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ON DYNAMICAL GASKETS GENERATED BY RATIONAL

MAPS, KLEINIAN GROUPS, AND SCHWARZ REFLECTIONS
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Abstract. According to the Circle Packing Theorem, any triangulation of
the Riemann sphere can be realized as a nerve of a circle packing. Reflections
in the dual circles generate a Kleinian group H whose limit set is a generalized
Apollonian gasket ΛH . We design a surgery that relates H to a rational map g
whose Julia set Jg is (non-quasiconformally) homeomorphic to ΛH . We show
for a large class of triangulations, however, the groups of quasisymmetries of
ΛH and Jg are isomorphic and coincide with the corresponding groups of self-
homeomorphisms. Moreover, in the case of H, this group is equal to the group
of Möbius symmetries of ΛH , which is the semi-direct product of H itself and
the group of Möbius symmetries of the underlying circle packing. In the case
of the tetrahedral triangulation (when ΛH is the classical Apollonian gasket),
we give a quasiregular model for the above actions which is quasiconformally
equivalent to g and produces H by a David surgery. We also construct a mating
between the group and the map coexisting in the same dynamical plane and
show that it can be generated by Schwarz reflections in the deltoid and the

inscribed circle.
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2 R. LODGE ET AL.

1. Introduction

In this paper we will further explore the celebrated Fatou-Sullivan Dictionary
connecting two branches of Conformal Dynamics, iteration of rational maps and ac-
tions of Kleinian groups. This dictionary is an indispensable source of new notions,
conjectures, and arguments, but it does not provide an explicit common frame for
the two areas. However, in the 1990’s Bullet and Penrose [13] discovered a phenom-
enon of explicit mating of two actions, of a quadratic polynomial with a modular
group, induced by a single algebraic correspondence on two parts of its domain.
And recently, an abundant supply of similar matings generated by the Schwarz
reflection dynamics was produced by Lee and Makarov in collaboration with two
of the authors of this paper [31–33]. It turns out that this machinery is relevant to
the theme of this paper

Our main example is the classical Apollonian gasket ΛH , which is the limit set of
a Kleinian reflection groupH generated by reflections in four pairwise kissing circles,
see Figure 1. In this paper we demonstrate that this limit set can be topologically
realized as the Julia set J (g) of a hyperbolic rational function [12, §4]. In fact, we
construct g in two different ways: by applying the Thurston Realization Theorem
and by constructing an explicit quasiregular model for g. (The subtlety of the
problem has to do with the fact that g is hyperbolic while H is parabolic, so ΛH and
J (g) are not quasiconformally equivalent.) Moreover, we show that H and g can
be mated by means of the Schwarz reflection in the deltoid and an inscribed circle
to produce a hybrid dynamical system alluded above. This mating is based upon a
surgery replacing the action of z̄2 in the disk by the modular group action, using the
classical Minkowski “question mark function”. This surgery is not quasiconformal,
but it has David regularity. We show this by direct geometric estimates through
the Farey algorithm. (Note that a David relation between hyperbolic and parabolic
dynamics appeared first in Häıssinski’s work, see [11].)

Our motivating problem was a problem of quasisymmetric classification of frac-
tals, which attracted a good deal of attention in recent years; see, e.g., [4, 5, 7, 23,
38, 52]. A basic quasiconformal invariant of a fractal J is the group QS(J ) of its
quasisymmetries (“quasisymmetric Galois group”). A natural class of fractals to
test this problem is the class of Julia sets and limit sets of Kleinian groups. In
papers [7, 34], the group QS(J ) was studied for a class of Sierpiński carpet Julia
sets and for the Basilica, yielding strikingly different rigidity/flexibility behavior.
In this paper we describe QS(J ) for gasket Julia gaskets, exhibiting yet another
phenomenon.

Namely, we prove that QS(J (g)) is a countable group isomorphic to the exten-
sion of H by the tetrahedron symmetry group (which is the full group of Möbius
symmetries of ΛH). Moreover, QS(J (g)) coincides with the group Homeo(J (g)) of
all orientation preserving self-homeomorphisms of J (g) and ΛH . It is quite different
from the cases studied earlier:

– In the Sierpiński carpet case [7], Homeo(J ) is uncountably infinite, while
QS(J ) is finite and coincides with the group of Möbius symmetries of J .
This is a quasisymmetrically rigid case.

– In the Basilica case [34], the topological and quasisymmetry groups are
different but both are uncountably infinite. Moreover, they have the same
countable “core” which is an index two extension of the Thompson circle
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group. (The groups are obtained by taking the closures of the core in
appropriate topologies.)

Going back to the Apollonian case, we see that though the group QS does not
quasiconformally distinguish the Julia set from the corresponding Apollonian limit
set, these sets are not quasiconformally equivalent (as we have already pointed
out). In fact, we do not know a single non-trivial (i.e., different from a quasi-
circle) example of a Julia set which is quasiconformally equivalent to a limit set of
a Kleinian group.

Figure 1. Classical Apollonian gasket

1.1. The outline. We carry out the discussion for a family of Kleinian groups gen-
eralizing the classical Apollonian gasket. Namely, given an arbitrary triangulation
of the sphere, by the Circle Packing theorem it can be realized as the adjacency
graph of some circle packing, unique up to Möbius transformations. Consider the
dual circle packing comprising the circles passing through tangency points of vari-
ous triples of kissing circles. (The original circles are associated to the vertices of
the triangulation, while the dual ones are associated to the faces.) The Kleinian
reflection group generated by all reflections in the dual circles is our (generalized)
Apollonian group and its limit set is the (generalized) Apollonian gasket.1 Note that
it is a cusp group: all components of its domain of discontinuity are round disks, and
the corresponding quotient Riemann surfaces are punctured spheres. The classical
Apollonian gasket corresponds to the tetrahedral triangulation, and the associated
Kleinian group is a maximal cusp group. Section 2 details this construction.

In Section 3 we prove that, in the case when a triangulation is irreducible in the
sense that any triangle (i.e., a 1-cycle composed of three edges) bounds a face, every
topological symmetry of an Apollonian gasket can be written as a composition of
finitely many anti-conformal reflections as above and a Möbius symmetry of the
circle packing. Moreover, this group splits into a semi-direct product of the above
(Theorem 3.8). We conclude that the Möbius, topological, and quasisymmetry
groups of the Apollonian gasket are all the same.

Section 4 is devoted to the construction of a piecewise anti-Möbius map N on
the Riemann sphere cooked up from the generators of the Apollonian group. This

1Below, we will often skip the adjective “generalized”.
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map, which we call the Nielsen map, is orbit equivalent to the Apollonian group,
and enjoys Markov properties when restricted to the limit set.

In Section 5 we carry out a surgery that turns the Nielsen map to an orientation
reversing branched cover G that coincides with the Nielsen map on the complement
of the circle packing and is topologically equivalent to D → D, z �→ zk, on each
disk of the packing (with k depending on the disk). By construction, its Julia set
coincides with the Apollonian gasket, on which it agrees with the Nielsen map.

In Section 6 we use W. Thurston’s Realization Theory to show that the above
map G is equivalent to an anti-rational map g (Proposition 6.2). We then ap-
ply a Pullback Argument in Theorem 6.11 to show that, in fact, the Julia set
J (g) is homeomorphic to the limit set ΛH , and g|J (g) is topologically conjugate
to G|ΛH

. This gives one more manifestation of the intimate connection between
(anti-)rational dynamics and Kleinian (reflection) actions in the spirit of the Fatou-
Sullivan dictionary (Corollary 6.12).

In Section 7 we establish our main result, Theorem 7.2, by showing that each
topological symmetry of the Julia set of the anti-rational map g is induced by a
piecewise dynamical homeomorphism, and that such homeomorphisms are in fact
quasisymmetries. Therefore, a complete account of the quasisymmetry group of
J (g) is given. Let us emphasize once again that due to the presence of tangent
circles in the round gasket such sets are not quasisymmetric to the corresponding
Julia sets. Thus, the “obvious” way of identifying the quasisymmetry groups fails.

In Section 8 we describe an alternative construction of the cubic anti-rational
map gT , corresponding to the tetrahedral triangulation T , by producing a quasireg-
ular (in fact, piecewise affine outside the critical Fatou components) model and
applying the Measurable Riemann Mapping Theorem.

In Section 9 we develop a technique to produce matings between a rational map
and the Nielsen map of the triangle reflection group using David surgery.

Finally in Section 10, we apply the main result of Section 9 on the cubic anti-
rational map gT (constructed in Section 8) to recover the Nielsen map of the clas-
sical Apollonian gasket reflection group. Along the way, we construct a “hybrid
dynamical system” that binds together the Nielsen map of the classical Apollonian
reflection group and anti-rational map gT on the same dynamical plane, and ex-
plicitly characterize this hybrid dynamical system as the Schwarz reflection map
with respect to a deltoid and an inscribed circle.

1.2. Further developments. The topological connection between generalized
Apollonian gasket limit sets and gasket Julia sets of critically fixed anti-rational
maps discovered in this paper has been further developed in several follow-up pa-
pers. In particular, it was generalized from triangulations to arbitrary polyhedral
tilings in [30],2 and then our construction of Nielsen maps was applied to produce
a dynamical correspondence between limit sets of “kissing reflection groups” and
Julia sets of critically fixed anti-rational maps. It led, in particular, to a full clas-
sification of anti-rational maps in terms of Tischler graphs. Such a classification
was independently given by Lukas Geyer [21] (without relating it to groups). Like
in our paper, the method of using certain invariant arcs to justify the absence of
a Thurston obstruction played a key role (in the spirit of Pilgrim and Tan Lei

2Note that Kleinian groups associated with such tiling have also appeared in the work of
Kontorovich and Nakamura [28].
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[45]). However, the quasisymmetry groups of the corresponding limit and Julia sets
remain unknown in general.

The David surgery machinery introduced in this paper has also been developed
further. Namely, in [35], the David Extension Lemma 9.4 has been generalized to
a broader class of situations (by means of dynamical techniques instead of number-
theoretic tools used here), and the surgery techniques of Theorem 9.5 and Proposi-
tion 10.4 have been adapted to show that the homeomorphisms between Julia sets
of critically fixed anti-rational maps and limit sets of kissing reflection groups ex-
tend to David homeomorphisms of the plane. The David surgery also played a key
role in [35] in the proof of a Combination Theorem for suitable Kleinian reflection
groups and anti-holomorphic polynomials.

2. Round gaskets from triangulations

All graphs are assumed to be simple, i.e., no edge connects a vertex to itself and
there is at most one edge connecting any two vertices. A triangulation T of S2

is a finite embedded graph that is maximal in the sense that the addition of one
edge results in a graph that is no longer both embedded and simple. Denote the
sets of vertices, edges, and faces of some triangulation T of S2 by VT , ET , and FT
respectively. By convention we assume that |VT | ≥ 4 to avoid degeneracies. We
also assume that two faces share at most one edge. Two embedded graphs in S2

are said to be isotopic if there is an orientation preserving homeomorphism of S2

sending the vertices and edges of one graph to the other.

A circle packing C is a finite collection of closed geometric disks in Ĉ with pairwise
disjoint interiors whose union is connected. The nerve of C is a finite embedded
graph whose vertices correspond to disks, and two vertices are connected by an edge
if and only if the corresponding disks are tangent. Up to isotopy, we may assume
that the vertices of the nerve of a circle packing C are the spherical centers of the
disks in C and the edges are the unique spherical geodesic segments connecting the
corresponding centers through the point of tangency. There is evidently a bijection
between edges and points of tangency in the circle packing. If T is a triangulation

of Ĉ, by the Circle Packing theorem, also known as the Koebe–Andreev–Thurston
theorem [50, Corollary 13.6.2], we may assume that after an isotopy T is a nerve of
a circle packing, and this circle packing is unique up to Möbius transformations. In
what follows, we fix such a circle packing and denote it by CT . Whenever necessary,
we specify a particular normalization that CT satisfies.

Each face f ∈ FT contains a unique complementary component of the circle
packing CT called an interstice associated to f , which we denote by Δf . Every
interstice is an open Jordan region bounded by three circular arcs that may only
intersect at their endpoints. For a given interstice Δf , the three boundary arcs
lie in three circles in CT , and denote by D1, D2, D3 the corresponding open disks
enclosed by these (oriented) circles. Let C be the unique circle that passes through
the three mutual tangency points of D1, D2, D3. We say that such a circle C
corresponds to f . (It can also be described as a spherical circle inscribed in the face
f , and hence circumscribing the interstice Δf .) In this way, the collection of all
circles corresponding to faces is a circle packing orthogonal to CT , and the nerve of
this orthogonal packing is the planar dual of T (see Figure 2). Denote by Rf the
anti-Möbius reflection with respect to this unique circle C. Observe that Rf fixes
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the three points of mutual tangency of D1, D2, D3 in the closure Δf of Δf , and

Rf (Δf ) =

⎛⎝⋃
g �=f

Δg

⎞⎠ ∪

⎛⎝ ⋃
D �=D1,D2,D3

D

⎞⎠ ,

where g ranges over the faces of T , and D over the open disks in CT .
Let v be any vertex in T and let Cv be the corresponding circle in the circle

packing T centered at v. We denote the open disk in Ĉ enclosed by the oriented
circle Cv by Dv.

Let HT be the group generated by all reflections Rf , i.e.,

HT = 〈Rf , f ∈ FT 〉.
For convenience we omit the subscript and simply write H when T is understood. If
f1, f2, . . . , fk is the full list of (distinct) faces of T , the group H is finitely presented
with the presentation

(1) H = 〈Rf1 , Rf2 , . . . , Rfk : R
2
f1 = R2

f2 = · · · = R2
fk

= id〉.
The limit set ΛH of H is defined to be the minimal non-empty H-invariant compact

subset of Ĉ, and the regular set of H is given by ΩH := Ĉ \ ΛH . It is easy to show
that

ΛH =
⋃
h∈H

⋃
v∈VT

h · Cv,(2)

ΩH =
⋃
h∈H

⋃
v∈VT

h · (Dv).(3)

Definition 2.1. A set of this form is called a round gasket or an Apollonian gasket.
A gasket is defined to be any subset of the Riemann sphere that is homeomorphic
to a round gasket.

Figure 2. The tetrahedral graph T and its corresponding circle
packing consisting of four circles appears on the left in black. The
generators of the group H, which also happen to have a tetrahedral
configuration, are depicted in red. The limit set ΛH appears on
the right.
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Remark 2.2. Evidently any two peripheral topological disks (i.e., topological disks
such that removal of their boundaries does not separate the gasket) in a gasket may
touch at most at one point because the same property holds for round gaskets. For
the same reason, at most two such disks may touch at the same point.

The classical Apollonian gasket in Figure 1 and Figure 2 is the limit set obtained
using the construction above when T is the tetrahedral triangulation. Namely, T
has four vertices and each pair of vertices is connected by an edge. The circle
packing CT consists of four pairwise mutually tangent disks. The limit set ΛH in

this case is the residual set obtained from Ĉ by removing the interiors of the disks in
the circle packing CT , the largest open disk in each interstice, and in each resulting
interstice, ad infinitum.

3. Round gasket symmetries

This section describes properties of topological symmetries of round gaskets.
We give an explicit description of the group of such symmetries for a large class of
triangulations. In contrast to the Basilica Julia set, each topological symmetry of
a round gasket is topologically extendable to a homeomorphism of the sphere.

Lemma 3.1. Suppose that Λ and Λ′ are compact subsets of Ĉ whose complemen-
tary components have closures homeomorphic to closed topological disks. Moreover,
assume that the sequences of the diameters of the complementary components of Λ
and Λ′ go to 0. Then any homeomorphism ξ : Λ → Λ′ can be extended to a global

homeomorphism of Ĉ.
In particular, if ξ : ΛH → ΛH is a homeomorphism of a limit set ΛH , then ξ can

be extended to a homeomorphism of Ĉ.

Proof. The boundary circle of each complementary component of Λ or Λ′ is pe-
ripheral, i.e., it is a topological circle in Λ, respectively Λ′, whose removal does not
separate Λ, respectively Λ′. It is easy to see that the boundary circles of comple-
mentary components of Λ and Λ′ form the full family of peripheral circles in Λ,
respectively Λ′. Thus, since ξ is a homeomorphism of Λ onto Λ′, this map takes
each peripheral circle to another peripheral circle. Therefore, we can extend ξ
homeomorphically into each complementary component of Λ to a homeomorphism
between the closures of complementary components of Λ and Λ′. Since diameters
of peripheral circles go to 0, we conclude that the extension of ξ above is a global
homeomorphism. �

It is clear that if ξ can be extended to an orientation preserving homeomor-
phism, it cannot be extended to an orientation reversing one, and vice versa. We
say that ξ : ΛH → ΛH is orientation preserving if it can be extended to an orien-

tation preserving homeomorphism Ĉ → Ĉ. Denote by Homeo+(ΛH) the group of
orientation preserving homeomorphisms of ΛH , and by Homeo(ΛH) the group of
all homeomorphisms of ΛH .

Let D be a component of ΩH . Denote by |h| the word length of h ∈ H with
respect to its generating set from (1). The generation of D is defined to be the

minimal word length of h ∈ H so that h(D) is a disk in the circle packing CT .

Lemma 3.2 (Decreasing generation). Let D be a component of ΩH that is a subset
of some face f ∈ FT . Then the reflection Rf reduces the generation of D by one.
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Proof. If D is a subset of a face, then D not a disk in the circle packing CT . Then
D is in the H-orbit of the interior of some disk D0 in CT , specifically D = h(D0)
for |h| ≥ 1. Since D is in the face f , it follows that h = Rf ◦h′, where |h′| = |h|−1.
Then since Rf is an involution, |Rf ◦ h| = |h′| = |h| − 1 and so the generation of
Rf (D) is one less than the generation of D. �

Two components of ΩH touch if their closures intersect. Three components of
ΩH are said to mutually touch if each component touches the other two. We use
the same terminology for disks in the original circle packing CT .

A great deal can be said about a homeomorphism of ΛH by understanding its
action on the boundary of three mutually touching components of ΩH .

Lemma 3.3. Let D1, D2 be touching components of ΩH . Then D1 ∪D2 intersects
at most one complementary component of the original circle packing CT .

As a consequence, we also conclude that if D1, D2, and D3 are mutually touch-
ing components of ΩH , then D1 ∪ D2 ∪ D3 intersects at most one complementary
component of the circle packing CT .

Proof. Suppose that D1 and D2 intersect different complementary components of
the packing. Then D1 and D2 are contained in distinct faces of the triangulation
T . Neither D1 nor D2 has closures intersecting T , i.e., the vertices or edges of T ,
because the only points of T outside of the interior of the original packing CT lie at
points of tangency for packing circles. But then D1 and D2 do not touch, contrary
to the hypothesis. �
Lemma 3.4 (Small triangles to big triangles). Let D1, D2, D3 be mutually touching
components of ΩH . Then there exists an orientation preserving h ∈ H so that the
closures of h(D1), h(D2), h(D3) are distinct mutually touching disks in the original
circle packing CT .

Proof. By Lemma 3.3, either all three disks intersect T in which case we are done
or there is some disk with positive generation and the union of the three disks
intersects a face f . Apply Rf to the three disks. This decreases the generation of
disks that are subsets of f by Lemma 3.2, and preserves generations of those disks
that intersect the boundary ∂f , i.e., disks of generation zero. Iterate until all disks
have generation zero. If the resulting map h is orientation reversing, postcompose
the map h with Rf , where f is a face of T whose boundary is contained in the
closure of h(D1) ∪ h(D2) ∪ h(D3). �

Lemma 3.5. Let ξ be an orientation preserving homeomorphism of Ĉ such that

ξ|ΛH
: ΛH → Λ, where Λ is a closed subset of Ĉ with Ω = Ĉ \ Λ being a union of

pairwise disjoint open geometric disks. Assume that for three mutually touching
open disks D1, D2, D3 of CT we have that ξ(Di) = Di, i = 1, 2, 3. Then Λ = ΛH

and ξ|ΛH
is the identity transformation.

Proof. Indeed, our assumption implies that ξ takes the finite circle packing CT to a

circle packing in Ĉ. Moreover, since ξ is orientation preserving and ξ(Di) = Di, i =
1, 2, 3, the uniqueness part of the Circle Packing theorem [50, Corollary 13.6.2]
implies that ξ fixes setwise each disk in CT .

Now, if f is a face of T , we use Rf to reflect CT across the boundary of the
circle that corresponds to f . We denote the union circle packing of CT and its
reflection by CT ,f . The nerve of this new circle packing is also a triangulation, and



DYNAMICAL GASKETS 9

all the new disks resulting in the reflections are the closures of disks in ΩH . Again,
from lemma’s assumption and the uniqueness of the circle packing, we obtain that
ξ fixes each disk of CT ,f . Continuing this reflection procedure inductively, say on
the diameter of faces of circle packings resulting in successive reflections, we obtain
that ξ must fix setwise each disk of ΩH . This implies, in particular, that Λ = ΛH .

Finally, each point p in ΛH is an accumulation point for shrinking disks of ΩH .
Since each such disk is fixed by ξ, the point p must be a fixed point of ξ. We
therefore conclude that ξ|ΛH

is the identity transformation. �
We now put a restriction on the triangulation to obtain a simpler formulation

of our main symmetry classification results. A separating triangle of some trian-
gulation T is a 3-cycle in T that is not the boundary of a face. We say that a
triangulation is reduced if it has no separating triangles. It is natural to expect
such a condition in light of the example that appears in Figure 3. Specifically, one
sees why the reduction hypothesis is needed for Theorem 3.8.

Examples of reduced triangulations abound. For example, the barycentric sub-
division of all faces of a reduced triangulation (i.e., the subdivision of triangular
faces into six triangles so that, for each face, there are four new vertices, one on
each edge and one inside the face) will result in a reduced triangulation.

Figure 3. Circle packing corresponding to the tetrahedron in
black (left), and the circle packing corresponding to a graph pro-
duced by gluing two tetrahedra along a common face also drawn in
black (right). The second graph is not reduced due to the 3-cycle
that passes through the three grey-shaded disks. Reflecting about
the red dual circles produces the classical Apollonian gasket limit
set in both cases, despite the fact that the tetrahedron is more
symmetric than the second graph (cf. Theorem 3.8).

Denote by AutT (Ĉ) the group of all Möbius transformations that induce a sym-
metry of T , i.e., preserve CT . This group is finite because we assume that CT
has more than two disks. The group AutT (Ĉ) also preserves the dual circle pack-

ing, i.e., each element of AutT (Ĉ) takes a circle that corresponds to f ∈ FT to a

circle that corresponds to another f ′ ∈ FT . Therefore, the group AutT (Ĉ) con-

sists of outer automorphisms of the group H, and so AutT (Ĉ) is a subgroup of
Out(H) = Aut(H)/Inn(H).

If D is an open disk in CT , a flower centered at D is the disk D along with a
collection of disks {Di}n−1

i=0 , such that each disk Di, i = 0, 1, . . . , n − 1, touches
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D as well as the disks Di−1, Di+1, where the indices are taken modulo n, and the
disks Di, i = 0, 1, . . . , n − 1, are arranged in a cyclic order around D. The disks
Di, i = 0, 1, . . . , n− 1, are referred to as petals of D.

The triangulation T corresponding to a circle packing C = CT can be realized
geometrically as follows. Mark a point xi in the interior of each disk Di of the
packing and call it the center of Di. Connect any two centers xi and xj of two
touching disks Di and Dj by an edge γij concatenated of two (spherical) geodesic
segments in Di and Dj . So, γij meets Λ at a single point where Di touches Dj .
We say that two such geometric realizations T and T ′ coincide if CT = CT ′ . In
this case T and T ′ are isotopic relative to the points of tangency of the disks in
CT = CT ′ .

If Λ is an Apollonian gasket corresponding to a circle packing C = CT , then we
say that C is a generating packing for Λ.

Proposition 3.6. Let C and C′ be two circle packings generating the same gasket
Λ, and let T and T ′ be the corresponding geometric triangulations that we assume
to be reduced. If T and T ′ share a face, then they coincide, or equivalently C = C′.

Proof. Sharing of a face means that C and C′ share three touching disks, Di = D′
i,

i = 0, 1, 2, and the corresponding interstice, Δ = Δ′. Let us show that in this case
they share the whole flower centered at D0.

Orient the boundary circle C0 = C ′
0 of D0 = D′

0 so that the boundary arc of Δ
is oriented from D1 to D2. Denote the remaining petals of D0 and D′

0 by Di and

D′
i respectively, where i ≥ 3. Let i + 1 be the first moment when D′

i+1 
= Di+1.
Assume for definiteness that D′

i+1 is closer to D2 than Di+1. Then D′
i+1 is trapped

inside the interstice Δi attached to {D0, Di, Di+1}; see Figure 4. Moreover, the
assumption that T ′ is reduced implies that Di+1 does not belong to the flower

{D′
j}. Hence all further D′

j , j > i + 1, are either contained in Δi or are disjoint

from its closure (compare Lemma 3.3), and so the flower {D′
j} gets broken in the

sense that the petals of this flower are separated by the disk Di+1.

D0 = D′
0

D2 = D′
2

D1 = D′
1

Di+1 = D3

D′
3

Figure 4. Depiction of the petals used in the proof of Proposition 3.6
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We can now apply this result to the petals of the above flower and conclude
that the two packings share the flowers around each of these petals. Proceeding
inductively, we complete the proof. �
Theorem 3.7 (Decomposition of symmetries). Let T be a reduced triangulation.
Then if ξ ∈ Homeo(ΛH), we have

ξ = A ◦ h|ΛH

for some h ∈ H and A ∈ AutT (Ĉ).

Proof. From Lemma 3.1, we know that ξ extends to a homeomorphism of Ĉ, which
we continue to denote by ξ. Let D0 be an open disk in C and D1, D2 be two petals
of D0 in C. Since T is reduced, there is a face f of T whose boundary is contained
in D0 ∪ D1 ∪ D2. Then ξ−1(Di), i = 0, 1, 2, are mutually touching disks of ΩH .
By Lemma 3.4, there is h ∈ H so that D′

i = hξ−1(Di), i = 0, 1, 2, are mutually
touching disks in the original circle packing CT . We may assume that the map
hξ−1 is orientation preserving by possibly postcomposing it with the reflection in
the circle passing through the three points of mutual tangency of D′

i, i = 0, 1, 2.
Because T is assumed to be reduced and hξ−1 is orientation preserving, we

conclude that the intersection of T with D′
0 ∪D′

1 ∪D′
2 bounds a face f ′ of T . Let

C′
T be the circle packing given by

C′
T = hξ−1(CT ).

Note that since hξ−1 is an orientation preserving homeomorphism of Ĉ, this map
induces a graph isomorphism of T onto the nerve T ′ of C′

T such that the face f of
T is mapped to the face f ′ of T ′, which is also a face of T .

Let A be a Möbius transformation such that A(D′
i) = Di, i = 0, 1, 2. Such

an A exists because one can always map the three points of mutual tangency of
D′

0, D
′
1, D

′
2 to the corresponding three points of mutual tangency of D0, D1, D2 by

a Möbius transformation, and it would necessarily map D′
i onto Di, i = 0, 1, 2.

Now we apply Lemma 3.5 to Ahξ−1 to conclude that this map restricted to ΛH

is the identity map, i.e., ξ = Ah on ΛH . It remains to show that A ∈ AutT (Ĉ),
i.e., A preserves CT . This is equivalent to C′

T = CT .
Since ξ and h leave ΛH invariant, the identity A = ξh−1 restricted to ΛH shows

that so does A. Hence A(CT ) is a generating packing for ΛH . Moreover, it shares
the face f = A(f ′) of CT corresponding to {D0, D1, D2}. By Proposition 3.6,
A(CT ) = CT . �

With some additional work, this decomposition implies that Homeo(ΛH) splits.

Theorem 3.8. Let T be a reduced triangulation. Then H is a normal subgroup of
Homeo(ΛH) and

Homeo(ΛH) = AutT (Ĉ)�H.

Proof. First, AutT (Ĉ)∩H is trivial because any non-trivial h ∈ H has the property
that there is some open disk D in the original circle packing CT whose image

h(D) has non-zero generation. In contrast, every element of AutT (Ĉ) preserves the
generation of any disk in CT .

By Theorem 3.7, it now suffices to prove that ξH = Hξ where ξ ∈ AutT (Ĉ). Let
f be a face of T , and let Rf be the generator of H that corresponds to reflection

over the boundary of f . Let f ′ := ξ(f). Then, since ξ ∈ AutT (Ĉ), we have that f ′
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Figure 5. Black circles represent the circle packing that arise
when T is a tetrahedron. The red “dual” circles define the gener-
ators of H, and the grey region represents a fundamental domain.

is also a face of T . Let Rf ′ be the generator of H that corresponds to the reflection
over the boundary of f ′. Then, applying Lemma 3.5 to the three disks intersecting
the boundary of f , we obtain ξ−1R−1

f ′ ξRf = id. Thus, ξRf = Rf ′ξ, implying that
ξH = Hξ. �

We conclude this section by explicitly constructing a fundamental domain for
the action of H on ΩH . See Figure 5 for the simplest example. Recall that Dv

denotes the (round disk) component of ΩH containing v ∈ VT . Let Df denote the
open disk whose boundary passes through the three vertices of the interstice Δf

corresponding to face f ∈ FT . (We recall that ∂Df is orthogonal to ∂Dv for exactly
three vertices v ∈ VT .)

Proposition 3.9 (Fundamental domain for H). A fundamental domain for H
acting on ΩH is given by ( ⋃

v∈VT

Dv

)
\

⎛⎝ ⋃
f∈FT

Df

⎞⎠ .

Proof. By equation (2), the H-orbit of a point in ΩH must intersect
⋃

v∈VT
Dv.

The H-stabilizer of a given Dv is the group generated by the reflections whose
defining circles are orthogonal to the boundary of Dv. It thus suffices to compute
the fundamental domain for this stabilizer acting on Dv and the conclusion follows
by taking the union of the stabilizer fundamental domains over all v ∈ VT .

The set Dv \
⋃

f∈FT
Df is an ideal polygon Pv in Dv equipped with the standard

Poincaré metric, where the number of sides is given by the number of circles tangent
to the boundary of Dv in the original packing CT . Denote the sides of Pv by
s1, . . . , sk, and let Rs1 , . . . , Rsk be the reflections through the circles that define the
sides. Then by the Poincaré polygon theorem, Pv is a fundamental domain for the
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group 〈Rs1 , . . . , Rsk〉 acting on Dv. The following set equality is immediate:

⋃
v∈VT

Pv =

( ⋃
v∈VT

Dv

)
\

⎛⎝ ⋃
f∈FT

Df

⎞⎠ .

�

4. Nielsen maps induced by reflection groups

The goal of this section is to introduce and study some basic properties of maps
that are orbit equivalent to the reflection groups considered in the paper. These
maps, which we call Nielsen maps, are defined piecewise using anti-Möbius reflec-
tions that generate the corresponding group, and enjoy certain Markov properties
when restricted to the limit set of the group. Related constructions of such Markov
maps on the limit set (originally introduced to code geodesics) can be found in
[8,9,42,49] (for Fuchsian groups), [47] (for certain Kleinian groups), [14,22,46] (for
hyperbolic groups). Our nomenclature “Nielsen map” follows [8], where similar
maps arising from Fuchsian groups were called “Nielsen developments”.

4.1. The Nielsen map for the regular ideal polygon group. Let us denote
the open unit disk and the unit circle in the complex plane (centered at the origin)
by D and T respectively. For d ≥ 2, let C1, C2, · · · , Cd+1 be circles of equal radii

each of which intersects T orthogonally such that
⋃d+1

i=1 C̃i (where C̃i := Ci ∩ D) is
an ideal (d + 1)-gon with vertices at the (d + 1)-st roots of unity. They bound a
closed (in the topology of D) region Π (see Figure 6 for d = 2).

Figure 6. The hyperbolic geodesics C̃1, C̃2 and C̃3, which are
sub-arcs of the circles C1, C2 and C3 respectively, form an ideal
triangle in D

Reflections with respect to the circles Ci are anti-conformal involutions (hence
automorphisms) of D, and we call them ρ1, ρ2, · · · , ρd+1. The maps ρ1, ρ2, · · · , ρd+1

generate a reflection group Hd, which is called the (regular) ideal (d+1)-gon group.
As an abstract group, it is given by the generators and relations

〈ρ1, ρ2, · · · , ρd+1 : ρ21 = ρ22 = · · · = ρ2d+1 = id〉.



14 R. LODGE ET AL.

In the particular case d = 2, the group H2 is called the ideal triangle group.
We will denote the connected component of D \ Π containing int ρi(Π) by Di.

Note that D1∪· · ·∪Dd+1 = D\ intΠ, where D denotes closure of D in the Euclidean
metric.

The Nielsen map ρd : D \ intΠ → D associated with the ideal polygon group Hd

is defined as:
z �→ ρi(z) if z ∈ Di, i = 1, · · · , d+ 1.

Clearly, ρd restricts to an expansive orientation reversing d-fold covering of T with
associated Markov partition T = (∂D1 ∩ T) ∪ (∂D2 ∩ T) ∪ · · · ∪ (∂Dd+1 ∩ T). The
corresponding transition matrix is given by

M =

⎡⎢⎢⎣
0 1 1 . . . 1 1
1 0 1 . . . 1 1
. . . . . . . . . . . . . . . . . . . .
1 1 1 . . . 1 0

⎤⎥⎥⎦ .
Two points x, y ∈ D are said to lie in the same grand orbit of the Nielsen map

ρd if there exist non-negative integers n1, n2 such that ρ◦n1

d (x) = ρ◦n2

d (y). On the

other hand, an Hd−orbit is defined as the set {h(z) : h ∈ Hd}, for some z ∈ D. It
is easy to see that the grand orbit of any point in D under ρd coincides with its
orbit under Hd (compare Proposition 4.1). In other words, ρd is orbit equivalent
to Hd on D.

Let us now describe how the expanding d-fold covering of the circle zd : T → T is
related to ρd. The map zd|T admits the same Markov partition as ρd with the same
transition matrix M . Moreover, the symbolic coding maps for ρd and zd (coming
from their common Markov partitions) have precisely the same fibers, and hence
they induce a homeomorphism Ed : T → T conjugating ρd to zd (see [31, §2] for a
more detailed discussion).

4.2. The Nielsen map for HT . In this subsection, we associate to an arbitrary
triangulation T of S2, a Nielsen map NT that is orbit equivalent to the reflection
group H = HT . As mentioned earlier, the map NT is defined piecewise using the
anti-Möbius reflections Rf (f ∈ FT ), and enjoys certain Markov properties when
restricted to the limit set ΛH .

Let us fix an arbitrary triangulation T of S2, and consider the circle packing
CT along with its dual circle packing (see Figure 7 for the case of the tetrahedral
triangulation). We denote the open disks bounded by the dual circles by Df (such
that Df contains a unique triangular interstice of CT ), and the reflection in Cf :=
∂Df by Rf , for f ∈ FT . The set of points where the disks Df touch is denoted by
S. Each connected component of

T 0 := Ĉ \

⎛⎝S ⋃
f∈FT

Df

⎞⎠
is called a fundamental tile.

Recall from Section 2 that the anti-Möbius maps Rf (f ∈ FT ) generate a reflec-
tion group

H := HT = 〈Rf : f ∈ FT 〉.
We know from Proposition 3.9 that T 0 is a fundamental domain for the action of
H on its domain of discontinuity ΩH . Here is an alternate way of seeing this.
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D1 D2

D3

D4

Figure 7. Left: The map NT is defined as reflection with respect
to ∂Di (in red) on Di. The grey region is T 0. Right: The four
invariant components of the tiling set of NT are precisely the disks
bounded by the black circles, which form the circle packing CT .
The interstices of CT are marked in green.

For each f ∈ FT , let us consider the upper hemisphere Sf ∈ H3 such that
∂Sf ∩ ∂H3 = Cf ; i.e., Cf bounds the upper hemisphere Sf . By Poincaré’s original
observation, the anti-Möbius map Rf extends naturally to the reflection in Sf , and
defines an anti-conformal automorphism of H3. Let PT be the convex hyperbolic
polyhedron (in H3) whose relative boundary in H3 is the union of the hemispheres
Sf (see [27, Figure 9] for an illustration of the polyhedron PT in the case of the clas-
sical Apollonian gasket). Then, PT is a fundamental domain (called the Dirichlet
fundamental polyhedron) for the action of the group H on H3, and T 0 = PT ∩ΩH

(where the closure is taken in ΩH ∪H3) is a fundamental domain for the action of
H on ΩH (see [37, §3.5], also compare [51]).

We now define the Nielsen map NT on
⋃

f∈FT
Df by setting

NT ≡ Rf on Df .

Let us now briefly describe the Markov properties of NT : ΛH → ΛH . To this end,
let us first note that

ΛH =
⋃

f∈FT

Tf , where Tf := Df ∩ ΛH .

Then, we have

• intTf ∩ intTf ′ = ∅, for f 
= f ′ (where the interior is taken in the subspace
topology of ΛH),

• each Tf is injectively mapped by NT onto the union
⋃

f ′ �=f Tf ′ .
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Hence, the sets {Tf}f∈FT form a Markov partition for NT : ΛH → ΛH with the
(d+ 1)× (d+ 1) transition matrix⎡⎢⎢⎣

0 1 1 . . . 1 1
1 0 1 . . . 1 1
. . . . . . . . . . . . . . . . . . . .
1 1 1 . . . 1 0

⎤⎥⎥⎦ ,
where d = |FT | − 1 is the number of faces of T .

Proposition 4.1 (Orbit equivalence). The reflection map NT is orbit equivalent

to the reflection group H on Ĉ.

Proof. Recall that two points x, y ∈ Ĉ are said to lie in the same grand orbit of NT
if there exist non-negative integers n1, n2 such that N◦n1

T (x) = N◦n2

T (y). On the

other hand, an H-orbit is defined as the set {h(z) : h ∈ H}, for some z ∈ Ĉ. We
need to show two points lie in the same grand orbit of NT if and only if they lie in
the same H-orbit.

To this end, let us pick x, y ∈ Ĉ in the same grand orbit of NT . Since NT acts
by the generators Rf (f ∈ FT ) of the group H, it directly follows that there exists
an element of H that takes x to y; i.e., x and y lie in the same H-orbit.

Conversely, let x, y ∈ Ĉ lie in the same H-orbit; i.e., there exists h ∈ H with
h(x) = y. By definition, we have that h = Rs1Rs2 · · ·Rsk , for some s1, · · · sk ∈ FT .
A simple application of mathematical induction shows that it suffices to prove grand
orbit equivalence of x and y (under NT ) in the case k = 1. Therefore, we assume
that Rs1(x) = y. Note that either x or y must belong to Ds1 . Since Rs1(x) = y
implies Rs1(y) = x, there is no loss of generality in assuming that x ∈ Ds1 . Now,
the condition Rs1(x) = y can be written as NT (x) = y, which proves that x and y
lie in the same grand orbit of NT . �
Proposition 4.2.

ΩH =
⋃
n≥0

N−n
T (T 0).

Proof. This follows from Proposition 4.1 and the fact that T 0 is a fundamental
domain for the action of H on its domain of discontinuity ΩH . �

Let us conclude this subsection with a brief discussion on the index two Kleinian
subgroup ΓT � HT consisting of the (orientation preserving) Möbius maps in
HT , in the case when the dual graph Ť of the triangulation T is Hamiltonian
(i.e., Ť contains a cycle that visits every vertex exactly once). Note that ΓT is a
geometrically finite Kleinian group (its fundamental polyhedron in H3 is obtained
by ‘doubling’ PT , and hence has finitely many sides).

Denoting the index two Fuchsian subgroup of Hd by Γd (where Hd is the regular
ideal (d+1)-gon reflection group introduced in Section 4.1), one easily sees that the

top and bottom surfaces D/Γd and (Ĉ \D)/Γd associated with the Fuchsian group
Γd are (d + 1)-times punctured spheres. The assumption that Ť is Hamiltonian
implies that the group ΓT can be obtained as a limit of a sequence of quasi-Fuchsian
deformations of Γd. More precisely, this is achieved by considering a sequence of
quasi-Fuchsian deformations of Γd that pinch suitable collections of simple closed

non-peripheral geodesics on D/Γd and (Ĉ \ D)/Γd simultaneously. Thus, ΓT is a
cusp group that lies on the boundary of the quasi-Fuchsian deformation space of
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the Fuchsian group Γd. These geodesics (that we pinch) lift by Γd to the universal

covers D and Ĉ \ D giving rise to a pair of geodesic laminations (of D and Ĉ \ D
respectively) [37, §3.9.1]. Since ρd|T is orbit equivalent to the action ofHd, it follows
that these two laminations (viewed as equivalence relations on T) are ρd-invariant;
i.e., the ρd-images of the endpoints of a leaf are the endpoints of some leaf of the
lamination. Moreover, the quotient of T by identifying the endpoints of the leaves
of both these laminations produces a topological model of the limit set ΛH , and
the (equivariant) quotient map from T onto ΛH semi-conjugates ρd : T → T to
NT : ΛH → ΛH (see [19], also compare [41]). In fact, this quotient map is the
Cannon-Thurston map for HT (see [41, §2.2] for the definition of Cannon-Thurston
maps).

The domain of discontinuity of ΓT is equal to ΩH . If the valences of the vertices
of T are n1, · · · , n|VT |, then the quotient

M(ΓT ) := (H3 ∪ ΩH)/ΓT

is an infinite volume 3-manifold whose conformal boundary ∂M(ΓT ) := ΩH/ΓT
consists of |VT | Riemann surfaces which are spheres with n1, · · ·n|VT | punctures
(respectively).

In the particular case of the tetrahedral triangulation T (which gives rise to the
classical Apollonian gasket limit set), the conformal boundary ∂M(ΓT ) consists of
4 triply punctured spheres. In this case, ΓT is obtained by pinching two geodesics,
one on the top and one on the bottom 4-times punctured sphere determined by
Γ3. In fact, these geodesics correspond to pants decompositions of the top and
bottom 4-times punctured spheres. Thus in this case, ΓT is a maximal cusp group
(see [37, §5.3] for a discussion of maximal cusp groups). Such groups are known
to be rigid. More precisely, if a 3-manifold M(Γ′) (arising from some Kleinian
group Γ′) is homeomorphic to M(ΓT ), then they are in fact isometric, and the two
Kleinian groups ΓT and Γ′ are conjugate by a Möbius map. In particular, ΓT is
quasiconformally rigid [37, Theorems 3.13.4, 5.1.3].

5. Topological surgery: From Nielsen map to a branched covering

Let g : S2 → S2 be a branched cover, and let Cg be its set of critical points.
The postcritical set is given by Pg =

⋃
i>0 g

◦i(Cg). A Thurston map is a branched

cover g : S2 → S2 of degree d so that |Pg| < ∞ and |d| > 1. Contrary to the usual
definition, we admit orientation reversing branched covers.

In this section we construct an orientation reversing branched coverGT : S2 → S2

associated to a triangulation T . This is done in such a way that each vertex in T
is fixed by GT and each edge in T is invariant.

Recall that each face f ∈ FT contains a unique interstice Δf of the circle packing.

Lemma 5.1. Let Δf and hn = Rfi1
Rfi2

. . . Rfin
∈ H, ij 
= ij+1, j = 1, 2, . . . , n−1,

be arbitrary, and let Δf,hn
be defined by Δf = hn(Δf,hn

). Then

diam(Δf,hn
) → 0

as the word length |hn| = n goes to infinity.

Proof. We argue by contradiction and assume that there exist δ > 0 and a sequence
(hn) such that diam(Δf,hn

) ≥ δ for all n ∈ N. Since there are only finitely many
disks in ΩH whose diameters are bounded away from 0 by a fixed positive number,
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there must exist a subsequence (hnk
) such that one of the sides of Δf,hnk

is con-
tained in the boundary of a fixed disk of ΩH , for all k ∈ N. In fact, the triangle
inequality applied to the vertices of Δf,hnk

implies that, by possibly passing to a

further subsequence of (hnk
), we may assume that two of the sides of Δf,hnk

are
contained in the boundaries of two distinct fixed disks of ΩH .

Now, letDnk
be the disk in ΩH whose boundary contains the third side of Δf,hnk

.
This disk has to be mutually touching with the two disks whose boundaries contain
the other two sides. If diam(Dnk

) → 0 as k → ∞, we get a contradiction with
our assumption. Otherwise, by possibly passing to yet another subsequence, we
may assume that Dnk

is also fixed for all k ∈ N. This however also leads to a
contradiction because the word length |hnk

| goes to ∞. �

We first define GT on each closure Δf to be the restriction GT = Rf |Δf
. Note

that this implies NT ≡ GT on ΛH . Now, let v ∈ VT be arbitrary and let Dv be the
corresponding open disk in the circle packing CT . The map GT is already defined
on the boundary circle ∂Dv of Dv, and it is a piecewise reflection map. Let k = k(v)
be the number of triangular interstices adjacent to Dv minus one. We have k + 1
points p0, p1, . . . , pk on ∂Dv that are common points of pairs of adjacent interstices.
We assume that they are enumerated in a cyclic order along ∂Dv. These points are
fixed by GT , and they are the only fixed points of GT . Moreover, the degree of the
map GT |∂Dv

is −k. Therefore, there is an orientation preserving homeomorphism
φv of ∂Dv onto the unit circle in the plane that conjugates GT |∂Dv

to the map
gk(z) = z̄k. The map φv takes p0, p1, . . . , pk to e2πij/(k+1), j = 0, 1, . . . , k, the fixed
points of gk. The fact that such a conjugating homeomorphism φv exists follows
from Lemma 5.1. Indeed, this lemma implies that the lengths of the complementary

intervals of
⋃k

j=0G
−n
T (pj) go to 0 as n → ∞.

Let Φv be a homeomorphism of the closure Dv onto D that extends φv. For each
v ∈ VT , we define GT |Dv

= Φ−1
v ◦ gk ◦ Φv. This defines a global continuous map

GT of Ĉ to itself.
The map gk fixes setwise each ray ρj from the origin to the fixed point e2πij/(k+1),

j = 0, 1, . . . , k. For each v ∈ VT , the point uv = Φ−1
v (0) ∈ Dv is a fixed point of

GT and the arcs αv,j = Φ−1
v (ρj), j = 0, 1, . . . , k, are setwise fixed. If two vertices

v1, v2 ∈ VT are such that the corresponding disks Dv1 , Dv2 are tangent, then there
exist two fixed arcs αv1,j1 in Dv1 and αv2,j2 in Dv2 that have the same endpoint, the
tangent point of Dv1 and Dv2 . Their concatenation along with the tangent point
form a fixed arc tv1v2 that connects uv1 and uv2 . The triangulation T is isotopic to
the triangulation T ′ whose vertices are the points uv, v ∈ VT , and the edges are
tv1v2 , where v1, v2 are such that Dv1 , Dv2 are tangent. In what follows, we identify
T and T ′, and therefore conclude that GT keeps T invariant. More specifically, GT
fixes the vertices of T pointwise and fixes the edges of T setwise. We summarize
the properties of GT in Proposition 5.2.

Proposition 5.2 (Properties of the branched covering GT ). The map GT : S2 →
S2 is an orientation reversing branched cover such that

(1) the degree of GT is 1− |FT |,
(2) the set of critical points of GT is given by VT , and all critical points are

fixed,
(3) all edges and vertices are invariant, and
(4) the restriction of GT to any face of T is univalent.
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(5) NT ≡ GT on ΛH .

Remark 5.3. Here is an equivalent way of constructing the map GT from the Nielsen
mapNT . Note thatNT has |VT | invariant components each of which is a round disk.
For such a round disk Dv, the restriction NT : Dv \ intT 0 → Dv is topologically
conjugate to ρk : D \ intΠ → D (see Subsection 4.1), where the component of T 0

contained in Dv is an ideal (k + 1)-gon. Using a homeomorphic extension of Ek

to D, one can now glue the action of zk : D → D in Dv. Clearly, this produces a
branched cover of S2 that agrees with NT on ΛH , and that is Thurston equivalent
to GT .

Proposition 5.4. The branched cover GT is orbit equivalent to the reflection group
HT on ΛH . In particular, ΛH is the minimal non-empty GT -invariant compact

subset of Ĉ.

Proof. This follows from Proposition 4.1 and the fact that NT ≡ GT on ΛH . �

Remark 5.5. With a slight modification, the construction above can be extended
to any polyhedral graph in place of T .

6. Gasket Julia sets

Let f : Ĉ → Ĉ be an anti-rational map; i.e., the complex conjugate of a rational

map. The Fatou set of f is denoted F(f) and is defined to be the set of z ∈ Ĉ so
that {f◦n}∞n=1 is a normal family on some neighborhood of z. The Julia set of f is

defined by J (f) := Ĉ \ F(f). It is apparent from the definition that

f(F(f)) = F(f) = f−1(F(f)),

f(J (f)) = J (f) = f−1(J (f)).

This section shows that GT is realized by an anti-holomorphic map whose Julia set
has a natural dynamical equivalence with the Apollonian limit set ΛH discussed
above.

6.1. No obstructions. W. Thurston’s characterization theorem for rational maps
[18] has not yet been extended to anti-rational maps, but the existing techniques
can be leveraged by passing to the second iterate.

Two Thurston maps f and g are equivalent if there exist two orientation-
preserving homeomorphisms h0, h1 : (S2, Pf ) → (S2, Pg) so that h0 ◦ f = g ◦ h1

where h0 and h1 are homotopic relative to Pf . The Teichmüller space Teich(S2, Pf )

associated to a Thurston map f is the set of homeomorphisms φ : S2 → Ĉ subject
to the following equivalence relation: two homeomorphisms φ1 and φ2 are equiva-
lent if and only if there is a Möbius transformation M so that M ◦φ1 is isotopic to
φ2 rel Pf .

It is known that each orientation preserving Thurston map g has an associated
pullback map σg : Teich(S2, Pg) → Teich(S2, Pg) on Teichmüller space. In Douady
and Hubbard’s proof, the pullback σg was taken to be the map on Teichmüller
space induced by the pullback on almost complex structures. To avoid discussion
of quasiregularity of g, an equivalent definition of the pullback can be made directly
on Teichmüller space (see e.g. [12]). It is known that g is equivalent to a rational
map if and only if σg has a fixed point [18, Proposition 2.1]. If g has hyperbolic
orbifold, the second iterate of σg is strictly contracting in the Teichmüller metric



20 R. LODGE ET AL.

which implies uniqueness of the fixed point [18, Corollary 3.4]. Recall that any
Thurston map with |Pg| > 4 has hyperbolic orbifold.

To each orientation reversing Thurston map f : S2 → S2 with |Pf | ≥ 3 we now
show how to define the associated pullback map

σf : Teich(S2, Pf ) → Teich(S2, Pf ).

For convenience fix a triple {p1, p2, p3} ⊆ Pf and let τ ∈ Teich(S2, Pf ) be repre-

sented by a homeomorphism φ : S2 → Ĉ so that φ(p1) = 0, φ(p2) = 1, φ(p3) = ∞.

Then φ ◦ f : S2 → Ĉ defines a complex structure on its domain (the restriction of f
to S2 \ f−1(Pf ) is a cover so charts are immediate there, leaving only finitely many

removable singularities). Let ψ : S2 → Ĉ be the unique uniformizing map of this
complex structure normalized so that φ(pi) = ψ(pi), i = 1, 2, 3, and observe that
Fτ := φ ◦ f ◦ ψ−1 is an anti-rational map so that the following diagram commutes:

S2 Ĉ

S2 Ĉ

ψ

f Fτ

φ

Let τ ′ be the point in Teichmüller space represented by ψ and define σf (τ ) = τ ′.
This is well-defined by the homotopy lifting property.

The map σf has a fixed point if and only if f is equivalent to an anti-rational
map using the same argument found in [18, Proposition 2.3]. It is also immediate
that σf◦f = σf ◦ σf where we emphasize that the pullback map on the left is the
classical pullback for orientation preserving case as defined in [12].

Proposition 6.1. Let f be an orientation reversing Thurston map so that f ◦ f
has hyperbolic orbifold. Then f is equivalent to an anti-rational map if and only if
f ◦f is equivalent to a rational map. Moreover, if f is equivalent to an anti-rational
map, the map is unique up to Möbius conjugacy.

Proof. Suppose f is equivalent to an anti-rational map. Then there exists τ so that
σf (τ ) = τ , and σf2(τ ) = σf ◦ σf (τ ) = τ so f2 is equivalent to a rational map.

Now suppose that f2 is equivalent to a rational map. Then σf2 has a unique
fixed point. Since σf2 = σf ◦ σf , it follows that σf either has a two-cycle or a fixed
point. A two cycle for σf would yield two distinct fixed points for σf2 , but this is
impossible since an iterate of σf2 is contracting in the Teichmüller metric. Thus
σf has a fixed point and so f is equivalent to an anti-rational map

Suppose that f is equivalent to an anti-rational map. As mentioned, each fixed
point of σf is a fixed point of σf2 . If σf fixes τ1 and τ2, then σf2 fixes τ1 and τ2.
Since some iterate of σf2 contracts the Teichmüller metric τ1 = τ2 and there is a
unique fixed point of σf which implies that f is unique up to Möbius conjugacy. �

Let GT be one of the orientation reversing Thurston maps from Proposition 5.2.

Proposition 6.2 (GT is unobstructed). The map GT is equivalent to an anti-
rational map gT that fixes all of its critical points. The map gT is unique up to
Möbius conjugacy.

Proof. We write GT as G for simplicity. Using W. Thurston’s characterization
theorem for rational maps, we first argue that G2 is equivalent to a rational map
by showing that no obstruction exists for this orientation preserving branched cover.
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Assume that there is a Thurston obstruction Γ for G2 to be a rational map;
see [45] for background and terminology. Such a Γ is a curve system in the punc-

tured sphere Ĉ \ VT , where VT is the vertex set of T . By possibly passing to a
subsystem, we may further assume that Γ is irreducible, i.e., the corresponding
Thurston linear transformation G2

Γ is irreducible. Finally, by possibly changing T
and Γ in their respective homotopy classes relative to VT , we may assume that Γ
minimally intersects each edge of T . Indeed, the latter can be seen by choosing

the edges of T and the curves of Γ to be geodesics in the punctured sphere Ĉ \ VT
equipped with the hyperbolic metric.

It follows from Proposition 5.2 that the homotopy class of each edge of T is
invariant under G. Thus, each such edge forms an irreducible arc system Λ which
is forward invariant under G2 up to isotopy relative to the vertex set VT , in the
terminology of [45]. Let Λ̃ denote the component of G−2(Λ) that is isotopic to Λ

relative to VT , and let T̃ be the arc system consisting of all arcs Λ̃. The system

T̃ forms a triangulation of Ĉ isotopic to T relative to VT . This follows from the
fact that G is univalent away from the vertices VT . Similarly, let Γ̃ denote the
union of those components of G−2(Γ) which are isotopic to elements of Γ. Since Γ

is assumed to be irreducible, we conclude that Γ̃ contains a curve system that is
isotopic to Γ relative to VT .

It now follows from [45, Theorem 3.2] that, as subsets of Ĉ, the arc Γ̃ may not

intersect G−2(Λ) \ Λ̃, for any edge Λ of T . Indeed, since Γ minimally intersects
each Λ, the first case of [45, Theorem 3.2] means that Γ ∩ Λ = ∅ as sets. Thus we

have that G−2(Γ)∩G−2(Λ) = ∅, and, in particular, Γ̃∩ (G−2(Λ)\ Λ̃) = ∅. If, in the

second case, Γ∩Λ 
= ∅, then [45, Theorem 3.2, 2(a)] gives that Γ̃∩(G−2(Λ)\Λ̃) = ∅.
Since Γ̃ ∩ (G−2(Λ) \ Λ̃) = ∅ for each edge Λ of T , we conclude that Γ̃ cannot

intersect the set G−2(T ) \ T̃ . Indeed, if Γ̃ did intersect G−2(T ) \ T̃ , then it would

intersect G−2(T ), i.e., there would exist an edge Λ of T such that Γ̃∩G−2(Λ) 
= ∅.
Since Γ̃ ∩ (G−2(Λ) \ Λ̃) = ∅, we would conclude that Γ̃ can only intersect G−2(T )

at points of T̃ , and the claim follows.
We now argue that the closure of G−2(T ) \ T̃ contains a connected graph con-

taining the postcritical set of G2, which is VT . Since G is a covering map over

Ĉ \ VT , it is enough to check this statement for the original triangulation T whose
edges are invariant under G, rather than the isotopic triangulation whose edges are
the geodesics as above. In this case T̃ = T , and since G−1(T ) ⊆ G−2(T ), it is
enough to check that G−1(T ) \ T is a connected graph containing VT . Let f ∈ F
be a face of the graph T . Since T is a triangulation, the closure of T \ f is a
connected set containing the three vertices of f . Recall that G is univalent on each
face (Proposition 5.2), so G−1(T \f)∩f is also a connected set containing the three
vertices of f . Carrying out this procedure for all faces and taking the union, it is
shown that the closure of G−1(T ) \ T is connected and contains VT .

The curve system Γ̃ contains an isotopic copy relative to VT of a Thurston ob-
struction Γ. Therefore, Γ̃ must separate the postcritical set VT without intersecting
the closure of the connected set G−2(T ) \ T̃ that contains VT . This is impossible,
and thus no Thurston obstructions exist for G2, and so G2 is equivalent to a ra-
tional map. The conclusion that G is anti-rational follows from Proposition 6.1.
Thurston equivalence preserves local degrees and postcritical dynamics, so gT must
also fix all of its critical points.
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The uniqueness statement will follow from Proposition 6.1 once it is seen that
G2 has hyperbolic orbifold. Since G(PG) = PG, the equation |PG◦G| = |PG| holds.
Since T was assumed to have at least 4 vertices, it follows from Proposition 5.2
that G2 has at least 4 postcritical points. If |PG| > 4, it is immediate that G2 has
hyperbolic orbifold because |PG2 | > 4. If |PG| = 4, then G ◦ G has postcritical
set consisting of four fixed critical points, and by direct computation, G ◦ G has
hyperbolic orbifold. �

6.2. Isotopic nerves. Suppose an anti-rational map g fixes each of its critical
points. If a Fatou component contains a critical point, it is called a critical Fatou
component. Let U be a critical Fatou component. Adapting the classical Böttcher
theorem, there is a Böttcher coordinate φ : U → D so that φ ◦ g = gd ◦ φ, where
gd(z) = z̄d. By Carathéodory’s theorem, the map φ−1 extends continuously to a
semi-conjugacy of D onto U . A Böttcher ray of angle θ0 for φ is defined to be the
subset of U of the form φ−1(reiθ0) where r ∈ [0, 1]. Note that the ray of angle j

d+1 is
gd-invariant for j = 0, . . . , d, and so the Fatou component U has d+1 corresponding
g-invariant rays. A ray connection of g is the union of two Böttcher rays (either in
the same or different Fatou components) whose intersection contains a point in the
Julia set. Two distinct critical Fatou components are said to touch if there is a ray
connection between their corresponding critical points.

There is a general result of Pilgrim that can be used to prove the existence of ray
connections [44, Theorem 5.13] and show that only finitely many ray connections
exist (though the precise number of ray connections is not specified). The proof of
Lemma 6.3 adapts Pilgrim’s argument to our specific setting.

Let h0 : S2 → Ĉ represent the unique fixed point of the pullback map σG on
Teichmüller space, where h0 is normalized to carry the postcritical set of GT (this
is the same as the set of critical points) to that of gT .

Lemma 6.3. Let α be an edge in T . Then the arc h0(α) is isotopic (rel the
postcritical set) to a ray connection of gT . Moreover, there is a lift of h0(α) under
gT that is isotopic to h0(α).

Proof. Recall from the construction of the orientation reversing Thurston map GT
that an edge in T is a geodesic arc α connecting the centers of two circles that
are tangent to each other, and that α is invariant under GT (see Proposition 5.2).

Define the sequence of orientation preserving homeomorphisms {hi : S2 → Ĉ}∞i=1

inductively by the pullback equation hi−1 ◦GT = gT ◦ hi, i = 1, 2, . . . . Each hi is
likewise normalized so that it carries the postcritical set of GT to that of gT .

Let βi := hi(α). Note that βi does not intersect postcritical points of gT , other
than its endpoints, because α does not intersect any of the postcritical points of
GT other than its endpoints. Since α is a lift of itself under GT , it follows that
βi+1 is a lift of βi under gT for i ≥ 0, and that βi+1 is isotopic relative to the
postcritical set to βi (though possibly tracing a different arc). Denote by U1 and
U2 the two Fatou components that contain the endpoints of βi for all i. Applying
an isotopy to β0 relative to the postcritical set, it may be assumed that β0 ∩ U1

and β0 ∩ U2 each consists of exactly one component which is a Böttcher ray. The
forward invariance of U1 and U2 implies that for each i, the sets β1

i := βi ∩ U1 and
β2
i := βi ∩U2 each consist of a single Böttcher ray. Define the sequence of compact

sets Ki := βi \ (β1
i ∪ β2

i ), and observe that gT (Ki+1) = Ki and gT |Ki+1
is injective

for each i.
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A hyperbolic rational map is uniformly expanding on compact subsets of Ĉ that
do not intersect the postcritical set [39, §19]. Thus the sequence of compact sets
Ki has diameter converging to zero as i → ∞, and therefore some subsequence of
{βi} has Hausdorff limit β that is a ray connection between the critical points in
U1 and U2.

Since every postcritical point outside of U1∪U2 is contained in a Fatou component
and hence has positive distance from the Julia set, it follows that Ki has a definite
positive distance from each such point for all i. Thus the limiting ray connection
β is in the same isotopy class as βi for all i. �
Lemma 6.4. Each ray connection of gT that is not a loop is isotopic to an edge
of h0(T ).

Proof. Let x and y be two distinct critical points of gT . Let γ1 be an arc with
endpoints x and y and let γ2 satisfy the same properties. In this proof, all homo-

topies are considered in Ĉ\PgT rel the endpoints of the arc. Denote by ι(γ1, γ2) the
minimum of the quantity |γ′

1 ∩ γ′
2| for all γ′

i in the homotopy class of γi rel {x, y},
i = 1, 2. If γ1 and γ2 are both ray connections, it is evident that ι(γ1, γ2) ≤ 3.
Let {γk}∞k=1 be a sequence of arcs with endpoints {x, y} so that no two arcs are
pairwise homotopic rel {x, y}. Then for any integer M > 0, there exist indices l
and m so that ι(γl, γm) > M .

Let β be a ray connection of gT with endpoints distinct. Then, for each i ≥ 0,
g◦iT (β) is also a ray connection. Therefore, by the previous paragraph, there exist

integers i ≥ 0 and j > 0 (taken to be minimal) so that g◦iT (β) and g◦i+j
T (β) := β′ are

isotopic rel endpoints. Then α := h−1
0 (β′) is an arc with distinct endpoints in the

vertex set of T . After applying a homotopy, we may assume that α intersects the
disks D1, D2 containing its endpoints radially. Some lift of α under G◦j

T is isotopic

to α. Denote by αk some choice of a lift of α under G◦kj
T that is isotopic to α.

We argue as in Lemma 6.3. The map GT is expansive by Lemma 5.1, and the
non-triviality of the αk implies that D1 and D2 must touch. By construction, D1

and D2 touch in at most one point which is contained in an edge in T , and thus
{αk}∞k=1 converges in the Hausdorff topology to this edge of T . Since edges lift to
themselves under GT it follows that j = 1.

Each edge of T has exactly one GT -lift with the property that both endpoints
are critical points, namely the edge itself. Thus i = 0 and h0(α) = β′ is isotopic to
β. �
Corollary 6.5. A Fatou component of gT with fixed critical point of multiplicity d
touches exactly d+ 1 invariant Fatou components distinct from itself.

Proof. The h0 preimage of such a critical point is the endpoint of d + 1 edges in
the triangulation T . The conclusion follows from Lemmas 6.3 and 6.4. �
Lemma 6.6. No point is contained in the boundary of three or more critical Fatou
components.

Proof. Suppose z lies in the closure of three distinct Fatou components. By the
Jordan curve theorem, there are at most two points that lie in the closure of the
three Fatou components. Thus the forward orbit of z consists of at most two points.

If z is fixed by gT , three invariant Fatou components touch at a fixed point.
This is incompatible with the (orientation reversing) local linearization at that
fixed point. A similar argument applies if gT (z) is fixed.
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The final case to consider is that z is in a two-cycle. Then there are three
invariant critical Fatou components U, V , and W so that {z, gT (z)} ⊂ U ∩ V ∩W .
There must be some critical point x in a complementary component of U ∪ V ∪W .
Without loss of generality, we may assume that x is separated from W by U ∪ V .
But then there are two non-homotopic ray connections connecting the critical points
in U and V , which is contrary to Lemma 6.4 and the fact that T contains no graph
two-cycles. �

From Lemma 6.4 it is known that ray connections must be invariant up to isotopy,
but we prove a stronger statement.

Lemma 6.7. Each ray connection that is not a loop is invariant under gT .

Proof. Let U be a fixed critical Fatou component and recall that U has a Böttcher
coordinate φ : U → D so that φ◦gT = gd ◦φ, where gd(z) = z̄d. By Carathéodory’s
theorem, the map φ−1 extends continuously to a semi-conjugacy of D onto U . For
a subset E in ∂U , abusing notations, we denote by φ(E) the full preimage of E
under the extended semi-conjugacy φ−1.

Let U1, . . . , Ud+1 be the critical Fatou components that touch U , as guaranteed
in Corollary 6.5. Define Ki ⊂ ∂D to be the compact set φ(U ∩ Ui) for all i. Note
that for all j 
= i, the set Ki is not separated by Kj in ∂D since U,Ui, and Uj

are pairwise disjoint. Furthermore, gd(Ki) ⊂ Ki for all i. Denote by H(Ki) the
smallest closed circular arc in ∂D that contains Ki, and denote by |Ki| the length of
H(Ki). Any two distinct sets of the form H(Ki) have disjoint interior by planarity
of the corresponding Fatou components and have disjoint boundary by Lemma 6.6.

Each setH(Ki) is now shown to contain at least one fixed point of the power map
gd. If |Ki| ≥ 2π

d+1 , the conclusion is immediate because of the equal distribution

of the d + 1 fixed points of gd on the circle. If |Ki| < 2π
d+1 , then the expansion of

gd and the forward invariance of Ki implies that |Ki| = 0. Thus Ki consists of a
single point which must be fixed since gd(Ki) ⊂ Ki.

There are d + 1 fixed points of gd in the circle and d + 1 distinct Ki so each
H(Ki) contains exactly one fixed point of gd. If |Ki| < 2π

d+1 it was just argued that
Ki is a singleton. It will now be shown that this is always the case. Suppose that
|Ki| ≥ 2π

d+1 . Then Ki contains a fixed point z0 as well as a point z1 that has circular

distance from z0 contained in ( π
d+1 ,

2π
d+1 ). It follows that gd(z1) is separated from z0

by another fixed point which must also then be contained in H(Ki). Thus H(Ki)
contains two fixed points of gd which is a contradiction. Each Ki has been shown
to be a singleton.

Under the semi-conjugacy φ−1, these d + 1 fixed points are carried to d + 1
distinct fixed points of gT in ∂U by Lemma 6.6. The fact that Ki is a singleton
implies that there is a unique Böttcher ray in U landing at φ−1(Ki). Similarly
there is a unique Böttcher ray in Ui landing at φ−1(Ki). The union of these two
Böttcher rays forms a ray connection which is the unique connection between the
two critical points. Thus the ray connection is forward invariant. �

Lemma 6.8. No ray connection of gT is a loop.

Proof. Let U be a fixed critical Fatou component, and suppose that β1 and β2 are
Böttcher rays that terminate at a common endpoint z in the Julia set, i.e. β1 ∪ β2

forms a loop.
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First, suppose z is fixed and β1 and β2 are invariant. Suppose the local degree of
the critical point in U is −d. Then by Corollary 6.5, there are exactly d+ 1 other
fixed critical points that are connected by a single ray connection to the critical
point in U . By Lemma 6.6, the intersection of the d+ 1 rays with U is a collection
of d+ 1 distinct Böttcher rays. Each of the rays is invariant by Lemma 6.7 and so
the collection of Böttcher rays must include β1 and β2. Thus there is an invariant
ray connection that contains β1 and terminates at the critical point of another
Fatou component. But three distinct invariant arcs are incompatible with the local
linearization of the anti-holomorphic map gT at z. Thus β1 = β2.

Now suppose β1 and β2 are invariant after some finite number of iterations of
gT . By the previous paragraph and the fact that there are no critical points in the
Julia set (hence the iterates at z are locally univalent), it follows that β1 = β2.

The case that β1 is invariant after a finite number of iterates, and β2 is not
invariant after a finite number of iterates is incompatible with the local linearization
at z and the Böttcher coordinate on U (for a similar argument see [39, Lemma
18.12]).

The final case to consider is that β1 and β2 are distinct Böttcher rays that are
not (eventually) invariant under gT . As before, let z denote the common endpoint
of β1 and β2 in the Julia set. Recall that the restriction of gT to U is conformally
conjugate to gd(z) = z̄d on the open unit disk. Let α1, α2 each be a radius of the
unit disk that is not eventually invariant under iteration of gd. Since gd is a power
map, there is some iterate n so that g◦nd (α1) \ {0} and g◦nd (α2) \ {0} are separated
by the union of two invariant radii. Thus under iteration, β1 and β2 are separated
in U by two invariant rays γ1 and γ2 in U . Without loss of generality, we replace
β1 and β2 by their separated iterates. Also we may assume that γ1 and γ2 are
neighbors in U , in the sense that their union has a complementary component in
U that does not intersect any invariant rays. Moreover, γ1 and γ2 are subsets of
ray connections to other Fatou components by Corollary 6.5 and Lemma 6.7. Thus
there are invariant critical Fatou components U1 and U2 with closures containing
exactly one endpoint of γ1 and γ2 respectively.

Suppose first that U1 and U2 are contained in distinct complementary com-
ponents of U (see Figure 8). But U1 and U2 must touch since they arise from
neighboring invariant rays, so U , U1, and U2 touch at z. This contradicts Lemma
6.6. Suppose next that U1 and U2 are contained in the same complementary com-
ponent of U . But then one of γ1 or γ2 contains z in its closure, so z is fixed by
gT and is the landing point of an invariant Böttcher ray. Once again, one can use
the linearization of gT at z and the existence of the Böttcher coordinate on U to
conclude that β1 and β2 are invariant under finitely many iterates which contradicts
the hypothesis. Thus β1 = β2. �

The nerve of gT is defined to be the graph whose vertex set is the set of fixed
critical points of gT and edge set is given by the collection of all ray connections
both of whose endpoints are fixed critical points. We do not assume that the nerve
has a finite number of edges, or even that it is an embedded graph. The nerve is
said to be naturally embeddable if the intersection of each pair of ray connections
is a subset of the vertex set. If the nerve is naturally embeddable, we consider it to
be an embedded graph given by the obvious embedding.
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Figure 8. Sample impossible configuration from the final case of
the proof of Lemma 6.8

Proposition 6.9 (Nerve of gT ). The nerve of gT is a naturally embeddable graph

in Ĉ that is isotopic to T ⊂ S2. Moreover, each vertex of the nerve is fixed by gT
and each edge is invariant.

Proof. Suppose that two ray connections β and β′ intersect but are not identical.
It is impossible for β ∩ β′ to be the union of a disjoint Böttcher ray and a point
because this would imply the existence of a loop contrary to Lemma 6.8. Moreover
β∩β′ may not be a single Böttcher ray because this configuration would imply that
three Fatou components touch at the same point, contrary to Lemma 6.6. Thus
β ∩ β′ is a subset of the vertex set and the nerve is naturally embeddable.

The homeomorphism h0 : S2 → Ĉmaps the embedded triangulation T to another
triangulation. Since h0 is a global orientation preserving homeomorphism, h0(T )
is isotopic to T (here the isotopy is not rel vertices). Recall from Lemma 6.3 that
each individual edge of h0(T ) is isotopic relative postcritical set to an edge in the
nerve of gT , and each edge of the nerve arises in this way by Lemma 6.4. Thus
there is a global isotopy that carries h0(T ) to the nerve. It follows that T is isotopic
to the nerve of gT .

Invariance of vertices was a simple consequence of Thurston equivalence in
Proposition 6.2. Invariance of edges is the conclusion of Lemma 6.7. �

In conjunction with Proposition 6.2 we have the following analogue of the Circle
Packing theorem.

Corollary 6.10. For any triangulation T of the sphere, there exists an anti-rational
map that fixes each of its critical points and has nerve that is naturally embeddable
and isotopic to T .

6.3. Promoting Thurston equivalence to conjugacy. Now it is shown that
the Thurston equivalence between GT and gT can be promoted to a conjugacy on
the Julia set using a pullback argument. The existence of the conjugacy has been
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shown generally in [25, Theorem 4.4], [3, Corollary 1.2], and similar results have
been shown in different contexts, see e.g. [16, Corollary 1.2], [6, Theorem 11.1].

Theorem 6.11 (Equivariant homeomorphism between limit set and Julia set).
There is a homeomorphism h : ΛH → J (gT ). Moreover, h ◦ GT = gT ◦ h, and h
extends to an orientation preserving homeomorphism of the sphere.

Proof. We have just shown that the nerve of gT is isotopic to the nerve of the circle
packing CT , in particular there is an orientation preserving homeomorphism h0 of

Ĉ carrying the nerve of GT to the nerve of gT . Moreover, by possibly changing
h0 in the same isotopy class relative to the critical points of GT , we may and will
assume that the map h0 takes each fixed connected component of the complement
of ΛH onto a fixed Fatou component of J , and still takes the nerve of GT to the
nerve of gT .

A dynamical interstice of generation n ∈ N is the closure of a connected compo-
nent obtained by removing from the sphere the closures of the Fatou components
of gT of generation at most n. A group interstice of generation n is defined simi-
larly, but with respect to the complementary components of ΛH . Both dynamical
and group interstices are topological triangles whose vertices are touching points of
two complementary components of J and ΛH , respectively. The above assumption
implies that h0 takes a group interstice of generation 0 onto a dynamical interstice
of generation 0.

Let hi, i ≥ 1, be a lift of hi−1, namely,

(4) gT ◦ hi = hi−1 ◦GT .

The existence of such a lift follows from the fact that GT and gT are equiva-
lent maps and they are topological coverings outside their respective fixed critical
points. Since gT may not have critical points outside of the nerve, it follows from
Proposition 6.9 that gT is univalent on each dynamical interstice Δ of generation 0.
Moreover, it takes each such interstice Δ onto the closure of its complement minus
the three Fatou components whose boundaries intersect Δ.

Applying equation (4) inductively, we conclude that the map hi takes each group
interstice of generation i onto a dynamical interstice of generation i. Moreover, the
same equation gives that for each j ≥ i, the map hj takes each group interstice Δ
of generation i onto the same dynamical interstice hi(Δ) of generation i.

Let Pi, i ≥ 0, denote the set of points common to two group interstices of gen-
eration i. Since the nerves of GT and gT are preserved by these maps, respectively,
the map h0 takes the nerve of GT to the nerve of gT , and the maps h1 and h0 are
isotopic relative to the critical points of GT , we conclude from (4) that h1 agrees
with h0 on P0. Arguing inductively, equation (4) gives that hj = hi on Pi for all
0 ≤ i ≤ j. Let

P∞ = ∪∞
i=0Pi,

and define
h(x) = lim

i→∞
hi(x), x ∈ P∞.

This limit exists by the preceding discussion and the set P∞ is dense in ΛH by
Lemma 5.1. Equation (4) gives

gT ◦ h(x) = h ◦GT (x), x ∈ P∞.

We now show that the family {hi}∞i=0 is equicontinuous on ΛH . Indeed, let
ε > 0 be arbitrary. We choose N ∈ N such that all dynamical interstices of J of
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generation N have diameter at most ε. It is possible to choose such an ε since gT
is expanding. If Δ is a group interstice of ΛH of generation N , we define the height
of Δ to be the smallest of distances (in the geodesic distance on the sphere) from
each vertex of Δ to the side opposite to this vertex. Let δ > 0 be the smallest
height among all group interstices of ΛH of generation N . Such a δ exists because
there are only finitely many group interstices of generation N .

Let x, y ∈ ΛH be such that d(x, y) < δ, where d denotes the geodesic metric on
the sphere. Let l be the geodesic in the sphere of length d(x, y) that joins x and
y. Let D be a complementary disk of ΛH of generation at most N . By replacing
the intersection of l with each such disk D by the shortest arc on the boundary
∂D with the same endpoints, we conclude that there exists a path l′ in ΛH that
connects x and y and whose length is at most πδ. Note that the path l′ cannot
be self-intersecting. We claim that there exists an absolute constant C such that l′

intersects at most C group interstices of generation N . If this is the case, we have
d(hi(x), hi(y)) < Cε for all i ≥ N , and the equicontinuity follows.

Now, if x and y are in the same generationN group interstice or in two generation
N interstices that share a vertex, the claim is immediate. Assume that this is not
the case, and let k be the number of generation N group interstices that intersect
l′, excluding the interstices that contain x and y. If Δ is one of the k such group
interstices, then l′ must contain two distinct vertices of Δ. This follows from the
observation that l′ is not self-intersecting. Therefore, the length of l′ is at least kδ.
Since the length of l′ is at most πδ, we conclude that k ≤ 3. Thus C = 5 works
and the proof of equicontinuity of {hi}∞i=0 is complete.

The equicontinuity of {hi}∞i=0 and the density of P∞ in ΛH imply that the map
h has a unique continuous extension to all of ΛH . We continue to denote this
extension by h. Moreover, the map h has to satisfy

gT ◦ h(x) = h ◦GT (x), x ∈ ΛH ,

i.e., h semi-conjugates ΛH to J .
The map h is a surjective map from ΛH to J because h(P∞) is dense in J ,

which follows from hyperbolicity of gT .
We now argue that h is also injective. Let x and y be two distinct points in

ΛH . From Lemma 5.1 we know that there exists i ∈ N such that x and y belong
to two disjoint group interstices Δx and Δy of generation i. Then the dynamical
interstices hi(Δx) and hi(Δy) are disjoint. As stated above, we also have that
hj(Δx) = hi(Δx) and hj(Δy) = hi(Δy) for all j ≥ i. Thus, h(Δx ∩ P∞) ⊆ hi(Δx)
and h(Δy ∩P∞) ⊆ hi(Δy) are disjoint. Therefore, by taking closures and using the
continuity of h, we get that h(Δx ∩ ΛH) ⊂ hi(Δx) and h(Δy ∩ ΛH) ⊂ hi(Δy) are
disjoint, and hence h(x) 
= h(y).

The fact that h extends to an orientation preserving homeomorphism of the
sphere follows from Lemma 3.1. �

Theorem 6.11 tells us that the anti-rational map gT is intimately related to the
reflection group HT .

Corollary 6.12 (Conjugacy between anti-rational map and Nielsen map). The
anti-rational map gT : J (gT ) → J (gT ) is topologically conjugate to the Nielsen
map NT : ΛH → ΛH .

Proof. Follows from Theorem 6.11 and the fact that GT ≡ NT on ΛH . �
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Proposition 6.13 (Global conjugacy between GT and gT ). There exists a home-

omorphism h of the whole Riemann sphere Ĉ such that

(5) h ◦GT = gT ◦ h
on Ĉ.

Proof. In Theorem 6.11 we proved the existence of a homeomorphism h such that
(5) holds true on ΛH . This theorem also states that h has a homeomorphic extension
to the whole sphere, but in general this extension does not have to satisfy (5) outside

of ΛH . We now show that a homeomorphic extension to Ĉ \ ΛH that satisfies (5)
exists.

Let D be a component of ΩH = Ĉ \ ΛH that is fixed by GT , and let U be the
Fatou component of gT that corresponds to D under the map h from Theorem 6.11.
Furthermore, let Φ: D → D be the map from Section 5 such that

(6) Φ ◦GT = gd ◦ Φ
on D, where gd(z) = z̄d, and let φ : U → D be the Böttcher coordinate of U . Note
that since U is a Jordan domain, such φ exists. Moreover, from conjugation of GT
and gT on the boundary of D we know that

(7) φ ◦ gT = gd ◦ φ
on U . Also, the map φ is unique up to postcomposition with a rotation by an angle
which is an integer multiple of 2π/(d + 1). Therefore, we may assume that φ is
selected in such a way that for each fixed point zi of GT on the boundary of D, we
have φ(h(zi)) = Φ(zi). Putting together equation (5) on the boundary of D and
(6), (7), we conclude that φ(h(z)) = Φ(z) holds for all z on the boundary of D.

We now extend h from Theorem 6.11 to D using the formula

h = φ−1 ◦ Φ.
In such a way we obtain a homeomorphic extension of h from the boundary of each
fixed component D inside D that satisfies (5) in D.

If D is a non-fixed by GT component of ΩH , let k ∈ N be the smallest integer
such that Gk

T (D) is fixed by GT . From Theorem 6.11 we know that the component
h(Gk

T (D)) = gkT (h(D)) must be fixed by gT . Note that k must also be the smallest
integer with this property, and hence gkT is univalent on h(D). We define the
extension of h inside such a D by

h = g−k
T ◦ φ−1 ◦ Φ ◦Gk

T ,

where the branch of g−k
T is chosen so that

g−k
T (gkT (h(D))) = h(D).

From the above, such an extension satisfies (5) in D.
Since we now were able to extend h into each component of ΩH and diameters

of D as well as the corresponding Fatou components U go to 0, we conclude that
such extensions paste into a global homeomorphism, and the proof is complete. �

For example, the Julia set where T is the tetrahedron is shown in Figure 9.

Remark 6.14. Recall from Subsection 4.2 that if the dual graph Ť of the triangula-
tion T is Hamiltonian, then the group ΓT (which is the index two Kleinian subgroup
of the reflection group HT ) is obtained as a limit of a sequence of quasi-Fuchsian
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Figure 9. The Julia set corresponding to the tetrahedron with
nerve superimposed. The anti-rational map is given by f where

f(z) = 3z2

2z3+1 . (The image of Jf appeared in [12].)

deformations of Γd that pinch a suitable collection of simple closed non-peripheral

geodesics on the (d + 1)-times punctured spheres D/Γd and (Ĉ \ D)/Γd. More-

over, these geodesics lift by Γd to the universal covers D and Ĉ \ D (respectively)
giving rise to a pair of ρd-invariant geodesic laminations such that the quotient
of T by pinching the endpoints of the leaves of both these laminations produces a
topological model of the limit set ΛH .

Each of these two laminations can be viewed as an equivalence relation on T.
Pushing forward these two laminations by the topological conjugacy Ed between ρd

and gd, where we recall that gd(z) = zd, we obtain two gd-invariant formal rational
laminations in the sense of [26]. An anti-holomorphic version of [26, Theorem 1.1]
implies that these laminations are admitted by two critically fixed degree d anti-
polynomials. It is not hard to see that the topological mating of these two critically
fixed anti-polynomials (see [40, Definition 4.1] for the definition of topological mat-
ing of two polynomials, these notions carry over to anti-polynomials in the obvious
way) is a degree d orientation reversing branched cover of S2 that is topologically
conjugate to GT . In light of Proposition 6.13, we now conclude that the topological
mating of these two critically fixed anti-polynomials is topologically conjugate to
gT such that the conjugacy can be chosen to be conformal in the interior of the Fa-
tou sets of the anti-polynomials. In other words, gT is a geometric mating of these
two anti-polynomials (see [40, Definition 4.4]). In particular, the quotient of T by
the above-mentioned gd-invariant rational laminations yields a topological model
of J (gT ), and the quotient map from T onto J (gT ) semi-conjugates gd : T → T to
gT : J (gT ) → J (gT ).

7. Gasket Julia set quasisymmetries

Let Δ be a complementary component of the nerve of the Fatou set of gT . The

restriction of gT to Δ is evidently univalent, and gT (Δ) = Ĉ \Δ. We associate to
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Δ a dynamically defined map ρΔ : Ĉ → Ĉ as follows:

ρΔ(z) =

{
gT (z) if z ∈ Δ,

g−1
T (z) if z /∈ Δ, where g−1

T : Ĉ \Δ → Δ.

Note that the map ρΔ is not continuous on all of Ĉ, but restricts to a continuous
involution on the Julia set J (gT ).

Lemma 7.1. For any Δ as above, ρΔ restricted to J (gT ) is quasisymmetric.

Proof. Let U1, U2, and U3 be the three Fatou components of gT that intersect the
boundary of Δ. From the definition of ρΔ, we immediately conclude that this map

restricted to Δ ∪ (Ĉ \Δ) is anti-conformal. Hence, ρΔ is anti-conformal in(
Δ \ U1 ∪ U2 ∪ U3

)
∪
(
Ĉ \Δ ∪ (U1 ∪ U2 ∪ U3)

)
.

Let φi : Ui → D, be a Böttcher coordinate of Ui, i = 1, 2, 3, that conjugates the
map gT |Ui

to gdi
(z) = z̄di on D. The restriction ρi of φi ◦ ρΔ ◦ φ−1

i , i = 1, 2, 3,

to the boundary circle of D is then given piecewise as follows. It is z �→ z̄di on an
arc between two successive fixed points of gdi

, and z �→ z̄1/di on the complement of
the arc, where the branch of z̄1/di is selected so that the resulting piecewise map
ρi is a homeomorphism of the circle. Each such ρi, i = 1, 2, 3, is a bi-Lipschitz
orientation reversing homeomorphism of the circle. Therefore each complex con-
jugate map ρi, i = 1, 2, 3, is an orientation preserving bi-Lipschitz map, and, in
particular, it is quasisymmetric. According to the Ahlfors–Beurling theorem it
has a quasiconformal extension to D. Thus each map ρi, i = 1, 2, 3, has an anti-
quasiconformal extension to D, i.e., the complex conjugation of each extension is
quasiconformal. Conjugating back using the Böttcher coordinates φi, i = 1, 2, 3,
we conclude that the map ρΔ has an anti-quasiconformal extension into each of the

Fatou components U1, U2, U3. This way we obtain a global homeomorphism of Ĉ
that is anti-quasiconformal outside the union of three boundaries ∂U1 ∪ ∂U2 ∪ ∂U3.
Since gT is a hyperbolic rational map, each boundary ∂Ui, i = 1, 2, 3, is a quasi-
circle. According to [53, Theorem 4 and Proposition 9], the set ∂U1 ∪ ∂U2 ∪ ∂U3 is
quasiconformally removable.

Therefore, the restriction of ρΔ to the Julia set J (gT ) extends to an anti-

quasiconformal map of Ĉ. Since the classes of quasiconformal and quasisymmetric

maps of Ĉ coincide (see, e.g., [24]), we conclude that the restriction ρΔ|J (gT ) must
be quasisymmetric. �

Recall that Theorem 6.11 gives a homeomorphism h : ΛH → J (gT ). There is
an obvious induced isomorphism

h∗ : Homeo(ΛH) → Homeo(J (gT ))

defined by ξ �→ hξh−1 for ξ ∈ Homeo(ΛH).

Theorem 7.2 (Gasket Julia quasisymmetries). For a reduced triangulation T ,

Homeo(J (gT )) = QS(J (gT ))

and so there is an isomorphism

h∗ : Homeo(ΛH) → QS(J (gT )).
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Proof. The splitting Homeo(ΛH) = AutT (Ĉ)�H from Theorem 3.8 and surjectivity
of h∗ implies that every element of Homeo(J (gT )) is a composition of an element

of h∗(H) and an element of h∗(AutT (Ĉ)). To prove the theorem, it suffices to show
that all such elements are quasisymmetric.

Since h−1ρΔh is a homeomorphism of ΛH that acts invariantly on three of the
generation zero disks, it follows from Lemma 3.5 that h−1ρΔh is a generator of H.
Thus h∗(h

−1ρΔh) = ρΔ is a generator of h∗(H) for each Δ. Lemma 7.1 asserts
that ρΔ is a quasisymmetry. Thus, every element of h∗(H) is a composition of
quasisymmetries, and hence a quasisymmetry itself. Thurston rigidity implies that

every element of h∗(AutT (Ĉ)) is either a Möbius or anti-Möbius symmetry of J (gT )
and thus a quasisymmetry. �

To conclude the section, we note that unreduced triangulations are still very
much of interest, even though our theory does not directly apply to compute their
symmetry group. For example, the two graphs in Figure 3 are realized by anti-
holomorphic maps of degree −3 and −5 respectively, with Julia set homeomorphic
to the classical Apollonian gasket. Evidently neither map is an iterate of the other
since their degrees are prime. The procedure easily generalizes to produce infin-
itely many anti-holomorphic maps with Julia set homeomorphic to the classical
Apollonian gasket.

8. A quasiregular model

Throughout this section, T will denote the tetrahedral triangulation of the topo-
logical 2-sphere.

The goal of this section is to construct an orientation reversing anti-quasiregular
map G on a tetrahedron which is piecewise affine outside the fixed Fatou components
and quasiconformally conjugate to the critically fixed cubic anti-rational map g ≡
gT of the Riemann sphere (see Proposition 6.2). It is worth pointing out that the
main result of this section provides us with an alternative construction of the anti-
rational map g which does not use Thurston’s characterization of rational maps.

We consider a tetrahedron; i.e., a polyhedron composed of four congruent (equi-
lateral) triangular faces, six straight edges, and four vertices. The graph T defining
this triangulation can be identified with the union of the edges AB,AC,BC,AD,
BD, and CD including the vertices (see Figure 10(left)).

Let us denote the mid-points of the edges of T byE,F,· · ·, J (see Figure 10(right)).

Recall that there is a circle packing on Ĉ whose nerve is isomorphic to T . In the
current setting, the role of the round disks of this circle packing will be played by
the open caps with triangle boundaries EGJ , EFH, FGI, and HIJ , and which

contain the vertices A,B,C, and D respectively. We will denote them by ÊGJ ,

ÊFH, F̂GI, and ĤIJ .
The complementary components of the union of the closures of the caps are

equilateral triangles each of which is contained in a face of the triangulation. We
denote the closures of these equilateral triangles by ΔEFG,ΔFHI,ΔEHJ,ΔGIJ ,
and call them interstices. They play the role of the interstices of the corresponding
circle packing.

The tetrahedron is naturally endowed with an affine structure via identification
of its faces with equilateral triangles in the plane. More precisely, the tetrahedron
can be folded from the union of four equilateral triangles in the plane as depicted
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Figure 10. Left: The tetrahedral triangulation of the topological
2-sphere. Right: Partition of the tetrahedral surface into caps and
interstices.

in Figure 11; the four triangles are bounded by bold edges. This configuration of
triangles is called a net of the tetrahedron. We identify the faces of the tetrahedron
with the corresponding equilateral triangles in this net. Note that the vertices
D1, D2, D3 all correspond to the same vertex D on the tetrahedron. Similarly, as
the edge AD (on the tetrahedron) is obtained by folding AD1 and AD2 (on the
net), two points on AD1, AD2 that are equidistant from A correspond to the same
point on AD. The same is true for the pairs of edges BD1, BD3, and CD2, CD3.
Moreover, the interstices on the tetrahedron correspond to the equilateral triangles
ΔEFG, ΔEH1J1, ΔGI1J2, and ΔFH2I2 in the net. We will use the tetrahedron
and its net (which gives an affine structure to the tetrahedron) interchangeably.

We now proceed to define our desired quasiregular map G on the tetrahedron.
This will be done in two steps.

Step I (Defining G on the interstices). As in the construction of GT in Section 5,
we first define the map on the interstices. For definiteness, let us work with the in-
terstice ΔEFG (the definition on the other interstices will be symmetric). We sub-
divide ΔEFG into four congruent equilateral triangles ΔEKL, ΔKGM , ΔLMF ,
and ΔKLM , and further subdivide ΔKLM into three congruent triangles by join-
ing the vertices K,L,M to the barycenter N (as shown in Figure 11). Note that
the three triangles KLN , KMN , LMN are not equilateral.

Let us now map ΔEKL onto ΔEJ1H1 by an orientation reversing affine map.
This can be achieved by reflecting ΔEKL in the line AB, and then scaling it to
match with ΔEJ1H1. This defines an anti-conformal map G on ΔEKL. Now
extend G|KL affinely to the triangle ΔKLN such that it maps onto the triangle
ΔJ1H1D1 in an orientation reversing manner (since ΔJ1H1D1 is equilateral and
ΔKLN is not, the map G is not anti-conformal on ΔKLN). This completes the def-
inition of G on the quadrilateral EKNL. We can now extend G to the quadrilaterals
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Figure 11. The union of the equilateral triangles
ABC,ABD1, ACD2, and BCD3 forms a net of the tetrahe-
dron. The color-coding illustrates the action of the quasiregular
map G on the tetrahedron. The attracting basin of the D-vertex,
represented by D1, D2, D3 in the figure, is the union of the three
attached triangles (blue, yellow, violet).

GKNM and FLNM by reflecting the previously defined map G in the line segments
KN and NL such that the extended map sends the triangles ΔGKM , ΔKMN ,
ΔLMN , and ΔFLM affinely onto the triangles ΔGJ2I1, ΔJ2I1D2, ΔH2I2D3, and
ΔFH2I2 (respectively). It is easy to see that this definition is compatible with the
identifications of the edge pairs (D1J1, D2J2), (D1H1, D3H2), and (D2I1, D3I2).
Hence, we obtain a well-defined orientation reversing map G on the interstice ΔEFG
of the tetrahedron. Moreover, G is a piecewise defined (anti-)similarity (in partic-
ular, anti-conformal) on ΔEFG \ΔKLM .

We now repeat the above procedure on the other three interstices ΔIFH,ΔEHJ ,
and ΔGJI. Note that the above definition of the map G on the four interstices
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completely determines it on the boundaries of the four caps ĤIJ, ÊGJ, F̂GI, ÊFH
(around the vertices D,A,C,B, respectively).

Step II (Defining G on the caps). Let us first focus on the cap around the vertex

D (this is ĤIJ on the tetrahedron). The definition of G on the interstices implies
that G is an expanding double covering of the quasicircle HIJ on the tetrahedron
(in fact, it doubles the distance between a pair of nearby points).

Since G : HIJ → HIJ is an orientation reversing expanding double covering of
a topological circle, it is easy to see that there is a unique orientation preserving
topological conjugacy ψ between G : HIJ → HIJ and z2 : T → T that sends the
fixed points H, I and J of G to the fixed points 1, ω, and ω2 of z2 (where ω is a
primitive third root of unity). Note that G : HIJ → HIJ is piecewise affine, and
the left and right multipliers of G at each fixed point are equal. It follows that the
map G satisfies the distortion estimate of [29, Lemma 19.65] with a constant C = 1.
The proof of [29, Proposition 19.64] now applies to show that the conjugacy ψ is a
quasisymmetry.

Finally, as the cap ĤIJ is quasisymmetrically equivalent to D, the Ahlfors-
Beurling extension theorem provides us with a quasiconformal extension of ψ that

maps ĤIJ to the unit disk D, still denoted by ψ. We now extend G to the cap ĤIJ
as ψ−1 ◦ z2 ◦ ψ. Performing the same “surgery” on the remaining three caps, we
obtain the desired anti-quasiregular map G of degree −3 on the tetrahedron. We
note that G is not affine on the caps.

For an orientation reversing map f , the pullback of a Beltrami coefficient μ under
f is defined as (see [11, Exercise 1.2.2])

f∗(μ(z)) =

(
∂f/∂z + μ(f(z))∂f̄/∂z

∂f/∂z̄ + μ(f(z))∂f̄/∂z̄

)
.

Proposition 8.1. The map G on the tetrahedron is quasiconformally conjugate to
an anti-rational map R on Ĉ.

Proof. We will construct a G-invariant Beltrami coefficient on the tetrahedron,
and apply the Measurable Riemann Mapping Theorem to straighten G to an anti-
rational map.

Denote by μ0 the standard complex structure on D. Pulling μ0 back by ψ, we get
a G-invariant Beltrami coefficient μ on the caps of the tetrahedron. We now extend
μ to the tetrahedron by pulling back the previously defined Beltrami coefficient μ
(on the caps) by the iterates of G, and setting it equal to zero outside the iter-
ated preimages of the caps. Since G is a piecewise (anti-)similarity outside the first
preimages of the caps, the infinitesimal ellipse field defined by μ on the caps is only
distorted (i.e., the dilatation is changed) under the first pullback. Moreover, these
inverse branches of G are piecewise affine. It follows that μ is a G-invariant Bel-
trami coefficient on the tetrahedron with ||μ||∞ < 1. By the Measurable Riemann
Mapping Theorem, there exists a quasiconformal homeomorphism from the tetra-
hedron to the Riemann sphere Ĉ that pulls back the standard complex structure
on Ĉ to the one defined by μ on the tetrahedron. Therefore, this quasiconformal

map conjugates G to an anti-rational map R on Ĉ. �

Corollary 8.2. Up to Möbius conjugacy, R can be chosen to be g(z) = 3z2

2z3+1

(whose existence was demonstrated in Proposition 6.2).
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Proof. Note that since R is quasiconformally conjugate to G, it follows that R is a
critically fixed (in particular, postcritically finite) anti-rational map. By construc-
tion, its nerve is isotopic to T .

In Proposition 6.2, we constructed the postcritically finite anti-rational map g
(of degree −3) with four fixed critical points. By Proposition 6.9, the nerve of g is
also isotopic to T . By a Möbius map, we can send two of the distinct fixed critical
points of g to 0 and 1, and the only other preimage of 0 (under g) to ∞. Then, g
takes the form

g(z) =
(2a+ b+ 3)z2

1 + az + bz2 + (a+ 2)z3
,

for some a, b ∈ C. A direct computation using the fact that g fixes its two other

distinct critical points
(
− 1

2 ± 1
2

√
a−6
a+2

)
now shows that a = b = 0; i.e.

g(z) =
3z2

2z3 + 1
.

Since R and g have isotopic nerves, it follows that they are Thurston equivalent.
By Thurston rigidity, the anti-rational maps R and g are Möbius conjugate; i.e.,

R is Möbius conjugate to g(z) = 3z2

2z3+1
(see Figure 9 for the dynamical plane of

g). �

Remark 8.3. Since G is quasiconformally conjugate to an anti-rational map, it has
a unique measure of maximal entropy ν = ν(G) such that the measure-theoretic en-
tropy of G with respect to ν is ln 3 (the degree of G is −3). Moreover, ν is supported
on the “Julia set” of G, and is the Hausdorff measure of the Julia set. Since G is
a piecewise similarity with a constant derivative 2 on the Julia set, the Lyapunov
exponent of G with respect to ν is ln 2. A classical formula relating Lyapunov ex-
ponent, Hausdorff dimension and entropy of a measure (see [36]) now yields that
the Hausdorff dimension of the measure ν is ln 3/ ln 2, which is in accordance with
the fact that the Julia set of G is the union of four affine copies of the Sierpiński
gasket, and hence its Hausdorff dimension is equal to ln 3/ ln 2.

Remark 8.4. Note that while all four critical points of the cubic anti-rational map g
are simple and fixed, it follows from [15, Theorem 1] that there is no cubic rational
map with this property.

9. David surgery

Let h := E−1
2 be the orientation preserving homeomorphism of the unit circle

that conjugates the dynamics of g2(z) = z̄2 to the dynamics of the Nielsen map
ρ2 associated to the ideal triangle Π with vertices at the cube roots of unity (see
Subsection 4.1). Namely,

h ◦ g2 = ρ2 ◦ h.
Since both maps, g2 and ρ2, fix the cube roots of unity, we may assume that so
does h (this defines h uniquely). It follows that such h commutes with the rotation
z �→ e2πi/3z as well as the complex conjugation z �→ z̄. Our first goal is to show
that the homeomorphism h has a homeomorphic David extension inside the unit
disk D.

Recall that a map H : U → V between two domains in C or in the Riemann
sphere is called David if H is in the Sobolev class W 1,1

loc and there exist constants
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C,α,K0 > 0 withS

σ{z ∈ U : KH(z) ≥ K} ≤ Ce−αK , K ≥ K0.

Here σ denotes the Lebesgue or spherical measure and KH is the distortion function
of H given by

KH =
1 + |μH |
1− |μH | ,

with

μH =
∂H/∂z̄

∂H/∂z

being the Beltrami coefficient of H. Both, μH and KH are defined almost every-
where. The reader may consult [17] for background on David maps. Note that a

map H : U → V in W 1,1
loc is David if and only if there exist constants M,α, ε0 > 0

such that its Beltrami coefficient μH satisfies

(8) σ{z ∈ U : |μH(z)| ≥ 1− ε} ≤ Me−α/ε, ε ≤ ε0.

To show that a David extension of h exists, we will show that the scalewise
distortion function ρh̃(t) of h, in the sense of S. Zakeri, satisfies

(9) ρh̃(t) = O

(
log

1

t

)
, t → 0 + .

The scalewise distortion is defined as follows. Let h̃ be the lift of the map h
under the covering map x �→ e2πix. The map h̃ is then an orientation preserving
homeomorphism of the real line such that h̃(x + 1) = h̃(x) + 1. We may and will

assume that h̃(0) = 0. The distortion function ρh̃(x, t) is defined to be

(10) ρh̃(x, t) = max

{
h̃(x+ t)− h̃(x)

h̃(x)− h̃(x− t)
,
h̃(x)− h̃(x− t)

h̃(x+ t)− h̃(x)

}
,

for x ∈ R and t > 0. The scalewise distortion is

ρh̃(t) = sup
x∈R

ρh̃(x, t).

Since h commutes with the rotation by angle 2π/3, it is enough to take the above
supremum over x ∈ [0, 1/3].

To find the asymptotics of ρh̃(t) as t → 0+, it is convenient to replace the map

h̃ in a neighborhood of [0, 1/3] by the homeomorphism

hnew(x) = φ ◦ h̃(x/3)
of [0, 1], where φ is a bi-Lipschitz map of a neighborhood of [0, 1/3] onto a neigh-
borhood of [0, 1] with φ([0, 1/3]) = [0, 1], defined as follows. There exists a Möbius
transformation m that takes the upper half-plane onto the unit disk and such that
m(0) = 1,m(1) = e2πi/3, and m(∞) = e4πi/3. We now define

φ(x) = m−1(e2πix)

for x ∈ (−1/6, 1/3 + 1/6). The map φ is K-bi-Lipschitz for some K > 1, and
therefore we have the following relation

1

K2
ρh̃(3t) ≤ ρhnew

(t) ≤ K2ρh̃(t/3),
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for all t > 0 small enough. Therefore, ρh̃ satisfies (9) if and only if

(11) ρhnew
(t) = O

(
log

1

t

)
, t → 0+,

where
ρhnew

(t) = sup
x∈[0,1]

ρhnew
(x, t),

and the distortion function ρhnew
(x, t) is defined as in (10) with h̃ replaced by hnew,

and t > 0 small enough.
Note that the Nielsen map

θ : R ∪ {∞} → R ∪ {∞}, θ(t) =

⎧⎪⎨⎪⎩
−t t ∈ [−∞, 0] ,

t
2t−1 t ∈ [0, 1] ,

2− t t ∈ [1,+∞] ,

associated to the ideal triangle in the upper half-plane with vertices at 0, 1, and ∞,
maps [0, 1

2 ] (respectively, [
1
2 , 1]) to [−∞, 0] (respectively, to [1,+∞]). Composing

θ with a rotation that brings θ([0, 12 ]) = [−∞, 0] (respectively, θ([ 12 , 1]) = [1,+∞])
back to [0, 1] defines the orientation reversing double covering

τ : [0, 1) → [0, 1), τ (t) =

{
2t−1
t−1 (mod 1) t ∈

[
0, 1

2

)
,

1−t
t (mod 1) t ∈

[
1
2 , 1
)
.

The advantage of passing to the map hnew(x) = m−1
(
h
(
e2πi

x
3

))
is that, by

construction, it conjugates the dynamics of the orientation reversing doubling map
m−2 : [0, 1) → [0, 1) given by

m−2(x) =

{
−2x+ 1 (mod 1) x ∈

[
0, 1

2

)
,

−2x+ 2 (mod 1) x ∈
[
1
2 , 1
)
,

to the dynamics of τ . Therefore, each dyadic point in [0, 1] corresponds under the
map hnew to the point of tangency of the corresponding Ford circle [20] with the
real line. Indeed, due to the conjugation, points of the dyadic subdivisions of [0, 1]
correspond under hnew to points in [0, 1] obtained by iterated reflections in the
hyperbolic geodesics that are the sides of the ideal triangle with vertices at 0, 1,
and ∞. The three dual horocircles centered at 0, 1, and ∞, with those centered at
0 and 1 having equal Euclidean radii 1/2, generate the full family of Ford circles
under the reflections in the sides of the ideal triangle above.

Remark 9.1. The homeomorphism hnew is known in the literature as the Conway’s
box function; its inverse is the classical Minkowski question mark function, see
[48, §4] (cf. [31, §4.4.2]).

Recall that a Ford circle C[p/q] that corresponds to a fraction p/q ∈ [0, 1] in
its lowest terms is a circle whose radius is 1/(2q2) and center (p/q, 1/(2q2)); see
Figure 12. Two Ford circles are either disjoint or exterior-wise tangent to each
other. Two Ford circles C[p/q] and C[r/s] are tangent to each other if and only if
p/q and r/s are neighbors in some Farey sequence. Also, if C[p/q] and C[r/s] are
tangent Ford circles, then C[(p+ r)/(q+ s)] is the Ford circle that touches both of
them.

Let Dn = {k/2n : k = 0, 1, . . . , 2n} be the sequence of dyadic points of level
n ∈ N ∪ {0}, and let Fn = hnew(Dn) be the corresponding sequence of Farey
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Figure 12. Ford circles

numbers. Note that if p/q and r/s are two neighbors in Fn that correspond under
hnew to two neighbors k/2n and (k+1)/2n in Dn, then the point t/u in Fn+1 that
corresponds to the midpoint (2k + 1)/2n+1 is given by

t

u
=

p+ r

q + s
.

Moreover, the Euclidean distance between two neighbors p/q and r/s in Fn is given
by

1

qs
.

This follows from the fact that the Farey numbers are generated by the modular
group.

Furthermore, we have the following relations between Ford circles. We say that
a Ford circle C[p/q], as well as p/q, has generation n if the point p/q belongs to
Fn but not to Fn−1. Note that Fn−1 ⊂ Fn. The only two Ford circles of the
same generation that are tangent to each other are the circles C[0/1] and C[1/1]
of generation 0. Also, for each pair C[p/q] and C[r/s] of tangent Ford circles, one
of which has generation at least 1, there are exactly two other Ford circles that are
tangent to both, C[p/q] and C[r/s]. We need Lemma 9.2.

Lemma 9.2. There exists an absolute constant L ≥ 1 with the following property.
Let C[p/q] be a Ford circle of generation m ≥ 1 and C[t/u], C[v/w] be two Ford
circles that are tangent to C[p/q] and belong to the same generation n > m. Then

1

L
≤ u

w
≤ L.

In other words, the Euclidean lengths of two neighboring complementary intervals
of Fn, with common endpoint in Fm, m < n, are comparable.
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Proof. Since C[t/u] and C[v/w] have the same generation n and are tangent to the
same Ford circle C[p/q] of lower generation, the points t/u and v/w are separated
by p/q. Without loss of generality we assume that t/u < p/q < v/w.

Let C[tm+1/um+1] and C[vm+1/wm+1] be the Ford circles of generation m + 1
that are tangent to C[p/q] and such that

tm+1/um+1 < t/u < p/q < v/w < vm+1/wm+1.

Moreover, both radii 1/(2u2
m+1), 1/(2w

2
m+1) of C[tm+1/um+1], C[vm+1/wm+1], re-

spectively, are smaller than the radius 1/(2q2) of C[p/q]. This implies that the y-
coordinate of the point of tangency of C[tm+1/um+1] and C[p/q] is less than 1/(2q2).

On the other hand, this y-coordinate has to be greater than (1− 1/
√
2)/(2q2), be-

cause otherwise C[tm+1/um+1] would not be tangent to any Ford circle of generation
less than m, but it must be. The same is true for the y-coordinate of the tangency
point of C[vm+1/wm+1] and C[p/q].

Since the desired inequalities are scale invariant, we may rescale and assume
that the radius of C[p/q] is 1/2 and it is tangent to the real line at 0. Then the

corresponding y-coordinates are in the segment [(1− 1/
√
2)/2, 1/2]. Furthermore,

we may apply the inversion z �→ 1/z̄ and look at the corresponding lengths in the
spherical metric. Note that the Euclidean and the spherical metrics are locally
bi-Lipschitz. The circles that correspond to C[tm+1/um+1] and C[vm+1/wm+1]
under these transformations are circles of radii 1/2 that are tangent to the real line
at points contained in the segments [−C,−1/C] and [1/C,C], respectively, where
C ≥ 1 is an absolute constant.

Now, the circles that correspond to the above transformation, i.e., scaling, trans-
lation and inversion, C[t/u] and C[v/w] are the circles of radii 1/2 that touch the
real line at points contained in the segments

[−n+m+ 1− C,−n−m+ 1− 1/C], [n−m− 1 + 1/C, n−m− 1 + C],

respectively. For α > 0, the spherical length of [α,∞] is comparable to 1/α. There-
fore, the largest ratio of the lengths of the two intervals is comparable to

n−m− 1 + C

n−m− 1 + 1/C
,

which has uniform lower and upper bounds because n > m ≥ 1. �

Proposition 9.3 is crucial in estimating the distortion of hnew.

Proposition 9.3. There exists an absolute constant C ≥ 1 such that the following
holds. For n ≥ 1, let I and J be two complementary intervals of Fn that are
separated by at most two adjacent complementary intervals of Fn. Then for the
corresponding Euclidean lengths |I| and |J | we have

(12)
1

Cn
≤ |I|

|J | ≤ Cn.

Proof. The proof is by case analysis.

Case 1. We assume first that I and J are adjacent. There are two subcases to
consider, according to whether the Ford circle C[p/q] at the common endpoint p/q
of I and J has generation strictly less than n or equal to n. In the former case, the
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other two endpoints of I and J would have to be in Fn \Fn−1, and thus Lemma 9.2
gives

1

L
≤ |I|

|J | ≤ L,

for some absolute constant L ≥ 1, which is stronger than (12). In the latter case,
the common endpoint p/q of I and J is in Fn. We argue by induction on n. If n = 1,
then |I| = |J | = 1/2, and we are done. Suppose that (12) is true for generations at
most n − 1. Let r/s and t/u be the other two endpoints of I and J , respectively.
Then both of them would be in Fn−1 and

p

q
=

r + t

s+ u
.

Moreover, exactly one of the endpoints r/s and t/u will be in Fn−1\Fn−2. Without
loss of generality we assume that it is t/u and

r

s
<

p

q
<

t

u
.

It follows that r/s ∈ Fn−2 because, unless the generation is 0, no two Ford circles
of the same generation are tangent: they are separated by Ford circles of lower
generation. Let v/w ∈ Fn−2 be a neighbor of r/s in Fn−2 with

r

s
<

t

u
<

v

w
.

Then, u = s+ w, and thus

|I|
|J | =

u

s
=

s+ w

s
= 1 +

w

s
≤ n.

The last inequality follows from the induction hypothesis. Using symmetry argu-
ments, we conclude that if I and J are adjacent complementary intervals of Fn,
then

1

n
≤ |I|

|J | ≤ n,

which is stronger than (12).

Case 2. The next case to consider is when I and J are separated by a single
complementary interval K of Fn. Let the four endpoints of these intervals be
a1, a2, a3, and a4, with

a1 < a2 < a3 < a4.

We assume that I = (a1, a2),K = (a2, a3), and J = (a3, a4). By symmetry, we
may further assume that a1 and a3 have generation n, and thus the generations of
a2 and a4 are strictly less than n. From Lemma 9.2 we know that

1

L
≤ |I|

|K| ≤ L,

for some absolute constant L ≥ 1, and thus from Case 1 we conclude that

1

Ln
≤ |I|

|J | ≤ Ln.
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Case 3. Now we look at the case when I and J are separated by two adjacent in-
tervals K1 and K2. Let I = (a1, a2),K1 = (a2, a3),K2 = (a3, a4), and J = (a4, a5).
There are two subcases: the generations of a1, a3, a5 are n and the generations of
a2, a4 are strictly less than n, or the generations of a1, a3, a5 are strictly less than
n and the generations of a2, a4 are n. In the first subcase we use Lemma 9.2 to
conclude that

1

L
≤ |I|

|K1|
≤ L,

1

L
≤ |K2|

|J | ≤ L.

Also, from Case 1 we have
1

n
≤ |K1|

|K2|
≤ n.

Putting these together, we obtain

1

L2n
≤ |I|

|J | ≤ L2n.

In the second subcase, (a1, a3) and (a3, a5) are adjacent complementary intervals
of Fn−1 of lengths |I| + |K1| and |K2| + |J |, respectively. Therefore, either a1, a5
have generations n− 1 and the generation of a3 is strictly less than n−1, or a3 has
generation n − 1 and the generations of a1, a5 are strictly less than n − 1. If it is
the former subsubcase, by Lemma 9.2 we obtain

1

L
≤ |I|+ |K1|

|K2|+ |J | ≤ L.

Using Case 1 we get
|K2|+ |J |

|J | ≤ n+ 1,

and therefore
|I|
|J | ≤ L(n+ 1) ≤ 2Ln.

From symmetry we get
1

2Ln
≤ |I|

|J | ≤ 2Ln,

as desired. In the latter subsubcase we have by Lemma 9.2

1

L
≤ |K1|

|K2|
≤ L.

Also, |K1| ≤ |I| and |K2| ≤ |J |. Indeed, we prove the first of these inequalities and
the second follows by symmetry. If a1 = p/q, a3 = r/s, and a5 = t/u, then

s = q + u,

and therefore
|K1|
|I| =

q

s
≤ 1.

Now, combining these estimates with Case 1, we obtain

|I|
|J | ≤

|I|
|K1|

|K1|
|K2|

|K2|
|J | ≤ Ln,

and the proposition follows.

�
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We are now ready to prove Lemma 9.4.

Lemma 9.4. The map h defined at the beginning of the current section has a David
extension homeomorphism H of D.

Proof. As discussed earlier, we need to show that ρhnew
satisfies (11). Indeed, we

choose an arbitrary x ∈ [0, 1] and t > 0 small enough so that the segment [x−t, x+t]
is contained in a neighborhood of [0, 1] where hnew is defined. Let n ∈ N be chosen
so that

1

2n
≤ t <

1

2n−1
.

Then, [x− t, x] and [x, x+ t] are each contained in at most three consecutive com-
plementary intervals of Fn, and contain at least one such complementary interval.
Therefore,

hnew(x+ t)− hnew(x)

hnew(x)− hnew(x− t)
≤ |I1|+ |I2|+ |I3|

|J | ,

where I1, I2, I3, and J are distinct complementary intervals of Fn so that the pairs
{J, I1}, {I1, I2} and {I2, I3} are adjacent. From Proposition 9.3 we conclude that

hnew(x+ t)− hnew(x)

hnew(x)− hnew(x− t)
≤ 3Cn,

for some absolute constant C ≥ 1. From symmetry we also have

1

3Cn
≤ hnew(x+ t)− hnew(x)

hnew(x)− hnew(x− t)
,

and thus (11) follows.
We now apply [54, Theorem 3.1] to conclude that h has a David extension inside

the unit disk D. �

Theorem 9.5 (David surgery). Let f be a critically periodic anti-rational map and
U1, U2, . . . , Un be fixed Jordan domain Fatou components of f so that the restriction
f |∂Ui

to each ∂Ui has degree −2, i = 1, 2, . . . , n. Then there is a global David
surgery that replaces the dynamics of f on each Ui by the dynamics of the Nielsen
map ρ2 associated to the ideal triangle Π.

Proof. Let i = 1, 2, . . . , n, and let φi : Ui → D be a Böttcher coordinate that con-
jugates f |Ui

, i = 1, 2, . . . , n, to the map g2(z) = z̄2. Our assumptions imply that
such maps φi, i = 1, 2, . . . , n, exist.

Let H be the David extension of h guaranteed by Lemma 9.4. We replace the
map f by the map

fH =

{
φ−1
i ◦H−1 ◦ ρ2 ◦H ◦ φi, in Ui \ intTi,H , i = 1, 2, . . . , n,

f, in Ĉ \ ∪n
i=1Ui,

where Ti,H = φ−1
i ◦ H−1(Π), to obtain a continuous orientation reversing map of

Ĉ\∪n
i=1 intTi,H onto Ĉ. If μH is the pullback to Ui, i = 1, 2, . . . , n, of the standard

complex structure in D by the map φi ◦H, we have (fH |Ui\Ti,H
)∗(μH) = μH .

We now use the dynamics of f to spread the Beltrami coefficient out to all
the preimage components of U = Ui, i = 1, 2, . . . , n, under all the iterates of f .
Everywhere else we use the standard complex structure, i.e., the zero Beltrami
coefficient. This way we obtain a global Beltrami coefficient, still denoted by μH ,
that is invariant under fH .
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Since f is hyperbolic, the Beltrami coefficient μH satisfies the David condition (8)

in the whole Riemann sphere Ĉ. Indeed, this follows from an observation that μH

is David in each U = Ui, i = 1, 2, . . . , n, with the same constants M,α, ε0 > 0, and
from the Koebe Distortion Theorem. The former is a consequence of the fact that
each U = Ui is a quasidisk and hence φ has a global quasiconformal extension, which
in turn implies that φ distorts areas via a power law; see, e.g., [10], [2]. The latter
would give us that if U ′ is a component of the preimage of U = Ui, i = 1, 2, . . . , n,
under some iterate of f , i.e., such that fk(U ′) = U , where k ∈ N is the smallest,
then fk ◦λU ′ is an L-bi-Lipschitz map between 1

diam(U ′)U
′ and U , for some absolute

constant L ≥ 1, where λU ′(z) = diam(U ′)z is a scaling map. This implies that,
given any 0 < ε ≤ ε0,

σ{z ∈ U ′ : |μH(z)| ≥ 1− ε} ≤ L2(diam(U ′))2σ{z ∈ U : |μH(z)| ≥ 1− ε}.
Moreover, since all the Fatou components U ′ (which are iterated preimages of U)
are uniform quasidisks, there exists a constant C > 0 such that

(diam(U ′))2 ≤ Cσ{U ′}.
Therefore,

σ{z ∈ Ĉ : |μH(z)| ≥ 1− ε} =
n∑

i=1

∑
U ′

σ{z ∈ U ′ : |μH(z)| ≥ 1− ε}

≤ L2C

(∑
U ′

σ{U ′}
)

n∑
i=1

σ{z ∈ Ui : |μH(z)| ≥ 1− ε}

≤ nL2Cσ{Ĉ}Me−α/ε, ε ≤ ε0.

The David Integrability Theorem then gives us an orientation preserving home-
omorphism Ψ of Ĉ such that the pullback of the standard complex structure under
Ψ is equal to μH .

The last claim is that the map F = Ψ ◦ fH ◦ Ψ−1 is analytic. This is the
desired map that replaces the dynamics of f on each Ui, i = 1, 2, . . . , n, with the
dynamics of the Nielsen map ρ2 associated to the ideal triangle Π. The conclusion
of analyticity follows from the uniqueness part of the David Integrability Theorem.
The arguments below are similar to [11, Section 9]. Indeed, since F ◦Ψ = Ψ ◦ fH ,

it is enough to show that Ψ ◦ fH is in W 1,1
loc . Then, since we know that Ψ ∈ W 1,1

loc

and both Ψ and Ψ ◦ fH integrate μH , we can apply the uniqueness of the David
Integrability Theorem to obtain that F is analytic.

Let V be an open set in Ĉ. Since quasicircles are removable for David maps,
see, e.g., [55, Lemma 4.2] that applies verbatim to quasicircles in place of the unit

circle, to show that Ψ ◦ fH ∈ W 1,1
loc , it is enough to prove that Ψ ◦ fH ∈ W 1,1

loc (V )
for the two cases: V does not intersect any of the components U ′ of the preimage
of each U = Ui, i = 1, 2, . . . , n, under all the iterates of f , or V is completely
contained in one such component U ′. In the first case, fH is analytic, and hence
the composition Ψ ◦ fH is in W 1,1

loc (V ). For the second case, let k ∈ N ∪ {0} be the

smallest number such that fk(U ′) = U . We can write

Ψ ◦ fH = (Ψ ◦ f−k ◦ φ−1 ◦H−1) ◦ (ρ2 ◦H ◦ φ ◦ fk).

Since φ ◦ fk and ρ2 are (anti-)analytic, the composition ρ2 ◦ H ◦ φ ◦ fk with a

W 1,1
loc -map is in W 1,1

loc . Also, the map H ◦ φ ◦ fk is a composition of a W 1,1
loc -map
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and an (anti-)analytic map, and thus is itself in W 1,1
loc . Both maps Ψ and H ◦φ ◦ fk

also integrate μH . Therefore, from the uniqueness part of the David Integrability
Theorem we obtain that Ψ◦f−k◦φ−1◦H−1 is analytic. Now, since the composition
of an analytic map with a W 1,1

loc -map is W 1,1
loc , we are done. �

Corollary 9.6. The anti-analytic map

F = Ψ ◦ fH ◦Ψ−1 : Ĉ \
n⋃

i=1

intΨ(Ti,H) → Ĉ

is topologically conjugate to ρ2 on Ψ(Ui), i = 1, . . . , n, and to f on Ĉ\
⋃n

i=1 Ψ(Ui).

10. From anti-rational map to Nielsen map and Schwarz reflections

For the rest of the paper, T will stand for the tetrahedral triangulation of
the 2-sphere. To ease notations, we will omit the subscript T for the objects
CT , HT , NT , GT , and gT .

Recall that the cubic anti-rational map g (constructed in Section 8) has four
fixed Fatou components on each of which the action of g is conformally conjugate
to z �→ z2 on D. In particular, the boundaries of these Fatou components are Jordan
curves, and the restriction of g to each of these boundaries has degree −2. Hence,
we can apply David surgery Theorem 9.5 on n of these fixed Fatou components
(n ∈ {1, 2, 3, 4}) to replace the action of g on these Fatou components by the action
of the Nielsen map ρ2 of the ideal triangle group. As a result, we produce anti-

analytic maps (defined on a subset of Ĉ) that combine the features of anti-rational
maps and Nielsen maps of reflection groups. Such hybrid dynamical systems are
realized as Schwarz reflection maps associated with quadrature domains.

In particular, if the David surgery is performed on all four fixed Fatou compo-
nents of g, we recover the Nielsen mapN of the classical Apollonian gasket reflection
group. On the other hand, if the David surgery is carried out on three fixed Fatou
components of g, we obtain a “mating” of g with the Nielsen map of the Apollo-
nian gasket reflection group. We explicitly characterize this anti-holomorphic map
as the Schwarz reflection map with respect to a deltoid and an inscribed circle.

10.1. Background on Schwarz reflection maps. We will denote the complex
conjugation map on the Riemann sphere by ι, and reflection in the unit circle by η.

10.1.1. Basic definitions and properties.

Definition 10.1 (Schwarz function). Let D � Ĉ be a domain such that ∞ /∈ ∂D
and intD = D. A Schwarz function of D is a meromorphic extension of ι|∂D to all

of D. More precisely, a continuous function S : D → Ĉ of D is called a Schwarz
function of D if it satisfies the following two properties:

(1) S is meromorphic on D,
(2) S = ι on ∂D.

It is easy to see from Definition 10.1 that a Schwarz function of a domain (if it
exists) is unique.

Definition 10.2 (Quadrature domains). A domain D � Ĉ with ∞ /∈ ∂D and
intD = D is called a quadrature domain if D admits a Schwarz function.
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Note that for a quadrature domain D, the map σ := ι ◦ S : D → Ĉ is an
anti-meromorphic extension of the local reflection maps with respect to ∂D near
its non-singular points (the reflection map fixes ∂D pointwise). We will call σ the
Schwarz reflection map of D.

Simply connected quadrature domains are of particular interest, and these admit
a simple characterization.

Proposition 10.3 (Simply connected quadrature domains). A simply connected

domain D � Ĉ with ∞ /∈ ∂D and intD = D is a quadrature domain if and only if

the Riemann uniformization R : Ĉ\D → D extends to a rational map on Ĉ. In this
case, the Schwarz reflection map σ of D is given by R ◦ η ◦ (R|

Ĉ\D)
−1. Moreover, if

degR ≥ 2, we have σ(D) = Ĉ.
Moreover, if the degree of the rational map R is d, then σ : σ−1(D) → D is a

branched covering of degree (d − 1), and σ : σ−1(intDc) → intDc is a branched
covering of degree d.

Proof. The first part is the content of [1, Theorem 1]. The statements about cov-
ering properties of σ follow from the commutative diagram below.

Ĉ \ D D

D Ĉ

R

η σ

R

�

10.2. Recovering the Nielsen map of the classical Apollonian gasket re-
flection group. We will now show that the Nielsen map N associated with the
reflection group H (arising from the tetrahedral triangulation) can be constructed
from g by David surgery.

Proposition 10.4 (Recovering the Nielsen map). There is a global David surgery
that replaces the action of g on each of its fixed Fatou components by the action of
ρ2 : D \ intΠ → D. The resulting anti-analytic map is the Nielsen map N of the
classical Apollonian gasket reflection group H (up to Möbius conjugacy).

Proof. The first statement is the content of Theorem 9.5.
Moreover, F maps each of these Jordan domains anti-conformally to its exterior,

and fixes the boundary pointwise. Therefore, each such Jordan domain is a quad-
rature domain, and F acts on it as the corresponding Schwarz reflection map. The
second statement of Proposition 10.3 now implies that each of the above Jordan
domains is the image of a round disk under a Möbius map, and hence is a round
disk itself. In particular, F acts on the disk as reflection in its boundary.

Clearly, the configuration of these four circles is dual to the circle packing C
corresponding to the tetrahedral triangulation (unique up to a Möbius map). Thus
by definition, F is the Nielsen map N associated with the classical Apollonian
gasket reflection group. �

10.3. Schwarz reflection in a deltoid and circle. In this final subsection, we
discuss another application of David surgery that produces an anti-holomorphic
dynamical system which can be viewed as a mating of the cubic anti-rational map
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g and the Nielsen map of the classical Apollonian gasket reflection group. Further-
more, we give an explicit description of this anti-holomorphic dynamical system as
a suitable Schwarz reflection map.

Proposition 10.5. There is a global David surgery that replaces the action of g
on three of its fixed Fatou components by the action of ρ2 : D \ intΠ → D. The
resulting anti-analytic map is the Schwarz reflection map associated with a deltoid
and a circle (up to Möbius conjugacy).

Proof. Once again, Theorem 9.5 gives the existence of an anti-holomorphic map F ,

defined on a subset of Ĉ, that is conjugate to ρ2 : D\int Π → D on three F -invariant
Jordan domains and conjugate to g elsewhere (via a global David homeomorphism).
It remains to characterize the anti-holomorphic map F .

By construction, F has a unique critical point, and this critical point is simple
and fixed. Possibly after conjugating F by a Möbius map, we can assume that this
critical point is at ∞.

It also follows from the construction that the map F is defined on the complement
of the interiors of three topological triangles. Since the vertices of these triangles
correspond to the touching points of the fixed Fatou components of g, it is easily
seen that the domain of definition of F is the union of the closures of two disjoint
Jordan domains D1 and D2 that touch exactly at three points. We can assume
that ∞ ∈ D1.

Since the anti-holomorphic map F fixes the boundaries of Di (for i = 1, 2), it
follows that both D1 and D2 are simply connected quadrature domains. Moreover,
F maps D2 anti-conformally to its exterior. By Proposition 10.3, D2 is a round
disk, and F acts on it as reflection in the circle ∂D2.

Again, the mapping properties of F imply that ∞ ∈ D1 has only two preimages
in D1 counting multiplicity (in fact, F maps ∞ to itself with local degree two).
Thus, F : F−1(D1) → D1 is a branched covering of degree 2. By Proposition 10.3,

there exists a rational map R of degree 3 which maps Ĉ \ D univalently onto D1.

Precomposing R with a conformal automorphism of Ĉ \ D, we may assume that
R(∞) = ∞.

In light of the commutative diagram in the proof of Proposition 10.3, the fact
that ∞ is a (simple) fixed critical point of F implies that R(0) = ∞ and R′(0) = 0.
Hence, R is of the form

R(z) = az + b+
c

z
+

d

z2
,

for some a, d ∈ C∗, and b, c ∈ C. Possibly after postcomposing R with an affine
map (which amounts to replacing D1 by an affine image of it, and conjugating F
by the same affine map), we may write

R(z) = z +
c

z
+

d

z2
,

for some c ∈ C and d ∈ C∗.
Note that the cubic anti-rational map R has four critical points (counting multi-

plicity), one of which is at the origin. Since F has only one critical point, the same
commutative diagram implies that the other three critical points of R lie on the
unit circle (in fact, univalence of R on Ĉ \ D implies that these critical points are
distinct). In particular, the product of the solutions of the equation z3R′(z) = 0
has absolute value 1. A simple computation now shows that |d| = 1

2 . We can now
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conjugate R by a rotation (once again, this amounts to replacing D1 by a rotated
image of it, and conjugating F by the same rotation), we may write

R(z) = z +
c

z
+

1

2z2
,

for some c ∈ C. Denoting the three non-zero critical points of R by α, β, and γ, we
obtain the relations

α+ β + γ = 0, αβ + βγ + γα = −c, and αβγ = 1.

Since α, β, γ ∈ T, we have that

z3 − cz − 1 ≡ (z − α)(z − β)(z − β)

≡ 1

αβγ
(z − α)(z − β)(z − γ)

≡ (αz − 1)(βz − 1)(γz − 1)

≡ z3 + cz2 − 1.

We conclude that c = 0, and hence R(z) = z + 1
2z2 .

D1

D2 T0
1

T0
2

T0
3

∂D1

∂σ−1
1 (D1)

Figure 13. Left: The quadrature domain D1 is the exterior of
the deltoid curve (in black). The region σ−1

1 (D1) is the exterior of
the hexagonal curve (in blue). Right: The domain of definition of
F is the closure of the union of the exterior of the deltoid and the
interior of the inscribed disk. The fundamental tile T0 has three
connected components; namely T0

1,T
0
2, and T0

3.

We already know that R(T), where T is the unit circle, is a Jordan curve (in fact,
this can be easily checked directly from the above formula of R). The curve R(T)
is a classical deltoid curve (compare [31, §4], where the dynamics of the Schwarz
reflection map associated with D1 was studied in detail). Since R commutes with

multiplication by the third roots of unity, it follows thatD1 = R(Ĉ\D) is symmetric
under rotation by 2π

3 . Moreover, the three simple critical points of R on T produce
three 3/2-cusps on the boundary ∂D1 (see Figure 13(left)).

Since the boundaries of D1 and D2 touch at three points, it follows that D2 is
the largest disk inscribed in D1 centered at 0 (see Figure 13(right)).
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Finally, the map F is explicitly given by the Schwarz reflection maps associated
with the exterior of the deltoid, and the inscribed disk. More precisely, we have
that

F (w) =

{
σ1(w) if w ∈ D1,

σ2(w) if w ∈ D2,

where σ1 ≡ R ◦ η ◦ (R|
Ĉ\D)

−1 : D1 → Ĉ is the Schwarz reflection map of D1, and

σ2 is reflection in the circle ∂D2.
This completes the proof. �

We will conclude by showing that the Riemann sphere splits into two F -invariant
subsets on one of which F is conjugate to g, and on the other it is conjugate to the
Nielsen map N arising from the classical Apollonian gasket reflection group H.

Let us set T := Ĉ \ (D1 ∪D2). Note that ∂T has six singular points. Three of
them are 3/2-cusps on ∂D1. The other three singular points on ∂T are the tan-
gency points between ∂D1 and ∂D2. We denote the set of singularities of ∂T by
S, and define the fundamental tile T0 as T \S. The fundamental tile T0 has three
connected components which we denote as T0

1,T
0
2, and T0

3 (see Figure 13(right)).
In the dynamical plane of N (or the Apollonian gasket reflection group), we de-
note the three components of T 0 corresponding to T0

1,T
0
2,T

0
3 by T 0

1 , T
0
2 , T

0
3 (see

Subsection 4.2 and Figure 7).

Definition 10.6 (Tiling set of F ). We define the tiling set T∞ of F as

T
∞ :=
⋃
n≥0

F−n(T0).

The boundary of T∞ is called the limit set of F , and is denoted by L.

Let us now describe the structure of T∞. For i = 1, 2, 3, we define Ui to be the
connected component of T∞ containing T0

i . Note that each point in Ui maps to T0
i

under iteration of F . In particular, Ui is an F -invariant component of T∞. Every
other connected component of T∞ eventually maps to one of these three invariant
components (see Figure 14(right)). In the dynamical plane of g, we denote the
fixed Fatou components corresponding to Ui by Ui, i = 1, 2, 3 (see Figure 14(left)).
Further, in the dynamical plane of the Nielsen map N , we denote the components
of the domain of discontinuity corresponding to Ui by Ui ⊃ T 0

i , i = 1, 2, 3 (in
Figure 7(right), these are the three bounded round disks enclosed by the black
circles). By construction, the tiling set T∞ of F corresponds to

Ωpart :=
⋃
k≥0

N−k

(
3⋃

i=1

T 0
i

)
� ΩH

in the Nielsen dynamical plane.
Recall that ∞ is a super-attracting fixed point of F . We denote the basin of

attraction of ∞ by B∞, and the immediate basin of attraction (i.e., the connected
component of B∞ containing ∞) by Bimm

∞ . The corresponding fixed Fatou com-
ponent of g is denoted by U4 (see Figure 14(left)). By Corollary 8.2, the superat-
tracting fixed point of g in U4 is at the origin. We denote the basin of attraction
of this superattracting fixed point by B0(g).

Since the tangency patterns of the fixed Fatou components of g are preserved by
the global David surgery, the next result is immediate.



50 R. LODGE ET AL.

Bimm
∞

U1

U2

U3

U4

U3

U2

U1

Figure 14. Left: The dynamical plane of g is depicted, and the
four fixed Fatou components are colored in blue, green, red, and
white. Replacing the z2 dynamics on U1, U2, U3 by ρ2 produces the
piecewise Schwarz reflection F . Right: The dynamics of F with its
basin of infinity (in yellow) and tiling set (in blue/green) marked.
Their common boundary is the limit set L. (Picture courtesy:
Seung-Yeop Lee.)

Proposition 10.7. The Jordan domains Bimm
∞ , U1, U2, and U3 pairwise touch

precisely at the six singular points on ∂T.

Finally, the construction of the map F from the anti-rational g gives rise to the
following description of F as a mating of g and the Nielsen map N of the classical
Apollonian gasket reflection group.

Theorem 10.8. The Riemann sphere admits a decomposition into three F -
invariant subsets

Ĉ = B∞ � L � T∞

such that ∂B∞ = L = ∂T∞. Moreover, F is a conformal mating of g and N in the
following sense:

F : B∞ −→ B∞
is topologically conjugate to

g : B0(g) −→ B0(g),

and

F : T∞ \
3⋃

i=1

intT0
i −→ T∞

is topologically conjugate to

N : Ωpart \
3⋃

i=1

intT 0
i −→ Ωpart

such that both conjugacies are conformal on the interior of their respective domains
of definition.

Corollary 10.9. L is homeomorphic to the classical Apollonian gasket ΛH .
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Remark 10.10 (Broken symmetry). Despite the fact that L is homeomorphic to
the classical Apollonian gasket ΛH and the Julia set J (g), each of which has equal
homeomorphism and quasisymmetry groups, the group of quasisymmetries of L is a
strict subgroup of its homeomorphism group. Indeed, there is a homeomorphism of
L (induced by a tetrahedral symmetry) which carries ∂U1 onto ∂Bimm

∞ , and sends
the fixed points (of F ) on ∂U1 to those on ∂Bimm

∞ (see Figure 14). Since one of
the fixed points on ∂U1 is an inward pointing cusp, and all three fixed points on
∂Bimm

∞ are outward pointing cusps, it follows that this homeomorphism cannot

be a quasisymmetry. This observation implies that while AutT (Ĉ) is isomorphic
to the symmetric group S4, only six of the corresponding homeomorphisms of L
are quasisymmetric; namely the ones generated by 2π/3-rotation and complex con-
jugation. In fact, we believe that QS(L) is isomorphic to S3 � H. As a result,
the quasisymmetry groups of L and ΛH allow one to distinguish the two fractals
quasiconformally.
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