.

Now pick 0 € A, and let a1 be the landing point of the parameter ray of S at
angle 6. Then, the dynamical ray of o,, at angle 6 lands at the critical value 2. By
the proof of the first part, we know that there can be at most one parameter in
C(S) whose dynamical 6-ray lands at the critical value 2. Therefore, ag = a1, i.e.,
the parameter ray of S at angle 6 lands at ag. As 6 was an arbitrary element of
A, it follows that all parameter rays at angles in A land at ag. The proof is now
complete. O
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Lemma 8.15 (Counting Dyadic Tips). The number of dyadic tips of C(S) of
pre-period k is equal to the number of dyadic tips of C(£o) of pre-period k.

Proof. Note that by Proposition 4.17, in the dynamical plane of every dyadic tip
ag of pre-periodic k > 1, there exists a unique dynamical ray at angle 6 landing at
the critical value 2 such that p°*() = 1. It now follows from Lemma 8.14 that the
number of dyadic tips of C(S) of pre-period k > 1 is equal to

#O€(G3) O =5, V0 £ 51

A completely analogous argument shows that the number of dyadic tips of C(£o)
of pre-period k£ > 1 is equal to
#{0 e R/Z : B°*(#) = 0, B°*~V(9) # 0.

Since p : 0Q — 0Q and B : R/Z — R/Z are topologically conjugate, the
cardinalities of the above two sets are equal. The conclusion follows. O

w

Proposition 8.16 (Onto Dyadic Tips of £y). x(C(S)) contains all dyadic tips of
£o.

Proof. Let us fix k > 1. Evidently, xy maps a dyadic tip of pre-period k of C(S) to a
dyadic tip of the same pre-period of C(£y). By Proposition 5.9 and Lemma 8.15, x
is a bijection between the dyadic tips of pre-period & of C(S) and the dyadic tips of
the same pre-period of C(£p). This completes the proof. O

The importance of the previous lemma stems from the fact that the closure of
the dyadic tips of C(£p) contains “most” parameters on JC(Ly). This will allow us
to show that the image of x is sufficiently large.

Proposition 8.17. x(C(S)) contains all parabolic parameters of C(Ly).

Proof. Let us first assume that (o, A) € C(£p) is a parabolic parameter of even
period. It follows by a straightforward parabolic perturbation argument that (o, A)
lies in the closure of the dyadic tips of C(£p). Indeed, the iterated pre-images of oo
are dense on the Julia set of R, 4, and these can be followed continuously when
the parameter (a, A) is slightly perturbed. Using [Lei00, Proposition 2.2], one can
slightly perturb (a, A) to ensure that for such a perturbed map, the parabolic cycle
splits into repelling cycles, and the critical point —1 eventually escapes through
the ‘gates’ formed by these repelling periodic points and lands on an iterated pre-
image of co. Clearly, this produces dyadic tips of C(£g) arbitrarily close to («, A4).
Proposition 8.16 and Lemma 8.12 now imply that («, A) € x(C(S)).

Now let (a, A) € C(£y) be a simple parabolic parameter of odd period. Then,
(ar, A) lies on some parabolic arc C. Using the parabolic perturbation arguments of
[HS14, Theorem 7.3] and [Lei00, Proposition 2.2], one can show that some parameter
(o/,;A") € C (lying on the non-bifurcating sub-arc of C) belongs to the closure of
dyadic tips. Once again, it follows by Proposition 8.16 and Lemma 8.12 that
(o, A") € x(C(S)). Finally, since R, 4 and R, 4s are quasiconformally conjugate,
Corollary 8.13 implies that (a, A) € x(C(S)).

Since parabolic cusps lie on the boundary of parabolic arcs, and every parabolic
arc of C(£y) is contained in x(C(S8)), it follows from Lemma 8.12 that the parabolic
cusps of C(£p) are also contained in the image of x. O
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Proposition 8.18 (Onto Hyperbolic Components). x(C(S)) contains every hyper-
bolic component of C(Lo).

Proof. Let us first consider a hyperbolic component H of odd period & of C(£).
Then there is a parabolic cusp (a, A) of period k on OH. By Proposition 8.17, there
exists a € C(S) with x(a) = (a, A). Evidently, a is a parabolic cusp of period k
of C(S). By Proposition 6.2, a lies on the boundary of a hyperbolic component
H; of period k of C(S). Choose a sequence {a,}, € H; converging to a. Since
x(a) is quasiconformally rigid in C(£y), it follows by Proposition 8.4 that {x(an)}n
converges to x(a) = (a, A). But {x(a,)}» is contained in the hyperbolic component
X(H1) of period k, and hence, (o, A) € Ox(H;). However, a parabolic cusp lies on
the boundary of a unique k-periodic hyperbolic component. Hence we must have
x(Hy) = H.

We now consider a hyperbolic component H of period 2k for some odd integer
k (of C(£y)) such that H bifurcates from a hyperbolic component of period k.
By Propositions A.12 and A.13, there is a parabolic cusp («, A) of period k on
OH. By Proposition 8.17, there exists a parabolic cusp a € C(S) of period k with
x(a) = (a, A). By Proposition 6.2, a lies on the boundary of a hyperbolic component
H; of period k of C(S), and by Proposition 6.8, there is a hyperbolic component
Hj of period 2k of C(S) bifurcating from Hj across a. An argument similar to the
one used in the previous case now shows that x(H;) = H.

Finally, let H be a hyperbolic component of even period k (of C(£y)) not bifurcat-
ing from any hyperbolic component of odd period. In this case, H has a unique root
point («, A), which is an even-periodic parabolic parameter where the multiplier
map of H takes the value +1. By Proposition 8.17, there exists a € C(S) with
x(a) = (a, A). By Proposition 6.2 and Proposition 6.3, a lies on the boundary of
a hyperbolic component H; of period k of C(S). Since («, A) is quasiconformally
rigid in C(£y) and («, A) lies on the boundary of a unique k-periodic hyperbolic
component, it follows by the same line of arguments used in the previous cases that
x(H1) = H. O

We summarize the above results in the following corollary.

Corollary 8.19. x(C(S)) contains the closure of all hyperbolic parameters in the
parabolic Tricorn C(£y).

Proof. This follows from Proposition 8.18 and Lemma 8.12 a

Remark 11. Conjecturally, hyperbolic parameters are dense in C(£p). If this con-
jecture were true, the straightening map x would be a bijection from C(S) onto

C(Lo).

Corollary 8.20. For each 6 € (1,2), there exists some a € C(S) such that x(a)
lies in the impression of the parameter ray (of £o) at angle 0.

Proof. This follows from Lemma 8.12 and the fact that the impression of every
parameter ray intersects the closure of all dyadic tips of C(£y). (]
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9. HOMEOMORPHISM BETWEEN MODEL SPACES

The goal of this section is to show that the straightening map x can be slightly
modified so that it induces a homeomorphism between the “abstract connected-
ness locus” C(S) (defined below) and the abstract parabolic Tricorn C(£y) (see
Appendix A).

9.1. The Abstract Connectedness Locus C(S). Let a € C(S). Recall that by
Proposition 4.17, all dynamical rays of o, at angles in Per(p) (i.e., at pre-periodic
angles) land on 0K,.

Definition 9.1 (Pre-periodic Laminations, and Combinatorial Classes).
(1) For a € C(S), the pre-periodic lamination of o, is defined as the equivalence
12
relation on Per(p) C 90Q = [5’ 5]/{1 ~ 2} such that 6,6 € Per(p) are
373

related if and only if the corresponding dynamical rays land at the same
point of 0K,.

(2) Two parameters a and a’ in C(S) are said to be combinatorially equivalent
if they have the same pre-periodic lamination.

(3) The combinatorial class Comb(a) of a € C(S) is defined as the set of all
parameters in C(S) that are combinatorially equivalent to a.

(4) A combinatorial class Comb(a) is called periodically repelling if for every
a’ € Comb(a), each periodic orbit of o, is repelling.

Proposition 9.2. For a € C(S), the homeomorphism & : 0Q — R/Z maps the
pre-periodic lamination of o, onto the pre-periodic lamination of Ry(). As a
consequence, two parameters a and a’ in C(S) are combinatorially equivalent if and
only if x(a), x(a’) € C(Ly) are so.

Proof. This follows directly from Proposition 5.7. O

We are now ready to give a complete classification of the non-repelling combina-
torial classes of C(S).

Proposition 9.3 (Classification of Combinatorial Classes). Every combinatorial
class Comb(a) of C(S) is of one of the following four types.

(1) Comb(a) consists of an even period hyperbolic component that does not
bifurcate from an odd period hyperbolic component, its root point, and the
wrrationally neutral parameters on its boundary.

(2) Comb(a) consists of an even period hyperbolic component that bifurcates
from an odd period hyperbolic component, the unique parabolic cusp and the
wrrationally neutral parameters on its boundary.

(3) Comb(a) consists of an odd period hyperbolic component and the parabolic
arcs on its boundary.

(4) Comb(a) is periodically repelling.

Proof. Let us assume that Comb(a) is not periodically repelling. Then there exists
a € Comb(a) such that oz has a non-repelling periodic orbit. But then, R, g has
a non-repelling periodic orbit. Therefore, the combinatorial class Comb(x(a)) =
Comb(x(a)) is not periodically repelling, and hence is of one of the first three types
described in Proposition A.17.
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It now follows by Corollary 8.19 that Comb(x(a)) is contained in the image of x.
By Proposition 9.2, x~!(Comb(x(a))) is a single combinatorial class containing a;
i.e., Y} (Comb(x(a))) = Comb(a). Since Y is injective (Proposition 5.9), it follows
that x is a bijection from Comb(a) onto Comb(x(a)). Finally, since y preserves
hyperbolic, parabolic and irrationally neutral parameters, the result follows. O

Remark 12. We conjecture that every periodically repelling combinatorial class
of C(S) is a point. In light of Corollary 9.2, this will follow if the corresponding
conjecture for C(£y) holds true.

We are now in a position to define an abstract topological model for C(S). We
put an equivalence relation ~ on S? by

(1) identifying all points in the closure of each periodically repelling combinato-
rial class of C(S),

(2) identifying all points in the closure of the non-bifurcating sub-arc of each
parabolic arc of C(S), and

(3) identifying all points in Z.

This is a non-trivial closed equivalence relation on the sphere such that all
equivalence classes are connected and non-separating. By Moore’s theorem, the
quotient of the 2-sphere by ~ is again a 2-sphere. The image of C(S) under this
quotient map is non-compact, but adding the class of Z turns it into a full compact
subset of the 2-sphere.

Definition 9.4 (Abstract Connectedness Locus of §). The abstract connectedness
locus of the family S is defined as the union of the image of C(S) under the quotient
map (defined by the above equivalence relation) and the class of Z. It is denoted by

c(S).

Remark 13. It is instructive to mention that the identifications above are designed
to “tame” the straightening map x; i.e., to make it surjective and continuous.

9.2. Constructing The Homeomorphism. In this subsection, we put together
all the ingredients developed so far to construct a homeomorphism between the
abstract connectedness loci of the families S and £g.

Proof of Theorem 1.1. We will first define a map X on C(S). We begin by setting it
equal to x on all of C(S) except on the closures of odd period hyperbolic components.

Now let H be a hyperbolic component of odd period k, C be a parabolic arc on
OH, and H' be a hyperbolic component of period 2k bifurcating from H across C.
By Proposition 8.7, x|z has a continuous extension & to C N @H’. This allows us
to extend X to the bifurcating arcs of 0H so that it maps homeomorphically onto
the bifurcating arcs of dx(H). We now extend this map to the rest of H so that H
maps homeomorphically onto x(H).

This defines a map X (possibly discontinuous on the non-bifurcating sub-arcs of
parabolic arcs and on the queer Beltrami arcs) on C(S). Note that X agrees with
x on every periodically repelling combinatorial class. By Corollary 9.2, X maps
every periodically repelling combinatorial class of C(S) to a periodically repelling
combinatorial class of C(£y) (not necessarily surjectively). By construction, X maps
the non-bifurcating sub-arc of every parabolic arc of C(S) onto the non-bifurcating
sub-arc of the corresponding parabolic arc of C(£p). Therefore, X descends to a

map X : E_(\S/) — C(£y) which sends the class of Z = C(S) \ C(S) to the class of
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C(£o) \ C(Lo) (i-e., the class containing maps R, 4 with a multiple parabolic fixed
point at co). Moreover, it follows by Propositions 5.9, 9.3, and Corollary 9.2 that x
is injective.

By Proposition 8.2, the map X is continuous at the class of Z. By Proposition 8.4,
Lemma 8.11 and the above discussion, X is continuous everywhere except possibly
on the non-bifurcating sub-arcs of parabolic arcs and the queer Beltrami arcs. Since
each queer Beltrami arc is contained in a periodic/al\ly/ repelling combinatorial class

—_—

(which are pinched to points in both C(S) and C(£y)), Lemma 8.10 implies that
possible discontinuities of X on queer Beltrami arcs do not create discontinuity for
the induced map X.

Therefore, to verify continuity of X on C(S), it suffices to look at the classes
of the non-bifurcating sub-arcs of the parabolic arcs. To this end, let us fix a
parabolic arc C on the boundary of an odd period hyperbolic component H. Recall
that discontinuity of X on C can only occur from the exterior of the union of H
and the hyperbolic components bifurcating from it. Now let {a,}, be a sequence
outside the union of H and the hyperbolic components bifurcating from it such
that {an}, converges to some point a € C. It follows that {X(a,)}, lies outside the
union of X(H) and the hyperbolic components bifurcating from it. Furthermore,
any subsequential limit of {X(a,)}, must lie on X(C) (by Lemma 8.6). So, any
subsequential limit of {X(ay)}, must lie on the non-bifurcating sub-arc of X(C).

Since the non-bifurcating sub-arc of every parabolic arc is collapsed to a point in C(S)

and C(£y), it now follows that X is continuous at the class of the non-bifurcating

—_—

sub-arc of C. Thus, X is continuous everywhere on C (S).

Every periodically repelling combinatorial class of C(£g) contains at least one
parameter ray impression. Thus, by Corollary 8.20, the image of X hits every
periodically repelling combinatorial class of C(£y). This, along with Corollary 8.19,

implies that the image of X contains the boundary 9C(£y).

— —

As C(S) is compact, it now follows that X is a homeomorphism from C(S)

onto its image. Moreover, E(t?) is a full subset of the sphere, and hence has
a trivial Alexander-Kolmogorov cohomology. But this property is preserved by
homeomorphisms. Thus, the image X(C(S)) also has a trivial Alexander-Kolmogorov

cohomology, and hence is a full subset of the sphere. It follows that %(E_(\S/)) also

contains the interior of C/(EO/) .
This shows that the map X : C(S) — C(£o) is a homeomorphism. O

10. THE ASSOCIATED CORRESPONDENCES

In this section, we will define a correspondence on C by lifting o1 under f,. We
will then show that in a suitable sense, the correspondence is a “mating” of the
abstract modular group Z/2Z x Z/3Z and a quadratic anti-rational map.

10.1. The Correspondence 7, . We now begin with the construction of the
correspondence o, C C x C.

Let us first consider z € D. For such z, we have o,(f.(2)) = fu(:(2)), where ¢ is
the reflection in the unit circle. For z € D, we say that

(z,w) € 0a = fa(w) = 0a(fa(2)) = fa(t(2))-
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Thus, the lifts of o, under f, define a correspondence o, on D x C.
We now turn our attention to z € C\ D. For such z, we have that o,(f.(¢c(2))) =
fa(2). Choosing a suitable branch of o, !, we can rewrite the previous relation as

fa(t(2)) = 071 (fa(2)). For z € C\ D, we say that
(z,w) € 04 <= folw) =05 (fa(2)) = fa(1(2)).

Thus, the lifts of (suitable inverse branches of) o, * under f, define a correspondence
04 OL (((A: \ ﬁ) x C.

Combining these two deﬁnitigns 9f 0, in the interior and exterior disk, we obtain
the 3 : 3 correspondence o, C C x C defined as

(13) (zow) €50 = falw) — fulu(2)) = 0.

Proposition 10.1. The correspondence o, defined by Equation (13) contains all
possible lifts of o, (respectively, suitable inverse branches of o, ') when z € D
(respectively, when z € C\ D) under f,. More precisely,

o for z € D, we have that (z,w) € 0, <= fo(w) = 04(fu(2)), and
o forz € (E\ﬁ, we have that (z,w) € 0, = 04(fa(w)) = fu(2).

Note that for all z € C, we have (z, 1(z)) € 04. Removing all pairs (z,(z)) from
the correspondence o,, we obtain a 2 : 2 correspondence o,  C C x C defined as

fa(w) = fa(1(2))

(14) (z,w) € 5, == —e

= 0;

*

(15) ie., (z,w) €0, <= ie. (1a(2))* + (ta(2))w +w'? =3,

where 2’ =a+ (1 —a)z, w' =a+ (1 — a)w, and ¢, is the reflection with respect to
the circle 9B(a, |1 — al).

Remark 14. The correspondence o, defined above is closely related to a holomorphic
correspondence defined by Bullett and Penrose [BP94]. Indeed, the correspondence
0. is a map of triples in the sense of the diagram in Figure 21, and has the
form described in [BP94, Lemma 2]. However, the key difference between their

D>z o owlzL(zl)E@\]D
@\DBZQ ° .wQZL(ZQ)eﬁ
592’3. .w3:L(23)€@\D

FIGURE 21. If f7'(w) = {wy,ws, w3} for some w € €, and
zi = t(w;) for i = 1,2,3, then the forward correspondence sends
the triple (21, 22, z3) to the triple (w1, wy, ws) as shown in the figure.

correspondence and ours is that the involution ¢ in our situation is anti-holomorphic
(naturally arising from Schwarz reflections), while the involution in their setting is
holomorphic.
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10.2. Dynamics of &,". The rest of this section will be devoted to giving a
dynamical description of the correspondence o," for a € C(S). More precisely,
we will partition the Riemann sphere into two o, -invariant subsets such that
on one of these sets, the dynamics of o, " is equivalent to the action of the group
7./]27.%7, /37, and on the other, suitable branches of the correspondence are conjugate
to a quadratic anti-rational map.

The coexistence of group structure and anti-rational map feature in the correspon-
dence o, " can be roughly explained as follows. Locally, the correspondence o, " splits
into two maps that are given by compositions of the reflection map ¢ with suitably
chosen “deck maps” of f, (compare Equation 14). In a punctured neighborhood
of 0o, the map f, is a 3 : 1 (unbranched) Galois cover with deck transformation
group isomorphic to Z/3Z. This allows us to define a deck transformation of f, in
a neighborhood of oo which permutes the three points in every fiber of f, in a fixed
point free manner (and fixes oo). The grand orbits of ," in a neighborhood of oo
are then generated by the action of this order three deck transformation and the
involution ¢ resulting in the desired group structure. On the other hand, the finite
critical points of f, are obstructions to extending such a deck transformation to
the entire plane. To define analogues of deck transformations of f, on a domain
that contains a finite critical point (of f,), we use a specific covering property of
fa- Recall that f,1(Q,) = DUV, (where V, is a simply connected domain) such
that each point w in §2,, except the critical value 2, has two pre-images in V, and a
unique pre-image in D (see Figure 23). One can now define a deck transformation
of f, on V, that permutes the two pre-images of w in V,, and another “ramified
deck map” that sends both the pre-images of w in V, to the unique pre-image (of
w) in D. The rational map feature of the correspondence comes directly from the
existence of this ramified deck map on V.

10.2.1. Dynamical Partition. Let us set
T = [ 1(T7), and Ky = £ (Ky).

We define tiles of rank n in jiog as fa-pre-images of tiles of rank n in 7.°. There

is a unique rank 0 tile in j“;og (which maps as a three-to-one branched cover onto
TO, branched only at 0o). For n > 1, every rank n tile in 7>° lifts to three rank n
tiles in T;Og

Since K, is connected, it follows that the critical value 2 of o, (which is also
a critical value of f,) lies in K,. Hence, the f,-pre-images of the finite critical
values of f, lie in K,; ie., ({2, -2}) c K,. It is easy to see that K, NS = {1}.
Moreover, f{; N D is mapped univalently onto K,, and f{; \ D is mapped as a
two-to-one ramified covering onto K, (ramified only at g%%) by f,. Furthermore,
fa maps Tf’a;‘? as a three-to-one branched cover (branched only at co) onto T2°. It
follows that I?a is a connected, full, compact subset of the plane, and TE is a simply
connected domain (see Figure 22).

Proposition 10.2. 1) Each of the sets floé and K, is completely invariant under
the correspondence o, . More precisely, if (z,w) € o, , then

2eT® = weTx,
and . .
ze K, < weK,.
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FI1GURE 22. The unit circle is marked in red. The dark blue region
is K,, which contains f; ({2, —2}). Its complement is 7, which is
a simply connected domain. T;‘;O is mapped by f, as a three-to-one
branched cover (branched only at co) onto 7.;°. The white region
is the rank 0 tile in T;‘;’ This is the only tile on which f, is ramified.

2) (TR) = T®, and o(K,) = K,.

10.2.2. Group Structure of o, on ’1?? . We will now analyze the structure of grand
orbits of the correspondence o,” in T2°. To this end, we need to discuss the deck
transformations of f, : T>° — T2°.

Lemma 10.3. Let a € C(S). Then, fo : T \ {oo} — T2\ {oo} is a regular
three-to-one cover with deck transformation group isomorphic to Z/37.

Proof. Note that 771(%;‘; \ {o0}) =7Z, and
(fa)u(m (T2 \ {o0})) = 3Z < Z = mi (T2 \ {oo}).
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This shows that the three-to-one cover f, : f;; \ {oo} = T°\ {0} is regular, and
the associated deck transformation group is

1 Taoo o0 —_— ~
TN o (ma (T (oo = 2/

([l

Lemma 10.4. Let a € C(S). Then there exists a biholomorphism 7, : T:E‘? — TE‘?
such that the following hold true.

o faoTa=fa OHT;(;;

o 723 =1id, and

o fol(fa(2)) = {2, 7al2), 75%(2)}, for z € Tp°.
Proof. Let 7, be a generator of the deck transformation group of f, : TE \ {0} —
T° \ {oo}. Then, 74 : T\ {oo} — T\ {oo} is a biholomorphism such that
Ta(2) = 00 as z — 0o. Setting 7,(00) = 0o yields a biholomorphism 7, : T — T2°,
and the required properties follow from the definition of 7, and Lemma 10.3. [

Figure 23 shows the action of the correspondence o,  on the lifted tiling set via
the deck transformations 7,, 722, and the reflection map ¢.

FIGURE 23. The points wy, w2, and ws lie in the f,-fiber of some
w € Qg NTX°. One of them (namely, ws) lies in D, and the other
two (namely, w; and ws) lie in V,, := f,1(€,)\D. The points z; are
the reflections of w; with respect to the unit circle (i.e., w; = t(z;)
for i =1,2,3), and 2] = fu(z;) for i = 1,3. The Schwarz reflection
map o, sends 21 and z4§ to w. Since the deck transformation 7, is of
order three, we can assume that 7, sends wi, ws, w3 to ws, w3, wy
respectively. The forfv\\/grd correspondence o, splits into two maps
Toot and 75204 (on T2°), and the actions of these maps on 21, 22, 23
are shown with green arrows.

Since ¢ is an antiholomorphic involution preserving i’;’g , it follows that both 7, 0t
and 722 o ¢ are anti-conformal automorphisms of 7.
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Proposition 10.5. For a € C(S), the grand orbits of the correspondence o, on

T> are equal to the orbits of (1) * (1,). Hence, the dynamics of o, on T is
equivalent to the action of Z/27 x Z./37Z.

Proof. Tt follows from the definition of the correspondence o,  (see Equation 14)
and Lemma 10.4 that the forward correspondence o,  splits into two maps 7, o ¢
and 7°% 0 1 on T,

Also note that 7, = (122 01) o (1, 0¢)~!, and hence (1, 01,722 01) = (1,7,). To
complete the proof, we only need to show that (i, 7,) is the free product of {;) and
(Ta)-

To this end, we first observe that any relation in (i, 7,) other than (°? = id and
723 = id can be reduced to one of the form

(16) (T;kl oL)o---0 (T(fk" o) =id
or
(17) (5" 01)0 - o (r5Fr01) =1,

where ky,--- , k. € {1,2}.

Case 1: Let us first assume that there exists a relation of the form (16) in (¢, 7).
Each (Tgk” ot) maps the interior of a tile of rank n in 1”;’; \ D to a tile of rank
(n+1)in YA”;; \ D. Hence, the group element on the left of Relation (16) maps the
tile of rank 0 to a tile of rank r. Clearly, such an element cannot be the identity
map proving that there is no relation of the form (16) in (¢, 7).

Case 2: Let us now assume that there exists a relation of the form (17) in (¢, 7).
Each (74 o 1) maps T \ D to itself. Hence, the group element on the left of
Relation (17) maps 1:;‘; \ D to itself, while ¢ maps T;’g \D to 1’“;'3 N D. This shows
that there cannot exist a relation of the form (17) in (¢, 7,).

We conclude that °2 = id and 722 = id are the only relations in (i, 7,), and
hence (1, 74) = (t) * (74) 2 Z/27 % 7./ 3Z. O

Remark 15. (1,7,) is not a free product of the subgroups (7, o ¢) and (722 0 1) as

these generators satisfy a relation (7, 0¢)°?(722 01) (7, 01)°% =722 0 4.

a

Remark 16. According to Remark 6, the Schwarz reflection map o, induces an
anti-conformal involution on a thrice punctured sphere which is obtained by taking
a suitable quotient of the tiling set 7:>° by a holomorphic dynamical system. This
manifests in the action of Z/27Z on the lifted tiling set 7°°. On the other hand,
the action of a generator of Z/3Z on the lifted tiling set (which acts by a deck

transformations of f, on T2°) corresponds to a conformal isomorphism of the thrice
punctured sphere that permutes the three punctures transitively.

10.2.3. Action of 04" on IA(; Let us now study the dynamics of the correspondence
on the lifted non-escaping set K,. To do so, we will define two maps on V, :=
£71(Q,) \ D that will play the role of deck transformations of f, in spite of the
presence of a critical point of f, in V.

The first map g1, = g1 : Vo, — D is defined as the composition of f, : Vo, — €,
and ( fa|]D>)_1 : Qu — D. Clearly, ¢g; is a two-to-one branched covering satisfying
Jaogr = foon V.

On the other hand, since f, : V, — €, is a two-to-one branched covering, there
exists a biholomorphism g2 o = g2 : Vo — V4 such that f, 092 = f, on V,. The map
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g2 simply permutes the two elements in each non-critical fiber of f, : V, — Q,, and
fixes the critical point Z—ﬂ of f,. It follows that ¢g5% = id on V.

Remark 17. Neither of the maps ¢g; and g2 agree with 7, on Y:ESOVQ. Indeed, if wq, w3
are as in Figure 23, then g;(w1) = ¢1(w3) = wa, and ga(w1) = ws, go2(ws) = wy;
whereas 7,(w1) = wa, 7o(w3) = wi. In fact, due to monodromy, none of the g;
extends to a neighborhood of oo satisfying the functional equation f, o g; = f,.
Thus, the splitting of the forward correspondence into the maps g; ot and g, o ¢
on ¢ (V,) = (flp) " (€) is different from its splitting into the maps 7, 0 and 722 01
on 7/”,;: N ¢(V,). While univalence of the maps 7, o ¢t and 722 o ¢ leads to group
structure in the dynamics of 7," on T;‘; , we will now see that the existence of a

critical point of g; o¢ is responsible for “rational map behavior” of suitable branches
of the correspondence on K,.

Proposition 10.6. Let a € C(S). Then, on K, ND, one branch of the forward
correspondence s hybrid conjugate to R, (q) "me)' The other branch maps I?; NnD
onto K, \ D.

On the other hand, the forward correspondence preserves I,(Z \ D. Moreover, on
f(; \ D, one branch of the backward correspondence is conjugate to Rx(a)|’CX<a); and

the remaining branch maps I,(Z \ D onto I?; ND.

Proof. 1t is easy to see that on IA(; N D, the forward correspondence splits into
two maps gy ot : Eﬂﬁ—)lf(\;ﬁﬁand ga ol : If{vaﬁﬁ% E\]D) Moreover by
Proposition 10.1, the map g; o ¢ is conjugate to o, via the conformal map f,|g. By
Theorem 5.4, this branch is hybrid conjugate to Rx(a)|'Cx(a,)~ By definition of g,
the other branch of the forward correspondence (i.e gs o ¢) maps K,nD univalently
onto K, \ D.

The fact that the forward correspondence preserves I?; \ D follows from the
covering properties of f,| 7 (more precisely, from the observation that I?; ND is
mapped univalently by f, onto K, and I?a \ D is mapped as a two-to-one ramified
covering onto Kj,).

Note that the map ¢t o gy : I?a \D — [A(; \ D is a branch of the backward
correspondence. Since ¢ is a topological conjugacy between this backward branch
and the forward branch (g1 0 ¢)|z 5, it follows that f|z 5ot : K, \D — K,
is a topological conjugacy between the backward branch (¢ o g1)| R\D and 0,4k, -
Invoking Theorem 5.4, we conclude that (¢ o g1)] Ro\D is topologically conjugate to

By(@)lkyo:
Finally, it is easy to see that the remaining branch of the backward correspondence
on K, \ D is (g2 0¢)” ", which maps K, \ D onto K, ND. O

10.2.4. ¢, as a Mating. Combining the results from the previous two subsections,
we will now give a dynamical description of the correspondence o," on the whole
Riemann sphere, and conclude that it is a mating of the group Z/27Z x Z/37Z and
the anti-rational map R, (q)-

Theorem 10.7 (Anti-holomorphic Correspondences as Matings). Let a € C(S).
Then the following statements hold true.
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e FEach of the sets f;; and K, is completely invariant under the correspondence
o4

e On T, the dynamics of the correspondence o, is equivalent to the action
of /27 7] 3Z.

e On K,ND, one branch of the forward correspondence is hybrid conjugate
to Ry(a)lKcy (- The other branch maps K, ND onto K, \ D.

On the other hand, the forward correspondence preserves I’(va \'D. Moreover,
on K, \ D, one branch of the backward correspondence is conjugate to
Ry (a)lKcyay» and the remaining branch maps K, \ D onto K, N D.

Proof. The statements follow from Propositions 10.2, 10.5, and 10.6. O

In light of Theorem 10.7, we say that the correspondence o, is a mating of the
rational map R, (,) and the group Z/27Z * Z/3Z. We are now ready to show that
the family of correspondences {7, : a € C(S)} contains matings of the abstract
modular group Z/27Z x Z/37Z with every anti-rational map in C(£o) that lies in the
closure of hyperbolic parameters.

Proof of Theorem 1.3. This follows from Proposition 5.9, Corollary 8.19 and Theo-
rem 10.7. O

APPENDIX A. A FAMILY OF PARABOLIC ANTI-RATIONAL MAPS

In this appendix, we prepare some background on a certain family of quadratic
anti-rational maps with a neutral fixed point.

A.1. The Family F. Let R be a quadratic anti-rational map with a neutral fixed

point. Conjugating by a Mdbius map, we can assume that oo is a neutral fixed point

of R; i.e., DR°?(c0) = 1 (note that a neutral fixed point of an anti-holomorphic

map is necessarily a parabolic fixed point of multiplier 1 for the second iterate). We

can also assume that R(0) = oo, and %—?(1) =0 (i.e., 1 is a critical point of R).
Let us now describe the explicit form of such a rational map

R(z) = P1%2+Q1§+T1'
DP22” + q2Z + T2
The requirements R(c0) = co and R(0) = oo imply that p; # 0 and py = 9 = 0.
Therefore, we must have g # 0. A simple computation shows that the condition
DR°?(c0) = 1 translates to the relation |pi| = |g2|; i.e., p1 = ge'®, for some
a € R/Q’/TZ' Finally, the condition %—?(1) = 0 implies that 7 = ¢goe’®. Therefore,

we have that

. 1
R(2) = Raa = €' <z+ ) + 4,
z

where a € R/Q’/TZ’ and A = % e C.

Note that Ro a(—2) = —Ra,—a(z) for z € C.

A direct computation shows that oo is a higher order parabolic fixed point of
Rgf 4 when A =0orarg A= 5+ 7. Otherwise, oo is a simple parabolic fixed point
of Rgfa. We will only be concerned with the case when oo is a simple parabolic
fixed point of RY?,.
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Therefore, up to Mobius conjugation, the family

F = {RaAzem (z+1> +A:aeR/27Z, A#0, argA € (a_ﬂ7a+7r)}
’ Z 2 2’2 2
contains all quadratic anti-rational maps with a neutral fixed point which is a
simple parabolic fixed point for the second iterate of the map. Moreover, a simple
computation shows that no two distinct maps in F are Mobius conjugate.

For each map in this family, there is a unique attracting direction at oo, and
hence a unique basin of attraction of co (i.e., the set of all points that converge to
oo asymptotic to the unique attracting direction). Note that the immediate basin of
attraction of oo is fixed under R, 4, and contains the critical point 1 of R, 4. Since
deg Ro, 4 = 2, it follows that the immediate basin of oo is completely invariant; i.e.,
the unique basin of attraction of co (of Ry, 4) is connected.

Definition A.1 (Basin of Infinity and Filled Julia set). For R, 4 € F, the basin
of attraction of the neutral fixed point oo is denoted by B, 4. The complement
C \ Bq, 4 of the basin of attraction of oo is called the filled Julia set of R, 4, and is
denoted by Kq, 4.

Since the basin of infinity B, 4 is connected, it follows that every connected
component of int K, 4 is simply connected. In particular, R, 4 has no Herman ring.

The basin of infinity B, 4 is simply connected (equivalently, the filled Julia set
Ka,4 is connected) if and only if +1 is the only critical point of R, 4 contained in
B, a; or equivalently, —1 € Kq 4.

A.2. Pinched Anti-quadratic-like restrictions of maps in F. In Definition 5.1,
we introduced pinched anti-quadratic-like maps. Let us observe that each member
of the family F naturally admits a pinched anti-quadratic-like restriction.
For any R, 4 € F, let P, 4 be an attracting petal at oo such that
OPasN{lz] > M} = {me*S" :m > M}
(for some M > 0), and the critical point 1 lies on 0P, 4. We can also require
that 0P, 4 is smooth except at oo, and R;}A(Pa, ) is simply connected. Then,

Roac: R;}A(Pa’ A4) = Pq,a is a degree 2 branched covering. Setting
V i=C\ Paa, and U:=C\ R, (Pa,a),

it is straightforward to see that R, 4 : (U, 0) — (V,00) is a pinched anti-quadratic-
like map.

A.3. The Leaf £). We will attach a conformal invariant to the maps R 4 € F. The
proof of [HS14, Lemma 2.3] (which applies generally to odd period parabolic basins
of anti-holomorphic maps) provides us with a Fatou coordinate on an attracting
petal in B, 4 such that the Fatou coordinate conjugates R, 4 to the glide reflection
C—C+ % The imaginary part of this Fatou coordinate is called the Ecalle height.
Since the chosen Fatou coordinate is unique up to translation by a real constant,
the Ecalle height of a point in the petal is well-defined. In particular, since the petal
on which this Fatou coordinate is defined contains the critical value R, 4(1), the
Ecalle height of this critical value is also well-defined. This quantity is called the
critical Ecalle height of Ry 4 (to be more precise, the critical Ecalle height of R, 4
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associated with the neutral fixed point co). It is a conformal conjugacy invariant of
the map.

Changing the critical Ecalle height of Rq, 4 € F by a quasiconformal deformation
supported on B, 4 (as in [MNS17, Theorem 3.2]), it is easy to see that every
parameter in F lies in the interior of a real-analytic arc of quasiconformally equivalent
parabolic parameters. The resulting arc is entirely contained in F. Such an arc is
called a parabolic arc, and its parametrization by critical Ecalle height is called the
critical Ecalle height parametrization of the arc.

Let us denote the set of all parameters in F with critical Ecalle height h by £;,.

Then,
F=|]2n
heR
Thus, F is foliated by the leaves £;,. Each parabolic arc is transverse to the leaves.
Letting a parameter («, A) € £, flow along the parabolic arc passing through this
parameter until it hits £ defines a holonomy map from the leaf £, to the leaf £j..
For definiteness, from now on we will work with the leaf £y3. Up to Mobius
conjugacy, the leaf £y contains all quadratic anti-rational maps R such that
(1) R has a neutral fixed point such that this fixed point is a simple parabolic
fixed point of R°2?, and
(2) the critical Ecalle height of R (associated with the “fast” critical point in
the immediate basin of attraction of the simple parabolic fixed point) is 0.

Definition A.2 (The Parabolic Tricorn/Connectedness Locus of £y). The connect-
edness locus of the family £ is defined as
C(£o) ={Ra,a € Lo : Kq,a is connected}
= {RQ,A cLy:—-1€ ]COQA}
= {Ra,4 € £ : +1 is the only critical point of Ry 4 in By 4}

We call C(£o) the parabolic Tricorn.

A 4. Dynamical and Parameter Rays for £y. For (a, A) € C(£y), let us choose
a conformal isomorphism %, 4 from B, 4 onto D such that 94, 4(1) =0, ¥, 4(c0) =
1.

Proposition A.3. 9%, 4 conjugates Ry 4 to the anti-Blaschke product

3z% +1
B:D%D,B(z):%,
z

which has a neutral fized point at 1.

Proof. Since the Ecalle height of the critical point 1 (of R, 4) is 0, the Riemann
map %, 4 conjugates R, 4 to an anti-holomorphic Blaschke product of degree 2
having a (unique) critical point at 0 and a neutral fixed point at 1 with critical
Ecalle height 0. The only such Blaschke product is B. ([

Remark 18. Since any two maps in C(£y) are conformally conjugate on their basins
of attraction of oo, two maps in C(£¢) are hybrid conjugate (i.e., quasiconformally
conjugate in a neighborhood of the filled Julia set such that the conjugacy is
conformal on the filled Julia set) if and only if they are the same.
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Let us now pick (o, A) € £9 \ C(£o), and choose an (extended) attracting Fatou
coordinate ¢ : By, a4 — C that semi-conjugates Ra, 4 to ¢ — ¢+ 1. We can further
assume that ¢2" (1) = 0. Let Pa a be a (maximal) attracting petal in the basin
Ba, 4 such that 5" (Pa,4) is the right half-plane {Re(z) > 0} and +1 € 9P, 4.
Similarly, let us choose an (extended) attracting Fatou coordinate ¢4 : D — C
that semi-conjugates B to ( — ( + & with ¢%*(0) = 0. Furthermore, let P be a
(maximal) attracting petal in the basin D (of B) such that ¢%*(Pg) is the right half-
plane {Re(z) > 0} and 0 € 9Pg. Then, ¥, 4 := (w%@tt)fl ) ngt’% :Paa—Ppisa
conformal conjugacy between R, 4 and B. Since (a, A) € £0\C(Lo), this conjugacy
can be lifted until we hit the other critical point —1 of R, 4. Consequently, we get
a conformal conjugacy ¥, 4 between R, 4 and B (defined on a subset of the basin
of 00) such that the domain of 9, 4 contains the “slow” critical value Ry 4(—1). In
fact, since deg(Rqa,4) = 2, we have that ¥, 4(Ra,a(—1)) € D\ B(Pp).

Following [PR10, §2.2], we can define dynamical rays for the map B (see the
description in Figure 24).

We can now use the map %, 4 to define dynamical rays for the maps Rq 4.

Definition A.4 (Dynamical Rays of R, 4). The pre-image of a parabolic ray of B
at angle § € R/Z under the map %, 4 is called a f-dynamical ray of R, 4.

Remark 19. Although a dynamical ray of R, 4 at an angle 6 is not unique, it is
easy to see that any two dynamical rays at a common angle define the same access

to 6ICQ,A.

The next result discusses landing properties of pre-periodic dynamical rays of R, 4
for (a, A) € C(£g). The proof is a straightforward adaption of the corresponding
results for external rays of polynomials (see [Mil06, §18], also compare [PR10,
Theorems 2.4, 2.5], [LLMM18a, Proposition 6.34]).

Proposition A.5 (Landing of Dynamical Rays). Let (a, A) € C(£y). Then, every
dynamical ray of Ry a at a (pre-)periodic angle lands at a repelling or parabolic
(pre-)periodic point on 0K 4. Conversely, every repelling or parabolic (pre-)periodic
point of Ru, a is the landing point of a finite non-zero number of (pre-)periodic
dynamical rays.

As in the case for quadratic anti-polynomials (and for the Schwarz reflection
family S), the conformal position of the “escaping” critical value provides us with a
dynamically defined uniformization of the exterior of the connectedness locus.

Proposition A.6 (Uniformization of The Exterior of The Connectedness Locus).
The map (a,A) — Yo a(Ra,a(—1)) is a homeomorphism from £y \ C(Lo) onto
D\ B(Pp).

Sketch of Proof. This can be proved by adapting the arguments of [KN04, Proposi-
tion 6.5] for our setting (also compare [LLMM18b, Theorem 1.3]). One shows that
the map under consideration is continuous, proper, and locally invertible. Finally,
the only map Ra, 4 in £o \ C(£o) with 9o a(Ra,a(—1)) =0is Z+ L + 3. Thus, the
map is a degree one covering onto the simply connected domain D\ B(Pg), and
hence a homeomorphism. O

Definition A.7 (Parameter Rays of £y). The pre-image of a parabolic ray at angle
0 € R/Z under the uniformization of Proposition A.6 is called a #-parameter ray of
£o.
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FIGURE 24. The figure depicts rays in the parabolic basin D for
the map B. The points zg and z; are the pre-images of the critical
point 0 under B. For a finite binary sequence (g1, - ,&g), we have
B (2, ) = Zep,ep- For € = (g1, -+ ,e,--+) € {0,1}] the
parabolic ray for B with itinerary € is defined by connecting the
points 0, 2, , 2, ¢,, - - - consecutively by suitable iterated pre-images
of the line segment [0, %] Every parabolic ray of B lands at some
point on S* = R/Z. If a parabolic ray of B lands at some 6 € R/Z,
then the corresponding ray is called a parabolic ray of B at angle
0.

The proof of the next result is classical for parameter spaces of polynomials (see
[DHO7, Sch00]), and can be easily adapted for the family £.

Proposition A.8. 1) Let € R/Z be periodic under B. Then every accumulation
point of the parameter ray of £y at angle 6 is a parabolic parameter (a, A) (i.e.,
RffA has a parabolic cycle other than the parabolic fized point co) such that in the
corresponding dynamical plane, the dynamical 0-ray lands at the parabolic periodic
point on the boundary of the Fatou component containing the critical value Ro, a(—1).

2) Let 0 € R/Z be strictly pre-periodic under B. Then the parameter ray of £o at
angle 0 lands at a Misiurewicz parameter («, A) (i.e., the critical point —1 is strictly



SCHWARZ REFLECTIONS AND CORRESPONDENCES 69

pre-periodic under Rq a) in C(Lo) such that in the corresponding dynamical plane,
the dynamical ray at angle 0 lands at the critical value Ry a(—1).

A.5. Hyperbolic Components of C(£y). A parameter (a, A) € £y is called
hyperbolic if R, 4 has an attracting cycle.? For a hyperbolic parameter of £¢, the
forward orbit of the critical point —1 converges to the unique attracting cycle, and
hence —1 € Ky 4. In particular, (o, A) € C(£o).

The hyperbolic parameters in C(£g) form an open set. A connected component
of the set of all hyperbolic parameters is called a hyperbolic component of C(£p). It
is easy to see that every hyperbolic component H has an associated positive integer
k such that each parameter in H has an attracting cycle of period k. We refer to
such a component as a hyperbolic component of period k.

The following proposition gives a dynamical uniformization of the hyperbolic
components in C(£y). For the definitions of the Blaschke product spaces and the
Koenigs ratio/multiplier map appearing in the statement of the proposition, see
Subsection 6.1 and [LLMM18b, §2.1.1].

Proposition A.9 (Dynamical Uniformization of Hyperbolic Components). Let H
be a hyperbolic component in C(Lo).

(1) If H is of odd period, then there exists a homeomorphism ng : H — B~ that
respects the Koenigs ratio of the attracting cycle. In particular, the Koenigs
ratio map is a real-analytic 3-fold branched covering from H onto the open
unit disk, ramified only over the origin.

(2) If H is of even period, then there exists a homeomorphism ng : H — BT that
respects the multiplier of the attracting cycle. In particular, the multiplier
map is a real-analytic diffeomorphism from H onto the open unit disk.

In both cases, H is simply connected and has a unique center.

Proof. The proofs of [NS03, Theorem 5.6, Theorem 5.9] apply verbatim to our
situation. O

By Proposition A.9, each hyperbolic component has a unique parameter for
which the critical point —1 of the corresponding map is periodic. This parameter is
called the center of the hyperbolic component. The unique hyperbolic component
of period one of C(£y) has center (0,1).

It is well-known that for every parameter («, A) on the boundary of a hyperbolic
component of period k, the corresponding map R, 4 has a k-periodic neutral cycle.
If k£ is odd, then such a neutral cycle is necessarily a parabolic cycle of multiplier 1
for the second iterate R?, (compare [MNS17, Lemma 2.5]).

Proposition A.10 (Neutral Dynamics of Odd Period). 1) The boundary of a
hyperbolic component of odd period k > 1 of C(£y) consists entirely of parameters
having a neutral cycle of exact period k. In suitable local conformal coordinates, the
2k-th iterate of such a map has the form z v z + 291 + . with ¢ € {1,2}.

2) Every parameter on the boundary of the hyperbolic component of period one is

either contained in C(£o) \ C(£o) (in which case the neutral fized point is co, and it

2This slightly differs from the standard definition of hyperbolic rational maps (see [Mil06,
§19]) since the map R, 4 necessarily has a parabolic fixed point at co. In fact, according to the
definition of [Mil06, §19], no map in £¢ is hyperbolic. However, our definition, which only concerns
the behavior of the forward orbit of the free critical point —1, is convenient for the current paper,
and should not create any confusion.
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s a multiple parabolic fixed point of RZ?A) or has a neutral fixed point other than
oo (with local power series as above).

As in the case for quadratic anti-polynomials, this leads to the following classifi-
cation of odd periodic parabolic points.

Definition A.11 (Parabolic Cusps). Let («, A) be a parameter with a neutral
periodic point of odd period k (other than oo). It is called a parabolic cusp if
the local power series expansion of Rg?jg at any of its neutral periodic points has
¢ = 2 (in the sense of the previous proposition), and a simple parabolic parameter
otherwise.

Following [MNS17, Lemma 3.1], one can show that every odd period simple para-
bolic parameter (o, A) € C(£y) is contained in a real-analytic arc of quasiconformally
conjugate parameters. Such a parabolic arc is constructed by varying the Ecalle
height of the critical value Ry 4(—1) from —oo to co. Moreover, each parabolic arc
of period greater than one in C(£() limits at parabolic cusps on both ends. One
can now mimic the proofs of [HS14, Proposition 3.7, Theorem 3.8] to conclude the
following statements.

Proposition A.12 (Bifurcations Along Arcs). 1) Along any parabolic arc of odd
period greater than one, the holomorphic fixed point index of the parabolic cycle is a
real valued real-analytic function that tends to 400 at both ends.

2) Every parabolic arc of odd period k > 1 intersects the boundary of a hyperbolic
component of period 2k along an arc consisting of the set of parameters where the
parabolic fixed point index is at least 1. In particular, every parabolic arc has, at both
ends, an interval of positive length at which bifurcation from a hyperbolic component
of odd period k to a hyperbolic component of period 2k occurs.

Using the arguments of [IM21, Lemma 2.13, Corollary 2.21], one can make the
following sharper statement about the fixed point index of the parabolic cycle on a
parabolic arc.

Proposition A.13. Let H be a hyperbolic component of odd period k in C(Ly), C
be a parabolic arc on OH, ¢ : R — C be the critical Ecalle height parametrization of
C, and let H' be a hyperbolic component of period 2k bifurcating from H across C.
Then there exists some hg > 0 such that

CNOH' = c[hg,+0).
Moreover, the fixed point index function
inde :  [ho,+00) —  [1,+00)
h — indc(Rg(Qh))
is strictly increasing, and hence a bijection (where inde (Rg(Qh)) stands for the holo-
morphic fixed point index of the k-periodic parabolic cycle of R‘C)(Qh)).
We can now adapt the arguments of [MNS17, §5] for the current setting to prove

the following result on the structure of the boundaries of odd period hyperbolic
components of C(£y).

Proposition A.14 (Boundaries of Odd Period Hyperbolic Components). 1) The
boundary of every hyperbolic component of odd period k > 1 of C(£g) is a topological
triangle having parabolic cusps as vertices and parabolic arcs as sides.
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2) The boundary of the unique period one hyperbolic component of C(£o) consists

of two parabolic arcs, a parabolic cusp, and C(Lo) \ C(Lo) (where the corresponding
maps have a multiple parabolic fixed point at co).

A.6. Beltrami Arcs and Queer Components. We will now briefly discuss qc
non-rigid parameters in C(£y). Note that (a, A) € C(£o) is qc non-rigid if and only
if Ro, 4 admits a non-trivial invariant Beltrami coefficient that is supported on its
filled Julia set. By the classification of Fatou components of rational maps (and
the fact that Siegel parameters, even period parabolic parameters, and odd period
parabolic cusps are qc rigid in C(£y)), it follows that if such a Beltrami coefficient
is supported on int KCy 4, then the corresponding map lies either in a hyperbolic
component or on a parabolic arc. It remains to discuss qc non-rigid parameters in
C(Lo) for which the corresponding invariant Beltrami coefficient is supported on its
Julia set. We do this in the next couple of paragraphs.

Let us first assume that R, 4 € C(£o) admits a real one-dimensional quasicon-
formal deformation space in C(£y), and p is a non-trivial R, 4-invariant Beltrami
coefficient which is supported on 0Ky 4. Set m := ||p|/x € (0,1). Then, tu
is also a non-trivial R, a-invariant Beltrami coefficient supported on 0K, 4, for

11

te (_Ev E)' By the measurable Riemann mappilng 1theorem with parameters, we

obtain quasiconformal maps {h;} (where ¢ € (==, L)) with associated Beltrami
coefficients ¢ty such that hy fixes 0,1, and oo, and {h;} depends real-analytically on
t. Hence, hyo Ry aohy b € C(£) for all t € (f%, %n) This produces a real-analytic
arc of quasiconformally conjugate parameters in C(£y) which contains («, A) in its
interior. This arc, which is the full quasiconformal deformation space of R, 4 in
C(£y), is called the queer Beltrami arc containing (c, A).

Finally, let Ry 4 € C(£y) admit a real two-dimensional quasiconformal defor-
mation space in C(£y), and p1, pe be R-independent non-trivial R, 4-invariant
Beltrami coefficients which are supported on 0K, 4. Then, (t1u1 + topz) is also
a non-trivial R, s-invariant Beltrami coefficient supported on 9K, 4 whenever
t1,ta € R, and [|t1p1 4 tapia]loo < 1. As in the previous case, this produces an open
set of quasiconformally conjugate parameters in C(£y) containing («, A). This open
set, which is the full quasiconformal deformation space of R, 4 in C(£y), is called
the queer component containing («, A).

A.7. Dyadic Tips of C(£y). Let us now define an important class of critically
pre-periodic parameters in C(£p).

Definition A.15 (Dyadic Tips of C(£y)). We say that (a, A) € C(£y) is a dyadic
tip of pre-period k if the critical point —1 (of R, 4) maps to the parabolic fixed point
oo in exactly k steps; i.e., k > 1 is the smallest integer such that RZ’fA(—l) = 0.

Note that only the O-ray of R, 4 lands at the parabolic point co, and hence in
the dynamical plane of a dyadic tip of pre-period k of C(£y), the critical value is
the landing point of only one dynamical ray. This ray has an angle 6 such that
B°k(9) = 0.

A.8. Abstract Parabolic Tricorn. By Proposition A.5, for (a, A) € C(£y), all
dynamical rays of R, 4 at angles in Per(B) (i.e., at pre-periodic angles under B)
land on 9K, 4. This leads to the following definitions.

Definition A.16 (Pre-periodic Laminations, and Combinatorial Classes). i) For
(o, A) € C(£o), the pre-periodic lamination of R, 4 is defined as the equivalence
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relation on Per(B) C R/Z such that 0,0’ € Per(B) are related if and only if the
corresponding dynamical rays of R, 4 land at a common point of 0K A.

ii) Two parameters (a, A) and (o/, A") in C(£o) are said to be combinatorially
equivalent if the corresponding maps have the same pre-periodic lamination.

iii) The combinatorial class Comb(a, A) of (o, A) € C(Ly) is defined as the set of
all parameters in C(£y) that are combinatorially equivalent to (a, A).

iv) A combinatorial class Comb(a, A) is called periodically repelling if for every
(o, A") € Comb(a, A), each periodic orbit of R, 4 is repelling.

The following proposition gives a rough description of the combinatorial classes
of C(Eo)

Proposition A.17 (Description of Combinatorial Classes). Every combinatorial
class Comb(a, A) of C(Lo) is of one of the following four types.

(1) Comb(a, A) consists of an even period hyperbolic component that does not
bifurcate from an odd period hyperbolic component, its root point, and the
irrationally neutral parameters on its boundary,

(2) Comb(a, A) consists of an even period hyperbolic component that bifurcates
from an odd period hyperbolic component, the unique parabolic cusp and the
wrrationally neutral parameters on its boundary,

(3) Comb(a, A) consists of an odd period hyperbolic component and the parabolic
arcs on its boundary,

(4) Comb(a, A) is periodically repelling.

We are now ready to define an abstract topological model for C(£y). We put an
equivalence relation ~ on S? by
(1) identifying all parameters in the closure of each periodically repelling com-
binatorial class of C(£),
(2) identifying all parameters in the closure of the non-bifurcating sub-arc of
each parabolic arc of C(£), and
(3) identifying all parameters in C(£o) \ C(£o) (the corresponding maps have a
multiple parabolic fixed point at 0o).

This is a non-trivial closed equivalence relation on the sphere such that all
equivalence classes are connected and non-separating. By Moore’s theorem, the
quotient of the 2-sphere by ~ is again a 2-sphere. The image of C(£y) under this
quotient map is non-compact, but adding the class of C(£g) \ C(£o) turns it into a
full, compact subset of the 2-sphere.

Definition A.18 (The Abstract Parabolic Tricorn/Abstract Connectedness Locus
of £9). The abstract parabolic Tricorn (or, the abstract connectedness locus of the
family £o) is defined as the union of the image of C(£y) under the quotient map
(defined by the above equivalence relation) and the class of C(£y) \ C(£o). It is

denoted by C(£o).

—_~—

Remark 20. The abstract parabolic Tricorn C(£y) can also be described as the
quotient of the unit disk under a suitable lamination.

Let us identify the angles of all parameter rays of £y at pre-periodic angles (under
B) that land at a common (parabolic or Misiurewicz) parameter or accumulate on
a common parabolic arc of £y. This defines an equivalence relation on Per(B) N JD.
We then consider the smallest closed equivalence relation on 9D generated by the
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above relation. Taking the hyperbolic convex hull of each of these equivalence
classes in D yields a geodesic lamination of D. Finally, we consider the quotient
of D by collapsing each hyperbolic convex hull obtained above to a single point.

The resulting continuum coincides with the abstract connectedness locus C(£q) (see
[Lyu20, §9.4.2] for a general discussion on the construction of pinched disk models
of planar continua).

APPENDIX B. MATING z¢ wiTH THE ABSTRACT HECKE GROUPS

In this appendix, we will construct for each integer d > 2, an anti-holomorphic
correspondence that is a mating of the anti-polynomial Z% with the abstract Hecke
group Z/2Z *7Z/(d+ 1)Z. The correspondence will arise from a univalent restriction
of a suitable degree d + 1 rational map.

Proposition B.1. The map f(z) := z+1/dz? is injective on D* := (E\ﬁ Moreover,
f(SY) is a Jordan curve.

Proof. Note that f has a (d — 1)-fold critical point at the origin, and (d + 1) simple
critical points on S'. In particular, f has no critical point in D*. So it suffices
to show that f(S!) is a Jordan curve (indeed, this implies that f(D*) is simply
connected, and hence uniqueness of analytic continuation yields an inverse branch
of f that maps f(D*) onto D*).

We now prove injectivity of f|si. To this end, pick z,w € S with z # w, and
suppose that f(z) = f(w). Note that:

a-1 d—1
f(z) = flw) = szflfjwj —d 0t — szquwj —d
j=0 §j=0

By the triangle inequality and the fact that z,w € S!, we now conclude that all the

complex numbers z?~!=Jw’ (for j = 0,--- ,d — 1) have the same argument. But
this implies that z = w, a contradiction. Therefore, f is injective on S', and hence
f(SY) is a Jordan curve. O

By Proposition 2.3, Q := f(D*) is a quadrature domain with associated Schwarz
reflection map
oc:=foro (f\Df*)_l :ﬁ—)@,
where ¢ is the reflection in the unit circle. The map o is anti-meromorphic on €2,
and fixes 0} pointwise. In fact, o has a d-fold pole at oo, and no other critical
point in . Moreover, o : 0~1(Q) — Q is a proper branched covering map of degree
d (branched only at o), and ¢ : o~ (int Q¢) — int Q¢ is a degree (d + 1) covering
map. Since f has (d+ 1) critical points on S', it follows that dQ has (d+ 1) singular
points. We will denote the set of these (d + 1) singular points of 9 by S.
We define T = T'(0) := C\ Q. We further set 70 = T%(0) = T\ S, and
T°=1%(0) = | o7"(1°).
n>0

We will call T°° the tiling set of 0. For any n > 0, the connected components of
o~ "(T") are called tiles of rank n. Two distinct tiles have disjoint interior. The
non-escaping set of o is defined as

K=K(o):=C\T>® cQuUS.
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A direct generalization of [LLMM18a, Proposition 5.6] shows the following.

Proposition B.2. T is a simply connected domain, and hence T is a compact,
connected set.

Furthermore, oo is a super-attracting fixed point of o; more precisely, oo is a
fixed critical point of ¢ of multiplicity (d — 1). We denote the basin of attraction of
00 by Boo = Boo(0). The following result asserts that the tiling set and the basin of
infinity of o are Jordan domains with a common boundary (see Figure 25).

Proposition B.3. 1) K = B,.. -
2) By is a Jordan domain, and o : Bo — Boo 18 topologically conjugate (confor-
mally on the interior) to z¢: D — D.

Proof. 1) For a proof of this fact where d = 2, see [LLMM18a, Theorem 5.11]. The
general case follows from [LMM20, Corollary 4.11].

2) In the d = 2 case, the result follows from [LLMM18a, Theorem 5.11, Propo-
sition 5.26]. While the arguments of [LLMM18a] directly generalize to the higher
degree case, here is an alternative route to proving the assertion.

Since o has no critical point other than co in B, the proof of [Mil06, Theorem
9.3] implies that there exists a conformal map conjugating Z%|p to o . Since 0Bu
is locally connected [LMM20, Proposition 4.2], this conformal isomorphism extends
to a continuous semi-conjugacy between z%|s: and o|g5_. To complete the proof,
it now suffices to argue that dB is a Jordan curve. To this end, we note that by
[LMM20, Proposition 4.19], every cut-point of 0B, must land on a double point of
f(SY) under some iterate of o. But since f(S!) is a Jordan curve, it does not have
any double point. This rules out the existence of cut-points on 95, and shows
that 0B is a Jordan curve. O

We define the d : d anti-holomorphic correspondence € C C xC as

f(w) = f(u(2))

(18) (z,w) € € —= w = 1(2)

=0.

The proof of Proposition 10.1 applies mutatis mutandis to the current setting,
and yields the following description of the correspondence € as lifts of forward and
backward branches of ¢ under f.

Proposition B.4. The correspondence € defined by Equation (18) contains all
possible lifts of o (respectively, suitable inverse branches of o~') when z € D*
(respectively, when z € D) under f. More precisely,

e for z € D*, we have that (z,w) € € < f(w)=0o(f(z)), and

o for z € D, we have that (z,w) € € = o(f(w)) = f(2).

Finally, we set
T>:=fNT®), K:=f'(K),
and call them the lifted tiling set and lifted non-escaping set, respectively.
The next proposition follows directly from the definitions.

Proposition B.5. 1) Each of the sets T and K is completely invariant under
the correspondence €. More precisely, if (z,w) € €, then

zeT® < weT™,
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F1GURE 25. Left: The dynamical plane of the Schwarz reflection
map associated with f(z) = z + 515 is shown. The ‘cauliflower’
curve is the common boundary of the tiling set and the basin of
infinity. Both these domains are Jordan. Right: The dynamical
plane of the correspondence € is shown. The blue/green region is
the lifted tiling set, and the yellow region is the lifted non-escaping

set.

and B B
ze€ K <= weckK.

2) (T>) =T>, and L(K) = K.

Note that By contains only one critical value (namely, co) of f, and this critical
value has exactly two pre-images, namely 0 and co. Moreover, f is locally injective
near 0o, and locally d : 1 near 0. Recall also that f is univalent on D*. As f~1(B,,) is
disjoint from S!, it now follows that f~!(Bs) has exactly two connected components;

one of them is contained in D* and maps conformally onto Bs, under f, and the
other is contained in D and maps as a d : 1 branched cover onto B, under f (see
Figure 26). It also follows from the mapping properties of f that K NS consists
precisely of the (d + 1)-st roots of unity (in fact, these are the points where the
two connected components of f~!(Ba) touch), and K \ D (respectively, K N D) is
mapped univalently (respectively, as a d : 1 ramified covering) onto K under f.

Proposition B.6. 1) KND is forward invariant, and hence, K \ D is backward
invariant under €. _

2) € has a forward branch carrying K \' D onto itself with degree d, and this
branch is topologically conjugate to 0 : K — K.

3) € has a backward branch carrying KnD onto itself with degree d, and this
branch is topologically conjugate to o : K — K.

Proof. 1) By Proposition B.5, we have that
(K \D)=KnD.

Moreover, the fact that the degree (d+1) rational map f sends D* homeomorphically
onto Q implies that each z € K has exactly one pre-image in K \ D and exactly d
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FI1GURE 26. Left: The dynamical plane of the Schwarz reflection
map arising from f(z) = z + 517 is shown. The basin of infinity
Boo is the yellow region, and the tiling set (the interior of the

‘cauliflower’ shaped region) is the union of the white, blue, red, and

green regions. The white region stands for 7°. Right: The figure
shows the dynamical plane of the correspondence arising from f.
The two connected yellow regions comprise the pre-image of B,
under f. The interiors of the three ‘caulifiower’ shaped regions
stand for 77, for j = 1,2,3. Each T7° is mapped univalently onto
T by f. The white region in each 7/30_5 is mapped to T, and
the colored regions in each 7/30_5 are mapped to the corresponding
colored regions in 7> under f. The deck transformation 7 carries
the colored regions of T7° to the corresponding colored regions of

—

jo o]
I3,

pre-images (counted with multiplicity) in K ND. The statement now follows from
the above observations and the definition of €. o
2) Let us set V := f~1(Q) N D, and define g : V. — D* as the composition of

f:V = Qand (f|]DT*)_1 : Q@ — D*. By definition, g is a d : 1 branched covering
satisfying f o g = f on V. It follows that

gor: K\D— K\D

is a d: 1 forward branch of the correspondence.
Clearly, the forward branch (g o ¢)] #\p s topologically conjugate to 0|k via the

univalent map f: K \D — K.
3) Note that the map

=) of:KnD—KnD

tog=ro(f

is a backward branch of the correspondence € carrying K ND onto itself with degree
d.
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Finally, ¢ is a topological conjugacy between the backward branch (:o g)|zp and
the forward branch (g o L)|I~{\D, and hence f|f<\]D) or: KND — K is a topological
conjugacy between the backward branch (¢ o g)|z 5 and 0|k |

We will now describe the group structure of the correspondence on the lifted
tiling set. Since T° is a simply connected domain containing no critical value of
f, it follows that T°° consists of exactly (d + 1) simply connected domains each of

—~—

which maps conformally onto T°° under f. Let us call them ﬁ;, - T

dq1s SO
d+1
T~ =| |1
.
j=1

To analyze the structure of grand orbits of ‘the correspondence € on Too we need
to discuss the deck transformations of f : T> — T°. As T consists of exactly
(d + 1) simply connected domains each of which maps conformally onto 7> under
f, we can define a map

TR T
satisfying the conditions

(1) 7(I) =T%,, j € Z/(d+1)Z, and

(2) for=f, forzeT>,
where the components 7:]35 are labeled counter-clockwise. Clearly, 7 is a conformal

isomorphism of T> satisfying
W) —id, and fTH(f(2)) = {z,7(2), -, 7°U2)} V z € T>.

Since ¢ is an antiholomorphic involution preserving T;, it follows that each of
Tou,---,7°% 04 is an anti-conformal automorphism of T\‘;O

Here is an explicit description of of 7. We set w := e%, and denote the inverse
branch of f that sends T onto T°° by f;. Observe that the map z +— fJ( df(2))

is a conformal rotation (of order d + 1) of the simply connected domain TJOO around
the point f;(0).

Proposition B.7 (Description of Deck Transformations). 1) wI™> = 7’;’6; more
precisely, wT‘X’ = @Ojl, forjez/(d+1)Z.

2) 7(z )—Wf;( f(2)), for z € T3®, j € Z/(d+1)Z.

Proof. 1) Note that both f and ¢ commute with z — wz. Hence, o commutes with
z +— wz. It follows that w1 = T°. The fact that f commutes with z — wz now
implies that W™ =T, Clearly, z — wz must permute the connected components
of T>. Our labeling of the components 1?;.5 now guarantees that wTJ‘?O Tj‘ﬁl, for
jEZ/(d+ 1)Z.

2) As mentioned earlier, the map z — f;(w?f(z)) is a conformal rotation of the
simply connected domain i“;&; around the point f;(0) (for j € Z/(d + 1)Z). Thus,
the map

(19) 2o wfi(wif(2), z € T,
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is a conformal automorphism of T that carries YA”J‘; onto 1/};_{1 Finally, the identity

F@fi(wf(2) = wf(f;(wf(2) = f(2), z € T},

shows that the map defined by Equation 19 is a deck transformation for f : T -
T°°. Tt follows that the map defined by Equation 19 coincides with 7. (]

We are now ready to conclude that the correspondence € is a mating of the
abstract Hecke group Z/27Z x Z,/(d + 1)Z and the anti-polynomial z¢.

Theorem B.8 (€ as a Mating). The anti-holomorphic correspondence € is a mating
of 7.)27. % 7./ (d 4+ 1)Z and Z* in the following sense.

e On 1:;5, the dynamics of the correspondence € is equivalent to a Z /27 x
Z/(d + 1)Z-action. More precisely, for each z € 7?0/", the grand orbit of z
under € is equal to the (1, 7) 2 Z /27 x Z/(d + 1)Z-orbit of =.

e The d : 1 forward (respectively, backward) branch of € carrying K \'D
(respectively, K ND) onto itself is topologically conjugate to §d|ﬁ such that
the conjugacy is conformal on the interior.

Proof. By construction of 7 and the definition of €, we have that if z € 1’“;57
then (z,w) € € if and only if w € {7 0(z),---,7°? 0 1(2)}. Also note that
7= (7°%201)0(r0¢)7L, and hence (T 01, 7°% 0, -+, 7°% 0 1) = (1, 7) (considered as
subgroups of the group of all conformal and anti-conformal automorphisms of j;’g)
Finally, the fact that (¢, 7) is the free product of (¢) and (r) easily follows by the
arguments used in the proof of Proposition 10.5.

In light of Proposition B.6, to complete the proof, it suffices to show that o|k is
topologically conjugate to Ed|ﬁ such that the conjugacy is conformal on the interior.

But this is precisely the content of Proposition B.3. ([l
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