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Lebesgue measure of Feigenbaum Julia sets

By Artur Avila and Mikhail Lyubich

Abstract

We construct Feigenbaum quadratic-like maps with a Julia set of pos-

itive Lebesgue measure. Indeed, in the quadratic family Pc : z 7→ z2 + c

the corresponding set of parameters c is shown to have positive Hausdorff

dimension. Our examples include renormalization fixed points, and the

corresponding quadratic polynomials in their stable manifold are the first

known rational maps for which the hyperbolic dimension is different from

the Hausdorff dimension of the Julia set.

Contents

1. Introduction 1

2. Quadratic-like maps 13

3. Quasicritical circle maps 18

4. Siegel maps and their perturbations 35

5. Inou-Shishikura class 42

6. Main construction 54

7. Appendix: Further comments and open problems 79

References 82

1. Introduction

One of the major successes of the theory of one-dimensional dynami-

cal systems was the conceptual explanation, in terms of the dynamics of a

renormalization operator, of the striking universality phenomena discovered

by Feigenbaum and Coullet-Tresser in 1970s. At the center of the picture lies

the concept of a Feigenbaum map, which is a quadratic-like map that can be

renormalized infinitely many times with bounded combinatorics and a priori

bounds (a certain uniform control on the non-linearity). The successive renor-

malizations are then exponentially asymptotic to a renormalization attractor;

see [Sul92], [McM96], [Lyu99]. In the simplest case of stationary combinatorics,
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the renormalization attractor consists of a single renormalization fixed point.

As a consequence, the dynamics of such Feigenbaum maps display remarkable

self-similarity reflected in the geometry of the corresponding Julia sets.

In fact, understanding the geometry of Feigenbaum Julia sets already

played a key role in the first proof of exponential convergence of the renor-

malization [McM96]. However, for a long time the theory had been unable to

tackle natural geometric problems: do Feigenbaum Julia sets have full Haus-

dorff dimension or even positive area? (See [McM96, p. 177, question 3]). In

[AL08], a new approach to these problems was developed, which allowed us to

show, in particular, that Feigenbaum Julia sets can have Hausdorff dimension

strictly less than two, while leaving open the problem of whether they can

ever have positive area. The goal of this work is to settle the latter question

affirmatively. Namely, we will show that Julia sets of positive area appear

already among Feigenbaum quadratic polynomials with stationary combina-

torics. (Note that there are only countably many such polynomials.) At the

same time, we construct a set of parameters c of positive Hausdorff dimension

such that the quadratic polynomials Pc : z 7→ z2 + c are Feigenbaum maps

with Julia sets of positive area.

Note that our results (as well as the earlier results of [AL08]) go against in-

tuition coming from hyperbolic geometry. Indeed, according to the philosophy

known as Sullivan’s dictionary,1 there is a correspondence between certain

objects and results in complex dynamics and hyperbolic geometry. As Mc-

Mullen suggested in [McM96] (see especially the last paragraph on page 177),

Feigenbaum maps are analogous to 3-manifolds with two ends, one of which

is geometrically finite, while the other one is asymptotically fibered over the

circle. The limit sets Λ(Γ) of the corresponding Kleinian groups have zero area

but full Hausdorff dimension; see Thurston [Thu82] and Sullivan[Sul81]. So, it

may look like the dictionary completely breaks down at this point, though in

fact there is a way to rehabilitate it; see Section 1.2.6 below.

1.1. Feigenbaum maps. Let us begin with reviewing briefly the main con-

cepts of the complex renormalization theory. (See Section 2 for a precise brief

account and [Lyu] for details.) A quadratic-like map is a holomorphic dou-

ble covering f : U → V , where U and V are quasidisks with U compactly

contained in V . The filled-in Julia set of f is the set K(f) of points z with

fn(z) ∈ U for all n ≥ 0; its boundary is the Julia set J(f). The filled-in Julia

set is always a full compact set (i.e., a compact set with connected comple-

ment) that is either connected or totally disconnected, according to whether

or not it contains the critical point.

1Remarkably, such a dictionary was already anticipated by Fatou; see [Fat29, p. 22].
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Simplest examples of quadratic-like maps are given by restrictions of

quadratic maps Pc : z 7→ z2 + c to suitable neighborhoods of K(Pc). The

precise choice of the restriction is dynamically inessential, which is expressed

by saying that they all define the same quadratic-like germ.

The Mandelbrot setM is defined as the set of parameters c ∈ C for which

K(Pc) is connected.

The central role of the quadratic family is made clear by Douady-Hubbard’s

Straightening Theorem that states that each quadratic-like map with connected

Julia set is hybrid conjugate to a unique quadratic map Pc; i.e., there exists a

quasiconformal map h : (C,K(f))→ (C,K(Pc)) satisfying h ◦ f = Pc ◦ h near

K(f) and with ∂̄h|K(f) = 0 a.e. (almost everywhere). We say that Pc is the

straightening of f , and we write c = χ(f).

A quadratic-like map f : U → V is said to be renormalizable with pe-

riod p ≥ 2 if the p-th iterate of f can be restricted to a quadratic-like map

g : U ′ → V ′ such that the little Julia sets Kj := f j(K(g)), 0 ≤ j ≤ p − 1, are

connected and do not cross each other (meaning that Kj \ Ki are connected

for i 6= j). We can always choose g to have the same critical point as f , and

such a g is called the pre-renormalization of period p of f . The smallest possi-

ble value of p is called the renormalization period of f , and the corresponding

pre-renormalization, considered up to affine conjugacy, is called the renormal-

ization of f and denoted by Rf . The renormalization operator f 7→ Rf is then

well defined at the level of affine conjugacy classes of quadratic-like germs.

The set of parameter values corresponding to renormalizable quadratic

maps is disconnected. Its connected components are called (maximal) Man-

delbrot copies, which can be of two types, primitive or satellite, according

to whether they are canonically homeomorphic (via the straightening map

c 7→ χ(R(Pc))) to the full Mandelbrot set or to M\ {1/4}. (Note that 1/4 is

the cusp of the main cardioid bounding the “largest” component of the interior

of M.) Alternatively, (maximal) satellite copies can be distinguished by the

property that they are “attached” to the main cardioid at the “missing” cusp.2

They can also be distinguished dynamically: For the satellite renormalization

(with the minimal period), all little Julia sets have a common touching point,

while for the primitive renormalization, they are pairwise disjoint.

The renormalization combinatorics of a renormalizable quadratic-like map

f is the Mandelbrot copy M′ containing χ(f). The renormalization period

only depends on the renormalization combinatorics, but the converse is false

(except for period two). There are however only finitely many combinatorics

corresponding to each period.

2Note that our terminology is slightly different from the conventional one: usually the

“missing cusp” is added to a satellite copy.



4 ARTUR AVILA and MIKHAIL LYUBICH

Remark 1.1. The renormalization combinatorics can be alternatively en-

coded by a finite graph, the Hubbard tree, which describes the positioning of

the little Julia sets (of the first pre-renormalization) inside the full Julia set.

It coincides with the Hubbard tree of the superattracting map fc′ , c
′ ∈ M′,

whose period is equal to the renormalization period of f .

If a renormalization Rf is itself renormalizable, then f is called twice

renormalizable and its second renormalization is denoted R2f . Similarly, we

can define n times renormalizable maps and the corresponding n-th renormal-

izations Rnf with some periods pn. Note that Rnf is the renormalization of

Rn−1f with relative renormalization period qn = pn/pn−1.

Assume now that f is infinitely renormalizable, i.e., the renormalizations

Rnf are well defined for all n ≥ 0. We say that f has bounded combinatorics

if the relative renormalization periods of the successive renormalizations Rnf ,

n ≥ 0, remain bounded. The combinatorics is stationary if it is the same for

all Rnf .

The “analytic quality” of a quadratic-like map f : U → V is measured

by the modulus of the fundamental annulus V \ U , denoted by mod f . (The

quality is poor if mod f is small.) An infinitely renormalizable map is said to

have a priori bounds if all of its renormalizations have definite quality; i.e.,

the corresponding moduli are bounded away from zero. (A priori bounds are

equivalent to precompactness of the full renormalization orbit {Rnf}n≥0 in a

suitable topology.) While by no means all infinitely renormalizable maps have

a priori bounds, many do and, in particular, it is conjectured that bounded

combinatorics implies a priori bounds (which has indeed been proved whenever

the renormalization combinatorics of all the Rnf are primitive [Kah06]).

A Feigenbaum map is an infinitely renormalizable quadratic-like map with

bounded combinatorics and a priori bounds.

Theorem 1.1. There exists a Feigenbaum quadratic polynomial Pc with

primitive stationary combinatorics whose Julia set Jc has positive area.

Our methods yield, in fact, an infinite family of primitive Mandelbrot

copies that have the property that all infinitely renormalizable maps whose

renormalization combinatorics (for all the renormalizations) belong to this

family have Julia sets of positive area. We recall that any finite family F
of primitive Mandelbrot copies with #F ≥ 2 defines an associated renormal-

ization horseshoe A consisting of all quadratic-like maps that belong to the

ω-limit of the renormalization operator restricted to those combinatorics; see

[AL11] (complemented with [Kah06]) for a recent account of this result . The

dynamics of R|A is topologically semiconjugate to the shift on FZ, and the cor-

responding quadratic parameters in χ(A) form a Cantor set naturally labeled
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by FN. This Cantor set has bounded geometry by [Lyu99, Lemma 9.6 and

§1.5], so we can conclude (see Section 6.9):

Theorem 1.2. The set of Feigenbaum quadratic maps with Julia sets of

positive area has positive Hausdorff dimension in the parameter space.

In fact, we will show that this Hausdorff dimension is at least 1/2.

1.2. What do we learn about Julia sets of positive area ?

1.2.1. Preamble: Area problem. The problem of whether all nowhere dense

Julia sets have zero area goes back to the classical Fatou’s memoirs who gave

first examples of such Julia sets [Fat19].3 In 1980-90s, broad classes of Ju-

lia sets with zero area were given in [Lyu83], [Lyu91], [Shi95], [Yar95] and

[Urb94], [PR98], [GS09]. First examples of rational maps4 (in fact, quadratic

polynomials) with nowhere dense Julia sets with positive area have been re-

cently constructed by Buff and Cheritat [BC12] in a remarkable development

that successfully brought to completion Douady’s program from the mid-1990s.

(See also Yampolsky [Yam08] for an alternative point of view on the final piece

of their argument.) An important technical input to this program was supplied

by the recent breakthrough in the Parabolic Renormalization Theory by Inou

and Shishikura [IS08].

The strategy carried by Buff and Cheritat depends on a Liouvillian mech-

anism of fast rational approximation. It produces three type of examples:

Cremer, Siegel, and infinitely renormalizable with unbounded satellite combi-

natorics. (We recall that a quadratic map with a periodic orbit β with irra-

tionally indifferent multiplier e2πiα, α ∈ R \Q, is classified as Siegel or Cremer

according to whether it is locally linearizable near β or not.)

Feigenbaum Julia sets have quite a different nature, so our work brings

new light on the realm of Julia sets of positive area.

1.2.2. Parameter visibility. Julia sets of positive area are supposed to be

visible objects. However, sets of parameters produced by the Liouvillian mech-

anisms (such as in [BC12]) tend to be tiny: they probably have zero Hausdorff

dimension. (This is definitely so in the Cremer case as the whole set of Cremer

parameters has zero Hausdorff dimension.)

By our previous work [AL08], Feigenbaum Julia sets of positive area are

more robust: the existence of a single Feigenbaum Julia set of positive area

3What Fatou showed is that if |Df(z)| > deg f for all z ∈ J(f), then J(f) is a Cantor set

of zero length.
4For transcendental entire functions, a class of Julia sets of zero area was described in

[EL84], which included some exponential maps (see also [McM87] for this particular case),

while examples of Julia sets of positive area appeared in [EL87], [McM87].
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inside some renormalization horseshoe implies that there is a whole “sub-

horseshoe” of them, restricted to which the renormalization dynamics is topo-

logically conjugate to a subshift of finite type. This creates a parameter set of

positive Hausdorff dimension. The construction we use to prove Theorem 1.2

is even more precise, providing us with full renormalization horseshoes and

allowing us to obtain an effective estimate: the set of parameters c such that

Pc is a Feigenbaum map of positive area has Hausdorff dimension at least 1/2.

We note that it is expected that Lebesgue almost every quadratic map is

hyperbolic,5 and hence has a Julia set of not only zero Lebesgue measure but

even of Hausdorff dimension less than two. It is unclear whether the set of

all complex Feigenbaum parameters has Hausdorff dimension strictly less than

two.6 At the moment, it is only known that the Hausdorff dimension of these

parameters is at least 1 [Lyu98].

1.2.3. Poincaré series and Hausdorff dimension. The notion of Poincaré

series was transferred from the theory of Kleinian groups to Holomorphic Dy-

namics by Sullivan [Sul83], and it became an efficient tool in the study of

Hausdorff dimension of Julia sets. Previously to our work, in all known cases

the Hausdorff dimension of rational Julia sets coincided with the critical ex-

ponent of the Poincaré series (see [Urb94], [PR98], [GS09] and [AL08]). On

the other hand, it was shown in [AL08] that equality must break down in the

case of a Feigenbaum map with periodic combinatorics and positive Lebesgue

measure Julia set.7

The critical exponent does coincide with the hyperbolic dimension for all

Feigenbaum Julia sets (and indeed for all known cases of rational maps), so

our examples display a definite gap between the Hausdorff dimensions of the

Julia set and of its hyperbolic subsets. It is conceivable, however, that for Julia

sets of zero area, the critical exponent, Hausdorff dimension and hyperbolic di-

mension, are all equal (without any further assumptions on the rational map).

Note that this is the case for Feigenbaum Julia sets of zero area [AL08].

1.2.4. Positive measure vs non-local connectivity. There was a general

feeling that these two phenomena are tightly linked as the examples constructed

by Buff and Cheritat are probably all non-locally connected. (Note, in partic-

ular, that Cremer Julia sets are never locally connected.) On the other hand,

all Feigenbaum Julia sets have well-behaved geometry and, in particular, are

locally connected; see [HJ93], [Jia00], [McM94]. Note that local connectivity

5It would follow from the property (somewhat supported by the computer evidence) that

all little Mandelbrot copies may have a “uniformly bounded shape.”
6The real analogue of this statement is known to be true [AM].
7More recently, such a phenomenon was also observed in transcendental dynamics [UZ07].
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makes a Julia set topologically tame: it admits an explicit topological model

(see [Dou93]). Thus, our examples show that positive area is compatible with

topological tameness.

Related to this issue is the fact that all Feigenbaum Julia sets constructed

here have primitive combinatorics, while the previously known infinitely renor-

malizable examples had satellite combinatorics. In fact all known examples of

infinitely renormalizable maps with non-locally connected Julia set have satel-

lite combinatorics.

Remark 1.2. A priori bounds have been recently proved for some Feigen-

baum maps with satellite combinatorics [DL18], which led, by adapting our

methods, to the first examples of satellite Feigenbaum maps whose Julia sets

have positive area.

1.2.5. Wild attractors and ergodicity. The measure-theoretic dynamics on

Feigenbaum Julia sets of positive area had been well understood long before

first examples (presented in this paper) were constructed. In particular, it is

ergodic with respect to the Lebesgue measure [Pra98], and there is a uniquely

ergodic Cantor attractor O ⊂ J(f) (of Hausdorff dimension strictly less than

two) such that ω(z) = O for a.e. ∈ J(f); see [Lyu83]. Moreover, almost all

orbits are equidistributed with respect to the canonical measure µ on O such

that suppµ = O.8

The measure-theoretic picture for Buff-Cheritat examples is more delicate

and exotic, and has been addressed more recently. In the Cremer and Siegel

cases, it was proven by D. Cheraghi [Che13], [Che19] that there is a unique

measure-theoretic attractor of zero area such that ω(z) = O for a.e. z ∈ J(f).

However, this attractor has quite an intricate topology: it is a non-locally

connected “hedgehog.” Moreover, it was proven in [AC18] that the dynamics

on O is uniquely ergodic, with the canonical invariant measure µ that is either

the delta-mass at the Cremer point or the inner harmonic measure on the

boundary of the Siegel disk. This measure governs distribution of almost all

points on the Julia set, so typical points spend lion’s share of time near supp µ,

which is a proper subset of O.9 This can be viewed as a “second order wild

phenomon.” Note also that it remains unknown whether the Lebesgue measure

on J(f) is ergodic.

1.2.6. Sullivan’s Dictionary. A parallel spectacular development in the

problem of area and Hausdorff dimension has happened in the Theory of

8See [Lyu87, Ree86] and [BKNvS96] for related phenomena in transcendental and real

dynamics.
9Such a phenomen had been earlier encountered in the real dynamics; see [HK90], [Zak78,

BM10].
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Kleinian groups. However, the outcome appeared to be quite different. In

the mid 1990s, it was proved by Bishop and Jones [BJ97] that the limit set

Λ = Λ(Γ) of a (finitely generated) Kleinian group Γ has full Hausdorff dimen-

sion if and only if the group is geometrically infinite or Λ = C. As geometrically

finite groups correspond to hyperbolic or parabolic rational maps, we see that

the answer for Kleinian groups is much simpler.

As the area is concerned, it had been the subject of the long-standing

Ahlfors Area Conjecture asserting that any limit set Λ(Γ) has zero area as

long as it is different from the whole sphere. Through the work of Thurston

[Thu82], Bonahon [Bon86] and Canary [Can93], this conjecture was reduced

to Marden’s Tameness Conjecture, and the latter was proved in the mid 2000s

by Agol [Ago04] and Calegary-Gabai [CG06]. Thus, there are no non-trivial

limit sets Λ of positive area; again, the situation for Kleinian groups is much

more definite compared with rational maps.

It does not mean, however, that Sullivan’s Dictionary between Kleinian

groups and rational maps completely breaks down at this point. Kleinian

groups belong to a special class of reversible dynamical systems: the corre-

sponding geodesic flow on the hyperbolic 3-manifold MΓ admits a nice involu-

tion that conjugates it to the inverse flow. The analogous flow for a rational

map f lives on the hyperbolic 3-lamination Hf constructed in [LM97]. How-

ever, this flow is not reversible, which reflects the unbalanced property (see

the next section) of the underlying maps and bears responsibility for richer

geometric properties of Julia sets.

1.3. Basic trichotomy. To put our result into deeper perspective, let us

briefly recall the basic trichotomy of [AL08]. Consider the following alternative

for Feigenbaum maps:

Lean case: HD(J(f)) < 2;

Balanced case: HD(J(f)) = 2 but area J(f) = 0;

Black Hole case: area J(f) > 0.

In that paper, we showed that if a periodic point of renormalization is

either of Lean or Black Hole type, then this can be verified “in finite time,” by

estimating some geometric quantities associated to some (not necessarily the

first) renormalization of f . Namely, let us define two parameters:

• ηn gives the probability for an orbit starting in the domain of f to enter the

domain of the n-th pre-renormalization (see Section 2.3);

• ξn gives the probability that an orbit starting in the domain of the n-th

pre-renormalization will never come back to it.

We showed that in the Lean case ηn/ξn → 0 exponentially, in the Black Hole

case ηn/ξn → ∞ exponentially, and that in the Balanced case ηn/ξn remains

bounded away from zero and infinity. Moreover, there is an effective constant
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Figure 1.1. Black Hole. We see a renormalization of a

quadratic-like map of type constructed in this paper. Light

bubbles comprise the landing set. Rays emanating by the Black

Hole correspond to escaping points. The probability of landing

clearly dominates that of escape.

C > 1 (given in terms of some rough geometric parameters, like mod f , but

independent of n) such that if Rnf = f , then

• ηn/ξn > C implies the Black Hole case;

• ηn/ξn < C−1 implies the Lean case.

Remark 1.3. The latter condition has been recently used by A. Dudko and

S. Sutherland [DS20] to give a computer assisted proof that area J(f) = 0 for

the most classical Feigenbaum map corresponding to the doubling renormal-

izations.

Regarding the Balanced case, Theorem 8.2 of [AL08] asserts that the ex-

istence of both Lean and Black Hole Feigenbaum maps inside some renormal-

ization horseshoe implies that there exist some Balanced Feigenbaum maps in

this horseshoe, but the construction does not yield a renormalization periodic

point. In fact, in seems unlikely that Balanced maps with periodic combina-

torics exist. (The geometric parameters would be too fine tuned for this to

happen “by chance” given that there are only countably many periodic points

of renormalization.)
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Remark 1.4. See also the discussion in [AL08] on a related problem for

real maps of the form x 7→ |x|α + c. Therein one can vary the degree α of the

critical point continuously to fine-tune the parameters, so the corresponding

Balanced case is believed to exist (and a conditional proof is given, subject to

a Renormalization Conjecture), but it is unlikely that the fine tuned degrees

would ever correspond to an integer (even) number (i.e., to a polynomial).

1.4. Strategy. As discussed above, [AL08] gives a probabilistic criterion

for the Black Hole property to hold for a fixed point of renormalization; it

suffices to check that ηn/ξn is sufficiently large for some n. Below we will use

this only in the particular case n = 1. We will produce a sequence of fixed

points of renormalization fm : Um → Vm with pm →∞ such that inf η(m) > 0

while lim ξ(m) = 0, where η(m) = η1(fm) and ξ(m) = ξ1(fm). We will also

verify that the rough initial geometry of the fundamental annuli Vm \ Um
remains under uniform control. Since the “constant to beat” in the criterion

only depends on such a control, this will show that for m sufficiently large, the

criterion is satisfied so that the Julia set of fm has positive Lebesgue measure.

It is easy to see that if the sequence χ(fm) converges to a parameter c for

which areaK(Pc) = 0, and the rough initial geometry remains under control,

then η(m)→ 0. Given this observation, it is natural to consider sequences

of renormalization combinatorics that approach a parameter c with either a

Siegel disk or a parabolic point. In our argument, we will take c to have a

Siegel disk of bounded type. One still has to select the combinatorics very

carefully, and a number of natural options we had initially tried had either

displayed degeneration of the geometry (for instance, with growing modulus of

the fundamental annulus, which would make the landing probability η(m) go

to 0), or could not be treated in a definitive way without computer assistance.

We now describe the idea more precisely. Let us consider a quadratic poly-

nomial Pc that has a Siegel disc S with rotation number θ = [N,N, . . . ], N

being big enough. Let pm/qm = [N, . . . , N ] be the continued fraction approx-

imants to θ, and let Pcm be the corresponding quadratic maps with parabolic

fixed points with rotation numbers pm/qm. We perturb cm within the (pm/qm)-

limb (the connected component ofM\{cm} not containing 0) to a Misiurewicz

map Pam , i.e., one for which the critical orbit is eventually periodic but not

periodic. Then we further perturb am to a superattracting parameter bm. This

parameter is the center of some maximal primitive Mandelbrot copy Mm.

Let fm : Um → Vm be the corresponding renormalization fixed points

with stationary combinatorics Mm. To control the dynamics of these maps

in what follows, we need a good control of the postcritical set after all the

perturbations. This has also been crucial in Buff and Cheritat’s work [BC12],

who proved using the Inou-Shishikura renormalization theory [IS08] (which
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currently is only available for large N , hence the choice above,10 that the

postcritical set of Pcm stays in a small neighborhood of the Siegel disk S.

Our further choice of am and bm is in part designed to keep this property

for the further perturbations. In particular, excursions of the critical orbit

away from the Siegel disk must be prevented to avoid excessive expansion

(which would again lead to growing fundamental annuli). Thus, the periodic

orbit on which the critical point eventually lands must be taken quite close

to the Siegel disk. The most natural choice would be the periodic orbit with

combinatorial rotation number pm/qm that arises from the bifurcation of Pcm ,

but for technical implementation reasons we actually use an orbit of rotation

number pm−κ/qm−κ, for some big but bounded (as m → ∞) κ (so that the

critical point still only goes a bounded number of levels up in terms of the

cylinder Siegel renormalization).

We then fine tune the superattracting parameter bm to get a suitable con-

trol on the initial geometry of the first renormalization. While we want the

moduli of fundamental annuli to remain bounded, we would like them to be

sufficiently large to obtain control on the actual renormalization fixed point.

Indeed, there is a “threshold” lower bound on the moduli of the fundamental

annuli of the first renormalization of a Feigenbaum quadratic map with station-

ary primitive combinatorics, which, once surpassed, implies uniform control for

the associated renormalization fixed point. Below this threshold, current tech-

niques do not give such uniform bounds without further restrictions (which

would, in particular, not apply when approaching Siegel parameters). Thus,

we make the critical orbit (after perturbation) follow closely the periodic orbit

for large but bounded number of turns around the Siegel disk, picking up the

right amount of expansion from the periodic orbit before drifting apart and

closing.

Once the geometry of the first renormalization is controlled, we construct

a safe trapping disk D that stays away from the postcritical set, captures all

orbits that escape from the Siegel disk S to infinity and has the property

that a definite portion of D lands in the renormalization domain U . Then a

direct Distortion Argument implies that the pullbacks of U occupy a definite

proportion of S, which implies that the landing probability ηm stays bounded

away from 0.

To control the escaping parameter ξm, we make use of the Siegel Re-

turn Machinery that ensures high probability of returns back to the trapping

disk, and hence high probability of eventual landing in the renormalization

10Recent developments in the Pacman Renormalization Theory [DLS20], [DL18], [DL21]

give a good chance to extend our construction to arbitrary N ’s.
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domain U . (The Return Machinery makes use of the hyperbolic expansion out-

side the postcritical set [McM94], which was also used by Buff and Cheritat

[BC12]).

In this construction, there is one free parameter that can be varied without

significant impact on the geometry of the first renormalization, which is the

time the critical point spends in the parabolic gate created when the parabolic

map Pcm is perturbed to the Misiurewicz map Pam . There is a uniform control

of this perturbation governed by the limiting transit map (the geometric limit).

Varying this time parameter produces a sequence of Black Hole combinatorics

whose Mandelbrot copies decay quadratically. Alternating these combinatorics

creates a Cantor set of Hausdorff dimension > 1/2− ε consisting of Black Hole

parameters.

To carry out the above strategy, we make use of four Renormalization

Theories:

• Renormalization of quadratic-like maps, including the probabilistic criterion

of [AL08], is discussed in Section 2.

• Renormalization of quasicritical circle maps is developed in Section 3.

(Roughly speaking, “quasicritical” means that the map is allowed to lose

analyticity at the critical point, but is assumed to be quasiregular there.)

• Siegel renormalization theory based upon renormalization of quasicritical

circle maps is laid down in Section 4.

• Finally, in Section 5 we briefly discuss the parabolic renormalization, and

particularly, the Inou-Shishikura Theory.

With these renormalization tools in hands, we proceed to the main con-

struction (Section 6).

1.5. Basic terminology and notation.

• N0 ={0, 1, . . . }, N ≡ N1 ={1, 2, . . . }, and in general, Nκ = {n ∈ N : n ≥ κ};
• N̄κ = Nκ ∪∞ (with the natural topology);

• C∗ = C \ {0};
• DR(a) = {z : |z − a| < R};
• DR = DR(0), D = D1;

• the notation T will be used for both the unit circle in C and its angular

parametrization by R/Z;

• H = H+ = {z : Im z > 0} is the upper half-plane;

• H− is the lower half-plane;

• “area” refers to the Lebesgue measure;

• for a set Z ⊂ C and a point z ∈ Z, we let Compz(Z) be the component of

Z containing z;

• for a topological annulus A b C, we let ∂oA and ∂iA be its outer and inner

boundaries;
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• a topological triangle is a Jordan disk with three points marked on the bound-

ary;

• the dashed arrow notation f : X 99K Y is used for a partially defined map;

• Dom f is the domain of a map f ;

• orb z = orbf z is the forward orbit of a point z;

• we use the notation c0 for the critical point of various maps, cn := fnc0;

• Of is the postcritical set of a map f , i.e., the closure of orb c1;

• fθ : z 7→ e2πiθz + z2, θ ∈ C/Z;

• F = (fθ)θ∈C is the quadratic family — note that we are using a non-standard

parametrization for the quadratic family, which is more suitable for our

purposes;

• M is the Mandelbrot set.

By saying that some quantity, e.g., η, depending on parameters is definite,

we mean that η ≥ ε > 0 where ε is independent of the parameters (or rather,

it may depend only on some, explicitly specified, parameters). By saying that

a set K is well inside a domain D b C we mean that K b D with a definite

mod(D \K) (which is equivalent to saying that dist(K, ∂D) ≥ ε diamK). The

meaning of the expressions bounded, comparable, etc. is similar. If we need to

specify a constant, then we say “ε-definite,” “C-comparable (�),” etc.

Given a pointed domain (D,β), we say that β lies in the middle of D, or

equivalently, that D has a bounded shape around β if

(1.1) max
ζ∈∂D

|β − ζ| ≤ C min
ζ∈∂D

|β − ζ|,

where C is a constant that may depend only on specified parameters.
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2. Quadratic-like maps

2.1. Basic definitions.

2.1.1. Quadratic-like maps. A quadratic-like map f : U → V [DH85b],

which will also be abbreviated as a q-l map, is a holomorphic double branched
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covering between two Jordan disks U b V ⊂ C. It has a single critical point

that we denote c0. The annulus A = U \ V is called the fundamental annulus

of f . We let mod f := modA. The filled Julia set K(f) is the set of non-

escaping points

K(f) = {z : fnz ∈ U, n = 0, 1, 2, . . . }.

Its boundary is called the Julia set J(f). The (filled) Julia set is either con-

nected or Cantor, depending on whether the critical point is non-escaping (i.e.,

c0 ∈ K(f)) or otherwise.

Two quadratic-like maps f : U → V and f̃ : Ũ → Ṽ are called hybrid

conjugate if they are conjugate by a quasiconformal map h : (V,U) → (Ṽ , Ũ)

such that ∂̄h = 0 a.e. on K(f).

A simplest example of a quadratic-like map is provided by a quadratic

polynomial Pc : z 7→ z2 + c restricted to a disk DR of sufficiently big radius.

The Douady and Hubbard Straightening Theorem asserts that any quadratic-

like map f is hybrid conjugate to some restricted quadratic polynomial Pc.

Moreover, if J(f) is connected, then the parameter c ∈M is unique.

As for quadratic polynomials, the two fixed points of a quadratic-like maps

with connected Julia set have a different dynamical meaning. One of them,

called β, is the landing point of a proper arc γ ⊂ U \K(f) such that f(γ) ⊃ γ.

It is either repelling or parabolic with multiplier one. The other fixed point,

called α, is either non-repelling or a cut-point of the Julia set (can be both).

2.1.2. Quadratic-like families. A quadratic-like family F = (fλ : Uλ → Vλ)

over a parameter domain11 Λ ⊂ C is a family of quadratic-like maps fλ holo-

morphically depending on λ. The latter means more precisely that the set

U =
⋃
λ∈Λ

Uλ

is a domain in C2 and the function fλ(z) is holomorphic on U. Let us normalize

it so that 0 is the critical point for all fλ. The associated Mandelbrot set is

defined as
MF = {λ ∈ Λ : J(fλ) is connected}.

Let us select a base point λ◦ and let U◦ ≡ Uλ◦ etc. We say that a quadratic-

like family F is equipped if there is a holomorphic motion

hλ : V ◦ \ U◦ → V λ \ Uλ
of the (closed) fundamental annulus V λ \ Uλ over the pointed domain (Λ, λ◦)

that is equivariant on the boundary of the annulus, i.e.,

hλ(f◦(z)) = fλ(hλ(z)), z ∈ ∂U◦.

11In what follows, Λ is assumed to be a Jordan disk.
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An equipped quadratic-like family F is called proper if fλ(0) ∈ ∂Vλ for

λ ∈ ∂Λ (which assumes implicitly that the family fλ is continuous up to ∂Λ).

A quadratic-like family F is called unfolded if the curve

λ 7→ fλ(0), λ ∈ ∂Λ,

has winding number 1 around 0.

Theorem 2.1 ([DH85b]). For any equipped proper unfolded quadratic-like

family F, the Mandelbrot set MF is canonically homeomorphic to the standard

Mandelbrot set M.

The proof can be also found in [Lyu].

2.2. Renormalization. A quadratic-like map f : U→V is called DH renor-

malizable (after Douady and Hubbard) if there is a quadratic-like restriction

Rf ≡ RDHf = fp : U ′ → V ′

with connected Julia set K ′ such that the sets f i(K ′), k = 1, . . . , p − 1, are

either disjoint from K ′ or else touch it at its β-fixed point.12 In the former case

the renormalization is called primitive, while in the latter it is called satellite.

The map Rf : U ′ → V ′ is called the pre-renormalization of f . If it is

considered up to rescaling (i.e., up to conjugacy by a linear map z 7→ λz,

λ ∈ C∗), it is called the renormalization of f .

The sets f i(K ′), i = 0, . . . , p− 1, are referred to as the little (filled) Julia

sets. Their “positions”13 in the big Julia set K(f) determines the renormaliza-

tion combinatorics. The set of parameters c for which the quadratic polynomial

Pc is renormalizable with a given combinatorics forms a little Mandelbrot copy

M′ ⊂M. In fact, the family of renormalizations R(Pc), c ∈M′, with a given

combinatorics can be included in a quadratic-like family F = (fp : Uc → Vc)

over some domain Λ ⊃ M′ so that M′ =MF. A natural base point c◦ ∈ M′
in this family is the superattracting parameter with period p. It is called the

center of M′. Any superattracting parameter in M with period p > 1 is the

center of some Mandelbrot copy M′ like this. Moreover, in case of primi-

tive combinatorics the quadratic-like family F is proper and unfolded. (See

[DH85b], [Dou87a], [Lyu] for a discussion of all these facts.)

We can encode the renormalization combinatorics by the corresponding

copy M′ itself. Equivalently, it can be encoded by the center c◦ of M′ or by

the corresponding Hubbard tree H ′.

A little Mandelbrot copy is called primitive or satellite depending on the

type of the corresponding renormalization. They can be easily distinguished

12See [McM94] for a discussion of this condition.
13They can be defined precisely in terms of the combinatorial model for f (see [Lyu,

§37.11.2]).
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as any satellite copy is attached to some hyperbolic component of intM and

does not have the cusp at its root point.

In the introduction (Section 1.1), we have introduced n times renormal-

izable maps and their renormalizations Rnf . Moreover, for infinitely renor-

malizable maps, we have defined notions of stationary/bounded combinatorics,

a priori bounds and Feigenbaum maps. We say that a Feigenbaum map is

primitive if all its renormalizations are such.

One says that a family F of Feigenbaum maps (e.g., the family of maps

with a given combinatorics) has beau bounds if there exists µ > 0 such that for

any ν > 0, there exists n0 = n0(ν) such that for any f ∈ F with mod f ≥ ν,

we have

modRnf ≥ µ for all n ≥ n0.

It was proved by Kahn [Kah06] that infinitely renormalizable maps of bounded

primitive type have beau bounds, with µ depending only on the combinatorial

bound. In fact, µ can be made uniform over some class of bounded primitive

combinatorics [KL08].14

The renormalization fixed point f∗ is a quadratic-like map that is invariant

under renormalization: Rf∗ = f∗. In terms of the pre-renormalization, there

exists a scaling factor λ ∈ C \ D such that

Rf∗(z) = λ−1f∗(λz).

Theorem 2.2. For any stationary combinatorics with a beau bound, there

exists a unique renormalization fixed point f∗ with this combinatorics. More-

over, mod f∗ ≥ µ, where µ > 0 is the beau bound.

This theorem was originally proved by Sullivan [Sul92]. Other proofs were

given by McMullen [McM96], and recently, by the authors [AL11].

A priori bounds are called unbranched if the renormalizations

fn ≡ Rnf : Un → Vn

with definite moduli can be selected so that Vn ∩ O = Kn ∩ O (where Kn is

the filled Julia set of Rnf). For instance, it is sufficient that

Vn ∩ Kn = Kn, where Kn =

qn−1⋃
j=0

f j(Kn)

and qn is the period of Kn under f . In turn, it is sufficient to choose the renor-

malization domains so that the images f j(Un), j = 1, . . . , qn, are pairwise dis-

joint. (Of course, such a choice is possible only for a primitive renormalization.)

14We will not use these results as the combinatorics we construct do not fall into the class

[KL08]. On the other hand, beau bounds can be easily supplied for our class.
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For maps with unbranched a priori bounds the renormalization domains

Un and Vn can be adjusted (replaced with domains Un and V n below) to

assume nice topological and geometric properties:

(C1) Vn ∩ O ⊂ V n ⊂ Un;

(C2) V n+1 ⊂ Un;

(C3) fk(∂V n) ∩ V n = ∅, k = 0, 1, . . . (the number of iterates depends on

z ∈ ∂V n and continues for as long as fkn−2(z) is well defined);

(G1) the fundamental annuli V n \ Un have bounded hyperbolic diameters in

V \ O;

(G2) area(V n \ Un) � area(Un) � (diamUn)2 � (diamV n)2,

with constants depending only on the unbranched a priori bounds (see [AL08,

§2.7 and Appendix A]). Under the above circumstances, bounds (G1)–(G2)

together with unbranched a priori bounds are called geometric bounds for f .

We will measure them by a single number g = g(f) > 1 such that g or g−1

gives an upper or a lower bound for the above geometric constants, e.g.,

g−1(diamV n)2 ≤ area(V n \ Un) ≤ g(diamV n)2.

Remark 2.1. In the primitive case, the above domains can be selected so

that the mod(V n \ Un) are definite. However, in the satellite case, the annuli

V n \ Un can degenerate.

2.3. Probabilistic criterion for positive area. Let us now introduce pre-

cisely probabilistic parameters η and ξ mentioned in the introduction. Let

f : U → V be a Feigenbaum map with unbranched a priori bounds, and let

Rf : U ′ → V ′ be its first pre-renormalization, A′ = U ′\V ′ be the corresponding

fundamental annulus.

The landing parameter η is the probability of landing in U ′. Precisely, let

X =
⋃
n∈N f

−nU ′ be the set of points in U that eventually land in U ′. Then

(2.1) η =
areaX
areaU

.

The escaping parameter ξ is the probability of escaping from the funda-

mental annulus A′. Precisely, let Y be the set of points in A′ that never return

back to V ′:

Y = {z ∈ A′ : fnz 6∈ V ′ for n ≥ 1 (as long as fnz ∈ V )}.

Then

(2.2) ξ =
areaY
areaA′

.

The following result asserts that if the landing probability is much higher

than the escaping one, then the Julia set has positive area.
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Theorem 2.3 (Black Hole Criterion [AL08]). There exists C = C(g)

(independent of combinatorial bounds ) with the following property. Let f be

a renormalization fixed point with a geometric bound g. If η ≥ Cξ, then

area J(f) > 0.

3. Quasicritical circle maps

An (analytic) critical circle map is an analytic homeomorphism f : T→ T
of the circle T = R/Z with a single critical point c0 of cubic type (that is,

f ′′′(c0) 6= 0). It is usually normalized so that c0 = 0 in the angular coordinate.

To study Siegel disks of non-polynomial maps we need to enlarge this class

allowing the map be only quasiregular at the critical point.

3.1. Definition. For this definition, it is convenient to use the complex

model {|z| = 1} for the circle T and the Blaschke maps

(3.1) Bα(z) = e2πiαz2 z − 3

1− 3z

as the standard family of critical circle maps.

A quasicritical circle map is a homeomorphism f : T → T of the circle

with the following properties:

(Q1) f is a real analytic diffeomorphism outside a single critical point c0 nor-

malized so that c0 = 1; we let cn = fnc0.

(Q2) f admits a quasiregular extension to a T-symmetric annulus Dom f

around T of the form Bα ◦ h with some α ∈ R/Z and a global quasi-

conformal map h that is holomorphic near z ∈ Dom f whenever f(z) lies

on the same side of T as z.

It follows, in particular, that f |T is quasisymmetric. Moreover, it admits

a quasiregular extension to a neighborhood of T, symmetric with respect to T,

that is holomorphic in the domain

Domh f = {z ∈ Dom f : z and f(z) lie on the same side of T } ∪ T \ {c0}.

(Q3) Domh f is a topological disk whose upper part, Domh f \ D, is obtained

from the outer annulus Dom f \ D by removing a topological triangle

T = Tf ⊂ Dom f \ D

with a vertex at c0 and the opposite side on the outer boundary of Dom f

(which are not included to the triangle). We let T̂ be the “double-

triangle” that is the union of T ∪ {c0} and its mirror image, so Dom f =

Domh f ∪ T̂ .

(Q4) f : Domh f → C is an immersion and f : T → D is an embedding.
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Passing to the angular coordinate amounts to taking the universal cov-

ering15 f : (Dom f,R) → (C,R), where Dom f is a Z-periodic R-symmetric

open strip around R. Then Domh f is the union of disjoint R-symmetric open

disks Dk interescting R along the intervals (k, k + 1), respectively. The differ-

ence (Dom f \ Domh f) ∩ H+ is the union of triangles Tk ⊂ H+ with vertices

at k. The difference Dom f \Domh f is the union of the corresponding double

triangles T̂k. Moreoover, each restriction f : Dk \ H− → H+ is an embed-

ding intersecting the real line along an interval strictly containing the image

of [k, k + 1]. We will impose one more geometric property:

(Q5) The restriction f |D0 admits a representation ψ(h(z)3), where h is as in

(Q2) and ψ is a conformal map whose image contains f [0, 1].

Let Cir stand for the space of all quasicritical circle maps. The geometry

of such a map is specified by the dilatation of the map h from (Q2), the size

of Dom f , and the space between the image of ψ and f [0, 1] in (Q5). We call

f a (K, ε)-quasicritical if Dilh ≤ K, Dom f contains the (2ε)-neighborhood of

T ⊂ C, and the image of ψ in (Q5) contains the ε-neighborhood of f [0, 1]. Let

Cir(N,K, ε) denote the class of (K, ε)-quasicritical circle maps of type bounded

by N (i.e., in the continued fraction expansion for the rotation number of f all

the entries are bounded by N), and let Cir(K, ε) =
⋃
N Cir(N,K, ε).

3.2. Local properties near the critical point.

3.2.1. Scaling limits and John Property. Let N (K) stand for the class

of degree three normalized R-symmetric K-quasiregular branch coverings F :

(C,R, 0, 1) → (C,R, 0, 1) that are conformal in the topological sectors S± =

F−1(C \ R∓) ⊃ R±, where F−1 is the branch of the inverse map preserv-

ing R±. Such a map can be represented in the form F (z) = H(z)3, where

H : (C,R, 0, 1) → (C,R, 0, 1) is a normalized R-symmetric K-qc homeomor-

phism that conformally maps S− onto the straight sector {| arg z− π| < π/3},
and conformally maps S+ onto {| arg z| < π/3}. Let N =

⋃
N (K).

Lemma 3.1. For a map F ∈ N (K), we have

S− ⊃ {| arg z − π| ≤ απ}, S+ ⊃ {| arg z| ≤ απ},

where α > 0 depends only on K .

Proof. We will deal with S− only, as the argument for S+ is the same.

The inverse branch F−1 : C \ R+ → S− is the composition of z 7→ z1/3 with

H−1, so

S− = H−1(T−), where T− = {| arg z − π| < π/3}.

15We will not notationally distinguish a circle map f : R/Z → R/Z and its universal

covering f : R→ R (and neither the associated objects).
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Since H−1 : (C, 0, 1) → (C,0,1) is a normalized K-qc map, it is L0-quasi-

symmetric on the whole plane with L0 = L0(K).

For any ζ ∈ R−, we have dist(ζ, ∂T−) = (
√

3/2) |ζ|. Take any z ∈ R−,

and let ζ = H(z). By definition of L0-quasisymmetry, we have

dist(z, ∂S−)

|z|
≥ 1

L
· dist(ζ, ∂T−)

|ζ|
=

√
3

2L
,

with some L depending only on L0. The conclusion follows. �

Any quasicritical circle map f : R/Z→ R/Z of class Cir(K, ε), viewed as

a map on a neighborhood of R, can be non-dynamically normalized without

changing its dilatation so that it fixes 0 and 1. Namely, for any t ∈ (0, 1/2),

let

(3.2) Ft : (C,R, 0, 1)→ (C,R, 0, 1), Ft(x) =
f(tx)− c1

f(t)− c1
.

Lemma 3.2. For f ∈ Cir(K, ε), t ∈ (0, 1/2), the family of rescalings Ft
(3.2) is precompact in the topology of uniform convergence on compact subsets

of Ĉ. All limit maps as t→ 0 belong to the class N (K).

Proof. Given any radius r > 1, all the rescalings Ft are well defined on

the disk Dr for t small enough. Moreover, by Property (Q2) they can be

represented in the form Ft(z) = Ht(z)3 on this disk, where Ht are normalized

R-symmetric K-qc maps. It follows that the Ft form a precompact family

with limit maps of the form H(z)3, where H are normalized R-symmetric

K-qc maps.

Moreover, the inverse branches F−1
t are conformal in (C\R±)∩Dδ/tγ , with

some δ > 0 and γ ∈ (0, 1) depending only on the geometry of f . (We use here

that |f(t)−c1| = O(tγ) due to the Hölder continuity of quasisymmetric maps.)

Hence in the limit we obtain a map whose inverse branches are conformal in

the whole slit planes C \ R±. The conclusion follows. �

The above two lemmas imply

Proposition 3.3. For any quasicritical circle map f ∈ Cir(K, ε), the

domain Domh f contains local sectors

T−(f) = {| arg z − π| ≤ απ, |z| < ε} and T+(f) = {| arg z| ≤ απ, |z| < ε}
with some α > 0 depending only on (K, ε).

3.2.2. Schwarzian derivative. We will now show that quasicritical circle

maps have negative Schwarzian derivative near the critical point. Let us begin

with maps of class N :

Lemma 3.4. Any map F ∈ N has negative Schwarzian derivative on the

whole punctured line R \ {0}.
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Proof. Let us consider an open interval I = (a, d) ⊂ R \ {0} as a Poincaré

model of the hyperbolic line. Given a subinterval J = (b, c) b I, let

(3.3) |J : I| = log
(c− a)(d− b)
(b− a)(d− c)

stand for its hyperbolic length. The condition of negative Schwarzian derivative

for F is equivalent to the property that F−1 is a hyperbolic contraction

|F−1(J) : F−1(I)| ≤ |J : I|

for any pair of intervals I and J as above.

Let us now consider the slit plane C(I) := C \ (R \ I) endowed with its

hyperbolic metric. Then I is a hyperbolic geodesic in C(I). Let D(I) be the

round disk based upon I as a diameter. It is the hyperbolic neighborhood of

I in C(I) of certain radius r independent of I.

If F ∈ N , then the inverse map F−1 : I → I ′ (where I ′ = F−1(I)) extends

to a holomorphic map F−1 : C(I) → C(I ′). By the Schwarz Lemma, it is

a hyperbolic contraction. Since F−1(I) = I ′, we conclude that F−1(D(I)) ⊂
D(I ′). Applying the Schwarz Lemma again, we obtain that F−1 : D(I)→ D(I ′)

is contracting with respect to the hyperbolic metric in these disks. Since the

hyperbolic metrics on I and I ′ are induced by the hyperbolic metrics in the

corresponding disks, we are done. �

Remark 3.1. In fact, in the applications to the distortion bounds, the

contracting property for the cross-ratios from (3.3), rather than the Schwarzian

derivative, is directly used (see Theorem 3.7).

Proposition 3.5. Any quasicritical circle map f ∈ Cir(K, ε) has negative

Schwarzian derivative in the δ-neighborhood of the critical point, where δ =

δ(K, ε) depends only on the geometry of f .

Proof. By Lemma 3.2, the rescalings Ft accumulate as t → 0, uniformly

over f ∈ Cir(K, ε), on a compact set K ⊂ N (K). By Lemma 3.4, the latter

have negative Schwarzian derivative. By Proposition 3.3, the maps Ft are

eventually (for t < t0(K, ε)) holomorphic in definite sectors {| arg z| < απ}∩D
and {| arg z − π| < απ} ∩ D. It follows that SFt → SF , F ∈ K, uniformly

on ±[1/2, 1], and hence the Schwarzian derivatives SFt are eventually negative

on these two intervals. By the scaling properties of the Schwarzian, we have

SFt(x) = t2Sf(tx), and hence Sf < 0 on some punctured interval [−δ, δ], with

δ > 0 depending only on the geometry of f . �

3.2.3. Power expansion. Let us consider a map F of class N , and let

Domh F = {z : (Im z) ·(ImF (z)) > 0}. Recall from Lemma 3.1 that it consists

of two disjoint topological sectors S± with the axes R± mapped conformally

onto C \ R∓ respectively. Let us slightly shrink these sectors; namely, for
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β ∈ (0, 1), let

S−(β) = {z ∈ S− : | argF (z)| > βπ},
S+(β) = {z ∈ S+ : | argF (z)| < (1− β)π}.

Lemma 3.6. Let us consider a map F of class N (K), and let β ∈ (0, 1).

Then

|F (z)| ≥ C|z|1+σ for z ∈ S±(β), |z| ≥ 1,

where σ > 0 and C > 0 depend only on K and β > 0.

Proof. Since by Lemma 3.1 S− contains the sector {| arg z−π| < απ}, we

have

S+ ⊂ {| arg z| < (1− α)π}.
Hence the inverse branch F−1 : C \ R− → S+ can be decomposed as φ(z)1−α,

where φ : (C \ R− , 0, 1) → (C \ R− , 0, 1) is a conformal embedding. For such

a map, we have

(3.4) |φ(z)| ≤ A|z| as long as |z| ≥ 1, | arg z| < π(1− β),

where A depends only on β > 0. Indeed, the hyperbolic distance (in C \ R−)

from z as above to 1 is log |z| + O(1). (Note that by the scaling invariance,

the hyperbolic distance from z to |z| depends only on arg z.) Since 1 is fixed

under φ, the Schwarz Lemma implies (3.4). The conclusion for F on S+ follows.

The argument for S− is similar, except −1 is not the fixed point any more.

But since F is quasiregular, |φ(−1)| � 1, and the Schwarz Lemma implies the

assertion again. �

3.3. Real geometry. Due to the above local properties, quasicritical circle

maps enjoy the same geometric virtues as usual analytic critical circle maps.

The main results formulated below are proven in a standard way; see e.g., the

monograph by de Melo and van Strien [dMvS93, Ch. IV, §1–5] for a reference.

3.3.1. Koebe distortion bounds. The following statement extends the usual

Koebe distortion bounds to quasicritical circle maps:

Theorem 3.7. Let f ∈ Cir(K, ε) be a quasicritical circle map. Let J ⊂
I ⊂ R/Z be two nested intervals in T, with I open. Assume that for some

n,m ∈ N, the intersection multiplicity of the intervals f−kI , k = 0, 1, . . . , n is

bounded by m and |f−kI| < δ/2 with δ from Proposition 3.5. Then

|f−kJ : f−kI| ≤ C(K, ε,m) |J : I|.

Proof. It is obtained by the standard cross-ratio distortion techniques; see

[dMvS93]. To see the role of various properties of f , let us recall the main

ingredients.

• Denjoy Distortion control outside the (δ/2)-neighborhood of c0. The distor-

tion bound depends on C2-norm of f on T and on
∑

k∈L |f−kI|, where L is
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the set of moments k ≤ n for which f−kI ∩ (−δ/2, δ/2) = ∅. The C2-norm of

f depends only on (K, ε) by compactness of Cir(K, ε) and the Cauchy control

of the derivatives of holomorphic functions. The total length of the intervals

f−kI is bounded m.

• Contraction of the cross-ratio in the punctured δ-neighborhood of c0. This

is concerned with the moments k ≤ n when f−kI ⊂ (−δ, δ) \ {0}. At these

moments the hyperbolic length |f−kJ : f−kI| is contracted under f−1 by

Proposition 3.5.

• Quasisymmetric distortion control at the critical moments. At the moments

k ≤ n when f−kI 3 c0, we have

|f−k−1J : f−k−1I| ≤ C(H,L) · |f−kJ : f−kI|,

where L is an upper bound for |f−kJ : f−kI| and H = H(K, ε) is the qs-

dilatation of f near c0. Due to the above contraction property, L is bounded

in terms of H and the number s of critical moments. Since s ≤ m, the contri-

bution of the critical moments to the total distortion is bounded. �

3.3.2. No wandering intervals. Recall that an interval J ⊂ I is called wan-

dering if fnJ ∩ J = ∅ for any n > 0. The above Koebe distortion bounds lead

to the following generalization of Yoccoz’s No Wandering Intervals Theorem

[Yoc84]:

Theorem 3.8. A quasicritical circle map f ∈ Cir with an irrational ro-

tation number θ ∈ R \Q (mod Z) does not have wandering intervals.

It follows by the classical theory (Poincaré’s thesis) that such a map f is

topologically conjugate to the rigid rotation

Tθ : x 7→ x+ θ mod 1.

When we want to specify the rotation number of circle maps under con-

sideration, we will use notation Cirθ, Cirθ(K, ε), etc.

3.3.3. Bounded geometry and dynamical scales. The further theory largely

depends on the Diophantine properties of θ encoded in its continued fraction

expansion [N1, N2, . . . ]. Let pm/qm = [N1, . . . , Nm] be the m-fold rational

approximant to θ. The rotation number (and the map f itself) is called of

bounded type if the entries of the expansion are bounded by some N . The

spaces of circle maps with rotation number bounded by N will be denoted

Cir(N), Cirθ(N,K, ε), etc. (depending on how many parameters we need to

specify).

The Koebe distortion bounds also imply a more general version of the

Herman-Swiatek Theorem [Her86], [Świ98]:
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Theorem 3.9. A quasicritical circle map f ∈ Cir(N,K, ε) of bounded

type is H-quasisymmetrically conjugate to the rigid rotation Tθ, with H =

H(N,K, ε).

The circle dynamics naturally encodes the continued fraction expansion

of the rotation number, as the denominators qn are the moments of combi-

natorially closest approaches16 of the critical orbit {cn} back to the critical

point c0. Let us consider the corresponding intervals In = [c0, cqn ] (i.e., the

combinatorially shortest intervals bounded by c0 and cqn). The orbits of two

consecutive ones,

(3.5) fk(In), k = 1, . . . , qn+1 − 1 and fk(In+1), k = 1, . . . , qn − 1,

together with the central interval In0 := In ∪ In+1 form a dynamical tiling In
of T. Moreover, these tilings are nested: In+1 is a refinement of In.

We label the intervals Ink ∈ In, k = 1, . . . , qn+qn+1−2, in an arbitrary way.

Each of these intervals is homeomorphically mapped onto either f qn+1(In) or

f qn(In+1) by some iterate of f . We call it the landing map L = Ln of level n.

On the central interval In0 , we let Ln = id.

In case of bounded type, Theorem 3.9 ensures that these tilings have

bounded geometry,17 i.e., the neighboring tiles are comparable, and hence the

consecutive nested tiles are also comparable. This gives us a notion of n-th

dynamical scale at any point z ∈ T (well defined up to a constant); it is the

size of any tile In(z) ∈ In containing z.

More precisely, let C0 = C(N,K, ε) ≥ 2 be an upper bound for the ratios

of any two neighboring and any two consecutive nested dynamical tiles. We

say that a point ζ ∈ C lies in n-th dynamical scale around z ∈ T if

(3.6) C−1
0 |I

n
k | ≤ |ζ − z| ≤ C0|Ink |

for the dynamical tile Ink of depth n containing z. Any point ζ ∈ D2 lies in

some dynamical scale around any z ∈ T, and the number of such scales is

bounded in terms of (N,K, ε).

For z∈T, we use notation In(z) for the interval of the tiling In containing z.

(If there are two such intervals, make an arbitrary choice.)

3.4. Quasicritical circle pairs and their renormalizations. A quasicritical

circle map can be represented as a discontinuous map of the fundamental inter-

val [c1 − 1, c1], which motivates the following definition: A (real) quasicritical

16This means that these are the closest approaches for the corresponding circle rotation

Tθ.
17This property is also referred to as real a priori bounds.
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circle pair F = (φ−, φ+) is a pair of real analytic homeomorphisms

(3.7) φ− : [β−, 0)→ [b, β+), φ+ : (0, β+]→ (β−, b]

with some β− ≤ 0 ≤ β+, β+ − β− = 1. Moreover, c0 = 0 is the only critical

point of the φ± and this point is of quasicubic type, i.e., it has a local repre-

sentation h(x)3 + c1 with a quasisymmetric h; compare with properties (Q1)

and (Q2).

Renormalization Rcp of circle pairs is defined as follows. In the degenerate

case β− = 0 or β+ = 0 (so that the critical point is fixed under φ+ or φ−)

F is non-renormalizable. In the non-degenerate case, assume for definiteness

that b ∈ (β−, 0]. (Otherwise , one should change the roles of β− and β+.) If

φN− (β−) ≤ 0 for all N ∈ N (equivalently, there is a fixed point in (β−, 0)), then

F in still non-renormalizable.18 Otherwise, let N ≥ 1 be the biggest integer

such that

β′− := φN− (β−) ≤ 0, β′+ := β+,

and let

φ′−| [β′−, 0] = φ−, φ′+| [0, β′+] = φN− ◦ φ+.

Rescaling the interval [β′−, β
′
+] to the unit size by an orientation preserving19

linear map, we obtain RcpF .

To see how the renormalization acts on the rotation numbers, let us con-

sider the linear case (corresponding to the pure rotation). In this case, a con-

venient normalization of F is to let max(|β−|, β+) = 1 (instead of β+−β− = 1)

leaving only one parameter β = min(|β−|, β+) ∈ [0, 1], together with the sign

s ∈ ± such that β = |βs| (which are related to the rotation number θ of f by

θ = sβ/(1 + β)). Then N is the biggest integer such that Nβ ≤ 1, so N is the

integer part of 1/β. Under the renormalization, we obtain

β′ =
1−Nβ

β
=

1

β
modZ,

which is the Gauss map G applied to β, while s′ = −s. (As in this renor-

malization scheme, the cases β+ = 1 and β− = −1 alternate.) Moreover, the

β-number is equivariant under the renormalization: β(RF ) = G(β(F )). In

this way, the continued fraction expansion of β (and hence θ) is directly re-

lated to the renormalization dynamics. See [dMvS93, Ch. I, §1] for a detailed

discussion.

Let us now adapt properties (Q1)–(Q5) to the setting of circle pairs F =

(φ±). We will rely upon the universal covering description of f from the end of

Section 3.1. Let φ± be the lifts of f such that φ±(0) = β∓. Their restrictions to

18In other words, maps with zero rotation number are non-renormalizable.
19Under the usual convention, the rescaling is orientation reversing. However, in further

applications to Siegel maps, this would lead to some inconvenience.
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the disks D− := D−1 and D+ := D0 are conformal. We let T := T0, T̂ := T̂0,

and

DomF := D− ∪D+ ∪ T̂ , Domh F := D− ∪D+.

We also let I− := [β−, 0], I+ := [0, β+], and J± := φ±(I±). For ε > 0, let

J±(ε) be the interval J± scaled by factor (1 + ε) centered at its mid-points.

We can now record the following properties of our maps:

(P1) Each branch φ± : D± → C admits a quasiregular extension of the form

φ± = ψ±◦G, where G : C→ C is a global quasiregular map of some class

N (K) while each ψ± is a conformal map on a domain Υ± ⊃ G(Domh
± F )

whose range ψ±(G(Domh
± F )) c J±(ε) is a topological disk slit along two

real rays.

(P2) The maps φ± : Domh
± F ∩H+ → H+ and F : T → H− are embeddings.

We let Circp(N,K, ε) be the class of quasicritical circle pairs of type

bounded by N such that G ∈ N (K), DomF contains the (2ε)-neighborhood

of [β−, β+] ⊂ C, and ε satisfies (P1).

We say that a quasicritical circle pair F ∈ Circp(N,K, ε) belongs to Ep-

stein class E(N,K, ε) if the range of each of the above univalent maps ψ±
contains the whole slit plane C \ (R \ J±(ε)).

Examples of such maps are provided by Blaschke maps Bθ (3.1) lifted to

C by the exponential map C→ C∗, z 7→ e2πiz.

The renormalization Rcp acts on the class of quasicritical circle pairs of

type bounded by N , as well as on the corresponding Epstein class.

3.5. Butterflies and complex bounds.

3.5.1. Butterflies. We will now introduce a class of quasicritical circle

pairs with a nice external structure (which is a quasicritical version of but-

terfies introduced by Edson de Faria in the early 1990s). A butterfly map

(3.8) f = (φ−, φ+) : (X̂−, X̂+)→ Ŷ

is a quasicritical circle pair with the following properties:

• X̂± ⊃ int I± are disjoint R-symmetric Jordan disks whose closures touch

only at 0; we let X± = X̂± ∩H.

• Ŷ is an R-symmetric topological disk compactly containing the X±; we let

Y := Ŷ ∩H.

• Each φ± maps the corresponding X± univalently onto Y .

• The maps φ± admit a quasiregular extension as descrbed in (P1) (with

Ŷ± = D±).

The configuration of the domains X := X+ ∪X− sitting inside Y is called

a butterfly (see Figure 3.1). The filled Julia set K(f) is the set of points that

never escape Dom f = X+ ∪X−. Let mod f = min(mod(Ŷ \ X̂±)).
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I−

X−
X+

Y

I+

φ− φ+

Figure 3.1. Butterfly.

Let us mark in Ŷ the critical point c0 = 0, and in X̂± the critical value

c∓ = φ±(0). We say that a butterfly has a κ-bounded shape if each of the

marked domains can be mapped onto the marked unit disk (D, 0) by a global

R-symmetric κ-qc map.

The geometry of a butterfly is controlled by three parameters: µ (a lower

bound on mod f), κ (a bound on the shape of the butterfly), and B, a bound on

the geometry of the intervals X̂± ∩R inside Ŷ ∩R. The latter is defined as the

best dilatation of a quasisymmetric map (Ŷ ∩R, 0)→ ([−1, 1], 0) that moves the

boundary points of the intervals in question to some standard configuration.

Let B(N,µ, κ,B) stand for the space of butterflies of type bounded by N

whose geometry is controlled by the specified parameters. As usual, the class

B(µ, κ,B) is defined as the union of those.

3.5.2. Complex bounds. We are ready to state a quasicritical version of de

Faria-Yampolsky complex bounds [dF99], [Yam99]:

Theorem 3.10. Let f ∈ Circp(N,K, ε) be a quasicritical circle pair. Then

there exists an l depending only on (N,K, ε) such that for all m ≥ l − 1, the

pre-renormalizations Rmcpf can be represented as butterflies Xm
− ∪Xm

+ → Y m

of class B(N,µ, κ,B) with Ŷ l−1 c Ŷ l c . . . , and

dist(∂Ŷ m, Ŷ m+1) � dist(∂Ŷ m, X̂m
± ) � diam Ŷ m.

All constants and bounds depend on (N,K, ε) only.

Proof. The proof is the same as in the analytic case (at the last moment

making use of Lemma 3.6). We recall the main steps, in the case of Epstein
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class, following the strategy of [LY97], [Yam99]. The general case can be carried

following [dFdM00] by a more careful analysis at small scales, based on the

real bounds (which are available in our setting by Theorem 3.9).

Let us consider the dynamical interval I = In = [c0, cqn ] of some level

n ∈ N attached to the critical point (see Section 3.3.3), and let q = qn+1,

J = f q(I). Then f q| I can be decomposed as ψ ◦ f where ψ−1 : J → f(I)

admits a conformal extension to the slit plane C \ (R \ J). Here is the Key

Estimate: for any z outside R, we have

(3.9)
dist(ψ−1(z)), |f(I)|

|f(I)|
≤ A
Å

dist(z, J)

|J |

ã
+B.

The proof uses only the real bounds and the Schwarz Lemma for holomorphic

maps between slit planes. As both these ingredients are available for our class

(as we always apply only holomorphic inverse branches of f), the Key Estimate

is valid in this generality.

At the last moment we apply the inverse branch of the cubic quasiregular

map f near its critical point. By Lemma 3.6, it is highly contracting in big

(rel I) scales, beating a bounded expansion allowed by (3.9).

Now take a big k ∈ N and consider a disk Dρ of size comparable with

In−k. Let Ŷ be Dρ slit along two real rays corresponding to the range of the

Epstein map Rnf . The contracting property discussed above implies that the

pullbacks of Ŷ by Rnf are well trapped inside Ŷ . This produces a butterfly

with a definite modulus µ > 0.

Slightly shrinking Ŷ n (using the space in between Ŷ n and the X̂n
±) and tak-

ing its pullbacks under Rnf once again, we obtain a butterfly with a bounded

shape. �

Let us mention the following important special case that can be reduced

directly to the Epstein class setting:

Corollary 3.11. The above a priori bounds hold for a butterfly map

f : X− ∪X+ → Y of class B(N,µ0, κ0, B0).

Proof. By uniformizing Y with the slit plane C \ (R \ [−1, 1]), we con-

formally conjugate our butterfly f to a map of Epstein class E(N,K, ε) with

parameters depending only on (N,µ0, κ0, B0), which reduces the problem to

this setting. �

Remark 3.2. For the same reason, all the statements formulated below for

maps of Epstein class are also valid for butterfly maps.

3.5.3. Expansion. In this section we adapt some of McMullen’s results (see

[McM96, §6.2] and [McM98]) to our setting. For z in the upper half-plane, we

will use notation ang z for min{arg z, π−arg z}, where arg z ∈ (0, π). Together

with the Schwarz Lemma, the complex bounds imply
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Lemma 3.12. Under the conditions of Theorem 3.10, the renormalizations

fm := Rmcpf are expanding in the hyperbolic metric of H. Moreover,

‖Dfm(z)‖hyp ≥ ρ > 1, m ≥ l,

with ρ depending only on (N,K, ε) and a lower bound on ang z.

Proof. Assume for definiteness that z ∈ Xm
+ and Rmf |Xm

+ = f qm . Since

each X± is univalently mapped onto H under f qm , there exists a disk Xm
+ ⊃ Xm

+

that is univalently mapped onto H under f qm . The hyperbolic expanding factor

of this map is equal to the inverse of ‖Di(z)‖hyp, where i : Xm
+ → H is the

natural embedding. This hyperbolic norm is bounded in terms of the upper

bound on disthyp(z, ∂Xm
+ ) measured in H. But by Lemma 3.1, if ang z >

ω > 0, then z can be connected to ∂Xm
− by a circle arc γ whose Euclidean

length divided by its Euclidean distance to H is bounded by some constant

C(N,K, ε; ω). All the more, the same bound holds for the piece of this arc

connecting z to ∂X+. The conclusion follows. �

Theorem 3.13. Let f ∈ E(N,K, ε) be a map of Epstein class. Then there

exists ρ > 1 depending on (N,K, ε) only such that if z ∈ Y m ∩Domh fn while

fnz ∈ Y m−k \ Y m−k+1 for some n ∈ N, 0 < k < m (with m− k > l), then

‖Dfn(z)‖hyp ≥ ρk,

where the norm is measured in the hyperbolic metric of the upper half-plane H.

Proof. On its way from Y m to Y m−k \ Y m−k+1, there exist � k levels

Xi := Xi
+ ∪Xi

− and corresponding moments ni such that zi := fniz ∈ Xi but

(Rif)(zi) 6∈ Xi. Such a point zi stays away from R (in the rescaled plane),

unless either ang zi or ang(Rif)(zi) is definite. Lemma 3.12 implies the desired

assertion. �

3.5.4. Compactness. Let us normalize a complex pair f : X̂+ ∪ X̂− → Ŷ

so that |Ŷ ∩ R| = 1 and introduce the following topology on the space of

normalized pairs. A sequence fn : X̂n
+ ∪ X̂n

− → Ŷ n converges to a pair f :

X̂+ ∪ X̂− → Ŷ if the domains Ŷ n Carathéodory converge to Ŷ and the inverse

branches (fn)−1 : Ŷ n → X̂n
± converge to the corresponding branches of f−1

uniformly on compact subsets of Ŷ±. (See [McM94, §5.1] or [Lyu, §7.7] for a

discussion of the Carathéodory topology.) Standard compactness properties of

the Carathéodory topology imply

Proposition 3.14. The butterfly space B(µ, κ,B) is compact.

3.6. Periodic points αl, collars Al, and trapping disks Dl.

3.6.1. Periodic points αl. Let us start collecting consequences of the com-

plex bounds.
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Proposition 3.15. Under the circumstances of Theorem 3.10, for any

l ≥ l − 1, there exists a repelling periodic point αl ∈ X l
− ∪ X l

+ of period ql.

Moreover,

(i) dist(αl,T) is comparable to I l(c0);

(ii) the multiplier of αl is bounded and bounded away from 1 in absolute value.

Proof. Each restriction Rlf : X l
± → Y l is a conformal map from a smaller

domain onto a bigger one. By the Wolff-Denjoy Theorem (applied to the

inverse map) it has a fixed point in the closure X
l
±. However, it does not have

fixed points on the boundary since f does not have periodic points on R, while

the image of ∂X l
± \R under Rlf (contained in ∂Y l) is disjoint from itself. So,

there is a fixed point αl± ∈ X l
±.

Assertions (i) and (ii) follow from compactness (Proposition 3.14).

Finally one of the points αl± has period ql. �

3.6.2. Collar Lemma and trapping disks Dl. For all sufficiently big l, com-

plex a priori bounds allow us to construct nice collars Al around D and nice

trapping disks Dl that capture all orbits that escape beyond the corresponding

collars.

We say that a point z ∈ C \ D lies on depth l, d(z) = l, if

C−1
0 |I

l(ζ)| ≤ dist(z,T) ≤ C0|I l(ζ)|,

where ζ is the closest to z point of T, and C0 = C0(N,K, ε) is the constant from

(3.6). Of course, any point can lie on several depths (so d(z) is multivalued),

but this number is bounded in term of (N,K, ε).

Lemma 3.16. Under the circumstances of Theorem 3.10, for any l ≥ l−1,

there exists a pair of smooth annuli (“collars”) Al0 b Al surrounding20 D in

Dom f \D, and a smooth quasidisk Dl 3 αl in Y l with the following properties :

(A1) Any boundary point z ∈ ∂oAl0 ∪ ∂oAl of these collars lies on depth d(z)

with
|d(z)− l| ≤ ι = ι(N,K, ε).

Moreover, dist(z, ∂oAl) � dist(z,T) for any z ∈ ∂oAl0, and similarly for

the inner boundaries ∂iAl0 and ∂iAl.

(A2) It is impossible to “jump over the collar”:

If z ∈ Comp0(C \Al0) \ D while f(z) 6∈ Comp0(C \Al0), then f(z) ∈ Al0.

(D1) The disk Dl has a bounded shape around αl; it also has the hyperbolic

diameter of order 1 in Y l \ D and in C \ D.

20We prepare a pair of collars for each l to make the statements robust under perturbations.

By “surrounding” we mean that D ⊂ Comp0(C \Al).
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D

f−1(D) \ D

Dl

αl

Figure 3.2. Trapping disk.

(D2) A definite portion of Dl (with respect to the plane area ) is contained in

f−1(D) \ D. Moreover,

there is a point β ∈ f−1(T) \ D that lies in the middle of Dl.

See (1.1) and Figure 3.2.

(D3) If z ∈ Al, then there exists a moment k < ql+1 such that fkz lies in the

middle of Dl.

(D4) There exists ι = ι(N,K, ε) such that for any ι > ι and l > l + 2ι, under

the circumstances of (D3), we have

f iz 6∈ Dl−ι
1 , i = 0, 1, . . . , k,

where Dl−ι
1 b Y l−ι\D is a disk containing Dl−ι with a definite mod(Dl−ι

1 \
Dl−ι); in particular, Dl ∩Dl−ι

1 = ∅.
(D5) Moreover, under the above circumstances,

f iz ∈ Comp0(C \Al−ι), i = 0, 1, . . . , k,

and Al−ι b Comp0(C \Al−2ι).

All the bounds and constants depend only on (N,K, ε).

Proof. Let us consider the butterfly renormalization Rlcpf : X l
−∪X l

+→Y l.

For Y l, we will also use the notation Y l
0 .

Any dynamical tile I lk ∈ I l is compactly contained in the topological disk

Y l
k obtained by pulling Y l back by the conformal landing map, the complex

extension of the landing map Ll : I lk → I l0. Complex a priori bounds imply that

I lk is contained well inside Y l
k (since mod(Y l

k \ I lk) = mod(Y l \ I l0) is definite).

Hence each Y l
k contains a half-ellipse ∆ε(I

l
k) of bounded eccentricity based on

the (1+ε)-scaled interval I lk, where ε > 0 and the bound on eccentricity depend
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only on real and complex a priori bounds. The union of these half-ellipses is an

annulus whose inner boundary is T and the outer boundary lies on dynamical

depth l + O(1). Moreover, for k 6= 0, these disks lie well inside Domh f , since

Y l
k b Domh f .

Now existence of collars Al0 b Al satisfying (A1) is obvious. Moreover,

one can easily secure the following property:

(M) Every point z ∈ Al1 lies in the middle of some Y l
k .

Furthermore, since f is quasiregular, there is ῑ = ῑ(N,K, ε) such that

d(f(z) ≥ d(z)− ῑ, z ∈ Domh f.

It follows that if the collar Al0 is selected sufficiently thick (i.e., contains a

round annulus going over more than ī depth levels), then points cannot jump

over it, securing (A2).

Let us view the topological half-disk Y l \ D as the hyperbolic plane, and

let Dl = Dl(R) be the hyperbolic disk of radius R in Y l centered at αl. By the

Koebe Distortion Theorem, these disks satisfy property (D1) with constants

depending on R (or better to say, on an upper bound for R) .

For R big enough (depending only on (N , K, ε)), they also satisfy (D2).

Indeed, since f is quasiregular, any sufficiently small disk D(c0, r) contains a

comparable disk D(ζ, ar) ⊂ f−1(D) \D. Since the domains Y l have a bounded

shape around c0, while the disks Dl(R) closely approximate Y l \D (uniformly

in l), we conclude that for R big enough,

Dl(R) ⊃ D(ζ, ar/2) and areaDl(R) � areaD(ζ, ar/2),

which yields the first part of (D2).

The second part of (D2) follows from Proposition 3.3, which implies that

there is a point ζ ∈ f−1(T) lying in the middle of Y l. For R big enough, it lies

in the middle of Dl(R) as well.

If z ∈ Al, then by Property (M), z lies in the middle of some domain Y l
k .

By the Koebe Distortion Theorem, under the landing map Lk : Y l
k → Y l, it

lands in the middle of Y l. Hence for R big enough, Lk(z) lies in the middle of

Dl(R) as well, which establishes property (D3).

Since the whole orbit {f iz}ki=0 lies on depth ≥ l − O(1), it is separated

from Dl−ι+O(1) and from Al−ι, as long as ι is sufficiently big. Similarly, since

Al−ι lies on depth l − ι, it is separated from Al−2ι for ι big enough. These

remarks prove (D4) and (D5). �

We say that the trapping disk D=Dl is centered at αl, or that depthD= l.

3.7. Cylinder circle renormalization.

3.7.1. Real definition. There is a different approach to the circle renor-

malization that avoids using circle pairs. For any non-critical point θ ∈ R/Z,

consider the oriented interval I = [θ, f(θ)] ⊂ R/Z. Identifying its endpoints
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by means of f , we obtain an oriented real analytic circle T′. The first return

map to I descends to a quasicritical circle map of T′ (defined up to an orienta-

tion preserving analytic conjugacy) that is called the cylinder renormalization

Rcylf of f . The rotation number of Rcylf is equal to −1/θ modZ.

This leads to the modified Gauss map G∗ : θ 7→ −1/θ modZ accompanied

by the modified continued fraction expansion

θ =
1

N1 − 1
N2−···

≡ [N1, N2, . . . ]∗, Ni ≥ 2.

We will use the same notation for the rational approximands in this expan-

sion, pm/qm = [N1, . . . , Nm]∗. Of course, the notion of “bounded type” is

independent of which expansion we use.

The rotation numbers θN = [N, N, N, . . . ]∗ with equal entries21 N ≥ 3

are called of stationary type (with respect to the modified expansion). The

most familiar of these is the golden mean θ3 = (3−
√

5)/2.

3.7.2. Complexification. Let us start with a topological lemma:

Lemma 3.17. For any butterfly map f ∈ B(µ, κ,B) (3.8), there exists an

arc γ connecting the fixed point α ∈ X+ to β+ (3.7) in such a way that α is

the only common point of γ and f(γ). Moreover, the triangle bounded by γ,

f(γ) and the arc of J := [φ+(β+), β+] ∈ R is L(κ, µ,B)-qc equivalent (by a

global map Ĉ→ Ĉ) to the half-strip

(3.10) {z : Im z ≥ 0, 0 ≤ Re z ≤ 1} ∪ {∞} ⊂ Ĉ.

Proof. Let φ := φ+, X := X+, β+ := β. Notice that there is a subarc σ ⊂
∂X that touches J at β and is mapped homeomorphically onto the subinterval

of ∂Y ∩R that begins at φ(β) (covering J). Hence the pullback J ′ := φ−1(J) is

a subarc of σ touching J at β. Since X is κ-qc equivalent to the unit semi-disk,

the concatenation J ∪J ′ is a quasiarc. Pulling it further, we obtain a sequence

of quasiarcs Jn := φ−n(J) ⊂ X, n = 0, 1, . . . , one attached to the previous

one, such that the Jn∪Jn+1 are quasiarcs with uniform dilatation (depending

only on (κ, µ,B)) shrinking to α at a geometric rate. Then

Γ := {α} ∪
∞⋃
n=1

Jn

is a quasiarc (with dilatation depending only on κ, µ,B) connecting α to β

whose image f(Γ) is a longer quasiarc connecting α to φ(β). To see that Γ is a

quasiarc, notice that it is so away from α since Γ is composed from overlapping

quasiarcs T k := φ−k(J∪J ′). Moreover, since φ near α acts as a linear expansion

by some ρ > 1, both length and diameter of the arc
⋃
m≤k≤n T

k are comparable

with ρn, implying that Γ is a quasiarc near α as well.

21Note that θ2 = 1.
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The map φ on X can be globally linearized by a Q-qc homeomorphism

ψ : (C, X)→ (C, ψ(X))

that is conformal on X, ψ(φ(z)) = λψ(z), z ∈ X, with Q depending only on

(κ, µ,B). It can be further conjugate to the doubling map T : z 7→ 2z by a qc

homeomorphism h : C→ C that straightens the quasiarc Γ to the unit interval

[0, 1]. In this model, we can let γ̃ ≡ h((ψ(γ)) be a segment of a circle passing

through 0 and 1 sufficiently close to R so that it fits to the domain h(ψ(X)).

Moreover, the triangle bounded by γ̃, 2 · γ̃ and [1, 2] is qc equivalent to the

half-strip (3.10), implying the conclusion. �

For m sufficiently big, the cylinder renormalizations Rmcylf we have de-

scribed above can be complexified as follows; see Yampolsky [Yam02]. Let us

consider a periodic point αm, m ≥ l, from Corollary 3.15. Then there is a

T-symmetric arc γm connecting αm to the symmetric point22 1/ᾱm in such

a way that f qm(γm) does not intersect γm. Let us consider the fundamental

region Υm = Υm(f) bounded by these two arcs.

Lemma 3.18. Let f ∈ Cir(N,K, ε). Then the regions Υm are κ-qc equiv-

alent to the strip {0 ≤ Re z ≤ 1}, with κ depending only on (N̄ ,K, ε).

Let us now identify the boundary components of Υm by means of f qm .

We obtain a cylinder Cylm that is conformally equivalent to the standard bi-

infinite cylinder C/Z (the symmetrization of the half-cylinder corresponding to

(3.10)). The first return map to Υm descends to a holomorphic map on Cylm

near the circle, and then can be transferred to exp(C/Z,R/Z) = (C∗,T). This

is the cylinder renormalization of a holomorphic circle map (well defined up to

affine conjugacy).

3.8. Quasiconformal conjugacy.

Theorem 3.19 (compare [dFdM00]). Two quasicritical circle maps,

f : Domh f → Y and f̃ : Domh f̃ → Ỹ, of class Circp(N,K, ε),

with the same rotation number are L-qc conjugate in a δ-neighborhood of T,

with L and δ > 0 depending only on (N,K, ε).

Proof. The proof is an application of Sullivan’s Pullback Argument; see

[dMvS93].

Without loss of generality, we can assume that f is a butterfly renormal-

ization of the Blaschke product Bθ (3.1) provided by complex bounds (Theo-

rem 3.10). It is easy to see, using the general description of the dynamics on

22Here we describe it in terms of the unit circle T in C.
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the Fatou set, that the filled Julia set K(Bθ), and hence K(f), are nowhere

dense.

By Theorem 3.9, there is a quasiconformal map h0 : C → C conjugating

f and f̃ on the unit circle (with dilatation depending only on N). Using the

complex bounds (Theorem 3.10) this map can be adjusted, after passing to

some renormalization, so that it is equivariant on the boundary of the butterfly,

with dilatation depending only on (N,K, ε).

We can now start lifting the map h0 under the dynamics to make it equi-

variant on bigger and bigger parts of Ωh
f . Since f is conformal on Ωh

f , these lifts

hn have the same dilatation as h. By compactness of the space of normalized

L-qc maps, we can pass to a subsequential limit, hnk → h.

Moreover, outside the filled Julia set K(f), h is independent of the sub-

sequence (nk) since the lifts hn stabilize pointwise on C \K(f). Since K(f) is

nowhere dense, by continuity h is independent of the subsequence on the whole

plane. Hence hn → h on the whole plane, implying that h conjugates f to f̃ .

Let us finally spread the conjugacy around the circle. To this end let us

consider an arc Γ connecting two boundary points of ∂Y and composed of two

external rays of Bθ through the point b = φ±(β∓). (Such rays exist since the

Julia set of Bθ is locally connected [Pet96].) Let Γ± be similar arcs obtained as

the pullbacks of Γ through β±, respectively. Since the external rays form a folia-

tion, Γ± are disjoint from Γ. Let Π± be the topological rectangles each bounded

by Γ± and Γ, respectively, and by a pair of arcs of ∂Y . Pulling these rectangles

back by the first landing map to Y (compare with the proof of Lemma 3.16),

we obtain a tiling of a neighborhood of T by topological rectangles.

Transfer the arcs Γ and Γ± by h to the butterfly range Ỹ and use them

to construct a similar tiling near T for f̃ . Then the conjugacy h between the

butterflies can be lifted via these tilings to a desired qc conjugacy between f

and f̃ near T. �

4. Siegel maps and their perturbations

4.1. Douady-Ghys surgery.

4.1.1. Blaschke model for Siegel polynomials. Let us consider a quadratic

polynomial

(4.1) fθ : z 7→ e2πiθz + z2, θ ∈ R/Z.

When the rotation number θ has bounded type, it is linearizable near the origin,

and thus has a Siegel disk B ≡ BPθ ≡ Bθ. Here we will briefly describe the

Blaschke model for this quadratic map due to Douady and Ghys (see [Dou87b]).

It is based on a surgery that turns an appropriate Blaschke product into fθ.

Consider a family of Blaschke products (3.1). It induces a family of critical

circle maps on the unit circle T. Adjusting the parameter α one can make the
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rotation number of Bα assume an arbitrary value, so it can be made equal to

the rotation number θ from (4.1).

Assume θ is of bounded type. Then by Theorem 3.9, Bα : T→ T is quasi-

symmetrically conjugate to the pure rotation Tθ. We can use this conjugacy

to glue the Blaschke product on C \ D to the rotation of D. This produces

a degree two quasiregular map F of a quasiconformal sphere. Moreover, F

preserves the conformal structure obtained by spreading around the standard

structure on the disk D. By the Measurable Riemann Mapping Theorem, F is

quasiconformally conjugate to some quadratic polynomial z 7→ λz + z2. Since

this quadratic polynomial has an invariant Siegel disk with rotation number θ,

it coincides with fθ.

4.2. Expansion. Let us endow the complement C\B of a Siegel disk B=Bθ

of bounded type with the hyperbolic metric ‖ · ‖hyp. A standard application of

the Schwarz Lemma shows that the map f = fθ is expanding in this metric,

‖Df(z)‖hyp > 1 if z, f(z) ∈ C \B.

Indeed, the map f : C \ f−1(B)→ C \ B is a covering and hence a hyperbolic

isometry. By the Schwarz Lemma, the embedding

(4.2) i : C \ f−1(B)→ C \B

is a hyperbolic contraction. Hence f ◦ i−1 : C \B 99K C \B is expanding on its

domain of definition (i.e., on C \ f−1(B)).

Using the Blaschke model, McMullen showed that the expansion is uniform

near the critical point:

Lemma 4.1 ([McM94]). Let f = fθ be a Siegel quadratic polynomial of

type bounded by N , and let C > 0. Then there exists ρ = ρ(N,C) > 1 such

that

‖Df(z)‖hyp > ρ if z, f(z) ∈ C \B, and |z − c0| ≤ C dist(z,B),

where the dist stands for the Euclidean one.

Proof. From the above argument we see that ‖Df(z)‖hyp = ‖Di−1‖hyp,

where i is embedding (4.2). The latter is bounded away from 1 in terms

of the hyperbolic distance ∆ from z to f−1B (in C \ B). For the Blaschke

model, the corresponding hyperbolic distance is bounded in terms of the con-

stant corresponding to C (i.e., with the Sielge disk B replaced by the unit

disk D). The Blaschke model is K-qc equivalent to f where K is bounded in

terms of N . Since global qc maps are quasisymmetries and hyperbolic quasi-

isometries (quantitatively), the hyperbolic distance ∆ is bounded in terms of C.

The conclusion follows. �
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Let us now consider a perturbation f̃ = fθ̃ (not necessarily with real θ̃)

of the Siegel polynomial f = fθ. Let Õ be the postcritical set of f̃ . Endow

its complement C \ Õ with the hyperbolic metric ‖ · ‖ ∼
hyp

. Then the map f̃

is expanding with respect to this metric (for the same reason as the Siegel

map f). In fact, under certain circumstances it is also uniformly expanding

near the critical point:

Lemma 4.2. Let the type of θ be bounded by N , and let C > 0. Then there

exists ρ = ρ(N,C) > 1 such that for any compact set K b C \ B, there exists

δ > 0 with the following property. Let |θ̃ − θ| < δ, and assume Õ is contained

in the δ-neighborhood of the Siegel disk B. Then for any point z ∈ K \ f̃−1(O)

such that

(4.3) |z − c0| ≤ C dist(z,B),

we have

‖Df̃(z)‖ ∼
hyp
≥ ρ.

Proof. As the proof of Lemma 4.1 shows, the expansion factor ρ is bounded

from below in terms of the hyperbolic distance from z to f̃−1(Õ) in C \ Õ.

Let U ≡ Uδ be the δ-neighborhood of B. For δ small enough, U is disjoint

from K. Then the hyperbolic metrics on C \ B and on C \ U restricted to K

are comparable (and in fact, close for δ small).

By assumption, the postcritical set Õ is contained in U . By the Schwarz

Lemma, the hyperbolic metric ‖ · ‖ ∼
hyp

on C \ Õ restricted to K is bounded

from above by the hyperbolic metric on C \ U . Altogether, for δ sufficiently

small, we conclude

‖ · ‖ ∼
hyp
≤ C1 ‖ · ‖hyp on K,

with the constant C1 depending only on N . (In fact, C1 can be taken arbitrary

close to 1 for δ small.)

Since the dynamics of f on ∂B is minimal, the set Õ makes an ε-net for

∂B provided δ is small enough. Hence f̃−1(Õ) makes an O(ε)-net for f−1(∂B).

As we know (see the proof of Lemma 4.1), condition (4.3) implies that the

hyperbolic distance from z to f−1(B) in C \B is bounded. It follows that the

hyperbolic distance from z to f̃−1(Õ) in C \ Õ is bounded as well. �

4.3. Siegel maps.

4.3.1. Definition. A Siegel map f : (Ω, 0)→(C, 0) is a holomorphic map on

a Jordan disk Ω ≡ Ωf = Dom f with the following properties (see Figure 4.1):

(S1) f has a Siegel disk S ≡ Sf (centered at 0) that is a quasidisk compactly

contained in Ω;

(S2) f has a non-degenerate critical point c0 ∈ ∂S;
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Figure 4.1. A Siegel map supplied with a renormalization but-

terfly and a fundamental domain for the corresponding cylinder

renormalization. Courtesy of D. Dudko.

(S3) the domain Ωh ≡ Ωh
f := {z ∈ Ω \ S : fz ∈ Ω \ S} is obtained from the

annulus Ω \ S by removing a topological triangle

T ≡ Tf ⊂ (Ω \ S) ∪ {c0}

with a vertex at c0 and the opposite side on the boundary of Ω;

(S4) f : Ωh
f → C \ S is an immersion, and f : T → S ∪ {c1} is an embedding.

We let Domh f = Ωh
f ∪ S.

Remark 4.1. Note that Siegel maps are holomorphic by definition, so in

this case superscript “h” is taken only by analogy with the circle case.

(S5) A lift of f to the universal covering H of S \ D admits a representation

as in (Q5).

Given N ∈ N and µ > 0, let Sieg(N,µ,K) stand for the space of Siegel

maps f : Ω→ C of type bounded by N and such that mod(Ω \S) ≥ µ and ∂S

is a K-quasicircle. (If irrelevant, some of these parameters can be skipped in

the notation.)

We will later use the notation Siegθ(µ,K) ≡ SiegN (µ,K) for the class of

Siegel maps f ∈ Sieg(µ,K) with stationary rotation number θ = θN .
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4.3.2. Circle model for Siegel maps. By performing the Douady-Ghys

surgery on an arbitrary analytic critical circle map g of bounded type (not

only on the Blaschke map), we can produce plenty of Siegel maps. However,

to obtain all of them, we need to allow quasicritical circle maps.

Proposition 4.3. Any Siegel map f : (Ω, 0)→ (C, 0) of class S(N,µ,K)

can be obtained by performing a Douady-Ghys surgery on a quasicritical circle

map. Moreover, the dilatation of the surgery depends on K only.

Proof. Let ψ+ : C\S → C\D be the uniformization of the complement of

S normalized so that ψ+(c0) = 1. Since S is a quasidisk, it extends to a global

quasiconformal map ψ+ : (C, S) → (C,D) (with the dilatation depending on

K only). Then

g0 := ψ+ ◦ f ◦ ψ−1
+ : (ψ+(Ω),D)→ (C,D)

is a quasiregular map in a neighborhood of D that is a holomorphic immersion

on ψ+(Ωh). Applying to g0|ψ+(Ω) \ D the Schwarz Reflection Principle, we

obtain a quasiregular map g near T that restricts to a homeomorphism T→ T.

Moreover, it is a holomorphic immersion on Domh g, and hence is real analytic

on T \ {1}. At the critical point c0 = 1, it has local degree 3. Moreover,

properties (S3) and (S4) of f readily translate to properties (Q3)–(Q5) of g.

Thus, g is a quasicritical circle map.

On the other hand, the uniformization ψ− : S → D conjugates f to the

rotation Tθ (and extends to a global qc map). Hence f is the quasiconformal

welding between g and Tθ. �

Remark 4.2. Notice that the above construction is softer than the Douady-

Ghys surgery (as it does not involve an infinite procedure of spreading around a

Beltrami diffirential and does not use the Measurable Riemann Mapping The-

orem).23 The price for this simplification is that the outcome is quasicritical

rather than holomorphic.

4.4. Circle  Siegel transfer. By means of the Douady-Ghys surgery, we

can transfer the objects defined above for quasicritical circle maps to their

Siegel counterparts. Somewhat abusing notation, we will usually keep the

same notation for the transferred objects.

4.4.1. Dynamical scales. For any f ∈ Sieg(N,µ,K), we can transfer the

circle dynamical tilings (3.5) to the boundary of the Siegel disk S. Since

the surgery is quasisymmetric, these Siegel dynamical tilings Im have bounded

geometry as well (depending only on (N,µ,K)), which gives us for any z ∈ ∂S a

23It is more similar to the external circle map construction for quadratic-like maps.
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notion of the dynamical scales near z (with the constant C0 from (3.6) replaced

with an analogous constant C0 = C0(N,µ,K) controlling the geometry of the

tilings for Siegel maps).

4.4.2. Siegel butterfly renormalization. Since any Siegel map f of bounded

type is conjugate on the boundary of S to a quasicritical circle map, we can

immediately define the Siegel pairs renormalizations RSpf on ∂S. The com-

plexification of this notion, a Siegel butterfly

(4.4) RmSp : Xm
+ ∪Xm

− → Y m,

corresponds, via the surgery, to the external part of the circle butterfly (see

Figure 4.1). Theorem 3.10 implies

Theorem 4.4. Let f ∈ Sieg(N,µ,K) be a Siegel map of bounded type.

Then there exists an l depending only on (N,µ,K) such that for all m ≥ l−1,

the renormalizations RmSpf on ∂S can be extended to Siegel butterflies

RmSpf : Xm
− ∪Xm

+ → Y m

with Y l−1 ⊃ Y l ⊃ · · · such that the Y m are quasidisks of bounded shape and

dist(∂Y m \ ∂S, Y m+1) � dist(∂Y m \ ∂S, Xm
± ) � diamY m.

All constants and bounds depend on (N,µ,K) only.

As in the circle case, these a priori bounds lead to external expansion:

Corollary 4.5. Under the circumstance of Theorem 4.4, the renormal-

izations fm := RmSpf are expanding in the hyperbolic metric of Y 0. Moreover,

‖Dfm(z)‖hyp ≥ ρ > 1

with ρ depending only on (N,µ,K) and a lower bound on dist(z, S)/ dist(z, c0).

Proof. To deduce it directly from the statement of Lemma 3.12 just map

Y 0 conformally onto H. �

This leads to a direct analogue of Theorem 3.13 (with an additional con-

stant factor a due to the comparison of the hyperbolic metrics in Y 0 and C\S).

Corollary 4.6. Let f ∈ Sieg(N,µ,K) be a Siegel map. Then there exist

a > 0 and ρ > 1 depending only on (N,µ,K) such that if z ∈ Y m ∩ Domh fn

and fnz ∈ Y m−k \Y m−k+1 for some n ∈ N, 0 < k < m (with m− k > l), then

‖Dfn(z)‖hyp ≥ aρk,

where the norm is measured in the hyperbolic metric of C \ S.

Here Dom fn denotes (as in the circle case) the set of points whose orbits

(fkz)nk=0 stay outside C \ S.
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4.4.3. Periodic points αl. Proposition 3.15 implies

Corollary 4.7. For any Siegel map f ∈ Sieg(N,µ,K), there exists l =

l(N,µ,K) such that for any l ≥ l − 1, f has a repelling periodic point αl of

period ql in the l-th dynamical scale near the critical point c0.

Remark 4.3. If f = fθ is a Siegel quadratic polynomial with rotation num-

ber of bounded type, then the periodic point αl was born in the parabolic

explosion from the parabolic approximand fpκ/ qκ . It can be characterized as

the landing point of a ray with rotation number pκ/qκ.

4.4.4. External collars of Al and trapping disks Dl. Let us now transfer,

by means of the surgery, the collars and trapping disks from the circle plane to

the Siegel plane. It is a direct consequence of Lemma 3.16 and quasisymmetry

of quasiconformal maps.

Proposition 4.8. For any Siegel map f ∈ Sieg(N,µ,K) and any l >

l + 2ι, there exist a pair of smooth annuli (collars) Al0 b Al surrounding the

Siegel disk S = Sf in Dom f \ S and a smooth quasidisk Dl b Dom f \ S
containing αl with the following properties :

(A1) For any z ∈ ∂oAl0, dist(z, ∂oAl) � dist(z, ∂S), and similarly for the inner

boundaries ∂iAl0 and ∂iAl.

(A2) It is impossible to “jump over the collar”:

If z ∈ Comp0(C \Al0) while f(z) 6∈ Comp0(C \Al0) then f(z) ∈ Al0.

(D1) The disk Dl has a bounded shape around αl and it has the hyperbolic

diameter of order 1 in C \ S.

(D2) A definite portion of Dl is contained in f−1(S) \ S; moreover,

there is a point β ∈ f−1(∂S) \ S that lies in the middle of Dl;

see Figure 3.2.

(D3) If z ∈ Al then there exists a moment k < ql+1 such that fkz lies in the

middle of Dl.

(D4) There exists ι = ι(N,µ,K) such that for any ι > ι and l > l + 2ι, under

the circumstances of (D3), we have

f iz 6∈ Dl−ι
1 , i = 0, 1, . . . , k,

where Dl−ι
1 b Y l−ι\S is a topological disk containing Dl−ι with a definite

mod(Dl−ι
1 \Dl−ι); in particular, Dl ∩Dl−ι

1 = ∅.
(D5) Moreover, under the above circumstances,

f iz ∈ Comp0(C \Al−ι), i = 0, 1, . . . , k,

and Al−ι b Comp0C \ (Al−2ι).

All bounds and constants depend only on (N,µ,K).
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4.5. Siegel cylinder renormalization.

4.5.1. Definition. Using the circle model, we can extend Yampolsky’s con-

struction of the cylinder renormalization RS [Yam08] to all Siegel maps f ∈
Siegθ of bounded type. Let g be the quasicritical circle map corresponding

to f through the surgery. Let us transfer the arc used for the m-th cylinder

renormalization of g (see Section 3.7.2) to an arc δm connecting the periodic

point αm of f from Corollary 4.7 to the boundary of Sf . By continuing along

the internal ray of Sf , extend δm to an arc γm connecting αm to the Siegel

fixed point 0. Then f qm(γm) does not intersect γm, and these two arcs bound

a fundamental crescent Cm for f qm . Now we can proceed with the construction

as in the circle case: identifying the boundary arcs of Cm, we produce a map

of the standard cylinder C/Z whose upper end corresponds to the Siegel fixed

point. To recover this point back, let us map C/Z onto C∗ by means of e2πiz.

We obtain a Siegel map with rotation number −1/θ mod 1 (see [Yam08]).

The following statement is a Siegel counterpart of Lemma 3.18 that follows

from the latter by surgery.

Lemma 4.9. Let f be a Siegel map of class Sieg(N,µ,K). Then for any

m ≥ l− 1, the fundamental crescent Cm is κ-qc equivalent to the quadrilateral

composed by attaching the half-strip (3.10) (corresponding to Cm \ S) to a

triangle with angle 2π/q at 0 (corresponding to Cm ∩ S) (see Figure 4.1). The

dilatation κ depends only on (N,µ,K).

Let πm = πfm stand for the change of variable projecting the original

dynamical plane to the renormalized one. It starts in the fundamental crescent

Cm and then is spread around by means of pullbacks.

4.5.2. Hybrid classes. Two Siegel maps, f and f̃ , are said to be L-hybrid

conjugate if there exists an equivariant L-qc map Domh
f → Domh

f̃
that is con-

formal on the Siegel disk Sf .

By means of the Douady-Ghys surgery, Theorem 3.19 can be immediately

transferred to the Siegel setting:

Theorem 4.10. Two Siegel maps f, f̃ ∈ Sieg(N,µ,K) with the same

rotation number are hybrid L−conjugate in a δ-neighborhood of S, with L and

δ > 0 depending only on (N,µ,K).

5. Inou-Shishikura class

5.1. Parabolic renormalization. Here we will briefly outline the Parabolic

Renormalization Theory that provides us with a good control of bifurcations

of parabolic maps. It was laid down in the work by Douady and Sentenac

(see [DH85a], [Dou94]), Lavaurs [Lav89], and Shishikura [Shi98], which can be

consulted for details.
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5.1.1. Parabolic Puiseux germs and their transit maps. For q ∈ N and a

small convex neighborhood U of 0, let G0(U) be the space of parabolic maps

on U given by Puiseux series

(5.1) f : z 7→ z + z2 +
∑
k∈N

akz
2+k/q

(continuous up to the boundary). By definition, it is isomorphic (as a Banach

space) to the space of holomorphic germs

f̂ : ζ 7→ ζq + ζ2q +
∑
k∈N

akζ
2q+k,

continuous up to the boundary, on the neighborhood Û , the full preimage of U

under the power change of variable z = ζq. The latter space is endowed with

uniform topology, which is inherited by G0(U).

Let us consider the principal branch of f (for which z1/q is positive on R+)

in the slit plane U \ e−πi/4 R+. It is endowed with the following structure:

(C1) An attracting petal Pa ≡ Pa(f), which is an open piecewise smooth

Jordan disk with the following properties:

• Pa is R-symmetric and Pa ∩ R = (−δ, 0) for some δ > 0;

• Pa touches the origin at the angle π/2 with R;

• f univalently maps Pa into itself, f(∂Pa) ∩ ∂Pa = {0}, and fn(z) → 0 as

n→ +∞ uniformly on Pa.
Along with the attracting petal, there is a repelling petal Pr ≡ Pr(f) con-

taining an interval (0, δ) with some δ > 0 that can be defined as the attracting

petal for f−1.

(C2) The horn map H ≡ Hf : Pr 99K Pa. For any angle θ > 0, there exist

ε > 0 with the following property: for any ε′ ∈ (0, ε), there exists n ∈ N such

that for any point z ∈ Pr with ε′ < |z| < ε and θ < arg z < π/2 (where arg z

is the principal value of the argument), we have fnz ∈ Pa. Moreover, ε can be

selected the same for all maps f̃ ∈ G0(U) near f , and then n can be selected

depending on (ε, ε′) only. This transit map is called the horn map Hf .

(C3) The attracting and repelling Fatou coordinates

φa ≡ φaf : Pa → C, φr ≡ φrf : Pr → C, φa/r(z) ∼ −1/z + const as z → 0

conformally conjugate f and f−1 to the translations z 7→ z + 1 and z 7→ z − 1

respectively. The Fatou coordinates are defined up to translation, so they

are uniquely determined by normalization that specifies which points ca/r ≡
c
a/r
f ∈ Pa/r(f) correspond to 1 and −A− 1, respectively (with some A ∈ N to

be chosen below). Moreover, if the base points c
a/r
f depend holomorphically

on f , then so do the normalized Fatou coordinates.
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(C4) An attracting fundamental crescent Ca ≡ Ca(f) is a strip properly

embedded into the attracting petal Pa such that ∂Ca∩∂Pa = {0} and f(Ca)∩Ca
is a boundary component of Ca. To be definite, we will use the following choice:

Ca ≡ Ca(f) = {z ∈ Pa : 3/4 ≤ Reφa(z) ≤ 7/4}.

Since the Fatou coordinate depends holomorphically on f , the crescent Ca(f)

moves holomorphically with f .

Similarly, one can define the repelling fundamental crescent

Cr ≡ Cr(f) = {z ∈ Pr : −A− 5/4 ≤ Reφr(z) ≤ −A− 1/4}.

(C5) The Écalle-Voronin cylinders Cyla/r ≡ Cyla/r(f) are the quotients

of the petals Pa/r by the dynamics. They can be obtained by identifying

the boundary components of the corresponding fundamental crescents Ca/r by

means of z ∼ f(z). The normalized Fatou coordinates induce isomorphisms of

the pointed cylinders (Cyla/r, ca/r) to the standard cylinder (C/Z, 0), and in

what follows, we will freely identify the cylinders with the standard model.

(C6) A complex one-parameter family of transit isomorphisms

(5.2) Iλ : Cyla ≈ C/Z→ C/Z ≈ Cylr, z 7→ z + λ, λ ∈ C/Z.

Let

(5.3) Λb := {−1/4 ≤ Reλ < 3/4, | Imλ| < b}.

Then for any λ ∈ Λ1, the isomorphism Iλ lifts to the translation

{3/4 ≤ Re z ≤ 7/4} → {−A− 5/4 ≤ Re z ≤ −A− 1/4}, z 7→ z −A− 2 + λ,

which induces, by means of the Fatou coordinates φ
a/r
f , a conformal embedding

(5.4) If,λ : Ca(f)→ Pr(f).

Holomorphic dependence of the Fatou coordinates on f implies that these

embeddings depend nicely on the parameters:

Lemma 5.1. Assume the base points c
a/r
f ∈ Pa/r(f) are selected holomor-

phically in f over some neighborhood U0 ⊂ G0(U). Then the family of transit

maps (5.4) depends holomorphically on (f, λ) ∈ U0 ×Λ1.

The horn map H ≡ Hf from (C2) also descends to the cylinders, and we

will keep the same notation, H : Cylr 99K Cyla, for the quotient.

(C7) Parabolic renormalization Rparf . Composing the transit maps with

the horn map, we obtain a one-parameter family of return maps

(5.5) Iλ ◦Hf : C/Z 99K C/Z



LEBESGUE MEASURE OF FEIGENBAUM JULIA SETS 45

defined near the upper end of the repelling cylinder Cylr ≈ C/Z. By means

of24

Exp : C/Z→ C∗, Exp(z) = −(4/27)e2πiz,

we can identify the cylinder C/Z with C∗ so that its upper end corresponds

to 0 and the boundary of the fundamental crescents Ca/r corresponds to the

ray iR−. Then family of return maps (5.5) becomes a one-parameter family

gf,λ of conformal germs near 0.

Moreover, there is a unique choice of the transit parameter λ that makes

the map gf,λ parabolic, with multiplier 1 at 0. This map gf,λ is called the

parabolic renormalization Rparf of f .

5.1.2. Transit maps for perturbations and their geometric limits. Let us

now consider the space G(U) of Puiseux germs (continuous up to the boundary)

(5.6) f : z 7→ e2πiγ(z + z2) +
∑
k∈N

akz
2+k/q

on U . We will refer to γ ∈ C/Z as the complex rotation number of 0.

Let U0 ⊂ G0(U) be a neighborhood of a parabolic map f0. Let us consider

a neighborhood U in G(U) consisting of maps f = e2πiγ f̃ , where f̃ ∈ U0 and

| arg γ| < π/4.

If U is sufficiently small, then any map f ∈ U \U0 has a second fixed point

β ≡ βf near 0. These points can be connected by two disjoint (closed) arcs,

ωa/r ≡ ωa/rf , with the following properties:

• Together with the interval [0, β], each arc ωa/r bounds an (open) Jordan

domain Pa/r ≡ Pa/r(f), called a perturbed attracting/repelling petal, whose

shape is close to a round disk. Moreover, Pa ∩ Pr = ∅.
• The image arc f±1(ωa/r) is contained in Pa/r∪{0}, is disjoint from ωa/r, and

together with ωa/r bounds a crescent-shaped region Ca/r ≡ Ca/r(f) called

the attracting/repelling fundamental crescent (respectively).

The domain P = P(f) bounded by the arcs ωaf and ωrf will be referred to

as the petal for f . (What happens is that the attracting and repelling petals

of a parabolic map “merge” under the perturbation, to form P; see [Dou94],

[Shi98].)

As in the parabolic case, the perturbed map can be linearized on its petal.

The linearizing coordinate

φ ≡ φf : P → C, φ(fz) = φ(z) + 1, z ∈ P ∩ f−1(P)

24This special normalization of the exponential map is chosen to make it consistent with

the one used by Inou and Shishikura; see below.
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is called the Fatou-Douady coordinate (or the perturbed Fatou coordinate). It

is defined uniquely up to translation, so it can be normalized by prescribing a

point cf ∈ Ca corresponding to 1. If this point is selected so that it depends

holomorphically on f ∈ U (including parabolic maps f ∈ U0), then the lin-

earizing coordinate φf depends holomorphically, and hence continuously, on

f ∈ U . Thus, if fn → f , then for any compact set K ⊂ Pa/r(f), the φfn are

eventually well defined on K, and φfn → φ
a/r
f uniformly on K.

Furthermore, all the above choices can be adjusted so that the attract-

ing/repelling fundamental petals and crescents are given as follows:

Pa = {3/4 < Reφ(z) < 3/4 + [N1/2]},
Ca ≡ Ca(f) = {3/4 ≤ Reφ(z) ≤ 7/4},
Pr = {3/4 + [N1/2]−N1 < Reφ(z) < −A− 1/4},
Cr ≡ Cr(f) = {−A− 5/4 ≤ Reφ(z) ≤ −A− 1/4}.(5.7)

Remark 5.1. Here the petals Pa/r can be viewed as domains on the cylin-

der C/N1Z merging along the vertical line

{Reφ(z) = 3/4 + [N1/2]} = {Reφ(z) = 3/4 + [N1/2]−N1} modN1.

into a single petal P

The quotients of the petals Pa/r by the dynamics provide us with a pair

of Douady cylinders Cyla/r = Cyla/r(f). They can be obtained by identifying

the boundary arcs of the crescents Ca/r by means of z ∼ f(z). As in the

purely parabolic case, the Fatou-Douady coordinate φ induces an isomorphism

between the cylinders Cyla/r and the standard cylinder C/Z, and we will freely

identify the cylinders with the standard model.

Let us consider the transit map T ≡ Tf : Ca → Cr, i.e., Tz = f jz where

fkz ∈ P , k = 0, 1, . . . , j, and f jz ∈ Cr. It is usually discontinuous, but it

induces a conformal isomorphism between the cylinders:

(5.8) If : Cyla ≈ C/Z→ C/Z ≈ Cylr, z 7→ z + λ, λ = λ(f) ∈ C/Z.

Remark 5.2. Notice an essential difference with the parabolic case. In that

case, there is a one-parameter family of isomorphisms between the cylinders, all

on equal footing, while in the perturbed case, (5.8) is a preferred isomorphism

induced by the dynamics.

Theorem 5.2. Assume that the base points c
a/r
f ∈ Pa/r(f) are selected

holomorphically in f over some neighborhood U0 ⊂ G0(U). Let (Λbf , c
r
f ) be the

lift of (Λb, 0) ⊂ (C/Z, 0) (defined in (5.3)) to Pr(f) (by means of the Fatou-

Douady coordinate). Then for sufficiently small U0, b and for every sufficiently
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big j, there exists a holomorphic embedding

Φj : U0 ×Λb → U , (f̃ , λ) 7→ e2πiγj f̃ ,

where γj ≡ γj,f̃ : Λb → C is a conformal embedding such that

• Letting f = Φj(f̃ , λ), we have

fk(ca) ∈ P(f), k = 0, 1, . . . , j, f j(ca) ∈ Λbf , and λ(f) = λ.

• Letting Caε (f) = {z : 3/4 − ε < Reφaf (z) < 7/4 + ε} for ε > 0, the transit

maps f j : Caε (f) → P(f) converge as j → ∞ to the parabolic transit map

If̃ ,λ : Ca(f̃)→ Pr(f̃) uniformly on compact subsets of Ca(f̃), and uniformly

over the tube U0 ×Λb.25

• diam(Image γj,f̃ ) � j−2.

The images Qj of the maps Φj will be called parabolic tubes. They are

endowed with the horizontal foliation whose leaves Lj(λ) ≈ U0, λ ∈ Λb, corre-

spond to the same transit parameter λ ∈ Λb.

The horn map from (C2) is robust under a perturbation f = e2πiγ f̃ (5.6).

The perturbed horn map H ≡ Hf : P → P is defined for z ∈ P with |z| < ε

and 0 < θ < arg z < π/2. It induces the cylinder horn map Cylr → Cyla

near the upper26 end of the Douady cylinders. We will use the same notation

H ≡ Hf for this map.

Composing it with the transit map If : Cyla → Cylr, we obtain the return

map If ◦Hf : Cylr(f) 99K Cylr(f) near the upper end of the cylinders. Viewed

in the Exp-coordinate, it becomes a germ gf : (C, 0) 99K (C, 0). Its rotation

number is given by the (modified) complex Gauss map G∗(γ) = −1/γ modZ.

If G∗(γ) is small, then this return map is close to the parabolic renormalization

of f̃ . It is called the near parabolic renormalization of f . We will keep the same

notation Rpar for this operator.

5.1.3. Case of rotation number p/q. Let us now consider a holomorphic

parabolic germ

(5.9) f : ζ 7→ e2πip/qζ + ζ2 + · · · .

with rotation number p/q. Assume it is non-degenerate, i.e., it has q petals

(rather than a multiple of q petals). Then the q-th iterate f q has a form

f q : ζ 7→ ζ + aq+1ζ
q+1 + · · · , with aq+1 6= 0.

Performing a power change of variable z=cζq, we bring f q to Puiseux form (5.1).

25Under these circumstances, the pair (f̃ , Iλ) is called the geometric limit of the sequence

{fj}.
26The assumption that arg γ > θ breaks the symmetry between the ends as it ensures that

the points within a compact set of Ca(f) escape through the upper end of Cr(f).
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Let us now perturb the parabolic map f to

(5.10) fε : ζ 7→ e2πi(p/q+ε)ζ + ζ2 + · · · .

The q-th iterate f qε has non-vanishing terms akz
k with 1 < k < q+1, but these

terms can be killed by a conformal change of variable. Performing further a

power change of variable z = cζq, we bring fε to Puiseux form (5.6). As all

the above coordinate changes depend holomorphically on f , this allows us to

apply the above theory to the space of germs (5.9).

5.2. Inou-Shishikura class. Inou and Shishikura [IS08] have constructed a

class IS0 of maps with the following properties:

(P1) Any map f ∈ IS0 is holomorphic on some quasidisk Ωf containing 0 and

has a form P0 ◦ φ−1 where P0 is the restriction of z 7→ z(1 + z)2 to some

domain Ω0, and φ : Ω0 → C is an appropriately normalized univalent

map that admits a global qc extension to C.

(P2) 0 is the parabolic fixed point of any f ∈ IS0.

(P3) Any f ∈ IS0 has a single quadratic critical point c0 = c0(f); moreover,

the orbit of c0 does not escape Ωf , and fn(c0)→ 0 as n→∞.

(P4) The class is endowed with the Bers-Teichmüller topology and complex

structure inherited from the space of Schwarzian derivatives Sφ (see

[Ahl06, Ch. VI]); they make it isomorphic to the Universal Teichmüller

Space.

(P5) The class is also endowed with weak topology induced by the compact-

open topology on the space of univalent functions φ : Ω0 → C; the weak

completion IS0 is compact.

(P6) The parabolic renormalization R acts from IS0 to IS0; its restriction to

IS0 is a compact holomorphic operator.

(P7) The parabolic renormalization of the quadratic map z 7→ z + z2 has a

restriction in IS0.

For θ ∈ R/Z, define the class ISθ as e2πiθ · IS0, and let IS :=
⋃
θ ISθ.

(The notation ISθ and IS has a similar meaning.) Property (P6) is robust

under perturbation:

Theorem 5.3 ([IS08]). If θ is sufficiently small, then the near parabolic

renormalization Rpar induces an operator RIS : ISθ → IS−1/θ that restricts

to a compact holomorphic operator RIS : ISθ → IS−1/θ.

We will call this operator RIS . (In this section we will often abbreviate

it, without saying, to R.) Recall also modified continued fraction expansions

from Section 3.7.
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Corollary 5.4. There exists N such that if θ = [N1, N2, . . . Nm, . . . ]∗
with Ni > N , i = 1 . . . ,m, then any map f̄ ∈ ISθ is m times renormalizable

under RIS . Hence it is infinitely renormalizable if m =∞.

We say that a rotation number θ ∈ R/Z (rational or irrational) has high

type if all Ni > N with N as above. Let IS(N) stand for the union of the

spaces ISθ over all θ of high type. For θ = [N,N, . . . ]∗ of high stationary type

(N > N), we will also use the notation ISN ≡ ISθ. Similar notation will be

used for the weak completion IS.

5.3. Postcritical set. Inou and Shishikura have deduced from the above

results

Proposition 5.5 ([IS08]). For any map f ∈ IS(N), the critical point

is non-escaping (i.e., fn(c0) ∈ Ωf , n = 0, 1, . . . ) and stays away from the

boundary of Dom f . Thus, the postcritical set Of is compactly contained in Ωf

(uniformly over IS). In the parabolic case we have fn(c0)→ 0 as n→∞. In

general, orb c0 is non-periodic.

Sketch of proof. The mere fact that the IS renormalization Rf is well de-

fined implies that the first N1 iterates of the critical point stay in Ωf (where

N1 is the first entry of the rotation number). Existence of all the renormaliza-

tions imply that the whole critical orbit stays in Ωf . Uniform bounds on the

postcritical set follow from compactness of IS.

In the parabolic case, the map is finitely renormalizable and its last renor-

malization falls to the class IS0. Property (P3) implies that fn(c0) → 0 as

n→∞. In the irrational case, f is infinitely renormalizable and by increasing

N if needed, we can make all the renormalizations Rmf to be small perturba-

tions of parabolic maps of class IS0. Hence Rmf(c0) 6= c0. On the other hand,

if c0 was periodic, then it would be the fixed point for some renormalization. �

5.4. Renormalization telescope. In this section we will collect some tech-

nical results, essentially contained in the work of Buff-Cheritat [BC12] and

Cheraghi [Che13].

Given a map f ∈ ISθ and a (open) topological sector S centered at 0, a

principal branch of the first return map to S is an iterate f l : V → S, where

V is a relatively open subset of S with 0 ∈ ∂V such that for any z ∈ V , f l(z)

is the first return of orb z to S.

The following statement provides us with a convenient domain of definition

for the renormalization change of variable (see Figure 5.1):

Lemma 5.6 ([Che13, §2]). For any map f ∈ ISθ with θ = [N1, N2, . . . ]∗ of

sufficiently high type, there exists a piecewise smooth sector S = Sf attached

to the fixed point 0 with the following properties :
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fs

·

· · ·c1

0

c0 cN1−k

S

Figure 5.1. Renormalization sectors for an Inou-Shishikura map

(0) It has angle θ at 0 and is contained in the repelling crescent.

(i) There exists a bounded s = sf such that f s(S) is a sector containing the

critical value c1 of f . In an appropriate Fatou coordinate,27 the latter

sector becomes the half-strip

(5.11) {3/4 ≤ Re z ≤ 7/4, Im z ≥ −2}.

(ii) There exists a well-defined change of variable π = πf : S → C that is

univalent on S and ∼ z1/θ as z → 0 (uniformly over the class ISθ).
Moreover, the image π(S) is a slit topological disk containing SRf , and

the slit touches the boundary of SRf at a single point, the fixed point 0.

(iii) The change of variable is equivariant : it conjugates two principal branches

of the first return map to S and the renormalization Rf on its full

domain.

(iv) For some k independent of f , S 3 cN1−k and the union 28

Ω1
f =

N1+s−k⋃
n=0

fn(S)

is a neighborhood of 0 uniformly compactly containing {cn}N1+s−k
n=0 .

(v) The sectors Sf depend continuously on f ∈ IS(N).

For t ≥ 2, let ∆ = ∆f (t) be the subset of the sector Sf corresponding to

the box

(5.12) {3/4 ≤ Re z ≤ 7/4, −2 ≤ Im z ≤ t}

in the Fatou coordinate (compare (5.11)).

27This coordinate is normalized so that the critical value is placed at 1.
28There is a precise formula for the return times in terms of the arithmetic of θ; see

Lemma 2.2 in [Che13].
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Lemma 5.7. Under the circumstances of Lemma 5.6, for t sufficiently

big, the image πf (∆f (t)) compactly contains ∆Rf (t), with a definite space in

between. Moreover, the domain ∆f (t) depends continuously on f .

Proof. The last statement follows from item (v) of Lemma 5.6 and con-

tinuous dependence of the Fatou coordinate on f . Together with the weak

compactness of the Inou-Shishikura class IS and item (ii) of the lemma, this

implies that the change of variable πf on Sf is uniformly comparable with

z 7→ z1/θ near 0. This map is attracting near 0, so the “bottom” of ∆f (corre-

sponding to {Im z = t} in the Fatou coordinate) goes even closer to 0. Together

with item (ii) of the lemma, this implies that πf (∆f (t)) compactly contains

∆Rf (t). Using weak compactness of IS once again, we conclude that there is

a definite space in between. �

From now on, t will be fixed, and it will not appear in the notation.

If f is m times IS-renormalizable, then we can compose the above changes

of variable to obtain a map

πmf = πRm−1f ◦ · · · ◦ πf ,
well-defined and univalent on a sector Sm

f attached to 0. Spreading these

sectors around by the iterates of f , we obtain a neighborhood of 0,

(5.13) Ωm
f =

rm⋃
n=0

fn(Sm
f ),

where rm is an appropriate time expressed in terms of the arithmetic of θ (see

[Che13, §2]), and fn|Sm
f is at most 2-to-1 for n ≤ rm. (Note that these maps

are not branched coverings over their images.) Moreover, the iterate f sm−1|Sm
f

whose image Sm(c0) ≡ Sm
f (c0) contains the critical point c0 is univalent.

We let

(5.14) Πm ≡ Πm
f = πm ◦ f−(sm−1) : Sm(c0)→ C,

where f−(sm−1)|Sm(c0) is the branch of the inverse map with image Sm. (Note

also that Image Πm = Imageπm is a slit topological disk around 0.)

Lemma 5.8. Let f be an m times IS-renormalizable map such that Rmf

is a parabolic map with multiplier 1. Then the postcritical set Of is trapped

inside Ωm
f .

Let us also consider the lifts ∆m
f of the domains ∆Rmf under πmf . We let

(5.15) Nm
f =

rm⋃
n=0

fn(∆m
f ),

where the times rm are the same as in (5.13). Moreover, f sm−1 maps ∆m
f

univalently and with bounded distortion onto its image ∆m(c0) ≡ ∆m
f (c0) con-

taining the critical point c0. Thus, the change of variable Πm (5.14) restricted
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to ∆m(c0),

(5.16) Πm : ∆m(c0)→ C,

is a univalent map with bounded distortion (over the class IS(N)). Notice

also that by compactness of IS(N) and continuous dependence of ∆m
g on

g = Rmf , the image of the restricted map Πm contains a definite neighborhood

of the critical point. Also, the inverse branch f−(rm−sm) on ∆m sending crm
to c1 admits an extension to a bigger domain ∆̃m with a definite modulus

(by applying the same construction to slightly bigger boxes than defined by

(5.12)). It follows that

(5.17) diam(f−(rm−sm)(∆m))→ 0 as m→∞.

We call the sets Nm
f necklaces. Lemma 5.7 implies

Corollary 5.9. Under the circumstances of Lemma 5.6, πmf (∆m−1
f )

compactly contains ∆Rmf , with a definite space in between. There exist ρ =

ρ(N) > 1 such that diam ∆m
f = O(ρ−m). Moreover, for each m, the domain

∆m
f depends continuously on f .

Corollary 5.10. Let f ∈ ISθ be a map of IS class with irrational rota-

tion number. Then the critical point is recurrent (but non-periodic).

Proof. The critical point returns (infinitley many times) to each of the

domains ∆m
f 3 crm−sm+1. Take such a moment nm > rm − sm + 1 and apply

to crm−sm+1 and cnm the inverse branch f−(rm−sm) that sends crm−sm+1 to c1.

It follows from (5.17) that it brings the point cnm−rm+sm close to c1, implying

the assertion. �

5.5. Siegel disks. The next statement shows that maps f ∈ ISθ with θ of

high bounded type are Siegel maps:

Proposition 5.11 ([Yam08]). Let f ∈ ISθ, where θ is a rotation number

of high type bounded by some N . Then f is a Siegel map; its Siegel disk Sf
is a quasidisk compactly contained in Ωf , and ∂Sf 3 c0. Moreover, f | ∂Sf is

quasisymmetrically conjugate to fθ| ∂Bθ.

Proof. By replacing f with its IS renormalization Rf ∈ IS, we can assume

that f ∈ IS (see Property (P6)).

By Section 4.1.1, we know that the assertion is valid for the quadratic

map fθ and hence for its renormalization g := Rfθ ∈ ISθ′ , θ′ = −1/θ. Let

g := Rf ∈ ISθ′ . Since ISθ′ is isomorphic to the Universal Teichmüller Space,

the map g can be connected to g by a holomorphic Beltrami path gλ, λ ∈ D.

Let c0(λ) be the critical point of gλ, and let cn(λ) = gnλ(c0(λ)), n ∈ N.

By Proposition 5.5, all points cn(λ) are well defined, and then, they depend
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holomorphically on on λ. Moreover, they do not collide: cn(λ) 6= cm(λ) for

n 6= m (by Proposition 5.5 and Corollary 5.10). Hence, they form a holomor-

phic motion over D.

By the λ-lemma, this motion extends to the postcritical set O of g, and

provides us with a family of quasisymmetric homeomorphisms hλ : O → Oλ,

λ ∈ D, where Oλ is the postcritical set for gλ. It follows that Oλ is a quasicircle

for any λ ∈ D, in particular, for the map g.

Let D be a quasidisk bounded by Og. Then the family of iterates gn is

normal on D, so D ⊂ Sg. On the other hand, as the Siegel disk Sg does not

contain preimages of c0, which are dense in ∂D = Og, Sg is contained in D.

The conclusions follow. �

5.6. IS Renormalization fixed point. Now the whole theory of Siegel maps

developed in Section 4 (external tilings, periodic points, trapping disks, renor-

malization fixed points, etc.) is applicable to any class ISN , N > N .

Theorem 5.12 ([IS08]). Let θ = θN be a stationary rotation number of

high type. Then the IS renormalization R has a unique hyperbolic fixed point

f∞ ∈ ISN . The unstable manifold Wu(f∞) is a complex curve that can be

parametrized by the complex rotation number ranging over a neighborhood of

[0, θ]. Moreover, Rnf → f∞ exponentially fast for any Siegel map f ∈ ISN .

Corollary 5.13. Under the circumstances of the above lemma, let us

consider a holomorphic family F passing through a Siegel map f◦ ∈ ISN
transversally to ISN . Then there is a sequence of topological disks Fn ⊂ F
around f◦ such that the IS renormalizations Rn(Fn), n = 0, 1, . . . , converge to

the unstable manifold Wu(f∞).

5.7. Perturbations of Siegel maps. The above control of one renormaliza-

tion, together with existence of the hyperbolic renormalization fixed point,

provides us with a good control of perturbations of Siegel disks of stationary

type (compare [BC12, §1.5]).

Lemma 5.14. Let f◦ be a Siegel map of Inou-Shishikura class with sta-

tionary rotation number θ◦ = [N,N, . . . ]∗ of high type, and let F = {fλ} be a

holomorphic family through f◦ = fλ0 transverse to ISN . Then for any m ∈ N0

and any rotation number θ in a neighborhood of [0, θ◦], there exists a map

fλ ∈ F such that the Siegel renormalization Rmfλ with the same combinatorics

as Rmf◦ is well defined and has rotation number θ. Moreover, the domain Ωm
fλ

(5.13) is contained in the O(ρ−m)-neighborhood of S◦, where ρ = ρ(N) > 1.

Proof. Existence of f=fλ follows from the Renormalization Theorem 5.12.

Moreover, the renormalizations of fλ shadow those of f◦:

(5.18) dist(Rnf,Rnf◦) ≤ C|θ − θ0| ρ−(m−n)
0 , n = 0, 1, . . . ,m,

where ρ0 = ρ0(N) > 1.
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Let us now apply the lifting and spreading procedure to control the neck-

laces (5.15), and hence the Ωm-domains. Assume we have already constructed

a necklace Nm−n
Rnf that is confined to a δ-neighborhood of SRnf◦ By Corol-

lary 5.9, under sufficiently many (k) further lifts, it will shrink by a big factor.

Spreading this pullback around by a bounded number of iterates of Rm−n−kf ,

the necklace can be pulled father away from S◦ only by an exponentially small

(in m−n)) distance; see (5.18). These two mechanisms imply the desired. �

Together with Lemma 5.8, this leads us to the following important con-

clusion:

Corollary 5.15 ([BC12]). Under the circumstances of Lemma 5.14, as-

sume the map Rmfλ is parabolic with multiplier 1. Then the postcritical set

Oλ of fλ is contained in the O(ρ−m)-neighborhood of the Siegel disk S◦.

6. Main construction

6.1. Outline. Let us start with a quick guide to our construction (outlined

in the third paragraph of Section 1.4). Take a big l ∈ N, a bigger κ ∈ N, and

an even much bigger m ∈ N. Begin with a Siegel quadratic polynomial

f = fθ : z 7→ e2πiθz + z2

with a stationary rotation number of high type, and consider its cylinder renor-

malization f = Rm−κS f . It is a Siegel map of Inou-Shishikura class.

Moreover, f has a distinguished repelling periodic point α=αl of period ql
(that approximates the dynamics on ∂Sf in scale l). Perturb f to a para-

bolic approximant f̃ with rotation number pκ/qκ. Then α gets perturbed to a

periodic point α̃ with the same period; see Section 6.2

Furthermore, using the theory of parabolic bifurcation, one can perturb

f̃ to a Misiurewicz map fMis for which α̃ becomes a postcritical point αMis.

Since αMis can be approximated with precritical points, fMis can be further

perturbed to a superattracting map f◦; see Sections 6.3 and 6.4.1.

The last map can be anti-renormalized to obtain a superattracting qua-

dratic polynomial f◦ such that f◦ = Rm−κS f◦. This quadratic polynomial deter-

mines a renormalization combinatorics. The unique infinitely renormalizable

quadratic polynomial f∗ with this combinatorics is desired; see Section 6.4.

Our construction depends on six large integer parameters N, l, κ, t, and

m, j, selected consecutively as listed, where the last two play a somewhat

different role than the first four. Once we select one of the first four parameters,

we assume, sometimes without saying, that all that follows depends on this

choice. A statement For any consecutively selected (N, l, κ) > (N, l+ 2ι, κ) · · ·
(or For any consecutively selected sufficiently big (N, l, κ) · · · ) will mean

∃N ∀N > N ∃ l = l(N) ∀ l > l + 2ι ∃κ = κ(N, l) ∀κ > κ · · · .
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We will also assume that the choice l(N) is made monotonically increasing

in N , the choice of κ(N, l) is monotonically increasing in each variable, and

similarly for any other parameter in question.

Let us now supply the details.

6.2. Perturbed periodic points and trapping disks.

6.2.1. General perturbations. Recall that Sieg(N̄ , µ,K) stands for the space

of Siegel maps f : (Ω, 0)→ (C, 0) introduced in Section 4.3.1.

Remark 6.1. In what follows,

• when we perturb f , we will use the uniform metric on Ω;

• objects associated with f̃ are usually marked with “tilde”, but it can be

skipped if the object is independent of f̃ , e.g., Ãl ≡ Al, D̃l ≡ Dl, etc.

Lemma 6.1. There exist natural numbers29 l and ι depending on (N̄ , µ,K)

such that for any l ≥ l + 2ι, there exists a δ0 = δ0(N̄ , µ,K, l) > 0 with the

following property. For any δ < δ0, if a holomorphic map f̃ : Ω→ C is δ-close

to a Siegel map f : Ω→ C of class Sieg(N̄ , µ,K), then

(i) There exists a periodic point α̃l of period ql that is a perturbation30 of

the αl.

(ii) There exists a collar Al in Ω \ S̄f such that it is impossible to jump over

it under f̃ :

if z ∈ Comp0(C \Al), f̃(z) 6∈ Comp0(C \Al), then f̃(z) ∈ Al.

(iii) There exists a trapping quasidisk Dl b Ω \ S̄f with bounded shape around

α̃l whose hyperbolic diameter in Ω \ S̄f is of order 1. Moreover,

Dl ∩Dl+ι = ∅.

(iv) A definite part of the disk Dl is contained in f̃−1(Sf ) \ S̄f . Moreover,

there is a point β̃ ∈ f̃−1(∂Sf ) \ S̄f that lies in the middle of Dl (in the

sense of (1.1)).

(v) If z ∈ Al, then at some moment k < ql+1, fkz lands in the middle of Dl,

while

f iz ∈ Comp0(C \Al−ι) \Dl−ι, i = 0, 1, . . . , k.

All geometric bounds depend only on N , µ, and K .

Proof. The properties of Proposition 4.8 are manifestly robust under per-

turbations, keeping the same collars Al and trapping disks Dl. (The auxiliary

29In the polynomial case, we can let l = 1.
30This means that α̃l is ε(δ)-near αl where ε(δ)→ 0 as δ → 0.
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collars Al0 and disks Dl
1, as well as the collars Al−2ι in the last statement (D5),

were designed to secure robustness.) �

As before, we say that the trapping disk D = Dl is centered at αl, or that

depthD = l.

6.2.2. Expansion. For a perturbation f̃ of a Siegel map f , we will use

the notation RlSpf̃ : X l
+ ∪ X l

− → C for the corresponding perturbation of

the butterfly renormalization RlSpf . (That is, if RlSpf |X l
± = f q

±
l then we let

RlSpf̃ |X l
± = f̃ q

±
l .)31

Away from the Siegel disk, Corollary 4.5 is robust under perturbations:

Lemma 6.2. Let f : Ω → C be a Siegel map of class Sieg(N̄ , µ,K). For

any ε > 0, there exists δ = δ(N̄ , µ,K; ε) > 0 with the following property. Let

f̃ : Ω→ C be a holomorphic map that is δ-close to f , and let z ∈ X l
+ ∪X l

− be

a point with the property that RlSpf̃(z) ∈ Y l and dist(RlSpf̃(z), S̄) ≥ ε. Then

‖D(RlSpf̃)(z)‖hyp ≥ ρ > 1

with ρ depending only on (N̄ , µ,K) and dist(z, S̄)/ dist(z, c0) and the norm

being measured in the hyperbolic metric of Y 0.

Remark 6.2. Note that in the unperturbed case, the above geometric as-

sumption is stronger than the one imposed in Corollary 4.5.

In turn, the last lemma implies a perturbed version of Corollary 4.6:

Corollary 6.3. Let f : Ω → C be a Siegel map of class Sieg(N̄ , µ,K).

There exist a > 0 and ρ > 1 such that for every ε > 0, there exists δ > 0 with

the following property. For any holomorphic map f̃ : Ω → C that is δ-close

to f , if z ∈ Y m, f̃nz ∈ Y m−k \ Y m−k+1 for some n ∈ N, 0 < k < m (with

m− k > l), while

dist(f̃ iz, S̄) ≥ ε, i = 0, 1, . . . , n,

then

‖Df̃n(z)‖hyp ≥ aρk,

where the norm is measured in the hyperbolic metric of C \ S̄.

6.2.3. Cylinder renormalization of polynomial maps. To make the expo-

sition more transparent, we will focus on the stationary case when θ = θN is a

stationary rotation number with N > N . Let f = fθ : z 7→ e2πiθz + z2 be the

corresponding Siegel quadratic polynomial, and let f̃ = fθ̃ be its polynomial

perturbation (where θ̃ is not necessarily real). By the Inou-Shishikura theory,

31Note that we keep the same domain Xl
+ ∪Xl

− for the perturbed map.
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all cylinder renormalizations of f are well defined and belong to the IS class:

(6.1) fi = RiS(f) ∈ ISθ, i = 1, 2, . . . .

Moreover, for any n, if θ̃ is sufficiently close to θ, then the same is true for the

first n cylinder renormalizations of f̃ . In this case, we let

(6.2) f̃i = RiS(f̃) ∈ ISGi∗θ̃, i = 1, 2, . . . , n,

where G∗ : γ 7→ −1/γ modZ is the modified and complexified Gauss map.

Theorem 5.12 and its Corollary 5.13 provide us with a good control of the

maps f̃i:

Lemma 6.4. There exist positive µ,K, ε0, C , and ρ > 1 depending only on

N such that

• fi ∈ Sieg(N,µ,K), i = 0, 1, . . . ;

• for any γ ∈ C that is ε0-close to θ and any n ∈ N, there exists a unique θ̃n
such that the cylinder renormalizations f̃n,i = RiS(fθ̃n), i = 0, 1, . . . , n, are

well defined, and f̃n,n has complex rotation number γ;

• dist(fi, f̃n,i) ≤ C dist(fn, f̃n,n) ρ−(n−i), i = 0, 1, . . . , n;

• the Siegel maps fi converge to the Siegel renormalization fixed point f∞,

while the nearby maps f̃n,n converge to a map f̃∞ in the unstable manifold

Wu(f∞).

6.2.4. Parabolic approximant f̃ . We will now choose a specific perturba-

tion f̃ = fθ̃ of the Siegel polynomial f = fθ with θ = θN . Take two natural

numbers κ < m. Let θ̃ = pm/qm be the (modified) continued fraction ap-

proximant to θ, so that f̃ is the parabolic quadratic polynomial with rotation

number pm/qm at 0. It is m times cylinder renormalizable with all the renor-

malizations f̃i = RjS f̃ , i ≥ 1, in the IS class. Moreover, f̃i is parabolic with

rotation number pm−i/qm−i at 0. We will consider the maps

(6.3) fm−κ = Rm−κS (f) ∈ ISθ, f̃m,m−κ = Rm−κS (f̃) ∈ ISpκ/qκ ,

and their limits f∞ and f̃∞ (as m → ∞ with κ being fixed). To simplify

notation, we will often skip the subscript m− κ ∈ N letting

f ≡ fm−κ, f̃ ≡ f̃m,m−κ, m ∈ Nκ.

By Lemma 6.4, f̃ is δ-close to f : Ω→ C for κ big enough, so Lemma 6.1

is applicable, providing us with the trapping discs Dl and the collars Al.

6.2.5. Transit from C̃r to the trapping disk Dl. For the parabolic map

f̃ = f̃m,m−κ, we let

• C̃r be its repelling crescent (specified as (5.7) in any repelling petal);

• ∆̃κ be the domain of the renormalization change of variable π̃κ (see Sec-

tion 5.4).
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Figure 6.1. Parabolic approximants.

Lemma 6.5. For any consecutively selected sufficiently big N and l, there

exists κ such that for any natural m > κ > κ, the parabolic map f̃ = f̃m,m−κ
has the following property. There exist s̄ = s̄(N, l, κ) and a point ã ∈ C̃r ∩ ∆̃κ

such that f̃ s(ã) ∈ Dl for some s ≤ s̄, and this happens before the orbit of ã

passes through the collar Al−ι, where ι = ι(N). Moreover, the projection π̃κ(ã)

lies in the middle of the repelling crescent Cr(f̃m,m), with a constant depending

on κ but independent of N and l.

Proof. The range π̃κ(∆̃κ) contains an annulus {ε< |z|<r} with a definite r

and a small32 ε, slit along the straight ray iR−. Let us also consider a truncated

repelling crescent

Crtr(f̃m,m) := Cr(f̃m,m) ∩ {| arg z| < π/2− ε}).

32How small it is depends on the truncation level t defining the domains ∆κ; see Sec-

tion 5.4.
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Then

• The ray iR− does not intersect the truncated repelling crescent Crtr(f̃m,m),

since the latter is contained in the R+-symmetric wedge of size π − ε. (Re-

call that according to our normalization (5.1) of parabolic maps, R+ is the

repelling direction for f̃m,m.)

• If ε is sufficiently small, then the end of Cr(f̃m,m) is contained in a (slightly

enlarged) attracting petal of f̃m,m (by property (C2) of Section 5.1.1 and

compactness of IS0).

The truncated repelling crescent lifts under π̃κ to a truncated crescent C̃rtr
for f̃ . The latter contains a point ã that escapes the domain Ω. (For otherwise,

the union of the repelling and attracting petals would form a neighborhood of

0 on which the family of iterates, {f̃n}∞n=0, would be well defined and normal.)

By Lemma 6.1, this forces orb ã to pass through the trapping disk Dl at some

moment s before it passes through the collar Al−ι with ι = ι(N).

If we fix κ, then we obtain a compact family of maps f̃ ∈ ISpκ/qκ , and

the fundamental crescent C̃r can be selected in a locally continuous way. This

allows us to make a locally continuous choice of ãf̃ , which, by compactness,

makes the escaping time s bounded and puts ã in the middle of C̃rtr. Since π̃κ
has a bounded distortion on ∆̃κ, this puts π̃κ(ã) in the middle of Crtr(f̃m,m). �

6.2.6. Pullback of D.

Lemma 6.6. For any consecutively selected N and l, there exists κ such

that for any natural m > κ > κ, the parabolic map f̃m,m−κ has the properties

of Lemma 6.5, and the trapping disc D = Dl can be univalently and with

bounded distortion pulled back to ã along the orbit {f̃ iã}si=0. Moreover, the

whole pullback {D̃−k}sk=0 is contained in Comp0(C \Al−ι) for some ι = ι(N),

while the last domain D̃−s is contained in the repelling crescent C̃r.

Proof. By Proposition 5.15, for κ big enough, the postcritical set Õ of f̃

stays close to S = Sf . Since D is contained well inside Ω\S̄, it is also contained

well inside Ω \ Õ. So it has a bounded hyperbolic diameter in Ω \ Õ.

Let us consider the parabolic map f̃m,m = RmS f̃ = RκS(f̃m,m−κ) with mul-

tiplier 1 at the origin. By Lemma 6.5, there is an escaping point ã in ∆̃κ

such that π̃κ(ã) lies in the middle of the repelling crescent Cr(f̃m,m), while

ãs ≡ f̃ s(ã) lands in D = Dl.

Corollary 4.6 implies that for any ε > 0, if κ is sufficiently big, there is

k ≤ s such that

(i) ãs−k is ε-close to the critical point c̃0;

(ii) D can be univalently pulled back along the orbit {ãs−n}kn=0 — let D̃−n
denote the corresponding disks;

(iii) the hyperbolic diameter of D̃−k in Ω \ Õ is less than ε;
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(iv) the orbit {ãs−n}k≤n≤s is contained in the ε-neighborhood of S.

Property (iii) allows us to enlarge D̃−k to a disk D̃′−k b Ω \ Õ such that

(6.4) mod(D̃′−k \ D̃−k) > µ, diamhyp D̃
′
−k < ε,

where µ = µ(ε)→∞ as ε→ 0.

Property (iv) ensures that the orbit {ãs−n}k≤n≤s lies in the range of the

renormalization change of variable π̃m−κ, so it can be lifted to a return orbit

{ãs−n}k≤n≤s in the domain ∆̃
m−κ

of π̃m−κ.

Moreover, by (iii) the disks D̃′−k ⊃ D̃−k 3 ãs−k also lie in the range of

π̃m−κ, so they lift to disks D̃
′
−k ⊃ D̃−k 3 ãs−k in C \ Õ. Since f̃ is a global

polynomial map, the disks D̃
′
−k ⊃ D̃−k can be further pulled back to disks

D̃
′
−s ⊃ D̃−s 3 ã in C \ Õ (where ã is the lift ã).

As we know (see Section 4.2), this pullback contracts the hyperbolic diam-

eter in C \ Õ. Since D′−k has a small hyperbolic diameter (see (6.4)), so does

D̃
′
−s. Hence it has a small Euclidean diameter compared with dist(c̃−s, c̃qm−s),

where c̃−s is the center of ∆̃
m

. On the other hand, diam ∆̃
m

is comparable

with the latter distance, and we conclude that D̃
′
−s ⊂ ∆̃

m
.

We can now apply to D̃
′
−s ⊃ D̃−s the renormalization change of variable

π̃m−κ to obtain disks D̃′−s ⊃ D̃−s 3 ã in ∆̃κ \ Õ that are univalent pullbacks

of the disks D̃′−k c D̃−k. Moreover, the change of variable π̃κ is well defined

on these disks, and

mod(π̃κ(D̃′−s) \ π̃κ(D̃−s)) = mod(D̃′−s \ D̃−s) = mod(D̃′−k \ D̃−k) > µ,

with a big µ; see (6.4). Hence the hyperbolic diameter of π̃κ(D̃−s) inside

Ω \ Õ(f̃m,m) is small. Since π̃κ(ã) lies in the middle of the repelling crescent

of f̃m, the disk π̃κ(D̃−s) lies inside the crescent. �

Passing to the limit as m→∞ (using Lemma 6.4), we conclude

Lemma 6.7. There exists κ such that for any natural κ > κ, the map

f̃∞ = lim
m→∞

f̃m,m−κ ∈ Wu(f∞)

has the properties listed in Lemma 6.6.

6.3. Various connections. By a connection between two points, z and ζ,

we mean a trajectory passing from a small neighborhood of z to a small neigh-

borhood of ζ.

6.3.1. Connection between c̃0 and 0. Property (P3) of the Inou-Shishikura

class (Section 5.2) and compactness of the space Sieg(N,µ,K) (with µ = µ(N)

and K = K(N) as in Lemma 6.4) imply
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Lemma 6.8. There exists an n̄ = n̄(N,κ) such that for any parabolic map

f̃ = f̃m,m−κ, m ∈ Nκ, we have f̃n(c̃0) ∈ C̃a for some n ≤ n̄.

6.3.2. Connection between α̃l and c̃0. Let us now make a connection be-

tween the periodic point αl and the critical point c0:

Lemma 6.9. For any (N,µ,K), there exists l with the following property.

For any natural l > l and any ρ > 0, there exists t such that for any t > t

congruent to t mod ql, any Siegel map f ∈ Sieg(N,µ,K) has a t-precritical

point c−t in the ρ-neighborhood of the periodic point αl. Moreover, the orbit

{cn}0n=−t is contained well inside Ωl−ν with ν depending only on (N,µ,K). In

particular, all these properties are valid uniformly for the maps fm−κ, m ∈ Nκ.

Proof. Let ε = σ · dist(αl, c0) with a small σ ∈ (0, 1), and let W be the

ε2-neighborhood of the critical value c1. Any point z ∈ W ∩ ∂S, except c1

itself, has a preimage z−1 6∈ S̄. Let k be the first moment when the back-

ward orbit {c−n} of c0 (along ∂S) lands in W . Then k = k(N,µ,K; l) and

dist(c1, c−k) � ε2 (with a constant depending on (N,µ,K) only).

The point c−k has a preimage c−k−1 6∈ S̄ such that

dist(c−k−1, c0) � dist(c−k−1, S̄) � ε.

It follows that if σ is sufficiently small, then c−k−1 ∈ Y l and the hyperbolic dis-

tance d := disthyp(c−k−1, α
l) in Y l is bounded. (Here Y l corresponds through

the surgery to the range of the holomorphic circle pair from Theorem 3.10).

Let D 3 c−k−1 be the hyperbolic disk in Y l of radius 2d centered at αl. By

the Schwarz Lemma, f−ql(D) is a subset of D of bounded hyperbolic diameter

(where f−ql is the inverse branch fixing αl). A few more (of order − log ρ)

pullbacks of c−k−1 by f−ql will bring our point to the ρ-neighborhood of αl.

Since this backward orbit stays in D, it is trapped inside Comp0(C\Al−ι)
with ι = ι(N). Since points of ∂Al−ι lie on depth l− ι, while those of ∂Ωl−ν lie

on depth l− ν, we see that Al−ι is contained well inside Ωl−ν for ν big enough

(depending on (N,µ,K) only). The conclusion follows. �

The above connection is robust:

Corollary 6.10. For any (N,µ,K), there exists l with the following

property. For any natural l > l and any ρ > 0, there exist t and δ0 > 0 such

that for any δ < δ0 and any natural t > t congruent to t mod ql, the following

holds. If a map f̃ is δ-close to a Siegel map f ∈ Sieg(N,µ,K), then it has a

t-precritical point c̃−t in the ρ-neighborhood of the periodic point α̃l. Moreover,

the orbit {c̃n}0n=−t is contained in Ω̃l−ν with ν = ν(N,µ,K). In particular,

these properties are valid for any parabolic map f̃m,m−κ, m ∈ Nκ.



62 ARTUR AVILA and MIKHAIL LYUBICH

Ca

Cr

f̃n
c0

f̃ t

f̃s

αl

Figure 6.2. Various connections.

6.3.3. Connection between 0 and α̃l.

Lemma 6.11. For any consecutively selected sufficiently big N, l, κ and

any ρ > 0, there exist t and s̄ such that for any natural t > t congruent

to t mod ql, and some s ≤ s̄, the following holds. For any parabolic map

f̃ = f̃m,m−κ, m ∈ Nκ, there exists a precritical point c̃−s−t lying in the middle

of the repelling crescent C̃r such that f̃ s(c̃−s−t) = c̃−t, where c̃−t is ρ-close to

the periodic point α̃l, and the orbit {f̃ i(c−s−t)}si=0 is contained in Ω̃l−ν with

some ν = ν(N).

Proof. By Lemma 6.4, for κ sufficiently big, f̃m,m−κ is close to fm−κ,

uniformly in m ∈ Nκ. Hence we can apply

– Lemma 6.1 to find a trapping disk D ≡ Dl around α̃l;

– Lemma 6.5 to find s̄ and a point ã ∈ C̃r such that f̃ sã ∈ D for some s ≤ s̄;
– Corollary 6.10 to find, for any t > t congruent to t mod ql, a precritical point

c̃−t ∈ D that is ρ-close to α̃l.

By Lemma 6.6, the trapping disk D can be univalently pulled back to the

point ã. Moreover, this pullback is contained in Ω̃l−ν for some ν = ν(N), and

the last domain D̃−s is compactly contained in the repelling crescent C̃r. The

corresponding pullback of the precritical point c̃−t ∈ D gives us the desired

point c̃−s−t. �

6.3.4. Transit from the repelling crescent to the attracting one. Combining

the last lemma with Lemma 6.8 and Corollary 6.10, we obtain

Corollary 6.12. For any consecutively selected sufficiently big N, l, κ,

and for any ρ > 0, there exist t, n̄ and s̄ with the following properties. For

any m ∈ Nκ and any t > t congruent to t mod ql, there exist n ≤ n̄ and s ≤ s̄
such that the parabolic map f̃ = f̃m,m−κ has a precritical point c̃−s−t ∈ C̃r and
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a postcritical point c̃n ∈ C̃a such that the whole orbit {c̃k}nk=−s−t is trapped in

Ω̃l−ν with some ν = ν(N).

Recall that f̃ = fpm/qm is the parabolic quadratic polynomial with rotation

number pm/qm, and that C̃a/r stand for the attracting and repelling crescents

for f̃ . As f̃m,m−κ = Rm−κS f , we obtain

Corollary 6.13. The points c̃−s−t and c̃n from Corollary 6.12 lift to a

precritical point c̃−s−t ∈ C̃r and a postcritical point c̃n ∈ C̃a for the parabolic

polynomial f̃ such that the whole orbit {c̃k}nk=−s−t is trapped in Ω̃m−κ+l−ν with

ν = ν(N).

6.4. Quadratic-like renormalization.

6.4.1. Superattracting parameter. Let us now perturb the parabolic map

f̃ ≡ f̃m,m−κ, m ∈ Nκ, to a superattracting map f◦ ≡ fm,m−κ,j;◦, j ∈ N, that

will determine the desired renormalization combinatorics. Its superattracting

cycle33 {c◦k}
p−1
k=0 follows the following route:

• first, it passes from the critical point c◦0 to a postcritical point c◦n in the

attracting crescent Ca◦ (where n comes from Lemma 6.8);

• then it goes through the parabolic gate to a precritical point c◦−t−s in the

repelling crescent Cr◦ (where s and t come from Lemmas 6.5 and 6.9);

• then it penetrates trough the boundary of the virtual Siegel disk Sf , ap-

proaches a periodic point α◦ just missing it to land at c◦−t;

• and finally, it returns to c◦0.

Here is a formal statement:

Lemma 6.14. Let θ = θN be a stationary rotation number of high type

N > N , and let l > l be a level selected in Lemma 6.1. For any δ > 0, there

exists κ = κ(N, l; δ) such that for any κ > κ, some n < n̄(κ), s < s̄(κ), and

any t > t(κ) congruent to t mod ql, j ≥ j and m ≥ κ the following holds.

There exists a superattracting map

f◦ ≡ fm,m−κ,j;◦ = Rm−κS (f◦) : Ω→ C

δ-close to the parabolic map f̃ (6.3), with a superattracting cycle of period

p = n+ j + s+ t, such that near the critical point c◦0, we have

fp◦ = f s+t◦ ◦ I◦ ◦ fn◦ ,

where I◦ : Ca◦ → Cr◦ is a transit map between the crescents of f◦. Moreover, the

whole cycle of c◦0 is contained in Comp0(C \Al−ι◦ ) with some ι = ι(N).

33We will mark the objects related to f◦ with a subscript or superscript “◦.” On the other

hand, for the (pre-/post-) critical points ck, we skip (here and below) subscripts indicating

their dependence on various parameters: m, j, etc.
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The same properties hold for the limit map

f∞,j;◦ = lim
m→∞

fm,m−κ,j;◦

in the unstable manifold of the renormalization fixed point (cf. Lemma 6.7).

Proof. Let us consider the postcritical point c̃n ∈ C̃a and the precritical

point c̃−s−t ∈ C̃r from Corollary 6.13. Let I : Cyla → Cylr be the isomorphism

between the cylinders such that I(cn) = c−s−t. By the Parabolic Bifurcation

Theory (Theorem 5.2) for any sufficiently big j, f̃ can be perturbed to a su-

perattracting polynomial map f◦ ≡ fj;◦ for which

f j◦ (c
◦
n) = c◦−s−t.

Let f◦ = Rm−κS (f◦) for m ∈ Nκ. The desired properties for these maps, and

their limit as m→∞, are evident. �

6.4.2. Quadratic-like families for parabolic maps. Similarly, we can con-

struct the whole quadratic-like family with the desired renormalization com-

binatorics:

Lemma 6.15. For any consecutively selected natural (N,l,κ, t)>(N, l, κ, t),

and any m∈Nκ, any parabolic map f̃≡ f̃m,m−κ admits a family of transit maps

Iλ : C̃yl
a → C̃yl

r
, λ ∈ Λ,

with the following properties. There is a family of disks Ũλ ⊂ Ṽ around c̃0 and

moments (n, s) ≤ (n̄, s̄) (from Lemmas 6.8 and 6.5) such that

(0) V is a quasidisk with bounded dilatation and definite size depending only

on (N, l, κ);34

(i) the maps

(6.5) F̃λ = f̃ s+t ◦ Iλ ◦ f̃n : Ũλ → Ṽ

form a proper unfolded quadratic-like family over Λ;

(ii) the closures of all intermediate disks,

f̃k(Ũλ), k = 0, 1, . . . , n, and f̃k ◦ Iλ ◦ f̃n(Ũλ), k = 0, 1, . . . s+ t− 1,

that appear in composition (6.5) are pairwise disjoint ;

(iii) µ̄(N, l, κ, t)≥mod(V \Ũλ)≥µ(N, l, κ, t)→∞ as t→∞ with N, l, κ fixed ;

(iv) in case of connected Julia set J(F̃λ) (i.e., when λ belongs to the Mandel-

brot set M′N,l,κ,t,m of the q-l family (6.5)), the disk Ũλ is an L-quasidisk

with
area Ũλ ≥ c(N, l, κ, t) > 0.

All constants and bounds are independent of m.

34In fact, for given (N, l, κ), the disk itself can be selected independently of t; for m

sufficiently big, it can be selected independently of m either.
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Proof. In the f̃ -plane, select a disk Ṽ 3 c̃0, and let Ṽ−i, i = 0, 1, . . . , t,

be its pullback to c̃−t. Let us show that if Ṽ is small enough, depending on

N, l, and κ but independently of t, then the closures of these disks are pairwise

disjoint. Consider a linearization domain W around the periodic point α̃l (so,

f̃ ql maps W univalently onto f̃ ql(W ) c W ). Note that its size depends on N

and l only. It takes a bounded number of iterates (≤ t0 = t0(N, l, κ)) for the

pullback in question to get trapped in W . By adjusting W and selecting Ṽ

sufficiently small, we ensure that the first t0 pullbacks Ṽ−i, i < t0, are pairwise

disjoint and disjoint from W , while Ṽ−t0 b W . Then the further pullbacks

Ṽ−i b W, t0 ≤ t, will stay pairwise disjoint and disjoint form the first ones.

So, independently of t, the whole pullback Ṽ−i, i = 0, 1, . . . t, will consists of

pairwise disjoint domains. Moreover,

(6.6) diam Ṽ−t → 0 as t→∞ with (N, l, κ) fixed.

Let us now pull Ṽ−t further to c−t−s. The number s of iterates is bounded

by s̄(N, l, κ) from Lemma 6.5, so for t sufficiently big, (6.6) ensures that these

pullbacks stay small and pairwise disjoint. Since c−t−s lies in the middle of the

repelling crescent C̃r, the final domain Ṽ−t is trapped well inside C̃r. Hence it

projects to a disk compactly contained in the repelling cylinder Cylr ≈ C/Z.

(We will keep the same notation for it.)

Consider a parameter domain Λ ⊂ C/Z such that Iλ(c̃n) ∈ Ṽ−t−s for any

transit parameter λ in Λ. (In fact, under our normalizations and notational

conventions, Λ = Ṽ−t−s.) Pull Ṽ−t−s further back by this transit map, and

then further back to c̃0 by the iterates of f̃ (by means of Lemma 6.8). Call the

corresponding pullbacks Ṽλ,−t−s−I−i, i ≤ n ≤ n̄(N,κ). As the number of these

pullbacks is bounded, all of them have a small diameter and remain pairwise

disjoint and disjoint from the initial pullbacks, which proves assertion (ii). It

also follows that the disc Ũλ := Ṽλ,−t−s−I−n is trapped well inside Ṽ , which

implies that the maps Fλ defined by (6.5) are quadratic-like.

Since the transit map Iλ : Caλ → Cr depends holomorphically on λ ∈ Λ,

these q-l maps form a quadratic-like family. For the same reason, the domains

Ṽλ,−t−s−I , and hence their further pullbacks Ṽ−s−t−I−i, move holomorphically

with λ, so our family is equipped (see Section 2.1.2). For λ ∈ ∂Λ, we have

Iλ(cn) ∈ ∂Ṽ−t−s, and hence Fλ(c0) ∈ ∂Ṽ . Thus, our q-l family is proper.

Finally, as λ goes once around ∂Λ, then Iλ(cn) goes once around Ṽ−t−s. (Recall

that with our normalizations, Λ = Ṽ−t−s.) So, our q-l family is unfolded. This

completes the proof of (i).

The upper estimate in items (iii) and (iv) follow from the property that

the total number of f̃ -iterates involved in our construction is bounded in terms

of (N, l, κ) and t, while the transit maps Iλ, λ ∈ Λ̄, form a compact family.

Hence the size of Uλ is definite in terms of (N, l, κ) and t.
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On the other hand, as t → ∞ with (N, l, κ) fixed, (6.6) implies that

diam Ũλ → 0. This yields the lower bound in item (iii). �

6.4.3. Quadratic-like families for parabolic perturbations. For notational

convenience, let us shift the m-parameter:

m = m− κ ∈ N = {1, 2, . . . ,∞}.

Let Fm = Rm
SF , where F is the quadratic family (fγ). By Theorem 5.12, these

are holomorphic curves converging to the unstable manifold F∞ = Wu(f∞)

for the Siegel renormalization. Perturbing our parabolic maps f̃m within the

families Fm, we can construct genuinely renormalizable maps:

Lemma 6.16. Under the circumstances of Lemma 6.15, for any m ∈ N0

and j > j(N, l, κ, t), there exists a holomorphic subfamily Fm,j = (fm,j;λ) of

Fm parametrized by some domain Λm,,j with the following properties :

(i) Each family Fm,j gives rise to a proper unfolded q-l family (see Sec-

tion 2.1.2)

Fm,j;λ = fpm,j;λ : Um,j;λ → Vm, λ ∈ Λm,j ,

with period p = n + j + s + t and pairwise disjoint disks f im,j;λ(Ūm,j;λ),

i = 1, . . . p.

(ii) As m → ∞, the families Fm,j converge, uniformly in j, to the families

F∞,j in F∞ =Wu(f∞).

(iii) µ̄(N, l, κ, t) ≥ mod(Vm\Um,j;λ) ≥ µ(N, l, κ, t)→∞ as t→∞ with N, l, κ

fixed.

(iv) In case of connected Julia set J(Fλ) (i.e., when λ belongs to the corre-

sponding little Mandelbrot set M′N,l,κ,t,m,j), the disks Um,j;λ are L-quasi-

disks with

areaUm,j;λ ≥ c(N, l, κ, t) > 0.

All geometric constants and bounds are independent of m and j.

Proof. Throughout this argument, (N, l, κ, t) will be fixed, and depen-

dences on them will not be mentioned. Parameters m and j will be free.

By Corollary 5.13, the families Fm stay within a compact collection of

families crossing the Siegel class {f ∈ IS : f ′(0) = e2πiθ} transversally at

points fm = Rm
S fθ. In fact, they converge, as m→∞, to the unstable manifold

Wu(f∞) ≡ F∞ of the Siegel fixed point. Moreover, the parabolic maps

f̃m = Rm
S (fpm/qm) = fm; pκ/qκ ∈ Fm

converge to f̃∞ ∈ F∞. This allows us to apply the Parabolic Bifurcation

Theory in a uniform way to the families Fm near the maps f̃m.

Let us start with the limiting parabolic map f̃ = f̃∞. Let Ṽ 3 c̃0 be

the disk selected for this map in Lemma 6.15, and let Ṽ−s−t 3 c̃−s−t be its
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pullback constructed in that lemma. It is compactly contained in the repelling

crescent C̃r, and hence it is compactly contained in some smooth disk Λ b C̃r.
There is a neighborhood Υ⊂F∞ of f̃ such that for any map fγ≡f∞,γ ∈Υ,

the pullback V γ
−s−t 3 c−s−t of V ≡ Ṽ under f s+tγ is compactly contained in Λ

as well (uniformly over fγ ∈ Υ). Moreover, since the disks V γ
−s−t are univalent

pullbacks of a fixed disk V by a holomorphic family of maps f s+tγ , they move

holomorphically in γ; let

hγ : Ṽ−s−t → V γ
−s−t

be this holomorphic motion (based at f̃).

By Theorem 5.2, for any sufficiently big j, there exists a holomorphic

function γ = γj(λ) on Λ such that the transit maps Ijγ : C/Z → C/Z induced

by f jγ , have the following properties:

• Ijγ(0) = λ. (Recall that the uniformizations of the Douady cylinders Cyla/r

by C/Z are selected so that cn ∈ Cyla and c−s−t ∈ Cylr correspond to

0 ∈ C/Z.)

• As j → ∞, the transit maps Ijγ(λ) converge uniformly on compact sets of

C/Z and uniformly in λ ∈ Λ to the transit map Iλ : z 7→ z + λ between the

Ecallé-Voronin cylinders for the parabolic map f̃ .

By the Argument Principle, for any z ∈ ∂Ṽ−s−t, there exists a unique

λ ∈ Λ such that

hγ(z) = Ijγ(0), with γ = γj(λ),

and these λ’s go around a Jordan curve Γj b Λ. This implies that each

quadratic-like family

(6.7) Fj;λ = f s+tγ ◦ Ijγ ◦ fnγ : Uj;γ → V

is proper and unfolded over the disk ∆j b Λ bounded by Γj , where γ = γj(λ)

and Uj;γ 3 c0 is the pullback of V γ
−t−s by Ijγ ◦ fnγ . We obtain assertions (i) and

(ii) for m =∞.

Assertions (iii) and (iv) for m = ∞ follow from the corresponding asser-

tions of Lemma 6.15 since the quadratic-like families (6.7) are small perturba-

tions (for big j) of the family F̃λ (6.5).

For each finite m, we can apply the same argument to the family Fm,

which provides us with quadratic-like families Fm,j;λ with desired properties,

except that the geometric constants and bounds may depend on m. To make

them uniform, we can apply a perturbative argument near F∞. Namely, let us

start with the same disk V 3 c0 as for f̃ ≡ f̃∞, and pull it back by f s+tm;γ . We

obtain a holomorphically moving family of disks V m;γ
−s−t b Cr(fm;γ) which is a

small perturbations of the above family (V γ
−s−t) for the fγ . In particular, for

m big enough, all these disks are uniformly compactly contained in the domain

Λ used for m =∞.
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Moreover, by Theorem 5.2, as m, j → ∞, the transit maps Im,jγ , with

γ = γm,j(λ), associated with fm;γ , converge to Iλ. It follows that for m and j

sufficiently big, the quadratic-like families (Fm,j;λ) are small perturbations of

the family (F̃λ) from Lemma 6.15. The uniformity of the geometric bounds

follows. �

6.4.4. Renormalizations in the quadratic family. Lifting the above renor-

malization to the quadratic family by means of change of variable Πm−κ (5.16)

we obtain

Corollary 6.17. Let N, l, κ, and t be as above. Then for any natural

(N, l, κ, t) > (N, l, κ, t), there exist m and j with the following properties. For

each natural (m, j) > (m, j), consider the holomorphic family Fm,j = (fm,j;λ)

of quadratic polynomials such that

fm−κ,j;λ = Rm
S (fm−κ,j;λ),

where (fm−κ,j;λ) is the family from Lemma 6.16. Then

(i) each family Fm,j admits a primitive proper unfolded q-l renormalization

Fm,j;λ = fpm,j;λ : Um,j;λ → Vm, λ ∈ Λm,j

with pairwise disjoint disks fkm,j;λ(Ūm,j;λ), k = 1, . . .p;

(ii) µ̄(N, l, κ, t) ≥ mod(Vm \ Um,j;λ) ≥ µ(N, l, κ, t) → ∞ as t → ∞ with

N, l, κ fixed ;

(iii) in case of connected Julia set J ≡ J(F λ) (i.e., when λ belongs to the

corresponding little Mandelbrot set M′N,l,κ,t,m,j), the disks Um,j;λ are

L(N, l, κ, t)-quasidisks with

area Um,j;λ ≥ c area Vm, where c = c(N, l, κ, t) > 0.

All geometric constants and bounds are independent of m and j.

The little Mandelbrot copies M′ =M′N,l,κ,t,m,j ⊂ M generated by these

quadratic-like families determine the desired renormalization combinatorics.

Below, a map fλ will be called renormalizable if it is DH renormalizable with

these combinatorics (and similarly for fλ).

6.5. Geometric bounds. Along with lower thresholds (N, l, κ) let us select

some upper bounds (N̄ , l̄, κ̄, t̄) > (N, l, κ, t) satisfying the following require-

ments:

N̄ > N, l̄ > l = l(N̄), κ̄ > κ = κ(N̄ , l̄), t̄ > t = t(N̄ , l̄, κ̄).

Let f∗ : U→ V be an infinitely renormalizable quadratic polynomial with

bounded combinatorics (Mi)∞i=0, where Mi = M ′Ni,li,κi,ti,mi,ji are the little

Mandelbrot copies constructed above with

(6.8) (N, l, κ) < (Ni, li, κi) ≤ (N̄ , l̄, κ̄)

(while the bounds on ti, mi and ji are not yet specified35).

35In fact, in this section one can consider maps f∗ with unbounded ti,mi, ji
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Proposition 6.18. For any sequence (Ni, li, κi) satisfying (6.8), there

exists t such that if

ti > t, i = 0, 1, . . . ,

then the quadratic polynomial f∗ has unbranched a priori bounds ν(N̄ , l̄, κ̄) > 0

independent of (ti,mi, ji). If additionally t < t̄, then f∗ has a geometric bound

g = g(N̄ , l̄, κ̄, t̄) independent of (mi, ji).

Proof. If g is a quadratic-like map with mod g > µ, then it is K-qc con-

jugate to a quadratic polynomial fθ, where K = K(µ)↘ 1 as µ→∞. Hence,

if g is DH renormalizable with any combinatorics M′ = M′N,l,κ,t,m,j under

consideration, then its renormalization Rg has modulus at least K−1µ, where

µ = µ(N, l, κ, t) is from Corollary 6.17, and K = K(µ).

Let us select ν so that K(ν) < 2 and then t so that µ(N, l, κ, t) > 2ν

for any t > t congruent to t mod ql (which is possible by Corollary 6.17).

Then for any quadratic-like map g with mod g > ν that is renormalizable with

combinatorics M′, we have modRg > ν as well.

It follows that ν gives a priori bound for any quadratic-like map g with

mod g > ν that is infinitely renormalizable with combinatorics (M′). These

bounds are unbranched by Corollary 6.17(i). Hence the renormalization do-

mains can be selected with a geometric bound g = g(N̄ , l̄, κ̄, t̄). �

6.6. Landing probability. Let f∗ = Rm−κS f∗, and let Rf∗ : U∗ → V∗ be its

DH pre-renormalization (with the combinatorics constructed in Section 6.4.1).

The next lemma shows that there is a definite probability of landing in

the renormalization domain U∗ of the map f∗.

Lemma 6.19. Let l and ι be as in Lemma 6.1. Let l > l+ ι, and let D∗ =

Dl−ι
∗ be the trapping disk for f∗ constructed in that lemma. Then D∗ contains

domains U ′ ⊂ V ′ of comparable (with D∗) size (with constants depending on

N, l, κ, and t) that are mapped respectively to U∗ and V∗ under some iterate

of f∗. Moreover, D∗ is contained well inside Dom f∗ \ O∗ (with a lower bound

depending on N only), where O∗ = Of∗ is the postcritical set for f∗.

Proof. Recall that f∗ is a small perturbation of the Siegel map f whose

Siegel disk is called S = Sf . Let S′ be the component of f−1(S) that is different

from S. The trapping disk Dl−ι for f contains in the middle some point of ∂S′.

If f∗ is sufficiently close to f , then D∗ ≡ Dl−ι
∗ contains in the middle some point

of f−1
∗ (∂S). Hence f∗(D∗) contains in the middle some point of ∂S.

The renormalization range V∗ can be selected at a much deeper (but still

depending only on N, l, κ, and t) dynamical scale than f∗(D∗). Then f∗(D∗)

contains many (in fact, we need only one) univalent and bounded distortion

pullbacks of V∗ under the Siegel map f . Moreover, these pullbacks have size

comparable with diam f∗(D∗). Selecting f∗ sufficiently close to f , we ensure
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the same property for f∗. Then D∗ also contains a comparable pullback of V∗.

The corresponding pullback of U∗ has a comparable size as well (all in terms

of N, l, κ, and t) .

The last assertion follows from the property that the postcritical set O∗
lies well inside Al−1

∗ while D∗ lies outside Al−1
∗ . �

We call the disk D = Dl−ι
∗ (and similar disks that appear below) a safe

trapping disk since it can be “safely” pulled back, with a bounded distortion

(depending on N only), along any orbit landing in it. As before, we say that

D is centered at αl−ι, or that depthD = l − ι.
Lifting this disk by the renormalization change of variable Πm−κ (5.16),

we obtain

Corollary 6.20. The quadratic polynomial f∗ has a safe trapping disk

D := Dm−κ+l−ι
∗ that contains domains U′ ⊂ V′ of comparable (with D) size

that are mapped respectively to U∗ and V∗ under some iterate of f∗. The

constant depends on N, l, κ, and t but is independent of m.

We will refer to the above disk D as the base safe trapping disk. Spreading

the disks U′ ⊂ V′ around by the landing map, we obtain

Corollary 6.21. For any point z whose orbit passes through the safe

trapping disk D under the iterates of f∗, there exist quasidisks U(z)⊂V(z) with

bounded dilatation whose size is comparable with the Hausdorff dist(z,V(z)),

and such that

fn∗ (U(z)) = U∗, fn∗ (V(z)) = V∗ for some n = n(z).

All constants and bounds depend on N , l, κ and t, but not on m.

We are now ready to show the map f∗ has a definite landing probability η.

Proposition 6.22. For the polynomial f∗, the landing probability η is

bounded from below in terms of N , l, κ, and t, uniformly in m.

Proof. It is known that almost all point of the Julia set J∗ = J(f∗) land in

U∗ [Lyu83], so it is sufficient to deal with the Fatou set. Since the Siegel disk

B = Bf occupies certain area, it is sufficient to check that a definite portion

of points z ∈ B \ J∗ land in U∗. But any point z ∈ B \ J∗ on its way from

B to ∞ must pass through the base safe trapping disk D. Then Lemma 6.21

provides us with a domain U(z) of points landing in U∗ that occupies a definite

portion of some neighborhood of z. The conclusion follows from the Besikovich

Covering Lemma (see [Mat95]). �

6.7. Escaping probability ξ.

6.7.1. Porosity. Let us start with a general measure-theoretic lemma as-

serting that if a set X has density less than 1 − ε in many scales, then it has

small area.



LEBESGUE MEASURE OF FEIGENBAUM JULIA SETS 71

By a gap in X of radius r we mean a round disk of radius r disjoint from X.

Lemma 6.23. For any ρ ∈ (0, 1), C > 0 and ε > 0, there exist σ ∈ (0, 1)

and C1 > 0 with the following property. Assume that a measurable set X ⊂ Dr
has the property that for any z ∈ X , there are n disks D(z, rk) with radii

C−1ρlk ≤ rk/r ≤ Cρlk with some lk = lk(z) ∈ N, l1 < l2 < · · · < ln,

containing gaps in X of radii ε rk. Then areaX ≤ C1σ
n r2.

Proof. Since the assertion is scaling invariant, we can assume without loss

of generality that r = 1. We can also assume that X is compact, and we can

work with squares instead of disks. Using the first scale l1 for points of X,

we can subdivide the unit square Q into dyadic squares Q1
i (of varying scales)

such that each Q1
i contains a comparable dyadic square B1

i (of relative scale

depending on ε) disjoint from X. Let Q1 ⊃ X be the union of Q1
i \B1

i . Then

areaQ1 ≤ σ0 areaQ,

where σ0 ∈ (0, 1) is roughly equal to 1− ε2.

Then we can subdivide each Q1
i into squares of size B1

i and repeat the con-

struction with all non-empty squares of this subdivision (using a deeper scale

lk with a sufficiently big but bounded k, i.e., k ≤ k̄ with some k̄ independent

of the square in question). It will produce a set Q2 ⊃ X such that

areaQ2 ≤ σ0 areaQ1.

We can repeat this procedure roughly n/k̄ times, which implies the desired.

�

6.7.2. Landing branches. Let us consider a safe trapping disk D = Dl for

f∗ centered at the periodic point αl. By definition, it has hyperbolic36 diameter

of order 1 in C \O∗:

(6.9) d−1 ≤ diamhypD ≤ d with d = d(N).

For instance, D can be the base trapping disk of depth l = m− κ+ l− ι from

Corollary 6.20, but we will also consider much more shallow disks.

For any point z, let

0 ≤ r1(z) < · · · < rn(z) < · · ·

be all landing times of orb z at D, i.e., the moments for which f rn∗ (z) ∈ D
listed consecutively. (This list can be infinite, finite, or empty.) Let Tn :

DomTn →D be the corresponding landing maps; i.e., for a point z ∈ DomTn,

36Below, “hyperbolic” will always refer to the hyperbolic metric in C \O∗.
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the landing moment rn(z) is well defined and Tn(z) = f rn∗ (z). Let Pn(z) 3 z
be the pullback of D along the orbit {f i∗(z)}rni=0. Since D b C \O∗, the maps

(6.10) f rn∗ : Pn(z)→D

are univalent. We will refer to these maps as the landing branches.

For a domain P ≡ Pn(z), we will also use the notation rP for the landing

time rn(z) (which is independent of z ∈ P , though the associated level n may

depend on z), and we will will use the notation TP = f rP∗ for the corresponding

landing branch P →D.

Let P(D) be the family of all domains P = Pn(z).

Lemma 6.24.

• The landing branches TP : P → D, P ∈ P(D), have uniformly bounded

distortion ; the domains P ∈ P(D) have a bounded shape and are well inside

C \O∗ (with bounds and constants depending only on N ).

• Each domain P ∈ P(D) contains a pullback of V∗ of comparable size (with

the constant depending only on the parameters N, l, κ, t).

Proof. The first assertion follows from the property that D is well inside

C \O∗ and the Koebe Distortion Theorem. Together with Corollary 6.20, it

implies the second assertion. �

Along with D, let us consider another trapping disk D′ (which is allowed

to coincide withD). Let PD′(D) be the family of all the domains P = Pn(z) ∈
P(D) intersecting D′.

Lemma 6.25. For any domain P ∈ PD′(D),

diamP ≤ C0 diamD′ with C0 = C0(N),

where diam ≡ diamEuc stands for the Euclidean diameter.

Proof. By Lemma 4.2, the inverse branch T−1
P : D → P is a hyperbolic

contraction. Hence diamhyp P ≤ diamhypD ≤ d. Since P ∩ D′ 6= ∅ and

diamhypD ≤ d as well, we have

(6.11) diamhyp(D ∪ P ) ≤ 2d.

It follows that the conformal factor ρ(z) between the hyperbolic and Euclidean

metrics has a bounded oscillation on D′ ∪ P :

sup
z∈D′∪P

ρ(z) ≤ C inf
z∈D′∪P

ρ(z), C = C(N).

Hence

�(6.12)
diamEuc P

diamEucD
′ ≤ C

diamhyp P

diamhypD
′ ≤ Cd

2.
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The following lemma shows that pullbacks of trapping disks to some point

z lie in different scales:

Lemma 6.26. For any σ ∈ (0, 1), there exists ν = ν(N, σ) ∈ N with the

following property. Let Di, i = 1, . . . , ν, be safe trapping disks, not necessarily

distinct. Consider a point z landing at the Di at moments ri, where 0 ≤ r1 <

· · · < rν , and let P i 3 z be the corresponding pullback of the Di. Then

diamP ν < σ diamP 1.

Proof. Let P ≡ P ν , and let Pi := f ri∗ (P ), i = 1, . . . , ν. Then Pi ∩Di 6= ∅.
By property (6.11),

(6.13) diamhypDi ∪ Pi ≤ 2d,

which implies (4.3) for all z ∈ Pi. It allows us to apply Lemma 4.2 and to

conclude that all the maps f
ri+1−ri
∗ : Pi → Pi+1 are hyperbolic expansions by

some factor λ = λ(N) > 1. Hence the map f rν−r1∗ : P1 → Pν (which is the

same as f r1∗ (P )→Dν) is a hyperbolic expansion by λν−1. Thus

diamhyp(f r1∗ (P )) ≤ λ−ν+1 diamhypDν ≤ d λ−ν+1.

On the other hand, diamhyp(f r1∗ (P 1)) ≡ diamhypD1 ≥ d−1, so

diamhyp(f r1∗ (P )) ≤ d2λ−ν+1 diamhyp(f r1∗ (P 1)).

Property (6.13) with i = 1 allows us to switch in the last estimate from the

hyperbolic diameters to the Euclidean ones (as in (6.12)) and then to apply

the Koebe Distortion Theorem to the map f r1∗ on P ∪ P 1. The conclusion

follows. �

6.7.3. Truncated Poincaré series. Let us now fix a safe trapping disk D

(in applications, it will be the base trapping disk), and let P := PD(D). Of

course, a domain P ∈ P can admit several representations as Pn(z). Let

χ(P ) = max{n : ∃ z ∈ P such that P = Pn(z)}.

Let Pn be the family of domains P ∈ P with χ(P ) ≤ n. We also let

P =
⋃
P
P, Pn =

⋃
Pn
P.

Lemma 6.27. There exists C = C(N) such that∑
Pn

areaP ≤ Cn areaD.

Proof. Note that the family Pn has the intersection multiplicity at most n.

Indeed, if some point z is contained in k sets Pi of this family, then Pi = Pni(z)

with ni = ni(z) ≤ n. But since the ni are pairwise distinct, maxni ≥ k.
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Hence

(6.14)
∑
Pn

areaP ≤ n areaPn ≤ n areaP.

By Lemma 6.25, P is contained in a Euclidean neighborhood of D of

size ≤ C0 diamD. Since D has a bounded shape, areaP ≤ C areaD, with

C = C(N). Together with (6.14), this implies the desired. �

Let us consider the following truncated Poincaré series: for ζ ∈D, let

φn(ζ) =
∑
P∈Pn

1

|DTP (ζP )|2
, where ζP ∈ P and TP (ζP ) = ζ.

Lemma 6.28. We have φn(ζ) ≤ Cn, where C = C(N).

Proof. We have∫
D

φn(ζ) d area(ζ) =
∑
Pn

areaP ≤ Cn areaD,

where the last estimate is the content of Lemma 6.27. But since the branches

TP : P →D have a bounded distortion, φn(ζ) � φn(ζ ′) for any ζ, ζ ′ ∈D (with

constants depending only on N). The conclusion follows. �

6.7.4. Probability of few returns to the base. Let us start with an obser-

vation that for m big enough, our quadratic polynomial f∗ has plenty of safe

trapping disks:

Lemma 6.29. For any natural τ ∈ N, there exists m = m(N, l.κ, t, τ )

such that for any m > m, the polynomial f∗ has at least τ safe trapping disks

Di satisfying the properties of Lemma 6.1. Moreover, these trapping disks are

pairwise disjoint and disjoint from the base safe trapping disk D = Dm−κ+l−ι.

Proof. By Lemma 6.4, our polynomial f∗ is εm-close to the Siegel polyno-

mial f , where εm → 0 as m→∞ (keeping the other parameters, N, l, κ and t,

frozen). Hence for m big enough, Lemma 6.1 (applied directly to f∗) supplies

us with arbitrary many safe trapping disks Di. �

From now on, D will stand for the base trapping disk. Recall that J∗ is

the Julia set of f∗. Let Z be the set of points z ∈ D \ J∗ that under the

iterates of f∗ never return back to D. The following lemma shows that for m

sufficiently big, it is difficult to escape from D:

Lemma 6.30. For any natural τ ∈ N, there exists m = m(N, l.κ, t, τ ) such

that for any m > m,

areaZ ≤ Cστ areaD,

with σ ∈ (0, 1) and C > 0 depending only on N .
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Proof. Let z ∈ Z. If m is sufficiently big, then on its way from D to ∞,

the orbit of z must visit τ safe trapping disks Di from Lemma 6.29 at some

moments r1 < r2 < · · · < rτ . By Lemma 6.1, definite parts Wi of these

trapping disks are contained in f−1
∗ (B). Since orb z never returns back to D,

it cannot visit the Siegel disk B = Sf , and hence it cannot land in the domains

Wi either.

Since each disk Di is safe, it can be univalently and with bounded dis-

tortion pulled back to z. The corresponding pullback of Wi creates a gap of

definite size in Z near z. By Lemma 6.26, these gaps lie in � τ different scales.

Lemma 6.23 completes the proof. �

Let

Zn =
⋃

P∈Pn
T−1
P (Z).

Notice that points of Zn escape D forever after at most n returns.

Lemma 6.31. For any natural τ ∈ N, there exists m = m(N, l.κ, t, τ ) such

that for any m > m,

areaZn ≤ C nστ areaD,

where σ ∈ (0, 1) and C > 0 depend only on N .

Proof. Since

areaZn =

∫
Z

φn(ζ) d area(ζ),

the conclusion follows from Lemmas 6.28 and 6.30. �

6.7.5. Many returns to the base. Let

Sn =
⋃

χ(P )>n

P =
⋃
P\Pn

P.

Lemma 6.32. There exist C > 0 and σ ∈ (0, 1) depending on N, l, κ, and

t such that for any n ∈ N, the area of the set of points of Sn that never land

in V∗ is at most Cσn areaD.

Proof. Take a point ζ ∈ Sn. It belongs to some domain P ∈ P with

χ(P ) > n. Then P contains a point z that lands in D at least n times, and

Pn(z) = P . By Lemma 6.26, the nest

P 1(z) ⊃ P 2(z) ⊃ · · · ⊃ Pn(z) = P

represents � n different scales. By Lemma 6.24, each of these domains contains

a pullback of V of comparable size. Now the desired follows from Lemma 6.23.

�
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6.7.6. Escaping probability. We are finally ready to show that the escaping

probability ξ for f∗ can be made arbitrary small by selecting m sufficiently big

(while keeping the previously selected parameters, N, l, κ, and t, unchanged).

Proposition 6.33. For any ε > 0, there exists m such that ξ < ε for any

m > m.

Proof. Let Y be the set of points in D that never land in V∗. We will

show first that for m sufficiently big,

(6.15) areaY < ε areaD.

For any n ∈ N, let us cover Y by three sets:

Y0 = Y ∩ J(f∗), Y n
1 = Y ∩ Sn, Y n

2 = Y \ (Y0 ∪ Y n
1 ).

It is known that almost all point of J(f∗) land in V∗ [Lyu83], so areaY0 =0.

By Lemma 6.32,

areaY n
1 ≤ Cσn areaD < (ε/2) areaD

as long as n is sufficiently big.

Now let us take any point z ∈ Y n
2 . Then

χ(z) := max{χ(P ) : P ∈ P , P 3 z} ≤ n,

and orb z returns back to D at most n times. Let k ≤ n be the number of

returns, and let P := P k(z). Since P 3 z, we have P ∈ Pχ(z) ⊂ Pn. Moreover,

under the return map TP : P → D, the point z must land in Z since it will

never come back to D again. Hence z ∈ Zn. Thus Y n
2 ⊂ Zn. Applying

Lemma 6.31, we see that area Y n
2 < (ε/2) areaD for m sufficiently big, and

estimate (6.15) follows.

To pass from (6.15) to an estimate of ξ, we need to transfer the density

estimate for Y to the fundamental annulus V∗ \U∗. Let Y be the set of points

in V∗ \ U∗ that never return back to V∗. Again, since almost all points of

J(f∗) land in V∗, it is sufficient to deal with the Fatou set Y \ J∗. Any point

z ∈ Y \ J∗ eventually lands in the “middle” of the base trapping disk D.

Pulling D back to z, we obtain a domain Q(z) of bounded shape in which the

set Y ∩ Q(z) (the pullback of Y ) has density ≤ Cε. Applying the Besikovich

Covering Lemma, we conclude that Y has density ≤ C ′ε in V∗ \U∗. �

6.8. Positive area : stationary case.

Theorem 6.34. For any consecutively selected

(N, l, κ, t,m, j) > (N, l, κ, t,m, j)

(with t being congruent to t mod ql), the Feigenbaum polynomial f∗ with sta-

tionary combinatorics M′N,l,κ,t,m,j has the Julia set of positive area.
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Proof. By Proposition 6.18, the map f∗ has a priori bounds depending

only on N, l, κ, and t.

By Proposition 6.22, it has a definite landing parameter η depending on

the same four parameters only.

By Proposition 6.33, it has an arbitrary small escaping parameter ξ as

long as m, j are sufficiently big (with frozen N , l, κ, and t).

Now the Black Hole Criterion (Theorem 2.3) implies the desired. �

6.9. Parameter visibility. To prove Theorem 1.2, we need the following

generalization of Theorem 6.34:

Theorem 6.35. Let F be a finite family of renormalization combinatorics

as in Theorem 6.34. Then any map f : U → V in the corresponding renormal-

ization horseshoe A has the Julia set of positive area.

This result follows easily from the machinery developed in [AL08].

Let fm = fpm : Um → Vm, m = 0, 1, . . . , be the consecutive quadratic-

like renormalizations of f that are selected in a nice geometric way (specifying

geometric bounds of f ; see [AL08, §2.7]).

For any level m ≥ 1, we consider the scaling factor

ρm =
areaUm

areaUm−1
,

along with the escaping and landing parameters for fm−1:

ξm = ξ(fm−1), ηm = η(fm−1).

Recall that the Poincaré series with exponent 2 for a map f is defined as

Θ(z; f) =
∞∑
k=0

∑
fkζ=z

1

|Dfn(ζ)|2
, z ∈ C \ O,

where O is the postcritical set of f . The truncated at level j Poincaré series

Θ[j](z; f), j = 0, 1 . . . is defined by taking in this formula only preimages of z

of order k ≤ j. It is also convenient to let Θ[−1](z; f) = 0.

Let us average the Poincaré series for the fm−1 over the renormalization

fundamental annuli Am = Vm \ Um:

ωm =
1

areaAm

∫
Am

Θ(z; fm−1) dxdy.

The truncated version ω
[j]
m is defined similarly by averaging Θ[j](z; fm−1).

Finally, let us also consider the rescaled Poincaré series:

σm = ρmωm, σ[j]
m = ρmω

[j]
m .
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Lemma 6.36. Let f be a Feigenbaum map in the renormalization horse-

shoe A with ξm < ξ̄ and ηm ≥ η. There is C > 1 depending only on the

geometric bounds for f such that

σ[j+1]
m ≤ C + (1− C−1η)σ[j]

m + Cξ̄ σ
[j]
m+1 + Cξ̄ σ[j]

m σ
[j]
m+1, j = −1, 0, 1, . . . .

Proof. This follows from the Recursive Estimate of Lemma 4.2 [AL08]

(applied to three consecutive levels l = m− 1,m, n = m+ 1):

ω[j+1]
m ≤ C ηm

ρm
+ (1− C−1(ηm+1 + ξm))ω[j]

m

+ C
ρm+1

ρm
ξm+1ηmω

[j]
m+1 + Cρm+1ξm+1 ω

[j]
mω

[j]
m+1,

with C > 0 depending only on the geometric bounds for f . �

Lemma 6.37. Under the circumstances of Lemma 6.36, there exist σ̄ de-

pending only on the geometric bounds for f such that σm ≤ σ̄, m = 1, 2, . . . ,

as long as ξ̄ is sufficiently small, while η is bounded away from 0.

Proof. Let us consider a quadratic polynomial

P (σ) = C + (1− (2C)−1η)σ + Cξ̄ σ2.

For ξ̄ sufficiently small, it has two positive fixed points, and the smallest one

is bounded by some σ̄.

Let us show inductively in j that σ
[j]
m ≤ σ̄ for all natural m. The base

is obvious as σ
[−1]
m = 0. Furthermore, if the assertion is true for some j, then

Lemma 6.36 (taking into account positivity of the coefficients in the recursive

expression) implies

σ[j+1]
m ≤ P (σ̄) = σ̄,

completing the induction step.

Hence

σm = lim
j→∞

σ[j]
m ≤ σ̄. �

On the other hand, by Lemma 5.637 from [AL08], we have

Lemma 6.38. Let f be a Feigenbaum map in the renormalization horse-

shoe A with area J(f) = 0. Then

ωm �
ηm
ξmρm

, m = 1, 2, . . .

with a constant depending only on the geometric bounds for f .

37In [AL08] the lemma is stated under the assumption that f is a renormalization periodic

point, but it was not used in the proof.
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Proof of Theorem 6.35. If area J(f) = 0, then by the last lemma,

σm ≥
c

ξ̄
→∞ as ξ̄ → 0,

contradicting Lemma 6.37.

Proof of Theorem 1.2. For any finite family of combinatorics {M′N,l,κ,t,m,j},
consider the set of infinitely renormalizable parameters with these combina-

torics (arbitrarily alternating). By [Lyu99], this is a Cantor set with bounded

geometry, implying that it has positive Hausdorff dimension.

Remark 6.3. To see that the Hausdorff dimension of the parameter set in

question is at least 1/2, freeze all the parameters except j and let j ≤ j ≤ j̄

with a big j̄. The Hausdorff dimension of the corresponding Cantor set of

infinitely renormalizable parameters is close to the exponent δ for which∑
j

1

(diamM′N,l,κ,t,m,j)δ
= 1.

The parabolic bifurcation theory [DBDS00] implies

diamM′N,l,κ,t,m,j �
1

j2
,

and the conclusion follows.

7. Appendix: Further comments and open problems

7.1. Probabilistically balanced maps. There is an interesting approach to

creating balanced (in some stronger sense) maps by variation of a continuous

parameter. (We thank Jean-Christophe Yoccoz for this suggestion.) Consider

a renormalization horseshoe associated to a pair of renormalization combina-

torics, such that one of the fixed points is lean and the other is a black hole.

For each 0 ≤ p ≤ 1, let µp be the Bernoulli measure on the horseshoe giving

probability p to the “Lean” combinatorics and 1 − p to the “Black hole” one.

Then conjecturally for each p, the limit

cp = lim
1

n
log

ηn
ξn

should exist µp-a.e. and be independent of a particular µp-typical combina-

torics. Moreover, the dependence p 7→ cp is conceivably continuous, and since

c0 < 0 < c1, we must have cp∗ = 0 for some 0 < p∗ < 1. (Justification of all

those facts would depend on a suitable extension of the analysis of [AL08].)

Let us call a µp∗-typical Feigenbaum map probabilistically balanced. (They are

“better balanced” than generic topologically balanced examples constructed in

[AL08].) The geometry of the probabilistically balanced Julia sets would be a

good approximation to the geometry of (perhaps, non-existing) balanced Julia

sets with periodic combinatorics.
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Remark 7.1. Note however that the µp-a.e. Feigenbaum Julia set has full

hyperbolic dimension for every 0 < p < 1 (see Lemma 7.2 and Theorem 8.1 of

[AL08]), and while cp > 0 should imply positive area, cp < 0 would not imply

Hausdorff dimension less than 2.

7.2. Computer experiments. After identifying theoretically the main dy-

namical phenomena that should lead to the Black Hole behavior, we have

attempted an informal numeric investigation of a particularly simple sequence

of renormalization combinatorics displaying them. Consider the quadratic map

pc with a golden mean Siegel disk, with rotation number [1, 1, 1, . . . ], and let

pm/qm be the sequence of rational approximants (pm = qm−1 being the Fi-

bonacci sequence). Visual inspection of the (pm/qm)-limb reveals a pair of

largest primitive Mandelbrot copies with period qm + qm−2. Choosing one of

them, we explore in detail the parameter zm in this copy for which the first

renormalization has a golden mean Siegel disk. This parameter is very close

to the actual Feigenbaum parameter with this stationary combinatorics, and

considerably easier to determine numerically.

In parameter space, one sees that z2m−1−c
z2m+1−c → β = 7+3

√
5

2 . Moreover,

centering the Mandelbrot copies at the superattracting parameter and rescaling

by βm shows manifest convergence of the copies in the Hausdorff topology.

In the dynamical plane, one sees that p
q2m+1+q2m−1
z2m+1 restricts to a quadratic-

like map g2m+1 : U2m+1 → V2m+1, where V2m+1 is a disk of radius
√

38|w2m+1|
and w2m+1 is the center of the Siegel disk for g2m+1. Moreover, w2m−1

w2m+1
converges

to some real constant greater than 1, and up to rescaling by |w2m+1|−1, g2m+1

is seen to converge. The proportion of pz2m+1-orbits starting in the original

Siegel disk of pc that eventually land in V2m+1 is clearly seen to approach

1 (so that η(2m + 1) is bounded from below), while ξ(2m + 1) appears to

decay exponentially. Julia sets of positive area might already emerge then for

period 2207 (ξ ≈ 0.0622), see Figure 1.1, and more likely for period 15127

(ξ ≈ 0.0215).

Remark 7.2. Those estimates are valid for the quadratic map and not

for the renormalization fixed point, so there is still some extra distortion to

consider. Heuristically (ignoring distortion), ξ should be small compared to

the relative area of the filled Julia set with a Siegel disk, which near the fixed

point is around 0.06.

To justify all those observations one needs the existence of a hyperbolic

Siegel renormalization fixed point with the golden mean rotation number and a

one-dimensional unstable manifold containing (up to straightening) the Man-

delbrot copies in question. As we know, the existence of a Siegel renormaliza-

tion fixed point was established by McMullen [McM98]. Its hyperbolicity was

proven in [GY20] (computer assisted) and [DLS20]. However, one still needs
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to show that the unstable manifold is large enough to contain those particular

Mandelbrot copies that we want, which looks like a hard problem. See [DL18]

for an approach to it through the analysis of external rays for an associated

Transcendental Dynamics leading to new Julia sets of positive area.

7.3. More Julia sets of positive area? Recall that the renormalization in

our examples is of primitive type. Recently, a priori bounds have been proven

for some Feigenbaum maps of satellite type that made it possible to apply

our machinery to those cases, providing Feigenbaum Julia sets of satellite type

with positive area [DL18].

It remains an open problem whether Julia sets of positive area may ex-

ist for real quadratic maps. Any such example would have to be infinitely

renormalizable, and would imply their existence already in the class of real

Feigenbaum quadratic maps with periodic combinatorics. As we have already

mentioned, A. Dudko and S. Sutherland have recently proven (with a computer

assistance) that the “oringinal” Feigenbaum map corresponding to the period

doubling bifurcation has the Julia set of zero area [DS20]. It makes plausable

that all real quadratic Feigenbaum Julia sets are Lean.

In the higher degree case, the situation is even less conclusive. In this

case, there is even a chance of existance of a non-renormalizable unicritical

polynomial with positive area Julia set (and even real); see an attempt to prove

it by Nowicki and van Strien for the Fibonacci map of high degree [Buf97]

(stemming from computer experiments designed by the second author with

Scott Sutherland in the early 1990s; see [Lyu95, §7.2]).

7.4. Physical attractors for Hénon maps. The complex Hénon family

Fc,b : (z, w) 7→ (z2 + c− bw, z)

with a small Jacobian b can be viewed as a perturbation of the one-dimensional

quadratic family fc : z 7→ z2 + c . The real renormalization theory devel-

oped in [DCLM05] can be adapted to the complex case to show that complex

Feigenbaum maps admit infinitely renormalizable Hénon perturbations. Such a

Feigenbaum-Hénon map has an invariant Cantor set OF on which it acts as the

adding machine. In the real case, this set is a global physical attractor; i.e., it

attracts almost all orbits in the phase space (which is an invariant real bidisk).

In the general complex case, the random walk scheme associated to a

Feigenbaum map fc is robust under a perturbation, implying that the forward

Julia set J+(F ) (see [HOV94]) has positive Lebesgue measure. In fact, a pos-

itive measure subset of orbits in J+(F ) converges to OF , making it a physical

attractor for the complex Feigenbaum-Hénon map F .

We will supply details of this discussion elsewhere (manuscript in prepa-

ration).
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