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Stability of normal bundles of space curves

Izzet Coskun, Eric Larson and Isabel Vogt

We prove that the normal bundle of a general Brill-Noether space curve of degree d and genus g > 2
is stable if and only if (d, g) ¢ {(5, 2), (6,4)}. When g < 1 and the characteristic of the ground field is
zero, it is classical that the normal bundle is strictly semistable. We show that this still holds in positive
characteristic except when the characteristic is 2, the genus is 0 and the degree is even.

1. Introduction

Let C be a smooth connected curve defined over an algebraically closed field k (of arbitrary characteristic).
The normal bundle N¢,/pr of a smooth curve controls the deformations of the curve in P" and plays a
crucial role in many problems of geometry, arithmetic and commutative algebra. In this paper, we show
that the normal bundle of a general Brill-Noether space curve of degree d and genus g is stable if and
only if g > 2 and (d, g) ¢ {(5,2), (6,4)}.

Let E be a vector bundle on a smooth curve C. Let the slope w(E) be
__ deg(E)
= K(E)

Then E is called (semi)stable if every proper subbundle F' (which is always assumed to be saturated in

w(E)

this paper) of smaller rank satisfies
w(F) < p(E).

The bundle is called unstable if it is not semistable and strictly semistable if it is semistable but not stable.

By the Brill-Noether theorem (see [Kleiman and Laksov 1972; Griffiths and Harris 1980; Gieseker
1982; Arbarello et al. 1985; Osserman 2014; Jensen and Payne 2014; Castorena et al. 2018]), a general
curve of genus g admits a nondegenerate, degree d map to P" if and only if the Brill-Noether number
p(g, r, d) satisfies

p(g,rnd)y=g—r+1)(g—-d+r)=0.

When r > 3, there is a unique component of the Hilbert scheme that dominates the moduli space M. ¢ and
whose general member parametrizes a smooth, nondegenerate curve of degree d and genus g in P". We
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call a member of this component a Brill-Noether curve. When r = 3, we call such a curve a Brill-Noether

space curve.

Main Theorem. Let C C P? be a general Brill-Noether space curve of degree d and genus g over an
algebraically closed field k.

(1) Nc¢ is stable ifand only if g > 2 and (d, g) ¢ {(5, 2), (6,4)}.

(2) Nc is strictly semistable if and only if g < 2 and one of the following holds: char(k) #2, g =1, or
d is odd.

(3) Nc is unstable if and only if (d, g) € {(5, 2), (6, 4)} or all of the following hold: char(k) =2, g =0,
and d is even.

The normal bundles of curves in projective space have been studied by many authors (for example,
see [Atanasov et al. 2019; Ballico and Ellia 1984; Coskun and Riedl 2018; Ein and Lazarsfeld 1992;
Ellia 1983; Ellingsrud and Hirschowitz 1984; Ellingsrud and Laksov 1981; Newstead 1983; Ran 2007;
Sacchiero 1980; 1982; 1983]). Our results complete and unify these results for Brill-Noether space curves.

If (d, g) € {(5,2), (6,4)}, then C lies on a unique quadric Q and N¢,g C N¢ gives a destabilizing
subbundle. We will describe the geometry in these two cases more explicitly in Section 3.

Every bundle on P! splits as a direct sum of line bundles. Hence, the normal bundle of a smooth

rational curve can be written as N¢ = @l';ll O(a;) for some integers ay, ..., a,—1 with
r—1
> ai=(r+d-2.

i=1

If C is a general rational curve of degree at least d > r in ", and the characteristic of the ground field is
not 2, then N¢,pr splits as equally as possible, i.e., |a; —a;| < 1 (see [Sacchiero 1980; Ran 2007; Coskun
and Riedl 2018; Atanasov et al. 2019]). Hence, N¢,pr is strictly semistable when r — 1 divides 2d — 2
and is unstable otherwise. When r = 3 and char(k) # 2, since the quantity 2d — 2 is always even, the
normal bundle of a general rational curve of degree d > 3 is strictly semistable. If the characteristic is 2,
we show in Lemma 3.2 that all a; = d mod 2; this obstructs semistability for rational curves with d even.

Similarly, normal bundles of genus one curves have been studied extensively (see [Ein and Lazarsfeld
1992; Ellingsrud and Hirschowitz 1984; Ellingsrud and Laksov 1981]). By [Ellingsrud and Hirschowitz
1984], the normal bundle of a general nondegenerate genus one space curve is semistable. On the other
hand, on a genus one curve, there are no stable rank 2 bundles of degree 4d. Hence, the normal bundle of
a general genus one space curve of degree d > 4 is strictly semistable. Our techniques will provide short
arguments reproving the g =0 and 1 cases. The weaker question of semistability follows from results
of [Larson 2021; Vogt 2018].

In higher genus, the previously known results on stability were more sporadic. The stability of the
normal bundle was proved for (d, g) = (6, 2) by Sacchiero [1983], for (d, g) = (9, 9) by Newstead [1983],
for (d, g) = (6, 3) by Ellia [1983], and for (d, g) = (7, 5) by Ballico and Ellia [1984]. Many of these
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cases will be important for our inductive arguments. For completeness, we will reprove these cases
using our techniques or briefly recall the arguments. More generally, Ellingsrud and Hirschowitz [1984]
announced a proof of stability of normal bundles in an asymptotic range of degrees and genera; however,
their results do not cover many of the most challenging cases of small degree.

We prove the main theorem by specialization. We use three basic specializations:

(1) we specialize to a curve of degree (d — 1, g) union a 1-secant line;
(2) we specialize to a curve of degree (d — 1, g — 1) union a 2-secant line; and
(3) finally, we specialize to a curve of degree (d — 2, g — 3) union a 4-secant conic.

These degenerations reduce the main theorem to a finite set of base cases. The most challenging part of
the paper is to verify these base cases.

We expect our techniques and results to generalize to P for » > 3 and hopefully settle the following
conjecture.

Conjecture 1.1. The normal bundle of a general Brill-Noether curve of genus at least 2 in P is stable
except for finitely many triples (d, g, r).

Conjecture 1.1 is closely related to several conjectures in the literature. For example, Aprodu, Farkas
and Ortega have conjectured that the normal bundle of a general canonical curve of g > 7 is stable [Aprodu
et al. 2016, Conjecture 0.4] (see also [Bruns 2017]). The semistability of the normal bundle of a general
canonical curve of genus g > 7 has recently been proved in [Coskun et al. 2022].

Organization of the paper. In Section 2, we will recall basic facts about normal bundles on nodal curves
and elementary modifications. In Section 3, we will elaborate on the two cases (d, g) € {(5, 2), (6, 4)} as
well as the obstruction to stability for rational curves in characteristic 2. In Section 4, we will introduce
several basic degenerations to reduce the theorem to a small set of initial cases. For the rest of the paper,
we will analyze these initial cases.

2. Preliminaries

In this section, we collect basic facts on normal bundles of curves, stability of vector bundles, elementary
modifications, and on certain reducible Brill-Noether curves. For more details, see [Atanasov et al. 2019;
Larson 2016; 2017]. When necessary, we provide a characteristic-independent proof here.

2A. The normal bundle of a space curve. Let C C P" be a smooth Brill-Noether curve of degree d and
genus g. The normal bundle N¢ is a rank r — 1 vector bundle that is presented as a quotient

0— T¢c — Tprlc > Nec— 0

of the restricted tangent bundle of P” by the tangent bundle of C. The restricted tangent bundle is itself
naturally a quotient in the Euler exact sequence

0= Oc = Oc(DH® D 5 T — 0. (1)
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From this we see that deg(N¢) = (r + 1)d +2g — 2. Specializing to r = 3, we have that
u(Nc) =2d+g—1,

and therefore N¢ is stable if and only if all line subbundles L € N¢ have slope at most 2d + g — 2.
If S is a surface in P? containing C that is smooth at the generic point of C, then we have an associated

normal bundle exact sequence
0— NC/S_)NC_)NS|C_>O- (2)

By adjunction, the bundle N¢/s is isomorphic to Og(C)|c. A particularly simple case is when C is the
complete intersection of two (smooth) surfaces S; and S, of degrees d; and d; in 3. In this case the
natural map

Nc¢ys, ® N¢ys, = N¢

is an isomorphism, and, combining this with the adjunction isomorphism, we have N¢ >~ O¢(d,) ®Oc (d3).
Such a bundle is never stable, and is semistable if and only if d| =d». Relevant examples for us are lines (the
normal bundle is isomorphic to Opi (1)®2), conics (the normal bundle is isomorphic to Op1(2) @ Opi(4))
and elliptic quartics E (the normal bundle is isomorphic to Og(2) & Og(2)).

2B. Stability of vector bundles on nodal curves. In the course of our inductive argument, we will
specialize a smooth Brill-Noether curve to a reducible nodal curve. In this section, we generalize the
definition of stability of vector bundles to allow C to be a connected nodal curve. We will write

v:C—C

for the normalization of C. For any node p of C, write p; and p; for the two points of C over p.

Given a vector bundle E on C, the fibers of the pullback v*E to C over p1 and p, are naturally
identified. Given a subbundle F C v*E, it therefore makes sense to compare F|; and F|j, inside
U*E|I;1 =~ V*E|I;2.
Definition 2.1. Let E be a vector bundle on a connected nodal curve C. For a subbundle F' C v*E, define

. dj
the adjusted slope ,uféj by
adj . 1 . ) i
e (F) 1= u(F) = === > codimp(F|s N Flg,).
pecsing

where codimg(F |3 N F|j,) refers to the codimension of the intersection in either F|;, or F|;, (which are
equal since dim F |5, = dim F'|3,). When the curve C is unambiguous, we will omit it from our notation
and write simply w*(F). Note that if F is pulled back from C, then ,u‘gij( F) = n(F). We say that E is

(semi)stable if for all subbundles F C v*E,
W) < p(*E) = u(E).

With this definition, stability is an open condition in families of connected nodal curves. To show this,
we will need the following lemma.
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Lemma 2.2. Let B : C' — C be a map obtained by contracting a 1- or 2- secant P':

(D=« =X

If E is a (semi)stable vector bundle on C, then B*E is also (semi)stable.

Proof. Write v : C — Cand v : C' — C’ for the normalization maps.
First consider the 1-secant case. Write x for the point of attachment (so that C" = C U, P). Let E be
a (semi)stable vector bundle on C, and let F C v*B*E be any subbundle. Since v"*B*E|p: is trivial,

p(Flp1) < 0. 3)

Since the ordinary slope is additive on components, and x is the only point in C, ing that is not also in Cyjpg,

the definition of adjusted slope and (3) imply

COdiIn]zr(Fb;1 N F|;2)
tk F

dj dj dj
Pt (F) = up (Flg) + uw(F|pi) — < pe(FIg) < w(E),

and hence 8*E is (semi)stable.

Similarly in the 2-secant case, write C' = C” Uy, y) P'. Denote by %; and ¥, (respectively %, and 3,)
the corresponding points on P! (respectively C”). Let F C v*B*E. Since v"*B*E|p is trivial, we can
identify the fiber of E at x| with the fiber of E at y;, and we have

1
M(Flp) < ———

As in the 1-secant case, noting that the only difference between C'. sing and C ;ing are the points {x, y}, for
any subbundle F C v*8*E, we have

~codimp (F|z, N Fl3).

1 . .
HEH(F) = g (F12) + p(Flpn) — —— - (codimp (F s, 0 Fli,) + codimp (F5, N Fl5,))

dj 1 . . .

< pen(Flg) — TF (codimp (F|z, N Fl5,) + codimp (F |z, N Flz,) + codimp (F |, N Fl3,))
dj 1

< ten(Flg) = 5 -codimp (Flg, N Fl5,)

= 1 (Flp)

S u(E).

The second inequality is the result of twice applying the “triangle inequality”

codim(X NY)+ codim(Y N Z) > codim(X N Z). Il
Proposition 2.3. Let € — A be a family of connected nodal curves over the spectrum of a discrete
valuation ring and & be a vector bundle on €.

(1) If the special fiber & = &) is (semi)stable, then the general fiber & = &|a+ is also (semi)stable.

2) If € — A is smooth, and & is semistable, then any subbundle F* C &* with u(F*) = u(&*) extends
to a subbundle 7 C &.
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Proof. Write v : % — ¢ for the normalization.

For part (1), after possibly making a base change, let .#* C v*&* be a subbundle with p(.#*) maximal.
Since 1 is constant in flat families and codim(X NY') is lower semicontinuous, 24 is upper semicontinuous
in flat families. Therefore, if .#* extends to a subbundle .# C v*&, then

wIF) < W F) < () = (e, @

(—)

Otherwise, we make a blowup § : %' — ¢ in order to extend .F* C v*&* to a subbundle .F C f*v*&.
By semistable reduction, we may ensure that the central fiber remains reduced. By gluing along sections
identified under v, the blowup ,5 induces a map B : ¢’ — €, which is an isomorphism away from the
central fiber, and on the central fiber consists of replacing nodes by 1- and 2-secant P!’s. Applying
Lemma 2.2, 8*& is (semi)stable. Therefore (4) holds for g*&.

For part (2), we imitate the above argument to extend .Z* to a subbundle of §*&. Since € — A is
smooth, B can be obtained by iteratively contracting 1-secant P!’s. Since u(Z*) = u(&*) and B*&
is semistable, we must in particular have equality in (3) from the proof of Lemma 2.2 for every such
contraction; thus, .% is trivial along every exceptional divisor of 8. In particular, . * already extends to a
subbundle .# C & without blowing up. O

2C. Elementary modifications of vector bundles. Let E be a vector bundle on a scheme X and let F C E
be a subbundle. For any effective Cartier divisor D C X, we define the elementary modification of E
at D towards F to be the kernel of the natural evaluation map

E[D — F]:=ker(E — (E/F)|p).
By [Atanasov et al. 2019, Proposition 2.6], E[D — F] is again a vector bundle, which is a subsheaf of E.

Remarks. (1) From this definition we see that an inclusion S < E factors through E[D — F] if and
only if the restriction to D factors through F|p:

S|D"—> FlD;) E|D.

(2) Elementary modifications have a nice geometric interpretation in terms of projective bundles. Suppose
that E is a vector bundle of rank 2 on a smooth curve C and F is a line subbundle of E. In this case,
PF is a section of the P!-bundle PE over C. The surface PE[p — F] is obtained from PE by blowing
up the point PF, and blowing down the proper transform of the fiber PE,. For more details, see
[Beauville 1996, §111.24].

In the special case that F is a direct summand of E, write E ~ F @ E’. Then we see that E/F ~ E’,
and so we have
E[D— Fl=ker(F®E — E'|p) ~ F ® E'(-D). 5)

More generally, we can describe how elementary modifications play with respect to short exact sequences.
For simplicity we focus here on the rank 2 case that is of interest in this paper. Suppose that C is a
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curve, S and Q are line bundles on C and E is a rank 2 bundle on C that sits in the exact sequence
0—->S—>FE—Q—0.

Let p be a smooth point on C. Consider a line subbundle F of E and write k" for the order to which the fibers
of S and F agree over p (i.e., the length of the support of PF NPS in PE in a neighborhood of p). Let k
be the minimum of &’ and n. Then we claim that the modification E[np — F7] sits in the exact sequence

0— S((k—n)p) > E[np — F]— Q(—kp) — 0. (6)

This follows from combining the observation that S((k —n)p) — E[np — F] is saturated with a Chern
class computation to determine the twist at p in the quotient. For a more detailed exposition on elementary
modifications, we refer the reader to [Atanasov et al. 2019, §2-3].

Let g € P" be a point. In this paper we will be primarily concerned with modifications of the normal
bundle N¢,pr towards pointing bundles N¢_,,, which we now recall. For a more detailed exposition, see
[Atanasov et al. 2019, §5-6]. Write

Ucy={peC:T,CNg=0a}.

Letm, :C — P"—! denote the projection map from g. Note that 74luc, 18 unramified by construction.
If Uc 4 is dense in C and contains the singular locus of C, then we may define N¢_,, to be the unique
extension to all of C of the bundle

Ne—qlue, =ker(Nelue, = Na,lue,)-

where Ny, denotes the normal sheaf of ;. Our notation N¢—,, is intended to suggest the geometry of
sections: they point towards g in P". Projection from ¢ induces an exact sequence

0— Nc_>q—>Nc—>7rq*qu(Cﬂq)—>O. @)
In this paper we will be primarily interested in the two simplest cases:

(i) The point g € P" is general, so that Uc , = C, and Nc_,;, ~ Oc¢(1) by [Atanasov et al. 2019,
Proposition 6.2].

(ii) The point g € C is general, so that Uc , = C \ {q}, and Nc_,;, >~ Oc(1)(2g) by [Atanasov et al.
2019, Proposition 6.3].

By convention, when modifying towards a pointing bundle, we will write
Nclp — ql:== Nclp — Nc—q4l.
The following foundational result underpins our degenerative approach.

Lemma 2.4 [Hartshorne and Hirschowitz 1985, Corollary 3.2]. Let X UY be a connected nodal curve
inP". Write {p1, ..., pa} = XNY and let q; € T),,Y be a choice of point. Then

Nxurlx =~ Nx(p1+---+p)lp1t = q1l- - [pn — gnl.
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Given a vector bundle E on a reducible nodal curve X UY, restriction to the component X yields an
exact sequence
0— Ely(—-XNY)—> E— E|x — 0. (8)

If the vector bundle E is the normal bundle of the union Nxyy, then we can make this explicit using
Lemma 2.4. Write g; y for a choice of point in 7)Y and ¢; x for a choice of point in T, X. Then (8)
yields the sequence

0— Nylpir—qi.x]---[pn—> gn,x]— Nxuy = Nx(p1+---+p)lp1—=>qiyl - [pn—> qny] = 0. (9)

We will now illustrate how information about the normal bundle (such as presentations in exact
sequences) can be combined with the data of modifications towards pointing bundles with the following
three examples. In future similar situations, we will point the reader to these examples and omit the details.

Example 2.5. For a curve C C P3 and general points p, g € C, consider the modified normal bundle
Nclp — ¢q]. Combining the sequence (7) coming from projection from g with (6), we see that this bundle
sits in the exact sequence

0— [Nc—g = Oc(D)(29)]1 = Nclp — g1 — 7y Nx, (¢ — p) > 0.

Example 2.6. Consider a line L C P3 and points p;, p» € L and Pl PhE P3 such that the four points
P1, Pys P2, Py span P3. Write H; for the span of L and the point p;. The line L is the complete
intersection of H; and H», and so

N>~ Npju, ®Npg, >~ Opi (1) @ Opi(1).
Furthermore, the pointing bundle N; _, ol is isomorphic to Ny g, from which we conclude, using (5), that

Ne(p)Ilpi— pil~ Nyw(p)® N, =~ O0pi(2)®0pi(1),
Ni(pi + p2)lp1 = pillp2 = P51~ Niyu,(p1) @ Niyu, (p2) =~ Opi (2) @ Opi (2).

Example 2.7. Suppose that D is an elliptic normal curve (i.e., the complete intersection of two quadrics
in 3) and let p and ¢ be general points on D. We will consider the modified normal bundle Np[p — ¢].
Since it is one condition for a quadric containing p and ¢ to contain the line p, ¢, there must be a
quadric Q in the pencil containing D that also contains the line p,q. The line p, g is contained in 7}, Q
and therefore the normal directions Np,pl, and Np_, 4|, coincide in Np|,. Combining the normal bundle
exact sequence (2) for D C Q with (6) yields the exact sequence of vector bundles

0— Npyo — Nplp — q]l — Nglp(—=p) — 0.

In fact, this exact sequence is split; choosing another quadric Q' from the pencil defining D gives the
complement Np,o/(—p) to Np,g. Let L = p, g be the 2-secant line to D joining p and g. Combining
the above discussion with Lemma 2.4, we see that

Npurlp =~ Np(p+q)lp = qllg > pl =~ Np,o(p+q) ® Np,o.
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More generally, to deal with other curves on quadric surfaces and multiple modifications [np — ¢] in
the course of our degenerations, we will make use of the following lemma, which computes that k =1 in
applying (6) to the normal bundle exact sequence.

Lemma 2.8. Let D be a (smooth) curve of type (a, b) on a smooth quadric surface Q. If q is a general
point of D, then inside PNp, the two sections coming from the line subbundles Np_., and Np,o meet
transversely at a + b — 2 points.

Proof. The fibers of Np_,, and Np, o agree at p if and only if g is contained in T, Q. This occurs exactly
at the points p where the two lines through ¢ in Q meet D. Since D is of type (a, b) on Q, for g general
this happens at a + b — 2 points of D.

On the other hand, with multiplicity, the intersection number of these two sections is

c1(Np) —C1(ND_>q) —C1(ND/Q) = Qab+2a+2b)—(a+b+2)— 2ab)=a+b—2.
Therefore, when ¢ is general, these sections intersect transversely at exactly a + b — 2 points. U

It is a classical fact that the normal bundle of a rational normal (i.e., (d, g) = (3, 0)) or elliptic normal
(i.e., (d, g) = (4, 1)) curve is semistable, which we record in the following lemma:

Lemma 2.9. Let C be a general Brill-Noether curve of degree d and genus g, where (d, g) = (3,0)
or (4,1). Then N¢ is semistable.

Proof. For (d, g) = (3, 0), let p be a point on C, and write C C P> for the image of C under projection
from p (which is a conic). Then the semistability of N¢ follows from the exact sequence

0— [Nc—)p =2 Opi1(5)] = Nc = [Ng(p) = Op1(5)] = 0.
For (d, g) = (4, 1), we note that C is the complete intersection of two quadrics, and therefore

Ne >~ Oc(2) ® O¢(2) is semistable. U

2D. Modifications in families. While arguing by degeneration, we will need the following technical
result, explained in Remark 3.4 of [Atanasov et al. 2019]. Suppose that we have a modification of a
rank 2 vector bundle E towards two line subbundles £} and F5:

E[pr — Fillp2 = F2].

Let p; and p, limit to a common point p in a degeneration parametrized by a base B. More precisely, let
p1 and p; be sections of C x B — B that intersect at p in the central fiber. Write 7 : C x B — C for the
projection, and let F; and F; be subbundles of 7*E.

o If F| = F, = F, then the limit is E[2p — F].
e If Fi|, and F>|, are linearly independent, then the limit is E(—p).

This can be seen by constructing the modification (7*E)[p; — Fi][p> — F3>] as a vector bundle on C x B,
and using that such modifications respect pullback [Atanasov et al. 2019, Proposition 2.8]. Sections 2 and 3
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of [Atanasov et al. 2019] discuss this setup in much greater generality for modifications that are treelike,
a condition that generalizes the assumption that F; = F, = F or Fi|, and F;|, are linearly independent.

We illustrate this with an example. Let C C P? be a curve, and p, g, u, v € C be general points. We
consider the modified normal bundle

Nclp — qllg — pllu — v][v— u].

As we limit v to g, the flat limit of these bundles is

Nclp — qllu — ql(—q).

If we further limit u to p, then the flat limit is

Nel2p — q1(=q).
(Note that this is not symmetric in p and g; it depends on the order of the limits.)

2E. Deformation theory of reducible curves. In this section, we collect some basic facts about deforma-
tions of reducible curves that we will need. For additional details, the reader may consult a textbook on
deformation theory, such as [Hartshorne 2010; Sernesi 2006].

Let C C P be any local complete intersection curve. Write Nc = N¢/pr = Ncopr for the normal
bundle of C or equivalently for the normal sheaf of the inclusion C < P”". Then first-order deformations
of C are parametrized by H O(N¢), and obstructions to lifting deformations lie in H L(Ne).

Now suppose that C is nodal, and write p for a node of C. We consider deformations of C that remain
equisingular at p. Equivalently, write 7 : C — C for the partial normalization of C at p, and p; and p»
for the points lying over p in C. Then equisingular deformations of C are deformations of the pointed
map (5 , P1, p2) = P’ such that the deformations of p; and p, map to the same point. Such equisingular
deformations are controlled by a certain sheaf N on C, that can be constructed in two ways:

(1) The sheaf N can be constructed as the kernel of the natural map from N¢ to the deformation
space TIJOO of the formal neighborhood p™ of p in C, i.e., in symbols:

N =ker(N¢ — Tploc).

(2) Alternatively, we can push forward the normal sheaf Ng_, p, of the map C—Pr along the map .
Evaluation at p; and p; then defines a map

2
P TP (T,AP’”) ;
TmC szc TPC

T NG pr =

the sheaf N is then the preimage of the diagonal in 7, Ng_, pr.

Then first-order deformations of C that fail to smooth the node p correspond to H O(N), and obstructions
to lifting such deformations lie in H'(N).

Remark. Away from p, there is a natural isomorphism between N and N¢. Working locally, a similar
construction can be done for any subset of the nodes of C. Using the set of all nodes (so the deformations
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are equisingular at all nodes rather than simply equisingular at p), this construction appears in Section 4.7.1
of [Sernesi 2006], in which it is referred to as the equisingular normal sheaf.

Now suppose that C = X UY is a reducible nodal curve, with two smooth components X and Y, and that
p € XNY is anode. Then the restrictions of Nc = Nxyuy to X and Y are given in Lemma 2.4. Moreover,
since Nxyy is a vector bundle on X UY, restriction to a component defines an exact sequence (see (9)):

0— Nxuyly(=XNY)— Nxuy = Nxurlx — 0.

From either description given above for the sheaf N, we deduce analogous statements for N. Namely,
N|x is the modification of Nx where all modifications appearing in Lemma 2.4 are performed except
the one at p. The sequence for restriction to X takes a slightly different form (since N is not a vector
bundle in a neighborhood of p), where the subbundle appearing in the sequence involves the restriction
of the ordinary normal bundle to Y (rather than the restriction of N to Y):

0—>NXUy|Y(—XﬂY)—>N—>N|X—>O. (10)

2F. Reducible Brill-Noether curves. In this section we show that the basic degenerations we will employ
in the proof of the main theorem are in the Brill-Noether component of the Hilbert scheme.

We say that two curves X and Y meet quasitransversely at a set of points I' C P if for each p € I,
the tangent lines 7, X and 7,Y meet only in the isolated point p. (If r > 3, two curves never meet
transversely!) The following lemma is a special case of results of [Larson 2016], but we include a
characteristic-independent proof of this special case.

Lemma 2.10. Let C be a general Brill-Noether curve of degree d and genus g and let R be one of the
following:
(1) a l-secant line meeting C quasitransversely at p,
(i1) a 2-secant line meeting C quasitransversely at p and q,
(iii) a 4-secant conic meeting C quasitransversely at four coplanar points py, ..., pa.
In case (iii) further assume that p(g,r,d) > 1. Then C U R is a Brill-Noether curve of degree and genus
@) d+1,8),
) d+1,g+1),
(iii) d+2,g+3),
respectively.

Proof. By deformation theory, it suffices to show that H'(Tps|cur) = 0, so that the map C U R — P3
may be lifted as C U R is deformed to a general curve. Moreover, if C is general, then H'(Tp3|c) =0 by
the Gieseker—Petri theorem. Using (8), we have an exact sequence

0— Tp3|g(—RNC) — Tps|lcur = Tp3lc — 0. (11)
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In cases (i) and (i), Tps|g = O2)DO(1)®2. So H' (Tps|g (— p)) =0, respectively H! (Tps|r(—p—q)) =0,
and therefore, by (11) and the Gieseker—Petri theorem for C, we have that H 1 (Tp3lcur) = 0.

For part (iii), by part (ii) we may specialize C to the union of a Brill-Noether curve C’ of degree d — 1
and genus g — 1 and a 2-secant line L, such that R meets C’ at three points and meets L at one point p.
Let I := (LUR)NC’, denoted by solid dots below:

First, we show that
(a) C'ULUR is a smooth point of the Hilbert scheme, and
(b) we can smooth L U R to a twisted cubic R’ that continues to pass through the five points of T".

Let N be the subsheaf of Ny gr(—I") whose sections fail to smooth the node at p (as discussed in
Section 2E). Applying (10) in the case of restriction to L gives the exact sequence

0— [NLuglr(=p—T) = 0@ O(=1)] > N — [N|, = O(=1)**] -0, (12)

where the isomorphisms within come from the explicit descriptions of R and L as complete intersections
(as in Example 2.6). Hence, by the long exact sequence associated to (12), we have H'(N) = 0. By
deformation theory, (b) follows directly from H L(N) = 0; this vanishing also implies H'(N¢curur) =0
(and hence, by deformation theory, (a)).

To complete the proof, we note that Tps|g/(—R’' N C’) ~ O(—1)®3 has no higher cohomology, so (11)
and the Gieseker—Petri theorem for C’ show that H'(Tps|c/ug) = 0. Thus C’ U R’ is in the Brill-Noether
component. Since C’U L U R is a smooth point of the Hilbert scheme and both C' U R" and C U R
are deformations of this, they are in the same component; in particular, C U R is in the Brill-Noether
component. U

3. The unstable cases

Arbitrary characteristic. In two cases— (d, g) € {(5, 2), (6, 4)} —the main theorem asserts that, over a
field of any characteristic, N¢ is unstable. In both of these cases, C lies on a quadric Q, and from the
normal bundle exact sequence (see (2)),

0— [Nc/QZKc(z)]% NC—> [NQ|C20C(2)]—>O, (13)
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we have that N¢ has a subbundle N¢, o of slope 2d +2g —2. If (d, g) = (5, 2) (respectively (6, 4)) then
u(Nco) = 12 (respectively 18), which is strictly more than ((Nc) = 11 (respectively 15).
In fact, we can say more. Note that Ext' (Oc(2), Kc(2)) ~ HY (K ) is 1-dimensional; therefore there
are only two such extensions up to isomorphism (the split extension, and a unique nontrivial extension).
When (d, g) = (6, 4), such curves C are the complete intersection of a quadric and cubic surface, and so
(13) is split. When (d, g) = (5, 2), the following lemma is equivalent to the assertion that (13) is nonsplit:

Lemma 3.1. Let D be a Brill-Noether curve of degree 5 and genus 2 and let Q be the unique quadric
containing it. The inclusion Kp >~ Np;o(—2) € Np(—2) induces an isomorphism on global sections

H(Kp) ~ H*(Np(-2)).

Proof. As H*(Kp) — H°(Np(=2)), it suffices to show that h%(Np(—2)) = 2. We will prove this
by degenerating the curve D to the union of an elliptic normal curve E of degree 4 and genus 1 and
a general 2-secant line L meeting E quasitransversely at p and ¢, which is a Brill-Noether curve by
Lemma 2.10(i1).

Since the tangent lines to E at p and g span P3, combining Lemma 2.4 with Example 2.6, we
see that Npyr(—2)|r =~ Or @ O has a 2-dimensional space of global sections. Furthermore, since
H(Ngur(=2)|2(—p —q)) = 0, we have that

H(Ngur(=2)) = H (Neur(—2)E). (14)

As in Example 2.7, choosing quadrics Q1 and 0> whose intersection is £ and such that Q| contains L,
we see that the normal bundle restricted to E,

Neur(=2)|g =~ Ngjg,(=2)(p+q) ® Ngj,(—2) ~ Op(p +q) ® O,

has a 3-dimensional space of global sections. It remains to show that one of these sections is not in the
image of (14).

We claim that the unique (up to scaling) section of O is not in the image of (14). Indeed, since L
is transverse to (Q», this section fails to smooth both nodes; if it extended across L, it must extend to a
section in H(Ny(—=2)) ¢ H*(Ngur|r(—2)). But Nz (=2) ~ Or(—1) ® Or(—1) has no global sections,
so any extension across would have to vanish identically along L, and in particular at p and ¢ (which this
section does not). O

Characteristic 2. The main theorem asserts that, in characteristic 2, there are infinitely many pairs
(d, g) = (2k, 0) for which the normal bundle of a general Brill-Noether curve is unstable. This is the
first case of a more general phenomena occurring only in characteristic 2.

Let C C P" be a Brill-Noether curve. In any characteristic, the Euler sequence (1) shows that the
bundle Ng (1) sits in an exact sequence

0— NS(1) = 02 — 21(Oc(1)) — 0, (15)

where 2! (O¢ (1)) is the first bundle of principal parts of the line bundle O¢(1).
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Now assume that char(k) = 2 and let 7 : C — C® denote the (relative) Frobenius morphism. Given a
reduced point ¢ € C, the fiber of 7 containing c is the nonreduced point 2¢. Therefore

21 (Oc()) ~ 7*7,0c(1).

Thus N (1) ~ 7*K is isomorphic to the pullback of a vector bundle K under Frobenius. Using this, we
have the following.

Lemma 3.2. Assume that char(k) =2 and let C ~ P! be a rational curve of degree d in P" over k. Then
the normal bundle splits as

Ne = @B Opi (@),
for integers a; = d (mod 2).

Proof. If char(k) =2, then N (1) >~ 7*K for some vector bundle K on P!. Write K >~ & Op1 (k;). Since
7*Opi(a) >~ Op1(2a), we have N¢c >~ @ Op:1 (d — 2k;), as desired. O

Corollary 3.3. Let C be a general rational curve in P" of degree d > r. Then N is semistable only if
2d =2 (mod r — 1); in characteristic 2, this can be strengthened tod =1 (mod r — 1).

Proof. In any characteristic, N¢ can only be semistable if u(N¢) =d + (2d —2)/(r — 1) is an integer. In
characteristic 2, Lemma 3.2 implies that furthermore u(N¢) — d must be an even integer. Il

Remark. When r = 3, we prove in Section 6 that Corollary 3.3 gives the only obstruction to semistability
for the normal bundle of a rational curve in characteristic 2. With a little more work, one can show the
same in any projective space.

4. Stability and degeneration, I

In this section, by specializing to the union of a general Brill-Noether curve and a 4-secant conic, we
reduce the main theorem to the cases g < 8. Our main tool will be the following first basic lemma proving
stability by degeneration.

Lemma 4.1. Suppose that C = X UY is a reducible curve and E is a vector bundle on C such that E|x
and E|y are semistable. Then E is semistable. Furthermore, if one of E|x or E|y is stable, then E is
stable.

Proof. Write v : XUuY — C for the normalization map. For any subbundle F C v*E we have
- dj dj
W) < p5 (Flg) + uy (Fly) < w(Elx) + n(Ely) = p(E). u

4-secant conic degenerations. Let C be a Brill-Noether curve of degree d > 4 and genus g in P3. Let
H C P3? be a 2-plane meeting C transversely; let py, ..., ps4 be four points in CN H. For R C H a
conic through py, ..., ps4, the union C U R is a Brill-Noether curve of degree d + 2 and genus g + 3
by Lemma 2.10(iii):



Stability of normal bundles of space curves 933

C
p1 D2

P4 pP3
R

Lemma 4.2. In the above setup, if C is a general Brill-Noether curve with (d, g) # (3, 0) or (4, 1), then
Ncurlr = Opi (5) @ Opi(5)
is semistable.

Proof. We will prove this lemma by degeneration of C. If C admits a degeneration to X U Y, where
deg X > 4, then we may consider degenerations X UY U R of C U R where the conic R meets X alone;
this reduces the case of C to the case of X.

By repeatedly applying Lemma 2.10 to pull off 1-secant lines, 2-secant lines, or 4-secant conics, we
thus reduce to the case where (d, g) satisfies

p(g.3,d)=0, g=0, and (d,8)#(3,0), 1), (16)

but (d’, g’) fails to satisfy (16) for each of (d’,g') =(d —1,g), (d—1,g—1),and (d —2, g —3).

By inspection, this is only possible if (d, g) = (4, 0), (5,2), or (6,4). (Indeed, if g > 5, then
d',g)=(d—2,g—3) satisfies (16); if g <4 and d > 7, then (d’, g') = (d — 1, g) satisfies (16); the
finitely many cases with g <4 and d < 6 are easily verified.)

In these cases, C is of type (3, d —3) on a quadric. Specializing C to the union of a curve of type (3, 1)
with d — 4 lines of type (0, 1), it thus remains only to consider the case (d, g) = (4, 0).

When C is a rational quartic curve, we specialize C to C'U L, where C’ is a rational normal curve and
L is a 1-secant line meeting C’ at a point x. Since C has degree 4, we must specialize R to meet L in
one point y and C’ in a set {z1, z2, z3} of three points:
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Since N¢» >~ Opi (5) ® Opi (5), we may arrange for C’ to have general tangent directions at the points z;.
Thus, Ncur|r 2= Opi1(5) @ Opi (4). In particular, we have a distinguished subspace of Ng|, given by the
positive subbundle Opi(5)|, C Ncurly > Nr|, — or equivalently, a distinguished plane A D Ty R. Since
x € C’ is general, we have x ¢ A. Thus

Ncururlr = NewrlR(D)[y — x]1 2= Opi (5) @ Opi (5). O

Remark. For (d, g) = (4, 1), the conclusion of Lemma 4.2 is false: for any R, the curve C lies on a
quadric Q containing R, and N(cur)/¢|r is destabilizing.

Let p; be a point on T, R . p;. Then by Lemma 4.2 combined with Lemma 4.1, stability for

Nelpi — pillp2 — p5lips — p5lips — pul

implies stability for Ncyg, and hence for the normal bundle of a general Brill-Noether space curve of
degree d + 2 and genus g + 3.

Deformations of r-secant rational curves. In our application of the above degeneration to reduce to a
finite list of genera, we will specialize to the union of a Brill-Noether D and two quasitransverse 4-secant
conics through the same set of 4 points. To employ this degeneration, we must know that such conics can
be suitably deformed while preserving the incidence conditions with D.

In greater generality, let D be a Brill-Noether curve, and R be a rational curve meeting D at distinct
points py, pa, ..., pr. The following key assumption generalizes the conclusion of Lemma 4.2:

Assumption 4.3. The restricted normal bundle Npyg|r is perfectly balanced with slope

w(Npurlr) =r+1.

Lemma 4.4. Under Assumption 4.3, there exists a deformation R(t) of R, and p;(t) of p;, such that
the rational curve R(t) meets D quasitransversely in pi(t), p2(t), ..., pr(t), and p;(t) has nonzero
derivative at t =0 for all i.

Proof. For any i, let N; denote the vector bundle on R obtained by making elementary modifications
to N at all points of D N R except p; in the direction of D (i.e., the vector bundle obtained by gluing the
vector bundles Nrup|r-p; and NgrIrip,,... ;... p,) @long the natural isomorphism Nrup|r-ip,.....p,} =
NRIR<{p1,....p,})- This bundle N; controls the deformations of DU R along D that remain equisingular at p;
(see the discussion in Section 2E). Obstructions to lifting deformations of p; to deformations of R that

preserve the incidence conditions with D at the p; lie in H Y(N;j(=p1 —---— p,)); it thus suffices to show
H'(Ni(=pi—---—p;) =0.
The bundle N;(—p; — - - - — p,) fits in an exact sequence

0— Nruplr(=p1 == pi-1 =2pi = pix1—---—pr) > Ni(=p1 —--- = py) > Op, = 0.
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The long exact sequence of cohomology implies the desired vanishing since by assumption Npyug|g is
perfectly balanced with slope w(Npyr|r) > r + 1, and hence

H'(Nguplr(=p1 == pi—t = 2p; = pix1 =+~ = p;)) =0. O
Reduction to a finite list of genera.
Lemma 4.5. Suppose that the main theorem is true for all g < 8. Then it is true for all g.
Proof. If p(g,3,d) >0 and g > 9, then
p(g—6,3,d—4)=p(g,3,d)+2>0 and g—6>2 and (d—4,g—-6)¢{(5,2),(6,4}, (A7)
d—4>4. (18)

By (17), a general Brill-Noether curve D of degree d — 4 and genus g — 6 has Np stable by induction.
Let H be a general hyperplane; by (18), we may let Ry € H and R, € H be general 4-secant conics,
both of which meet D at py, ..., ps:

D

P2 P1
R,

p3 p4

R,
By Lemma 4.4, we may deform R; to 4-secant conics R;(t) meeting D at p;i(t), pi2(t), piz(t),
and p;4(¢) such that py;(7) and p,;(¢) have distinct derivatives:

Combining Lemmas 4.1 and 4.2, it remains to show the stability of N¢[p;;(t) — p; ; ()] fort € A
general, where plfj (#) denotes a point on T, C ~\ p;;(t). By the discussion in Section 2D, these
vector bundles fit together to form a vector bundle over D x A whose fiber over 0 € A is the bundle
Np(—p1— p2— p3 — pa) — which is stable since we have already seen that N, is stable by induction. [

5. Stability and degeneration, II: Gluing data

In order to settle the base cases g < 8, we will need to use degenerations of C to reducible curves X UY
where neither Nxyuy|x nor Nxuy|y are necessarily stable. The basic idea is to compare destabilizing
subbundles of Nxyuy|x and Nxyy|y and show that they cannot agree sufficiently over X NY.
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1-secant degenerations. In some cases, we can construct a modification of the restriction Nyyy|x whose
stability rules out a destabilizing subbundle of Nxyy|x that could agree sufficiently with a destabilizing
subbundle of Nxyy|y. This technique works well when we can understand the geometry of Y explicitly.
Here we apply this technique when Y = L is a 1-secant line.

Let D be a smooth Brill-Noether curve and L a quasitransverse 1-secant line meeting D at p. Although
Npur|r is not semistable, so we cannot apply Lemma 4.1, we can identify the unique destabilizing
subbundle of Npyy |z, and construct a modification of Npyy|p as described above.

For inductive arguments it will be more useful to consider a slightly more general setup: Let N}, ,, be
any vector bundle equipped with an isomorphism with Npy; over an open set U of D U L containing L,
and write N}, for the bundle obtained by gluing Np|y to N}, |p~, along the isomorphism Np|y- , =
Npurlu~p = Npyy lu~p- To state the lemma, let g € L \ p:

D

Lemma 5.1. In the above setup, if Np[p — qllp — g1 =~ Np[2p — q] is (semi)stable, then N}, , is
also (semi)stable.

Proof. Write v: DuL — DU L for the normalization map, and p; and p; for the points above p on L
and D respectively. Suppose that F C v*N, , is a line subbundle.

First, we consider the restriction of F' to L. Let x be a point on 7, D and let A be the plane spanned
by x and L. Let H be another plane such that L = AN H. Then by Lemma 2.4 and Example 2.6,

Npuple X Np(p)[p = x1 = Npju @ Nja(p) =~ Opi (1) ® Opi (2).

Consequently,

2 if Fls =Nrja(p)lp

. (19)
1 otherwise.

w(F|L) < {

Second, we consider the restriction of F to D. If F|;, = Np_.4(p)l;,, then, by the first remark on

page 924, F|p is a subbundle of N’DUL Iplp — ql~ NI’) (p)[2p — q]; otherwise F|p(— p») is a subbundle

of N, (p)[2p — g]. Because Nj[2p — g] is (semi)stable by assumption and of slope wu(Np) — 1, it
follows that N, (p)[2p — ¢] is (semi)stable of slope w(N},). Consequently,

W(Np)+1 if Flz, # Npog(P)lj,,

F <
w(F|p) 5 { w(N})  otherwise.

(20)
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Finally, by [Atanasov et al. 2019, Lemma 8.5], the subspace Ny, 5(p)|;, glues to the subspace
Np—4(p)|s,. Consequently,

1 if F|; =N, 5 d Flz #Np_ By s
COdimF(F|15| N F|[;2) > 1 Ipl. L/A(p)lpl an Ipz 7& D q(p)|p2 (21)
0 otherwise.
To finish the proof, we simply combine (19), (20), and (21), to obtain
W (F) = w(FIL) + w(Flp) — codimp (Fl, N Fl5) < w(Np) +2 = u(Npyp)- O

Lemma 5.2. Assume that the characteristic of the ground field is not 2. Suppose that Np is (semi)stable.
If ¢ € P3 is a general point and p € D has ordinary ramification, then the elementary modification
Npl2p — q] is (semi)stable.

Proof. Let A C P? be a 2-plane containing T, D that is not the osculating 2-plane to D at p. For parameter
s € P!, let L, be the pencil of lines through p in A specializing to T, D when s =0 and let g(s) be a
choice of point on L \ p:

As (semi)stability is open, and Np(—p) is (semi)stable by assumption, it suffices to show that the
modifications Np[2p — ¢g(s)] for s # O fit together into a flat family specializing to Np(—p) when
Ly =T,D. To do this, we first observe that, for s # 0,

Np[2p — q(s)] := ker(ND — ND—IZP)
N D—q(s) |2p
is determined by the 2-dimensional subspace Np_,4(s)|2p of the 4-dimensional space Nplz,. As the
Grassmannian Gr(2, 4) is separated and proper, there is a unique limit of these spaces as s — 0. It suffices
to prove, by a calculation in local coordinates, that this subspace is Np(—p)|2p, € Npl2p.

Choose an affine neighborhood Af;yz C P3 and coordinates such that p = (0,0, 0), the tangent line
T,D is y =z =0, the osculating two-plane is z =0, and A is y =0. Let g(s) = (1, 0, s) so that L; is the
line through (1, 0, s) and (0, 0, 0).

Let ¢ be an étale local coordinate at p for D. Then in an étale neighborhood of p, the curve D is given

parametrically by
t

Dit)y=|1?4at’+---
byt3 4+

We trivialize Np in a neighborhood of p by d/dy and 9/9z. A section of Np is then given by

(m0+m1t+m2t2+.--)%+(n0+n1t+n2t2+-~)a%. (22)
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We must determine the conditions on the m; and n; such that this section points towards ¢ (s) to second
order in ¢. The vector from D(¢) on D to g(s)

r—1
Dt)—q(s)=|t>+a3t3+---
byt> +---—s

is equivalent as a section of Np to its translate by a tangent vector,

r—1 r—1
D(t)—q(s)—(t—1D)D' @)= |t>+ast>+--- | = [ ¢t — D@2t +3azt*> +---)
byt’ 4. —s (t —1)(Bb3t* +--)
0
=|2t4+Baz— D>+
—s5 —3b3t> - -

This normal vector now corresponds to the section

Q1+ Bas = D2+ )L 4 (s —3b3t2 4. )L
dy 0z

under our chosen trivialization. The condition on the m; and n; for a section as in (22) to point towards g (s)
at 2p is that

2t+ m0+m1t+... .
det(_5+"' no+n1t+...>— smo + (2no +sm )t +

vanish to second order in . When s # 0, this cuts out the 2-dimensional subspace mg = 2ng+sm; =0
in the four-dimensional vector space with coordinates mg, m1, ng, n;.

In characteristic distinct from 2, the limit as s — 0 of this subspace is simply mq =ng =0, i.e., the
subspace Np(—p)l2p C Nplzp, as claimed. O

Corollary 5.3. Suppose that Np is (semi)stable for D a general Brill-Noether curve of degree d and
genus g in P3. Then N¢ is (semi)stable for C a general Brill-Noether curve of degree d + € and genus g
in P3, where

|1 if char(k) #2,

B {2 if char(k) = 2.

Proof. We specialize C to the union of a general Brill-Noether curve D with € 1-secant lines. Applying
Lemma 5.1, it suffices to show that Np[2p — ¢q] (respectively Np[2p; — q11[2p2 — q2]) is (semi)stable,
where the p; denote general points on D, and the ¢; denote general points in P3.

As we limit p; and p, together to a common point p, the vector bundles Np[2p; — q11[2p2 — ¢2] fit
together to form a vector bundle with central fiber Np(—2p) (see the discussion in Section 2D) — which
is (semi)stable by assumption.

In characteristic distinct from 2, we apply Lemma 5.2 to conclude that Np[2p — ¢] is (semi)stable,
as desired. O
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6. Reduction to a finite list of (d, g)

In this section we combine the results of the previous section to reduce the proof of the main theorem to
a finite list of base cases.

Proposition 6.1. Suppose that the main theorem holds for curves of degree d and genus g with

(d, 8) € {(3,0), (4, 1), (5,1), (6,2). (7,2).(6,3), (7,3), (7.4), 8.4, (. 5), 8,5), 8, 6),
(9,6), (9,7, (10,7, (9, 8), (10,8)}. (23)

Then the main theorem holds in all cases. If the characteristic of the ground field is not 2, then it suffices
to replace list (23) with

(d,8) €{(3,0),(4,1),(6,2),(6,3),(7,4),(7,5),(8,6), (9, 7), 9, 8)}. (24)

Proof. We will prove this by induction on d and g. By Lemma 4.5, it suffices to prove this when g < 8.
If the characteristic is not equal to 2, then by Corollary 5.3, it suffices to check (semi)stability for the
smallest degree in each genus for which the main theorem asserts that the normal bundle is (semi)stable.
Similarly, if the characteristic is 2, it suffices to check (semi)stability for the two smallest degrees.

Note that, for rational curves of even degrees in characteristic 2, we have already established that the
normal bundles are unstable. Thus we do not need to include (4, 0) in our list (23). Il

Remarks. (1) By Lemma 2.9, we already know semistability for (d, g) = (3,0) and (4, 1). This
establishes the main theorem for curves of genus 0 in any characteristic, and for curves of genus 1 in
characteristic distinct from 2.

(2) The reason that the cases (6, 2) and (7, 4) appeared in our list (23) of remaining cases is that the
cases (5, 2) and (6, 4) were exceptions to the main theorem, and so our induction on the degree broke
down. In fact, one cannot degenerate such curves to the union of a Brill-Noether curve D of degree d — 1
and genus g with a 1-secant line and apply Lemma 5.1 (even without applying Lemma 5.2); in both cases,
Np[2p — q] is unstable (if Q denotes the unique quadric containing D then Np,o(—2p) C Np[2p — ¢]
is destabilizing).

7. Base cases: applications of gluing data

In this section, we establish those base cases appearing in Proposition 6.1 which can be studied using the
techniques of Section 5.

The case (d, g) = (5, 1). We degenerate to the union of an elliptic normal curve C with a 1-secant line.
By Lemma 5.1, it suffices to show N¢[2u — v] is semistable, where u € C and v € P3 are general. Fix a
quadric Q containing C, and specialize v to a general point on C. By Lemma 2.8, there are exactly two
points on C at which the fibers of N¢_., and Nc,o meet transversely; specialize u to one of them. Then
applying (6) with k£ = 1 (by virtue of Lemma 2.8) to the normal bundle exact sequence (2) for C C Q, we
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see that Nc[2u — v] fits in an exact sequence
0— [Ncyo(—u) = Oc(2)(—u)] - Nc[2u — v] — [Ngl|c(—u) ~ Oc(2)(—u)] — 0,
so is semistable, as desired.

The cases (d, g)=9,7), (10,7), (9, 8), and (10, 8). When (d, g) = (10, 7), or (10, 8), respectively,
we first degenerate the curve to the union of a general Brill-Noether curve C of degree 9 and genus 7 or 8,
respectively, and general 1-secant line M, meeting C at u. Choose a point v e M \u so M = uv. By
Lemma 5.1, it suffices to show that N¢o(u)[2u — v] is stable.

Therefore, in order to deal with all of our cases (d, g) € {(9,7), (10,7), (9, 8), (10, 8)}, we begin
with a curve C of degree 9 and genus 7 or 8. We will degenerate C to the union of a general canonical
curve D (of degree 6 and genus 4) and a union R of rational curves meeting D quasitransversely at a
set I' of 6 points (three general 2-secant lines when g = 7, and the union of a general 2-secant line with a

general 4-secant conic when g = 8, respectively):

R IS
D R D R
d,g)=0,7 d, g)=1(9,39)

Write Q for the unique quadric containing D. In both cases, the tangent lines to R at I" are transverse
to Q, and so applying (6) with £ = 0 to the normal bundle exact sequence (2) for D C Q, we see that the

restricted normal bundle Npyg|p fits into a balanced exact sequence:
0— [Np;o ~Op(3)]— Npurlp = [Nolp(I') = Op(2)(I")] — 0. (25)

In particular, Npur|p is strictly semistable, and Np, o gives a destabilizing line bundle.

Similarly, after specializing v to a point on D, Lemma 2.8 asserts that there are 4 points u on D
where the fibers Np_,,|, and Np,¢|, coincide to first order. Specializing u to one of these points, and
applying (6) with k = 1, we again have a balanced exact sequence:

0— Np/o — Npurlp@)[2u — v] — No|p(') — 0. (26)

In particular, Npugr|p(u)[2u — v] is strictly semistable, and Np,o gives a destabilizing line bundle.
Let L be a line component of R, meeting D at p; and p, with p! € T,,, D \ p;, and denote by A; the
plane spanned by p; and L. Then

NpurlL = Nrja,(p1) ® NLja,(p2) = Op1(2) © Opi (2).



Stability of normal bundles of space curves 941

Combining this with Lemma 4.2, the restriction of Npyg (resp. Npugr(u)[2u — v]) to each of the
components of R is also strictly semistable.

In particular, writing v: DU R — DUR for the normalization, any destabilizing subbundle F C v*Npyr
(resp. F C v*Npug(u)[2u — v]) must be destabilizing on every component and agree at the points lying
over the nodes D N R. The key observation is that, because Np,¢ is a subbundle of Np as well, its fiber
at each of the points of I" is exactly the subspace that does not smooth that node. On the other hand, if L
denotes a component of R which is a line, then any destabilizing O(2) has a fiber at one or more of the
nodes that fails to smooth it (otherwise it would be a subbundle of N; >~ O(1) & O(1)). It thus remains
to show that Np,¢ is the unique destabilizing subbundle of Npug|p (resp. Npur|p(u)[2u — v]), or
equivalently:

Lemma 7.1. The sequences (25) and (26) are nonsplit, i.e.,
H(Npurlp(=2)(=T) =0 and H°(Npurlp(—2)(~=T)@)[2u — v]) =0.

Proof. To show the desired vanishing, we degenerate two points of I together to a common point p on D:

Let N denote the bundle obtained by gluing Npur|p-p to Np(p)|p- (- p) along the natural isomorphism
Npurlp~r = Np(p)|p~r. By Section 2D, the bundles Npyr|p (resp. Npur|p m)[2u — v]) fit together
to form a bundle whose central fiber is the bundle N (resp. N (u)[2u — v]). It thus remains to show

HO(N(=2)(-=T))=0 and H°(N®w)[2u — v](=2)(=I)) =0.

To do this, we use the exact sequences coming from applying (6) (with k = 1 for the modification at u in
the second case) to the normal bundle sequence for D C Q:

0— [Np;o(p) ~OpB)(p)] > N — [Ng|lp(I' = p) =Op2)(I' = p)] = 0,
0— [Npyo(p) =OpB)(p)] - Nw)[2u — vl — [Ng|p(' — p) = Op2)(T — p)] = 0;

twisting these sequences by Op(—2)(—I") and taking global sections, it remains to check that
H°(Op(1)(—(T — p))) = H*(Op(—p)) =0.

This is clear since the five points of I' — p = '™ are in linear general position. U
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8. Stability and degeneration, III: Limits of gluing data

As in the previous section, we again want to degenerate to reducible curves X UY where neither Nxyy|x
nor Nxyuy|y are necessarily stable, but the destabilizing subbundles on each component do not agree
at X NY. The fundamental difficulty we address in this section is that it is often difficult to compute
the destabilizing subbundles on each component without further degeneration. We therefore study the
agreement conditions at X NY as the points of X N'Y come together.

Let D be a Brill-Noether curve. Fix distinct points g, pi1, ..., P1rs P21> .-+, P2r, € D. Let R; be a
rational curve meeting D quasitransversely exactly at g, p;1, ..., pir;,» such that the tangent directions
at ¢ to D, Ry, and R, span P3:

D

Pij

Assume that both R; satisfy Assumption 4.3. Using this assumption we may apply Lemma 4.4 to
show that there exists an étale neighborhood A = g;(¢) of ¢ € D, which we normalize so ¢ (¢) and g»(¥)
have distinct derivatives at t = 0, and deformations R;(7) of R;, and p;;(¢) of p;;, such that for z € A, the
rational curve R;(¢) meets D quasitransversely in g; (1), pi1(t), ..., pir, (¢):

Suppose that, for r € A* := A \ 0, the normal bundle Npug,1)ur,() is not stable. These bundles fit
together to form a vector bundle f\\/' over A*. However, since D U Ry U R is not Ici, its normal sheaf is
not a vector bundle; there is therefore no obvious way to extend N over A. Thus, extracting information
at the central fiber is subtle.

By the discussion in Section 2D, we may nevertheless extend the restriction N |p toabundle A/ on D x A
whose fiber N := Ny over 0 € A is obtained from gluing Npug,ur, |pwg to Np (51)|D\{p11,-..,p1r1 P21seens P2y
along the natural isomorphism

NDURlURz|D\{q,P|1y---,P1rl,ley---,PZQ} = ND|D\{(1,P|1,..-,P1”,P21,...,p2r2} = ND(‘])|D\{q,P|1,m,p1rl,ley-~-,172r2}'

Write v : DU R (t) U Ry(t) — D U R (t) U Ry(¢) for the normalization map. Let L C v*N be a
destabilizing line bundle, i.e., which satisfies w2 (Z) > u(/v ). Let £p, £1, and €5 denote the slopes of
the restriction of Z to D, R{(¢), and R,(¢), and ¢ denote the number of nodes of DU R (¢) U R>(¢) above
which the fibers of Z do not coincide (for r € A*). Since being perfectly balanced is open, Assumption 4.3
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implies that the A| ri() are perfectly balanced. We therefore have

6 < uNg@) and ¢ >0, 27)
but
WYL =4+ Lp — ¢ > uNry1) + BN Rory) + # N | D).

Ifeép > ,u(ﬁlp), ie, N* = fle is unstable, then N is unstable by Proposition 2.3. Thus either
(1) N is unstable, or
(i1) (27) is an equality —i.e., {; = /L(/T/'IRI.(I)) and c =0—and ¢£p = u(N).

In case (ii), our first task is to translate the condition that (27) is an equality to information about the
restriction £* = )| |p. (The condition that £ = p(N) already concerns £*.) To do this, observe that since
the V| r; () are perfectly balanced, we have a canonical isomorphism

@i PN g0y = PN,y for t € A™
Writing £* = ) | p, the condition that (27) is an equality then implies that
£*|pij(t) = go;kj (£*|qi(t)) for t € A*. (28)

By Proposition 2.3, we can extend £* across the central fiber to a subbundle £ C N, and consider
the restriction L := L|p C N to the central fiber. Our second task is to figure out what (28) implies
for L. (Figuring out what £ = p(N) implies for L is easy: since u is constant in flat families, it implies
(L) = pn(N).) R

To do this, we observe that the bundles Npug, () fit together to form bundles A; over A (including
over t = 0). Writing N; = N, ;| p, there are natural inclusions N; C N, which are isomorphisms away from
R;(t) N D (here i =3 — i denotes the other index) — so in particular at g; (¢) for # # 0, and at p;;(¢) for
all ¢. This inclusion induces a birational isomorphism on projectivizations PN; --+ PN. The advantage
to working with A is that N i|r; (1) 18 perfectly balanced, so we obtain regular maps defined over A (in
particular for t = 0),

@ij : PNilgay = PNilp,;) for t € A,

that are compatible with the (p;"j in the sense that the following diagram commutes:
ij
PNilgy —— PNilp;0)

|
' H
|
~ ‘/’;*/
PNy -===- > PNpyo
We now restrict to the graph of g;(¢). Then the map A; C N drops rank exactly over # = 0. Its kernel

at t = 0 is the one-dimensional subspace D; C Npuyg, |, corresponding to sections that fail to smooth the
node at ¢, and its image is given by the one-dimensional subspace of F; C N|, corresponding to the
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tangent direction of R; at g. The rational map PN; --+ PN is thus obtained by blowing up at D;, and
contracting the proper transform of the fiber over g to F;:

PNilg; 0 Dy | | - e F; PNlg o)

The line subbundle L]y, ) C Ny, ) defines a section of PA|,, ;) and (by curve-to-projective extension)
of PNily ) if the first of these sections does not pass through F;, then the second must pass through D;.
Combining this with (28), when we pass to the central fiber, the fibers of L at the p;; can sometimes be
described in terms of

Djj := ¢ij(D;).
Namely, by our assumption that the tangent directions to D, R, and R, span [P3, the subspaces F;
and F; are disjoint. The fiber L|, C N|, thus either
(a) coincides with neither F} nor F,, in which case L|,,; = D;j;
(b) coincides with Fj but not F», in which case L|p,; = Dyj and L|; = Fy;
(c) coincides with F> but not F}, in which case L|p,; = Dy; and L|, = F>.
The upshot of this is the following lemma.

Lemma 8.1. With the above notation, if

every line subbundle of. .. has slope. . .
N < u(N),
Nlpi; — Dij] < u(N),
Nlg — Fillp2; — D2j] < u(N),
Nlg — Fx2llp1j — Dyj] < u(N),

then Npur, )ur, () is stable, for t € A generic. In particular, if these four vector bundles are merely
semistable, then Npyr,)ur,«) is stable fort € A generic.

Now suppose that R; is a 2-secant line (meeting D at ¢ and p;;), and write ¢’ € T,D ~\ g and
Piy € Ty, D~ pj1 for points on the tangent lines to D at g and p;; respectively. Then we have the explicit
decomposition (see Example 2.6)

Npur; R, = Ngi—q' (@) ® Ng,— pr (pin) = Opi1 ()%, (29)
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In particular, we see that Assumption 4.3 is satisfied. Moreover, we may use this decomposition to
compute the subspace D;;: In terms of (29),

Di = NR,-~>p;1<pil)|q = Dil = NR,-%plfl(pileil-
To describe this in a way that is compatible with the isomorphism
Npur:|p =~ Np(q + pi)lg — pirllpii — ¢ql.

we apply Lemma 8.4 of [Atanasov et al. 2019], which states that under this isomorphism we have

Di1 = Np—4(pi)|py C Np(q+ pivlg = pirllpit = qllp;, - (30)

When both R; and R, are 2-secant lines, we have N >~ Np[pi1 = ¢ql[p21 — ¢q]. Substituting in the D;
given in (30), Lemma 8.1 thus gives:

Corollary 8.2. If R and R, are 2-secant lines, and the bundles
(@) Nplpit = qllp21 — ql,

(b) Npl2p11 — ql2p21 — 41,

(©) Nplpi — qllg — pull2p21 — ql, and

(d) Npl2p11 — qllp21 = qllg — p2i]
are all semistable, then Npug, (1\Ur,() is stable for t € A generic.

Remark. Since (d) is obtained from (c) by permuting p,; and pj, it suffices to prove semistability
of (a)—(¢).

Now suppose only that R is a 2-secant line. Applying Lemma 8.1, the stability of Npug, ¢)ur,«)

for t € A generic follows from the assertions that:

every line subbundle of... has slope. ..
N < u(N),
Nlpi1 — qllp2j — Daj] < p(N),
Nlg — pullp2j — D2j] < p(N),
Nlg — F2llp11 — 4] < u(N).

This follows in turn from the assertion that
N[pi1 —q] and N[g— p11]
are stable. We therefore have:

Corollary 8.3. Suppose that R is a 2-secant line, and write p), ;€ Tp,; R2 \ p2j for points on the tangent
lines to Ry at the pyj. If the bundles

(@ Nplp2j = py;112p11 — ql and
(b) Nplp2j — p5;llp1i = qllg — pul

are both stable/semistable, then Npug, )ur, () IS Stable for t € A generic.
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The bundles Np[py; — p/zj][Zp“ — ¢q] and Np[py; — p’zj][pll — ¢qllg — p11] appearing in
Corollary 8.3 are rank 2 vector bundles of odd degree, and hence stability is equivalent to semistability.

9. Base cases: applications of limits of gluing data

The cases d, g) = (7, 2), (6,3), (7,3), (7, 4), (8, 4), and (8, 5). In these cases, we degenerate to the
union of a general Brill-Noether D curve of degree d — 2 and genus g — 2, a 2-secant line R; through
general points g and p;y, and a 2-secant line R, through g and another general point p;;:

D

P21
P

Ry R,
Then R; and R; satisfy Assumption 4.3, and so by Lemma 4.4, the union D U R; U R, deforms to the
union of D and two general 2-secant lines, which by Lemma 2.10(ii) is a Brill-Noether curve of degree d

and genus g. By Corollary 8.2, it suffices to check that the three bundles (a)—(c) there are semistable
when D is a general curve of degree d — 2 and genus g — 2.

The case (d, g) = (7, 2). Here D is of degree 5 and genus 0. We further degenerate D to the union of a
general rational normal curve C (i.e., degree 3 and genus 0) and two general 1-secant lines 7, v; and
uy, vp meeting C at u; and u; respectively. By Lemma 5.1, it therefore suffices to show that the bundles

(@ Nclpu — qllp21 = qll2u; — vi][2uz — v2], and

(b) Ncl2pii — ql2p21 — ql[2u; — vi][2uz — v2], and

(¢) Nclpii — qllg — pull2p21 = q1[2uy — vil[2uz — v2]

are semistable. Limiting u to py; and u» to p»; (see the discussion in Section 2D), we obtain
(@) Nc(=pu—p20lpn — villp2i — v2l,

(®) Ne(=2pi —2p2),

(¢) Nc(=pui —2pa)lpin = villg — pul

After further limiting p1 to p2; in (a) (resp. ¢ to pi; in (¢)), and using the fact that Nc_,,, |,, 1s a general
subspace, these bundles all specialize to twists of N¢, and are therefore semistable.

The cases (d, g) = (6, 3) and (7, 3). If (d, g) = (6, 3), then D is of degree 4 and genus 1. For uniformity
of notation, we write C = D.

If (d,g) = (7,3), then D is of degree 5 and genus 1. We further degenerate D to the union of a
general Brill-Noether curve C of degree 4 and genus 1, with a general 1-secant line M meeting C at u.
Write v € M ~ u for another point on M. By Lemma 5.1, in these cases it suffices to prove semistability
of the bundles in Corollary 8.2(a)—(c) with the extra modification [2u — v].
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Combining these cases, it suffices to show that the following 6 bundles on C are semistable:

(@) Nclpii — qllp21 — gl and Nc[2u — v][p11 — qllp21 — g1,
(b) Ncl[2p11 — ql[2p21 — q]) and Nc[2u — v][2p11 — ql[2p21 — 41,
(¢) Nclpii — qllg — pull2p21 — gl and Nc[2u — vl[p11 — qllg — pull2p21 — ql.

Lemma 9.1. Let C be an irreducible curve, and u, v, p11, p21, q be general points on C. Suppose that

the following bundles are semistable:
(1) Ncl2pii — 41,
(2) Ncl2pii — ql2p21 — 41,
(3) Nclpit — qllg = pull2pa1 — 4l
Then all of the following bundles are also semistable:
(@ Nclpi — qllp2a1 — gl
(b) Nclpui — qllpa1 — vl,
(©) Ncl2u — vllpi1 — qllp21 — ¢1,
[
[

[
[
[
(d) Ncl2u — vl2p11 = ql2p21 — g1,
(e) Ncl2u — vllpn — qllg — pull2p21 — ¢l
() Nclu — vllv — ullpii — qllpa1 — g1,
(&) Nclu — v][v—> ull2pi — ql[2p21 — g1,
(h) Nclu — vllv — ull2pi — qllp21 — qllg — pail

Proof. We argue by specializing the various points on C, to reduce to twists of bundles that we already

assumed or proved were semistable:
(a) specializing py; to pii, the resulting bundle is N¢[2p11 — ¢], i.e., (1);
(b) specializing v to ¢, the resulting bundle is Nc[p11 — gqllp21 — g1, i.e., (a);
(c) specializing u to p1, the resulting bundle is Nc[p11 — qllp21 — v]1(—p21) —see (b);
(d) specializing u to py1, the resulting bundle is N¢[2p11 — ql(—2p21) —see (1);
(e) specializing u to ¢, the resulting bundle is N¢[p11 — qllg — v][2p21 — q]1(—q), and then special-
izing v to pi1, the resulting bundle is Nc[p11 — qllg — p11l[2p21 — ql(—q) —see (3);
(f) specializing u to p»;, the resulting bundle is N¢c[p11 — qllv — p21](—p21), and exchanging v
and py, this is Nc[p11 = qllp21 — vl(—v) —see (b);
(g) specializing v to pji, the resulting bundle is Nc[u — p211[12p11 = ¢qllp21 — q1(—p21), and then
specializing u to pii, the resulting bundle is N¢[p11 — qllp21 — gl(—p11 — p21) —see (a);

(h) specializing v to ppj, the resulting bundle is Nc[u — p11llp11 = qllp21 — qllg — p2a1l(—p11),
and then specializing u to g, the resulting bundle is Nc¢[p11 = qllp21 = ql(—p11 —q) —see (a). U
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Applying Lemma 9.1(a)(c)(d)(e), and using (2) and (3) directly, it remains only to show that the three
bundles (1)—(3) are semistable.

Let Q be a quadric containing C. In cases (1) and (3), specialize p; to one of the two points guaranteed
by Lemma 2.8 for the point ¢ € C; in case (2), specialize both p1; and p»; to the two points guaranteed
by Lemma 2.8 for the point g € C. After these specializations, the inclusion C C Q induces normal
bundle exact sequences for the modified bundles (1), (2), and (3):

0— Nc/o(=p11) = Ncl2pi1 = ql = Nolc(—=p11) = 0,
0— Ncjo(—=p11 — p21) = Nc2p1i1 = ql2p21 = g1 = Nolc(—p11 — p21) = 0,
0— Ncyo(=2p21) = Nclpit — qllg — pull2p21 — g1 = Nolc(—=p11 —¢q) — 0.

These sequences are balanced because w(N¢c/p) =8 = u(Ng|c), so this establishes the semistability of
the modified bundles in (1), (2), and (3), as desired.

The cases (d, g) = (7,4), (8,4), and (8,5). If (d, g) = (7, 4), then D is of degree 5 and genus 2. For
uniformity of notation, we write C = D.

If (d,g) = (8,4), then D is of degree 6 and genus 2. We further degenerate D to the union of a
general Brill-Noether curve C of degree 5 and genus 2, with a general 1-secant line M meeting C at u.
Write v € M ~ u for another point on M. By Lemma 5.1, in these cases it suffices to prove semistability
of the bundles in Corollary 8.2(a)—(c) with the extra modification [2u — v].

If (d,g) = (8,5), then D is of degree 6 and genus 3. We further degenerate D to the union of a
general Brill-Noether curve C of degree 5 and genus 2, with a general 2-secant line M meeting C
at u and v. Since Ny |r >~ O (2) @ Op(2) is semistable, it suffices to show that each of the bundles
in Corollary 8.2(a)—(c) are semistable when restricted to C, i.e., it suffices to prove semistability of the
bundles in Corollary 8.2(a)—(c) with the extra modification [u — v][v — u].

Combining these cases, we have to check the semistability of 9 modifications of Nc. Applying
Lemma 9.1(a)(c)(d)(e)(f)(g)(h), and using (2) and (3) directly, it suffices to check that the three modifica-
tions (1), (2), and (3) are semistable for C a general curve of degree 5 and genus 2.

Let Q be the unique quadric containing C. In all cases, specialize pj; to one of the three points
on C guaranteed by Lemma 2.8 for which Nc_.4|,,, and Nc,¢|p,, coincide to first order. Then after
these specializations, the inclusion C C Q induces the following normal bundle exact sequences for the
modified bundles in (1), (2), and (3):

0— Ncyo(=2p11) = Nc[2p11 — q] = Nglc — 0,
0— Ncyo(=2p11 — p21) = Nc2pi1 — ql[2p21 — gl = Nolc(—=p21) — 0,
0— Ncjo(—=p11 — p21 —q) = Nclpui — qllg = puill2p21 = gl — Nolc(—p21) — 0.

These sequences are balanced because 1 (N¢c/p) =12 and w(Ng|c) = 10, so this establishes the semista-
bility of the modified bundles in (1), (2), and (3), as desired.
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The cases (d, g) = (8, 6) and (9, 6). In these cases, we degenerate to the union of a general Brill-Noether
curve D of degree d — 3 and genus g —4 =2, a general 2-secant line R, meeting D quasitransversely
precisely at ¢ and p;i, a general 4-secant conic Ry, meeting D quasitransversely precisely at g, p»>1, p2o,
and pr3:

D

q P23
R,

Then R; and R; satisfy Assumption 4.3, and so by Lemma 4.4, the union D U R; U R, deforms to the
union of D, a 2-secant line, and a 4-secant conic, which by Lemma 2.10(ii) and (iii) is a Brill-Noether
curve of degree d and genus g. By Corollary 8.3, it suffices to check that the two bundles

(@) Nplp21 = py1lp22 = Phllp2s — ph3l2p1n — ¢] and

(b) Nplpa1 = phi1lp22 = pP5llp2s = pisllpi = qllg — piid

are stable when D is a general curve of degree d — 3 and genus 2. Limiting p;; to p;1, these bundles fit
into families whose central fibers are

(@) Nplp2n — pyllps — pylipa — g,

(b) Nplpxn — pllp2s — py3llg — pal
These bundles are symmetric under exchanging p; and g, so it suffices to show the stability of the first
bundle.

If (d, g) = (8, 6), then D is of degree 5 and genus 2; in this case, for uniformity of notation, we write
C = D, so our problem is simply to show the stability of the bundle

Nelp2n — pallp2s — pasllpa — g (31)

If (d, g) = (9, 6), then D is of degree 6 and genus 2. We further degenerate D to the union of a general
Brill-Noether curve C of degree 5 and genus 2, with a general 1-secant line M meeting C at u. Write
v € M ~ u for another point on M. By Lemma 5.1, in these cases it suffices to prove stability for the bundle

Nclp2 = pyllpas — pysllpar — qll2u — vl
Limiting u to p»; reduces the stability of this bundle to the stability of
Nplp2n — ppllps — pyllpa — vl,

and subsequently limiting v to g reduces its stability to the stability of (31).

All that remains is thus to show that (31) is stable. The normal bundle exact sequence for the inclusion
of C in the unique quadric Q containing it gives rise to the exact sequence

0 — Nc¢jo(—pai — p22 — p23) = Nelpa = ppllpas = pyllpa = g1 = Oc(2) — 0. (32)



950 Izzet Coskun, Eric Larson and Isabel Vogt

These bundles have slopes 9, 9.5, and 10, respectively; hence it suffices to show that this sequence is
nonsplit, i.e., that

H(Nc(=2)[p2 — Phllpas — philipai — q1) = 0.

By Lemma 3.1, all sections of N¢(—2) come from H O(N¢ /0(—2)), which has dimension 2. After
imposing three negative modifications out of the quadric at general points, we therefore have no global
sections, as desired.

10. Curves of degree 6 and genus 2

This case was done by Sacchiero [1983]. For completeness, we provide a characteristic-independent
proof here. We shall need the following lemma:

Lemma 10.1. Let E be a vector bundle on a smooth curve C sitting in an exact sequence
O0—-L —FE—L,— 0,
where L1 and L, are line bundles. If ;1(Ly) = u(L1) + 2, and
Hom(La(—p), E) ~ HY(E® Ly (p)) =0
forall p € C, then E is stable.

Proof. Let ¢ : F — E be a line subbundle (which recall is always assumed to be saturated). Then either ¢
factors through L; < E, in which case F >~ L is not destabilizing, or projection from E to L, gives a
nonzero map F — Lj.

In the second case, F >~ Ly(—p;—- - -— pp). Since Hom(L,(—p), E) =0 for all p € C by assumption,
but Hom(L,(—p1 — -+ — pn), E) # 0, we must have n > 2. Therefore
W(F)=pu(Llz) —n=p(E)—n+1< u(E). U

Now let C be a general Brill-Noether curve of degree d = 6 and genus g = 2. Since d > g+,
our curve C is a projection of a general Brill-Noether curve C c P by Lemma 13.2 and the proof of
Proposition 13.5 of [Atanasov et al. 2019], Cisa quadric section of a cubic scroll. Thus, C lies on a
cubic surface S singular along a line (the projection of the cubic scroll), and the normal bundle exact
sequence for C in § gives

0—Oc(2) = N¢jps > L — 0, (33)

for some line bundle L. Taking the second wedge power, we have
Oc(2) @ L2 N'Neyps = Kc(4).

Thus L >~ K¢ (2). We have u(O¢(2)) =12 and u(K¢(2)) = 14, so by Lemma 10.1, it suffices to show
for any p € C,
H(Ne(=2) @ K (p)) =0.
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Let g € C be conjugate to p under the hyperelliptic involution on C, so K *(p) >~ O¢c(—q) and we must
show H 0(NC(—Z)(—q)) =0. As Nc/s(—2) >~ Oc has one nowhere-vanishing section, it suffices to show
Nc¢/s(=2) < N¢(—2) is surjective on global sections; i.e., that hO(Ne(=2)) = 1.

We now prove this by degeneration. (We could not degenerate first, since our desired degeneration
would break the exact sequence (33).) Namely, we degenerate C to the union DU, L of a general curve D
of degree 5 and genus 2, and a general 1-secant line L meeting at the point . Let v be a point on L away
from u. By [Atanasov et al. 2019, Lemma 8.5], it suffices to show hO(Np(=2)(w)[2u — v]) = 1.

Let Q be the unique quadric containing D. By Lemma 3.1, HY(Np(—2)) is 2-dimensional. When we
twist up by u, we have an exact sequence

0— ND/Q(—Z)(M) — ND(—Z)(I/I) — OD(M) — 0.

As Np/o(—2)(u) >~ Kp(u) has exactly a 2-dimensional space of global sections and vanishing H ! the
associated long exact sequence in cohomology gives KO (Np(=2)(w)) = 3. Consequently, the image of
the evaluation map

HY(Np(=2)()) = Np(=2)W)l,

is a 1-dimensional subspace of the fiber at u. Since the line L is general, the fiber Np_,,|, will not
coincide with this 1-dimensional subspace. Therefore, the inclusion Np(—2) C Np(—2)(u)[u — v]
induces an isomorphism on global sections. Combining this with Lemma 3.1, the inclusion

Np;o(=2) C Np(=2)(u)[u — v]

also induces an isomorphism on global sections. Modifying once more towards v, and noting that the
generality of v guarantees that Np_., and Np,¢ are transverse at u, we conclude that Np,o(—2)(—u) C
Np(—2)(u)[2u — v] induces an isomorphism on global sections. Thus

hO(Np(=2)(w)[2u — v]) = h®(Np;o(—2)(—u)) = h°(Kp(—u)) = 1.

11. Curves of degree 7 and genus 5

In this section, for completeness, we recall the argument of Ballico and Ellia [1984] that shows that if C
is a nonhyperelliptic and nontrigonal space curve of degree 7 and genus 5, then N¢ is stable. Equivalently,
they show that N g (3) is stable. The bundle Ng (3) has degree 6, hence we need that it does not admit a
line bundle of degree 3 or more. Let

0—>L—>N/B3)—>M—0

be a destabilizing sequence. An elementary Riemann—Roch calculation shows that h(Zc(3)) > 3,
where Z¢ denotes the ideal sheaf of C in [P3. Since there cannot be a cubic surface double along a curve
of degree 7, the long exact sequence associated to the exact sequence

0— T:(3) = Zc(3) — NZ(3) — 0
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shows that the image of
h: HY(Zc(3) — HY(NJ(3))

has dimension at least 3. Consequently,
dim(H°(L) Nim(h)) +dim(H°(M)) > 3.

If the degree of L is at least 3, then the degree of M is at most 3. Since the curve is not trigonal
or hyperelliptic, we conclude that h%(M) < 1. Hence, dim(H°(L) Nim(k)) > 2. Thus, there are two
cubics in the ideal of C whose image in Ng (3) lie in the same line subbundle L. Hence, these cubics are
everywhere tangent along C. By Bézout’s theorem, these cubic surfaces intersect in a curve of degree 9
and cannot be tangent along a curve of degree 7. Consequently, N “(3) cannot have a line subbundle of
degree 3 or more and is stable.

This completes the proof of the main theorem.
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