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Abstract

A recent approach to automated mechanism de-
sign, differentiable economics, represents auc-
tions by rich function approximators and op-
timizes their performance by gradient descent.
The ideal auction architecture for differentiable
economics would be perfectly strategyproof,
support multiple bidders and items, and be rich
enough to represent the optimal (i.e. revenue-
maximizing) mechanism. So far, such an archi-
tecture does not exist. There are single-bidder
approaches (MenuNet, RochetNet) which are al-
ways strategyproof and can represent optimal
mechanisms. RegretNet is multi-bidder and can
approximate any mechanism, but is only approx-
imately strategyproof. We present an architec-
ture that supports multiple bidders and is per-
fectly strategyproof, but cannot necessarily rep-
resent the optimal mechanism. This architecture
is the classic affine maximizer auction (AMA),
modified to offer lotteries. By using the gradient-
based optimization tools of differentiable eco-
nomics, we can now train lottery AMAs, com-
peting with or outperforming prior approaches in
revenue.

1. Introduction

Auctions are a widely-used mechanism for allocating
scarce items that are for sale, in which a centralized auc-
tioneer solicits bids from auction participants, and based
on those bids, allocates the items (possibly keeping some
of them) and charges some payments. The auctioneer may
wish to design the auction to achieve some goal. The usual
assumption is that the auctioneer has access to a prior distri-
bution over bidders’ valuations. Typically, it is also desired
that the auction be strategyproof, that is, there should be
no incentive for bidders to be untruthful in their bids about
their valuations.
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Figure 1: Our architecture in relation to other techniques
from differentiable economics for multi-item revenue-
maximizing auction design. The “holy grail” in the middle
of the Venn diagram—that is, techniques that can repre-
sent (i) any auction for (ii) general numbers of bidders and
items while (iii) guaranteeing strategyproofness—has not
been achieved; however, we show that our method achieves
(iii) strategyproofness-by-design for (ii) general numbers
of items and bidders while still improving revenue over
baselines.

When the auctioneer wants to maximize the total welfare
of the bidders, the Vickrey-Clarke-Groves (VCG) mecha-
nism, which is always strategyproof, is also optimal (Vick-
rey, 1961; Clarke, 1971; Groves, 1973). When the auction-
eer instead wants to maximize her revenue (or profit), the
problem is significantly more challenging.

Myerson (1981) settled the revenue-maximizing strate-
gyproof auction problem when there is one item for sale.
Maskin & Riley (1989) generalized that mechanism to the
case of multiple copies of a single item. However, four
decades later, the multi-item revenue-maximizing auction
is still unknown. Special cases of the two-item setting
have been solved (Armstrong, 2000; Avery & Hendershott,
2000). There is some theory of strong duality (Daskalakis
et al., 2017; Kash & Frongillo, 2016) for selling multiple
items to a single agent. There have also been some suc-
cesses for the weaker notion of Bayesian incentive com-
patibility (Cai et al., 2012b;a; 2013). But for designing
dominant-strategy incentive compatible mechanisms that
sell multiple items to multiple agents there has been little
progress despite decades of research. Yao (2017) presents
aresult for one special case, giving an explicit example of a
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revenue gap between the best dominant-strategy incentive
compatible mechanism and the best Bayes-Nash incentive
compatible mechanism. Nevertheless, the problem is wide
open. Even for the seemingly trivial case of two agents
with i.i.d. uniform valuations over two items, the optimal
selling mechanism is not known.

In part motivated by the fact that the theory on this question
has essentially gotten stuck for decades, Conitzer & Sand-
holm (2002); Sandholm (2003) introduced the idea of auto-
mated mechanism design (AMD): designing the mechanism
computationally for the problem instance at hand, as op-
posed to trying to analytically derive a general form for the
revenue-maximizing multi-item auction. AMD has since
become a popular research topic. Three different high-level
approaches to AMD have been introduced: 1) designing the
mechanism from scratch in tabular form (Conitzer & Sand-
holm, 2002), 2) conducting search over the parameters of
a mechanism class where all the mechanisms in the class
have some desirable properties such as strategyproofness
and individual rationality (the latter incentivizes buyers to
participate) (Likhodedov & Sandholm, 2004; 2005; Sand-
holm & Likhodedov, 2015), and 3) incremental mechanism
design where the design starts from some (typically well-
known but not strategyproof) mechanism and then keeps
making changes to the mechanism to improve it (Conitzer
& Sandholm, 2007).

A recent form of incremental mechanism design that capi-
talizes on the modern power of deep learning is called dif-
ferentiable economics. Duetting et al. (2019) introduced
the use of deep neural networks as function approximators
to learn auctions. Their RegretNet architecture learns ap-
proximately strategyproof auctions for multi-bidder multi-
item auctions. MenuNet (Shen et al., 2019) and Rochet-
Net (Duetting et al., 2019) are restricted to a single bidder,
but enforce strategyproofness at the architectural level.

2. Our Contributions

Ideally, we would like an auction architecture that 1) sup-
ports multiple agents and items, 2) is perfectly strate-
gyproof by construction, and 3) is always rich enough to
represent the true optimal auction, given enough parame-
ters. Such an architecture does not yet exist. RegretNet
achieves 1 and 3 only; RochetNet and MenuNet achieve 2
and 3. In our work, we present an approach that achieves 1
and 2, though not 3 — a multi-bidder, multi-item auction
architecture which is always perfectly strategyproof.

Consider a classic tool for automated mechanism design —
the family of affine maximizer auctions (AMAs) (Roberts,
1979). AMAs are essentially versions of the VCG mecha-
nism, modified by associating a positive “weight” to each
bidder’s welfare and adding potentially different “boosts”

to all the possible allocations. AMAs are always strate-
gyproof and individually rational like VCG, but revenue
can be significantly increased over VCG by tuning these
parameters (weights and boosts). Importantly, this can
be done by just using samples of the valuation distribu-
tion (Likhodedov & Sandholm, 2004; 2005; Sandholm &
Likhodedov, 2015) rather than the traditional mechanism
design approach of taking the full valuation distribution as
input, which would be prohibitively complex in these com-
binatorial settings. Later work considers the number of
samples needed for this in a learning-theoretic sense (Bal-
can et al., 2016; 2018; 2021).

Our contribution is to revisit the problem of learning
AMAs, now with differentiable economics. One can view
the paper from at least the following perspectives:

1. It can be seen as an extension of previous work on
learning AMAs, now allowing for lottery alloca-
tions. This means not only learning the weights and
boosts, but also learning over the (continuous) set of
lotteries to offer. Randomization can increase rev-
enue.

2. It can be seen as a multi-bidder generalization of
RochetNet and MenuNet. Restricting our lottery
AMAs to a single bidder essentially recovers these
architectures, and for multiple bidders, strategyproof-
ness is still guaranteed by construction. (However, for
general multi-bidder combinatorial auction settings,
AMAs cannot represent every truthful mechanism;
there is no guarantee they can represent an optimal
one.)

3. It provides a more interpretable family of mech-
anisms to learn using differentiable economics.
RegretNet-style auctions are opaque: they map bid
profiles to outcomes in an arbitrary way. In contrast,
the rules for determining outcomes of an AMA are
easy to explain. Moreover, by the end of training, our
learned mechanisms typically have a small number of
possible outcomes which are easily summarized.

3. Related work

3.1. Differentiable economics

RegretNet (Duetting et al., 2019) use the tools of modern
deep learning to learn revenue-maximizing mechanisms.
In particular, they present the RegretNet neural architec-
ture. The idea is to treat an auction mechanism as a func-
tion mapping bid profiles to allocations and payments, and
directly approximate this function using a neural network.
The loss function consists of a term for revenue maximiza-
tion, and another term for minimizing regret — violations
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Figure 2: A schematic of an affine maximizer auction. The learned parameters—allocations, bidder weights, and allocation
boosts—are represented in blue. (In a traditional AMA, allocations are not learned.) The chosen allocation maximizes
transformed total welfare; the payment for each bidder i is the difference in transformed welfare between the chosen
allocation, and what would have been chosen without taking bidder ¢ into account.

of strategyproofness. RegretNet works quite well, approx-
imately recovering some known optimal auctions and out-
performing other approaches.

However, its approach has several limitations. In particular,
the learned auctions are only approximately strategyproof
— there is still some small presence of regret, and more-
over the presence of regret can only be measured empiri-
cally. Curry et al. (2020) provides a way to exactly com-
pute regret, which mitigates this latter limitation. But the
former problem remains — a mechanism learned using the
RegretNet approach is not guaranteed to be perfectly strat-
egyproof.

3.2. Characterizing strategyproof mechanisms

Rochet (1987) shows that for any mechanism with a sin-
gle agent, strategyproof mechanisms can be identified with
convex utility functions (as a function of the agent’s true
type). Any strategyproof pair of allocation and payment
rules will induce a convex utility function. An allocation
rule can be derived from any convex utility function by sim-
ply taking its gradient (which also fixes the payment rule).

Characterizing strategyproof mechanisms for multiple
agents is not so straightforward. Rochet’s characterization
still holds in this case: fixing other bids, agent ¢’s utility
must be convex as a function of their type, and this must
hold for all agents and for any choice of opponent bids.
However, coming up with some universal approximator for
the entire class of functions that has this property is diffi-
cult.

3.3. Strategyproof architectures

Alongside RegretNet, Duetting et al. (2019) also presents
the RochetNet architecture, which is restricted to a single
bidder but is perfectly strategyproof.! Shen et al. (2019)
concurrently present MenuNet, another single-bidder ar-
chitecture which is perfectly strategyproof.

Both MenuNet and RochetNet offer possibly-randomized
sets of menu items at different prices. The bidder max-
imizes over all offered menu items, inducing a convex
utility as a function of the bidder’s type. As such, Me-
nuNet and RochetNet will always represent a strategyproof
mechanism for any setting of their parameters. And given
enough parameters, they are universal approximators for
strategyproof mechanisms.

For single-bidder auction design, there is a strong duality
result which can be used to prove optimality of a proposed
mechanism (Daskalakis et al., 2017; Kash & Frongillo,
2016). The authors of Duetting et al. (2019) and Shen et al.
(2019) apply these results to their learned auctions, and dis-
cover some previously-unknown optimal auctions.

3.4. Further work in differentiable economics

Many papers have built on RegretNet. ALGNet (Rahme
et al., 2021b) gives an improved loss function, which has
fewer hyperparameters, and an improved training algo-
rithm. We use it as a point of comparison below. Other

'In the appendix, they also present MyersonNet, which is re-
stricted to 1 item.
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papers apply the same general approach to auctions with
fairness or budget constraints (Kuo et al., 2020; Peri et al.,
2021; Feng et al., 2018), add new inductive biases to the ar-
chitecture (Curry et al., 2021; Rahme et al., 2021a), or ap-
ply similar techniques to other mechanism design problems
(Ravindranath et al., 2021; Golowich et al., 2018; Brero
et al., 2021).

Another line of work uses neural networks to model
agent preferences over possible bundles (Tacchetti et al.,
2019; Weissteiner & Seuken, 2020; Brero et al., 2019b;a;
Bachrach et al., 2021). Bichler et al. (2021) uses ML tech-
niques to compute equilibrium strategies for non-incentive-
compatible auctions.

3.5. Automated mechanism design and learning theory
for auctions

Affine maximizer auctions (AMASs) are classic tools for
automated mechanism design (Sandholm & Likhode-
dov, 2015; Likhodedov & Sandholm, 2004; 2005). In
essence, AMAs are just weighted versions of the celebrated
Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961;
Clarke, 1971; Groves, 1973). VCG chooses the welfare-
maximizing allocation; an AMA maximizes a rescaled and
shifted version of the welfare. By choosing the parame-
ters of the AMA carefully, performance on metrics other
than welfare maximization can be improved without sac-
rificing strategyproofness. Previous work considers the
problem of learning high-performing AMAs from samples
using gradient based methods (Sandholm & Likhodedov,
2015; Likhodedov & Sandholm, 2004), albeit using dif-
ferent techniques and without considering lotteries. Guo
et al. (2017) computes AMA parameters via linear pro-
gramming for a particular problem setting. Other works
consider the sample complexity of learning AMAs, treat-
ing them as a parameterized function class (Balcan et al.,
2016; 2018; 2021). Tang & Sandholm (2012) considers
a subset of AMAs for which the optimal revenue can be
computed in closed form. Deng et al. (2021) tunes the pa-
rameters of a class of AMASs to improve performance in an
online advertising application.

3.6. Lotteries and menu size complexity

There are a number of theoretical results showing that of-
fering lotteries can improve revenue (Briest et al., 2010;
Pavlov, 2011; Daskalakis et al., 2017). Hart & Nisan
(2019) analyze this phenomenon and give an interesting
perspective — in the most general sense, it is not offering
lotteries per se that improves revenue. Rather, it is that of-
fering more menu items can improve revenue by allowing
finer price discrimination, and there are always fewer de-
terministic allocations than possible lotteries.

These results, however, give worst-case revenue gaps

across whole classes of valuations, not a guarantee for any
specific instance. As discussed below, we find that even
when our mechanisms can improve their revenue by of-
fering lotteries, they offer relatively few menu items, so
performance improvements are not due to increased menu
size.

3.7. Expressiveness of AMAs and Roberts’s Theorem

To what extent can the class of affine maximizer auc-
tions actually express the optimal strategyproof auction?
As mentioned, Rochet (1987) shows that all single-agent
strategyproof mechanisms can be identified with convex
functions. For multi-agent multi-item settings with unre-
stricted valuations (meaning every agent may get any pos-
itive or negative utility from any outcome, and may even
care about which particular items other agents receive),
Roberts (1979) shows that every strategyproof mechanism
must take the form of an AMA.

The settings we consider here do not have unrestricted val-
uations, so Robert’s theorem does not apply. In particular,
Roberts’s theorem does not hold for deterministic combina-
torial auctions where valuations are monotonically increas-
ing in receiving more items, and the empty set has zero
value. All the valuations we consider have these properties.
On the other hand, for many settings, (Lavi et al., 2003)
shows that any implementable allocation rule which satis-
fies certain natural conditions must be “almost” an AMA in
a certain technical sense.

4. Affine Maximizer Auctions
4.1. Combinatorial Auction Setting

Consider a setting in which m auction participants are bid-
ding on n items. Each bidder has a private type v; € R"
denoting how much they value each item.

Allocations consist of matrices a € R, where a;; de-
notes the amount of item j given to bidder ¢. We require
that > j Qij < 1, so that no item is overallocated. For de-
terministic auctions, we require that a;; € {0, 1}. For unit-
demand auctions, we also require that every bidder receives
at most 1 item: Zl a;; < 1. Denote the set of feasible allo-
cations for a given setting by A C R™". We will often treat
A as a set with elements a. Payments p; are simply pos-
itive scalars. Given an allocation, bidder ¢ receives utility

Ui = Zj QijVij — Pi-
The regret for player ¢ under a given bid profile is defined

as the difference in utility between bidding truthfully and
the best strategic misreport:

rgt;(v) = mbz_xx wi(bi,v—;) — w;(v;)

When regret is O for every player, and for every bid pro-
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file, the auction is dominant-strategy incentive compatible
(DSIC). In this work, all our auctions have guaranteed zero
regret, but some of our baselines may have positive regret.

In addition to requiring our auctions to be DSIC, we also
require individual rationality (IR) — that is, u; > 0 for ev-
ery bidder, or equivalently, no truthful bidder will ever pay
more than the value of the items they receive.

4.2. Affine Maximizer Auction Mechanism

Affine maximizer auctions have parameters consisting of
weights w; for each bidder and boosts by associated with
each allocation a,. Given some bids v for each bidder, the
affine maximizer auction chooses the allocation (and boost)
ay, by, that will maximize the weighted, boosted welfare:

L* = argm]?xzwi Z(ak)ijvij + by, (1)
? J

Let a(v) = agx, b(v) = byx.

Then, to compute a payment p; for bidder i, it considers
the counterfactual auction result where bidder ¢ did not
participate. The total decrease in all other bidder’ welfare
(weighted and boosted) between this counterfactual auction
and the new auction is p;:

1
pi= o | 22 2 wealv-i)eve; + b(v-)
7 )
1
- Z Z wea(v)e;vej + b(v)
Yo\ etio

As mentioned above, AMAs (like the VCG mechanism)
are always DSIC. To see why this is the case, observe that
for any fixed set of bids v_;, agent ¢’s utility u;(v;) =
Zj a(v;,v—)ijvi; — pi(vi, v_;) will be a pointwise max-
imum over a set of affine functions (one per possible allo-

cation), and thus convex.

The choice of the above payment rule also ensures IR. We
additionally require that allocating nothing and charging
nothing always be among the possible outcomes ay, al-
though this is not strictly required to ensure IR.

Our Approach Generalizes RochetNet and MenuNet
When there is only one bidder, without loss of generality
we can fix the weights to one and assume welfare when
the single bidder is removed is zero, recovering the max-
over-affine representation of a strategyproof single-bidder
mechanism. Thus our approach of learning allocations and
boosts by gradient descent directly generalizes RochetNet
(Duetting et al., 2019) and MenuNet (Shen et al., 2019).

5. Learning Affine Maximizers Via
Differentiable Economics

AMAs have three types of parameters: the bidder weights
w;, the boosts by, and the allocations ay. (Treating the al-
locations of AMAs as learned parameters along with the
weights and boosts is a contribution of our work.) We as-
sume access to sampled truthful valuations, and learn these
parameters jointly via gradient descent on the objective
- 21 Di-

During training, we use the softmax function as a differen-
tiable surrogate for the max and argmax operations: that
is, argmaxy, f(ax) =~ (softmax,(f(a1), -, f(ax)),a)
and maxy, f(ax) & (softmax;(f(a1), -, f(ak)), f(a))
As the softmax temperature parameter 7 approaches 0, this
approach recovers the true argmax.

Using this soft version of the AMA definition, we directly
compute the total payment and differentiate it with respect
to the parameters via the Jax autograd system (Bradbury
et al., 2018) along with Haiku (Hennigan et al., 2020) and
optax (Hessel et al., 2020). At test time, we use the learned
parameters in the exact AMA definition, using the regular
max operator.

For deterministic auctions, we fix the set ay, to be the set of
all feasible allocations. For lottery auctions, we randomly
initialize a large (typically |A| = 4096) set of allocations
— although by the end of training, very few of these are
actually used (discussed below).

We parameterize these allocations aj to ensure that they
are always feasible. Following the approach from (Duet-
ting et al., 2019), for additive allocations, each allocation
is represented an m by n + 1 matrix of unrestricted param-
eters — the extra column is for a dummy item representing
“no allocation”. We take an item-wise softmax and trun-
cate the dummy column to generate a feasible allocation.
For unit-demand allocations, we follow the approach used
in (Ravindranath et al., 2021), applying the softplus oper-
ation to two matrices of m by n parameters, normalizing
row- and column-wise respectively, and taking the mini-
mum of the result.

6. Results
6.1. Hyperparameters and training

For lottery AMAs, we allow either 2048 or 4096 alloca-
tions. The softmax temperature is 100; we use an Adam op-
timizer with learning rate of 0.01. We train all auctions for
9000 steps, with 2% fresh valuation samples per gradient
update. All reported test revenues are on 100000 sampled
valuations. Because the valuation distributions are sym-
metric, in the cases tested below we fix bidder weights to
1.
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Figure 3: The ten lottery allocations (and their boosts) ac-
tually used after training an auction. (The auction has many
more parameters, but the 2038 other allocations are never
chosen for any of the sampled bids.) One can see that the
mechanism does typically offer lotteries.

To determine which allocations are actually used, we sam-
ple 100000 test valuations, and include any allocation that
was chosen for even one bid profile.

For baselines, we compare against previously reported re-
sults from RegretNet (Duetting et al., 2019), ALGNet
(Rahme et al., 2021b), and AMAss trained using other meth-
ods (Sandholm & Likhodedov, 2015), as well as theoretical
revenues from Myerson auctions of separate items and of
the grand bundle.

6.2. Revenue performance

Spherical distribution In order to demonstrate a revenue
improvement by offering lotteries, we consider a particular
valuation distribution which we refer to as the “spherical
distribution” for lack of a better name — this is a distribu-
tion on a number of discrete, random points, scaled and
normalized according to the proof construction in (Briest
etal., 2010).

We construct such a distribution for 4 items with 5 valu-
ation points and consider a setting with two unit-demand
bidders, each of whose valuations are sampled i.i.d from
this distribution. We would expect a large gap between
revenue extracted by lotteries and by a deterministic mech-
anism.

Indeed, we find that this is the case — when we train our
lottery AMA with 2048 allocations on this distribution, it
gets more than twice the revenue of a deterministic AMA
(see 1). Figure 3 shows the final offered allocations and
boosts from a representative mechanism — the auction is
actually taking advantage of randomization.

Allocations/Boosts for 2-Bidder 2-ltem Auction (U[0,1])
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Figure 4: All allocations actually used after training for a
2x2 U[0,1] additive auction (the same setting as compared
to in Likhodedov & Sandholm (2004) and Duetting et al.
(2019)). Here, although the mechanism space is that of
randomized mechanisms, the algorithm learns to offer de-
terministic allocations. The revenue is comparable to re-
sults in Likhodedov & Sandholm (2004).

2 bidder, 2 item uniform We also consider a 2 bidder, 2
item additive auction where item values are independently
distributed on U0, 1]. This seems like the most trivial pos-
sible multi-bidder multi-item auction setting, yet it is so far
completely beyond current theory — this makes it an inter-
esting test case for automated mechanism design.

We train a lottery AMA on this setting and find revenue
competitive with both previous AMA approaches (Sand-
holm & Likhodedov, 2015; Tang & Sandholm, 2012) as
well as the RegretNet neural network approach (which per-
forms better but is not perfectly strategyproof) (Duetting
et al., 2019).

An interesting observation, though, is that even though our
lottery AMA is free to offer lotteries, it does not do so —
all allocations actually offered by the end of training are
deterministic, as seen in Figure 4.

3 bidder, 10 item uniform Finally, we consider one
of the much larger auction settings from (Duetting et al.,
2019) — 3 additive bidders with 10 U[0, 1] items. We give
our network parameters for 4096 allocations, many fewer
than the number of possible deterministic allocations in this
setting.

Results are shown in Table 3, along with baselines. While
we do not match the performance of RegretNet and AL-
GNet, we do at least exceed the performance of the separate
Myerson and grand bundling approaches. Some, though
probably not most, of the extra revenue gained by Regret-
Net and ALGNet may be due to non-zero regret.
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AMA Type Max Revenue Min Revenue Mean Revenue  Std Revenue
Lottery 2.158 1.87 2.06 0.098
Deterministic 1.462 0.627 0.842 0.279

Table 1: Results from 8 random parameter initializations, with 2048 allocations, on the spherical valuation distribution.
In particular, the worst lottery mechanism outperforms the best deterministic mechanism. Moreover, for this setting, the

lottery mechanisms do actually learn to randomize.

Auction Best Revenue  Regret
Lottery AMA (ours) 0.868 0
Combinatorial AMA 0.862 0
Separate Myerson 0.833 0

Grand Bundle 0.839 0
MBARP 0.871 0
RegretNet 0.878 < 0.001
ALGNet 0.879  0.00058

Table 2: Revenue comparison for 2 bidder, 2 item U[0,1]
additive auction. Our approach is competitive with other
approaches. Combinatorial AMA refers to results from
Sandholm & Likhodedov (2015). MBARP is a subset of
AMA from Tang & Sandholm (2012) where the optimal pa-
rameters have been computed (only for 2 items). RegretNet
achieves higher revenue, but possibly due to a small strate-
gyproofness violation. Note that Sandholm & Likhodedov
(2015) present many variants, some of which beat our rev-
enue, although all are comparable.

Auction Best Revenue Regret

Lottery AMA (ours) 5.345 0
Separate Myerson 5.31 0
Grand bundle 5.009 0
RegretNet 5.541 0.002
ALGNet 5.562 0.002

Table 3: Revenue comparison for 3 bidder, 10 item U[0,1]
additive auction. We train a lottery AMA with 4096 allo-
cations. It underperforms RegretNet (although RegretNet
has a small strategyproofness violation), but outperforms
the separate Myerson and grand bundling baselines.

We also attempted to train a lottery AMA for the 5 bidder,
10 item uniform case, but found that after several attempts
it failed to outperform the separate Myerson baseline.

6.3. Number of allocations used

We observe that although our auctions are initialized with
many parameters, the number of possible deterministic out-
comes may be quite large, the number of allocations used
on any actual valuation profile is typically quite small. Re-
sults are summarized in Table 4 for all experiments men-
tioned above.

6.4. Effects of parameter initialization

Motivated by the lottery ticket hypothesis in neural net-
work training (Frankle & Carbin, 2019), we consider the
effects of overparameterization and parameter initialization
on performance.

First, we consider training from the same parameter initial-
ization, under a different source of randomness for the data.
We find that starting from the same initialization typically
results in nearly the same allocation indices being chosen,
with Jaccard similarities of .64, .67, and .82 across the in-
dices chosen under the new random data. Starting from
a different parameter initialization, there was no overlap in
the indices chosen. We find that the results are quite similar,
which suggests that parameter initialization is important in
determining the end results.

We also consider the opposite approach: take the final
actually-used allocations, look at what values those param-
eters took at initialization before training, and retrain using
only those parameters. In other words, we train a model
with very few parameters “from scratch”, but with an ini-
tialization we hope will perform well — the “winning lottery
ticket”.

Results are summarized in Table 5. We indeed find a large
gap in performance between the good initialization and
randomly-initialized models with the same number of pa-
rameters.
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Auction Min Max # at Initialization # Deterministic
Lottery spherical 8 15 2048 20
Deterministic spherical 6 20 20
2x2 U[0,1] 7 10 4096 81
3x10 U[0,1] 58 64 4096 220

Table 4: The number of allocations actually used after 9000 steps of training, for the experiments given above. These
quantities are smaller than the number of initial outcomes as well as the number of possible deterministic outcomes.

Mean Rev. Best Rev.
Winning Ticket (2x2) 0.870 0.872
Small Random (2x2) 0.772 0.777
Winning Ticket (Spherical) 1.836 1.842
Small Random (Spherical) 1.197 1.572

Table 5: We take the actually-used allocations from the
best-performing 2x2 uniform and spherical models — the
values of these parameters before training are the “win-
ning ticket”. We initialize a lottery AMA using the winning
ticket initializations, and train on 4 random data seeds. To
compare, we also test 4 different random initializations of
the same small number of allocations, and find significantly
lower performance.

7. Discussion

We see our approach as a first step towards strategyproof
architectures for multi-agent differentiable economics. On
the one hand, it is a natural generalization of RochetNet
and MenuNet. On the other hand, it is also a natural gener-
alization of classic work on AMAs.

Beyond the obvious advantage of perfect strategyproof-
ness, there are other reasons one might prefer this approach
over RegretNet. In particular, AMAs are interpretable — it’s
easy to simply inspect which allocations are being offered
as possibilities. However, it’s unclear when and whether
our approach can actually represent the true optimal mech-
anism — that remains an open theory question. Regardless,
we see it as a useful tool for automated mechanism design
in multi-bidder multi-item settings.

7.1. Lottery ticket hypothesis

Our networks are quite sensitive to initialization — there’s
a relatively wide range of performance between reinitial-
ized instances of the same architecture shown the same se-
quence of training data. Moreover, we found that start-
ing out with a large number of parameters improves per-
formance, even though by the end of training only a tiny
number of these parameters were actually used.

A dependence on initialization, a benefit from overparam-

eterization, and a final model which is effectively sparse
all bring to mind the lottery ticket hypothesis (Frankle &
Carbin, 2019) in deep learning. Indeed, our experimental
results in section 6.4 suggest that some version of the lot-
tery ticket hypothesis is in play here. We also observe that
Curry et al. (2020) was able to significantly distill learned
auction networks without harming performance. Future
work in auction learning might further take advantage of
this direction.

7.2. Strengths and Limitations

Limitations compared to other differentiable economics
approaches The most obvious limitation of our work is
that in most settings, there are probably strategyproof non-
AMAs which outperform the best AMA, but we cannot
learn these. This is most likely why ALGNet and Re-
gretNet outperform our mechanisms in terms of revenue.
On the other hand, we think that ensuring perfect strate-
gyproofness is a real advantage, and a more flexible neu-
ral architecture that preserves this property while going be-
yond AMAs remains out of reach.

Limitations compared to other AMA/AMD approaches
Beyond this, our approach works for settings with additive
and unit-demand valuations, where the bidders’ valuations
are just vectors so that the total value of a bundle can be
expressed as an inner product. It is not straightforwardly
well-suited to complex combinatorial valuations where bid-
ders may value bundles very differently depending on the
presence of specific items.

Moreover, we solve the winner determination problem by
explicitly computing the (weighted, boosted) welfare for
every possible allocation. This works because at any given
time, our auctions are only offering a restricted set of
learned allocations, which is usually much smaller than the
overall set of possible allocations. But in a setting where it
was important to offer something closer to the full set of al-
locations, our approach would quickly become intractable.

Strength: interpretability A major advantage of our
approach is in interpretability. Neural-network-based ap-
proaches are almost totally opaque — there’s no way to sum-
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marize or explain the learned mechanism to the bidders,
other than simply giving them the network parameters. By
contrast, in our approach, we can simply describe the pos-
sible allocations, their boosts, and each bidder’s weights,
and it is immediately clear how the mechanism works.

8. Future Research

We focus on auctions because there is a large body of tech-
niques in automated mechanism design and differentiable
economics which provide useful baselines for performance.
But VCG-style mechanisms can be used for mechanism de-
sign problems beyond auctions, or for more complex types
of auctions than considered here.

We expect that the approach described here could be ex-
tended to other mechanism design problems as long as 1)
feasible mechanism outcomes can be parameterized in a
way amenable to gradient-based learning, and 2) the wel-
fare of an outcome as a function of agent types can be com-
puted in a way that preserves differentiability. Exploring
the use of learned AMAs in new mechanism design set-
tings is a fruitful direction for future work.
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