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ON DYNAMICAL GASKETS GENERATED BY RATIONAL
MAPS, KLEINTAN GROUPS, AND SCHWARZ REFLECTIONS
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ABSTRACT. According to the Circle Packing Theorem, any triangulation of
the Riemann sphere can be realized as a nerve of a circle packing. Reflections
in the dual circles generate a Kleinian group H whose limit set is a generalized
Apollonian gasket Ar. We design a surgery that relates H to a rational map g
whose Julia set Jy is (non-quasiconformally) homeomorphic to Ag. We show
for a large class of triangulations, however, the groups of quasisymmetries of
Ap and Jy are isomorphic and coincide with the corresponding groups of self-
homeomorphisms. Moreover, in the case of H, this group is equal to the group
of Mébius symmetries of A, which is the semi-direct product of H itself and
the group of Mobius symmetries of the underlying circle packing. In the case
of the tetrahedral triangulation (when A is the classical Apollonian gasket),
we give a quasiregular model for the above actions which is quasiconformally
equivalent to g and produces H by a David surgery. We also construct a mating
between the group and the map coexisting in the same dynamical plane and
show that it can be generated by Schwarz reflections in the deltoid and the
inscribed circle.
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2 R. LODGE ET AL.

1. INTRODUCTION

In this paper we will further explore the celebrated Fatou-Sullivan Dictionary
connecting two branches of Conformal Dynamics, iteration of rational maps and ac-
tions of Kleinian groups. This dictionary is an indispensable source of new notions,
conjectures, and arguments, but it does not provide an explicit common frame for
the two areas. However, in the 1990’s Bullet and Penrose [13] discovered a phenom-
enon of explicit mating of two actions, of a quadratic polynomial with a modular
group, induced by a single algebraic correspondence on two parts of its domain.
And recently, an abundant supply of similar matings generated by the Schwarz
reflection dynamics was produced by Lee and Makarov in collaboration with two
of the authors of this paper [31-33]. It turns out that this machinery is relevant to
the theme of this paper

Our main example is the classical Apollonian gasket Ag, which is the limit set of
a Kleinian reflection group H generated by reflections in four pairwise kissing circles,
see Figure 1. In this paper we demonstrate that this limit set can be topologically
realized as the Julia set J(g) of a hyperbolic rational function [12, §4]. In fact, we
construct g in two different ways: by applying the Thurston Realization Theorem
and by constructing an explicit quasiregular model for g. (The subtlety of the
problem has to do with the fact that g is hyperbolic while H is parabolic, so A g and
J(g) are not quasiconformally equivalent.) Moreover, we show that H and g can
be mated by means of the Schwarz reflection in the deltoid and an inscribed circle
to produce a hybrid dynamical system alluded above. This mating is based upon a
surgery replacing the action of zZ2 in the disk by the modular group action, using the
classical Minkowski “question mark function”. This surgery is not quasiconformal,
but it has David regularity. We show this by direct geometric estimates through
the Farey algorithm. (Note that a David relation between hyperbolic and parabolic
dynamics appeared first in Haissinski’s work, see [11].)

Our motivating problem was a problem of quasisymmetric classification of frac-
tals, which attracted a good deal of attention in recent years; see, e.g., [4,5,7,23,
38,52]. A basic quasiconformal invariant of a fractal J is the group QS(J) of its
quasisymmetries (“quasisymmetric Galois group”). A natural class of fractals to
test this problem is the class of Julia sets and limit sets of Kleinian groups. In
papers [7,34], the group QS(J) was studied for a class of Sierpiriski carpet Julia
sets and for the Basilica, yielding strikingly different rigidity/flexibility behavior.
In this paper we describe QS(J) for gasket Julia gaskets, exhibiting yet another
phenomenon.

Namely, we prove that QS(J(g)) is a countable group isomorphic to the exten-
sion of H by the tetrahedron symmetry group (which is the full group of Mé&bius
symmetries of Ag). Moreover, QS(J(g)) coincides with the group Homeo(7(g)) of
all orientation preserving self-homeomorphisms of J(g) and Ag. It is quite different
from the cases studied earlier:

— In the Sierpiriski carpet case [7], Homeo(J) is uncountably infinite, while
QS(J) is finite and coincides with the group of Mobius symmetries of 7.
This is a quasisymmetrically rigid case.

— In the Basilica case [34], the topological and quasisymmetry groups are
different but both are uncountably infinite. Moreover, they have the same
countable “core” which is an index two extension of the Thompson circle
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group. (The groups are obtained by taking the closures of the core in

appropriate topologies.)
Going back to the Apollonian case, we see that though the group QS does not
quasiconformally distinguish the Julia set from the corresponding Apollonian limit
set, these sets are not quasiconformally equivalent (as we have already pointed
out). In fact, we do not know a single non-trivial (i.e., different from a quasi-
circle) example of a Julia set which is quasiconformally equivalent to a limit set of
a Kleinian group.

F1cUrE 1. Classical Apollonian gasket

1.1. The outline. We carry out the discussion for a family of Kleinian groups gen-
eralizing the classical Apollonian gasket. Namely, given an arbitrary triangulation
of the sphere, by the Circle Packing theorem it can be realized as the adjacency
graph of some circle packing, unique up to Moébius transformations. Consider the
dual circle packing comprising the circles passing through tangency points of vari-
ous triples of kissing circles. (The original circles are associated to the vertices of
the triangulation, while the dual ones are associated to the faces.) The Kleinian
reflection group generated by all reflections in the dual circles is our (generalized)
Apollonian group and its limit set is the (generalized) Apollonian gasket.! Note that
it is a cusp group: all components of its domain of discontinuity are round disks, and
the corresponding quotient Riemann surfaces are punctured spheres. The classical
Apollonian gasket corresponds to the tetrahedral triangulation, and the associated
Kleinian group is a mazimal cusp group. Section 2 details this construction.

In Section 3 we prove that, in the case when a triangulation is irreducible in the
sense that any triangle (i.e., a 1-cycle composed of three edges) bounds a face, every
topological symmetry of an Apollonian gasket can be written as a composition of
finitely many anti-conformal reflections as above and a Mobius symmetry of the
circle packing. Moreover, this group splits into a semi-direct product of the above
(Theorem 3.8). We conclude that the Mobius, topological, and quasisymmetry
groups of the Apollonian gasket are all the same.

Section 4 is devoted to the construction of a piecewise anti-Mdbius map N on
the Riemann sphere cooked up from the generators of the Apollonian group. This

1Below, we will often skip the adjective “generalized”.
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map, which we call the Nielsen map, is orbit equivalent to the Apollonian group,
and enjoys Markov properties when restricted to the limit set.

In Section 5 we carry out a surgery that turns the Nielsen map to an orientation
reversing branched cover G that coincides with the Nielsen map on the complement
of the circle packing and is topologically equivalent to D — D, z — z*, on each
disk of the packing (with k& depending on the disk). By construction, its Julia set
coincides with the Apollonian gasket, on which it agrees with the Nielsen map.

In Section 6 we use W. Thurston’s Realization Theory to show that the above
map G is equivalent to an anti-rational map g (Proposition 6.2). We then ap-
ply a Pullback Argument in Theorem 6.11 to show that, in fact, the Julia set
J (g) is homeomorphic to the limit set Ay, and g|7(,) is topologically conjugate
to G|a,. This gives one more manifestation of the intimate connection between
(anti-)rational dynamics and Kleinian (reflection) actions in the spirit of the Fatou-
Sullivan dictionary (Corollary 6.12).

In Section 7 we establish our main result, Theorem 7.2, by showing that each
topological symmetry of the Julia set of the anti-rational map ¢ is induced by a
piecewise dynamical homeomorphism, and that such homeomorphisms are in fact
quasisymmetries. Therefore, a complete account of the quasisymmetry group of
J(g) is given. Let us emphasize once again that due to the presence of tangent
circles in the round gasket such sets are not quasisymmetric to the corresponding
Julia sets. Thus, the “obvious” way of identifying the quasisymmetry groups fails.

In Section 8 we describe an alternative construction of the cubic anti-rational
map g7, corresponding to the tetrahedral triangulation 7, by producing a quasireg-
ular (in fact, piecewise affine outside the critical Fatou components) model and
applying the Measurable Riemann Mapping Theorem.

In Section 9 we develop a technique to produce matings between a rational map
and the Nielsen map of the triangle reflection group using David surgery.

Finally in Section 10, we apply the main result of Section 9 on the cubic anti-
rational map gy (constructed in Section 8) to recover the Nielsen map of the clas-
sical Apollonian gasket reflection group. Along the way, we construct a “hybrid
dynamical system” that binds together the Nielsen map of the classical Apollonian
reflection group and anti-rational map g7 on the same dynamical plane, and ex-
plicitly characterize this hybrid dynamical system as the Schwarz reflection map
with respect to a deltoid and an inscribed circle.

1.2. Further developments. The topological connection between generalized
Apollonian gasket limit sets and gasket Julia sets of critically fixed anti-rational
maps discovered in this paper has been further developed in several follow-up pa-
pers. In particular, it was generalized from triangulations to arbitrary polyhedral
tilings in [30],2 and then our construction of Nielsen maps was applied to produce
a dynamical correspondence between limit sets of “kissing reflection groups” and
Julia sets of critically fixed anti-rational maps. It led, in particular, to a full clas-
sification of anti-rational maps in terms of Tischler graphs. Such a classification
was independently given by Lukas Geyer [21] (without relating it to groups). Like
in our paper, the method of using certain invariant arcs to justify the absence of
a Thurston obstruction played a key role (in the spirit of Pilgrim and Tan Lei

2Note that Kleinian groups associated with such tiling have also appeared in the work of
Kontorovich and Nakamura [28].
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[45]). However, the quasisymmetry groups of the corresponding limit and Julia sets
remain unknown in general.

The David surgery machinery introduced in this paper has also been developed
further. Namely, in [35], the David Extension Lemma 9.4 has been generalized to
a broader class of situations (by means of dynamical techniques instead of number-
theoretic tools used here), and the surgery techniques of Theorem 9.5 and Proposi-
tion 10.4 have been adapted to show that the homeomorphisms between Julia sets
of critically fixed anti-rational maps and limit sets of kissing reflection groups ex-
tend to David homeomorphisms of the plane. The David surgery also played a key
role in [35] in the proof of a Combination Theorem for suitable Kleinian reflection
groups and anti-holomorphic polynomials.

2. ROUND GASKETS FROM TRIANGULATIONS

All graphs are assumed to be simple, i.e., no edge connects a vertex to itself and
there is at most one edge connecting any two vertices. A triangulation T of S?
is a finite embedded graph that is maximal in the sense that the addition of one
edge results in a graph that is no longer both embedded and simple. Denote the
sets of vertices, edges, and faces of some triangulation 7 of S? by Vi, E7, and Fr
respectively. By convention we assume that |V| > 4 to avoid degeneracies. We
also assume that two faces share at most one edge. Two embedded graphs in S?
are said to be isotopic if there is an orientation preserving homeomorphism of S?
sending the vertices and edges of one graph to the other.

A circle packing C is a finite collection of closed geometric disks in C with pairwise
disjoint interiors whose union is connected. The nerve of C is a finite embedded
graph whose vertices correspond to disks, and two vertices are connected by an edge
if and only if the corresponding disks are tangent. Up to isotopy, we may assume
that the vertices of the nerve of a circle packing C are the spherical centers of the
disks in C and the edges are the unique spherical geodesic segments connecting the
corresponding centers through the point of tangency. There is evidently a bijection
between edges and points of tangency in the circle packing. If 7 is a triangulation
of ((Aj, by the Circle Packing theorem, also known as the Koebe-Andreev—Thurston
theorem [50, Corollary 13.6.2], we may assume that after an isotopy 7 is a nerve of
a circle packing, and this circle packing is unique up to Mobius transformations. In
what follows, we fix such a circle packing and denote it by C7. Whenever necessary,
we specify a particular normalization that Cr satisfies.

Each face f € Fy contains a unique complementary component of the circle
packing Cr called an interstice associated to f, which we denote by Ay. Every
interstice is an open Jordan region bounded by three circular arcs that may only
intersect at their endpoints. For a given interstice Ay, the three boundary arcs
lie in three circles in C7, and denote by Dy, Do, D3 the corresponding open disks
enclosed by these (oriented) circles. Let C be the unique circle that passes through
the three mutual tangency points of Di, Do, D3. We say that such a circle C'
corresponds to f. (It can also be described as a spherical circle inscribed in the face
f, and hence circumscribing the interstice Ay.) In this way, the collection of all
circles corresponding to faces is a circle packing orthogonal to C7, and the nerve of
this orthogonal packing is the planar dual of 7 (see Figure 2). Denote by Ry the
anti-Mobius reflection with respect to this unique circle C. Observe that Ry fixes
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the three points of mutual tangency of D1, D2, D3 in the closure Ay of Ay, and

Ry(Bp)=|UA,|U U D).
9#f D#D1,D2,D3
where g ranges over the faces of 7, and D over the open disks in Cy.

Let v be any vertex in 7 and let C, be the corresponding circle in the circle
packing 7 centered at v. We denote the open disk in C enclosed by the oriented
circle C, by D,.

Let H7 be the group generated by all reflections Ry, i.e.,

Hr = (Ry, f € Fr).

For convenience we omit the subscript and simply write H when 7 is understood. If
f1s fay -+ fx is the full list of (distinct) faces of T, the group H is finitely presented
with the presentation

(1) H=(Ry,Ry,,....,Ry,: R} =R} =--- =R} =id).

The limit set Ay of H is defined to be the minimal non-empty H-invariant compact
subset of C, and the reqular set of H is given by Qg := C\ Ag. It is easy to show
that

(2) AH:U Uh~Cv,

heH veVr

(3) on=J U »r D).

heH veVy

Definition 2.1. A set of this form is called a round gasket or an Apollonian gasket.
A gasket is defined to be any subset of the Riemann sphere that is homeomorphic
to a round gasket.

FI1GURE 2. The tetrahedral graph 7 and its corresponding circle
packing consisting of four circles appears on the left in black. The
generators of the group H, which also happen to have a tetrahedral
configuration, are depicted in red. The limit set Ay appears on
the right.
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Remark 2.2. Evidently any two peripheral topological disks (i.e., topological disks
such that removal of their boundaries does not separate the gasket) in a gasket may
touch at most at one point because the same property holds for round gaskets. For
the same reason, at most two such disks may touch at the same point.

The classical Apollonian gasket in Figure 1 and Figure 2 is the limit set obtained
using the construction above when 7 is the tetrahedral triangulation. Namely, T
has four vertices and each pair of vertices is connected by an edge. The circle
packing Cy consists of four pairwise mutually tangent disks. The limit set Ay in
this case is the residual set obtained from C by removing the interiors of the disks in
the circle packing Cr, the largest open disk in each interstice, and in each resulting
interstice, ad infinitum.

3. ROUND GASKET SYMMETRIES

This section describes properties of topological symmetries of round gaskets.
We give an explicit description of the group of such symmetries for a large class of
triangulations. In contrast to the Basilica Julia set, each topological symmetry of
a round gasket is topologically extendable to a homeomorphism of the sphere.

Lemma 3.1. Suppose that A and A’ are compact subsets of@ whose complemen-
tary components have closures homeomorphic to closed topological disks. Moreover,
assume that the sequences of the diameters of the complementary components of A
and A’ go to 0. Then any homeomorphism £: A — A’ can be extended to a global
homeomorphism of C.

In particular, if £ : Ag — Ay is a homeomorphism of a limit set Ay, then & can
be extended to a homeomorphism of C.

Proof. The boundary circle of each complementary component of A or A’ is pe-
ripheral, i.e., it is a topological circle in A, respectively A’, whose removal does not
separate A, respectively A’. It is easy to see that the boundary circles of comple-
mentary components of A and A’ form the full family of peripheral circles in A,
respectively A’. Thus, since £ is a homeomorphism of A onto A’, this map takes
each peripheral circle to another peripheral circle. Therefore, we can extend &
homeomorphically into each complementary component of A to a homeomorphism
between the closures of complementary components of A and A’. Since diameters
of peripheral circles go to 0, we conclude that the extension of £ above is a global
homeomorphism. O

It is clear that if £ can be extended to an orientation preserving homeomor-
phism, it cannot be extended to an orientation reversing one, and vice versa. We
say that £ : Ay — Ay is orientation preserving if it can be extended to an orien-
tation preserving homeomorphism C — C. Denote by Homeo™ (Ag) the group of
orientation preserving homeomorphisms of Ag, and by Homeo(Ap) the group of
all homeomorphisms of Ag.

Let D be a component of Q. Denote by |k| the word length of h € H with
respect to its generating set from (1). The generation of D is defined to be the

minimal word length of h € H so that h(D) is a disk in the circle packing Cr.

Lemma 3.2 (Decreasing generation). Let D be a component of Qg that is a subset
of some face f € Fr. Then the reflection Ry reduces the generation of D by one.



8 R. LODGE ET AL.

Proof. If D is a subset of a face, then D not a disk in the circle packing C7. Then
D is in the H-orbit of the interior of some disk Dy in Cr, specifically D = h(Dy)
for |h| > 1. Since D is in the face f, it follows that h = Ry oh’, where |h/| = |h| — 1.
Then since Ry is an involution, |R; o h| = |h/| = |h| — 1 and so the generation of
R;(D) is one less than the generation of D. O

Two components of Qg touch if their closures intersect. Three components of
Qg are said to mutually touch if each component touches the other two. We use
the same terminology for disks in the original circle packing Cr.

A great deal can be said about a homeomorphism of Ay by understanding its
action on the boundary of three mutually touching components of Q.

Lemma 3.3. Let Dy, Dy be touching components of Q. Then Dy U Dy intersects
at most one complementary component of the original circle packing Cr.

As a consequence, we also conclude that if D1, Do, and D3 are mutually touch-
ing components of Qy, then D1 U Dy U D3 intersects at most one complementary
component of the circle packing Cr.

Proof. Suppose that Dy and Do intersect different complementary components of
the packing. Then D; and D, are contained in distinct faces of the triangulation
T. Neither Dy nor Dy has closures intersecting 7T, i.e., the vertices or edges of T,
because the only points of 7 outside of the interior of the original packing C7 lie at
points of tangency for packing circles. But then D; and Ds do not touch, contrary
to the hypothesis. (I

Lemma 3.4 (Small triangles to big triangles). Let Dy, Do, D3 be mutually touching
components of Q. Then there exists an orientation preserving h € H so that the
closures of h(D1), h(D2), h(D3) are distinct mutually touching disks in the original
circle packing Ct.

Proof. By Lemma 3.3, either all three disks intersect 7 in which case we are done
or there is some disk with positive generation and the union of the three disks
intersects a face f. Apply Ry to the three disks. This decreases the generation of
disks that are subsets of f by Lemma 3.2, and preserves generations of those disks
that intersect the boundary df, i.e., disks of generation zero. Iterate until all disks
have generation zero. If the resulting map A is orientation reversing, postcompose
the map h with Ry, where f is a face of 7 whose boundary is contained in the
closure of h(D1) U h(D2) U h(D3). O

Lemma 3.5. Let € be an orientation preserving homeomorphism of C such that
Elay: Ag — A, where A is a closed subset of@ with Q = C \ A being a union of
pairwise disjoint open geometric disks. Assume that for three mutually touching
open disks D1, Do, D3 of C+ we have that §(D;) = D;, i = 1,2,3. Then A = Ay
and &|p,, 18 the identity transformation.

Proof. Indeed, our assumption implies that & takes the finite circle packing Cy to a
circle packing in C. Moreover, since ¢ is orientation preserving and &(D;) = D;, i =
1,2,3, the uniqueness part of the Circle Packing theorem [50, Corollary 13.6.2]
implies that ¢ fixes setwise each disk in Cr.

Now, if f is a face of T, we use Ry to reflect Cy across the boundary of the
circle that corresponds to f. We denote the union circle packing of Cr and its
reflection by C7 ¢. The nerve of this new circle packing is also a triangulation, and
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all the new disks resulting in the reflections are the closures of disks in Q. Again,
from lemma’s assumption and the uniqueness of the circle packing, we obtain that
¢ fixes each disk of Cr ;. Continuing this reflection procedure inductively, say on
the diameter of faces of circle packings resulting in successive reflections, we obtain
that & must fix setwise each disk of Qg. This implies, in particular, that A = Ag.

Finally, each point p in Ay is an accumulation point for shrinking disks of Q.
Since each such disk is fixed by £, the point p must be a fixed point of £&. We
therefore conclude that £, is the identity transformation. 0

We now put a restriction on the triangulation to obtain a simpler formulation
of our main symmetry classification results. A separating triangle of some trian-
gulation 7 is a 3-cycle in T that is not the boundary of a face. We say that a
triangulation is reduced if it has no separating triangles. It is natural to expect
such a condition in light of the example that appears in Figure 3. Specifically, one
sees why the reduction hypothesis is needed for Theorem 3.8.

Examples of reduced triangulations abound. For example, the barycentric sub-
division of all faces of a reduced triangulation (i.e., the subdivision of triangular
faces into six triangles so that, for each face, there are four new vertices, one on
each edge and one inside the face) will result in a reduced triangulation.

Ficure 3. Circle packing corresponding to the tetrahedron in
black (left), and the circle packing corresponding to a graph pro-
duced by gluing two tetrahedra along a common face also drawn in
black (right). The second graph is not reduced due to the 3-cycle
that passes through the three grey-shaded disks. Reflecting about
the red dual circles produces the classical Apollonian gasket limit
set in both cases, despite the fact that the tetrahedron is more
symmetric than the second graph (cf. Theorem 3.8).

Denote by AutT((a) the group of all Mébius transformations that induce a sym-
metry of 7T, i.e., preserve Cr. This group is finite because we assume that Cr
has more than two disks. The group AutT(@) also preserves the dual circle pack-
ing, i.e., each element of AutT(((Aj) takes a circle that corresponds to f € Fr to a
circle that corresponds to another f' € Fy. Therefore, the group AutT(((A:) con-
sists of outer automorphisms of the group H, and so AutT(@) is a subgroup of
Out(H) = Aut(H)/Inn(H).

If D is an open disk in C7, a flower centered at D is the disk D along with a
collection of disks {E}?;OI, such that each disk D;, 1 = 0,1,...,n — 1, touches
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D as well as the disks D;_1, D; 11, where the indices are taken modulo n, and the
disks D;, i = 0,1,...,n — 1, are arranged in a cyclic order around D. The disks
D;, i=0,1,...,n—1, are referred to as petals of D.

The triangulation 7 corresponding to a circle packing C = Cy can be realized
geometrically as follows. Mark a point z; in the interior of each disk D; of the
packing and call it the center of D;. Connect any two centers z; and x; of two
touching disks D; and D; by an edge ;; concatenated of two (spherical) geodesic
segments in D; and D;. So, 7;; meets A at a single point where D; touches D;.
We say that two such geometric realizations 7 and 7’ coincide if C+ = Cr+. In
this case 7 and T’ are isotopic relative to the points of tangency of the disks in
Cr=Cy.

If A is an Apollonian gasket corresponding to a circle packing C = Cy, then we
say that C is a generating packing for A.

Proposition 3.6. Let C and C' be two circle packings generating the same gasket
A, and let T and T’ be the corresponding geometric triangulations that we assume
to be reduced. If T and T' share a face, then they coincide, or equivalently C = C’.

Proof. Sharing of a face means that C and C’ share three touching disks, D; = D,
1 =0,1,2, and the corresponding interstice, A = A’. Let us show that in this case
they share the whole flower centered at Dy.

Orient the boundary circle Cy = C{ of Dy = D] so that the boundary arc of A
is oriented from D; to Ds. Denote the remaining petals of Dy and D by D; and
ﬁz’- respectively, where i > 3. Let i + 1 be the first moment when D] | # D;;1.
Assume for definiteness that Dj_; is closer to Dy than D; ;1. Then Dj_, is trapped
inside the interstice A; attached to {Dg, D;, D;11}; see Figure 4. Moreover, the
assumption that 7' is reduced implies that D;1; does not belong to the flower

{D—;} Hence all further D, j > i+ 1, are either contained in A; or are disjoint

from its closure (compare Lemma 3.3), and so the flower {ﬁ;} gets broken in the
sense that the petals of this flower are separated by the disk D; 4.

D, =D,

FIGURE 4. Depiction of the petals used in the proof of Proposition 3.6
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We can now apply this result to the petals of the above flower and conclude
that the two packings share the flowers around each of these petals. Proceeding
inductively, we complete the proof. (I

Theorem 3.7 (Decomposition of symmetries). Let T be a reduced triangulation.
Then if £ € Homeo(Ay ), we have

f =Ao h|AH
for some h € H and A € AutT(@).

Proof. From Lemma 3.1, we know that £ extends to a homeomorphism of ((Aj, which
we continue to denote by &. Let Dy be an open disk in C and D, Dy be two petals
of Dy in C. Since T is reduced, there is a face f of 7 whose boundary is contained
in Dy U Dy U Dy. Then ¢71(Dy), i = 0,1,2, are mutually touching disks of Q.
By Lemma 3.4, there is h € H so that D, = h&~Y(D;), i = 0,1,2, are mutually
touching disks in the original circle packing Cr. We may assume that the map
h&~1 is orientation preserving by possibly postcomposing it with the reflection in
the circle passing through the three points of mutual tangency of D;, i =0,1,2.

Because 7 is assumed to be reduced and h&~' is orientation preserving, we
conclude that the intersection of 7 with D}, U D} U D} bounds a face f’ of T. Let
C’- be the circle packing given by

Cr = he H(Cr).
Note that since h&~! is an orientation preserving homeomorphism of (E, this map
induces a graph isomorphism of 7 onto the nerve 7' of C- such that the face f of
T is mapped to the face f’ of 7', which is also a face of 7.

Let A be a Mébius transformation such that A(D}) = D;, i = 0,1,2. Such
an A exists because one can always map the three points of mutual tangency of
D}y, D}, D} to the corresponding three points of mutual tangency of Dy, D1, D2 by
a Mobius transformation, and it would necessarily map D} onto D;, i =0,1,2.

Now we apply Lemma 3.5 to AhE~! to conclude that this map restricted to Ay
is the identity map, i.e., £ = Ah on Agy. It remains to show that A € AutT(@),
i.e., A preserves Cy. This is equivalent to Cf- = C7.

Since ¢ and h leave Ay invariant, the identity A = £¢h~! restricted to Ay shows
that so does A. Hence A(Cy) is a generating packing for Agy. Moreover, it shares
the face f = A(f’) of Cr corresponding to {Dgy, D1, D>}. By Proposition 3.6,
A(Cr) =Cr. |

With some additional work, this decomposition implies that Homeo(Af) splits.

Theorem 3.8. Let T be a reduced triangulation. Then H is a normal subgroup of
Homeo(Ay) and
Homeo(Ay) = Aut” (C) x H.

Proof. First, AutT(((A:) N H is trivial because any non-trivial h € H has the property
that there is some open disk D in the original circle packing Cy+ whose image
h(D) has non-zero generation. In contrast, every element of AutT(((Aj) preserves the
generation of any disk in Cy.

By Theorem 3.7, it now suffices to prove that EH = HE where € € AutT(@). Let
f be a face of T, and let Ry be the generator of H that corresponds to reflection
over the boundary of f. Let f’ := &(f). Then, since & € AutT(@), we have that f’
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FiGURE 5. Black circles represent the circle packing that arise
when 7T is a tetrahedron. The red “dual” circles define the gener-
ators of H, and the grey region represents a fundamental domain.

is also a face of 7. Let Ry be the generator of H that corresponds to the reflection
over the boundary of f’. Then, applying Lemma 3.5 to the three disks intersecting
the boundary of f, we obtain 5_1R;,1§Rf =1id. Thus, {Ry = Rp/&, implying that
¢H = HE. O

We conclude this section by explicitly constructing a fundamental domain for
the action of H on Qp. See Figure 5 for the simplest example. Recall that D,
denotes the (round disk) component of Qg containing v € V. Let Dy denote the
open disk whose boundary passes through the three vertices of the interstice Ay
corresponding to face f € Fr. (We recall that 0Dy is orthogonal to 0D, for exactly
three vertices v € Vr.)

Proposition 3.9 (Fundamental domain for H). A fundamental domain for H
acting on Qg is given by

() (o

veVy feFr

Proof. By equation (2), the H-orbit of a point in Qy must intersect (J, ¢y Do.
The H-stabilizer of a given D, is the group generated by the reflections whose
defining circles are orthogonal to the boundary of D,,. It thus suffices to compute
the fundamental domain for this stabilizer acting on D, and the conclusion follows
by taking the union of the stabilizer fundamental domains over all v € V.

The set D, \ U rer, Dy is an ideal polygon P, in D, equipped with the standard
Poincaré metric, where the number of sides is given by the number of circles tangent
to the boundary of D, in the original packing Cy. Denote the sides of P, by
S1,...,5,, and let R, ,..., Rs, be the reflections through the circles that define the
sides. Then by the Poincaré polygon theorem, P, is a fundamental domain for the
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group (Rs,,...,Rs,) acting on D,. The following set equality is immediate:

Ur-(yn)(Uo

veVr veEVE feFr

4. NIELSEN MAPS INDUCED BY REFLECTION GROUPS

The goal of this section is to introduce and study some basic properties of maps
that are orbit equivalent to the reflection groups considered in the paper. These
maps, which we call Nielsen maps, are defined piecewise using anti-Mobius reflec-
tions that generate the corresponding group, and enjoy certain Markov properties
when restricted to the limit set of the group. Related constructions of such Markov
maps on the limit set (originally introduced to code geodesics) can be found in
[8,9,42,49] (for Fuchsian groups), [47] (for certain Kleinian groups), [14,22,46] (for
hyperbolic groups). Our nomenclature “Nielsen map” follows [8], where similar
maps arising from Fuchsian groups were called “Nielsen developments”.

4.1. The Nielsen map for the regular ideal polygon group. Let us denote
the open unit disk and the unit circle in the complex plane (centered at the origin)
by D and T respectively. For d > 2, let C1,C5, - ,Cgy41 be circles of equal radii
each of which intersects T orthogonally such that Uflill C; (where C; := C; N D) is

an ideal (d + 1)-gon with vertices at the (d + 1)-st roots of unity. They bound a
closed (in the topology of D) region II (see Figure 6 for d = 2).

:\‘\_7

FI1GURE 6. The hyperbolic geodesics 6’1, 6'2 and C~’3, which are
sub-arcs of the circles C1, Cy and Cj3 respectively, form an ideal
triangle in D

Reflections with respect to the circles C; are anti-conformal involutions (hence
automorphisms) of D, and we call them p1, pa, -+, pa+1. The maps p1, pa, -+, pa+1
generate a reflection group Hg, which is called the (regular) ideal (d+1)-gon group.
As an abstract group, it is given by the generators and relations

(pr, P2, pay1: pi = p3 =+ = payq = id).
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In the particular case d = 2, the group Hj is called the ideal triangle group.

We will denote the connected component of D \ IT containing int p;(IT) by Dj.
Note that Dy U- - -UDg441 = D\ int IT, where D denotes closure of I in the Euclidean
metric.

The Nielsen map p, : D\ int IT — D associated with the ideal polygon group Hy
is defined as:

2 pi(2) ifzeDy, i=1,---,d+1.
Clearly, p, restricts to an expansive orientation reversing d-fold covering of T with
associated Markov partition T = (0D; NT) U (0D NT) U --- U (IDgq1 N'T). The
corresponding transition matrix is given by

011 ... 11
M= 101 ... 11
1 1 1 1 0

Two points z,y € D are said to lie in the same grand orbit of the Nielsen map
pg if there exist non-negative integers n1,ng such that p"* (z) = p7"*(y). On the
other hand, an Hy—orbit is defined as the set {h(z) : h € Hy}, for some z € D. It
is easy to see that the grand orbit of any point in D under p, coincides with its
orbit under H, (compare Proposition 4.1). In other words, p, is orbit equivalent
to Hd on ﬁ

Let us now describe how the expanding d-fold covering of the circle 2% : T — T is
related to p;. The map Ed\qr admits the same Markov partition as p; with the same
transition matrix M. Moreover, the symbolic coding maps for p,; and Z¢ (coming
from their common Markov partitions) have precisely the same fibers, and hence
they induce a homeomorphism €, : T — T conjugating p, to z¢ (see [31, §2] for a
more detailed discussion).

4.2. The Nielsen map for Hy. In this subsection, we associate to an arbitrary
triangulation 7~ of S2, a Nielsen map Nt that is orbit equivalent to the reflection
group H = H7. As mentioned earlier, the map N is defined piecewise using the
anti-Mobius reflections Ry (f € Fr), and enjoys certain Markov properties when
restricted to the limit set Ag.

Let us fix an arbitrary triangulation 7 of S2, and consider the circle packing
Cr along with its dual circle packing (see Figure 7 for the case of the tetrahedral
triangulation). We denote the open disks bounded by the dual circles by Dy (such
that Dy contains a unique triangular interstice of C7), and the reflection in Cy :=
0Dy by Ry, for f € Fr. The set of points where the disks Dy touch is denoted by
S. Each connected component of

°:=C\ (S |J Dy
feFr

is called a fundamental tile.

Recall from Section 2 that the anti-Mébius maps Ry (f € Fr) generate a reflec-
tion group

HIZHT:<RfIf€FT>.

We know from Proposition 3.9 that 7° is a fundamental domain for the action of
H on its domain of discontinuity Q. Here is an alternate way of seeing this.
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FIGURE 7. Left: The map N7 is defined as reflection with respect
to dD; (in red) on D;. The grey region is 7°. Right: The four
invariant components of the tiling set of N are precisely the disks
bounded by the black circles, which form the circle packing Cr.
The interstices of C are marked in green.

For each f € Fr, let us consider the upper hemisphere Sy € H? such that
0S¢ NOH? = Cy; i.e., C¢ bounds the upper hemisphere S¢. By Poincaré’s original
observation, the anti-Mobius map Ry extends naturally to the reflection in Sy, and
defines an anti-conformal automorphism of H3. Let Py be the convex hyperbolic
polyhedron (in H?) whose relative boundary in H? is the union of the hemispheres
S (see [27, Figure 9] for an illustration of the polyhedron Py in the case of the clas-
sical Apollonian gasket). Then, P is a fundamental domain (called the Dirichlet
fundamental polyhedron) for the action of the group H on H?, and 7° = Py N Qg
(where the closure is taken in Qz UH?) is a fundamental domain for the action of
H on Qp (see [37, §3.5], also compare [51]).

We now define the Nielsen map N7 on |J FeFy Dy by setting

Nr=R; on D_f

Let us now briefly describe the Markov properties of N7 : Ay — Ag. To this end,
let us first note that

Ay = U Ty, where Ty := D—fﬂAH.
feFr

Then, we have

o int 7y Nint Ty = 0, for f # f' (where the interior is taken in the subspace
topology of Ag),
e cach T is injectively mapped by Ny onto the union (J proep Lpre
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Hence, the sets {T}}er, form a Markov partition for Ny : Ay — Ap with the
(d+1) x (d+ 1) transition matrix

o1 1 ... 11
101 ... 1 1
1 11 1 0

where d = |Fr| — 1 is the number of faces of T.

Proposition 4.1 (Orbit equivalence). The reflection map Nt is orbit equivalent
to the reflection group H on C.

Proof. Recall that two points x,y € C are said to lie in the same grand orbit of Ny
if there exist non-negative integers ni,ny such that N7 (z) = N7**(y). On the
other hand, an H-orbit is defined as the set {h(z) : h € H}, for some z € C. We
need to show two points lie in the same grand orbit of N+ if and only if they lie in
the same H-orbit. R

To this end, let us pick x,y € C in the same grand orbit of Ny. Since Nt acts
by the generators Ry (f € Fr) of the group H, it directly follows that there exists
an element of H that takes z to y; i.e., x and y lie in the same H-orbit.

Conversely, let z,y € C lie in the same H-orbit; i.e., there exists h € H with
h(z) = y. By definition, we have that h = R, Rs, - - - R, , for some s1,--- s, € Fr.
A simple application of mathematical induction shows that it suffices to prove grand
orbit equivalence of x and y (under N7) in the case k = 1. Therefore, we assume
that R, (z) = y. Note that either z or y must belong to D,. Since Ry, (7) =y
implies Ry, (y) = z, there is no loss of generality in assuming that = € D,,. Now,
the condition Ry, () =y can be written as Ny (x) = y, which proves that z and y
lie in the same grand orbit of N. ([l

Proposition 4.2.
Qp = N(T°).
n>0
Proof. This follows from Proposition 4.1 and the fact that T° is a fundamental
domain for the action of H on its domain of discontinuity Q. ]

Let us conclude this subsection with a brief discussion on the index two Kleinian
subgroup I'r < Hy consisting of the (orientation preserving) Mdbius maps in
Hp, in the case when the dual graph 7 of the triangulation 7 is Hamiltonian
(i.e., T contains a cycle that visits every vertex exactly once). Note that I'7 is a
geometrically finite Kleinian group (its fundamental polyhedron in H? is obtained
by ‘doubling’ P, and hence has finitely many sides).

Denoting the index two Fuchsian subgroup of Hy by I'y (where Hy is the regular
ideal (d+1)-gon reflection group introduced in Section 4.1), one easily sees that the
top and bottom surfaces D/T'y and (C \D)/T associated with the Fuchsian group
Ty are (d + 1)-times punctured spheres. The assumption that T is Hamiltonian
implies that the group I'y can be obtained as a limit of a sequence of quasi-Fuchsian
deformations of I'y. More precisely, this is achieved by considering a sequence of
quasi-Fuchsian deformations of I'y that pinch suitable collections of simple closed
non-peripheral geodesics on D/T'; and ((E \ D)/T; simultaneously. Thus, I'r is a
cusp group that lies on the boundary of the quasi-Fuchsian deformation space of
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the Fuchsian group I'y. These geodesics (that we pinch) lift by I'y to the universal
covers D and C \ D giving rise to a pair of geodesic laminations (of D and C \D
respectively) [37, §3.9.1]. Since p,|r is orbit equivalent to the action of Hy, it follows
that these two laminations (viewed as equivalence relations on T) are p -invariant;
i.e., the p -images of the endpoints of a leaf are the endpoints of some leaf of the
lamination. Moreover, the quotient of T by identifying the endpoints of the leaves
of both these laminations produces a topological model of the limit set Ay, and
the (equivariant) quotient map from T onto Ay semi-conjugates p; : T — T to
N7y : Ay — Ap (see [19], also compare [41]). In fact, this quotient map is the
Cannon-Thurston map for Hr (see [41, §2.2] for the definition of Cannon-Thurston

maps).
The domain of discontinuity of I'7 is equal to Q. If the valences of the vertices
of T are ny,--- ,njy,|, then the quotient

M(T7) = (H3UQy) /T

is an infinite volume 3-manifold whose conformal boundary OM(I'r) = Qg /T'r
consists of [Vr| Riemann surfaces which are spheres with ny,---ny, | punctures
(respectively).

In the particular case of the tetrahedral triangulation 7 (which gives rise to the
classical Apollonian gasket limit set), the conformal boundary OM(I'y) consists of
4 triply punctured spheres. In this case, I'7 is obtained by pinching two geodesics,
one on the top and one on the bottom 4-times punctured sphere determined by
T'3. In fact, these geodesics correspond to pants decompositions of the top and
bottom 4-times punctured spheres. Thus in this case, I'r is a maximal cusp group
(see [37, §5.3] for a discussion of maximal cusp groups). Such groups are known
to be rigid. More precisely, if a 3-manifold M(I”) (arising from some Kleinian
group I'') is homeomorphic to M(I'7), then they are in fact isometric, and the two
Kleinian groups I't and I are conjugate by a Mobius map. In particular, I'r is
quasiconformally rigid [37, Theorems 3.13.4, 5.1.3].

5. TOPOLOGICAL SURGERY: FROM NIELSEN MAP TO A BRANCHED COVERING

Let g : S — S? be a branched cover, and let C, be its set of critical points.
The postcritical set is given by Py = J;29°(Cy). A Thurston map is a branched
cover g : S* — S? of degree d so that |P,| < oo and |d| > 1. Contrary to the usual
definition, we admit orientation reversing branched covers.

In this section we construct an orientation reversing branched cover G : S? — S§?
associated to a triangulation 7. This is done in such a way that each vertex in T
is fixed by G+ and each edge in 7 is invariant.

Recall that each face f € Fr contains a unique interstice A ¢ of the circle packing.

Lemma5.1. Let Ay andh, = Ry, Ry, ... Ry, € H, ij #ij41, j=1,2,...,n—1,

be arbitrary, and let Ay, be defined by Ay = hy(Asp,). Then
diam(Aﬁhn) —0
as the word length |h,| = n goes to infinity.

Proof. We argue by contradiction and assume that there exist § > 0 and a sequence
(hy) such that diam(Ayj,) > d for all n € N. Since there are only finitely many
disks in Qg whose diameters are bounded away from 0 by a fixed positive number,
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there must exist a subsequence (hy,) such that one of the sides of Ay, —is con-
tained in the boundary of a fixed disk of Qy, for all £ € N. In fact, the triangle
inequality applied to the vertices of Af,hnk implies that, by possibly passing to a
further subsequence of (hy, ), we may assume that two of the sides of Ay, —are
contained in the boundaries of two distinct fixed disks of Qp.

Now, let D,,, be the disk in 2z whose boundary contains the third side of A Fohny -
This disk has to be mutually touching with the two disks whose boundaries contain
the other two sides. If diam(D,,) — 0 as k — oo, we get a contradiction with
our assumption. Otherwise, by possibly passing to yet another subsequence, we
may assume that D,, is also fixed for all £ € N. This however also leads to a
contradiction because the word length |h,, | goes to co. (]

We first define G7 on each closure A to be the restriction Gy = Rf|Tf~ Note
that this implies N7 = G on Ay. Now, let v € Vi be arbitrary and let D,, be the
corresponding open disk in the circle packing Cy. The map G is already defined
on the boundary circle D, of D,,, and it is a piecewise reflection map. Let k = k(v)
be the number of triangular interstices adjacent to D, minus one. We have k + 1
points pg, p1, - - -, Pk on dD,, that are common points of pairs of adjacent interstices.
We assume that they are enumerated in a cyclic order along 0D,,. These points are
fixed by G, and they are the only fixed points of G7. Moreover, the degree of the
map G7|sp, is —k. Therefore, there is an orientation preserving homeomorphism
¢, of 0D, onto the unit circle in the plane that conjugates Gr|gp, to the map
gr(2) = 28, The map ¢, takes pg, p1, ..., pr to 2™/ B+ 5 —0 1 ...k, the fixed
points of gr. The fact that such a conjugating homeomorphism ¢, exists follows
from Lemma 5.1. Indeed, this lemma implies that the lengths of the complementary
intervals of U?:o G7"(p;) go to 0 as n — oo.

Let ®, be a homeomorphism of the closure D, onto D that extends ¢,. For each
v € Vo, we define Gr|p, = ®, %0 gy o ®,. This defines a global continuous map
Gt of C to itself.

The map gy, fixes setwise each ray p; from the origin to the fixed point 2™/ ACON
j =0,1,..., k. For each v € Vr, the point u, = ®;(0) € D, is a fixed point of
G and the arcs o, ; = ©,1(p;), j =0,1,...,k, are setwise fixed. If two vertices
v1,v2 € Vi are such that the corresponding disks D,,, D,, are tangent, then there
exist two fixed arcs o, 4, in Dy, and oy, j, in D,, that have the same endpoint, the
tangent point of D, and D,,. Their concatenation along with the tangent point
form a fixed arc t,,,, that connects u,, and w,,. The triangulation 7T is isotopic to
the triangulation 7’ whose vertices are the points u,, v € V7, and the edges are
tyiv,, Where vy, v9 are such that D,,, D,, are tangent. In what follows, we identify
T and 7, and therefore conclude that G+ keeps T invariant. More specifically, G
fixes the vertices of 7 pointwise and fixes the edges of T setwise. We summarize
the properties of G in Proposition 5.2.

Proposition 5.2 (Properties of the branched covering G7). The map G : S? —
S? is an orientation reversing branched cover such that
(1) the degree of Gy is 1 — |Fr|,
(2) the set of critical points of G7 is giwen by Vo, and all critical points are
fized,
(3) all edges and vertices are invariant, and
(4) the restriction of G to any face of T is univalent.
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(5) Nr =Gy on Ag.

Remark 5.3. Here is an equivalent way of constructing the map G from the Nielsen
map N7. Note that Ny has | V7| invariant components each of which is a round disk.
For such a round disk D,, the restriction Ny : D, \ int T° — D, is topologically
conjugate to p;, : D\ intIT — D (see Subsection 4.1), where the component of T°
contained in D, is an ideal (k + 1)-gon. Using a homeomorphic extension of &
to D, one can now glue the action of Z¥ : D — D in D,. Clearly, this produces a
branched cover of S? that agrees with Ny on Ay, and that is Thurston equivalent
to G.

Proposition 5.4. The branched cover G is orbit equivalent to the reflection group
Hy on Ay. In particular, Ay is the minimal non-empty Gr-invariant compact
subset of C.

Proof. This follows from Proposition 4.1 and the fact that Ny = Gy on Ay. O

Remark 5.5. With a slight modification, the construction above can be extended
to any polyhedral graph in place of T.

6. GASKET JULIA SETS

Let f: C — C be an anti-rational map; i.e., the complex conjugate of a rational
map. The Fatou set of f is denoted F(f) and is defined to be the set of z € C so
that {f°"}52, is a normal family on some neighborhood of z. The Julia set of f is
defined by J(f) := C \ F(f). It is apparent from the definition that

FF) =F(f) = fFHFE)
FI) =T =T

This section shows that G is realized by an anti-holomorphic map whose Julia set
has a natural dynamical equivalence with the Apollonian limit set Ay discussed
above.

6.1. No obstructions. W. Thurston’s characterization theorem for rational maps
[18] has not yet been extended to anti-rational maps, but the existing techniques
can be leveraged by passing to the second iterate.

Two Thurston maps f and g are equivalent if there exist two orientation-
preserving homeomorphisms hg, hy : (S, Py) — (S?, P,) so that hgo f = gohy
where ho and h; are homotopic relative to Py. The Teichmiiller space Teich(S?, Py)
associated to a Thurston map f is the set of homeomorphisms ¢ : S? — C subject
to the following equivalence relation: two homeomorphisms ¢; and ¢, are equiva-
lent if and only if there is a M&bius transformation M so that M o ¢, is isotopic to
¢ el Py.

It is known that each orientation preserving Thurston map g has an associated
pullback map o, : Teich(S?, P,) — Teich(S?, P;) on Teichmiiller space. In Douady
and Hubbard’s proof, the pullback o, was taken to be the map on Teichmiiller
space induced by the pullback on almost complex structures. To avoid discussion
of quasiregularity of g, an equivalent definition of the pullback can be made directly
on Teichmiiller space (see e.g. [12]). It is known that g is equivalent to a rational
map if and only if o, has a fixed point [18, Proposition 2.1]. If ¢ has hyperbolic
orbifold, the second iterate of o, is strictly contracting in the Teichmiiller metric
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which implies uniqueness of the fixed point [18, Corollary 3.4]. Recall that any
Thurston map with |Py| > 4 has hyperbolic orbifold.

To each orientation reversing Thurston map f : S* — S? with |P¢| > 3 we now
show how to define the associated pullback map

o : Teich(S?, Py) — Teich(S?, Py).
For convenience fix a triple {p1,p2,p3} C Py and let 7 € Teich(S?, Pf) be repre-
sented by a homeomorphism ¢ : S — C so that d(p1) =0, ¢(p2) =1, ¢(p3) = 0.
Then ¢o f: S = C defines a complex structure on its domain (the restriction of f
to S?\ f~1(P) is a cover so charts are immediate there, leaving only finitely many
removable singularities). Let ¢ : S? — C be the unique uniformizing map of this

complex structure normalized so that ¢(p;) = ¥(p;), ¢ = 1,2,3, and observe that
F.:=¢o foy ! is an anti-rational map so that the following diagram commutes:

s2 Y, ¢

| I

s2 %, ¢C

Let 7/ be the point in Teichmiiller space represented by ¢ and define os(7) = 7’.
This is well-defined by the homotopy lifting property.

The map oy has a fixed point if and only if f is equivalent to an anti-rational
map using the same argument found in [18, Proposition 2.3]. It is also immediate
that ofsof = 0f 0 0y where we emphasize that the pullback map on the left is the
classical pullback for orientation preserving case as defined in [12].

Proposition 6.1. Let f be an orientation reversing Thurston map so that f o f
has hyperbolic orbifold. Then f is equivalent to an anti-rational map if and only if
fof is equivalent to a rational map. Moreover, if f is equivalent to an anti-rational
map, the map is unique up to Mobius conjugacy.

Proof. Suppose f is equivalent to an anti-rational map. Then there exists 7 so that
of(1) =7, and oy2(7) = op 0 oy(7) = 7 so f? is equivalent to a rational map.

Now suppose that f? is equivalent to a rational map. Then o2 has a unique
fixed point. Since 042 = oy ooy, it follows that oy either has a two-cycle or a fixed
point. A two cycle for oy would yield two distinct fixed points for o2, but this is
impossible since an iterate of o2 is contracting in the Teichmiiller metric. Thus
o has a fixed point and so f is equivalent to an anti-rational map

Suppose that f is equivalent to an anti-rational map. As mentioned, each fixed
point of o is a fixed point of os2. If oy fixes 7 and 72, then o> fixes 71 and 7.
Since some iterate of o2 contracts the Teichmiiller metric 7y = 75 and there is a
unique fixed point of oy which implies that f is unique up to Mobius conjugacy. [

Let G+ be one of the orientation reversing Thurston maps from Proposition 5.2.

Proposition 6.2 (G is unobstructed). The map G7 is equivalent to an anti-
rational map g7 that fizes all of its critical points. The map g7 is unique up to
Mébius conjugacy.

Proof. We write G as G for simplicity. Using W. Thurston’s characterization
theorem for rational maps, we first argue that G2 is equivalent to a rational map
by showing that no obstruction exists for this orientation preserving branched cover.
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Assume that there is a Thurston obstruction I' for G2 to be a rational map;
see [45] for background and terminology. Such a I' is a curve system in the punc-
tured sphere C \ Vi, where V7 is the vertex set of 7. By possibly passing to a
subsystem, we may further assume that I' is irreducible, i.e., the corresponding
Thurston linear transformation G% is irreducible. Finally, by possibly changing T
and I' in their respective homotopy classes relative to V3, we may assume that I’
minimally intersects each edge of 7. Indeed, the latter can be seen by choosing
the edges of 7 and the curves of I' to be geodesics in the punctured sphere C \ Vr
equipped with the hyperbolic metric.

It follows from Proposition 5.2 that the homotopy class of each edge of T is
invariant under GG. Thus, each such edge forms an irreducible arc system A which
is forward invariant under G? up to isotopy relative to the vertex set Vi, in the
terminology of [45]. Let A denote the component of G~2(A) that is isotopic to A
relative to V-, and let T be the arc system consisting of all arcs A. The system
T forms a triangulation of C isotopic to T relative to V7. This follows from the
fact that G is univalent away from the vertices V. Similarly, let T denote the
union of those components of G~2(I") which are isotopic to elements of T'. Since I'
is assumed to be irreducible, we conclude that I contains a curve system that is
isotopic to I relative to V.

It now follows from [45, Theorem 3.2] that, as subsets of ((Aj, the arc T’ may not
intersect G=2(A) \ A, for any edge A of 7. Indeed, since I' minimally intersects
each A, the first case of [45, Theorem 3.2] means that ' N A = () as sets. Thus we
have that G=2(I) NG ~2(A) = 0, and, in particular, TN (G~2(A)\ A) = 0. If, in the
second case, 'NA # 0, then [45, Theorem 3.2, 2(a)] gives that TN (G~2(A )\A) =0.

Since I' N (G2(A ) \ A) = 0 for each edge A of T, we conclude that ' cannot
intersect the set G=2(7T) \ 7. Indeed, if T did intersect G—2(T)\ 7T, then it would
intersect G~2(T), i.e., there would exist an edge A of 7 such that T NG~2(A) # 0.
Since T' N (G=2(A) \ A) = 0, we would conclude that T' can only intersect G—2(T)
at points of 7, and the claim follows.

We now argue that the closure of G=2(7) \ 7 contains a connected graph con-
taining the postcritical set of G2, which is V. Since G is a covering map over
C \ Vi, it is enough to check this statement for the original triangulation 7 whose
edges are invariant under G, rather than the isotopic triangulation whose edges are
the geodesics as above. In this case 7 = 7T, and since G—(T) € G=2(7), it is
enough to check that G=1(7)\ T is a connected graph containing V. Let f € F
be a face of the graph 7. Since 7 is a triangulation, the closure of T \ f is a
connected set containing the three vertices of f. Recall that G is univalent on each
face (Proposition 5.2), so G~1(T'\ f)N f is also a connected set containing the three
vertices of f. Carrying out this procedure for all faces and taking the union, it is
shown that the closure of G™'(7) \ T is connected and contains V7.

The curve system I' contains an isotopic copy relative to Vi of a Thurston ob-
struction I'. Therefore, I’ must separate the postcritical set Vi without intersecting
the closure of the connected set G~2(7) \ T that contains V. This is impossible,
and thus no Thurston obstructions exist for G2, and so G? is equivalent to a ra-
tional map. The conclusion that G is anti-rational follows from Proposition 6.1.
Thurston equivalence preserves local degrees and postcritical dynamics, so g7 must
also fix all of its critical points.
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The uniqueness statement will follow from Proposition 6.1 once it is seen that
G? has hyperbolic orbifold. Since G(Pg) = Pg, the equation |Pgoc| = |Pg| holds.
Since T was assumed to have at least 4 vertices, it follows from Proposition 5.2
that G has at least 4 postcritical points. If |Pg| > 4, it is immediate that G2 has
hyperbolic orbifold because |Pgz2| > 4. If |Pg| = 4, then G o G has postcritical
set consisting of four fixed critical points, and by direct computation, G o G has
hyperbolic orbifold. O

6.2. Isotopic nerves. Suppose an anti-rational map g fixes each of its critical
points. If a Fatou component contains a critical point, it is called a critical Fatou
component. Let U be a critical Fatou component. Adapting the classical Bottcher
theorem, there is a Bottcher coordinate ¢ : U — D so that ¢ o g = g4 o ¢, where
ga(z) = z%. By Carathéodory’s theorem, the map ¢! extends continuously to a
semi-conjugacy of D onto U. A Béttcher ray of angle 0y for ¢ is defined to be the
subset of U of the form ¢~ (re'?) where r € [0, 1]. Note that the ray of angle d%_l is
gq-invariant for j = 0,...,d, and so the Fatou component U has d+1 corresponding
g-invariant rays. A ray connection of g is the union of two Bottcher rays (either in
the same or different Fatou components) whose intersection contains a point in the
Julia set. Two distinct critical Fatou components are said to touch if there is a ray
connection between their corresponding critical points.

There is a general result of Pilgrim that can be used to prove the existence of ray
connections [44, Theorem 5.13] and show that only finitely many ray connections
exist (though the precise number of ray connections is not specified). The proof of
Lemma 6.3 adapts Pilgrim’s argument to our specific setting.

Let hgy : S? — C represent the unique fixed point of the pullback map og on
Teichmiiller space, where hg is normalized to carry the postcritical set of G (this
is the same as the set of critical points) to that of gr.

Lemma 6.3. Let o be an edge in T. Then the arc ho(w) is isotopic (rel the
postcritical set) to a ray connection of gy. Moreover, there is a lift of ho(a) under
g7 that is isotopic to ho(«).

Proof. Recall from the construction of the orientation reversing Thurston map G
that an edge in 7 is a geodesic arc a connecting the centers of two circles that
are tangent to each other, and that « is invariant under G (see Proposition 5.2).
Define the sequence of orientation preserving homeomorphisms {h; : S — @}fil
inductively by the pullback equation h;_1 o Gy =groh;, i =1,2,.... Each h; is
likewise normalized so that it carries the postcritical set of G to that of gr.

Let 8; := h;(«). Note that §; does not intersect postcritical points of g7, other
than its endpoints, because a does not intersect any of the postcritical points of
G other than its endpoints. Since « is a lift of itself under G, it follows that
Bi+1 is a lift of B; under gy for ¢ > 0, and that ;1 is isotopic relative to the
postcritical set to ; (though possibly tracing a different arc). Denote by U; and
U, the two Fatou components that contain the endpoints of g; for all i. Applying
an isotopy to [y relative to the postcritical set, it may be assumed that Sy N Uy
and By N Uy each consists of exactly one component which is a Bottcher ray. The
forward invariance of U; and U, implies that for each i, the sets 3} := 8; N U; and
% := ;N U, each consist of a single Bottcher ray. Define the sequence of compact
sets K; := f3; \ (B} U B2), and observe that g7 (K;11) = K; and g7|k,,, is injective
for each 1.

it+1
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A hyperbolic rational map is uniformly expanding on compact subsets of C that
do not intersect the posteritical set [39, §19]. Thus the sequence of compact sets
K; has diameter converging to zero as i — oo, and therefore some subsequence of
{B;} has Hausdorff limit 3 that is a ray connection between the critical points in
U1 and UQ.

Since every postcritical point outside of Uy UUs is contained in a Fatou component
and hence has positive distance from the Julia set, it follows that K; has a definite
positive distance from each such point for all ¢. Thus the limiting ray connection
[ is in the same isotopy class as §; for all 4. O

Lemma 6.4. Each ray connection of gr that is not a loop is isotopic to an edge
Of ho(T) .

Proof. Let x and y be two distinct critical points of gy. Let 7; be an arc with
endpoints = and y and let ~- satisfy the same properties. In this proof, all homo-
topies are considered in @\PgT rel the endpoints of the arc. Denote by ¢(v1,72) the
minimum of the quantity |y N ~4| for all 4/ in the homotopy class of ~; rel {z,y},
i =1,2. If y9 and 2 are both ray connections, it is evident that ¢(y1,72) < 3.
Let {vx}32, be a sequence of arcs with endpoints {z,y} so that no two arcs are
pairwise homotopic rel {z,y}. Then for any integer M > 0, there exist indices !
and m so that ¢(y;, vm) > M.

Let 8 be a ray connection of g7 with endpoints distinct. Then, for each i > 0,
gf}l(ﬁ) is also a ray connection. Therefore, by the previous paragraph, there exist
integers i > 0 and j > 0 (taken to be minimal) so that g5*(3) and gs-i"'j(ﬁ) = ' are
isotopic rel endpoints. Then a := hal(ﬁ’) is an arc with distinct endpoints in the
vertex set of 7. After applying a homotopy, we may assume that o intersects the
disks Dy, Do containing its endpoints radially. Some lift of o under G?r] is isotopic
to a. Denote by aj some choice of a lift of o under G;ﬁj that is isotopic to a.
We argue as in Lemma 6.3. The map G is expansive by Lemma 5.1, and the
non-triviality of the ay, implies that D; and Dy must touch. By construction, D,
and Dy touch in at most one point which is contained in an edge in 7, and thus
{a}$2, converges in the Hausdorff topology to this edge of 7. Since edges lift to
themselves under G'7 it follows that j = 1.

Each edge of T has exactly one Gr-lift with the property that both endpoints
are critical points, namely the edge itself. Thus i = 0 and ho(«) = 8’ is isotopic to

B. 0

Corollary 6.5. A Fatou component of g with fized critical point of multiplicity d
touches exactly d + 1 invariant Fatou components distinct from itself.

Proof. The hg preimage of such a critical point is the endpoint of d 4+ 1 edges in
the triangulation 7. The conclusion follows from Lemmas 6.3 and 6.4. O

Lemma 6.6. No point is contained in the boundary of three or more critical Fatou
components.

Proof. Suppose z lies in the closure of three distinct Fatou components. By the
Jordan curve theorem, there are at most two points that lie in the closure of the
three Fatou components. Thus the forward orbit of z consists of at most two points.

If z is fixed by g7, three invariant Fatou components touch at a fixed point.
This is incompatible with the (orientation reversing) local linearization at that
fixed point. A similar argument applies if g7(z) is fixed.
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The final case to consider is that z is in a two-cycle. Then there are three
invariant critical Fatou components U, V, and W so that {z,g7(2)} CcUNV NW.
There must be some critical point z in a complementary component of U UV U W.
Without loss of generality, we may assume that x is separated from W by U U V.
But then there are two non-homotopic ray connections connecting the critical points
in U and V, which is contrary to Lemma 6.4 and the fact that 7 contains no graph
two-cycles. ]

From Lemma 6.4 it is known that ray connections must be invariant up to isotopy,
but we prove a stronger statement.

Lemma 6.7. Fach ray connection that is not a loop is invariant under gr.

Proof. Let U be a fixed critical Fatou component and recall that U has a Bottcher
coordinate ¢ : U — D so that ¢o g7 = gq0 ¢, where g4(z) = z%. By Carathéodory’s
theorem, the map ¢! extends continuously to a semi-conjugacy of D onto U. For
a subset F in QU, abusing notations, we denote by ¢(FE) the full preimage of E
under the extended semi-conjugacy ¢~ .

Let Uy,...,Ug+1 be the critical Fatou components that touch U, as guaranteed
in Corollary 6.5. Define K; C 0D to be the compact set ¢(U N U;) for all i. Note
that for all j # 4, the set K; is not separated by K; in dD since U,U;, and U;
are pairwise dlSJOlnt. Furthermore, ¢g4(K;) C K; for all i. Denote by H(K;) the
smallest closed circular arc in 9D that contains K;, and denote by |K;| the length of
H(K;). Any two distinct sets of the form H(K;) have disjoint interior by planarity
of the corresponding Fatou components and have disjoint boundary by Lemma 6.6.

Each set H(K;) is now shown to contain at least one fixed point of the power map
ga. If | K| > d2_:1, the conclusion is immediate because of the equal distribution
of the d + 1 fixed points of g4 on the circle. If |K;| < d+1’ then the expansion of
gq and the forward invariance of K; implies that |K;| = 0. Thus K; consists of a
single point which must be fixed since g4(K;) C K;.

There are d 4+ 1 fixed points of g4 in the circle and d + 1 distinct K; so each
H(K;) contains exactly one fixed point of gq. If |K;| < 2% 77 it was just argued that
K; is a singleton. It will now be shown that this is always the case. Suppose that
|K;| > dzfl Then K; contains a fixed point z as well as a point z; that has circular
distance from zq contained in (77, 3 +1) It follows that gq4(z1) is separated from z
by another fixed point which must also then be contained in H(K;). Thus H(K;)
contains two fixed points of g4 which is a contradiction. Each K; has been shown
to be a singleton.

Under the semi-conjugacy ¢!, these d + 1 fixed points are carried to d + 1
distinct fixed points of g7 in U by Lemma 6.6. The fact that K; is a singleton
implies that there is a unique Béttcher ray in U landing at ¢~1(K;). Similarly
there is a unique Bottcher ray in U; landing at ¢~ 1(K;). The union of these two
Bottcher rays forms a ray connection which is the unique connection between the
two critical points. Thus the ray connection is forward invariant. ([

Lemma 6.8. No ray connection of g1 is a loop.

Proof. Let U be a fixed critical Fatou component, and suppose that 5, and f5 are
Béttcher rays that terminate at a common endpoint z in the Julia set, i.e. 81 U 33
forms a loop.
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First, suppose z is fixed and 1 and (3 are invariant. Suppose the local degree of
the critical point in U is —d. Then by Corollary 6.5, there are exactly d + 1 other
fixed critical points that are connected by a single ray connection to the critical
point in U. By Lemma 6.6, the intersection of the d + 1 rays with U is a collection
of d 4+ 1 distinct Bottcher rays. Each of the rays is invariant by Lemma 6.7 and so
the collection of Bottcher rays must include 81 and Bs. Thus there is an invariant
ray connection that contains 8; and terminates at the critical point of another
Fatou component. But three distinct invariant arcs are incompatible with the local
linearization of the anti-holomorphic map g7 at z. Thus 51 = fBs.

Now suppose (1 and Py are invariant after some finite number of iterations of
g7. By the previous paragraph and the fact that there are no critical points in the
Julia set (hence the iterates at z are locally univalent), it follows that 5 = 3s.

The case that (; is invariant after a finite number of iterates, and [ is not
invariant after a finite number of iterates is incompatible with the local linearization
at z and the Bottcher coordinate on U (for a similar argument see [39, Lemma
18.12]).

The final case to consider is that 8; and By are distinct Bottcher rays that are
not (eventually) invariant under g7. As before, let z denote the common endpoint
of 81 and (2 in the Julia set. Recall that the restriction of g7 to U is conformally
conjugate to gq(z) = 2% on the open unit disk. Let aq, s each be a radius of the
unit disk that is not eventually invariant under iteration of g4. Since g4 is a power
map, there is some iterate n so that g3"(a1) \ {0} and g5" () \ {0} are separated
by the union of two invariant radii. Thus under iteration, 8; and (3, are separated
in U by two invariant rays 7; and o in U. Without loss of generality, we replace
B1 and (B by their separated iterates. Also we may assume that +; and o are
neighbors in U, in the sense that their union has a complementary component in
U that does not intersect any invariant rays. Moreover, v; and 7, are subsets of
ray connections to other Fatou components by Corollary 6.5 and Lemma 6.7. Thus
there are invariant critical Fatou components U; and Us with closures containing
exactly one endpoint of 77 and 73 respectively.

Suppose first that U; and Us are contained in distinct complementary com-
ponents of U (see Figure 8). But U; and U; must touch since they arise from
neighboring invariant rays, so U, U, and U, touch at z. This contradicts Lemma
6.6. Suppose next that U; and Us are contained in the same complementary com-
ponent of U. But then one of ¥, or 4, contains z in its closure, so z is fixed by
g7 and is the landing point of an invariant Bottcher ray. Once again, one can use
the linearization of gy at z and the existence of the Bottcher coordinate on U to
conclude that 81 and f, are invariant under finitely many iterates which contradicts
the hypothesis. Thus g1 = (s. |

The nerve of g7 is defined to be the graph whose vertex set is the set of fixed
critical points of g7 and edge set is given by the collection of all ray connections
both of whose endpoints are fixed critical points. We do not assume that the nerve
has a finite number of edges, or even that it is an embedded graph. The nerve is
said to be naturally embeddable if the intersection of each pair of ray connections
is a subset of the vertex set. If the nerve is naturally embeddable, we consider it to
be an embedded graph given by the obvious embedding.
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FIGURE 8. Sample impossible configuration from the final case of
the proof of Lemma 6.8

Proposition 6.9 (Nerve of gr). The nerve of g7 is a naturally embeddable graph

in C that is isotopic to T C S?. Moreover, each vertex of the nerve is fized by gr
and each edge is invariant.

Proof. Suppose that two ray connections 5 and 3’ intersect but are not identical.
It is impossible for S N B’ to be the union of a disjoint Bottcher ray and a point
because this would imply the existence of a loop contrary to Lemma 6.8. Moreover
BN S may not be a single Bottcher ray because this configuration would imply that
three Fatou components touch at the same point, contrary to Lemma 6.6. Thus
BN B is a subset of the vertex set and the nerve is naturally embeddable.

The homeomorphism hg : S — C maps the embedded triangulation T to another
triangulation. Since hg is a global orientation preserving homeomorphism, ho(7)
is isotopic to T (here the isotopy is not rel vertices). Recall from Lemma 6.3 that
each individual edge of ho(7) is isotopic relative postcritical set to an edge in the
nerve of gy, and each edge of the nerve arises in this way by Lemma 6.4. Thus
there is a global isotopy that carries ho(7) to the nerve. It follows that T is isotopic
to the nerve of gr.

Invariance of vertices was a simple consequence of Thurston equivalence in
Proposition 6.2. Invariance of edges is the conclusion of Lemma 6.7. (]

In conjunction with Proposition 6.2 we have the following analogue of the Circle
Packing theorem.

Corollary 6.10. For any triangulation T of the sphere, there exists an anti-rational
map that fizes each of its critical points and has nerve that is naturally embeddable
and isotopic to T.

6.3. Promoting Thurston equivalence to conjugacy. Now it is shown that
the Thurston equivalence between G and g7 can be promoted to a conjugacy on
the Julia set using a pullback argument. The existence of the conjugacy has been
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shown generally in [25, Theorem 4.4], [3, Corollary 1.2], and similar results have
been shown in different contexts, see e.g. [16, Corollary 1.2], [6, Theorem 11.1].

Theorem 6.11 (Equivariant homeomorphism between limit set and Julia set).
There is a homeomorphism h : Ag — T (g7). Moreover, ho Gy = groh, and h
extends to an orientation preserving homeomorphism of the sphere.

Proof. We have just shown that the nerve of g+ is isotopic to the nerve of the circle
packing C7, in particular there is an orientation preserving homeomorphism hgy of
C carrying the nerve of G to the nerve of gr. Moreover, by possibly changing
ho in the same isotopy class relative to the critical points of G, we may and will
assume that the map hg takes each fixed connected component of the complement
of Ay onto a fixed Fatou component of 7, and still takes the nerve of G to the
nerve of gr.

A dynamical interstice of generation n € N is the closure of a connected compo-
nent obtained by removing from the sphere the closures of the Fatou components
of g7 of generation at most n. A group interstice of generation n is defined simi-
larly, but with respect to the complementary components of Ag. Both dynamical
and group interstices are topological triangles whose vertices are touching points of
two complementary components of 7 and Ap, respectively. The above assumption
implies that ho takes a group interstice of generation 0 onto a dynamical interstice
of generation 0.

Let h;, i > 1, be a lift of h;_1, namely,

(4) grohi=hi_10GT.

The existence of such a lift follows from the fact that G; and gy are equiva-
lent maps and they are topological coverings outside their respective fixed critical
points. Since g7 may not have critical points outside of the nerve, it follows from
Proposition 6.9 that g7 is univalent on each dynamical interstice A of generation 0.
Moreover, it takes each such interstice A onto the closure of its complement minus
the three Fatou components whose boundaries intersect A.

Applying equation (4) inductively, we conclude that the map h; takes each group
interstice of generation ¢ onto a dynamical interstice of generation i. Moreover, the
same equation gives that for each j > 7, the map h; takes each group interstice A
of generation ¢ onto the same dynamical interstice h;(A) of generation i.

Let P;, i > 0, denote the set of points common to two group interstices of gen-
eration ¢. Since the nerves of G and g7 are preserved by these maps, respectively,
the map hg takes the nerve of G to the nerve of g7, and the maps h; and hg are
isotopic relative to the critical points of G, we conclude from (4) that h; agrees
with hg on Py. Arguing inductively, equation (4) gives that h; = h; on P; for all
0<i<j. Let

Py = UinPL',
and define
h(z) = lim h;(z), z € Py.
1— 00
This limit exists by the preceding discussion and the set P, is dense in Ay by
Lemma 5.1. Equation (4) gives
groh(z) =hoGr(xz), x€ Px.

We now show that the family {h;}2, is equicontinuous on Ag. Indeed, let
€ > 0 be arbitrary. We choose N € N such that all dynamical interstices of J of
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generation N have diameter at most €. It is possible to choose such an € since g7
is expanding. If A is a group interstice of Ay of generation N, we define the height
of A to be the smallest of distances (in the geodesic distance on the sphere) from
each vertex of A to the side opposite to this vertex. Let § > 0 be the smallest
height among all group interstices of Ay of generation N. Such a § exists because
there are only finitely many group interstices of generation N.

Let z,y € Ay be such that d(z,y) < 0, where d denotes the geodesic metric on
the sphere. Let [ be the geodesic in the sphere of length d(z,y) that joins  and
y. Let D be a complementary disk of Ay of generation at most N. By replacing
the intersection of [ with each such disk D by the shortest arc on the boundary
0D with the same endpoints, we conclude that there exists a path I’ in Ay that
connects x and y and whose length is at most . Note that the path I’ cannot
be self-intersecting. We claim that there exists an absolute constant C such that I’
intersects at most C group interstices of generation IN. If this is the case, we have
d(hi(x),hi(y)) < Ce for all i > N, and the equicontinuity follows.

Now, if x and y are in the same generation N group interstice or in two generation
N interstices that share a vertex, the claim is immediate. Assume that this is not
the case, and let k£ be the number of generation N group interstices that intersect
', excluding the interstices that contain x and y. If A is one of the k such group
interstices, then !’ must contain two distinct vertices of A. This follows from the
observation that I’ is not self-intersecting. Therefore, the length of I’ is at least ko.
Since the length of I’ is at most w4, we conclude that k < 3. Thus C' = 5 works
and the proof of equicontinuity of {h;}$2, is complete.

The equicontinuity of {h;}$2, and the density of Py in Ay imply that the map
h has a unique continuous extension to all of Ay. We continue to denote this
extension by h. Moreover, the map h has to satisfy

groh(z)=hoGr(x), x€Ap,

i.e., h semi-conjugates Ay to J.

The map h is a surjective map from Ay to J because h(Ps) is dense in 7,
which follows from hyperbolicity of gr.

We now argue that h is also injective. Let z and y be two distinct points in
Apg. From Lemma 5.1 we know that there exists ¢ € N such that  and y belong
to two disjoint group interstices A, and A, of generation 7. Then the dynamical
interstices h;(A,) and h;(A,) are disjoint. As stated above, we also have that
and h(Ay, N Pyx) C hi(A,) are disjoint. Therefore, by taking closures and using the
continuity of h, we get that h(A; N Ag) C hi(Ag) and h(Ay N Ag) C hi(A,) are
disjoint, and hence h(x) # h(y).

The fact that h extends to an orientation preserving homeomorphism of the
sphere follows from Lemma 3.1. O

Theorem 6.11 tells us that the anti-rational map g7 is intimately related to the
reflection group Hr.

Corollary 6.12 (Conjugacy between anti-rational map and Nielsen map). The
anti-rational map g7 : J(g17) — T(g7) is topologically conjugate to the Nielsen
map Nt : Ag — Ag.

Proof. Follows from Theorem 6.11 and the fact that G- = Ny on Ay. O
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Proposition 6.13 (Global conjugacy between G and g7). There exists a home-
omorphism h of the whole Riemann sphere C such that

(5) hoGr=groh
on @

Proof. In Theorem 6.11 we proved the existence of a homeomorphism h such that
(5) holds true on Ag. This theorem also states that h has a homeomorphic extension
to the whole sphere, but in general this extension does not have to satisfy (5) outside
of Ay. We now show that a homeomorphic extension to C \ Ay that satisfies (5)
exists. R

Let D be a component of Qg = C\ Ay that is fixed by G, and let U be the
Fatou component of g7 that corresponds to D under the map h from Theorem 6.11.
Furthermore, let ®: D — D be the map from Section 5 such that

(6) PoGr=g40®

on D, where g4(z) = z¢, and let ¢: U — D be the Béttcher coordinate of U. Note
that since U is a Jordan domain, such ¢ exists. Moreover, from conjugation of G
and g7 on the boundary of D we know that

(7) pogr =giod

on U. Also, the map ¢ is unique up to postcomposition with a rotation by an angle
which is an integer multiple of 27/(d 4+ 1). Therefore, we may assume that ¢ is
selected in such a way that for each fixed point z; of G on the boundary of D, we
have ¢(h(z;)) = ®(z;). Putting together equation (5) on the boundary of D and

(6), (7), we conclude that ¢(h(z)) = ®(z) holds for all z on the boundary of D.
We now extend h from Theorem 6.11 to D using the formula

h=¢ tod.

In such a way we obtain a homeomorphic extension of h from the boundary of each
fixed component D inside D that satisfies (5) in D.

If D is a non-fixed by G component of Qg, let k € N be the smallest integer
such that G’%(D) is fixed by G7. From Theorem 6.11 we know that the component
h(G%(D)) = gk (h(D)) must be fixed by g7. Note that k must also be the smallest
integer with this property, and hence g’7“- is univalent on h(D). We define the
extension of A inside such a D by

h=grto¢  o@oCl,
where the branch of g}k is chosen so that

97" (g7-(h(D))) = h(D).

From the above, such an extension satisfies (5) in D.
Since we now were able to extend h into each component of Qy and diameters
of D as well as the corresponding Fatou components U go to 0, we conclude that
such extensions paste into a global homeomorphism, and the proof is complete. [

For example, the Julia set where 7T is the tetrahedron is shown in Figure 9.

Remark 6.14. Recall from Subsection 4.2 that if the dual graph 7 of the triangula-
tion 7 is Hamiltonian, then the group I'y (which is the index two Kleinian subgroup
of the reflection group Hy) is obtained as a limit of a sequence of quasi-Fuchsian
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FIGURE 9. The Julia set corresponding to the tetrahedron with
nerve superimposed The anti-rational map is given by f where
flz)= 2z3+1 (The image of Jy appeared in [12].)

deformations of T'y that pinch a suitable collection of simple closed non-peripheral
geodesics on the (d + 1)-times punctured spheres D/Ty and (C \ D)/T'y. More-
over, these geodesics lift by I'; to the universal covers D and C \ D (respectively)
giving rise to a pair of p,-invariant geodesic laminations such that the quotient
of T by pinching the endpoints of the leaves of both these laminations produces a
topological model of the limit set Ag.

Each of these two laminations can be viewed as an equivalence relation on T.
Pushing forward these two laminations by the topological conjugacy £, between p,
and gg, where we recall that gq(z) = Z¢, we obtain two gg4-invariant formal rational
laminations in the sense of [26]. An anti-holomorphic version of [26, Theorem 1.1]
implies that these laminations are admitted by two critically fixed degree d anti-
polynomials. It is not hard to see that the topological mating of these two critically
fixed anti-polynomials (see [40, Definition 4.1] for the definition of topological mat-
ing of two polynomials, these notions carry over to anti-polynomials in the obvious
way) is a degree d orientation reversing branched cover of S? that is topologically
conjugate to G7. In light of Proposition 6.13, we now conclude that the topological
mating of these two critically fixed anti-polynomials is topologically conjugate to
g7 such that the conjugacy can be chosen to be conformal in the interior of the Fa-
tou sets of the anti-polynomials. In other words, g7 is a geometric mating of these
two anti-polynomials (see [40, Definition 4.4]). In particular, the quotient of T by
the above-mentioned gg4-invariant rational laminations yields a topological model
of J(g7), and the quotient map from T onto J(g7) semi-conjugates g4 : T — T to

g1 I (971) = T(97)-

7. GASKET JULIA SET QUASISYMMETRIES

Let A be a complementary component of the nerve of the Fatou set of gr. The
restriction of g7 to A is evidently univalent, and g7 (A) = C \ A. We associate to
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A a dynamically defined map pa : C — C as follows:

gr(z) if z € A,
pa(z) =971, ) _ PP
g7 (z) if z¢ A, where g7* : C\ A — A.

Note that the map pa is not continuous on all of ((A:, but restricts to a continuous
involution on the Julia set J(g7).

Lemma 7.1. For any A as above, pa restricted to J(g7) is quasisymmetric.

Proof. Let Uy, Us, and Us be the three Fatou components of g7 that intersect the
boundary of A. From the definition of pa, we immediately conclude that this map
restricted to A U (C \ A) is anti-conformal. Hence, pa is anti-conformal in

(A\UlLJUQUUg)U(@\AU(UluUQUUg)).

Let ¢;: U; — D, be a Béttcher coordinate of U;, i = 1,2,3, that conjugates the
map g7l to ga,(2) = z% on D. The restriction p; of ¢; o pa o (;5;1, i=1,23,
to the boundary circle of D is then given piecewise as follows. It is z ++ 2% on an
arc between two successive fixed points of g4,, and z — z1/di on the complement of
the arc, where the branch of /% is selected so that the resulting piecewise map
p; is a homeomorphism of the circle. Each such p;, ¢ = 1,2, 3, is a bi-Lipschitz
orientation reversing homeomorphism of the circle. Therefore each complex con-
jugate map p;, ¢ = 1,2,3, is an orientation preserving bi-Lipschitz map, and, in
particular, it is quasisymmetric. According to the Ahlfors-Beurling theorem it
has a quasiconformal extension to ). Thus each map p;, i = 1,2,3, has an anti-
quasiconformal extension to D, i.e., the complex conjugation of each extension is
quasiconformal. Conjugating back using the Bottcher coordinates ¢;, i = 1,2, 3,
we conclude that the map pa has an anti-quasiconformal extension into each of the
Fatou components Uy, Us, Us. This way we obtain a global homeomorphism of C
that is anti-quasiconformal outside the union of three boundaries U7 U 9Us U OUs.
Since g7 is a hyperbolic rational map, each boundary oU;, i = 1,2, 3, is a quasi-
circle. According to [53, Theorem 4 and Proposition 9], the set OU; U 9Us U QU3 is
quasiconformally removable.

Therefore, the restriction of pa to the Julia set J(g7) extends to an anti-
quasiconformal map of C. Since the classes of quasiconformal and quasisymmetric
maps of C coincide (see, e.g., [24]), we conclude that the restriction pa|z(g,) must
be quasisymmetric.

Recall that Theorem 6.11 gives a homeomorphism h : Ay — J(g7). There is
an obvious induced isomorphism

hy : Homeo(Ay) — Homeo(J (g7))
defined by & — héh™? for € € Homeo(Ag).
Theorem 7.2 (Gasket Julia quasisymmetries). For a reduced triangulation T,

Homeo(J (97)) = @S(T (97))

and so there is an isomorphism

h« : Homeo(Ap) = QS(T (g97))-
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Proof. The splitting Homeo(Ay) = AutT((E) x H from Theorem 3.8 and surjectivity
of h, implies that every element of Homeo(J(g7)) is a composition of an element
of h.(H) and an element of h, (AutT(@)). To prove the theorem, it suffices to show
that all such elements are quasisymmetric.

Since h'pah is a homeomorphism of Ay that acts invariantly on three of the
generation zero disks, it follows from Lemma 3.5 that h~1pah is a generator of H.
Thus h.(h™tpah) = pa is a generator of h.(H) for each A. Lemma 7.1 asserts
that pa is a quasisymmetry. Thus, every element of h,(H) is a composition of
quasisymmetries, and hence a quasisymmetry itself. Thurston rigidity implies that
every element of h, (AutT(@)) is either a M&bius or anti-Mdbius symmetry of J (g7)
and thus a quasisymmetry. ([l

To conclude the section, we note that unreduced triangulations are still very
much of interest, even though our theory does not directly apply to compute their
symmetry group. For example, the two graphs in Figure 3 are realized by anti-
holomorphic maps of degree —3 and —5 respectively, with Julia set homeomorphic
to the classical Apollonian gasket. Evidently neither map is an iterate of the other
since their degrees are prime. The procedure easily generalizes to produce infin-
itely many anti-holomorphic maps with Julia set homeomorphic to the classical
Apollonian gasket.

8. A QUASIREGULAR MODEL

Throughout this section, 7 will denote the tetrahedral triangulation of the topo-
logical 2-sphere.

The goal of this section is to construct an orientation reversing anti-quasiregular
map G on a tetrahedron which is piecewise affine outside the fixed Fatou components
and quasiconformally conjugate to the critically fixed cubic anti-rational map g =
g7 of the Riemann sphere (see Proposition 6.2). It is worth pointing out that the
main result of this section provides us with an alternative construction of the anti-
rational map g which does not use Thurston’s characterization of rational maps.

We consider a tetrahedron; i.e., a polyhedron composed of four congruent (equi-
lateral) triangular faces, six straight edges, and four vertices. The graph 7 defining
this triangulation can be identified with the union of the edges AB, AC, BC, AD,
BD, and CD including the vertices (see Figure 10(left)).

Let us denote the mid-points of the edges of T by E, F}- - -, J (see Figure 10(right)).
Recall that there is a circle packing on C whose nerve is isomorphic to 7. In the
current setting, the role of the round disks of this circle packing will be played by
the open caps with triangle boundaries EGJ, EFH, FGI, and HIJ, and which
contain the vertices A, B,C, and D respectively. We will denote them by EGT ,
EFH, FGI, and HIJ.

The complementary components of the union of the closures of the caps are
equilateral triangles each of which is contained in a face of the triangulation. We
denote the closures of these equilateral triangles by AEFG,AFHI, AEHJ, AGIJ,
and call them interstices. They play the role of the interstices of the corresponding
circle packing.

The tetrahedron is naturally endowed with an affine structure via identification
of its faces with equilateral triangles in the plane. More precisely, the tetrahedron
can be folded from the union of four equilateral triangles in the plane as depicted
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C

F1GURE 10. Left: The tetrahedral triangulation of the topological
2-sphere. Right: Partition of the tetrahedral surface into caps and
interstices.

in Figure 11; the four triangles are bounded by bold edges. This configuration of
triangles is called a net of the tetrahedron. We identify the faces of the tetrahedron
with the corresponding equilateral triangles in this net. Note that the vertices
D1, Dy, D3 all correspond to the same vertex D on the tetrahedron. Similarly, as
the edge AD (on the tetrahedron) is obtained by folding AD; and ADs (on the
net), two points on AD;, AD5 that are equidistant from A correspond to the same
point on AD. The same is true for the pairs of edges BD1, BD3, and C' Dy, CDs.
Moreover, the interstices on the tetrahedron correspond to the equilateral triangles
AEFG, AEH J,, AGI,Jy, and AFH>I5 in the net. We will use the tetrahedron
and its net (which gives an affine structure to the tetrahedron) interchangeably.

We now proceed to define our desired quasiregular map G on the tetrahedron.
This will be done in two steps.

Step I (Defining G on the interstices). As in the construction of G+ in Section 5,
we first define the map on the interstices. For definiteness, let us work with the in-
terstice AEFG (the definition on the other interstices will be symmetric). We sub-
divide AEFG into four congruent equilateral triangles AEKL, AKGM, ALMF,
and AK LM, and further subdivide AK LM into three congruent triangles by join-
ing the vertices K, L, M to the barycenter N (as shown in Figure 11). Note that
the three triangles K LN, KM N, LM N are not equilateral.

Let us now map AEKL onto AEJyH; by an orientation reversing affine map.
This can be achieved by reflecting AEKL in the line AB, and then scaling it to
match with AEJyH;. This defines an anti-conformal map G on AEKL. Now
extend G|k affinely to the triangle AKLN such that it maps onto the triangle
AJyH;D; in an orientation reversing manner (since AJy H;D; is equilateral and
AKLN is not, the map G is not anti-conformal on AK LN). This completes the def-
inition of G on the quadrilateral EK N L. We can now extend G to the quadrilaterals



34 R. LODGE ET AL.

D,

FIGURE 11. The wunion of the equilateral triangles
ABC,ABD1,ACDy, and BCD3 forms a net of the tetrahe-
dron. The color-coding illustrates the action of the quasiregular
map G on the tetrahedron. The attracting basin of the D-vertex,
represented by Dj, Do, D3 in the figure, is the union of the three
attached triangles (blue, yellow, violet).

GKNM and FLN M by reflecting the previously defined map G in the line segments
KN and NL such that the extended map sends the triangles AGKM, AKMN,
ALMN, and AFLM affinely onto the triangles AGJoI1, AJoly Dy, AHoI D3, and
AFHsI, (respectively). It is easy to see that this definition is compatible with the
identifications of the edge pairs (D1Jy, DaJs), (D1Hy, D3Hs), and (D2ly, D3ls).
Hence, we obtain a well-defined orientation reversing map G on the interstice AEFG
of the tetrahedron. Moreover, G is a piecewise defined (anti-)similarity (in partic-
ular, anti-conformal) on AEFG\ AKLM.

We now repeat the above procedure on the other three interstices AITFH, AFEHJ,
and AGJI. Note that the above definition of the map G on the four interstices
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completely determines it on the boundaries of the four caps HIJ , EGJ , FGI , EFH
(around the vertices D, A, C, B, respectively).

Step 1T (Defining G on the caps). Let us first focus on the cap around the vertex

D (this is HIJ on the tetrahedron). The definition of G on the interstices implies
that G is an expanding double covering of the quasicircle HI.J on the tetrahedron
(in fact, it doubles the distance between a pair of nearby points).

Since G : HIJ — HIJ is an orientation reversing expanding double covering of
a topological circle, it is easy to see that there is a unique orientation preserving
topological conjugacy v between G : HIJ — HIJ and z? : T — T that sends the
fixed points H,I and J of G to the fixed points 1,w, and w? of Z? (where w is a
primitive third root of unity). Note that G : HIJ — HIJ is piecewise affine, and
the left and right multipliers of G at each fixed point are equal. It follows that the
map G satisfies the distortion estimate of [29, Lemma 19.65] with a constant C' = 1.
The proof of [29, Proposition 19.64] now applies to show that the conjugacy v is a
quasisymmetry.

Finally, as the cap HIJ is quasisymmetrically equivalent to DD, the Ahlfors-
Beurling extension theorem provides us with a quasiconformal extension of ¢ that
maps HIJ to the unit disk D, still denoted by ¥. We now extend G to the cap HIJ
as 1~ 0 %% 0. Performing the same “surgery” on the remaining three caps, we
obtain the desired anti-quasiregular map G of degree —3 on the tetrahedron. We
note that G is not affine on the caps.

For an orientation reversing map f, the pullback of a Beltrami coefficient p under
f is defined as (see [11, Exercise 1.2.2])

i [OF0 T EOT
) = (G arohores )

Proposition 8.1. The map G on the tetrahedron is quasiconformally conjugate to
an anti-rational map R on C.

Proof. We will construct a G-invariant Beltrami coefficient on the tetrahedron,
and apply the Measurable Riemann Mapping Theorem to straighten G to an anti-
rational map.

Denote by p the standard complex structure on . Pulling po back by ¥, we get
a G-invariant Beltrami coefficient i on the caps of the tetrahedron. We now extend
1 to the tetrahedron by pulling back the previously defined Beltrami coefficient
(on the caps) by the iterates of G, and setting it equal to zero outside the iter-
ated preimages of the caps. Since G is a piecewise (anti-)similarity outside the first
preimages of the caps, the infinitesimal ellipse field defined by p on the caps is only
distorted (i.e., the dilatation is changed) under the first pullback. Moreover, these
inverse branches of G are piecewise affine. It follows that p is a G-invariant Bel-
trami coefficient on the tetrahedron with ||p||s < 1. By the Measurable Riemann
Mapping Theorem, there exists a quasiconformal homeomorphism from the tetra-
hedron to the Riemann sphere C that pulls back the standard complex structure
on C to the one defined by p on the tetrahedron. Therefore, this quasiconformal
map conjugates G to an anti-rational map R on C. ([
Corollary 8.2. Up to Mdbius conjugacy, R can be chosen to be g(z) = %
(whose existence was demonstrated in Proposition 6.2).
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Proof. Note that since R is quasiconformally conjugate to G, it follows that R is a
critically fixed (in particular, postcritically finite) anti-rational map. By construc-
tion, its nerve is isotopic to 7.

In Proposition 6.2, we constructed the postcritically finite anti-rational map g
(of degree —3) with four fixed critical points. By Proposition 6.9, the nerve of g is
also isotopic to 7. By a Md&bius map, we can send two of the distinct fixed critical
points of g to 0 and 1, and the only other preimage of 0 (under g) to co. Then, g
takes the form
(2) = (2a + b+ 3)7>

Ty az+ b2 + (a+2)7
for some a,b € C. A direct computation using the fact that g fixes its two other

distinct critical points (—% + % Z;Jrg) now shows that a = b =0; i.e.
3z°
z)=——.
9) = 3 7

Since R and g have isotopic nerves, it follows that they are Thurston equivalent.

By Thurston rigidity, the anti-rational maps R and g are Mobius conjugate; i.e.,
—2

R is Mobius conjugate to g(z) = %Z_H (see Figure 9 for the dynamical plane of

g)- O

Remark 8.3. Since G is quasiconformally conjugate to an anti-rational map, it has
a unique measure of maximal entropy v = v(G) such that the measure-theoretic en-
tropy of G with respect to v is In 3 (the degree of G is —3). Moreover, v is supported
on the “Julia set” of G, and is the Hausdorff measure of the Julia set. Since G is
a piecewise similarity with a constant derivative 2 on the Julia set, the Lyapunov
exponent of G with respect to v is In2. A classical formula relating Lyapunov ex-
ponent, Hausdorff dimension and entropy of a measure (see [36]) now yields that
the Hausdorff dimension of the measure v is In3/1n2, which is in accordance with
the fact that the Julia set of G is the union of four affine copies of the Sierpinski
gasket, and hence its Hausdorff dimension is equal to In3/1n 2.

Remark 8.4. Note that while all four critical points of the cubic anti-rational map g
are simple and fixed, it follows from [15, Theorem 1] that there is no cubic rational
map with this property.

9. DAVID SURGERY

Let h := &5 ! be the orientation preserving homeomorphism of the unit circle
that conjugates the dynamics of ga(2) = 22 to the dynamics of the Nielsen map
P, associated to the ideal triangle II with vertices at the cube roots of unity (see
Subsection 4.1). Namely,

hogs = p;yoh.

Since both maps, g2 and p,, fix the cube roots of unity, we may assume that so
does h (this defines h uniquely). It follows that such h commutes with the rotation
z — e2™/32 as well as the complex conjugation z — z. Our first goal is to show
that the homeomorphism A has a homeomorphic David extension inside the unit
disk D.

Recall that a map H: U — V between two domains in C or in the Riemann

sphere is called David if H is in the Sobolev class Wli)cl and there exist constants
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C,O[,Ko > 0 withS
o{zeU: Ky(z) > K} < Ce K K >K,.

Here o denotes the Lebesgue or spherical measure and K g is the distortion function
of H given by

1
Ky — + |NH|7
1= |pm]
with
 OH)oz
M= 9]0z

being the Beltrami coefficient of H. Both, puy and Ky are defined almost every-
where. The reader may consult [17] for background on David maps. Note that a
map H: U — V in Wﬁ)cl is David if and only if there exist constants M, «, eg > 0
such that its Beltrami coefficient pg satisfies

(8) o{zeU: |up(z)| >1—€e} < Me ¢, e<e.

To show that a David extension of h exists, we will show that the scalewise
distortion function pj (t) of h, in the sense of S. Zakeri, satisfies

) pﬁ(t)—0<log%>, 04

The scalewise distortion is defined as follows. Let h be the lift of the map h
under the covering map = — €2™*®. The map h is then an orientation preserving
homeomorphism of the real line such that B(:L‘ +1) = B(x) + 1. We may and will
assume that h(0) = 0. The distortion function p;,(z,t) is defined to be

(10) p;, () = max { h(z+1t) = h(z) h(z) - h(z —1) } |

h(z) — h(z —t) h(z +t) — h(z)
for x € R and ¢ > 0. The scalewise distortion is
P, (t) = sup pj, (. t).
xER

Since h commutes with the rotation by angle 27/3, it is enough to take the above
supremum over z € [0,1/3].
To find the asymptotics of p; () as t — 04, it is convenient to replace the map

h in a neighborhood of [0,1/3] by the homeomorphism

new () = 6 0 h(x/3)
of [0,1], where ¢ is a bi-Lipschitz map of a neighborhood of [0,1/3] onto a neigh-
borhood of [0, 1] with ¢(]0,1/3]) = [0, 1], defined as follows. There exists a Mobius
transformation m that takes the upper half-plane onto the unit disk and such that
m(0) = 1,m(1) = €2>™/3, and m(co0) = e*™/3. We now define
o(z) = m™ (¢2mi7)

for ¢ € (—=1/6,1/3 +1/6). The map ¢ is K-bi-Lipschitz for some K > 1, and
therefore we have the following relation

1
ﬁﬂ;}(?’t) < Phne (1) < K?p3(1/3),
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for all £ > 0 small enough. Therefore, p; satisfies (9) if and only if

1
(1) ) =0 (t0g1 ) 101

where

Phnew (t) = SUD php,.., (,1),
z€[0,1]

and the distortion function pp,__ (z,t) is defined as in (10) with h replaced by hyew,
and ¢ > 0 small enough.

Note that the Nielsen map

new

—t t € [—00,0],
6:RU{oo} - RU{c0c}, 0(t) = 57 te[0,1],
2t  te[l,+oo],

associated to the ideal triangle in the upper half-plane with vertices at 0, 1, and oo,
maps [0, 5] (respectively, [%,1]) to [—oo, 0] (respectively, to [1,+0c]). Composing
¢ with a rotation that brings 6([0, 3]) = [—oc, 0] (respectively, 6([3,1]) = [1, +o0])
back to [0, 1] defines the orientation reversing double covering
21 d1 t 1
F0 S0, ()= { o mod 1) 1e02).

1=t (mod 1) te[3.1).

The advantage of passing to the map Apew(z) = m™! (h (e*™3)) is that, by
construction, it conjugates the dynamics of the orientation reversing doubling map
m_g:[0,1) — [0,1) given by

ma() = —22+1 (mod 1) z€0,3),
Tl 2242 (mod 1) we (1.1),

to the dynamics of 7. Therefore, each dyadic point in [0, 1] corresponds under the
map hpew to the point of tangency of the corresponding Ford circle [20] with the
real line. Indeed, due to the conjugation, points of the dyadic subdivisions of [0, 1]
correspond under hyeyw to points in [0, 1] obtained by iterated reflections in the
hyperbolic geodesics that are the sides of the ideal triangle with vertices at 0, 1,
and oco. The three dual horocircles centered at 0, 1, and oo, with those centered at
0 and 1 having equal Euclidean radii 1/2, generate the full family of Ford circles
under the reflections in the sides of the ideal triangle above.

Remark 9.1. The homeomorphism hyey is known in the literature as the Conway’s
box function; its inverse is the classical Minkowski question mark function, see
[48, §4] (cf. [31, §4.4.2]).

Recall that a Ford circle C[p/q| that corresponds to a fraction p/q € [0,1] in
its lowest terms is a circle whose radius is 1/(2¢?) and center (p/q,1/(2¢%)); see
Figure 12. Two Ford circles are either disjoint or exterior-wise tangent to each
other. Two Ford circles C[p/q] and C[r/s| are tangent to each other if and only if
p/q and r/s are neighbors in some Farey sequence. Also, if C[p/q] and C[r/s] are
tangent Ford circles, then C[(p +7)/(q + s)] is the Ford circle that touches both of
them.

Let D, = {k/2": k = 0,1,...,2"} be the sequence of dyadic points of level
n € NU {0}, and let F,, = hnew(Dy) be the corresponding sequence of Farey
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FIGURE 12. Ford circles

numbers. Note that if p/q and r/s are two neighbors in F), that correspond under
hpew to two neighbors k/2™ and (k +1)/2™ in D,,, then the point ¢/u in F,, ;1 that
corresponds to the midpoint (2k + 1)/2"*! is given by

p+r

t
T
Moreover, the Euclidean distance between two neighbors p/q and r/s in F), is given
by

1

qs
This follows from the fact that the Farey numbers are generated by the modular
group.

Furthermore, we have the following relations between Ford circles. We say that

a Ford circle Clp/q], as well as p/q, has generation n if the point p/q belongs to
F,, but not to F,_1. Note that F,_; C F,. The only two Ford circles of the
same generation that are tangent to each other are the circles C[0/1] and C[1/1]
of generation 0. Also, for each pair C[p/q] and C[r/s| of tangent Ford circles, one
of which has generation at least 1, there are exactly two other Ford circles that are
tangent to both, C[p/q] and Cr/s]. We need Lemma 9.2.

Lemma 9.2. There exists an absolute constant L > 1 with the following property.
Let Clp/q] be a Ford circle of generation m > 1 and C[t/u],Clv/w] be two Ford
circles that are tangent to Clp/q| and belong to the same generation n > m. Then

1 U

< =
L~ w
In other words, the Euclidean lengths of two neighboring complementary intervals
of F,,, with common endpoint in F,,, m < n, are comparable.

< L.
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Proof. Since C[t/u] and C[v/w] have the same generation n and are tangent to the
same Ford circle C[p/q| of lower generation, the points t/u and v/w are separated
by p/q. Without loss of generality we assume that t/u < p/q < v/w.

Let Cltm+t1/tm+1] and Clum41/wm+1] be the Ford circles of generation m + 1
that are tangent to C[p/q| and such that

tmt1/Umt1 < t/u < p/q < V/wW < Vg1 /W1

Moreover, both radii 1/(2u2,;,),1/(2w?, 1) of Cltm+1/tm+1], Cloms1/Wm1], Te-
spectively, are smaller than the radius 1/(2¢%) of C[p/q]. This implies that the y-
coordinate of the point of tangency of Clt,,11/um+1] and C[p/q] is less than 1/(24¢?).
On the other hand, this y-coordinate has to be greater than (1 —1/v/2)/(24¢?), be-
cause otherwise Clt,n,4+1/tm+1] would not be tangent to any Ford circle of generation
less than m, but it must be. The same is true for the y-coordinate of the tangency
point of C[vy,41/wm+1] and Clp/q].

Since the desired inequalities are scale invariant, we may rescale and assume
that the radius of C[p/q] is 1/2 and it is tangent to the real line at 0. Then the
corresponding y-coordinates are in the segment [(1 — 1/4/2)/2,1/2]. Furthermore,
we may apply the inversion z — 1/Z and look at the corresponding lengths in the
spherical metric. Note that the Euclidean and the spherical metrics are locally
bi-Lipschitz. The circles that correspond to Clt,11/um+1] and Clvg41/wmi1]
under these transformations are circles of radii 1/2 that are tangent to the real line
at points contained in the segments [—C,—1/C] and [1/C, C], respectively, where
C > 1 is an absolute constant.

Now, the circles that correspond to the above transformation, i.e., scaling, trans-
lation and inversion, C[t/u] and Clv/w] are the circles of radii 1/2 that touch the
real line at points contained in the segments

[n+m+1-C,—n—m+1-1/C], [n—-m-1+1/C;n—m—1+C],

respectively. For a > 0, the spherical length of o, 00] is comparable to 1/«. There-
fore, the largest ratio of the lengths of the two intervals is comparable to
n—m-1+C
n—m-1+1/C’

which has uniform lower and upper bounds because n > m > 1. (Il

Proposition 9.3 is crucial in estimating the distortion of hyey.

Proposition 9.3. There exists an absolute constant C > 1 such that the following
holds. For m > 1, let I and J be two complementary intervals of F,, that are
separated by at most two adjacent complementary intervals of F,,. Then for the
corresponding Euclidean lengths |I| and |J| we have

L _

1 — < — < .
(12) cn—|J|—C”

Proof. The proof is by case analysis.

Case 1. We assume first that I and J are adjacent. There are two subcases to
consider, according to whether the Ford circle C[p/q] at the common endpoint p/q
of I and J has generation strictly less than n or equal to n. In the former case, the
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other two endpoints of I and J would have to be in F,, \ F,,_1, and thus Lemma 9.2
gives

1 _ |

— < —=<

LEg st
for some absolute constant L > 1, which is stronger than (12). In the latter case,
the common endpoint p/q of I and J is in F,,. We argue by induction on n. If n =1,
then |I| = |J| = 1/2, and we are done. Suppose that (12) is true for generations at
most n — 1. Let r/s and t/u be the other two endpoints of I and .J, respectively.
Then both of them would be in F,,_; and

p_r+t

g s+u
Moreover, exactly one of the endpoints r/s and ¢t/u will be in F,,_1 \ F,,_5. Without
loss of generality we assume that it is ¢/« and

T t

- < d < —.

s q u
It follows that r/s € F,,_5 because, unless the generation is 0, no two Ford circles
of the same generation are tangent: they are separated by Ford circles of lower
generation. Let v/w € F},_o be a neighbor of r/s in F,,_o with

T t v
- =< .
s u o w
Then, u = s 4+ w, and thus
1
H_w_stw o w_
[J| s s s

The last inequality follows from the induction hypothesis. Using symmetry argu-
ments, we conclude that if I and J are adjacent complementary intervals of Fj,,
then

<ﬂ<n
— — "

S

which is stronger than (12).

Case 2. The next case to consider is when I and J are separated by a single
complementary interval K of F,. Let the four endpoints of these intervals be
ai,as,as, and ag, with

a1 < ag <asz < dayg.
We assume that I = (a1,a2), K = (az,a3), and J = (a3,a4). By symmetry, we

may further assume that a; and az have generation n, and thus the generations of
as and a4 are strictly less than n. From Lemma 9.2 we know that
1 _ |1

- <—X<1L
L~ |K| 7

for some absolute constant L > 1, and thus from Case 1 we conclude that
1 _ [

— < — < Ln.
In =g ="
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Case 3. Now we look at the case when I and J are separated by two adjacent in-
tervals Ky and Ko. Let I = (a1, a2), K1 = (a2,a3), Ks = (a3, a4), and J = (a4, as).
There are two subcases: the generations of a1, a3, as are n and the generations of
as,ay are strictly less than n, or the generations of aq, as, as are strictly less than
n and the generations of as,as are n. In the first subcase we use Lemma 9.2 to
conclude that

L _ |1 1 _ |K
—<—<L, —<-—7<1L
L™ K L= |J]
Also, from Case 1 we have
LS
—<—<n
n = |K
Putting these together, we obtain
L _ 1 _ oo
— <= <L
=g ="

In the second subcase, (a1, a3) and (a3, as) are adjacent complementary intervals
of F,,_1 of lengths |I| 4+ |K1| and |K3| + |J|, respectively. Therefore, either aq,as
have generations n — 1 and the generation of ag is strictly less than n — 1, or ag has
generation n — 1 and the generations of ai,as are strictly less than n — 1. If it is
the former subsubcase, by Lemma 9.2 we obtain

1M+l
L | K| + |J]
Using Case 1 we get
K.
Kl _
]

and therefore

1
||J| < L(n+1) <2Ln.

From symmetry we get

|
2Ln ~ |J|
as desired. In the latter subsubcase we have by Lemma 9.2
_ Ikl
L | Ko
Also, |K1| < |I] and | K3| < |J|. Indeed, we prove the first of these inequalities and

the second follows by symmetry. If a; = p/q,a3 = /s, and a5 = t/u, then

<2Ln,

< L.

s =q+u,
and therefore
[LLST Y
s

Now, combining these estimates with Case 1, we obtain
1 1] Kl o)

[J] = K| | K2 [J] ~

and the proposition follows.
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We are now ready to prove Lemma 9.4.

Lemma 9.4. The map h defined at the beginning of the current section has a David
extension homeomorphism H of D.

Proof. As discussed earlier, we need to show that pj _ satisfies (11). Indeed, we
choose an arbitrary = € [0, 1] and ¢ > 0 small enough so that the segment [z —t, z+t]
is contained in a neighborhood of [0, 1] where Ayey is defined. Let n € N be chosen

so that
1 < 1
o ST< gy
Then, [z —t,z] and [z, z + t] are each contained in at most three consecutive com-
plementary intervals of F,, and contain at least one such complementary interval.

Therefore,

hnew(qf' +t) - hnew(x) < |Il| + |12‘ + |I3|

hncw(l') - hncw(l' - t) - |J‘ ’
where I, I, I3, and J are distinct complementary intervals of F}, so that the pairs
{J, 11 },{I1, I} and {I, I3} are adjacent. From Proposition 9.3 we conclude that

hnew (LL' + t) - hnew (1’)
hnew(x) - hnew(x - t)
for some absolute constant C' > 1. From symmetry we also have

1 < Prew (X 4+ ) — Rpew ()
30N~ Npew(T) — hpew(z — 1)’

< 3Chn,

and thus (11) follows.
We now apply [54, Theorem 3.1] to conclude that h has a David extension inside
the unit disk D. |

Theorem 9.5 (David surgery). Let f be a critically periodic anti-rational map and
Uy,Us, ..., U, be fired Jordan domain Fatou components of f so that the restriction
flou, to each OU; has degree —2, i = 1,2,...,n. Then there is a global David
surgery that replaces the dynamics of f on each U; by the dynamics of the Nielsen
map P, associated to the ideal triangle I1.

Proof. Let i = 1,2,...,n, and let ¢;: U; — D be a Bottcher coordinate that con-
jugates flu,, i = 1,2,...,n, to the map g2(z) = z%. Our assumptions imply that
such maps ¢;,i =1,2,...,n, exist.

Let H be the David extension of h guaranteed by Lemma 9.4. We replace the
map f by the map

For = p;loH topyoHodp;, iU \intTp, i=12,...,n,
70 i €\un, U,

where T; g = qﬁ;l o H~Y(II), to obtain a continuous orientation reversing map of
(@\U?Zl int T; g onto C. 1f g is the pullback to Uy, i = 1,2,...,n, of the standard
complex structure in D by the map ¢; o H, we have (fu|u\7, )" (b#) = po-

We now use the dynamics of f to spread the Beltrami coefficient out to all
the preimage components of U = U;, ¢ = 1,2,...,n, under all the iterates of f.
Everywhere else we use the standard complex structure, i.e., the zero Beltrami
coefficient. This way we obtain a global Beltrami coefficient, still denoted by pg,
that is invariant under fg.
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Since f is hyperbolic, the Beltrami coefficient p g satisfies the David condition (8)
in the whole Riemann sphere C. Indeed, this follows from an observation that pg
is David in each U = U;, ¢ = 1,2,...,n, with the same constants M, o, €y > 0, and
from the Koebe Distortion Theorem. The former is a consequence of the fact that
each U = U; is a quasidisk and hence ¢ has a global quasiconformal extension, which
in turn implies that ¢ distorts areas via a power law; see, e.g., [10], [2]. The latter
would give us that if U’ is a component of the preimage of U = U;, i = 1,2,...,n,
under some iterate of f, i.e., such that f*(U’) = U, where k € N is the smallest,
then f*¥oM\y is an L-bi-Lipschitz map between mU "and U, for some absolute
constant L > 1, where Ay/(z) = diam(U’)z is a scaling map. This implies that,
given any 0 < € < ¢g,

o{z e U |up(2)| > 1— ¢} < L*(diam(U")?0{z € U: |un(2)| > 1 —€}.

Moreover, since all the Fatou components U’ (which are iterated preimages of U)
are uniform quasidisks, there exists a constant C' > 0 such that

(diam(U"))? < Co{U'}.

Therefore,

o{zeC:lug(2)|>1—¢} = ZZa{z el lu(2)] >1—¢}

i=1 U’

< L*C (ZU{U/}> ZU{Z eU: |pu(z)] >1—¢}

U’ i=1
< nL2Co{@}Me_°‘/E, e < ¢.

The David Integrability Theorem then gives us an orientation preserving home-
omorphism ¥ of C such that the pullback of the standard complex structure under
U is equal to py.

The last claim is that the map F = W o fg o ¥~! is analytic. This is the
desired map that replaces the dynamics of f on each U;, i = 1,2,...,n, with the
dynamics of the Nielsen map p, associated to the ideal triangle II. The conclusion
of analyticity follows from the uniqueness part of the David Integrability Theorem.
The arguments below are similar to [11, Section 9]. Indeed, since F o ¥ = Vo fy,
it is enough to show that W o fy is in Wlicl . Then, since we know that ¥ € I/Vlicl
and both ¥ and V¥ o fy integrate g, we can apply the uniqueness of the David
Integrability Theorem to obtain that F' is analytic.

Let V be an open set in C. Since quasicircles are removable for David maps,
see, e.g., [b5, Lemma 4.2] that applies verbatim to quasicircles in place of the unit
circle, to show that U o fy € Wli’cl, it is enough to prove that ¥ o fy € Wlicl(V)
for the two cases: V does not intersect any of the components U’ of the preimage
of each U = U,;, i = 1,2,...,n, under all the iterates of f, or V is completely
contained in one such component U’. In the first case, fy is analytic, and hence
the composition W o fy is in Wb (V). For the second case, let & € NU {0} be the
smallest number such that f¥(U’) = U. We can write

Vofyu=Tof P op loH ) o(pyoHodgpofr).
Since ¢ o f*¥ and p, are (anti-)analytic, the composition py o H o ¢ o f*¥ with a

Wlt)’cl—map is in Wli)cl Also, the map H o ¢ o f* is a composition of a Wli)’cl—map
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and an (anti-)analytic map, and thus is itself in Wﬁ)cl Both maps ¥ and Ho¢o f*
also integrate py. Therefore, from the uniqueness part of the David Integrability
Theorem we obtain that Wo f~*o¢~to H! is analytic. Now, since the composition
of an analytic map with a I/Vltcl -map is Wll’1 we are done. O

oc’?

Corollary 9.6. The anti-analytic map

F=Uofrot " :C\|Jint¥(T,5) - C

i=1

is topologically conjugate to py on U(U;), i=1,...,n, and to f on (E\U?Zl ().

10. FROM ANTI-RATIONAL MAP TO NIELSEN MAP AND SCHWARZ REFLECTIONS

For the rest of the paper, T will stand for the tetrahedral triangulation of
the 2-sphere. To ease notations, we will omit the subscript 7 for the objects
Cr,Hr,Nr,Gr, and gr.

Recall that the cubic anti-rational map g (constructed in Section 8) has four
fixed Fatou components on each of which the action of ¢ is conformally conjugate
to z — z2 on . In particular, the boundaries of these Fatou components are Jordan
curves, and the restriction of g to each of these boundaries has degree —2. Hence,
we can apply David surgery Theorem 9.5 on n of these fixed Fatou components
(n € {1,2,3,4}) to replace the action of g on these Fatou components by the action
of the Nielsen map p, of the ideal triangle group. As a result, we produce anti-
analytic maps (defined on a subset of ((A:) that combine the features of anti-rational
maps and Nielsen maps of reflection groups. Such hybrid dynamical systems are
realized as Schwarz reflection maps associated with quadrature domains.

In particular, if the David surgery is performed on all four fixed Fatou compo-
nents of g, we recover the Nielsen map N of the classical Apollonian gasket reflection
group. On the other hand, if the David surgery is carried out on three fixed Fatou
components of g, we obtain a “mating” of g with the Nielsen map of the Apollo-
nian gasket reflection group. We explicitly characterize this anti-holomorphic map
as the Schwarz reflection map with respect to a deltoid and an inscribed circle.

10.1. Background on Schwarz reflection maps. We will denote the complex
conjugation map on the Riemann sphere by ¢, and reflection in the unit circle by 7.

10.1.1. Basic definitions and properties.

Definition 10.1 (Schwarz function). Let ® C C be a domain such that co ¢ 9D
and int ® = D. A Schwarz function of ® is a meromorphic extension of ¢|sp to all
of ®. More precisely, a continuous function S : ® — C of D is called a Schwarz
function of ® if it satisfies the following two properties:

(1) S is meromorphic on D,
(2) S=to0n0D.

It is easy to see from Definition 10.1 that a Schwarz function of a domain (if it
exists) is unique.

Definition 10.2 (Quadrature domains). A domain © C C with oo ¢ 09 and
int® = D is called a quadrature domain if ® admits a Schwarz function.
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Note that for a quadrature domain ®, the map ¢ = 10 S : D — C is an
anti-meromorphic extension of the local reflection maps with respect to 00 near
its non-singular points (the reflection map fixes 9D pointwise). We will call o the
Schwarz reflection map of ©.

Simply connected quadrature domains are of particular interest, and these admit
a simple characterization.

Proposition 10.3 (Simply connected quadrature domains). A simply connected
domain ® C C with oo ¢ 09 and int D = D is a quadrature domain if and only if
the Riemann uniformization R : (C\D — B extends to a rational map on C. In this
case, the Schwarz reflection map o of ® is given by Rono (R|C\D) . Moreover, if
deg R > 2, we have 0(D) = C.

Moreover, if the degree of the rational map R is d, then o : 0 1(D) = D is a
branched covering of degree (d — 1), and o : o~ (int D¢) — int D¢ is a branched
covering of degree d.

Proof. The first part is the content of [1, Theorem 1]. The statements about cov-
ering properties of o follow from the commutative diagram below.

C\D £
nl i”
D—f 4 C
0

10.2. Recovering the Nielsen map of the classical Apollonian gasket re-
flection group. We will now show that the Nielsen map N associated with the
reflection group H (arising from the tetrahedral triangulation) can be constructed
from ¢ by David surgery.

Proposition 10.4 (Recovering the Nielsen map). There is a global David surgery
that replaces the action of g on each of its fixred Fatou components by the action of

o : D\ intII — . The resulting anti-analytic map is the Nielsen map N of the
classical Apollonian gasket reflection group H (up to Mdbius conjugacy).

Proof. The first statement is the content of Theorem 9.5.

Moreover, F' maps each of these Jordan domains anti-conformally to its exterior,
and fixes the boundary pointwise. Therefore, each such Jordan domain is a quad-
rature domain, and F' acts on it as the corresponding Schwarz reflection map. The
second statement of Proposition 10.3 now implies that each of the above Jordan
domains is the image of a round disk under a Mobius map, and hence is a round
disk itself. In particular, F' acts on the disk as reflection in its boundary.

Clearly, the configuration of these four circles is dual to the circle packing C
corresponding to the tetrahedral triangulation (unique up to a Mobius map). Thus
by definition, F' is the Nielsen map N associated with the classical Apollonian
gasket reflection group. O

10.3. Schwarz reflection in a deltoid and circle. In this final subsection, we
discuss another application of David surgery that produces an anti-holomorphic
dynamical system which can be viewed as a mating of the cubic anti-rational map
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g and the Nielsen map of the classical Apollonian gasket reflection group. Further-
more, we give an explicit description of this anti-holomorphic dynamical system as
a suitable Schwarz reflection map.

Proposition 10.5. There is a global David surgery that replaces the action of g
on three of its fized Fatou components by the action of p, : D\ intII — D. The
resulting anti-analytic map is the Schwarz reflection map associated with a deltoid
and a circle (up to Mdbius conjugacy).

Proof. Once again, Theorem 9.5 gives the existence of an anti-holomorphic map F,
defined on a subset of @, that is conjugate to py : D\int II — D on three F-invariant
Jordan domains and conjugate to g elsewhere (via a global David homeomorphism).
It remains to characterize the anti-holomorphic map F'.

By construction, F' has a unique critical point, and this critical point is simple
and fixed. Possibly after conjugating F' by a Mobius map, we can assume that this
critical point is at oco.

It also follows from the construction that the map F' is defined on the complement
of the interiors of three topological triangles. Since the vertices of these triangles
correspond to the touching points of the fixed Fatou components of g, it is easily
seen that the domain of definition of F' is the union of the closures of two disjoint
Jordan domains ®; and ®s that touch exactly at three points. We can assume
that co € @1.

Since the anti-holomorphic map F' fixes the boundaries of ®; (for i = 1,2), it
follows that both ©; and ®5 are simply connected quadrature domains. Moreover,
F maps ®, anti-conformally to its exterior. By Proposition 10.3, s is a round
disk, and F acts on it as reflection in the circle 09s.

Again, the mapping properties of F' imply that co € D has only two preimages
in @y counting multiplicity (in fact, F' maps oo to itself with local degree two).
Thus, F : F~}(D;) — D, is a branched covering of degree 2. By Proposition 10.3,
there exists a rational map R of degree 3 which maps C \ D univalently onto ;.
Precomposing R with a conformal automorphism of C \ D, we may assume that
R(o0) = 0.

In light of the commutative diagram in the proof of Proposition 10.3, the fact
that oo is a (simple) fixed critical point of F' implies that R(0) = co and R'(0) = 0.
Hence, R is of the form

c d
R(z)=az+b+ ;+Z—2,
for some a,d € C*, and b,c € C. Possibly after postcomposing R with an affine
map (which amounts to replacing ©®; by an affine image of it, and conjugating F'

by the same affine map), we may write

for some ¢ € C and d € C*.

Note that the cubic anti-rational map R has four critical points (counting multi-
plicity), one of which is at the origin. Since F' has only one critical point, the same
commutative diagram implies that the other three critical points of R lie on the
unit circle (in fact, univalence of R on C \ D implies that these critical points are
distinct). In particular, the product of the solutions of the equation 2*R/(2) = 0
has absolute value 1. A simple computation now shows that |d| = % We can now
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conjugate R by a rotation (once again, this amounts to replacing ©; by a rotated
image of it, and conjugating F' by the same rotation), we may write

c 1
R(z)=z+ 2 +—

for some ¢ € C. Denoting the three non-zero critical points of R by «, 5, and =, we
obtain the relations
a+B+v=0, af + By + ya = —c, and afy = 1.

Since a, 8,7 € T, we have that
2 —cz—1=(z—a)(z—B)(z—p)
1
)= A=)
(@ = 1)(Fz — 1)(72 — 1)

= +e2-1.

We conclude that ¢ = 0, and hence R(z) = z + 5i3.

D4

FiGure 13. Left: The quadrature domain ®; is the exterior of
the deltoid curve (in black). The region o, '(D;) is the exterior of
the hexagonal curve (in blue). Right: The domain of definition of
F is the closure of the union of the exterior of the deltoid and the
interior of the inscribed disk. The fundamental tile T° has three
connected components; namely T9, %9, and T9J.

We already know that R(T), where T is the unit circle, is a Jordan curve (in fact,
this can be easily checked directly from the above formula of R). The curve R(T)
is a classical deltoid curve (compare [31, §4], where the dynamics of the Schwarz
reflection map associated with ©; was studied in detail). Since R commutes with
multiplication by the third roots of unity, it follows that ®; = R(C\D) is symmetric
under rotation by %’T Moreover, the three simple critical points of R on T produce
three 3/2-cusps on the boundary 99 (see Figure 13(left)).

Since the boundaries of ®; and @45 touch at three points, it follows that Do is
the largest disk inscribed in ©; centered at 0 (see Figure 13(right)).
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Finally, the map F' is explicitly given by the Schwarz reflection maps associated
with the exterior of the deltoid, and the inscribed disk. More precisely, we have
that L

Flw) = o1(w) %f w e &,
oo(w) if w € Do,

where 01 = Rono (R\C\D)’l D — C is the Schwarz reflection map of D1, and
09 is reflection in the circle 095.
This completes the proof. (Il

We will conclude by showing that the Riemann sphere splits into two F-invariant
subsets on one of which F' is conjugate to g, and on the other it is conjugate to the
Nielsen map N arising from the classical Apollonian gasket reflection group H.

Let us set T := C \ (D1 UD3). Note that OF has six singular points. Three of
them are 3/2-cusps on 0©7. The other three singular points on 9% are the tan-
gency points between 097 and 09s. We denote the set of singularities of 0% by
&, and define the fundamental tile T° as T\ &. The fundamental tile T° has three
connected components which we denote as 9, %9, and TJ (see Figure 13(right)).
In the dynamical plane of N (or the Apollonian gasket reflection group), we de-
note the three components of T° corresponding to T9,%9, %9 by TP, 79,79 (see
Subsection 4.2 and Figure 7).

Definition 10.6 (Tiling set of F'). We define the tiling set T of F as
T | P,

n>0
The boundary of T is called the limit set of F, and is denoted by £.

Let us now describe the structure of €. For i = 1,2, 3, we define ; to be the
connected component of T containing Y. Note that each point in £f; maps to T9
under iteration of F. In particular, 4{; is an F-invariant component of €>°. Every
other connected component of ¥>° eventually maps to one of these three invariant
components (see Figure 14(right)). In the dynamical plane of g, we denote the
fixed Fatou components corresponding to i; by U;, ¢ = 1,2, 3 (see Figure 14(left)).
Further, in the dynamical plane of the Nielsen map N, we denote the components
of the domain of discontinuity corresponding to $; by U; D TP, i = 1,2,3 (in
Figure 7(right), these are the three bounded round disks enclosed by the black
circles). By construction, the tiling set T of F' corresponds to

3

Qpart = [ J NTF (U T;)) ¢ Qp
E>0 i=1

in the Nielsen dynamical plane.

Recall that oo is a super-attracting fixed point of F. We denote the basin of
attraction of co by B, and the immediate basin of attraction (i.e., the connected
component of B, containing oo) by B, The corresponding fixed Fatou com-
ponent of g is denoted by Uy (see Figure 14(left)). By Corollary 8.2, the superat-
tracting fixed point of ¢ in Uy is at the origin. We denote the basin of attraction
of this superattracting fixed point by By(g).

Since the tangency patterns of the fixed Fatou components of g are preserved by
the global David surgery, the next result is immediate.
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imm
B

F1cURE 14. Left: The dynamical plane of g is depicted, and the
four fixed Fatou components are colored in blue, green, red, and
white. Replacing the 2 dynamics on Uy, Us, U3 by p, produces the
piecewise Schwarz reflection F'. Right: The dynamics of F' with its
basin of infinity (in yellow) and tiling set (in blue/green) marked.
Their common boundary is the limit set £. (Picture courtesy:
Seung-Yeop Lee.)

Proposition 10.7. The Jordan domains BI™ 8y, Sy, and U3 pairwise touch
precisely at the six singular points on O%.

Finally, the construction of the map F' from the anti-rational g gives rise to the
following description of F' as a mating of g and the Nielsen map N of the classical
Apollonian gasket reflection group.

Theorem 10.8. The Riemann sphere admits a decomposition into three F'-
invariant subsets R

C=%B,,ULuzE™
such that 0B, = £ = 0T>°. Moreover, F is a conformal mating of g and N in the
following sense:

F:9B, — B
is topologically conjugate to

g9 Bolg) — Bolg),
and
—_ 3 —_
P30\ [Jint T — T
i=1
is topologically conjugate to

3
N: Qpare \ | it 70— Qpre
i=1
such that both conjugacies are conformal on the interior of their respective domains
of definition.

Corollary 10.9. £ is homeomorphic to the classical Apollonian gasket A .
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Remark 10.10 (Broken symmetry). Despite the fact that £ is homeomorphic to
the classical Apollonian gasket Ap and the Julia set J(g), each of which has equal
homeomorphism and quasisymmetry groups, the group of quasisymmetries of £ is a
strict subgroup of its homeomorphism group. Indeed, there is a homeomorphism of
£ (induced by a tetrahedral symmetry) which carries 94l; onto 9B™ and sends
the fixed points (of F') on dil; to those on IB™ (see Figure 14). Since one of
the fixed points on 04 is an inward pointing cusp, and all three fixed points on
OBIMM are outward pointing cusps, it follows that this homeomorphism cannot
be a quasisymmetry. This observation implies that while AutT(@) is isomorphic
to the symmetric group Sy, only six of the corresponding homeomorphisms of £
are quasisymmetric; namely the ones generated by 27 /3-rotation and complex con-
jugation. In fact, we believe that QS(£) is isomorphic to S3 x H. As a result,
the quasisymmetry groups of £ and Ay allow one to distinguish the two fractals
quasiconformally.
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