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Lebesgue measure of Feigenbaum Julia sets

By ARTUR AvILA and MIKHAIL LYUBICH

Abstract

We construct Feigenbaum quadratic-like maps with a Julia set of pos-
itive Lebesgue measure. Indeed, in the quadratic family P. : z — 2% + ¢
the corresponding set of parameters c is shown to have positive Hausdorff
dimension. Our examples include renormalization fixed points, and the
corresponding quadratic polynomials in their stable manifold are the first
known rational maps for which the hyperbolic dimension is different from
the Hausdorff dimension of the Julia set.
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1. Introduction

One of the major successes of the theory of one-dimensional dynami-
cal systems was the conceptual explanation, in terms of the dynamics of a
renormalization operator, of the striking universality phenomena discovered
by Feigenbaum and Coullet-Tresser in 1970s. At the center of the picture lies
the concept of a Feigenbaum map, which is a quadratic-like map that can be
renormalized infinitely many times with bounded combinatorics and a priori
bounds (a certain uniform control on the non-linearity). The successive renor-
malizations are then exponentially asymptotic to a renormalization attractor;
see [Sul92], [McM96], [Lyu99]. In the simplest case of stationary combinatorics,
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the renormalization attractor consists of a single renormalization fixed point.
As a consequence, the dynamics of such Feigenbaum maps display remarkable
self-similarity reflected in the geometry of the corresponding Julia sets.

In fact, understanding the geometry of Feigenbaum Julia sets already
played a key role in the first proof of exponential convergence of the renor-
malization [McM96]. However, for a long time the theory had been unable to
tackle natural geometric problems: do Feigenbaum Julia sets have full Haus-
dorff dimension or even positive area? (See [McM96, p. 177, question 3]). In
[ALO8], a new approach to these problems was developed, which allowed us to
show, in particular, that Feigenbaum Julia sets can have Hausdorff dimension
strictly less than two, while leaving open the problem of whether they can
ever have positive area. The goal of this work is to settle the latter question
affirmatively. Namely, we will show that Julia sets of positive area appear
already among Feigenbaum quadratic polynomials with stationary combina-
torics. (Note that there are only countably many such polynomials.) At the
same time, we construct a set of parameters ¢ of positive Hausdorfl dimension
such that the quadratic polynomials P, : z — 2% + ¢ are Feigenbaum maps
with Julia sets of positive area.

Note that our results (as well as the earlier results of [AL08]) go against in-
tuition coming from hyperbolic geometry. Indeed, according to the philosophy
known as Sullivan’s dictionary,' there is a correspondence between certain
objects and results in complex dynamics and hyperbolic geometry. As Mc-
Mullen suggested in [McM96] (see especially the last paragraph on page 177),
Feigenbaum maps are analogous to 3-manifolds with two ends, one of which
is geometrically finite, while the other one is asymptotically fibered over the
circle. The limit sets A(T") of the corresponding Kleinian groups have zero area
but full Hausdorff dimension; see Thurston [Thu82] and Sullivan[Sul81]. So, it
may look like the dictionary completely breaks down at this point, though in
fact there is a way to rehabilitate it; see Section 1.2.6 below.

1.1. Feigenbaum maps. Let us begin with reviewing briefly the main con-
cepts of the complex renormalization theory. (See Section 2 for a precise brief
account and [Lyu| for details.) A quadratic-like map is a holomorphic dou-
ble covering f : U — V, where U and V are quasidisks with U compactly
contained in V. The filled-in Julia set of f is the set K(f) of points z with
f™(z) € U for all n > 0; its boundary is the Julia set J(f). The filled-in Julia
set is always a full compact set (i.e., a compact set with connected comple-
ment) that is either connected or totally disconnected, according to whether
or not it contains the critical point.

'Remarkably, such a dictionary was already anticipated by Fatou; see [Fat29, p. 22].
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Simplest examples of quadratic-like maps are given by restrictions of
quadratic maps P. : z + 22 4 ¢ to suitable neighborhoods of K(P.). The
precise choice of the restriction is dynamically inessential, which is expressed
by saying that they all define the same quadratic-like germ.

The Mandelbrot set M is defined as the set of parameters ¢ € C for which
K(P,) is connected.

The central role of the quadratic family is made clear by Douady-Hubbard’s
Straightening Theorem that states that each quadratic-like map with connected
Julia set is hybrid conjugate to a unique quadratic map F,; i.e., there exists a
quasiconformal map h : (C, K(f)) — (C, K(P,.)) satistying ho f = P. o h near
K(f) and with Oh| K(f) = 0 a.e. (almost everywhere). We say that P, is the
straightening of f, and we write ¢ = x(f).

A quadratic-like map f : U — V is said to be renormalizable with pe-
riod p > 2 if the p-th iterate of f can be restricted to a quadratic-like map
g : U — V' such that the lttle Julia sets K; := f7(K(g)), 0 < j <p—1, are
connected and do not cross each other (meaning that K; \ K; are connected
for i # j). We can always choose g to have the same critical point as f, and
such a g is called the pre-renormalization of period p of f. The smallest possi-
ble value of p is called the renormalization period of f, and the corresponding
pre-renormalization, considered up to affine conjugacy, is called the renormal-
ization of f and denoted by Rf. The renormalization operator f — Rf is then
well defined at the level of affine conjugacy classes of quadratic-like germs.

The set of parameter values corresponding to renormalizable quadratic
maps is disconnected. Its connected components are called (maximal) Man-
delbrot copies, which can be of two types, primitive or satellite, according
to whether they are canonically homeomorphic (via the straightening map
¢ — x(R(FP,.))) to the full Mandelbrot set or to M \ {1/4}. (Note that 1/4 is
the cusp of the main cardioid bounding the “largest” component of the interior
of M.) Alternatively, (maximal) satellite copies can be distinguished by the
property that they are “attached” to the main cardioid at the “missing” cusp.?
They can also be distinguished dynamically: For the satellite renormalization
(with the minimal period), all little Julia sets have a common touching point,
while for the primitive renormalization, they are pairwise disjoint.

The renormalization combinatorics of a renormalizable quadratic-like map
f is the Mandelbrot copy M’ containing x(f). The renormalization period
only depends on the renormalization combinatorics, but the converse is false
(except for period two). There are however only finitely many combinatorics
corresponding to each period.

2Note that our terminology is slightly different from the conventional one: usually the
“missing cusp” is added to a satellite copy.
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Remark 1.1. The renormalization combinatorics can be alternatively en-
coded by a finite graph, the Hubbard tree, which describes the positioning of
the little Julia sets (of the first pre-renormalization) inside the full Julia set.
It coincides with the Hubbard tree of the superattracting map f., ¢ € M/,
whose period is equal to the renormalization period of f.

If a renormalization Rf is itself renormalizable, then f is called twice
renormalizable and its second renormalization is denoted R?f. Similarly, we
can define n times renormalizable maps and the corresponding n-th renormal-
izations R™f with some periods p,,. Note that R"f is the renormalization of
R"1f with relative renormalization period q, = ppn/Pn_1.

Assume now that f is infinitely renormalizable, i.e., the renormalizations
R™f are well defined for all n > 0. We say that f has bounded combinatorics
if the relative renormalization periods of the successive renormalizations R™f,
n > 0, remain bounded. The combinatorics is stationary if it is the same for
all R™f.

The “analytic quality” of a quadratic-like map f : U — V is measured
by the modulus of the fundamental annulus V \ U, denoted by mod f. (The
quality is poor if mod f is small.) An infinitely renormalizable map is said to
have a priori bounds if all of its renormalizations have definite quality; i.e.,
the corresponding moduli are bounded away from zero. (A priori bounds are
equivalent to precompactness of the full renormalization orbit {R" f},>0 in a
suitable topology.) While by no means all infinitely renormalizable maps have
a priori bounds, many do and, in particular, it is conjectured that bounded
combinatorics implies a priori bounds (which has indeed been proved whenever
the renormalization combinatorics of all the R™f are primitive [Kah06]).

A Feigenbaum map is an infinitely renormalizable quadratic-like map with
bounded combinatorics and a priori bounds.

THEOREM 1.1. There exists a Feigenbaum quadratic polynomial P, with
primitive stationary combinatorics whose Julia set J. has positive area.

Our methods yield, in fact, an infinite family of primitive Mandelbrot
copies that have the property that all infinitely renormalizable maps whose
renormalization combinatorics (for all the renormalizations) belong to this
family have Julia sets of positive area. We recall that any finite family F
of primitive Mandelbrot copies with #JF > 2 defines an associated remormal-
ization horseshoe A consisting of all quadratic-like maps that belong to the
w-limit of the renormalization operator restricted to those combinatorics; see
[AL11] (complemented with [Kah06]) for a recent account of this result . The
dynamics of R|A is topologically semiconjugate to the shift on F7, and the cor-
responding quadratic parameters in x(.A) form a Cantor set naturally labeled
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by FN. This Cantor set has bounded geometry by [Lyu99, Lemma 9.6 and
§1.5], so we can conclude (see Section 6.9):

THEOREM 1.2. The set of Feigenbaum quadratic maps with Julia sets of
positive area has positive Hausdorff dimension in the parameter space.

In fact, we will show that this Hausdorff dimension is at least 1/2.

1.2. What do we learn about Julia sets of positive area?

1.2.1. Preamble: Area problem. The problem of whether all nowhere dense
Julia sets have zero area goes back to the classical Fatou’s memoirs who gave
first examples of such Julia sets [Fat19].> In 1980-90s, broad classes of Ju-
lia sets with zero area were given in [Lyu83], [Lyu91], [Shi95], [Yar95] and
[Urb94], [PRI8], [GS09]. First examples of rational maps* (in fact, quadratic
polynomials) with nowhere dense Julia sets with positive area have been re-
cently constructed by Buff and Cheritat [BC12] in a remarkable development
that successfully brought to completion Douady’s program from the mid-1990s.
(See also Yampolsky [Yam08] for an alternative point of view on the final piece
of their argument.) An important technical input to this program was supplied
by the recent breakthrough in the Parabolic Renormalization Theory by Inou
and Shishikura [IS08].

The strategy carried by Buff and Cheritat depends on a Liouvillian mech-
anism of fast rational approximation. It produces three type of examples:
Cremer, Siegel, and infinitely renormalizable with unbounded satellite combi-
natorics. (We recall that a quadratic map with a periodic orbit § with irra-
Imia o € R\ Q, is classified as Siegel or Cremer
according to whether it is locally linearizable near  or not.)

Feigenbaum Julia sets have quite a different nature, so our work brings
new light on the realm of Julia sets of positive area.

tionally indifferent multiplier e

1.2.2. Parameter visibility. Julia sets of positive area are supposed to be
visible objects. However, sets of parameters produced by the Liouvillian mech-
anisms (such as in [BC12]) tend to be tiny: they probably have zero Hausdorff
dimension. (This is definitely so in the Cremer case as the whole set of Cremer
parameters has zero Hausdorff dimension.)

By our previous work [ALOS], Feigenbaum Julia sets of positive area are
more robust: the existence of a single Feigenbaum Julia set of positive area

3What Fatou showed is that if [Df(z)| > deg f for all z € J(f), then J(f) is a Cantor set
of zero length.

4For transcendental entire functions, a class of Julia sets of zero area was described in
[EL84], which included some exponential maps (see also [McM87] for this particular case),
while examples of Julia sets of positive area appeared in [EL87], [McM87].
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inside some renormalization horseshoe implies that there is a whole “sub-
horseshoe” of them, restricted to which the renormalization dynamics is topo-
logically conjugate to a subshift of finite type. This creates a parameter set of
positive Hausdorff dimension. The construction we use to prove Theorem 1.2
is even more precise, providing us with full renormalization horseshoes and
allowing us to obtain an effective estimate: the set of parameters ¢ such that
P, is a Feigenbaum map of positive area has Hausdorff dimension at least 1/2.

We note that it is expected that Lebesgue almost every quadratic map is
hyperbolic,” and hence has a Julia set of not only zero Lebesgue measure but
even of Hausdorff dimension less than two. It is unclear whether the set of
all complex Feigenbaum parameters has Hausdorff dimension strictly less than
two.% At the moment, it is only known that the Hausdorff dimension of these
parameters is at least 1 [Lyu98].

1.2.3. Poincaré series and Hausdorff dimension. The notion of Poincaré
series was transferred from the theory of Kleinian groups to Holomorphic Dy-
namics by Sullivan [Sul83], and it became an efficient tool in the study of
Hausdorff dimension of Julia sets. Previously to our work, in all known cases
the Hausdorff dimension of rational Julia sets coincided with the critical ex-
ponent of the Poincaré series (see [Urb94], [PR98], [GS09] and [AL08]). On
the other hand, it was shown in [ALO8] that equality must break down in the
case of a Feigenbaum map with periodic combinatorics and positive Lebesgue
measure Julia set.”

The critical exponent does coincide with the hyperbolic dimension for all
Feigenbaum Julia sets (and indeed for all known cases of rational maps), so
our examples display a definite gap between the Hausdorff dimensions of the
Julia set and of its hyperbolic subsets. It is conceivable, however, that for Julia
sets of zero area, the critical exponent, Hausdorff dimension and hyperbolic di-
mension, are all equal (without any further assumptions on the rational map).
Note that this is the case for Feigenbaum Julia sets of zero area [ALO0S].

1.2.4. Positive measure vs non-local connectivity. There was a general
feeling that these two phenomena are tightly linked as the examples constructed
by Buff and Cheritat are probably all non-locally connected. (Note, in partic-
ular, that Cremer Julia sets are never locally connected.) On the other hand,
all Feigenbaum Julia sets have well-behaved geometry and, in particular, are
locally connected; see [HJ93], [Jia00], [McM94]. Note that local connectivity

5Tt would follow from the property (somewhat supported by the computer evidence) that
all little Mandelbrot copies may have a “uniformly bounded shape.”

5The real analogue of this statement is known to be true [AM].

"More recently, such a phenomenon was also observed in transcendental dynamics [UZ07].
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makes a Julia set topologically tame: it admits an explicit topological model
(see [Dou93]). Thus, our examples show that positive area is compatible with
topological tameness.

Related to this issue is the fact that all Feigenbaum Julia sets constructed
here have primitive combinatorics, while the previously known infinitely renor-
malizable examples had satellite combinatorics. In fact all known examples of
infinitely renormalizable maps with non-locally connected Julia set have satel-
lite combinatorics.

Remark 1.2. A priori bounds have been recently proved for some Feigen-
baum maps with satellite combinatorics [DL18], which led, by adapting our
methods, to the first examples of satellite Feigenbaum maps whose Julia sets
have positive area.

1.2.5. Wild attractors and ergodicity. The measure-theoretic dynamics on
Feigenbaum Julia sets of positive area had been well understood long before
first examples (presented in this paper) were constructed. In particular, it is
ergodic with respect to the Lebesgue measure [Pra98|, and there is a uniquely
ergodic Cantor attractor O C J(f) (of Hausdorff dimension strictly less than
two) such that w(z) = O for a.e. € J(f); see [Lyu83]. Moreover, almost all
orbits are equidistributed with respect to the canonical measure p on O such
that suppu = 0.8

The measure-theoretic picture for Buff-Cheritat examples is more delicate
and exotic, and has been addressed more recently. In the Cremer and Siegel
cases, it was proven by D. Cheraghi [Chel3], [Chel9] that there is a unique
measure-theoretic attractor of zero area such that w(z) = O for a.e. z € J(f).
However, this attractor has quite an intricate topology: it is a non-locally
connected “hedgehog.” Moreover, it was proven in [AC18] that the dynamics
on O is uniquely ergodic, with the canonical invariant measure p that is either
the delta-mass at the Cremer point or the inner harmonic measure on the
boundary of the Siegel disk. This measure governs distribution of almost all
points on the Julia set, so typical points spend lion’s share of time near supp u,
which is a proper subset of 0.7 This can be viewed as a “second order wild
phenomon.” Note also that it remains unknown whether the Lebesgue measure
on J(f) is ergodic.

1.2.6. Sullivan’s Dictionary. A parallel spectacular development in the
problem of area and Hausdorff dimension has happened in the Theory of

8See [Lyu87, Ree86] and [BKNvS96] for related phenomena in transcendental and real
dynamics.

9Such a phenomen had been earlier encountered in the real dynamics; see [HK90], [Zak78,
BM10].
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Kleinian groups. However, the outcome appeared to be quite different. In
the mid 1990s, it was proved by Bishop and Jones [BJ97] that the limit set
A = A(T) of a (finitely generated) Kleinian group I" has full Hausdorff dimen-
sion if and only if the group is geometrically infinite or A = C. As geometrically
finite groups correspond to hyperbolic or parabolic rational maps, we see that
the answer for Kleinian groups is much simpler.

As the area is concerned, it had been the subject of the long-standing
Ahlfors Area Conjecture asserting that any limit set A(I") has zero area as
long as it is different from the whole sphere. Through the work of Thurston
[Thu82], Bonahon [Bon86] and Canary [Can93], this conjecture was reduced
to Marden’s Tameness Conjecture, and the latter was proved in the mid 2000s
by Agol [Ago04] and Calegary-Gabai [CGO06]. Thus, there are no non-trivial
limit sets A of positive area; again, the situation for Kleinian groups is much
more definite compared with rational maps.

It does not mean, however, that Sullivan’s Dictionary between Kleinian
groups and rational maps completely breaks down at this point. Kleinian
groups belong to a special class of reversible dynamical systems: the corre-
sponding geodesic flow on the hyperbolic 3-manifold Mr admits a nice involu-
tion that conjugates it to the inverse flow. The analogous flow for a rational
map f lives on the hyperbolic 3-lamination H; constructed in [LM97]. How-
ever, this flow is not reversible, which reflects the unbalanced property (see
the next section) of the underlying maps and bears responsibility for richer
geometric properties of Julia sets.

1.3. Basic trichotomy. To put our result into deeper perspective, let us
briefly recall the basic trichotomy of [AL0O8]. Consider the following alternative
for Feigenbaum maps:

Lean case: HD(J(f)) < 2;
Balanced case: HD(J(f)) = 2 but area J(f) = 0;
Black Hole case: area J(f) > 0.

In that paper, we showed that if a periodic point of renormalization is
either of Lean or Black Hole type, then this can be verified “in finite time,” by
estimating some geometric quantities associated to some (not necessarily the
first) renormalization of f. Namely, let us define two parameters:

e 1), gives the probability for an orbit starting in the domain of f to enter the
domain of the n-th pre-renormalization (see Section 2.3);

e &, gives the probability that an orbit starting in the domain of the n-th
pre-renormalization will never come back to it.

We showed that in the Lean case 7, /&, — 0 exponentially, in the Black Hole
case 1N, /&, — oo exponentially, and that in the Balanced case 7,,/§, remains
bounded away from zero and infinity. Moreover, there is an effective constant
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Figure 1.1. Black Hole. @ We see a renormalization of a
quadratic-like map of type constructed in this paper. Light
bubbles comprise the landing set. Rays emanating by the Black
Hole correspond to escaping points. The probability of landing
clearly dominates that of escape.

C > 1 (given in terms of some rough geometric parameters, like mod f, but
independent of n) such that if R"f = f, then

e 1,/&, > C implies the Black Hole case;
e 1,/& < C~1implies the Lean case.

Remark 1.3. The latter condition has been recently used by A. Dudko and
S. Sutherland [DS20] to give a computer assisted proof that area J(f) = 0 for
the most classical Feigenbaum map corresponding to the doubling renormal-
izations.

Regarding the Balanced case, Theorem 8.2 of [ALOS8] asserts that the ex-
istence of both Lean and Black Hole Feigenbaum maps inside some renormal-
ization horseshoe implies that there exist some Balanced Feigenbaum maps in
this horseshoe, but the construction does not yield a renormalization periodic
point. In fact, in seems unlikely that Balanced maps with periodic combina-
torics exist. (The geometric parameters would be too fine tuned for this to
happen “by chance” given that there are only countably many periodic points
of renormalization.)
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Remark 1.4. See also the discussion in [AL0O8] on a related problem for
real maps of the form x — |z|% + ¢. Therein one can vary the degree « of the
critical point continuously to fine-tune the parameters, so the corresponding
Balanced case is believed to exist (and a conditional proof is given, subject to
a Renormalization Conjecture), but it is unlikely that the fine tuned degrees
would ever correspond to an integer (even) number (i.e., to a polynomial).

1.4. Strategy. As discussed above, [ALO8] gives a probabilistic criterion
for the Black Hole property to hold for a fixed point of renormalization; it
suffices to check that 7, /¢, is sufficiently large for some n. Below we will use
this only in the particular case n = 1. We will produce a sequence of fixed
points of renormalization f, : U,, — V,, with p,, — oo such that inf n(m) > 0
while lim¢(m) = 0, where n(m) = m(fm) and £(m) = & (fm). We will also
verify that the rough initial geometry of the fundamental annuli V, \ U,,
remains under uniform control. Since the “constant to beat” in the criterion
only depends on such a control, this will show that for m sufficiently large, the
criterion is satisfied so that the Julia set of f,, has positive Lebesgue measure.

It is easy to see that if the sequence x(f,,) converges to a parameter ¢ for
which area K (P.) = 0, and the rough initial geometry remains under control,
then n(m) — 0. Given this observation, it is natural to consider sequences
of renormalization combinatorics that approach a parameter ¢ with either a
Siegel disk or a parabolic point. In our argument, we will take ¢ to have a
Siegel disk of bounded type. One still has to select the combinatorics very
carefully, and a number of natural options we had initially tried had either
displayed degeneration of the geometry (for instance, with growing modulus of
the fundamental annulus, which would make the landing probability n(m) go
to 0), or could not be treated in a definitive way without computer assistance.

We now describe the idea more precisely. Let us consider a quadratic poly-
nomial P, that has a Siegel disc S with rotation number § = [N, N,...|, N
being big enough. Let p,,/¢m = [NV, ..., N] be the continued fraction approx-
imants to 0, and let P, be the corresponding quadratic maps with parabolic
fixed points with rotation numbers p, /¢,,. We perturb ¢, within the (p,,/qm)-
limb (the connected component of M\ {¢p, } not containing 0) to a Misiurewicz

map P, ., i.e., one for which the critical orbit is eventually periodic but not

m?
periodic. Then we further perturb a,, to a superattracting parameter b,,. This
parameter is the center of some maximal primitive Mandelbrot copy M.
Let fn : Un — Vi, be the corresponding renormalization fixed points
with stationary combinatorics M,,. To control the dynamics of these maps
in what follows, we need a good control of the postcritical set after all the
perturbations. This has also been crucial in Buff and Cheritat’s work [BC12],

who proved using the Inou-Shishikura renormalization theory [IS08] (which
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currently is only available for large N, hence the choice above,!” that the
postcritical set of P, stays in a small neighborhood of the Siegel disk S.
Our further choice of a,, and by, is in part designed to keep this property
for the further perturbations. In particular, excursions of the critical orbit
away from the Siegel disk must be prevented to avoid excessive expansion
(which would again lead to growing fundamental annuli). Thus, the periodic
orbit on which the critical point eventually lands must be taken quite close
to the Siegel disk. The most natural choice would be the periodic orbit with
combinatorial rotation number p,, /gy, that arises from the bifurcation of P, ,
but for technical implementation reasons we actually use an orbit of rotation
number pp,—x/Gm—r, for some big but bounded (as m — o0) k (so that the
critical point still only goes a bounded number of levels up in terms of the
cylinder Siegel renormalization).

We then fine tune the superattracting parameter b, to get a suitable con-
trol on the initial geometry of the first renormalization. While we want the
moduli of fundamental annuli to remain bounded, we would like them to be
sufficiently large to obtain control on the actual renormalization fixed point.
Indeed, there is a “threshold” lower bound on the moduli of the fundamental
annuli of the first renormalization of a Feigenbaum quadratic map with station-
ary primitive combinatorics, which, once surpassed, implies uniform control for
the associated renormalization fixed point. Below this threshold, current tech-
niques do not give such uniform bounds without further restrictions (which
would, in particular, not apply when approaching Siegel parameters). Thus,
we make the critical orbit (after perturbation) follow closely the periodic orbit
for large but bounded number of turns around the Siegel disk, picking up the
right amount of expansion from the periodic orbit before drifting apart and
closing.

Once the geometry of the first renormalization is controlled, we construct
a safe trapping disk D that stays away from the postcritical set, captures all
orbits that escape from the Siegel disk S to infinity and has the property
that a definite portion of D lands in the renormalization domain U. Then a
direct Distortion Argument implies that the pullbacks of U occupy a definite
proportion of S, which implies that the landing probability 7,, stays bounded
away from 0.

To control the escaping parameter &,,, we make use of the Siegel Re-
turn Machinery that ensures high probability of returns back to the trapping
disk, and hence high probability of eventual landing in the renormalization

'9Recent developments in the Pacman Renormalization Theory [DLS20], [DL18], [DL21]
give a good chance to extend our construction to arbitrary N’s.
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domain U. (The Return Machinery makes use of the hyperbolic expansion out-
side the postcritical set [McM94|, which was also used by Buff and Cheritat
[BC12)).

In this construction, there is one free parameter that can be varied without
significant impact on the geometry of the first renormalization, which is the
time the critical point spends in the parabolic gate created when the parabolic
map P,  is perturbed to the Misiurewicz map F,,, . There is a uniform control
of this perturbation governed by the limiting transit map (the geometric limit).
Varying this time parameter produces a sequence of Black Hole combinatorics
whose Mandelbrot copies decay quadratically. Alternating these combinatorics
creates a Cantor set of Hausdorff dimension > 1/2 — € consisting of Black Hole
parameters.

To carry out the above strategy, we make use of four Renormalization
Theories:

e Renormalization of quadratic-like maps, including the probabilistic criterion
of [ALO08], is discussed in Section 2.

e Renormalization of quasicritical circle maps is developed in Section 3.
(Roughly speaking, “quasicritical” means that the map is allowed to lose
analyticity at the critical point, but is assumed to be quasiregular there.)

e Siegel renormalization theory based upon renormalization of quasicritical
circle maps is laid down in Section 4.

e Finally, in Section 5 we briefly discuss the parabolic renormalization, and
particularly, the Inou-Shishikura Theory.

With these renormalization tools in hands, we proceed to the main con-
struction (Section 6).

1.5. Basic terminology and notation.

No={0,1,...}, N=N;={1,2,...}, and in general, N, = {n € N: n > k};
N, = N, U oo (with the natural topology);

Cr = C\{0};

Da(a) = {z: |2 —a| < R};

Dr = Dg(0), D = Dy;

the notation T will be used for both the unit circle in C and its angular

parametrization by R/Z;

H=H; ={z: Imz > 0} is the upper half-plane;

H_ is the lower half-plane;

“area” refers to the Lebesgue measure;

for a set Z C C and a point z € Z, we let Comp,(Z) be the component of
Z containing z;

e for a topological annulus A € C, we let 9°A and 0'A be its outer and inner
boundaries;
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a topological triangle is a Jordan disk with three points marked on the bound-
ary;
the dashed arrow notation f: X --» Y is used for a partially defined map;
Dom f is the domain of a map f;
orb z = orby z is the forward orbit of a point z;
we use the notation ¢ for the critical point of various maps, ¢, := f"co;
Oy is the postcritical set of a map f, i.e., the closure of orb¢y;
fg: 2 €202 122 0 cC/Z;
F = (fy)pec is the quadratic family — note that we are using a non-standard
parametrization for the quadratic family, which is more suitable for our
purposes;
e M is the Mandelbrot set.

By saying that some quantity, e.g., n, depending on parameters is definite,
we mean that n > e¢ > 0 where ¢ is independent of the parameters (or rather,

it may depend only on some, explicitly specified, parameters). By saying that
a set K is well inside a domain D € C we mean that K € D with a definite
mod(D \ K) (which is equivalent to saying that dist(K,0D) > ediam K'). The
meaning of the expressions bounded, comparable, etc. is similar. If we need to
specify a constant, then we say “e-definite,” “C-comparable (<),” etc.

Given a pointed domain (D, 3), we say that § lies in the middle of D, or
equivalently, that D has a bounded shape around (3 if

1.1 ma — (| < C min |8 —
(11) max |8~ | < C muin |6~ ],
where C' is a constant that may depend only on specified parameters.
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2. Quadratic-like maps
2.1. Basic definitions.

2.1.1. Quadratic-like maps. A quadratic-like map f : U — V [DH85b],
which will also be abbreviated as a ¢-I map, is a holomorphic double branched
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covering between two Jordan disks U € V C C. It has a single critical point
that we denote cy. The annulus A = U \ V is called the fundamental annulus
of f. We let mod f := mod A. The filled Julia set K(f) is the set of non-

escaping points
K(f)y={z: f"2€U, n=0,1,2,...}.

Its boundary is called the Julia set J(f). The (filled) Julia set is either con-
nected or Cantor, depending on whether the critical point is non-escaping (i.e.,
co € K(f)) or otherwise.

Two quadratic-like maps f : U — V and f : U — V are called hybrid
conjugate if they are conjugate by a quasiconformal map h : (V,U) — (V,U)
such that Oh = 0 a.e. on K(f).

A simplest example of a quadratic-like map is provided by a quadratic
polynomial P, : z — 22 + ¢ restricted to a disk Dp of sufficiently big radius.
The Douady and Hubbard Straightening Theorem asserts that any quadratic-
like map f is hybrid conjugate to some restricted quadratic polynomial P..
Moreover, if J(f) is connected, then the parameter ¢ € M is unique.

As for quadratic polynomials, the two fixed points of a quadratic-like maps
with connected Julia set have a different dynamical meaning. One of them,
called $3, is the landing point of a proper arc v C U \ K(f) such that f() D 7.
It is either repelling or parabolic with multiplier one. The other fixed point,
called «, is either non-repelling or a cut-point of the Julia set (can be both).

2.1.2. Quadratic-like families. A quadratic-like family F = (fy : Uy — Vi)
over a parameter domain!' A C C is a family of quadratic-like maps fy holo-
morphically depending on A. The latter means more precisely that the set

U= ] U

A€A

is a domain in C? and the function fy(z) is holomorphic on U. Let us normalize
it so that 0 is the critical point for all f). The associated Mandelbrot set is
defined as

Mp={Xe A: J(fy) is connected}.

Let us select a base point A, and let U, = U, etc. We say that a quadratic-
like family F is equipped if there is a holomorphic motion

h)\:VO\UO*)V)\\UA

of the (closed) fundamental annulus V' \ Uy over the pointed domain (A, \,)
that is equivariant on the boundary of the annulus, i.e.,

ha(fo(2)) = fa(ha(2), 2 € OU.

1n what follows, A is assumed to be a Jordan disk.
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An equipped quadratic-like family F is called proper if f\(0) € 9V, for
A € OA (which assumes implicitly that the family fy is continuous up to dA).
A quadratic-like family F is called unfolded if the curve

A= fx(0), A€ 0A,
has winding number 1 around 0.

THEOREM 2.1 ([DH85b]). For any equipped proper unfolded quadratic-like
family ¥, the Mandelbrot set Mp is canonically homeomorphic to the standard
Mandelbrot set M.

The proof can be also found in [Lyu].

2.2. Renormalization. A quadratic-like map f : U —V is called DH renor-
malizable (after Douady and Hubbard) if there is a quadratic-like restriction
Rf=Rpuf=f":U =V
with connected Julia set K’ such that the sets f{(K'), k = 1,...,p — 1, are
either disjoint from K’ or else touch it at its S-fixed point.'? In the former case
the renormalization is called primitive, while in the latter it is called satellite.

The map Rf : U' — V' is called the pre-renormalization of f. If it is
considered up to rescaling (i.e., up to conjugacy by a linear map z — Az,
A € C*), it is called the renormalization of f.

The sets f(K'),i=0,...,p — 1, are referred to as the little (filled) Julia
sets. Their “positions”!? in the big Julia set K (f) determines the renormaliza-
tion combinatorics. The set of parameters ¢ for which the quadratic polynomial
P, is renormalizable with a given combinatorics forms a little Mandelbrot copy
M’ C M. In fact, the family of renormalizations R(P.), ¢ € M’, with a given
combinatorics can be included in a quadratic-like family F = (f? : U, — V)
over some domain A D M’ so that M’ = Mp. A natural base point ¢, € M’
in this family is the superattracting parameter with period p. It is called the
center of M’. Any superattracting parameter in M with period p > 1 is the
center of some Mandelbrot copy M’ like this. Moreover, in case of primi-
tive combinatorics the quadratic-like family F is proper and unfolded. (See
[DH85b], [Dou8T7al, [Lyu] for a discussion of all these facts.)

We can encode the renormalization combinatorics by the corresponding
copy M’ itself. Equivalently, it can be encoded by the center ¢, of M’ or by
the corresponding Hubbard tree H'.

A little Mandelbrot copy is called primitive or satellite depending on the
type of the corresponding renormalization. They can be easily distinguished

12See [McM94] for a discussion of this condition.
3They can be defined precisely in terms of the combinatorial model for f (see [Lyu,
§37.11.2)).
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as any satellite copy is attached to some hyperbolic component of int M and
does not have the cusp at its root point.

In the introduction (Section 1.1), we have introduced n times renormal-
izable maps and their renormalizations R"f. Moreover, for infinitely renor-
malizable maps, we have defined notions of stationary/bounded combinatorics,
a priori bounds and Feigenbaum maps. We say that a Feigenbaum map is
primitive if all its renormalizations are such.

One says that a family F of Feigenbaum maps (e.g., the family of maps
with a given combinatorics) has beau bounds if there exists p > 0 such that for
any v > 0, there exists ng = no(v) such that for any f € F with mod f > v,
we have

mod R"f > p for all n > ny.

It was proved by Kahn [Kah06] that infinitely renormalizable maps of bounded
primitive type have beau bounds, with p depending only on the combinatorial
bound. In fact, p# can be made uniform over some class of bounded primitive
combinatorics [KLO08].

The renormalization fixed point f is a quadratic-like map that is invariant
under renormalization: Rf, = fi. In terms of the pre-renormalization, there
exists a scaling factor A € C\ D such that

Rf.(2) = X1 (\2).

THEOREM 2.2. For any stationary combinatorics with a beau bound, there
exists a unique renormalization fixed point fi with this combinatorics. More-
over, mod f. > u, where p > 0 s the beau bound.

This theorem was originally proved by Sullivan [Sul92]. Other proofs were
given by McMullen [McM96], and recently, by the authors [AL11].
A priori bounds are called unbranched if the renormalizations

fa=R"f:U"—=V"
with definite moduli can be selected so that V" N O = K" N O (where K" is
the filled Julia set of R"™f). For instance, it is sufficient that

gn—1
V'AK" =K", where K" = | | f/(K™)
=0

and g, is the period of K™ under f. In turn, it is sufficient to choose the renor-
malization domains so that the images f7(U"), j =1,...,qn, are pairwise dis-
joint. (Of course, such a choice is possible only for a primitive renormalization.)

MWe will not use these results as the combinatorics we construct do not fall into the class
[KLO8]. On the other hand, beau bounds can be easily supplied for our class.
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For maps with unbranched a priori bounds the renormalization domains
U™ and V" can be adjusted (replaced with domains U™ and V™ below) to
assume nice topological and geometric properties:
(Cl) VPnO c Vv Cc U™
(C2) v+t cum,
(C3) fFOV™)NV™ =0, k = 0,1,... (the number of iterates depends on
z € OV™ and continues for as long as f¥ ,(z) is well defined);

(G1) the fundamental annuli V™ \ U" have bounded hyperbolic diameters in
V\ O;

(G2) area(V™\ U") < area(U") = (diam U™)? =< (diam V")?,

with constants depending only on the unbranched a priori bounds (see [ALOS,
§2.7 and Appendix A]). Under the above circumstances, bounds (G1)-(G2)
together with unbranched a priori bounds are called geometric bounds for f.
We will measure them by a single number g = g(f) > 1 such that g or g=*
gives an upper or a lower bound for the above geometric constants, e.g.,

g Ydiam V"™)? < area(V"\U") < g(diam V)2

Remark 2.1. In the primitive case, the above domains can be selected so
that the mod(V"™ \ U") are definite. However, in the satellite case, the annuli
V™ \ U™ can degenerate.

2.3. Probabilistic criterion for positive area. Let us now introduce pre-
cisely probabilistic parameters 7 and £ mentioned in the introduction. Let
f:U — V be a Feigenbaum map with unbranched a priori bounds, and let
Rf : U — V' beits first pre-renormalization, A’ = U’ \V’ be the corresponding
fundamental annulus.

The landing parameter 1 is the probability of landing in U’. Precisely, let
X =Jpen f7"U’ be the set of points in U that eventually land in U’. Then

area X

(2.1) n=

The escaping parameter £ is the probability of escaping from the funda-
mental annulus A’. Precisely, let ) be the set of points in A’ that never return
back to V':

arealU

Y={zeA: f"2¢ V' forn>1 (as long as f"z € V)}.

Then
area )
2.2 = —.
(2.2) area A’

The following result asserts that if the landing probability is much higher
than the escaping one, then the Julia set has positive area.
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THEOREM 2.3 (Black Hole Criterion [ALOS]). There exists C = C(g)
(independent of combinatorial bounds) with the following property. Let f be
a renormalization fixed point with a geometric bound g. If n > C§&, then

area J(f) > 0.

3. Quasicritical circle maps

An (analytic) critical circle map is an analytic homeomorphism f : T — T
of the circle T = R/Z with a single critical point ¢y of cubic type (that is,
1" (co) # 0). Tt is usually normalized so that ¢y = 0 in the angular coordinate.

To study Siegel disks of non-polynomial maps we need to enlarge this class
allowing the map be only quasiregular at the critical point.

3.1. Definition. For this definition, it is convenient to use the complex
model {|z| = 1} for the circle T and the Blaschke maps

; z—3
31 B — 2o 2
(3.1) a(z) = eriag? Z22
as the standard family of critical circle maps.
A quasicritical circle map is a homeomorphism f : T — T of the circle
with the following properties:
(Q1) f is a real analytic diffeomorphism outside a single critical point ¢y nor-
malized so that ¢g = 1; we let ¢, = f"cp.
(Q2) f admits a quasiregular extension to a T-symmetric annulus Dom f
around T of the form B, o h with some o € R/Z and a global quasi-

conformal map h that is holomorphic near z € Dom f whenever f(z) lies
on the same side of T as z.

It follows, in particular, that f|T is quasisymmetric. Moreover, it admits
a quasiregular extension to a neighborhood of T, symmetric with respect to T,
that is holomorphic in the domain

Dom” f = {z € Dom f : z and f(z) lie on the same side of T }UT \ {co}.

(Q3) Dom” f is a topological disk whose upper part, Dom” f \ D, is obtained
from the outer annulus Dom f \ D by removing a topological triangle

T =7T; CDom f\D

with a vertex at ¢y and the opposite side on the outer boundary of Dom f
(which are not included to the triangle). We let 7 be the “double-
triangle” that is the union of 7 U {cp} and its mirror image, so Dom f =
Dom” fUT.

(Q4) f:Dom" f — C is an immersion and f : 7 — D is an embedding.
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Passing to the angular coordinate amounts to taking the universal cov-
ering'® f : (Dom f,R) — (C,R), where Dom f is a Z-periodic R-symmetric
open strip around R. Then Dom” f is the union of disjoint R-symmetric open
disks Dy interescting R along the intervals (k, k + 1), respectively. The differ-
ence (Dom f \ Dom” f) N H, is the union of triangles 7 C H, with vertices
at k. The difference Dom f \ Dom” f is the union of the corresponding double
triangles Ti. Moreoover, each restriction f: Dy \H_ — H, is an embed-
ding intersecting the real line along an interval strictly containing the image
of [k, k + 1]. We will impose one more geometric property:

(Q5) The restriction f| Do admits a representation v (h(2)3), where h is as in
(Q2) and v is a conformal map whose image contains f[0, 1].

Let Cir stand for the space of all quasicritical circle maps. The geometry
of such a map is specified by the dilatation of the map h from (Q2), the size
of Dom f, and the space between the image of ¢ and f[0,1] in (Q5). We call
f a (K, e)-quasicritical if Dilh < K, Dom f contains the (2¢)-neighborhood of
T C C, and the image of ¢ in (Q5) contains the e-neighborhood of f[0, 1]. Let
Cir(N, K, €) denote the class of (K, €)-quasicritical circle maps of type bounded
by N (i.e., in the continued fraction expansion for the rotation number of f all
the entries are bounded by N), and let Cir(K,€) = | J Cir(N, K ¢).

3.2. Local properties near the critical point.

3.2.1. Scaling limits and John Property. Let N(K) stand for the class
of degree three normalized R-symmetric K-quasiregular branch coverings F' :
(C,R,0,1) — (C,R,0,1) that are conformal in the topological sectors Sy =
F~1(C\ Rz) D Ry, where F~! is the branch of the inverse map preserv-
ing Ry. Such a map can be represented in the form F(z) = H(z)3, where
H: (C,R,0,1) — (C,R,0,1) is a normalized R-symmetric K-qc homeomor-
phism that conformally maps S_ onto the straight sector {|argz — 7| < 7/3},
and conformally maps Sy onto {|argz| < 7/3}. Let N' = [ JN(K).

LEMMA 3.1. For a map F € N(K), we have
S_DO{largz — 7| <ar}, Sy D{largz| <an},
where a > 0 depends only on K.

Proof. We will deal with S_ only, as the argument for S, is the same.
The inverse branch F~! : C\ R, — S_ is the composition of z — z!/3 with
H™ ! so

S =HYT.), whereT_ = {|argz—n| < n/3}.

'5We will not notationally distinguish a circle map f : R/Z — R/Z and its universal
covering f : R — R (and neither the associated objects).
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Since H=! : (C,0,1) — (C,0,1) is a normalized K-qc map, it is Lo-quasi-
symmetric on the whole plane with Ly = Lo(K).

For any ¢ € R_, we have dist(¢,07-) = (v/3/2) [¢|. Take any z € R_,
and let ( = H(z). By definition of Lp-quasisymmetry, we have

dist(z,05_) - 1 dist(¢,0T-) @
2| L Iq 2L’
with some L depending only on Ly. The conclusion follows. ([

Any quasicritical circle map f : R/Z — R/Z of class Cir(K,¢), viewed as
a map on a neighborhood of R, can be non-dynamically normalized without
changing its dilatation so that it fixes 0 and 1. Namely, for any ¢ € (0,1/2),
let
(3.2) F:(CR0,1) = (CR0,1), Fr)=it®=a
ft)—a

LeEmMMA 3.2. For f € Cir(K,¢), t € (0,1/2), the family of rescalings F;
(3.2) is precompact in the topology of uniform convergence on compact subsets
of C. All limit maps as t — 0 belong to the class N (K).

Proof. Given any radius r > 1, all the rescalings F; are well defined on
the disk D, for ¢ small enough. Moreover, by Property (Q2) they can be
represented in the form F;(z) = Hy(2)? on this disk, where H; are normalized
R-symmetric K-qc maps. It follows that the F; form a precompact family
with limit maps of the form H(z)3, where H are normalized R-symmetric
K-qc maps.

Moreover, the inverse branches F; ! are conformal in (C\R.)NDj /v, With
some § > 0 and v € (0,1) depending only on the geometry of f. (We use here
that |f(t) —c1| = O(t7) due to the Holder continuity of quasisymmetric maps.)
Hence in the limit we obtain a map whose inverse branches are conformal in
the whole slit planes C \ R1. The conclusion follows. O

The above two lemmas imply

PROPOSITION 3.3. For any quasicritical circle map f € Cir(K,e€), the
domain Dom” f contains local sectors

T_(f)={largz — 7| < am, |z] <e} and Ti(f)={|argz| <am, |z| <€}
with some o > 0 depending only on (K, e€).

3.2.2. Schwarzian derivative. We will now show that quasicritical circle
maps have negative Schwarzian derivative near the critical point. Let us begin
with maps of class NV:

LEMMA 3.4. Any map F € N has negative Schwarzian derivative on the
whole punctured line R\ {0}.
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Proof. Let us consider an open interval I = (a,d) C R\ {0} as a Poincaré
model of the hyperbolic line. Given a subinterval J = (b,c) € I, let

(c—a)(d—0)

(b—a)(d—rc)

stand for its hyperbolic length. The condition of negative Schwarzian derivative
for F is equivalent to the property that F~! is a hyperbolic contraction

\FY ) F7Y(D)| < | T

(3.3) |J : I| = log

for any pair of intervals I and J as above.

Let us now consider the slit plane C(I) := C\ (R \ I) endowed with its
hyperbolic metric. Then [ is a hyperbolic geodesic in C(I). Let D(I) be the
round disk based upon I as a diameter. It is the hyperbolic neighborhood of
I in C(I) of certain radius r independent of I.

If F € N, then the inverse map F~!: I — I’ (where I’ = F~!(I)) extends
to a holomorphic map F~! : C(I) — C(I'). By the Schwarz Lemma, it is
a hyperbolic contraction. Since F~1(I) = I’, we conclude that F~1(D(I)) C
D(I"). Applying the Schwarz Lemma again, we obtain that F~1 : D(I) — D(I)
is contracting with respect to the hyperbolic metric in these disks. Since the
hyperbolic metrics on I and I’ are induced by the hyperbolic metrics in the
corresponding disks, we are done. O

Remark 3.1. In fact, in the applications to the distortion bounds, the
contracting property for the cross-ratios from (3.3), rather than the Schwarzian
derivative, is directly used (see Theorem 3.7).

PROPOSITION 3.5. Any quasicritical circle map f € Cir(K, €) has negative
Schwarzian derivative in the d-neighborhood of the critical point, where 6 =
d(K,€) depends only on the geometry of f.

Proof. By Lemma 3.2, the rescalings F; accumulate as ¢ — 0, uniformly
over f € Cir(K,e), on a compact set K C N(K). By Lemma 3.4, the latter
have negative Schwarzian derivative. By Proposition 3.3, the maps F; are
eventually (for ¢ < ¢o(K, €)) holomorphic in definite sectors {|arg z| < ar}ND
and {|argz — w| < ar} ND. It follows that SF; — SF, F € K, uniformly
on £[1/2,1], and hence the Schwarzian derivatives SF; are eventually negative
on these two intervals. By the scaling properties of the Schwarzian, we have
SF,(x) = t2Sf(tx), and hence Sf < 0 on some punctured interval [—d, 6], with
0 > 0 depending only on the geometry of f. O

3.2.3. Power expansion. Let us consider a map F of class N, and let
Dom” F = {z: (Imz)-(Im F(z)) > 0}. Recall from Lemma 3.1 that it consists
of two disjoint topological sectors Si with the axes RL mapped conformally
onto C \ Ry respectively. Let us slightly shrink these sectors; namely, for
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B €(0,1), let
S_(B) = {z € 5_: |arg F(2)| > B},
S+(B)={z€ 84 |arg F(z)| < (1 - pB)m}.

LEMMA 3.6. Let us consider a map F of class N(K), and let 8 € (0,1).
Then
|F(2)] > Ol for z € Sx(), |2 > 1,
where 0 > 0 and C > 0 depend only on K and > 0.

Proof. Since by Lemma 3.1 S_ contains the sector {|argz — 7| < ar}, we

have
Sy c{largz| < (1 —a)w}.

Hence the inverse branch F~!: C\ R_ — S can be decomposed as ¢(z)!=%,
where ¢ : (C\R_,0,1) - (C\R_,0,1) is a conformal embedding. For such
a map, we have
(3.4) |p(2)] < Alz| aslong as |z| > 1, |argz| < w(1 — f),
where A depends only on 8 > 0. Indeed, the hyperbolic distance (in C\ R_)
from z as above to 1 is log|z| + O(1). (Note that by the scaling invariance,
the hyperbolic distance from z to |z| depends only on argz.) Since 1 is fixed
under ¢, the Schwarz Lemma implies (3.4). The conclusion for F' on Sy follows.

The argument for S_ is similar, except —1 is not the fixed point any more.
But since F' is quasiregular, |¢(—1)| < 1, and the Schwarz Lemma implies the
assertion again. [l

3.3. Real geometry. Due to the above local properties, quasicritical circle
maps enjoy the same geometric virtues as usual analytic critical circle maps.
The main results formulated below are proven in a standard way; see e.g., the
monograph by de Melo and van Strien [dMvS93, Ch. IV, §1-5] for a reference.

3.3.1. Koebe distortion bounds. The following statement extends the usual
Koebe distortion bounds to quasicritical circle maps:

THEOREM 3.7. Let f € Cir(K,€) be a quasicritical circle map. Let J C
I C R/Z be two nested intervals in T, with I open. Assume that for some
n,m € N, the intersection multiplicity of the intervals f~%I, k=0,1,...,n is
bounded by m and |f~*I| < §/2 with & from Proposition 3.5. Then
lf kT 7R < C(K, e,m) | J ).

Proof. It is obtained by the standard cross-ratio distortion techniques; see
[dMvS93]. To see the role of various properties of f, let us recall the main
ingredients.

e Denjoy Distortion control outside the (6/2)-neighborhood of ¢o. The distor-
tion bound depends on C2-norm of f on T and on Y e, |f*I|, where £ is
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the set of moments k& < n for which f=*I N (—6/2,6/2) = . The C?-norm of
f depends only on (K, €) by compactness of Cir(K,€) and the Cauchy control
of the derivatives of holomorphic functions. The total length of the intervals
f7FI is bounded m.

e Contraction of the cross-ratio in the punctured d-neighborhood of cg. This
is concerned with the moments k < n when f~*I C (—4,6) \ {0}. At these
moments the hyperbolic length |f=*J : f~*I| is contracted under f~! by
Proposition 3.5.

o Quasisymmetric distortion control at the critical moments. At the moments
k <n when f~*I 3 ¢y, we have

fRY g R <ol L) - | fRT fR,

where L is an upper bound for |f~%J : f~*I| and H = H(K,e) is the gs-
dilatation of f near cyp. Due to the above contraction property, L is bounded
in terms of H and the number s of critical moments. Since s < m, the contri-
bution of the critical moments to the total distortion is bounded. O

3.3.2. No wandering intervals. Recall that an interval J C I is called wan-
dering if f*JNJ =0 for any n > 0. The above Koebe distortion bounds lead
to the following generalization of Yoccoz’s No Wandering Intervals Theorem
[Yoc84]:

THEOREM 3.8. A quasicritical circle map f € Cir with an irrational ro-
tation number § € R\ Q (mod Z) does not have wandering intervals.

It follows by the classical theory (Poincaré’s thesis) that such a map f is
topologically conjugate to the rigid rotation

Ty :x+— x+6 mod 1.

When we want to specify the rotation number of circle maps under con-
sideration, we will use notation Ciry, Cirg(K,¢), etc.

3.3.3. Bounded geometry and dynamical scales. The further theory largely
depends on the Diophantine properties of 8 encoded in its continued fraction
expansion [Ny, Na,...]. Let pm/g¢m = [Ni,...,Ny] be the m-fold rational
approximant to #. The rotation number (and the map f itself) is called of
bounded type if the entries of the expansion are bounded by some N. The
spaces of circle maps with rotation number bounded by N will be denoted
Cir(N), Cirg(N, K, ¢), etc. (depending on how many parameters we need to
specify).

The Koebe distortion bounds also imply a more general version of the
Herman-Swiatek Theorem [Her86], [Swi9s]:
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THEOREM 3.9. A quasicritical circle map f € Cir(N, K,¢€) of bounded
type is H-quasisymmetrically conjugate to the rigid rotation Ty, with H =
H(N,K,e).

The circle dynamics naturally encodes the continued fraction expansion
of the rotation number, as the denominators g, are the moments of combi-
natorially closest approaches'® of the critical orbit {c,} back to the critical
point cg. Let us consider the corresponding intervals I" = [cg, ¢4, | (i-e., the
combinatorially shortest intervals bounded by ¢y and ¢g,). The orbits of two
consecutive ones,

(35) U™, k=1,...,¢py1—1 and fFI"Y, k=1,...,¢.—1,

together with the central interval IJ} := I" U I"*! form a dynamical tiling Z"
of T. Moreover, these tilings are nested: Z"t! is a refinement of Z".

We label the intervals I}' € 7", k = 1,..., ¢n+qn41—2, in an arbitrary way.
Each of these intervals is homeomorphically mapped onto either fi+!(I™) or
fan(I"*1) by some iterate of f. We call it the landing map L = L, of level n.
On the central interval I, we let L,, = id.

In case of bounded type, Theorem 3.9 ensures that these tilings have
bounded geometry,!” i.e., the neighboring tiles are comparable, and hence the
consecutive nested tiles are also comparable. This gives us a notion of n-th
dynamical scale at any point z € T (well defined up to a constant); it is the
size of any tile I"(z) € " containing z.

More precisely, let Cg = C(N, K, €) > 2 be an upper bound for the ratios
of any two neighboring and any two consecutive nested dynamical tiles. We
say that a point ¢ € C lies in n-th dynamical scale around z € T if

(3.6) Co ' HIEI < 1¢ = 2| < Col 1|

for the dynamical tile I}’ of depth n containing z. Any point ¢ € D3 lies in
some dynamical scale around any z € T, and the number of such scales is
bounded in terms of (N, K, ¢).

For z €T, we use notation I"(z) for the interval of the tiling Z" containing z.
(If there are two such intervals, make an arbitrary choice.)

3.4. Quasicritical circle pairs and their renormalizations. A quasicritical
circle map can be represented as a discontinuous map of the fundamental inter-
val [c1 — 1, ¢1], which motivates the following definition: A (real) quasicritical

1This means that these are the closest approaches for the corresponding circle rotation
Ty.
" This property is also referred to as real a priori bounds.
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circle pair F' = (¢_, ¢ ) is a pair of real analytic homeomorphisms

(37) ¢* : [6770) - [ba BJr)? ¢+ : (03ﬁ+] - (B*)b}

with some f_ < 0 < 84, B4 — B— = 1. Moreover, ¢y = 0 is the only critical
point of the ¢+ and this point is of quasicubic type, i.e., it has a local repre-
sentation h(x)3 4 ¢; with a quasisymmetric h; compare with properties (Q1)
and (Q2).

Renormalization Ry, of circle pairs is defined as follows. In the degenerate
case f_ = 0 or S+ = 0 (so that the critical point is fixed under ¢4 or ¢_)
F' is non-renormalizable. In the non-degenerate case, assume for definiteness
that b € (5-,0]. (Otherwise , one should change the roles of 5_ and f;.) If
#N(B-) <0 for all N € N (equivalently, there is a fixed point in (5_,0)), then
F in still non-renormalizable.'® Otherwise, let N > 1 be the biggest integer
such that

BLi=¢N(B) <0, Bl =B,
and let
¢>’_][[3’_,()]:¢,, ¢;|[0,ﬁ;]:¢§0¢+.
Rescaling the interval [3, 5] to the unit size by an orientation preserving
linear map, we obtain R, F'.

To see how the renormalization acts on the rotation numbers, let us con-
sider the linear case (corresponding to the pure rotation). In this case, a con-
venient normalization of F' is to let max(|5—_|, 5+) = 1 (instead of S+ —5_ = 1)
leaving only one parameter § = min(|8_|, 8+) € [0, 1], together with the sign
s € £ such that 8 = |8s| (which are related to the rotation number 6 of f by
0 =sB/(1+4 B)). Then N is the biggest integer such that N5 < 1, so N is the
integer part of 1/4. Under the renormalization, we obtain

g_L-NB_1

— modZ,
which is the Gauss map G applied to 8, while s = —s. (As in this renor-

B8

malization scheme, the cases 5 = 1 and f_ = —1 alternate.) Moreover, the
f-number is equivariant under the renormalization: S(RF) = G(S(F)). In
this way, the continued fraction expansion of 5 (and hence 0) is directly re-
lated to the renormalization dynamics. See [dMvS93, Ch. I, §1] for a detailed
discussion.

Let us now adapt properties (Q1)—(Q5) to the setting of circle pairs F' =
(¢+). We will rely upon the universal covering description of f from the end of
Section 3.1. Let ¢4 be the lifts of f such that ¢+(0) = S+. Their restrictions to

3Tn other words, maps with zero rotation number are non-renormalizable.
19Under the usual convention, the rescaling is orientation reversing. However, in further
applications to Siegel maps, this would lead to some inconvenience.
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the disks D_ := D_; and D4 := Dg are conformal. We let T := Ty, T = 76,
and
DomF:=D_UD, U7, Dom"F:=D_uUD,.
We also let I_ :=[5_,0], I+ := [0, 5+], and Jy := ¢4 (I+). For € > 0, let
J1(€) be the interval Ju scaled by factor (1 + €) centered at its mid-points.
We can now record the following properties of our maps:

(P1) Each branch ¢4 : Dy — C admits a quasiregular extension of the form
¢+ = Y1 oG, where G : C — C is a global quasiregular map of some class
N (K) while each 14 is a conformal map on a domain T+ O G(Dom/ F)
whose range ¥+ (G(Dom” F)) 3 J(e) is a topological disk slit along two
real rays.

(P2) The maps ¢+ : Dom? FNH, — H, and F: 7 — H_ are embeddings.

We let Cirep(N, K, €) be the class of quasicritical circle pairs of type
bounded by N such that G € N(K), Dom F contains the (2¢)-neighborhood
of [B_, B+] C C, and e satisfies (P1).

We say that a quasicritical circle pair F' € Cirep(N, K, €) belongs to Ep-
stein class E(N, K, ¢€) if the range of each of the above univalent maps 1+
contains the whole slit plane C\ (R \ Ju(¢)).

Examples of such maps are provided by Blaschke maps By (3.1) lifted to
C by the exponential map C — C*, z s 2™,

The renormalization R, acts on the class of quasicritical circle pairs of
type bounded by N, as well as on the corresponding Epstein class.

3.5. Butterflies and complex bounds.

3.5.1. Butterflies. We will now introduce a class of quasicritical circle
pairs with a nice external structure (which is a quasicritical version of but-
terfies introduced by Edson de Faria in the early 1990s). A butterfly map

(3.8) f=(0,00): (X, X)) =Y
is a quasicritical circle pair with the following properties:

e X, O intIy are disjoint R-symmetric Jordan disks whose closures touch
only at 0; we let X4+ = X4+ NH.
e Y is an R-symmetric topological disk compactly containing the X_; we let

Y =Y NH.

e Each ¢4+ maps the corresponding X4 univalently onto Y.
e The maps ¢+ admit a quasiregular extension as descrbed in (P1) (with
Yi=Dy).
The configuration of the domains X := X U X_ sitting inside Y is called
a butterfly (see Figure 3.1). The filled Julia set K(f) is the set of points that
never escape Dom f = X, U X_. Let mod f = min(mod(Y \ X.)).
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Figure 3.1. Butterfly.

Let us mark in Y the critical point ¢g = 0, and in Xi the critical value
cx = ¢+(0). We say that a butterfly has a x-bounded shape if each of the
marked domains can be mapped onto the marked unit disk (ID,0) by a global
R-symmetric xk-qc map.

The geometry of a butterfly is controlled by three parameters: u (a lower
bound on mod f), k (a bound on the shape of the butterfly), and B, a bound on
the geometry of the intervals X4 NR inside Y NR. The latter is defined as the
best dilatation of a quasisymmetric map (Y NR,0) — ([—1,1],0) that moves the
boundary points of the intervals in question to some standard configuration.
Let B(N,u,k, B) stand for the space of butterflies of type bounded by N
whose geometry is controlled by the specified parameters. As usual, the class
B(u, k, B) is defined as the union of those.

3.5.2. Complex bounds. We are ready to state a quasicritical version of de
Faria-Yampolsky complex bounds [dF99], [Yam99]:

THEOREM 3.10. Let f € Circp(ﬁ, K €) be a quasicritical circle pair. Then
there exists an | depending only on (N, K,€) such that for all m > 1— 1, the
pre-renormalizations R(y f can be represented as bulterflies X™ U X' — Y™

of class B(N, i, k, B) with YilsyYls ..., and
dist (Y™, Y™ 1) < dist(9Y™, XT') < diam Y™,
All constants and bounds depend on (N, K, ¢€) only.

Proof. The proof is the same as in the analytic case (at the last moment
making use of Lemma 3.6). We recall the main steps, in the case of Epstein
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class, following the strategy of [LY97], [Yam99]. The general case can be carried
following [dFdMOO] by a more careful analysis at small scales, based on the
real bounds (which are available in our setting by Theorem 3.9).

Let us consider the dynamical interval I = I"™ = [cp, ¢g,] of some level
n € N attached to the critical point (see Section 3.3.3), and let ¢ = g1,
J = f4(I). Then f9|I can be decomposed as ¢ o f where ¢y~ : J — f(I)
admits a conformal extension to the slit plane C\ (R\ J). Here is the Key
Estimate: for any z outside R, we have

dist(w_l(z)), |f(I)] dist(z, J)
Q) <4( 7] )+5

The proof uses only the real bounds and the Schwarz Lemma for holomorphic
maps between slit planes. As both these ingredients are available for our class

(3.9)

(as we always apply only holomorphic inverse branches of f), the Key Estimate
is valid in this generality.

At the last moment we apply the inverse branch of the cubic quasiregular
map f near its critical point. By Lemma 3.6, it is highly contracting in big
(rel I) scales, beating a bounded expansion allowed by (3.9).

Now take a big k € N and consider a disk D, of size comparable with
Ik Let Y be D, slit along two real rays corresponding to the range of the
Epstein map R™f. The contracting property discussed above implies that the
pullbacks of Y by R"f are well trapped inside Y. This produces a butterfly
with a definite modulus p > 0.

Slightly shrinking yn (using the space in between V" and the Xi) and tak-
ing its pullbacks under R"™f once again, we obtain a butterfly with a bounded
shape. ([

Let us mention the following important special case that can be reduced
directly to the Epstein class setting:

COROLLARY 3.11. The above a priori bounds hold for a butterfly map
f:X_UX, =Y of class B(N, po, ko, Bo).

Proof. By uniformizing Y with the slit plane C \ (R \ [-1,1]), we con-
formally conjugate our butterfly f to a map of Epstein class £(N, K, €) with
parameters depending only on (N, po, ko, Bo), which reduces the problem to
this setting. (|

Remark 3.2. For the same reason, all the statements formulated below for
maps of Epstein class are also valid for butterfly maps.

3.5.3. Ezpansion. In this section we adapt some of McMullen’s results (see
[McMO96, §6.2] and [McM98]) to our setting. For z in the upper half-plane, we
will use notation ang z for min{arg z, 7 — arg z}, where arg z € (0, 7). Together
with the Schwarz Lemma, the complex bounds imply
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LEMMA 3.12. Under the conditions of Theorem 3.10, the renormalizations
Jm = R, [ are expanding in the hyperbolic metric of H. Moreover,

IDfm()llhyp = p>1, m=1,
with p depending only on (N, K, ¢€) and a lower bound on ang z.

Proof. Assume for definiteness that z € X" and R™f| X" = f%. Since
each X is univalently mapped onto H under f9m, there exists a disk X" > X"
that is univalently mapped onto H under f9". The hyperbolic expanding factor
of this map is equal to the inverse of ||Di(2)/hyp, where i : X" — H is the
natural embedding. This hyperbolic norm is bounded in terms of the upper
bound on distyyp (2, 0X7') measured in H. But by Lemma 3.1, if angz >
w > 0, then z can be connected to 0X™ by a circle arc v whose Euclidean
length divided by its Euclidean distance to H is bounded by some constant
C(N,K,e; w). All the more, the same bound holds for the piece of this arc
connecting z to 0X 4. The conclusion follows. O

THEOREM 3.13. Let f € £(N, K, ¢) be a map of Epstein class. Then there
exists p > 1 depending on (N, K,€) only such that if z € Y™ N Dom” f™ while
frz e YR\ Y™k for somen € N, 0 < k < m (with m —k > 1), then

IDF" (2)llhyp > ",

where the norm is measured in the hyperbolic metric of the upper half-plane H.

Proof. On its way from Y™ to Y™k \ Y™ *+1 there exist < k levels
Xt = X_i U X® and corresponding moments n; such that z; := f™z € X* but
(R'f)(2) € X' Such a point z; stays away from R (in the rescaled plane),
unless either ang z; or ang(R' f)(2;) is definite. Lemma 3.12 implies the desired
assertion. (]

3.5.4. Compactness. Let us normalize a complex pair f : X+ UX_ Y
so that \Y N R| = 1 and introduce the following topology on the space of
normalized pairs. A sequence f, : X’i UX"™ — Y™ converges to a pair f :
X, UX_ — Y if the domains Y Carathéodory converge to Y and the inverse
branches (f,)~! : Y - Xi converge to the corresponding branches of f~!
uniformly on compact subsets of Y. (See [McM94, §5.1] or [Lyu, §7.7] for a
discussion of the Carathéodory topology.) Standard compactness properties of
the Carathéodory topology imply

PROPOSITION 3.14. The butterfly space B(u, k, B) is compact.
3.6. Periodic points o!, collars A', and trapping disks D'.

3.6.1. Periodic points of. Let us start collecting consequences of the com-
plex bounds.
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ProrosITION 3.15. Under the circumstances of Theorem 3.10, for any
1 > 1—1, there exists a repelling periodic point o! € X' U Xﬂr of period q;.
Moreover,
(i) dist(a!, T) is comparable to I'(co);
(ii) the multiplier of o is bounded and bounded away from 1 in absolute value.

Proof. Each restriction R'f : Xi — Y is a conformal map from a smaller
domain onto a bigger one. By the Wolff-Denjoy Theorem (applied to the
inverse map) it has a fixed point in the closure Yit However, it does not have
fixed points on the boundary since f does not have periodic points on R, while
the image of 90X} \ R under R'f (contained in 0Y") is disjoint from itself. So,
there is a fixed point o/, € X}.

Assertions (i) and (ii) follow from compactness (Proposition 3.14).

Finally one of the points o/, has period g;. ([

3.6.2. Collar Lemma and trapping disks D'. For all sufficiently big [, com-
plex a priori bounds allow us to construct nice collars A' around D and nice
trapping disks D! that capture all orbits that escape beyond the corresponding
collars.

We say that a point z € C\ D lies on depth [, d(z) =1, if

Co TN (Q)| < dist(2, T) < ColI'(Q)],

where ( is the closest to z point of T, and Cy = Cy(N, K, €) is the constant from
(3.6). Of course, any point can lie on several depths (so d(z) is multivalued),
but this number is bounded in term of (N, K, ¢).

LEMMA 3.16. Under the circumstances of Theorem 3.10, for anyl > 1—1,
there exists a pair of smooth annuli (“collars”) Aé € Al surrounding® D in
Dom f\D, and a smooth quasidisk D' > o! in Y with the following properties:
(A1) Any boundary point z € 9°AL U 9°Al of these collars lies on depth d(2)

with o
|d(z) — 1] <T=17(N, K,e).
Moreover, dist(z,0°Al) < dist(z,T) for any z € 0°AL, and similarly for
the inner boundaries ' A} and 9 Al.
(A2) It is impossible to “jump over the collar”:
If z € Compy(C \ A)) \ D while f(z) ¢ Compy(C \ AY), then f(z) € AL.

(D1) The disk D' has a bounded shape around o'; it also has the hyperbolic
diameter of order 1 in Y'\'D and in C\ D,

20We prepare a pair of collars for each [ to make the statements robust under perturbations.
By “surrounding” we mean that I C Comp,(C \ A").
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[ (D)\D

Figure 3.2. Trapping disk.

(D2) A definite portion of D' (with respect to the plane area) is contained in

YD)\ D. Moreover,
there is a point B € f~Y(T) \ D that lies in the middle of D.

See (1.1) and Figure 3.2.

(D3) If z € Al, then there exists a moment k < qi41 such that f*z lies in the
middle of D'.

(D4) There exists 1 = L(N, K, €) such that for any ¢ > v and | > 1 + 2, under
the circumstances of (D3), we have

flzg DI i=0,1,... Kk,

where D™ € Y=\ is a disk containing D*~* with a definite mod(D'~*\
D'=*); in particular, D' N D™ = 0.

(D5) Moreover, under the above circumstances,

fiz € Compy(C\ A™Y), i=0,1,...,k,
and A=t € Compy(C \ AI72).
All the bounds and constants depend only on (N, K, €).

Proof. Let us consider the butterfly renormalization Rf:p f:Xtux i —Y!
For Y, we will also use the notation Yol.

Any dynamical tile I ,i € T is compactly contained in the topological disk
Ykl obtained by pulling Y back by the conformal landing map, the complex
extension of the landing map L; : [ ,i — I(l). Complex a priori bounds imply that
Il is contained well inside Y} (since mod(Y} \ I}) = mod (Y \ I}) is definite).
Hence each Y} contains a half-ellipse A.(I!) of bounded eccentricity based on
the (1+¢)-scaled interval 1 ,i, where € > 0 and the bound on eccentricity depend
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only on real and complex a priori bounds. The union of these half-ellipses is an
annulus whose inner boundary is T and the outer boundary lies on dynamical
depth I 4+ O(1). Moreover, for k # 0, these disks lie well inside Dom” f, since
Ykl € Dom" f.

Now existence of collars Al € A! satisfying (A1) is obvious. Moreover,

one can easily secure the following property:
(M) Every point z € A} lies in the middle of some Y.
Furthermore, since f is quasiregular, there is 7 = 7(N, K, €) such that
d(f(z) > d(z) — 7, z € Dom" f.
It follows that if the collar Af) is selected sufficiently thick (i.e., contains a
round annulus going over more than i depth levels), then points cannot jump
over it, securing (A2).

Let us view the topological half-disk Y\ D as the hyperbolic plane, and
let D! = D!(R) be the hyperbolic disk of radius R in Y centered at o!. By the
Koebe Distortion Theorem, these disks satisfy property (D1) with constants
depending on R (or better to say, on an upper bound for R) .

For R big enough (depending only on (N, K, ¢€)), they also satisfy (D2).
Indeed, since f is quasiregular, any sufficiently small disk D(cg, ) contains a
comparable disk D(¢,ar) € f~1(D)\ D. Since the domains Y have a bounded
shape around cg, while the disks D'(R) closely approximate Y'\ D (uniformly
in ), we conclude that for R big enough,

DY(R) > D(¢,ar/2) and area D'(R) =< areaD(C,ar/2),
which yields the first part of (D2).

The second part of (D2) follows from Proposition 3.3, which implies that
there is a point ¢ € f~1(T) lying in the middle of Y. For R big enough, it lies
in the middle of D'(R) as well.

If z € A!, then by Property (M), z lies in the middle of some domain ka.
By the Koebe Distortion Theorem, under the landing map L : Ykl — Y it
lands in the middle of Y!. Hence for R big enough, Ly(z) lies in the middle of
D'(R) as well, which establishes property (D3).

Since the whole orbit {f?z}¥_, lies on depth > I — O(1), it is separated
from D't +O(1) and from A", as long as ¢ is sufficiently big. Similarly, since
A=t lies on depth I — ¢, it is separated from A'~% for ¢ big enough. These
remarks prove (D4) and (D5). O

We say that the trapping disk D= D! is centered at o/, or that depth D=1.

3.7. Cylinder circle renormalization.

3.7.1. Real definition. There is a different approach to the circle renor-
malization that avoids using circle pairs. For any non-critical point 6 € R/Z,
consider the oriented interval I = [0, f(0)] C R/Z. ldentifying its endpoints
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by means of f, we obtain an oriented real analytic circle T’. The first return
map to I descends to a quasicritical circle map of T’ (defined up to an orienta-
tion preserving analytic conjugacy) that is called the cylinder renormalization
Rcy1f of f. The rotation number of Ry f is equal to —1/6 mod Z.

This leads to the modified Gauss map G : § — —1/6 mod Z accompanied
by the modified continued fraction expansion

1
0:]\71_715[]\[1,]\72,...]*, NzZQ

N2—-
We will use the same notation for the rational approximands in this expan-
sion, pm/qm = [N1,...,Np]«. Of course, the notion of “bounded type” is
independent of which expansion we use.
The rotation numbers 6 = [N, N, N,...], with equal entries?’ N > 3
are called of stationary type (with respect to the modified expansion). The

most familiar of these is the golden mean 5 = (3 — /5)/2.

3.7.2. Complexification. Let us start with a topological lemma:

LEMMA 3.17. For any butterfly map f € B(u, k, B) (3.8), there exists an
arc vy connecting the fized point o € Xy to By (3.7) in such a way that « is
the only common point of v and f(7y). Moreover, the triangle bounded by -,
f(v) and the arc of J := [p4+(B+),B+] € R is L(k, p, B)-qc equivalent (by a
global map C — C) to the half-strip

(3.10) {z: Imz>0, 0<Rez<1}U{o0} Cc C.

Proof. Let ¢ := ¢4, X := X4, B4 := (. Notice that there is a subarc o C
0X that touches J at 8 and is mapped homeomorphically onto the subinterval
of Y NR that begins at ¢(3) (covering J). Hence the pullback J' := ¢~1(J) is
a subarc of o touching J at 5. Since X is k-qc equivalent to the unit semi-disk,
the concatenation JU.J' is a quasiarc. Pulling it further, we obtain a sequence
of quasiarcs J" := ¢ "(J) C X, n = 0,1,..., one attached to the previous
one, such that the J"UJ"*! are quasiarcs with uniform dilatation (depending
only on (k, i, B)) shrinking to « at a geometric rate. Then

F::{Oz}UGJn

is a quasiarc (with dilatation depending only on &, u, B) connecting « to (8
whose image f(I") is a longer quasiarc connecting « to ¢(3). To see that I'is a
quasiarc, notice that it is so away from « since I' is composed from overlapping
quasiarcs T% := ¢~*(JUJ'). Moreover, since ¢ near « acts as a linear expansion
by some p > 1, both length and diameter of the arc | J,,,<x<n T* are comparable
with p", implying that I' is a quasiarc near a as well. -

2INote that 05 = 1.
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The map ¢ on X can be globally linearized by a ()-qc homeomorphism
¥ (C,X) = (C, (X))

that is conformal on X, ¥(¢(2)) = Mp(z), z € X, with @ depending only on
(k, pt, B). It can be further conjugate to the doubling map 7" : z — 2z by a qc
homeomorphism h : C — C that straightens the quasiarc I" to the unit interval
[0,1]. In this model, we can let ¥ = h((1(7)) be a segment of a circle passing
through 0 and 1 sufficiently close to R so that it fits to the domain h(1(X)).
Moreover, the triangle bounded by 7, 2 -4 and [1,2] is qc equivalent to the
half-strip (3.10), implying the conclusion. O

For m sufficiently big, the cylinder renormalizations Rg

scribed above can be complexified as follows; see Yampolsky [Yam02]. Let us
consider a periodic point o™, m > [, from Corollary 3.15. Then there is a
T-symmetric arc v, connecting a™ to the symmetric point??> 1/&™ in such
a way that f9"(~,,) does not intersect 7,,. Let us consider the fundamental
region Y = Y"™(f) bounded by these two arcs.

LEMMA 3.18. Let f € Cir(N, K, €). Then the regions T™ are k-qc equiv-
alent to the strip {0 < Rez < 1}, with x depending only on (N, K, ).

f we have de-

Let us now identify the boundary components of Y™ by means of f%m.
We obtain a cylinder Cyl™ that is conformally equivalent to the standard bi-
infinite cylinder C/Z (the symmetrization of the half-cylinder corresponding to
(3.10)). The first return map to Y™ descends to a holomorphic map on Cyl™
near the circle, and then can be transferred to exp(C/Z,R/Z) = (C*,T). This
is the cylinder renormalization of a holomorphic circle map (well defined up to
affine conjugacy).

3.8. Quasiconformal conjugacy.
THEOREM 3.19 (compare [dFdAMO00]). Two quasicritical circle maps,
f:Dom" f - Y and f:Dom" f — Y, of class Cirep(N, K, €),
with the same rotation number are L;qc conjugate in a d-neighborhood of T,
with L and 6 > 0 depending only on (N, K, €).

Proof. The proof is an application of Sullivan’s Pullback Argument; see
[dMvS93].

Without loss of generality, we can assume that f is a butterfly renormal-
ization of the Blaschke product By (3.1) provided by complex bounds (Theo-
rem 3.10). It is easy to see, using the general description of the dynamics on

22Here we describe it in terms of the unit circle T in C.
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the Fatou set, that the filled Julia set K(Bp), and hence K(f), are nowhere
dense.

By Theorem 3.9, there is a quasiconformal map hy : C — C conjugating
f and f on the unit circle (with dilatation depending only on N). Using the
complex bounds (Theorem 3.10) this map can be adjusted, after passing to
some renormalization, so that it is equivariant on the boundary of the butterfly,
with dilatation depending only on (N, K €).

We can now start lifting the map hg under the dynamics to make it equi-
variant on bigger and bigger parts of Q? Since f is conformal on Q?, these lifts
hy, have the same dilatation as h. By compactness of the space of normalized
L-qc maps, we can pass to a subsequential limit, h,, — h.

Moreover, outside the filled Julia set K(f), h is independent of the sub-
sequence (ny) since the lifts h,, stabilize pointwise on C\ K (f). Since K(f) is
nowhere dense, by continuity A is independent of the subsequence on the whole
plane. Hence h,, — h on the whole plane, implying that h conjugates f to f.

Let us finally spread the conjugacy around the circle. To this end let us
consider an arc I' connecting two boundary points of dY and composed of two
external rays of By through the point b = ¢+ (8+). (Such rays exist since the
Julia set of By is locally connected [Pet96].) Let Iy be similar arcs obtained as
the pullbacks of I' through £, respectively. Since the external rays form a folia-
tion, I'y are disjoint from I'. Let I+ be the topological rectangles each bounded
by I'+ and T', respectively, and by a pair of arcs of 9Y. Pulling these rectangles
back by the first landing map to Y (compare with the proof of Lemma 3.16),
we obtain a tiling of a neighborhood of T by topological rectangles.

Transfer the arcs I' and '+ by h to the butterfly range Y and use them
to construct a similar tiling near T for f. Then the conjugacy h between the
butterflies can be lifted via these tilings to a desired qc conjugacy between f
and f near T. O

4. Siegel maps and their perturbations
4.1. Douady-Ghys surgery.

4.1.1. Blaschke model for Siegel polynomials. Let us consider a quadratic
polynomial

(4.1) fp: 25?24+ 22 9 cR/Z.

When the rotation number 6 has bounded type, it is linearizable near the origin,
and thus has a Siegel disk B = Bp, = By. Here we will briefly describe the
Blaschke model for this quadratic map due to Douady and Ghys (see [Dou87b)).
It is based on a surgery that turns an appropriate Blaschke product into fp.
Consider a family of Blaschke products (3.1). It induces a family of critical
circle maps on the unit circle T. Adjusting the parameter o one can make the
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rotation number of B, assume an arbitrary value, so it can be made equal to
the rotation number 6 from (4.1).

Assume 6 is of bounded type. Then by Theorem 3.9, B, : T — T is quasi-
symmetrically conjugate to the pure rotation Ty. We can use this conjugacy
to glue the Blaschke product on C\ D to the rotation of . This produces
a degree two quasiregular map I’ of a quasiconformal sphere. Moreover, F
preserves the conformal structure obtained by spreading around the standard
structure on the disk . By the Measurable Riemann Mapping Theorem, F is
quasiconformally conjugate to some quadratic polynomial z — Az + z2. Since
this quadratic polynomial has an invariant Siegel disk with rotation number 6,
it coincides with fy.

4.2. Ezpansion. Let us endow the complement C\ B of a Siegel disk B=By
of bounded type with the hyperbolic metric || - |[hyp. A standard application of
the Schwarz Lemma shows that the map f = fy is expanding in this metric,

IDE()lnyp > 1 if 2,£(2) € C\ B.

Indeed, the map f: C\ f~(B) — C\ B is a covering and hence a hyperbolic
isometry. By the Schwarz Lemma, the embedding

(4.2) i:C\f1(B)->C\B

is a hyperbolic contraction. Hence foi~!: C\ B --» C\ B is expanding on its
domain of definition (i.e., on C\ f~1(B)).

Using the Blaschke model, McMullen showed that the expansion is uniform
near the critical point:

LEMMA 4.1 ([McM94]). Let f = fy be a Siegel quadratic polynomial of
type bounded by N, and let C > 0. Then there exists p = p(N,C) > 1 such
that

| DE(2)|lnyp > p if 2,£(2) € C\ B, and |z — ¢g| < C dist(z, B),
where the dist stands for the Fuclidean one.

Proof. From the above argument we see that || Df(2)|lnyp = [|Di ! ||lnyps
where i is embedding (4.2). The latter is bounded away from 1 in terms
of the hyperbolic distance A from z to f~'B (in C \ B). For the Blaschke
model, the corresponding hyperbolic distance is bounded in terms of the con-
stant corresponding to C' (i.e., with the Sielge disk B replaced by the unit
disk D). The Blaschke model is K-qc equivalent to f where K is bounded in
terms of N. Since global qc maps are quasisymmetries and hyperbolic quasi-
isometries (quantitatively), the hyperbolic distance A is bounded in terms of C'.
The conclusion follows. U
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Let us now consider a perturbation f = f; (not necessarily with real 67)
of the Siegel polynomial f = fy. Let O be the postcritical set of f. Endow
its complement C \ O with the hyperbolic metric | - HhN . Then the map f

ypP

is expanding with respect to this metric (for the same reason as the Siegel
map f). In fact, under certain circumstances it is also uniformly expanding
near the critical point:

LEMMA 4.2. Let the type of 0 be bounded by N, and let C > 0. Then there
exists p = p(N,C) > 1 such that for any compact set K € C\ B, there exists
0 > 0 with the following property. Let \é — 0| <9, and assume O is contained
in the d-neighborhood of the Siegel disk B. Then for any point z € K\ £~'(0)
such that

(4.3) |z — co| < C dist(z, B),

we have
IDEG) ~ > p.
yp

Proof. As the proof of Lemma 4.1 shows, the expansion factor p is bounded
from below in terms of the hyperbolic distance from z to f~1(0) in C \ O.

Let U = Us be the d-neighborhood of B. For § small enough, U is disjoint
from K. Then the hyperbolic metrics on C \ B and on C \ U restricted to K
are comparable (and in fact, close for ¢ small).

By assumption, the postcritical set O is contained in U. By the Schwarz
Lemma, the hyperbolic metric || - Hh;p on C\ O restricted to K is bounded

from above by the hyperbolic metric on C\ U. Altogether, for § sufficiently
small, we conclude
iy < Gl linyp - on K,

with the constant C7 depending only on N. (In fact, C can be taken arbitrary
close to 1 for ¢ small.)

Since the dynamics of £ on OB is minimal, the set O makes an e-net for
OB provided 4 is small enough. Hence f~(O) makes an O(e)-net for f~1(9B).
As we know (see the proof of Lemma 4.1), condition (4.3) implies that the
hyperbolic distance from z to f~1(B) in C \ B is bounded. It follows that the
hyperbolic distance from z to f~1(0) in C\ O is bounded as well. O

4.3. Siegel maps.
4.3.1. Definition. A Siegel map f : (€,0)— (C,0) is a holomorphic map on
a Jordan disk Q = Q; = Dom f with the following properties (see Figure 4.1):

(S1) f has a Siegel disk S = Sy (centered at 0) that is a quasidisk compactly
contained in §2;
(S2) f has a non-degenerate critical point ¢y € 955;
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Figure 4.1. A Siegel map supplied with a renormalization but-
terfly and a fundamental domain for the corresponding cylinder
renormalization. Courtesy of D. Dudko.

(S3) the domain Q" = Q’} ={2€Q\S: fzeQ)\S} is obtained from the
annulus © \ S by removing a topological triangle

T=T;C(Q\5)U{co}

with a vertex at ¢y and the opposite side on the boundary of €Q;
(S4) f: Q? — C\ S is an immersion, and f: 7 — SU{c;} is an embedding.

We let Dom” f = Q’} us.

Remark 4.1. Note that Siegel maps are holomorphic by definition, so in
this case superscript “h” is taken only by analogy with the circle case.

(S5) A lift of f to the universal covering H of S\ D admits a representation
as in (Q5).

Given N € N and u > 0, let Sieg(N, u, K) stand for the space of Siegel
maps f : 0 — C of type bounded by N and such that mod(Q2\ S) > p and 95
is a K-quasicircle. (If irrelevant, some of these parameters can be skipped in
the notation.)

We will later use the notation Siegy(u, K) = Siegx (1, K) for the class of
Siegel maps f € Sieg(u, K) with stationary rotation number 6 = .
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4.3.2. Circle model for Siegel maps. By performing the Douady-Ghys
surgery on an arbitrary analytic critical circle map g of bounded type (not
only on the Blaschke map), we can produce plenty of Siegel maps. However,
to obtain all of them, we need to allow quasicritical circle maps.

PROPOSITION 4.3. Any Siegel map f : (2,0) — (C,0) of class S(N, u, K)
can be obtained by performing a Douady-Ghys surgery on a quasicritical circle
map. Moreover, the dilatation of the surgery depends on K only.

Proof. Let ¢4 : C\'S — C\ D be the uniformization of the complement of
S normalized so that 14 (co) = 1. Since S is a quasidisk, it extends to a global
quasiconformal map ¢y : (C,S5) — (C,D) (with the dilatation depending on
K only). Then

go =140 foui': (1h4(Q),D) — (C,D)

is a quasiregular map in a neighborhood of D that is a holomorphic immersion
on 1, (Q"). Applying to go| ¥+ () \ D the Schwarz Reflection Principle, we
obtain a quasiregular map g near T that restricts to a homeomorphism T — T.
Moreover, it is a holomorphic immersion on Dom” g, and hence is real analytic
on T\ {1}. At the critical point ¢y = 1, it has local degree 3. Moreover,
properties (S3) and (S4) of f readily translate to properties (Q3)—(Q5) of g.
Thus, g is a quasicritical circle map.

On the other hand, the uniformization ¢_ : S — D conjugates f to the
rotation Ty (and extends to a global qc map). Hence f is the quasiconformal
welding between g and Tp. O

Remark 4.2. Notice that the above construction is softer than the Douady-
Ghys surgery (as it does not involve an infinite procedure of spreading around a
Beltrami diffirential and does not use the Measurable Riemann Mapping The-
orem).?3 The price for this simplification is that the outcome is quasicritical
rather than holomorphic.

4.4. Clircle ~ Siegel transfer. By means of the Douady-Ghys surgery, we
can transfer the objects defined above for quasicritical circle maps to their
Siegel counterparts. Somewhat abusing notation, we will usually keep the
same notation for the transferred objects.

4.4.1. Dynamical scales. For any f € Sieg(N,u, K), we can transfer the
circle dynamical tilings (3.5) to the boundary of the Siegel disk S. Since
the surgery is quasisymmetric, these Siegel dynamical tilings Z™ have bounded
geometry as well (depending only on (N, p, K)), which gives us for any z € 95 a

231t is more similar to the external circle map construction for quadratic-like maps.
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notion of the dynamical scales near z (with the constant Cy from (3.6) replaced
with an analogous constant Cy = Co(N, i, K) controlling the geometry of the
tilings for Siegel maps).

4.4.2. Siegel butterfly renormalization. Since any Siegel map f of bounded
type is conjugate on the boundary of S to a quasicritical circle map, we can
immediately define the Siegel pairs renormalizations Rgp,f on 0S. The com-
plexification of this notion, a Siegel butterfly

(4.4) RE : XTUX™ Y™,

corresponds, via the surgery, to the external part of the circle butterfly (see
Figure 4.1). Theorem 3.10 implies

THEOREM 4.4. Let f € Sieg(N, pu, K) be a Siegel map of bounded type.
Then there exists an [ depending only on (N, u, K) such that for allm >1—1,
the renormalizations R, f on S can be extended to Siegel butterflies

Rg f : XU X —» Y™
with YL S YL S - such that the Y™ are quasidisks of bounded shape and
dist(9Y™\ 88, Y™ ) < dist(9Y™ \ 95, X}") < diam Y.
All constants and bounds depend on (N, u, K) only.
As in the circle case, these a priori bounds lead to external expansion:

COROLLARY 4.5. Under the circumstance of Theorem 4.4, the renormal-
izations fp, = Rg’;f are expanding in the hyperbolic metric of Y°. Moreover,

1D frm (2)lIhyp = p > 1
with p depending only on (N, p, K) and a lower bound on dist(z, S)/ dist(z, o).

Proof. To deduce it directly from the statement of Lemma 3.12 just map
Y0 conformally onto H. O

This leads to a direct analogue of Theorem 3.13 (with an additional con-
stant factor a due to the comparison of the hyperbolic metrics in Y? and C\ S).

COROLLARY 4.6. Let f € Sieg(N, u, K) be a Siegel map. Then there exist
a >0 and p > 1 depending only on (N, u, K) such that if z € Y™ 1 Dom” f*
and frz € YR\ Y™k for somen € N, 0 < k < m (with m —k > 1), then

1D f"(2)||lhyp > apk,
where the norm is measured in the hyperbolic metric of C\ S.

Here Dom f™ denotes (as in the circle case) the set of points whose orbits
(f*2)7_, stay outside C \ S.
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4.4.3. Periodic points o!. Proposition 3.15 implies

COROLLARY 4.7. For any Siegel map f € Sieg(N, u, K), there exists [ =
I(N,u, K) such that for any | > 1 — 1, f has a repelling periodic point oy of
period q; in the l-th dynamical scale near the critical point cg.

Remark 4.3. If £ = fy is a Siegel quadratic polynomial with rotation num-
ber of bounded type, then the periodic point o! was born in the parabolic
ezplosion from the parabolic approximand f,, , , . It can be characterized as
the landing point of a ray with rotation number p,;/q;.

4.4.4. External collars of A and trapping disks D'. Let us now transfer,
by means of the surgery, the collars and trapping disks from the circle plane to
the Siegel plane. It is a direct consequence of Lemma 3.16 and quasisymmetry
of quasiconformal maps.

PROPOSITION 4.8. For any Siegel map f € Sieg(N, u, K) and any | >

L+ 2u, there exist a pair of smooth annuli (collars) Al € Al surrounding the
Siegel disk S = Sy in Dom f \ S and a smooth quasidisk D' € Dom f \ S
containing o with the following properties:
(A1) For any z € 9° AL, dist(z, 0°Al) =< dist(z, 0S), and similarly for the inner

boundaries 0' Al and 0° Al
(A2) It is impossible to “jump over the collar”:

If z € Compy(C \ AY) while f(z) & Compy(C \ A)) then f(z) € Al.

(D1) The disk D' has a bounded shape around o' and it has the hyperbolic
diameter of order 1 in C\ S.
(D2) A definite portion of D' is contained in f~1(S)\ S; moreover,
there is a point 3 € f~H(0S)\ S that lies in the middle of D',
see Figure 3.2.
(D3) If z € Al then there ewists a moment k < q1 such that f*z lies in the
middle of D'.
(D4) There exists L = (N, u, K) such that for any > ¢ and | > [+ 2, under
the circumstances of (D3), we have
flzg Dt i=0,1,...k,
where leL € Y4\ S is a topological disk containing D'=* with a definite
mod (D' \ D'=); in particular, D' 0 D™ = §.
(D5) Moreover, under the above circumstances,
fiz € Compy(C\ A7), i=0,1,... k,
and A'=* € Comp,C \ (A!=2).
All bounds and constants depend only on (N, u, K).
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4.5. Siegel cylinder renormalization.

4.5.1. Definition. Using the circle model, we can extend Yampolsky’s con-
struction of the cylinder renormalization Rg [YamO08] to all Siegel maps f €
Siegy of bounded type. Let g be the quasicritical circle map corresponding
to f through the surgery. Let us transfer the arc used for the m-th cylinder
renormalization of g (see Section 3.7.2) to an arc d,, connecting the periodic
point o of f from Corollary 4.7 to the boundary of Sy. By continuing along
the internal ray of Sy, extend 6, to an arc 7, connecting o’ to the Siegel
fixed point 0. Then f9"(+,,) does not intersect ,,, and these two arcs bound
a fundamental crescent C™ for f9. Now we can proceed with the construction
as in the circle case: identifying the boundary arcs of C™, we produce a map
of the standard cylinder C/Z whose upper end corresponds to the Siegel fixed
point. To recover this point back, let us map C/Z onto C* by means of e?7%,
We obtain a Siegel map with rotation number —1/6 mod 1 (see [Yam08]).

The following statement is a Siegel counterpart of Lemma 3.18 that follows
from the latter by surgery.

LEMMA 4.9. Let f be a Siegel map of class Sieg(N, p, K). Then for any
m > 1 — 1, the fundamental crescent C™ is k-qc equivalent to the quadrilateral
composed by attaching the half-strip (3.10) (corresponding to C™ \ S) to a
triangle with angle 2m/q at 0 (corresponding to C™ N S) (see Figure 4.1). The
dilatation x depends only on (N, u, K).

Let m, = 7rfn stand for the change of variable projecting the original

dynamical plane to the renormalized one. It starts in the fundamental crescent
C™ and then is spread around by means of pullbacks.

4.5.2. Hybrid classes. Two Siegel maps, f and f, are said to be L-hybrid
conjugate if there exists an equivariant L-qc map Dom? — Dom;é that is con-
formal on the Siegel disk Sy.

By means of the Douady-Ghys surgery, Theorem 3.19 can be immediately

transferred to the Siegel setting:

THEOREM 4.10. Two Siegel maps f,f € Sieg(N, u, K) with the same
rotation number are hybrid L—conjugate in a é-neighborhood of S, with L and
§ > 0 depending only on (N, u, K).

5. Inou-Shishikura class

5.1. Parabolic renormalization. Here we will briefly outline the Parabolic
Renormalization Theory that provides us with a good control of bifurcations
of parabolic maps. It was laid down in the work by Douady and Sentenac
(see [DH85al, [Dou94]), Lavaurs [Lav89], and Shishikura [Shi98], which can be
consulted for details.
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5.1.1. Parabolic Puiseux germs and their transit maps. For ¢ € N and a
small convex neighborhood U of 0, let Go(U) be the space of parabolic maps
on U given by Puiseux series

(5.1) f:zn—>z+z2+Zak22+k/q

keN
(continuous up to the boundary). By definition, it is isomorphic (as a Banach
space) to the space of holomorphic germs

Fr¢m I3+ arth,
keN
continuous up to the boundary, on the neighborhood U, the full preimage of U
under the power change of variable z = (7. The latter space is endowed with
uniform topology, which is inherited by Go(U).
Let us consider the principal branch of f (for which z'/7 is positive on Ry.)
in the slit plane U \ e™/*R,. It is endowed with the following structure:

(C1) An attracting petal P* = P(f), which is an open piecewise smooth
Jordan disk with the following properties:

e P%is R-symmetric and P* NR = (—4,0) for some § > 0;

e P% touches the origin at the angle w/2 with R;

e f univalently maps P into itself, f(OP?) NIP* = {0}, and f"(z) — 0 as
n — +oo uniformly on P%.

Along with the attracting petal, there is a repelling petal P = P"(f) con-
taining an interval (0, ¢) with some § > 0 that can be defined as the attracting
petal for f~1.

(C2) The horn map H = Hy : P" --» P®. For any angle § > 0, there exist
€ > 0 with the following property: for any € € (0,¢), there exists n € N such
that for any point z € P" with € < |z| < € and 6 < argz < 7w/2 (where arg z
is the principal value of the argument), we have f"z € P%. Moreover, € can be
selected the same for all maps f € Go(U) near f, and then n can be selected
depending on (e, €') only. This transit map is called the horn map Hy.

(C3) The attracting and repelling Fatou coordinates
P"=9¢3:P*—=C, ¢"=9¢}:P" —C, gb“/r(z) ~ —1/z+ const as z — 0

conformally conjugate f and f~! to the translations z — z+1 and z — z — 1
respectively. The Fatou coordinates are defined up to translation, so they
are uniquely determined by normalization that specifies which points ¢*/" =
cjﬁ/r € P/ (f) correspond to 1 and —A — 1, respectively (with some A € N to

be chosen below). Moreover, if the base points c(}/ " depend holomorphically
on f, then so do the normalized Fatou coordinates.
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(C4) An attracting fundamental crescent C* = C*(f) is a strip properly
embedded into the attracting petal P* such that 0C*NOP* = {0} and f(C*)NC*
is a boundary component of C*. To be definite, we will use the following choice:

C*=Cf)={z€P*: 3/4<Rep”(z) <T7/4}.

Since the Fatou coordinate depends holomorphically on f, the crescent C*(f)
moves holomorphically with f.
Similarly, one can define the repelling fundamental crescent

C"=C"(f)={z€P": —A—-5/4<Re¢"(z) < —-A—-1/4}.

(C5) The Ecalle-Voronin cylinders Cyl®/" = Cyla/r(f) are the quotients
of the petals P%" by the dynamics. They can be obtained by identifying
the boundary components of the corresponding fundamental crescents Co/" by
means of z ~ f(z). The normalized Fatou coordinates induce isomorphisms of
the pointed cylinders (Cyla/ ", ¢*") to the standard cylinder (C/Z,0), and in
what follows, we will freely identify the cylinders with the standard model.

(C6) A complex one-parameter family of transit isomorphisms
(5.2) I,:Cyl*~C/Z —-C/Z~Cyl", z—z+\ XeC/Z.
Let
(5.3) AP :={-1/4 <Re) < 3/4, |Im )| < b}.
Then for any A € A, the isomorphism I lifts to the translation
{3/4<Rez<T7/4} 5 {-A—-5/4<Rez<—-A—-1/4}, z+—z—-A—-2+4 )\
which induces, by means of the Fatou coordinates ¢3ﬁ/ " a conformal embedding
(5.4) Ipa: C(f) = P"(f).

Holomorphic dependence of the Fatou coordinates on f implies that these
embeddings depend nicely on the parameters:

LEMMA 5.1. Assume the base points cjc/r € PY"(f) are selected holomor-
phically in f over some neighborhood Uy C Go(U). Then the family of transit
maps (5.4) depends holomorphically on (f,\) € Uy x AL,

The horn map H = Hy from (C2) also descends to the cylinders, and we
will keep the same notation, H : Cyl” --» Cyl?, for the quotient.

(C7) Parabolic renormalization Rpayf. Composing the transit maps with
the horn map, we obtain a one-parameter family of return maps

(5.5) INnoH;:C/Z --» C/Z
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defined near the upper end of the repelling cylinder Cyl” ~ C/Z. By means
of?4

Exp:C/Z — C*, Exp(z) = —(4/27)e*™,

we can identify the cylinder C/Z with C* so that its upper end corresponds
to 0 and the boundary of the fundamental crescents C%" corresponds to the
ray iR_. Then family of return maps (5.5) becomes a one-parameter family
gy of conformal germs near 0.

Moreover, there is a unique choice of the transit parameter A that makes
the map gy parabolic, with multiplier 1 at 0. This map gy is called the
parabolic renormalization Rparf of f.

5.1.2. Transit maps for perturbations and their geometric limits. Let us
now consider the space G(U) of Puiseux germs (continuous up to the boundary)

(5.6) frzm (2422 + Z apz>ha
keN

on U. We will refer to v € C/Z as the complex rotation number of 0.

Let Uy C Go(U) be a neighborhood of a parabolic map fy. Let us consider
a neighborhood U in G(U) consisting of maps f = *™ f, where f € Uy and
|argy| < 7/4.

If U is sufficiently small, then any map f € U \ Uy has a second fixed point
B = B¢ near 0. These points can be connected by two disjoint (closed) arcs,

W = w;/ " with the following properties:

e Together with the interval [0, 3], each arc w®" bounds an (open) Jordan
domain P¥" = P/ (f), called a perturbed attracting/repelling petal, whose
shape is close to a round disk. Moreover, P* NP" = ().

e The image arc f*'(w%") is contained in P*"U{0}, is disjoint from w®”, and
together with w®” bounds a crescent-shaped region C*" = C%/ "(f) called
the attracting /repelling fundamental crescent (respectively).

The domain P = P(f) bounded by the arcs w§ and w} will be referred to
as the petal for f. (What happens is that the attracting and repelling petals
of a parabolic map “merge” under the perturbation, to form P; see [Dou94],
[Shi9sg].)

As in the parabolic case, the perturbed map can be linearized on its petal.
The linearizing coordinate

d=d;:P—=C, o(f2)=0¢(2)+1, z€PnfHP)

24This special normalization of the exponential map is chosen to make it consistent with
the one used by Inou and Shishikura; see below.
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is called the Fatou-Douady coordinate (or the perturbed Fatou coordinate). 1t
is defined uniquely up to translation, so it can be normalized by prescribing a
point ¢y € C* corresponding to 1. If this point is selected so that it depends
holomorphically on f € U (including parabolic maps f € Uy), then the lin-
earizing coordinate ¢; depends holomorphically, and hence continuously, on
f €U. Thus, if f, — f, then for any compact set K C P%"(f), the ¢y, are
eventually well defined on K, and ¢y, — qﬁ?/ " uniformly on K.

Furthermore, all the above choices can be adjusted so that the attract-
ing/repelling fundamental petals and crescents are given as follows:

P ={3/4 <Reop(z) < 3/4+[N1/2]},

C*=C"(f) ={3/4 < Reg(z) < 7/4},

Pr={3/4+4[N1/2] — N1 <Reg(z) < —A —1/4},
(5.7) C"=C"(f)={-A-5/4<Re¢(z) < —A—1/4}.

Remark 5.1. Here the petals P%/" can be viewed as domains on the cylin-
der C/N;Z merging along the vertical line

{Red(2) = 3/4 + [N1/2]} = {Re(2) = 3/4+ [N1/2] — Ny} mod ;.

into a single petal P

The quotients of the petals P%" by the dynamics provide us with a pair
of Douady cylinders Cyl*/" = Cyl*/ "(f). They can be obtained by identifying
the boundary arcs of the crescents C*” by means of z ~ f (z). As in the
purely parabolic case, the Fatou-Douady coordinate ¢ induces an isomorphism
between the cylinders Cyl*/” and the standard cylinder C /Z, and we will freely
identify the cylinders with the standard model.

Let us consider the transit map 7' =T} : C* — C", ie., Tz = f7z where
ffz e P,k =0,1,...,4, and fiz € C". It is usually discontinuous, but it
induces a conformal isomorphism between the cylinders:

(5.8) It :Cyl"~C/Z - C/Z~Cyl", z—z+X A=Xf)eC/L

Remark 5.2. Notice an essential difference with the parabolic case. In that
case, there is a one-parameter family of isomorphisms between the cylinders, all
on equal footing, while in the perturbed case, (5.8) is a preferred isomorphism
induced by the dynamics.

THEOREM 5.2. Assume that the base points c;lc/r € PYT(f) are selected
holomorphically in f over some neighborhood Uy C Go(U). Let (Al}, c}) be the
lift of (A®,0) C (C/Z,0) (defined in (5.3)) to P"(f) (by means of the Fatou-
Douady coordinate). Then for sufficiently small Uy, b and for every sufficiently
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big j, there exists a holomorphic embedding
iUy x A = U, (f,\) > 2™ f
where v; = V7 A’ — C is a conformal embedding such that
o Letting f = ®;(f, ), we have
) e P(f), k=0,1,...,5, f7(c*) € AY, and A(f) = \.

e Letting CZ(f) = {7 : 3/4 — e < Re¢}(z) < 7/4+ €} for € > 0, the transit
maps f7 : CA(f) — P(f) converge as j — oo to the parabolic transit map

Ify C(f) = P"(f) uniformly on compact subsets of C*(f), and uniformly

over the tube Uy x Ab.2
2

e diam(Image ’Yj,f) =i

The images Q7 of the maps ®; will be called parabolic tubes. They are
endowed with the horizontal foliation whose leaves £7(\) = Uy, X € A, corre-
spond to the same transit parameter \ € A

The horn map from (C2) is robust under a perturbation f = ™7 f (5.6).
The perturbed horn map H = Hy : P — P is defined for z € P with |z| < €
and 0 < 0 < argz < /2. It induces the cylinder horn map Cyl" — Cyl®
near the upper?® end of the Douady cylinders. We will use the same notation
H = Hy for this map.

Composing it with the transit map Iy : Cyl® — Cyl", we obtain the return
map IroHy : Cyl"(f) --» Cyl"(f) near the upper end of the cylinders. Viewed
in the Exp-coordinate, it becomes a germ g¢ : (C,0) --» (C,0). Its rotation
number is given by the (modified) complex Gauss map G.(y) = —1/v mod Z.
If G« (7y) is small, then this return map is close to the parabolic renormalization
of f . It is called the near parabolic renormalization of f. We will keep the same
notation Rp,, for this operator.

5.1.3. Case of rotation number p/q. Let us now consider a holomorphic
parabolic germ
(5.9) fiCme¥mPlac 24
with rotation number p/q. Assume it is non-degenerate, i.e., it has ¢ petals
(rather than a multiple of ¢ petals). Then the g-th iterate f¢ has a form
fl:Cm CHag P+, with agyq #0.

Performing a power change of variable z=c(?, we bring f? to Puiseux form (5.1).

Z5Under these circumstances, the pair ( f , In) is called the geometric limit of the sequence
{fi}

26The assumption that argy > @ breaks the symmetry between the ends as it ensures that
the points within a compact set of C*(f) escape through the upper end of C"(f).
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Let us now perturb the parabolic map f to
(5.10) £ (s etmilate ey 2y

The ¢-th iterate fZ has non-vanishing terms ayz* with 1 < k < g+1, but these
terms can be killed by a conformal change of variable. Performing further a
power change of variable z = ¢(?, we bring f. to Puiseux form (5.6). As all
the above coordinate changes depend holomorphically on f, this allows us to
apply the above theory to the space of germs (5.9).

5.2. Inou-Shishikura class. Inou and Shishikura [ISO8] have constructed a
class ZS5( of maps with the following properties:

(P1) Any map f € ZSy is holomorphic on some quasidisk €2y containing 0 and
has a form Py o ¢! where Py is the restriction of z — z(1 + z)? to some
domain g, and ¢ : Q9 — C is an appropriately normalized univalent
map that admits a global qc extension to C.

(P2) 0 is the parabolic fixed point of any f € ZS.

(P3) Any f € ISy has a single quadratic critical point ¢y = co(f); moreover,
the orbit of ¢y does not escape Qy, and f"(co) — 0 as n — oo.

(P4) The class is endowed with the Bers-Teichmiiller topology and complex
structure inherited from the space of Schwarzian derivatives S¢ (see
[Ahl06, Ch. VI]); they make it isomorphic to the Universal Teichmiiller
Space.

(P5) The class is also endowed with weak topology induced by the compact-
open topology on the space of univalent functions ¢ : 29 — C; the weak
completion Z.S is compact.

(P6) The parabolic renormalization R acts from ZSg to ZSp; its restriction to
ISy is a compact holomorphic operator.

(P7) The parabolic renormalization of the quadratic map z +— z + 22 has a
restriction in Z.Sy.

For § € R/Z, define the class ZSy as e2m0 . TS, and let ZS := Ue ZSe.
(The notation ZSy and ZS has a similar meaning.) Property (P6) is robust
under perturbation:

THEOREM 5.3 ([IS08]). If 0 is sufficiently small, then the near parabolic
renormalization Ry, induces an operator Rzg : ISy — IS 4 /6 that restricts
to a compact holomorphic operator Rzs : IS¢ — L.S_ g.

We will call this operator Rzs. (In this section we will often abbreviate
it, without saying, to R.) Recall also modified continued fraction expansions
from Section 3.7.
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COROLLARY 5.4. There exists N such that if 6 = [N1,Na,... Ny, ... ]«
with N; > N, i = 1...,m, then any map f € ISy is m times renormalizable
under Rzg. Hence it is infinitely renormalizable if m = oo.

We say that a rotation number § € R/Z (rational or irrational) has high
type if all N; > N with N as above. Let ZS(N) stand for the union of the
spaces ZSy over all 0 of high type. For § = [N, N,...], of high stationary type
(N > N), we will also use the notation ZS = ZSy. Similar notation will be
used for the weak completion ZS.

5.3. Postceritical set. Inou and Shishikura have deduced from the above
results

PROPOSITION 5.5 ([IS08]). For any map f € ZS(N), the critical point
is non-escaping (i.e., f"(co) € Qp, n = 0,1,...) and stays away from the
boundary of Dom f. Thus, the postcritical set Oy is compactly contained in 2;
(uniformly over IS). In the parabolic case we have f™(co) — 0 asn — oo. In
general, orb ¢y is non-periodic.

Sketch of proof. The mere fact that the IS renormalization Rf is well de-
fined implies that the first Ny iterates of the critical point stay in €y (where
Nj is the first entry of the rotation number). Existence of all the renormaliza-
tions imply that the whole critical orbit stays in 2;. Uniform bounds on the
postcritical set follow from compactness of ZS.

In the parabolic case, the map is finitely renormalizable and its last renor-
malization falls to the class ZSy. Property (P3) implies that f"(co) — 0 as
n — oo. In the irrational case, f is infinitely renormalizable and by increasing
N if needed, we can make all the renormalizations R f to be small perturba-
tions of parabolic maps of class Z.Sy. Hence R™ f(cp) # co. On the other hand,
if cg was periodic, then it would be the fixed point for some renormalization. [

5.4. Renormalization telescope. In this section we will collect some tech-
nical results, essentially contained in the work of Buff-Cheritat [BC12] and
Cheraghi [Chel3].

Given a map f € ZSy and a (open) topological sector & centered at 0, a
principal branch of the first return map to & is an iterate f!:V — &, where
V is a relatively open subset of & with 0 € OV such that for any z € V, f!(z)
is the first return of orb z to &.

The following statement provides us with a convenient domain of definition
for the renormalization change of variable (see Figure 5.1):

LEMMA 5.6 ([Chel3, §2]). For any map f € TSy with = [Ny, Na,...]« of
sufficiently high type, there exists a piecewise smooth sector & = &y attached
to the fixed point O with the following properties:
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Figure 5.1. Renormalization sectors for an Inou-Shishikura map

(0) It has angle 6 at 0 and is contained in the repelling crescent.
(i) There exists a bounded s = sy such that f*(&) is a sector containing the
critical value c1 of f. In an appropriate Fatou coordinate,®” the latter
sector becomes the half-strip

(5.11) {3/4 <Rez<T7/4, Imz> —2}.

(ii) There exists a well-defined change of variable 1 = w¢ : & — C that is
univalent on & and ~ 2%/? as z — 0 (uniformly over the class TSy).
Moreover, the image (&) is a slit topological disk containing Sgy, and
the slit touches the boundary of Gy at a single point, the fized point 0.

(iii) The change of variable is equivariant: it conjugates two principal branches
of the first return map to & and the renormalization Rf on its full
domain.

(iv) For some k independent of f, & 3 cy,_x and the union 8

Ni+s—k

o= U re)
n=0

s a neighborhood of 0 uniformly compactly containing {cn}ﬁf;—gs—k.

(v) The sectors & depend continuously on f € ZS(N).

For t > 2, let A = A¢(t) be the subset of the sector G¢ corresponding to
the box

(5.12) {3/4<Rez<7/4, —2<Imz <t}

in the Fatou coordinate (compare (5.11)).

2TThis coordinate is normalized so that the critical value is placed at 1.
ZThere is a precise formula for the return times in terms of the arithmetic of 6; see

Lemma 2.2 in [Chel3].
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LEMMA 5.7. Under the circumstances of Lemma 5.6, for t sufficiently
big, the image m¢(Af(t)) compactly contains Agys(t), with a definite space in
between. Moreover, the domain A¢(t) depends continuously on f.

Proof. The last statement follows from item (v) of Lemma 5.6 and con-
tinuous dependence of the Fatou coordinate on f. Together with the weak
compactness of the Inou-Shishikura class ZS and item (ii) of the lemma, this
implies that the change of variable 7; on & is uniformly comparable with
z + zV/% near 0. This map is attracting near 0, so the “bottom” of A # (corre-
sponding to {Im z = ¢} in the Fatou coordinate) goes even closer to 0. Together
with item (ii) of the lemma, this implies that 7¢(A¢(¢)) compactly contains

)

Apry(t). Using weak compactness of ZS once again, we conclude that there is
a definite space in between. ([l

From now on, ¢ will be fixed, and it will not appear in the notation.
If f is m times IS-renormalizable, then we can compose the above changes
of variable to obtain a map

T =TRpm-1p0---0Ty,

well-defined and univalent on a sector 6;}‘ attached to 0. Spreading these
sectors around by the iterates of f, we obtain a neighborhood of 0,

T'm

(5.13) =1 e,
n=0

where 7, is an appropriate time expressed in terms of the arithmetic of 0 (see
[Chel3, §2]), and f"| &7 is at most 2-to-1 for n < rp,. (Note that these maps
are not branched coverings over their images.) Moreover, the iterate f*m 1! S
whose image 6™ (co) = &'f'(co) contains the critical point co is univalent.

We let
(5.14) I, =107 =m0 ™D 6™ () — C,

where f~(m=D|&™ (¢q) is the branch of the inverse map with image &™. (Note
also that ImageII,,, = Image 7, is a slit topological disk around 0.)

LEMMA 5.8. Let f be an m times IS-renormalizable map such that R™ f
is a parabolic map with multiplier 1. Then the postcritical set Oy is trapped
inside QT

Let us also consider the lifts A}” of the domains Agm; under 719”. We let
(5.15) NP = ),
n=0

where the times 7, are the same as in (5.13). Moreover, f*»~! maps A’JP
univalently and with bounded distortion onto its image A™(co) = A'(co) con-
taining the critical point ¢y. Thus, the change of variable II,,, (5.14) restricted
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to A™(cp),
(5.16) I, : A™(co) — C,

is a univalent map with bounded distortion (over the class ZS(N)). Notice
also that by compactness of ZS(IN) and continuous dependence of A" on
g = R™f, the image of the restricted map II,, contains a definite neighborhood
of the critical point. Also, the inverse branch f~("m=sm) on A™ sending ¢, .
to ¢; admits an extension to a bigger domain A™ with a definite modulus
(by applying the same construction to slightly bigger boxes than defined by
(5.12)). It follows that

(5.17) diam(f~m=sm) (A™)) 5 0 as m — oco.
We call the sets N }" necklaces. Lemma 5.7 implies

COROLLARY 5.9. Under the circumstances of Lemma 5.6, W?(A?_l)
compactly contains Agmy, with a definite space in between. There exist p =
p(N) > 1 such that diam A" = O(p~™). Moreover, for each m, the domain
A? depends continuously on f.

COROLLARY 5.10. Let f € ISy be a map of IS class with irrational rota-
tion number. Then the critical point is recurrent (but non-periodic).

Proof. The critical point returns (infinitley many times) to each of the
domains A’JP 3 ¢, —sm+1- Take such a moment n,, > r,, — s, + 1 and apply
to ¢r,,—s,+1 and ¢, the inverse branch f_(”"_sm) that sends ¢, —s,,+1 to 1.
It follows from (5.17) that it brings the point ¢, —  +s, close to ¢1, implying
the assertion. 0

5.5. Siegel disks. The next statement shows that maps f € Z.5¢ with 0 of
high bounded type are Siegel maps:

PROPOSITION 5.11 ([Yam08]). Let f € ISy, where 0 is a rotation number
of high type bounded by some N. Then f is a Siegel map; its Siegel disk Sy
is a quasidisk compactly contained in Qy, and 0S¢ > co. Moreover, f|0Sy is
quasisymmetrically conjugate to £5| OBy.

Proof. By replacing f with its IS renormalization Rf € Z.S, we can assume
that f € ZS (see Property (P6)).

By Section 4.1.1, we know that the assertion is valid for the quadratic
map fy and hence for its renormalization g := Rfy € ZSy, 8 = —1/6. Let
g:=Rf € ZSy. Since ISy is isomorphic to the Universal Teichmiiller Space,
the map g can be connected to g by a holomorphic Beltrami path gy, A € D.

Let co(A) be the critical point of gy, and let c,(A) = g¥(co(N)), n € N.
By Proposition 5.5, all points ¢,(\) are well defined, and then, they depend
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holomorphically on on A\. Moreover, they do not collide: ¢, (A) # ¢, (N) for
n # m (by Proposition 5.5 and Corollary 5.10). Hence, they form a holomor-
phic motion over D.

By the A-lemma, this motion extends to the postcritical set O of g, and
provides us with a family of quasisymmetric homeomorphisms hy : O — O,
A € D, where O, is the postcritical set for gy. It follows that O, is a quasicircle
for any A € D, in particular, for the map g.

Let D be a quasidisk bounded by O,4. Then the family of iterates g" is
normal on D, so D C S;. On the other hand, as the Siegel disk S, does not
contain preimages of cg, which are dense in dD = O, S, is contained in D.
The conclusions follow. (]

5.6. IS Renormalization fized point. Now the whole theory of Siegel maps
developed in Section 4 (external tilings, periodic points, trapping disks, renor-
malization fixed points, etc.) is applicable to any class ZSx, N > N.

THEOREM 5.12 ([IS08]). Let 8 = Oy be a stationary rotation number of
high type. Then the IS renormalization R has a unique hyperbolic fixed point
foo € ZSN. The unstable manifold W"(f) is a complex curve that can be
parametrized by the complex rotation number ranging over a neighborhood of
[0,0]. Moreover, R"f — f exponentially fast for any Siegel map f € ZSy.

COROLLARY 5.13. Under the circumstances of the above lemma, let us
consider a holomorphic family F passing through a Siegel map fo € IZSN
transversally to ZSy. Then there is a sequence of topological disks Fp, C F
around f, such that the IS renormalizations R™(Fy,), n =0,1,..., converge to

the unstable manifold W*(fso).

5.7. Perturbations of Siegel maps. The above control of one renormaliza-
tion, together with existence of the hyperbolic renormalization fixed point,
provides us with a good control of perturbations of Siegel disks of stationary
type (compare [BC12, §1.5]).

LEMMA 5.14. Let f, be a Siegel map of Inou-Shishikura class with sta-
tionary rotation number 6, = [N, N, ...]. of high type, and let F = {f\} be a
holomorphic family through fo = f\, transverse to ZSn. Then for any m € Ny
and any rotation number 6 in a neighborhood of [0,0,], there exists a map
fx € F such that the Siegel renormalization R™ fy with the same combinatorics
as R™ fy is well defined and has rotation number 6. Moreover, the domain Q;f;
(5.13) is contained in the O(p~™)-neighborhood of S,, where p = p(N) > 1.

Proof. Existence of f = f follows from the Renormalization Theorem 5.12.
Moreover, the renormalizations of f shadow those of f,:

(5.18) dist(R"f, R"f,) < C|0 — 6o| pg ™™, n=0,1,...,m,
where pg = po(N) > 1.
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Let us now apply the lifting and spreading procedure to control the neck-
laces (5.15), and hence the Q2™-domains. Assume we have already constructed
a necklace N "iff” that is confined to a d-neighborhood of Sgny, By Corol-
lary 5.9, under sufficiently many (k) further lifts, it will shrink by a big factor.
Spreading this pullback around by a bounded number of iterates of R™ "% f,
the necklace can be pulled father away from S, only by an exponentially small
(in m —n)) distance; see (5.18). These two mechanisms imply the desired. O

Together with Lemma 5.8, this leads us to the following important con-
clusion:

COROLLARY 5.15 ([BC12]). Under the circumstances of Lemma 5.14, as-
sume the map R™ fy is parabolic with multiplier 1. Then the postcritical set

Ox of fa is contained in the O(p~")-neighborhood of the Siegel disk S.

6. Main construction

6.1. Outline. Let us start with a quick guide to our construction (outlined
in the third paragraph of Section 1.4). Take a big | € N, a bigger x € N, and
an even much bigger m € N. Begin with a Siegel quadratic polynomial

27160

f=10): 2 20,422

with a stationary rotation number of high type, and consider its cylinder renor-
malization f = Rg™"f. It is a Siegel map of Inou-Shishikura class.

Moreover, f has a distinguished repelling periodic point a=a! of period ¢
(that approximates the dynamics on 9Sf in scale ). Perturb f to a para-
bolic approximant f with rotation number p,/q.. Then « gets perturbed to a
periodic point & with the same period; see Section 6.2

Furthermore, using the theory of parabolic bifurcation, one can perturb
f to a Misiurewicz map fus for which & becomes a postcritical point anyis.
Since ays can be approximated with precritical points, fas can be further
perturbed to a superattracting map fo,; see Sections 6.3 and 6.4.1.

The last map can be anti-renormalized to obtain a superattracting qua-
dratic polynomial f, such that f, = Rg”_“fo. This quadratic polynomial deter-
mines a renormalization combinatorics. The unique infinitely renormalizable
quadratic polynomial f, with this combinatorics is desired; see Section 6.4.

Our construction depends on six large integer parameters N,I, k,t, and
m, j, selected consecutively as listed, where the last two play a somewhat
different role than the first four. Once we select one of the first four parameters,
we assume, sometimes without saying, that all that follows depends on this
choice. A statement For any consecutively selected (N,l,k) > (N,l+2t,K) - -
(or For any consecutively selected sufficiently big (N,l, k) ---) will mean

AN YN >N3=IN) Vi>1+23Fe=xs(N,1) VE>r---.
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We will also assume that the choice [(/N) is made monotonically increasing
in N, the choice of k(V,[) is monotonically increasing in each variable, and
similarly for any other parameter in question.

Let us now supply the details.

6.2. Perturbed periodic points and trapping disks.

6.2.1. General perturbations. Recall that Sieg(N, u, K) stands for the space
of Siegel maps f : (2,0) — (C,0) introduced in Section 4.3.1.

Remark 6.1. In what follows,

e when we perturb f, we will use the uniform metric on €2;
e objects associated with f are usually marked with “tilde”, but it can be
skipped if the object is independent of f, e.g., A' = A!, D! = D!, etc.

LEMMA 6.1. There exist natural numbers®® | and ¢ depending on (N, u, K)
such that for any 1 > | + 2u, there exists a &g = do(N,p, K,1) > 0 with the
following property. For any § < &, if a holomorphic map f : Q — C is 8-close
to a Siegel map f : Q — C of class Sieg(N, u, K), then

(i) There exists a periodic point &' of period q that is a perturbation® of
the ot

ii ere exists a collar m S¢ suc at it is impossible to jump over
ii) Th st llar AY in Q\ Sy such that it ble t
it under f:

if z € Compy(C\ A", f(z) & Compy(C\ A, then f(z) € AL

(iii) There exists a trapping quasidisk D' € € \ S + with bounded shape around
&' whose hyperbolic diameter in Q \ Sf s of order 1. Moreover,

Dl N DH—L — @

(iv) A definite part of the disk D' is contained in f~'(S;) \ Sy. Moreover,
there is a point f € f~1(dSy) \ Sy that lies in the middle of D' (in the
sense of (1.1)).

(v) If z € Al, then at some moment k < g1, f*z lands in the middle of D',
while

fiz € Compy(C\ A=)\ DI, i=0,1,... k.
All geometric bounds depend only on N, u, and K.

Proof. The properties of Proposition 4.8 are manifestly robust under per-
turbations, keeping the same collars A' and trapping disks D!. (The auxiliary

29In the polynomial case, we can let [ = 1.
30This means that &' is €(8)-near o' where €(§) — 0 as § — 0.
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collars AL and disks D}, as well as the collars A'~% in the last statement (D5),
were designed to secure robustness.) ]

As before, we say that the trapping disk D = D' is centered at o/, or that
depth D = I.

6.2.2. Ezpansion. For a perturbation f of a Siegel map f, we will use
the notation Rlsp f: X i U X! — C for the corresponding perturbation of
the butterfly reilormalization Rlsp f. (That is, if Rlsp fl1 XL = fqli then we let
Ry, f1 XL = fu )

Away from the Siegel disk, Corollary 4.5 is robust under perturbations:

LEMMA 6.2. Let f: Q — C be a Siegel map of class Sieg(N, u, K). For
any € > 0, there exists § = 6(N, p, K;¢€) > 0 with the following property. Let
f:Q — C be a holomorphic map that is d-close to f, and let z € Xi UX! be
a point with the property that Rlspf(z) cY! and dist(RlSpf(z), S) > e. Then

ID(RS, f) () llnyp = p > 1
with p depending only on (N, u,K) and dist(z,S)/dist(z,co) and the norm
being measured in the hyperbolic metric of Y.

Remark 6.2. Note that in the unperturbed case, the above geometric as-
sumption is stronger than the one imposed in Corollary 4.5.

In turn, the last lemma implies a perturbed version of Corollary 4.6:

COROLLARY 6.3. Let f : Q — C be a Siegel map of class Sieg(N, u, K).
There exist a > 0 and p > 1 such that for every e > 0, there exists § > 0 with
the following property. For any holomorphic map f : Q — C that is 6-close
to f,ifze Y™ frze Y™ R\ Y™kt for somen € N, 0 < k < m (with
m —k > 1), while

dist(fiz,g) >e, 1=0,1,...,n,
then
IDF™(2)llhyp > ap®,
where the norm is measured in the hyperbolic metric of C\ S.

6.2.3. Cylinder renormalization of polynomial maps. To make the expo-
sition more transparent, we will focus on the stationary case when 6 = 0y is a
stationary rotation number with N > N. Let f = f5 : z — €202 4 22 be the
corresponding Siegel quadratic polynomial, and let f = f; be its polynomial
perturbation (where 0 is not necessarily real). By the Inou-Shishikura theory,

31Note that we keep the same domain Xi U X' for the perturbed map.
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all cylinder renormalizations of f are well defined and belong to the IS class:
(6.1) fi=R5(f) €ISy, i=1,2,....

Moreover, for any n, if 0 is sufficiently close to €, then the same is true for the
first n cylinder renormalizations of f. In this case, we let

(6.2) fi=Rs(f) €IS i=1,2,...,n
where G, : 7 +— —1/7 modZ is the modified and complexified Gauss map.
Theorem 5.12 and its Corollary 5.13 provide us with a good control of the

maps Ji:

LEMMA 6.4. There exist positive u, K, €9, C, and p > 1 depending only on

N such that

o fi€Sieg(N,u,K), i=0,1,...;

o for any v € C that is eg-close to 0 and any n € N, there exists a unique 0,,
such that the cylinder renormalizations fn,i = Ris(f(;n), i =0,1,...,n, are
well defined, and fnn has compleac rotation number y;

o dist(fi, fni) < Cdist(fu, fon) p~ ™9, i=0,1,...,n;

o the Siegel maps f; converge to the Szegel renormalization fized point foo,
while the nearby maps fmn converge to a map foo i the unstable manifold

W(foo)-

6.2.4. Parabolic approximant f. We will now choose a specific perturba-
tion f = f; of the Siegel polynomial f = fp with 6 = 0. Take two natural
numbers £ < m. Let 6 = p,,/qm be the (modified) continued fraction ap-
proximant to 6, so that f is the parabolic quadratic polynomial with rotation
number p,,/ qm at 0. It is m times cylinder renormalizable with all the renor-
malizations fl = Rsf i > 1, in the IS class. Moreover, f, is parabolic with
rotation number p,,—;/gm—; at 0. We will consider the maps

(6.3) fm—r = RET(£) €ISy, fmm-n=RE () €IS, /4.,

and their limits foo and foo (as m — oo with x being fixed). To simplify
notation, we will often skip the subscript m — x € N letting

f = fi—r, fE fm,m—m m e Nn-

By Lemma 6.4, f is d-close to f :  — C for s big enough, so Lemma 6.1
is applicable, providing us with the trapping discs D! and the collars A’.

6.2.5. Transit from C" to the trapping disk D'. For the parabolic map
f f mm—k, W€ let
e C" be its repelling crescent (specified as (5.7) in any repelling petal);
e A” be the domain of the renormalization change of variable 7, (see Sec-
tion 5.4).
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Figure 6.1. Parabolic approximants.

LEMMA 6.5. For any consecutively selected sufficiently big N and [, there
exists k such that for any natural m > k > k, the parabolic map f = fm,m,ﬁ
has the following property. There exist § = §(N,l,k) and a point a € C" N AF
such that fs(d) € D! for some s < 5, and this happens before the orbit of @
passes through the collar A'=*, where 1 = (N). Moreover, the projection 7, (@)
lies in the middle of the repelling crescent Cr(fmm), with a constant depending
on Kk but independent of N and .

Proof. The range 7, (A") contains an annulus {e < |z| < r} with a definite r
and a small®? ¢, slit along the straight ray iR_. Let us also consider a truncated
repelling crescent

te(fmm) = C" (fnm) N {larg 2| < 7/2 —e}).

32How small it is depends on the truncation level ¢ defining the domains A"; see Sec-
tion 5.4.
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Then

e The ray iR_ does not intersect the truncated repelling crescent C{,( fmm),
since the latter is contained in the R -symmetric wedge of size m — e. (Re-
call that according to our normalization (5.1) of parabolic maps, Ry is the
repelling direction for fmm)

e If € is sufficiently small, then the end of C"(fy.m) is contained in a (slightly
enlarged) attracting petal of fmm (by property (C2) of Section 5.1.1 and
compactness of Z5y).

The truncated repelling crescent lifts under 7, to a truncated crescent CJ,
for f . The latter contains a point & that escapes the domain Q. (For otherwise,
the union of the repelling and attracting petals would form a neighborhood of
0 on which the family of iterates, { fr o v, would be well defined and normal.)

By Lemma 6.1, this forces orb @ to pass through the trapping disk D! at some
moment s before it passes through the collar A"~ with ¢ = ().

o> a0d
the fundamental crescent C” can be selected in a locally continuous way. This

If we fix k, then we obtain a compact family of maps f € Z

allows us to make a locally continuous choice of a 7 which, by compactness,

makes the escaping time s bounded and puts @ in the middle of CN{r Since 7,
has a bounded distortion on A", this puts 7, (@) in the middle of C{,(frm,m). O

6.2.6. Pullback of D.

LEMMA 6.6. For any consecutively selected N and [, there exists k such
that for any natural m > k > K, the parabolic map f~m7m_,.i has the properties
of Lemma 6.5, and the trapping disc D = D' can be univalently and with
bounded distortion pulled back to a along the orbit {fi&}fzo. Moreover, the
whole pullback {D_1.};_, is contained in Comp,(C \ A!™) for some 1 = (N),
while the last domain D_g is contained in the repelling crescent cr.

Proof. By Proposition 5.15, for x big enough, the postcritical set O of f
stays close to S = Sy. Since D is contained well inside 2\ S, it is also contained
well inside Q \ O. So it has a bounded hyperbolic diameter in Q \ O.

Let us consider the parabolic map fm,m = R?f = RE( fm,m_,{) with mul-
tiplier 1 at the origin. By Lemma 6.5, there is an escaping point a@ in AF
such that 7,(a) lies in the middle of the repelling crescent C"(fy.m), while
as = f*(a) lands in D = D'

Corollary 4.6 implies that for any ¢ > 0, if k is sufficiently big, there is
k < s such that

(i) as—g is e-close to the critical point ¢o;
(ii) D can be univalently pulled back along the orbit {as_,}*_, — let D_,
denote the corresponding disks;
(iii) the hyperbolic diameter of D_j in ©\ O is less than e;
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(iv) the orbit {a@s—n}r<n<s is contained in the e-neighborhood of S.

Property (iii) allows us to enlarge D_j, to a disk D’ , € Q\ O such that
(6.4) mod(D’, \ D_y) > p, diamyy, D' <,

where p = p(e) — oo as e — 0.

Property (iv) ensures that the orbit {@s_p}r<n<s lies in the range of the
renormalization change of variable 7,,_,, so it can be lifted to a return orbit
{&s—n}r<n<s in the domain A" of Fp .

Moreover, by (iii) the disks D e D D_j > as_j, also lie in the range of
Tm—r, SO they lift to disks D/ K > D_y3asginC \ O. Since f is a global
polynomlal map, the disks D Kk D D_y can be further pulled back to disks
D <O D _¢>ain C\ O (where a is the lift a).

As we know (see Section 4.2), this pullback contracts the hyperbolic diam-
eter in C\ O. Since D’ | has a small hyperbolic diameter (see (6.4)), so does
D/_S. Hence it has a small Euclidean diameter compared with dist(¢_s, €;,,—s),
where ¢_g is the center of A™. On the other hand, diam A" is comparable
with the latter distance, and we conclude that Dl,s cA”

We can now apply to Dl,s > D_g the renormalization change of variable
Tm—r t0 obtain disks D" s D D_ s D ain AF \ O that are univalent pullbacks
of the disks D" =) D_j.. Moreover, the change of variable 7, is well defined
on these disks, and

mod(7.(D" ) \ #x(D_s)) = mod(D" ,\ D_,) = mod(D’ , \ D_) > p,

with a big p; see (6.4). Hence the hyperbolic diameter of Tx(D_s) inside
Q\ O( fm.m) is small. Since 7,(@) lies in the middle of the repelling crescent
of fm, the disk 7. (D s) lies inside the crescent. O

Passing to the limit as m — oo (using Lemma 6.4), we conclude
LEMMA 6.7. There ezists k such that for any natural kK > Kk, the map
foo = lim ]Em,m—n € Wu(foo)
m—0o0
has the properties listed in Lemma 6.6.

6.3. Various connections. By a connection between two points, z and (,
we mean a trajectory passing from a small neighborhood of z to a small neigh-
borhood of (.

6.3.1. Connection between ¢y and 0. Property (P3) of the Inou-Shishikura
class (Section 5.2) and compactness of the space Sieg(N, p, K) (with pp = pu(N)
and K = K(N) as in Lemma 6.4) imply
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LEMMA 6.8. There exists an n = n(N, k) such that for any parabolic map
f = fomm—n, m € Ny, we have f"(¢y) € C* for some n < n.

6.3.2. Connection between &' and &. Let us now make a connection be-
tween the periodic point of and the critical point co:

LEMMA 6.9. For any (N, u, K), there exists | with the following property.
For any natural | > 1 and any p > 0, there exists t such that for any t >t
congruent to t mod q;, any Siegel map f € Sieg(N,u, K) has a t-precritical
point c_; in the p-neighborhood of the periodic point of. Moreover, the orbit
{c, YO, is contained well inside Q' with v depending only on (N, u, K). In
particular, all these properties are valid uniformly for the maps fm—., m € N,.

Proof. Let € = o - dist(a!, ¢p) with a small ¢ € (0,1), and let W be the
e2-neighborhood of the critical value ¢;. Any point z € W N 85, except c;
itself, has a preimage z_1 € S. Let k be the first moment when the back-
ward orbit {c_,} of ¢y (along 95) lands in W. Then k = k(N, u, K;1) and
dist(c1,c_p) < € (with a constant depending on (N, i, K) only).

The point c_, has a preimage c_,_; & S such that

dist(c_g_1,¢0) < dist(c_g_1,S5) < €.

It follows that if o is sufficiently small, then c_;_; € Y and the hyperbolic dis-
tance d := distpyp(c_k—1,a!) in Y is bounded. (Here Y corresponds through
the surgery to the range of the holomorphic circle pair from Theorem 3.10).
Let D 3 c_;_1 be the hyperbolic disk in Y of radius 2d centered at of. By
the Schwarz Lemma, f~%(D) is a subset of D of bounded hyperbolic diameter
(where f~9 is the inverse branch fixing o!). A few more (of order — log p)
pullbacks of c¢_j,_; by f~% will bring our point to the p-neighborhood of a!.
Since this backward orbit stays in D, it is trapped inside Compg(C\ A!=)
with ¢ = ¢(N). Since points of 9A'~* lie on depth [ — ¢, while those of 9!~ lie
on depth [ — v, we see that A'~* is contained well inside Q=¥ for v big enough
(depending on (N, u, K) only). The conclusion follows. O

The above connection is robust:

COROLLARY 6.10. For any (N, pu, K), there exists | with the following
property. For any natural I > [ and any p > 0, there exist t and dg > 0 such
that for any § < dp and any natural t >t congruent to t mod q, the following
holds. If a map f is d-close to a Siegel map f € Sieg(N, u, K), then it has a
t-precritical point é_; in the p-neighborhood of the periodic point &*. Moreover,
the orbit {&,}0__, is contained in QY with v = v(N,pu, K). In particular,
these properties are valid for any parabolic map fm,m_m m € N,.
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Figure 6.2. Various connections.
6.3.3. Connection between 0 and &'.

LEMMA 6.11. For any consecutively selected sufficiently big N,l, k and
any p > 0, there exist t and § such that for any natural t > t congruent
to t mod q;, and some s < §, the following holds. For any parabolic map
f = fm,m,m m € N, there ezists a precritical point ¢_,_; lying in the middle
of the repelling crescent C" such that fs(é_s_t) = C_y, where ¢_y is p-close to
the periodic point &', and the orbit {fi(c_s_+)}5_, is contained in Q=" with
some v =v(N).

Proof. By Lemma 6.4, for k sufficiently big, fmm,,{ is close to fi—x,
uniformly in m € N,. Hence we can apply

— Lemma 6.1 to find a trapping disk D = D! around &;

— Lemma 6.5 to find § and a point @ € C” such that fsd € D for some s < s;

— Corollary 6.10 to find, for any ¢ > t congruent to ¢ mod ¢;, a precritical point
¢_; € D that is p-close to &t

By Lemma 6.6, the trapping disk D can be univalently pulled back to the
point @ Moreover, this pullback is contained in Q' for some v = I/(N ), and
the last domain D_; is compactly contained in the repelling crescent C". The
corresponding pullback of the precritical point ¢_; € D gives us the desired
point ¢_4_4. O

6.3.4. Transit from the repelling crescent to the attracting one. Combining
the last lemma with Lemma 6.8 and Corollary 6.10, we obtain

COROLLARY 6.12. For any consecutively selected sufficiently big N, k,
and for any p > 0, there exist t, n and 5 with the following properties. For
any m € N, and any t >t congruent to t mod gy, there exist n <n and s <5
such that the parabolic map f = fmm . has a precritical point é_y_y € C" and
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a posteritical point &, € C* such that the whole orbit {er}i__s_, is trapped in
Q" with some v = v(N).

Recall that f = o Jam
number py, /Gm, and that C%/" stand for the attracting and repelling crescents
for £. As frm—x = Rg™"f, we obtain

COROLLARY 6.13. The points ¢_s_¢ and &, from Corollary 6.12 lift to a
precritical point ¢_s_¢ € C" and a postcritical point ¢, € C* for the parabolic
polynomial £ such that the whole orbit {¢}}__._; is trapped in Qm—rH=v yith
v =v(N).

is the parabolic quadratic polynomial with rotation

6.4. Quadratic-like renormalization.

6.4.1. Superattracting parameter. Let us now perturb the parabolic map
f = fm,m_ﬁ, m € Ny, to a superattracting map fo = fim—njo, j € N, that
will determine the desired renormalization combinatorics. Its superattracting
cycle®3 {ci}i;é follows the following route:

e first, it passes from the critical point cj to a postcritical point ¢, in the
attracting crescent C2 (where n comes from Lemma 6.8);

e then it goes through the parabolic gate to a precritical point ¢2,_, in the
repelling crescent C. (where s and ¢ come from Lemmas 6.5 and 6.9);

e then it penetrates trough the boundary of the virtual Siegel disk S, ap-
proaches a periodic point o, just missing it to land at ¢2;;

e and finally, it returns to cj.

Here is a formal statement:

LEMMA 6.14. Let 0 = On be a stationary rotation number of high type
N > N, and let | > [ be a level selected in Lemma 6.1. For any § > 0, there
exists kK = k(N,1;9) such that for any k > Kk, some n < n(k), s < 5(k), and
any t > t(k) congruent to t mod q, j > j and m > & the following holds.
There exists a superattracting map

fo = fm,m—n,j;o = Rgn_ﬁ(fo) :Q—C

d-close to the parabolic map f (6.3), with a superattracting cycle of period
p=n+7j+ s+t, such that near the critical point cg, we have

=t olo fl,

where I, : C¢ — CI is a transit map between the crescents of fo. Moreover, the
whole cycle of ¢§ is contained in Compy(C \ AL™*) with some t = 1(N).

33We will mark the objects related to f, with a subscript or superscript “o.” On the other
hand, for the (pre-/post-) critical points cx, we skip (here and below) subscripts indicating
their dependence on various parameters: m, j, etc.
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The same properties hold for the limit map
foo,j;o = lim fm,m—ﬁ,j;o
m—oQ
in the unstable manifold of the renormalization fized point (cf. Lemma 6.7).

Proof. Let us consider the postcritical point ¢, € C® and the precritical
point é_s_¢ € C” from Corollary 6.13. Let I : Cyl* — Cyl" be the isomorphism
between the cylinders such that I(cy) = c_s_¢. By the Parabolic Bifurcation
Theory (Theorem 5.2) for any sufficiently big 7, f can be perturbed to a su-
perattracting polynomial map f, = £}, for which

f(cq) = % .

Let fo = Rg™"(f,) for m € N,. The desired properties for these maps, and
their limit as m — oo, are evident. O

6.4.2. Quadratic-like families for parabolic maps. Similarly, we can con-
struct the whole quadratic-like family with the desired renormalization com-
binatorics:

LEMMA 6.15. For any consecutively selected natural (N,l,k,t) > (N, 1, K, t),
and any m €Ny, any parabolic map f= fy.m—x admits a family of transit maps
I : Cyl" > Cyl', XeA,
with the following properties. There is a family of disks Uy C V around & and

moments (n,s) < (n,5) (from Lemmas 6.8 and 6.5) such that
(0) V is a quasidisk with bounded dilatation and definite size depending only
on (N,1,£);*
(i) the maps
(6.5) FA:fS+tOI>\Of~n:ﬁ)\—>V
form a proper unfolded quadratic-like family over A;
(ii) the closures of all intermediate disks,
f¥Uy), k=0,1,...,n, and fFol,o f(Uy), k=0,1,...5+t—1,
that appear in composition (6.5) are pairwise disjoint;
(iii) g(N,I, k,t)>mod(V\Uy) > pu(N, 1, k,t) — o0 ast — oo with N, 1,k fized;
(iv) in case of connected Julia set J(Fy) (i.e., when X belongs to the Mandel-
brot set My, . 4. Of the g-l family (6.5)), the disk Uy is an L-quasidisk
with ~
areaUy > ¢(N, 1, k,t) > 0.

All constants and bounds are independent of m.

34In fact, for given (N,l,x), the disk itself can be selected independently of t; for m
sufficiently big, it can be selected independently of m either.
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Proof. In the f—plane, select a disk V 2 &, and let V_;, i = 0,1,....¢,
be its pullback to ¢_;. Let us show that if V is small enough, depending on
N, 1, and x but independently of ¢, then the closures of these disks are pairwise
disjoint. Consider a linearization domain W around the periodic point &; (so,
f% maps W univalently onto f%(W) 3 W). Note that its size depends on N
and [ only. It takes a bounded number of iterates (< tg = to(N, 1, k)) for the
pullback in question to get trapped in W. By adjusting W and selecting 1%
sufficiently small, we ensure that the first ¢y pullbacks V_i, 1 < tg, are pairwise
disjoint and disjoint from W, while f/_to € W. Then the further pullbacks
V. € W, to < t, will stay pairwise disjoint and disjoint form the first ones.
So, independently of ¢, the whole pullback V_;, i = 0,1,...¢t, will consists of
pairwise disjoint domains. Moreover,

(6.6) diam V_; — 0 as t — oo with (N, [, k) fixed.

Let us now pull f/,t further to c_;_s. The number s of iterates is bounded
by (N, 1, k) from Lemma 6.5, so for ¢ sufficiently big, (6.6) ensures that these
pullbacks stay small and pairwise disjoint. Since c_;_ lies in the middle of the
repelling crescent C”, the final domain V_; is trapped well inside C". Hence it
projects to a disk compactly contained in the repelling cylinder Cyl" ~ C/Z.
(We will keep the same notation for it.)

Consider a parameter domain A C C/Z such that Iy(¢,) € V_;_, for any
transit parameter A in A. (In fact, under our normalizations and notational
conventions, A = V,t,s.) Pull f/,t,s further back by this transit map, and
then further back to ¢y by the iterates of f (by means of Lemma 6.8). Call the
corresponding pullbacks VA,,t,S,[,i, i <n <n(N,k). As the number of these
pullbacks is bounded, all of them have a small diameter and remain pairwise
disjoint and disjoint from the initial pullbacks, which proves assertion (ii). It
also follows that the disc U N = VA _t—s—]—n 18 trapped well inside V which
implies that the maps F defined by (6.5) are quadratic-like.

Since the transit map I : C{ — C" depends holomorphically on A € A,
these g-1 maps form a quadratic- hke family. For the same reason, the domains
V)\ _t—s—1, and hence their further pullbacks Vs t_1_i, MOVE holomorphically
with A, so our family is equipped (see Section 2.1.2). For A € OA, we have
I\(cp) € dV_y_g, and hence Fy(cg) € V. Thus, our q-1 family is proper.
Finally, as A goes once around 9A, then I)(c,,) goes once around f/_t_ s (Recall
that with our normalizations, A = V_;_ s.) So, our g-1 family is unfolded. This
completes the proof of (i).

The upper estimate in items (iii) and (iv) follow from the property that
the total number of f—iterates involved in our construction is bounded in terms
of (N,l,k) and t, while the transit maps Iy, A € A, form a compact family.
Hence the size of Uy, is definite in terms of (N, [, k) and ¢.
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O~n the other hand, as ¢ — oo with (V,[,k) fixed, (6.6) implies that
diam Uy — 0. This yields the lower bound in item (iii). O

6.4.3. Quadratic-like families for parabolic perturbations. For notational
convenience, let us shift the m-parameter:

m=m-x€N={1,2,...,00}.

Let Fn = REF, where F is the quadratic family (f,). By Theorem 5.12, these
are holomorphic curves converging to the unstable manifold Fo, = W*(foo)
for the Siegel renormalization. Perturbing our parabolic maps fm within the
families Fy,,, we can construct genuinely renormalizable maps:

LEMMA 6.16. Under the circumstances of Lemma 6.15, for any m € Ny
and j > j(N,l,k,t), there exists a holomorphic subfamily Fun; = (fmjn) of
Fu parametrized by some domain Ay, j with the following properties:

(i) Each family Funj; gives rise to a proper unfolded g-l family (see Sec-

tion 2.1.2)

Fojn = fhin Ungin = Vi, A€ Amyj,

with period p = n+ j + s+t and pairwise disjoint disks flﬁl,j;)\(Uma‘j§>\)7
i=1,...p.

(ii) As m — oo, the families Fnj converge, uniformly in j, to the families
Fooj i Foo = W' (foo).

(iii) @(N,l, k,t) > mod(Vin\Unjn) > (N, 1, k,t) = 00 ast — oo with N, 1,k
fized.

(iv) In case of connected Julia set J(Fy) (i.e., when X\ belongs to the corre-
sponding little Mandelbrot set M/N,l,n,tmd)’ the disks Un j.» are L-quasi-
disks with

areaUp j.\ > ¢(N, 1, k,t) > 0.

All geometric constants and bounds are independent of m and j.

Proof. Throughout this argument, (N,l,x,t) will be fixed, and depen-
dences on them will not be mentioned. Parameters m and j will be free.

By Corollary 5.13, the families Fp, stay within a compact collection of
families crossing the Siegel class {f € ZS : f/(0) = €™} transversally at
points fn = R§fy. In fact, they converge, as m — oo, to the unstable manifold
WY(foo) = Foo of the Siegel fixed point. Moreover, the parabolic maps

fm - Rg(fpm/qm) = fmspe/ax € Fm
converge to foo € Foo- This allows us to apply the Parabolic Bifurcation
Theory in a uniform way to the families F, near the maps fi.
Let us start with the limiting parabolic map f = fo. Let V' 3 ¢o be
the disk selected for this map in Lemma 6.15, and let V_,_; © ¢_4_; be its
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pullback constructed in that lemma. It is compactly contained in the repelling
crescent C", and hence it is compactly contained in some smooth disk A € C".

There is a neighborhood Y C-7:o<3 of f such that for any map fy=foo €T,
the pullback V', , 3 ¢c_s_4 of V =V under fi” is compactly contained in A
as well (uniformly over f, € T). Moreover, since the disks V,_, are univalent
pullbacks of a fixed disk V' by a holomorphic family of maps fj*t, they move
holomorphically in ; let

byt Vegy = V2,

be this holomorphic motion (based at f).

By Theorem 5.2, for any sufficiently big j, there exists a holomorphic
function v = ~,(\) on A such that the transit maps I : C/Z — C/Z induced
by f7, have the following properties:

. L]Y' (0) = A\. (Recall that the uniformizations of the Douady cylinders Cyl®/"
by C/Z are selected so that ¢, € Cyl® and c_5_y € Cyl" correspond to
0e€C/Z.)

e As j — 00, the transit maps Ii' (n) converge uniformly on compact sets of
C/Z and uniformly in A € A to the transit map I : z — z + X between the
Ecallé-Voronin cylinders for the parabolic map f.

By the Argument Principle, for any z € dV_,_;, there exists a unique
A € A such that
hy(2) = IJ(0),  with v = 7;()),
and these \’s go around a Jordan curve IV € A. This implies that each
quadratic-like family

(6.7) Fin=follofl :Ujpy -V

is proper and unfolded over the disk A; € A bounded by IV, where v = 7;(\)
and Uj.y D co is the pullback of V,__ by Lo f2'. We obtain assertions (i) and
(ii) for m = oo.

Assertions (iii) and (iv) for m = oo follow from the corresponding asser-
tions of Lemma 6.15 since the quadratic-like families (6.7) are small perturba-
tions (for big j) of the family Fy (6.5).

For each finite m, we can apply the same argument to the family Fp,
which provides us with quadratic-like families Fy, j.» with desired properties,
except that the geometric constants and bounds may depend on m. To make
them uniform, we can apply a perturbative argument near F.,. Namely, let us
start with the same disk V 3 ¢ as for f = fu, and pull it back by flf:;t. We
obtain a holomorphically moving family of disks V.7, € C"(fm;y) which is a
small perturbations of the above family (V”,_,) for the f,. In particular, for
m big enough, all these disks are uniformly compactly contained in the domain
A used for m = oco.
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Moreover, by Theorem 5.2, as m,j — oo, the transit maps I'vn’j, with
Y = Ym,j(A), associated with fu.,, converge to Iy. It follows that for m and j
sufficiently big, the quadratic-like families (Fy, j;\) are small perturbations of
the family (F)) from Lemma 6.15. The uniformity of the geometric bounds
follows. O

6.4.4. Renormalizations in the quadratic family. Lifting the above renor-
malization to the quadratic family by means of change of variable II,,_, (5.16)
we obtain

COROLLARY 6.17. Let N,l,k, and t be as above. Then for any natural
(N, 1, k,t) > (N, 1, K,1), there exist m and j with the following properties. For
each natural (m,j) > (m,j), consider the holomorphic family Fp j = (£ j;0)
of quadratic polynomials such that

fmfn,j;/\ = Rg}(fm—n,j;A)’
where (fm—rj:n) is the family from Lemma 6.16. Then
(i) each family F, ; admits a primitive proper unfolded g-l renormalization
FWJQ\ = f:;’j;)\ : UWJQ\ =V, ME Am,j
with pairwise disjoint disks f]ﬁd;/\(fjm’j;)\), k=1,...p;
(i) (N, Kk, t) > mod(Vig \ Umjn) > (N, k,t) = 00 as t — oo with
N, I, Kk fized; B
(iii) in case of connected Julia set J = J(F')) (i.e., when X\ belongs to the
corresponding little Mandelbrot set M9\77l,ﬁ,t,m,j)’ the disks Uy, j.\ are
L(N, 1, K, t)-quasidisks with
area Uy, j.\ > c area V,, where ¢ = ¢(N, [, k,t) > 0.
All geometric constants and bounds are independent of m and j.

The little Mandelbrot copies M’ = M’y ., ; C M generated by these
quadratic-like families determine the desired renormalization combinatorics.
Below, a map f)\ will be called renormalizable if it is DH renormalizable with

these combinatorics (and similarly for fy).

6.5. Geometric bounds. Along with lower thresholds (NN, [, k) let us select
some upper bounds (N,I,&,t) > (N, k,t) satisfying the following require-
ments:

N>N, I>1=IN), E>r=r(N,0), t>t=t(N,lE&).

Let f, : U — V be an infinitely renormalizable quadratic polynomial with
bounded combinatorics (M?)°,, where M? = My 1, witomg ;. are the little
Mandelbrot copies constructed above with

(6.8) (N, L k) < (Niyli, 5i) < (N, 1, R)
(while the bounds on t;, m; and j; are not yet specified®?).

35In fact, in this section one can consider maps f. with unbounded t;, m;, js
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PROPOSITION 6.18. For any sequence (N;,l;, ki) satisfying (6.8), there
exists t such that if

t;>t, +1=0,1,...,

then the quadratic polynomial £, has unbranched a priori bounds v(N,1, &) > 0
independent of (t;,m;,j;). If additionally t < t, then f. has a geometric bound
g =g(N,l, &, t) independent of (m;, ;).

Proof. If g is a quadratic-like map with mod g > u, then it is K-qc con-
jugate to a quadratic polynomial fy, where K = K(u) 1 as 4 — oo. Hence,
if g is DH renormalizable with any combinatorics M’ = ,N,l,n,t,m,j under
consideration, then its renormalization Rg has modulus at least K !y, where
= p(N,l,r,t) is from Corollary 6.17, and K = K(u). B

Let us select v so that K(v) < 2 and then ¢ so that u(N,l,k,t) > 2v
for any ¢ > t congruent to t mod ¢ (which is possible by Corollary 6.17).
Then for any quadratic-like map ¢g with mod g > v that is renormalizable with
combinatorics M’, we have mod Rg > v as well.

It follows that v gives a priori bound for any quadratic-like map g with
mod g > v that is infinitely renormalizable with combinatorics (M’). These
bounds are unbranched by Corollary 6.17(i). Hence the renormalization do-
mains can be selected with a geometric bound g = g(N, [, &, ). U

6.6. Landing probability. Let f. = Ry "f,, and let Rf, : U, — Vi be its
DH pre-renormalization (with the combinatorics constructed in Section 6.4.1).

The next lemma shows that there is a definite probability of landing in
the renormalization domain U, of the map fi.

LEMMA 6.19. Letl and ¢ be as in Lemma 6.1. Letl > [+, and let D, =
D=t be the trapping disk for f. constructed in that lemma. Then D, contains
domains U C V' of comparable (with D) size (with constants depending on
N,l,k, and t) that are mapped respectively to U, and Vi under some iterate
of f«. Moreover, D, is contained well inside Dom f, \ O (with a lower bound
depending on N only), where O, = Oy, is the postcritical set for fi.

Proof. Recall that f, is a small perturbation of the Siegel map f whose
Siegel disk is called S = Sy. Let S’ be the component of f~1(S) that is different
from S. The trapping disk D'~ for f contains in the middle some point of 95,
If f, is sufficiently close to f, then D, = D.~* contains in the middle some point
of f71(8S). Hence f.(D,) contains in the middle some point of 9.

The renormalization range V, can be selected at a much deeper (but still
depending only on N, k, and t) dynamical scale than f.(D,). Then f.(D,)
contains many (in fact, we need only one) univalent and bounded distortion
pullbacks of V, under the Siegel map f. Moreover, these pullbacks have size
comparable with diam f.(D,). Selecting f, sufficiently close to f, we ensure
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the same property for f.. Then D, also contains a comparable pullback of V.
The corresponding pullback of U, has a comparable size as well (all in terms
of N,I,k, and t) .

The last assertion follows from the property that the postcritical set O,
lies well inside AL~! while D, lies outside AL, ]

We call the disk D = D.™* (and similar disks that appear below) a safe
trapping disk since it can be “safely” pulled back, with a bounded distortion
(depending on N only), along any orbit landing in it. As before, we say that
D is centered at o!*, or that depth D =1 — ..

Lifting this disk by the renormalization change of variable II,,_, (5.16),
we obtain

COROLLARY 6.20. The quadratic polynomial £, has a safe trapping disk
D := D=4 that contains domains U' C V' of comparable (with D) size
that are mapped respectively to U, and V. under some iterate of f,. The
constant depends on N, I, k, and t but is independent of m.

We will refer to the above disk D as the base safe trapping disk. Spreading
the disks U’ € V'’ around by the landing map, we obtain

COROLLARY 6.21. For any point z whose orbit passes through the safe
trapping disk D under the iterates of £, there exist quasidisks U(z) C V(z) with
bounded dilatation whose size is comparable with the Hausdorff dist(z, V(z)),
and such that

£f'(U(2)) =U,, f£(V(z)) =V, forsomen=n(z).
All constants and bounds depend on N, I, k and t, but not on m.

We are now ready to show the map f, has a definite landing probability 7.

PROPOSITION 6.22. For the polynomial £, the landing probability n is
bounded from below in terms of N, I, k, and t, uniformly in m.

Proof. 1t is known that almost all point of the Julia set J, = J(f,) land in
U.. [Lyu83], so it is sufficient to deal with the Fatou set. Since the Siegel disk
B = Bt occupies certain area, it is sufficient to check that a definite portion
of points z € B\ J, land in U,. But any point z € B\ J, on its way from
B to oo must pass through the base safe trapping disk D. Then Lemma 6.21
provides us with a domain U(z) of points landing in U, that occupies a definite
portion of some neighborhood of z. The conclusion follows from the Besikovich
Covering Lemma (see [Mat95]). O

6.7. Escaping probability &.
6.7.1. Porosity. Let us start with a general measure-theoretic lemma as-

serting that if a set X has density less than 1 — € in many scales, then it has
small area.
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By a gap in X of radius r we mean a round disk of radius r disjoint from X.

LEMMA 6.23. For any p € (0,1), C > 0 and € > 0, there exist o € (0,1)
and Cy > 0 with the following property. Assume that a measurable set X C D,
has the property that for any z € X, there are n disks D(z,ry) with radii

C1lph < ri/r < Cp'*  with some I, = lk(z) €N, I3 <log <o+ <y,
containing gaps in X of radii ery,. Then area X < C1o™ 12,

Proof. Since the assertion is scaling invariant, we can assume without loss
of generality that » = 1. We can also assume that X is compact, and we can
work with squares instead of disks. Using the first scale [; for points of X,
we can subdivide the unit square Q into dyadic squares Q} (of varying scales)
such that each Q} contains a comparable dyadic square Bi1 (of relative scale
depending on ¢) disjoint from X. Let Q' D X be the union of Q} \ B}. Then

areaQ < ogareaQ,

where g € (0, 1) is roughly equal to 1 — €2.

Then we can subdivide each Q} into squares of size BZ-1 and repeat the con-
struction with all non-empty squares of this subdivision (using a deeper scale
l;, with a sufficiently big but bounded k, i.e., k < k with some k independent
of the square in question). It will produce a set Q2 D X such that

area Q9 < og area Q.

We can repeat this procedure roughly n/k times, which implies the desired.
O

6.7.2. Landing branches. Let us consider a safe trapping disk D = D' for
f, centered at the periodic point ;. By definition, it has hyperbolic*® diameter
of order 1 in C\ O.,:

(6.9) d~! < diamypy, D <d with d = d(N).

For instance, D can be the base trapping disk of depth 1 =m — k+ 1 — ¢ from
Corollary 6.20, but we will also consider much more shallow disks.
For any point z, let

0<ri(z) < - <rp(z) <---

be all landing times of orbz at D, i.e., the moments for which f;»(z) € D
listed consecutively. (This list can be infinite, finite, or empty.) Let 7" :
DomT™ — D be the corresponding landing maps; i.e., for a point z € Dom T",

36Below, “hyperbolic” will always refer to the hyperbolic metric in C \ O..
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the landing moment r,(z) is well defined and 7" (z) = f["(z). Let P"(2) 3 =
be the pullback of D along the orbit {f!(z)}!2,. Since D € C\ Oy, the maps

(6.10) fi": P"(z) - D

are univalent. We will refer to these maps as the landing branches.

For a domain P = P"(z), we will also use the notation rp for the landing
time r,(z) (which is independent of z € P, though the associated level n may
depend on z), and we will will use the notation Tp = ;¥ for the corresponding
landing branch P — D.

Let P(D) be the family of all domains P = P"(z).

LEMMA 6.24.

e The landing branches Tp : P — D, P € P(D), have uniformly bounded
distortion; the domains P € P(D) have a bounded shape and are well inside
C\ O, (with bounds and constants depending only on N).

e Each domain P € P(D) contains a pullback of V. of comparable size (with
the constant depending only on the parameters N, 1, k,t).

Proof. The first assertion follows from the property that D is well inside
C\ O. and the Koebe Distortion Theorem. Together with Corollary 6.20, it
implies the second assertion. O

Along with D, let us consider another trapping disk D’ (which is allowed
to coincide with D). Let Pp/(D) be the family of all the domains P = P"(z) €
P(D) intersecting D'.

LEMMA 6.25. For any domain P € Pp/ (D),
diam P < CO diam D, with Co = Co(W),
where diam = diamgy,. stands for the Euclidean diameter.

Proof. By Lemma 4.2, the inverse branch T1§1 : D — P is a hyperbolic
contraction. Hence diamyy, P < diamyy, D < d. Since P N D’ # ( and
diamyy, D < d as well, we have

(6.11) diampy, (D U P) < 2d.

It follows that the conformal factor p(z) between the hyperbolic and Euclidean
metrics has a bounded oscillation on D’ U P:
sup p(z) <C inf p(z), C=C(N).
2eD'UP zeD'UP
Hence

(6.12) diampgy,c P diamy,y, P/ <o, 0

diampyc D' — diamhyp D
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The following lemma shows that pullbacks of trapping disks to some point
z lie in different scales:

LEMMA 6.26. For any o € (0,1), there exists v = v(N,o0) € N with the
following property. Let D;, i =1,...,v, be safe trapping disks, not necessarily
distinct. Consider a point z landing at the D; at moments r;, where 0 < ry <
- <1y, and let P' > z be the corresponding pullback of the D;. Then

diam P¥ < o diam P*.

Proof. Let P = PY, and let P, :=f£,*(P),i=1,...,v. Then P,N D, # (.
By property (6.11),

(6.13) diamyy, D; U P; < 2d,

which implies (4.3) for all z € P,. It allows us to apply Lemma 4.2 and to

conclude that all the maps f,"*'~"" : P, — P,,1 are hyperbolic expansions by

some factor A = A(NN) > 1. Hence the map ;=™ : P, — P, (which is the
same as f71(P) — D,) is a hyperbolic expansion by A\¥~!. Thus

diamyy, (£ (P)) < A~ diamy,y, D, < dA™7
On the other hand, diamypy, (f7*(P1)) = diampy, D1 > d™!, so
diamypy, (F71(P)) < d*A™ 1 diamyy, (£ (PY)).
Property (6.13) with ¢ = 1 allows us to switch in the last estimate from the
hyperbolic diameters to the Euclidean ones (as in (6.12)) and then to apply

the Koebe Distortion Theorem to the map f/* on P U P!. The conclusion
follows. ]

6.7.3. Truncated Poincaré series. Let us now fix a safe trapping disk D
(in applications, it will be the base trapping disk), and let P := Pp(D). Of
course, a domain P € P can admit several representations as P"(z). Let

X(P) =max{n : 3z € P such that P = P"(z)}.
Let P™ be the family of domains P € P with x(P) < n. We also let

p=Jr, P =P
’P’n

P
LEMMA 6.27. There exists C = C(N) such that

Z area P < Cnarea D.
pn
Proof. Note that the family P™ has the intersection multiplicity at most n.
Indeed, if some point z is contained in k sets P; of this family, then P; = P™i(z)
with n; = n;(z) < n. But since the n; are pairwise distinct, maxn; > k.
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Hence

(6.14) ZareaP <n areaP" < narealP.
Pn
By Lemma 6.25, P is contained in a Euclidean neighborhood of D of
size < Cydiam D. Since D has a bounded shape, arealP < C'area D, with
C = C(N). Together with (6.14), this implies the desired. O

Let us consider the following truncated Poincaré series: for ( € D, let

Z |DTp |2, where (p € P and Tp((p) = (.
Pepn

LEMMA 6.28. We have ¢,(¢) < Cn, where C = C(N).
Proof. We have

/ ¢dn(C) darea(( Z area P < Cnarea D,

where the last estimate is the content of Lemma 6.27. But since the branches
Tp : P — D have a bounded distortion, ¢, (¢) < ¢,,({’) for any ¢, ¢’ € D (with
constants depending only on N). The conclusion follows. O

6.7.4. Probability of few returns to the base. Let us start with an obser-
vation that for m big enough, our quadratic polynomial f, has plenty of safe
trapping disks:

LEMMA 6.29. For any natural 7 € N, there exists m = m(N,l.k,t,T)
such that for any m > m, the polynomial £, has at least T safe trapping disks
D; satisfying the properties of Lemma 6.1. Moreover, these trapping disks are
pairwise disjoint and disjoint from the base safe trapping disk D = D™ *+—,

Proof. By Lemma 6.4, our polynomial f, is €,,-close to the Siegel polyno-
mial f, where €,, — 0 as m — oo (keeping the other parameters, N,[, x and t,
frozen). Hence for m big enough, Lemma 6.1 (applied directly to f,) supplies
us with arbitrary many safe trapping disks D;. ([

From now on, D will stand for the base trapping disk. Recall that J, is
the Julia set of f,. Let Z be the set of points z € D \ J, that under the
iterates of f, never return back to D. The following lemma shows that for m
sufficiently big, it is difficult to escape from D:

LEMMA 6.30. For any natural T € N, there exists m = m(N, 1.k, t,T) such
that for any m > m,

area Z < Co” area D,
with o € (0,1) and C > 0 depending only on N.
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Proof. Let z € Z. If m is sufficiently big, then on its way from D to oo,
the orbit of z must visit 7 safe trapping disks D; from Lemma 6.29 at some
moments 1y < ro < --- < r,. By Lemma 6.1, definite parts W, of these
trapping disks are contained in £, (). Since orb z never returns back to D,
it cannot visit the Siegel disk B = S, and hence it cannot land in the domains
W; either.

Since each disk D; is safe, it can be univalently and with bounded dis-
tortion pulled back to z. The corresponding pullback of W; creates a gap of
definite size in Z near z. By Lemma 6.26, these gaps lie in < 7 different scales.
Lemma 6.23 completes the proof. O

Let

Zn=|J T5'(2).
pepr

Notice that points of Z,, escape D forever after at most n returns.

LEMMA 6.31. For any natural 7 € N, there exists m = m(N,l.k,t,T) such
that for any m > m,

area Z, < Cno" area D,

where o € (0,1) and C > 0 depend only on N.
Proof. Since

areaZn:/Z¢n(C)dal"ea(O7

the conclusion follows from Lemmas 6.28 and 6.30. O

6.7.5. Many returns to the base. Let
s= |J P=U P.
x(P)>n P\P"

LEMMA 6.32. There exist C > 0 and o € (0,1) depending on N,l, K, and
t such that for any n € N, the area of the set of points of S™ that never land
i Vy is at most Co™ area D.

Proof. Take a point ( € S”. It belongs to some domain P € P with
X(P) > n. Then P contains a point z that lands in D at least n times, and
P"(z) = P. By Lemma 6.26, the nest

PY(2) D P*(2)D---DP"2)=P

represents < n different scales. By Lemma 6.24, each of these domains contains

a pullback of V of comparable size. Now the desired follows from Lemma 6.23.
O
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6.7.6. FEscaping probability. We are finally ready to show that the escaping
probability & for f, can be made arbitrary small by selecting m sufficiently big
(while keeping the previously selected parameters, N, [, s, and ¢, unchanged).

PROPOSITION 6.33. For any € > 0, there exists m such that £ < e for any
m>m.

Proof. Let Y be the set of points in D that never land in V,. We will
show first that for m sufficiently big,

(6.15) area < eareaD.
For any n € N, let us cover Y by three sets:
Yo=Y NnJ{), Y"=YNS", YI=Y\oUY).

It is known that almost all point of J(f,) land in V, [Lyu83], so area Y, =0.
By Lemma 6.32,

areaY" < Co"area D < (¢/2) area D

as long as n is sufficiently big.
Now let us take any point z € Y5". Then

Xx(z) :=max{x(P): PP, P>z} <n,

and orb z returns back to D at most n times. Let & < n be the number of
returns, and let P := P¥(2). Since P > z, we have P € Px(2) « P Moreover,
under the return map Tp : P — D, the point z must land in Z since it will
never come back to D again. Hence z € Z,. Thus Y;' C Z,. Applying
Lemma 6.31, we see that areaYy’ < (e/2)area D for m sufficiently big, and
estimate (6.15) follows.

To pass from (6.15) to an estimate of £, we need to transfer the density
estimate for Y to the fundamental annulus V., \ U,. Let ) be the set of points
in V, \ U, that never return back to V,. Again, since almost all points of
J(f,) land in V,, it is sufficient to deal with the Fatou set J \ J.. Any point
z € Y\ J. eventually lands in the “middle” of the base trapping disk D.
Pulling D back to z, we obtain a domain @(z) of bounded shape in which the
set Y N Q(z) (the pullback of Y) has density < Ce. Applying the Besikovich
Covering Lemma, we conclude that ) has density < C’¢ in V, \ U,. O

6.8. Positive area: stationary case.
THEOREM 6.34. For any consecutively selected
(N7l’ K'/’t’ m’j) > (ﬂ)laﬁ)iamai)

(with t being congruent to t mod q;), the Feigenbaum polynomial £, with sta-
tionary combinatorics M’y ., m,j has the Julia set of positive area.
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Proof. By Proposition 6.18, the map f, has a priori bounds depending
only on N, I, x, and t.

By Proposition 6.22, it has a definite landing parameter n depending on
the same four parameters only.

By Proposition 6.33, it has an arbitrary small escaping parameter £ as
long as m, j are sufficiently big (with frozen N, [, k, and t).

Now the Black Hole Criterion (Theorem 2.3) implies the desired. O

6.9. Parameter visibility. To prove Theorem 1.2, we need the following
generalization of Theorem 6.34:

THEOREM 6.35. Let F be a finite family of renormalization combinatorics
as in Theorem 6.34. Then any map f: U — V in the corresponding renormal-
ization horseshoe A has the Julia set of positive area.

This result follows easily from the machinery developed in [ALOS].

Let f, = fP : Up — Vi, m = 0,1,..., be the consecutive quadratic-
like renormalizations of f that are selected in a nice geometric way (specifying
geometric bounds of f; see [AL0S8, §2.7]).

For any level m > 1, we consider the scaling factor

area U,

Pm =
area Up,—1’

along with the escaping and landing parameters for f,,_1:

Em =E&(fm—1)s  m =0(fm-1)-

Recall that the Poincaré series with exponent 2 for a map f is defined as

0=N=Y Y Srmm 2€C\O,

& 2 DFOP

where O is the postcritical set of f. The truncated at level j Poincaré series
OUl(z; f), 7 =0,1... is defined by taking in this formula only preimages of z
of order k < j. It is also convenient to let ©=1(z; f) = 0.

Let us average the Poincaré series for the f,,_1 over the renormalization
fundamental annuli A, =V, \ Up,:

1
“m = m /Am O(z; frm—1) dzdy.

The truncated version w%] is defined similarly by averaging @U](z; fm=1)-

Finally, let us also consider the rescaled Poincaré series:

Om = PmWm, U’L‘ZL] = pmwlgl]
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LEMMA 6.36. Let f be a Feigenbaum map in the renormalization horse-
shoe A with &, < & and 1, > 1. There is C > 1 depending only on the
geometric bounds for f such that

ot <c4(1 —Cilﬁ)a,[%] —i—Céa?[ib]_H +C§a£§a,[i]+l, j=-1,0,1,....

Proof. This follows from the Recursive Estimate of Lemma 4.2 [ALOS]
(applied to three consecutive levels | =m — 1, m,n =m+ 1):

M%Jrl] < CZL” + (1= C g1 + fm))%[%]
+C Pm+t1 §m+17]mw££]+1 + Cpm+1§m+1 wr[ZL]WT[ﬁ-i-l’

with C' > 0 depending only on the geometric bounds for f. O

LEMMA 6.37. Under the circumstances of Lemma 6.36, there exist o de-
pending only on the geometric bounds for f such that 0y, < 7, m =1,2,...,
as long as § is sufficiently small, while 1 is bounded away from 0.

Proof. Let us consider a quadratic polynomial

P(o) =C+(1—(20)"'n) o + CEa>.

For ¢ sufficiently small, it has two positive fixed points, and the smallest one
is bounded by some &.

Let us show inductively in j that 0',[%] < ¢ for all natural m. The base
s — Furthermore, if the assertion is true for some j, then

Lemma 6.36 (taking into account positivity of the coefficients in the recursive

is obvious as o

expression) implies
ot < p(5) =3,

m

completing the induction step.
Hence

On the other hand, by Lemma 5.63" from [AL0S], we have

LEMMA 6.38. Let f be a Feigenbaum map in the renormalization horse-
shoe A with area J(f) = 0. Then

o = _m
m é—mpm 9
with a constant depending only on the geometric bounds for f.

m=1,2,...

37In [ALO8] the lemma is stated under the assumption that f is a renormalization periodic
point, but it was not used in the proof.
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Proof of Theorem 6.35. If area J(f) = 0, then by the last lemma,

cC _
0m>g_—>ooas§—>0,

contradicting Lemma 6.37.

Proof of Theorem 1.2. For any finite family of combinatorics {M’Nl Kt j},
consider the set of infinitely renormalizable parameters with these combina-
torics (arbitrarily alternating). By [Lyu99], this is a Cantor set with bounded
geometry, implying that it has positive Hausdorff dimension.

Remark 6.3. To see that the Hausdorff dimension of the parameter set in
question is at least 1/2, freeze all the parameters except j and let j < j < J
with a big j. The Hausdorff dimension of the corresponding Cantor set of
infinitely renormalizable parameters is close to the exponent § for which

1
. =1.
Z (diam -/\/13\/,l,m,1t,m,j)(s

The parabolic bifurcation theory [DBDS00] implies
1

.727

. / —
diam MN,l,/i,t,m,j = ;

and the conclusion follows.

7. Appendix: Further comments and open problems

7.1. Probabilistically balanced maps. There is an interesting approach to
creating balanced (in some stronger sense) maps by variation of a continuous
parameter. (We thank Jean-Christophe Yoccoz for this suggestion.) Consider
a renormalization horseshoe associated to a pair of renormalization combina-
torics, such that one of the fixed points is lean and the other is a black hole.
For each 0 < p <1, let u, be the Bernoulli measure on the horseshoe giving
probability p to the “Lean” combinatorics and 1 — p to the “Black hole” one.
Then conjecturally for each p, the limit

1 Tin
cp = lim - log c
should exist jy-a.e. and be independent of a particular p,-typical combina-
torics. Moreover, the dependence p — ¢, is conceivably continuous, and since
co < 0 < c1, we must have ¢,, = 0 for some 0 < p, < 1. (Justification of all
those facts would depend on a suitable extension of the analysis of [AL0S].)
Let us call a p,,-typical Feigenbaum map probabilistically balanced. (They are
“better balanced” than generic topologically balanced examples constructed in
[ALO8].) The geometry of the probabilistically balanced Julia sets would be a
good approximation to the geometry of (perhaps, non-existing) balanced Julia
sets with periodic combinatorics.
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Remark 7.1. Note however that the j,-a.e. Feigenbaum Julia set has full
hyperbolic dimension for every 0 < p < 1 (see Lemma 7.2 and Theorem 8.1 of
[ALO08]), and while ¢, > 0 should imply positive area, ¢, < 0 would not imply
Hausdorff dimension less than 2.

7.2. Computer experiments. After identifying theoretically the main dy-
namical phenomena that should lead to the Black Hole behavior, we have
attempted an informal numeric investigation of a particularly simple sequence
of renormalization combinatorics displaying them. Consider the quadratic map
pe with a golden mean Siegel disk, with rotation number [1,1,1,...], and let
Pm/qm be the sequence of rational approximants (p,, = ¢m—1 being the Fi-
bonacci sequence). Visual inspection of the (py,/gm)-limb reveals a pair of
largest primitive Mandelbrot copies with period ¢, + ¢m—2. Choosing one of
them, we explore in detail the parameter z,, in this copy for which the first
renormalization has a golden mean Siegel disk. This parameter is very close
to the actual Feigenbaum parameter with this stationary combinatorics, and
considerably easier to determine numerically.

In parameter space, one sees that % — 8 = ”%‘/g Moreover,
centering the Mandelbrot copies at the superattracting parameter and rescaling
by 8™ shows manifest convergence of the copies in the Hausdorff topology.

In the dynamical plane, one sees that pZiZiﬁqzm’l restricts to a quadratic-
like map gam11 : Usms1 — Vame1, where Vo, o1 is a disk of radius v/38|wap 11|

and way,+1 is the center of the Siegel disk for go,,+1. Moreover, zz’"; converges
m

to some real constant greater than 1, and up to rescaling by |w2m+1|_1, Jom—+1
is seen to converge. The proportion of p.,, . . ,-orbits starting in the original
Siegel disk of p. that eventually land in Va,,11 is clearly seen to approach
1 (so that n(2m + 1) is bounded from below), while £(2m + 1) appears to
decay exponentially. Julia sets of positive area might already emerge then for
period 2207 (£ ~ 0.0622), see Figure 1.1, and more likely for period 15127
(€ = 0.0215).

Remark 7.2. Those estimates are valid for the quadratic map and not
for the renormalization fixed point, so there is still some extra distortion to
consider. Heuristically (ignoring distortion), & should be small compared to
the relative area of the filled Julia set with a Siegel disk, which near the fixed
point is around 0.06.

To justify all those observations one needs the existence of a hyperbolic
Siegel renormalization fixed point with the golden mean rotation number and a
one-dimensional unstable manifold containing (up to straightening) the Man-
delbrot copies in question. As we know, the existence of a Siegel renormaliza-
tion fixed point was established by McMullen [McM98]. Its hyperbolicity was
proven in [GY20] (computer assisted) and [DLS20]. However, one still needs
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to show that the unstable manifold is large enough to contain those particular
Mandelbrot copies that we want, which looks like a hard problem. See [DL18]
for an approach to it through the analysis of external rays for an associated
Transcendental Dynamics leading to new Julia sets of positive area.

7.3. More Julia sets of positive area? Recall that the renormalization in
our examples is of primitive type. Recently, a priori bounds have been proven
for some Feigenbaum maps of satellite type that made it possible to apply
our machinery to those cases, providing Feigenbaum Julia sets of satellite type
with positive area [DL18].

It remains an open problem whether Julia sets of positive area may ex-
ist for real quadratic maps. Any such example would have to be infinitely
renormalizable, and would imply their existence already in the class of real
Feigenbaum quadratic maps with periodic combinatorics. As we have already
mentioned, A. Dudko and S. Sutherland have recently proven (with a computer
assistance) that the “oringinal” Feigenbaum map corresponding to the period
doubling bifurcation has the Julia set of zero area [DS20]. It makes plausable
that all real quadratic Feigenbaum Julia sets are Lean.

In the higher degree case, the situation is even less conclusive. In this
case, there is even a chance of existance of a non-renormalizable unicritical
polynomial with positive area Julia set (and even real); see an attempt to prove
it by Nowicki and van Strien for the Fibonacci map of high degree [Buf97]
(stemming from computer experiments designed by the second author with
Scott Sutherland in the early 1990s; see [Lyu95, §7.2]).

7.4. Physical attractors for Hénon maps. The complex Hénon family
F.p:(2,w0) = (22 + ¢ —bw, z)

with a small Jacobian b can be viewed as a perturbation of the one-dimensional
quadratic family f. : z — 22 + ¢ . The real renormalization theory devel-
oped in [DCLMO5] can be adapted to the complex case to show that complex
Feigenbaum maps admit infinitely renormalizable Hénon perturbations. Such a
Feigenbaum-Hénon map has an invariant Cantor set O on which it acts as the
adding machine. In the real case, this set is a global physical attractor; i.e., it
attracts almost all orbits in the phase space (which is an invariant real bidisk).

In the general complex case, the random walk scheme associated to a
Feigenbaum map f. is robust under a perturbation, implying that the forward
Julia set J*(F) (see [HOV94]) has positive Lebesque measure. In fact, a pos-
itive measure subset of orbits in JT(F) converges to Op, making it a physical
attractor for the complex Feigenbaum-Hénon map F.

We will supply details of this discussion elsewhere (manuscript in prepa-
ration).
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