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Stability of normal bundles of space curves

Izzet Coskun, Eric Larson and Isabel Vogt

We prove that the normal bundle of a general Brill±Noether space curve of degree d and genus g ≥ 2

is stable if and only if (d, g) /∈ {(5, 2), (6, 4)}. When g ≤ 1 and the characteristic of the ground field is

zero, it is classical that the normal bundle is strictly semistable. We show that this still holds in positive

characteristic except when the characteristic is 2, the genus is 0 and the degree is even.

1. Introduction

Let C be a smooth connected curve defined over an algebraically closed field k (of arbitrary characteristic).

The normal bundle NC/Pr of a smooth curve controls the deformations of the curve in P
r and plays a

crucial role in many problems of geometry, arithmetic and commutative algebra. In this paper, we show

that the normal bundle of a general Brill±Noether space curve of degree d and genus g is stable if and

only if g ≥ 2 and (d, g) /∈ {(5, 2), (6, 4)}.

Let E be a vector bundle on a smooth curve C . Let the slope µ(E) be

µ(E) :=
deg(E)

rk(E)
.

Then E is called (semi)stable if every proper subbundle F (which is always assumed to be saturated in

this paper) of smaller rank satisfies

µ(F)
(
≤

)
µ(E).

The bundle is called unstable if it is not semistable and strictly semistable if it is semistable but not stable.

By the Brill±Noether theorem (see [Kleiman and Laksov 1972; Griffiths and Harris 1980; Gieseker

1982; Arbarello et al. 1985; Osserman 2014; Jensen and Payne 2014; Castorena et al. 2018]), a general

curve of genus g admits a nondegenerate, degree d map to P
r if and only if the Brill±Noether number

ρ(g, r, d) satisfies

ρ(g, r, d) := g − (r + 1)(g − d + r) ≥ 0.

When r ≥ 3, there is a unique component of the Hilbert scheme that dominates the moduli space Mg and

whose general member parametrizes a smooth, nondegenerate curve of degree d and genus g in P
r . We
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call a member of this component a Brill±Noether curve. When r = 3, we call such a curve a Brill±Noether

space curve.

Main Theorem. Let C ⊆ P
3 be a general Brill±Noether space curve of degree d and genus g over an

algebraically closed field k.

(1) NC is stable if and only if g ≥ 2 and (d, g) /∈ {(5, 2), (6, 4)}.

(2) NC is strictly semistable if and only if g < 2 and one of the following holds: char(k) ̸= 2, g = 1, or

d is odd.

(3) NC is unstable if and only if (d, g) ∈ {(5, 2), (6, 4)} or all of the following hold: char(k) = 2, g = 0,

and d is even.

The normal bundles of curves in projective space have been studied by many authors (for example,

see [Atanasov et al. 2019; Ballico and Ellia 1984; Coskun and Riedl 2018; Ein and Lazarsfeld 1992;

Ellia 1983; Ellingsrud and Hirschowitz 1984; Ellingsrud and Laksov 1981; Newstead 1983; Ran 2007;

Sacchiero 1980; 1982; 1983]). Our results complete and unify these results for Brill±Noether space curves.

If (d, g) ∈ {(5, 2), (6, 4)}, then C lies on a unique quadric Q and NC/Q ⊂ NC gives a destabilizing

subbundle. We will describe the geometry in these two cases more explicitly in Section 3.

Every bundle on P
1 splits as a direct sum of line bundles. Hence, the normal bundle of a smooth

rational curve can be written as NC =
⊕r−1

i=1 O(ai ) for some integers a1, . . . , ar−1 with

r−1∑

i=1

ai = (r + 1)d − 2.

If C is a general rational curve of degree at least d ≥ r in P
r , and the characteristic of the ground field is

not 2, then NC/Pr splits as equally as possible, i.e., |ai −a j | ≤ 1 (see [Sacchiero 1980; Ran 2007; Coskun

and Riedl 2018; Atanasov et al. 2019]). Hence, NC/Pr is strictly semistable when r − 1 divides 2d − 2

and is unstable otherwise. When r = 3 and char(k) ̸= 2, since the quantity 2d − 2 is always even, the

normal bundle of a general rational curve of degree d ≥ 3 is strictly semistable. If the characteristic is 2,

we show in Lemma 3.2 that all ai ≡ d mod 2; this obstructs semistability for rational curves with d even.

Similarly, normal bundles of genus one curves have been studied extensively (see [Ein and Lazarsfeld

1992; Ellingsrud and Hirschowitz 1984; Ellingsrud and Laksov 1981]). By [Ellingsrud and Hirschowitz

1984], the normal bundle of a general nondegenerate genus one space curve is semistable. On the other

hand, on a genus one curve, there are no stable rank 2 bundles of degree 4d . Hence, the normal bundle of

a general genus one space curve of degree d ≥ 4 is strictly semistable. Our techniques will provide short

arguments reproving the g = 0 and 1 cases. The weaker question of semistability follows from results

of [Larson 2021; Vogt 2018].

In higher genus, the previously known results on stability were more sporadic. The stability of the

normal bundle was proved for (d, g)= (6, 2) by Sacchiero [1983], for (d, g)= (9, 9) by Newstead [1983],

for (d, g) = (6, 3) by Ellia [1983], and for (d, g) = (7, 5) by Ballico and Ellia [1984]. Many of these
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cases will be important for our inductive arguments. For completeness, we will reprove these cases

using our techniques or briefly recall the arguments. More generally, Ellingsrud and Hirschowitz [1984]

announced a proof of stability of normal bundles in an asymptotic range of degrees and genera; however,

their results do not cover many of the most challenging cases of small degree.

We prove the main theorem by specialization. We use three basic specializations:

(1) we specialize to a curve of degree (d − 1, g) union a 1-secant line;

(2) we specialize to a curve of degree (d − 1, g − 1) union a 2-secant line; and

(3) finally, we specialize to a curve of degree (d − 2, g − 3) union a 4-secant conic.

These degenerations reduce the main theorem to a finite set of base cases. The most challenging part of

the paper is to verify these base cases.

We expect our techniques and results to generalize to P
r for r ≥ 3 and hopefully settle the following

conjecture.

Conjecture 1.1. The normal bundle of a general Brill±Noether curve of genus at least 2 in P
r is stable

except for finitely many triples (d, g, r).

Conjecture 1.1 is closely related to several conjectures in the literature. For example, Aprodu, Farkas

and Ortega have conjectured that the normal bundle of a general canonical curve of g ≥ 7 is stable [Aprodu

et al. 2016, Conjecture 0.4] (see also [Bruns 2017]). The semistability of the normal bundle of a general

canonical curve of genus g ≥ 7 has recently been proved in [Coskun et al. 2022].

Organization of the paper. In Section 2, we will recall basic facts about normal bundles on nodal curves

and elementary modifications. In Section 3, we will elaborate on the two cases (d, g) ∈ {(5, 2), (6, 4)} as

well as the obstruction to stability for rational curves in characteristic 2. In Section 4, we will introduce

several basic degenerations to reduce the theorem to a small set of initial cases. For the rest of the paper,

we will analyze these initial cases.

2. Preliminaries

In this section, we collect basic facts on normal bundles of curves, stability of vector bundles, elementary

modifications, and on certain reducible Brill±Noether curves. For more details, see [Atanasov et al. 2019;

Larson 2016; 2017]. When necessary, we provide a characteristic-independent proof here.

2A. The normal bundle of a space curve. Let C ⊂ P
r be a smooth Brill±Noether curve of degree d and

genus g. The normal bundle NC is a rank r − 1 vector bundle that is presented as a quotient

0 → TC → TPr |C → NC → 0

of the restricted tangent bundle of P
r by the tangent bundle of C . The restricted tangent bundle is itself

naturally a quotient in the Euler exact sequence

0 → OC → OC(1)⊕(r+1) → TPr |C → 0. (1)
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From this we see that deg(NC) = (r + 1)d + 2g − 2. Specializing to r = 3, we have that

µ(NC) = 2d + g − 1,

and therefore NC is stable if and only if all line subbundles L ⊆ NC have slope at most 2d + g − 2.

If S is a surface in P
3 containing C that is smooth at the generic point of C , then we have an associated

normal bundle exact sequence

0 → NC/S → NC → NS|C → 0. (2)

By adjunction, the bundle NC/S is isomorphic to OS(C)|C . A particularly simple case is when C is the

complete intersection of two (smooth) surfaces S1 and S2 of degrees d1 and d2 in P
3. In this case the

natural map

NC/S1
⊕ NC/S2

→ NC

is an isomorphism, and, combining this with the adjunction isomorphism, we have NC ≃OC(d1)⊕OC(d2).

Such a bundle is never stable, and is semistable if and only if d1 =d2. Relevant examples for us are lines (the

normal bundle is isomorphic to OP1(1)⊕2), conics (the normal bundle is isomorphic to OP1(2)⊕OP1(4))

and elliptic quartics E (the normal bundle is isomorphic to OE(2) ⊕OE(2)).

2B. Stability of vector bundles on nodal curves. In the course of our inductive argument, we will

specialize a smooth Brill±Noether curve to a reducible nodal curve. In this section, we generalize the

definition of stability of vector bundles to allow C to be a connected nodal curve. We will write

ν : C̃ → C

for the normalization of C . For any node p of C , write p̃1 and p̃2 for the two points of C̃ over p.

Given a vector bundle E on C , the fibers of the pullback ν∗E to C̃ over p̃1 and p̃2 are naturally

identified. Given a subbundle F ⊆ ν∗E , it therefore makes sense to compare F | p̃1
and F | p̃2

inside

ν∗E | p̃1
≃ ν∗E | p̃2

.

Definition 2.1. Let E be a vector bundle on a connected nodal curve C . For a subbundle F ⊂ ν∗E , define

the adjusted slope µ
adj

C by

µ
adj

C (F) := µ(F) −
1

rk F

∑

p∈Csing

codimF (F | p̃1
∩ F | p̃2

),

where codimF (F | p̃1
∩ F | p̃2

) refers to the codimension of the intersection in either F | p̃1
or F | p̃2

(which are

equal since dim F | p̃1
= dim F | p̃2

). When the curve C is unambiguous, we will omit it from our notation

and write simply µadj(F). Note that if F is pulled back from C , then µ
adj

C (F) = µ(F). We say that E is

(semi)stable if for all subbundles F ⊂ ν∗E ,

µadj(F)
(
≤

)
µ(ν∗E) = µ(E).

With this definition, stability is an open condition in families of connected nodal curves. To show this,

we will need the following lemma.
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Lemma 2.2. Let β : C ′ → C be a map obtained by contracting a 1- or 2- secant P
1:

or

If E is a (semi)stable vector bundle on C , then β∗E is also (semi)stable.

Proof. Write ν : C̃ → C and ν ′ : C̃ ′ → C ′ for the normalization maps.

First consider the 1-secant case. Write x for the point of attachment (so that C ′ = C ∪x P
1). Let E be

a (semi)stable vector bundle on C , and let F ⊂ ν ′∗β∗E be any subbundle. Since ν ′∗β∗E |P1 is trivial,

µ(F |P1) ≤ 0. (3)

Since the ordinary slope is additive on components, and x is the only point in C ′
sing that is not also in Csing,

the definition of adjusted slope and (3) imply

µ
adj

C ′ (F) = µ
adj

C (F |C̃) + µ(F |P1) −
codimF (F |x̃1

∩ F |x̃2
)

rk F
≤ µ

adj

C (F |C̃)
(
≤

)
µ(E),

and hence β∗E is (semi)stable.

Similarly in the 2-secant case, write C ′ = C ′′ ∪{x,y} P
1. Denote by x̃1 and ỹ1 (respectively x̃2 and ỹ2)

the corresponding points on P
1 (respectively C ′′). Let F ⊂ ν ′∗β∗E . Since ν ′∗β∗E |P1 is trivial, we can

identify the fiber of E at x̃1 with the fiber of E at ỹ1, and we have

µ(F |P1) ≤ −
1

rk F
· codimF (F |x̃1

∩ F |ỹ1
).

As in the 1-secant case, noting that the only difference between C ′
sing and C ′′

sing are the points {x, y}, for

any subbundle F ⊂ ν ′∗β∗E , we have

µ
adj

C ′ (F) = µ
adj

C ′′(F |C̃) + µ(F |P1) −
1

rk F
·
(
codimF (F |x̃1

∩ F |x̃2
) + codimF (F |ỹ1

∩ F |ỹ2
)
)

≤ µ
adj

C ′′(F |C̃) −
1

rk F
·
(
codimF (F |x̃1

∩ F |ỹ1
) + codimF (F |x̃1

∩ F |x̃2
) + codimF (F |ỹ1

∩ F |ỹ2
)
)

≤ µ
adj

C ′′(F |C̃) −
1

rk F
· codimF (F |x̃2

∩ F |ỹ2
)

= µ
adj

C (F |C̃)

(
≤

)
µ(E).

The second inequality is the result of twice applying the ªtriangle inequalityº

codim(X ∩ Y ) + codim(Y ∩ Z) ≥ codim(X ∩ Z). □

Proposition 2.3. Let C → 1 be a family of connected nodal curves over the spectrum of a discrete

valuation ring and E be a vector bundle on C .

(1) If the special fiber E0 = E |0 is (semi)stable, then the general fiber E
∗ = E |1∗ is also (semi)stable.

(2) If C → 1 is smooth, and E0 is semistable, then any subbundle F
∗ ⊂ E

∗ with µ(F ∗) = µ(E ∗) extends

to a subbundle F ⊂ E .
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Proof. Write ν : C̃ → C for the normalization.

For part (1), after possibly making a base change, let F
∗ ⊂ ν∗

E
∗ be a subbundle with µ(F ∗) maximal.

Since µ is constant in flat families and codim(X∩Y ) is lower semicontinuous, µadj is upper semicontinuous

in flat families. Therefore, if F
∗ extends to a subbundle F ⊂ ν∗

E , then

µadj(F ∗) ≤ µadj(F0) (
≤

)
µ(E0) = µ(E ∗). (4)

Otherwise, we make a blowup β̃ : C̃
′ → C̃ in order to extend F

∗ ⊂ ν∗
E

∗ to a subbundle F ⊂ β̃∗ν∗
E .

By semistable reduction, we may ensure that the central fiber remains reduced. By gluing along sections

identified under ν, the blowup β̃ induces a map β : C
′ → C , which is an isomorphism away from the

central fiber, and on the central fiber consists of replacing nodes by 1- and 2-secant P
1’s. Applying

Lemma 2.2, β∗
E0 is (semi)stable. Therefore (4) holds for β∗

E .

For part (2), we imitate the above argument to extend F
∗ to a subbundle of β∗

E . Since C → 1 is

smooth, β can be obtained by iteratively contracting 1-secant P
1’s. Since µ(F ∗) = µ(E ∗) and β∗

E0

is semistable, we must in particular have equality in (3) from the proof of Lemma 2.2 for every such

contraction; thus, F is trivial along every exceptional divisor of β. In particular, F
∗ already extends to a

subbundle F ⊂ E without blowing up. □

2C. Elementary modifications of vector bundles. Let E be a vector bundle on a scheme X and let F ⊂ E

be a subbundle. For any effective Cartier divisor D ⊂ X , we define the elementary modification of E

at D towards F to be the kernel of the natural evaluation map

E[D → F] := ker
(
E → (E/F)|D

)
.

By [Atanasov et al. 2019, Proposition 2.6], E[D → F] is again a vector bundle, which is a subsheaf of E .

Remarks. (1) From this definition we see that an inclusion S ↪→ E factors through E[D → F] if and

only if the restriction to D factors through F |D:

S|D ↪→ F |D ↪→ E |D.

(2) Elementary modifications have a nice geometric interpretation in terms of projective bundles. Suppose

that E is a vector bundle of rank 2 on a smooth curve C and F is a line subbundle of E . In this case,

PF is a section of the P
1-bundle PE over C . The surface PE[p → F] is obtained from PE by blowing

up the point PFp and blowing down the proper transform of the fiber PE p. For more details, see

[Beauville 1996, §III.24].

In the special case that F is a direct summand of E , write E ≃ F ⊕ E ′. Then we see that E/F ≃ E ′,

and so we have

E[D → F] = ker
(
F ⊕ E ′ → E ′|D

)
≃ F ⊕ E ′(−D). (5)

More generally, we can describe how elementary modifications play with respect to short exact sequences.

For simplicity we focus here on the rank 2 case that is of interest in this paper. Suppose that C is a
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curve, S and Q are line bundles on C and E is a rank 2 bundle on C that sits in the exact sequence

0 → S → E → Q → 0.

Let p be a smooth point on C . Consider a line subbundle F of E and write k ′ for the order to which the fibers

of S and F agree over p (i.e., the length of the support of PF ∩PS in PE in a neighborhood of p). Let k

be the minimum of k ′ and n. Then we claim that the modification E[np → F] sits in the exact sequence

0 → S((k − n)p) → E[np → F] → Q(−kp) → 0. (6)

This follows from combining the observation that S((k − n)p) ↪→ E[np → F] is saturated with a Chern

class computation to determine the twist at p in the quotient. For a more detailed exposition on elementary

modifications, we refer the reader to [Atanasov et al. 2019, §2±3].

Let q ∈ P
r be a point. In this paper we will be primarily concerned with modifications of the normal

bundle NC/Pr towards pointing bundles NC→q , which we now recall. For a more detailed exposition, see

[Atanasov et al. 2019, §5±6]. Write

UC,q = {p ∈ C : TpC ∩ q = ∅}.

Let πq : C → P
r−1 denote the projection map from q. Note that πq |UC,q

is unramified by construction.

If UC,q is dense in C and contains the singular locus of C , then we may define NC→q to be the unique

extension to all of C of the bundle

NC→q |UC,q
:= ker

(
NC |UC,q

→ Nπq
|UC,q

)
,

where Nπq
denotes the normal sheaf of πq . Our notation NC→q is intended to suggest the geometry of

sections: they point towards q in P
r . Projection from q induces an exact sequence

0 → NC→q → NC → π∗
q Nπq

(C ∩ q) → 0. (7)

In this paper we will be primarily interested in the two simplest cases:

(i) The point q ∈ P
r is general, so that UC,q = C , and NC→q ≃ OC(1) by [Atanasov et al. 2019,

Proposition 6.2].

(ii) The point q ∈ C is general, so that UC,q = C ∖ {q}, and NC→q ≃ OC(1)(2q) by [Atanasov et al.

2019, Proposition 6.3].

By convention, when modifying towards a pointing bundle, we will write

NC [p → q] := NC [p → NC→q ].

The following foundational result underpins our degenerative approach.

Lemma 2.4 [Hartshorne and Hirschowitz 1985, Corollary 3.2]. Let X ∪ Y be a connected nodal curve

in P
r . Write {p1, . . . , pn} = X ∩ Y and let qi ∈ Tpi

Y be a choice of point. Then

NX∪Y |X ≃ NX (p1 + · · · + pn)[p1 → q1] · · · [pn → qn].
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Given a vector bundle E on a reducible nodal curve X ∪ Y , restriction to the component X yields an

exact sequence

0 → E |Y (−X ∩ Y ) → E → E |X → 0. (8)

If the vector bundle E is the normal bundle of the union NX∪Y , then we can make this explicit using

Lemma 2.4. Write qi,Y for a choice of point in Tpi
Y and qi,X for a choice of point in Tpi

X . Then (8)

yields the sequence

0→ NY [p1 →q1,X ] · · · [pn →qn,X ]→ NX∪Y → NX (p1+· · ·+pn)[p1 →q1,Y ] · · · [pn →qn,Y ]→0. (9)

We will now illustrate how information about the normal bundle (such as presentations in exact

sequences) can be combined with the data of modifications towards pointing bundles with the following

three examples. In future similar situations, we will point the reader to these examples and omit the details.

Example 2.5. For a curve C ⊂ P
3 and general points p, q ∈ C , consider the modified normal bundle

NC [p → q]. Combining the sequence (7) coming from projection from q with (6), we see that this bundle

sits in the exact sequence

0 → [NC→q ≃ OC(1)(2q)] → NC [p → q] → π∗
q Nπq

(q − p) → 0.

Example 2.6. Consider a line L ⊂ P
3 and points p1, p2 ∈ L and p′

1, p′
2 ∈ P

3 such that the four points

p1, p′
1, p2, p′

2 span P
3. Write Hi for the span of L and the point p′

i . The line L is the complete

intersection of H1 and H2, and so

NL ≃ NL/H1
⊕ NL/H2

≃ OP1(1) ⊕OP1(1).

Furthermore, the pointing bundle NL→p′
i

is isomorphic to NL/Hi
from which we conclude, using (5), that

NL(p1)[p1 → p′
1] ≃ NL/H1

(p1) ⊕ NL/H2
≃ OP1(2) ⊕OP1(1),

NL(p1 + p2)[p1 → p′
1][p2 → p′

2] ≃ NL/H1
(p1) ⊕ NL/H2

(p2) ≃ OP1(2) ⊕OP1(2).

Example 2.7. Suppose that D is an elliptic normal curve (i.e., the complete intersection of two quadrics

in P
3) and let p and q be general points on D. We will consider the modified normal bundle ND[p → q].

Since it is one condition for a quadric containing p and q to contain the line p, q, there must be a

quadric Q in the pencil containing D that also contains the line p, q . The line p, q is contained in Tp Q

and therefore the normal directions ND/Q |p and ND→q |p coincide in ND|p. Combining the normal bundle

exact sequence (2) for D ⊂ Q with (6) yields the exact sequence of vector bundles

0 → ND/Q → ND[p → q] → NQ |D(−p) → 0.

In fact, this exact sequence is split; choosing another quadric Q′ from the pencil defining D gives the

complement ND/Q′(−p) to ND/Q . Let L = p, q be the 2-secant line to D joining p and q. Combining

the above discussion with Lemma 2.4, we see that

ND∪L |D ≃ ND(p + q)[p → q][q → p] ≃ ND/Q(p + q) ⊕ ND/Q′ .
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More generally, to deal with other curves on quadric surfaces and multiple modifications [np → q] in

the course of our degenerations, we will make use of the following lemma, which computes that k = 1 in

applying (6) to the normal bundle exact sequence.

Lemma 2.8. Let D be a (smooth) curve of type (a, b) on a smooth quadric surface Q. If q is a general

point of D, then inside PND , the two sections coming from the line subbundles ND→q and ND/Q meet

transversely at a + b − 2 points.

Proof. The fibers of ND→q and ND/Q agree at p if and only if q is contained in Tp Q. This occurs exactly

at the points p where the two lines through q in Q meet D. Since D is of type (a, b) on Q, for q general

this happens at a + b − 2 points of D.

On the other hand, with multiplicity, the intersection number of these two sections is

c1(ND) − c1(ND→q) − c1(ND/Q) = (2ab + 2a + 2b) − (a + b + 2) − (2ab) = a + b − 2.

Therefore, when q is general, these sections intersect transversely at exactly a + b − 2 points. □

It is a classical fact that the normal bundle of a rational normal (i.e., (d, g) = (3, 0)) or elliptic normal

(i.e., (d, g) = (4, 1)) curve is semistable, which we record in the following lemma:

Lemma 2.9. Let C be a general Brill±Noether curve of degree d and genus g, where (d, g) = (3, 0)

or (4, 1). Then NC is semistable.

Proof. For (d, g) = (3, 0), let p be a point on C , and write C ⊂ P
2 for the image of C under projection

from p (which is a conic). Then the semistability of NC follows from the exact sequence

0 → [NC→p ≃ OP1(5)] → NC → [NC(p) ≃ OP1(5)] → 0.

For (d, g) = (4, 1), we note that C is the complete intersection of two quadrics, and therefore

NC ≃ OC(2) ⊕OC(2) is semistable. □

2D. Modifications in families. While arguing by degeneration, we will need the following technical

result, explained in Remark 3.4 of [Atanasov et al. 2019]. Suppose that we have a modification of a

rank 2 vector bundle E towards two line subbundles F1 and F2:

E[p1 → F1][p2 → F2].

Let p1 and p2 limit to a common point p in a degeneration parametrized by a base B. More precisely, let

p1 and p2 be sections of C × B → B that intersect at p in the central fiber. Write π : C × B → C for the

projection, and let F1 and F2 be subbundles of π∗E .

• If F1 = F2 = F , then the limit is E[2p → F].

• If F1|p and F2|p are linearly independent, then the limit is E(−p).

This can be seen by constructing the modification (π∗E)[p1 → F1][p2 → F2] as a vector bundle on C × B,

and using that such modifications respect pullback [Atanasov et al. 2019, Proposition 2.8]. Sections 2 and 3
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of [Atanasov et al. 2019] discuss this setup in much greater generality for modifications that are treelike,

a condition that generalizes the assumption that F1 = F2 = F or F1|p and F2|p are linearly independent.

We illustrate this with an example. Let C ⊂ P
3 be a curve, and p, q, u, v ∈ C be general points. We

consider the modified normal bundle

NC [p → q][q → p][u → v][v → u].

As we limit v to q , the flat limit of these bundles is

NC [p → q][u → q](−q).

If we further limit u to p, then the flat limit is

NC [2p → q](−q).

(Note that this is not symmetric in p and q; it depends on the order of the limits.)

2E. Deformation theory of reducible curves. In this section, we collect some basic facts about deforma-

tions of reducible curves that we will need. For additional details, the reader may consult a textbook on

deformation theory, such as [Hartshorne 2010; Sernesi 2006].

Let C ⊂ P
r be any local complete intersection curve. Write NC = NC/Pr = NC↪→Pr for the normal

bundle of C or equivalently for the normal sheaf of the inclusion C ↪→ P
r . Then first-order deformations

of C are parametrized by H 0(NC), and obstructions to lifting deformations lie in H 1(NC).

Now suppose that C is nodal, and write p for a node of C . We consider deformations of C that remain

equisingular at p. Equivalently, write π : C̃ → C for the partial normalization of C at p, and p1 and p2

for the points lying over p in C̃ . Then equisingular deformations of C are deformations of the pointed

map (C̃, p1, p2) → P
r such that the deformations of p1 and p2 map to the same point. Such equisingular

deformations are controlled by a certain sheaf N on C , that can be constructed in two ways:

(1) The sheaf N can be constructed as the kernel of the natural map from NC to the deformation

space T 1
p∞ of the formal neighborhood p∞ of p in C , i.e., in symbols:

N = ker(NC → T 1
p∞).

(2) Alternatively, we can push forward the normal sheaf NC̃→Pr of the map C̃ → P
r along the map π .

Evaluation at p1 and p2 then defines a map

π∗NC̃→Pr →
TpP

r

Tp1
C̃

⊕
TpP

r

Tp2
C̃

→

(
TpP

r

TpC

)2

;

the sheaf N is then the preimage of the diagonal in π∗NC̃→Pr .

Then first-order deformations of C that fail to smooth the node p correspond to H 0(N ), and obstructions

to lifting such deformations lie in H 1(N ).

Remark. Away from p, there is a natural isomorphism between N and NC . Working locally, a similar

construction can be done for any subset of the nodes of C . Using the set of all nodes (so the deformations
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are equisingular at all nodes rather than simply equisingular at p), this construction appears in Section 4.7.1

of [Sernesi 2006], in which it is referred to as the equisingular normal sheaf.

Now suppose that C = X ∪Y is a reducible nodal curve, with two smooth components X and Y , and that

p ∈ X ∩Y is a node. Then the restrictions of NC = NX∪Y to X and Y are given in Lemma 2.4. Moreover,

since NX∪Y is a vector bundle on X ∪ Y , restriction to a component defines an exact sequence (see (9)):

0 → NX∪Y |Y (−X ∩ Y ) → NX∪Y → NX∪Y |X → 0.

From either description given above for the sheaf N , we deduce analogous statements for N . Namely,

N |X is the modification of NX where all modifications appearing in Lemma 2.4 are performed except

the one at p. The sequence for restriction to X takes a slightly different form (since N is not a vector

bundle in a neighborhood of p), where the subbundle appearing in the sequence involves the restriction

of the ordinary normal bundle to Y (rather than the restriction of N to Y ):

0 → NX∪Y |Y (−X ∩ Y ) → N → N |X → 0. (10)

2F. Reducible Brill±Noether curves. In this section we show that the basic degenerations we will employ

in the proof of the main theorem are in the Brill±Noether component of the Hilbert scheme.

We say that two curves X and Y meet quasitransversely at a set of points 0 ⊂ P
r if for each p ∈ 0,

the tangent lines Tp X and TpY meet only in the isolated point p. (If r ≥ 3, two curves never meet

transversely!) The following lemma is a special case of results of [Larson 2016], but we include a

characteristic-independent proof of this special case.

Lemma 2.10. Let C be a general Brill±Noether curve of degree d and genus g and let R be one of the

following:

(i) a 1-secant line meeting C quasitransversely at p,

(ii) a 2-secant line meeting C quasitransversely at p and q,

(iii) a 4-secant conic meeting C quasitransversely at four coplanar points p1, . . . , p4.

In case (iii) further assume that ρ(g, r, d) ≥ 1. Then C ∪ R is a Brill±Noether curve of degree and genus

(i) (d + 1, g),

(ii) (d + 1, g + 1),

(iii) (d + 2, g + 3),

respectively.

Proof. By deformation theory, it suffices to show that H 1(TP3 |C∪R) = 0, so that the map C ∪ R → P
3

may be lifted as C ∪ R is deformed to a general curve. Moreover, if C is general, then H 1(TP3 |C) = 0 by

the Gieseker±Petri theorem. Using (8), we have an exact sequence

0 → TP3 |R(−R ∩ C) → TP3 |C∪R → TP3 |C → 0. (11)



930 Izzet Coskun, Eric Larson and Isabel Vogt

In cases (i) and (ii), TP3 |R ≃O(2)⊕O(1)⊕2. So H 1(TP3 |R(−p))=0, respectively H 1(TP3 |R(−p−q))=0,

and therefore, by (11) and the Gieseker±Petri theorem for C , we have that H 1(TP3 |C∪R) = 0.

For part (iii), by part (ii) we may specialize C to the union of a Brill±Noether curve C ′ of degree d − 1

and genus g − 1 and a 2-secant line L , such that R meets C ′ at three points and meets L at one point p.

Let 0 := (L ∪ R) ∩ C ′, denoted by solid dots below:

L R

p

C ′

First, we show that

(a) C ′ ∪ L ∪ R is a smooth point of the Hilbert scheme, and

(b) we can smooth L ∪ R to a twisted cubic R′ that continues to pass through the five points of 0.

Let N be the subsheaf of NL∪R(−0) whose sections fail to smooth the node at p (as discussed in

Section 2E). Applying (10) in the case of restriction to L gives the exact sequence

0 → [NL∪R|R(−p − 0) ≃ O⊕O(−1)] → N → [N |L ≃ O(−1)⊕2] → 0, (12)

where the isomorphisms within come from the explicit descriptions of R and L as complete intersections

(as in Example 2.6). Hence, by the long exact sequence associated to (12), we have H 1(N ) = 0. By

deformation theory, (b) follows directly from H 1(N ) = 0; this vanishing also implies H 1(NC ′∪L∪R) = 0

(and hence, by deformation theory, (a)).

To complete the proof, we note that TP3 |R′(−R′ ∩ C ′) ≃ O(−1)⊕3 has no higher cohomology, so (11)

and the Gieseker±Petri theorem for C ′ show that H 1(TP3 |C ′∪R′) = 0. Thus C ′ ∪ R′ is in the Brill±Noether

component. Since C ′ ∪ L ∪ R is a smooth point of the Hilbert scheme and both C ′ ∪ R′ and C ∪ R

are deformations of this, they are in the same component; in particular, C ∪ R is in the Brill±Noether

component. □

3. The unstable cases

Arbitrary characteristic. In two cases Ð (d, g) ∈ {(5, 2), (6, 4)} Ð the main theorem asserts that, over a

field of any characteristic, NC is unstable. In both of these cases, C lies on a quadric Q, and from the

normal bundle exact sequence (see (2)),

0 → [NC/Q ≃ KC(2)] → NC → [NQ |C ≃ OC(2)] → 0, (13)
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we have that NC has a subbundle NC/Q of slope 2d + 2g − 2. If (d, g) = (5, 2) (respectively (6, 4)) then

µ(NC/Q) = 12 (respectively 18), which is strictly more than µ(NC) = 11 (respectively 15).

In fact, we can say more. Note that Ext1(OC(2), KC(2)) ≃ H 1(KC) is 1-dimensional; therefore there

are only two such extensions up to isomorphism (the split extension, and a unique nontrivial extension).

When (d, g)= (6, 4), such curves C are the complete intersection of a quadric and cubic surface, and so

(13) is split. When (d, g) = (5, 2), the following lemma is equivalent to the assertion that (13) is nonsplit:

Lemma 3.1. Let D be a Brill±Noether curve of degree 5 and genus 2 and let Q be the unique quadric

containing it. The inclusion K D ≃ ND/Q(−2) ⊆ ND(−2) induces an isomorphism on global sections

H 0(K D) ≃ H 0(ND(−2)).

Proof. As H 0(K D) ↪→ H 0(ND(−2)), it suffices to show that h0(ND(−2)) = 2. We will prove this

by degenerating the curve D to the union of an elliptic normal curve E of degree 4 and genus 1 and

a general 2-secant line L meeting E quasitransversely at p and q, which is a Brill±Noether curve by

Lemma 2.10(ii).

Since the tangent lines to E at p and q span P
3, combining Lemma 2.4 with Example 2.6, we

see that NE∪L(−2)|L ≃ OL ⊕ OL has a 2-dimensional space of global sections. Furthermore, since

H 0(NE∪L(−2)|L(−p − q)) = 0, we have that

H 0(NE∪L(−2)) ↪→ H 0(NE∪L(−2)|E). (14)

As in Example 2.7, choosing quadrics Q1 and Q2 whose intersection is E and such that Q1 contains L ,

we see that the normal bundle restricted to E ,

NE∪L(−2)|E ≃ NE/Q1
(−2)(p + q) ⊕ NE/Q2

(−2) ≃ OE(p + q) ⊕OE ,

has a 3-dimensional space of global sections. It remains to show that one of these sections is not in the

image of (14).

We claim that the unique (up to scaling) section of OE is not in the image of (14). Indeed, since L

is transverse to Q2, this section fails to smooth both nodes; if it extended across L , it must extend to a

section in H 0(NL(−2)) ⊂ H 0(NE∪L |L(−2)). But NL(−2) ≃ OL(−1)⊕OL(−1) has no global sections,

so any extension across would have to vanish identically along L , and in particular at p and q (which this

section does not). □

Characteristic 2. The main theorem asserts that, in characteristic 2, there are infinitely many pairs

(d, g) = (2k, 0) for which the normal bundle of a general Brill±Noether curve is unstable. This is the

first case of a more general phenomena occurring only in characteristic 2.

Let C ⊂ P
r be a Brill±Noether curve. In any characteristic, the Euler sequence (1) shows that the

bundle N∨
C (1) sits in an exact sequence

0 → N∨
C (1) → O

⊕r+1
C → P

1(OC(1)) → 0, (15)

where P
1(OC(1)) is the first bundle of principal parts of the line bundle OC(1).
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Now assume that char(k) = 2 and let π : C → C (2) denote the (relative) Frobenius morphism. Given a

reduced point c ∈ C , the fiber of π containing c is the nonreduced point 2c. Therefore

P
1(OC(1)) ≃ π∗π∗OC(1).

Thus N∨
C (1) ≃ π∗K is isomorphic to the pullback of a vector bundle K under Frobenius. Using this, we

have the following.

Lemma 3.2. Assume that char(k) = 2 and let C ≃ P
1 be a rational curve of degree d in P

r over k. Then

the normal bundle splits as

NC ≃
⊕

i

OP1(ai ),

for integers ai ≡ d (mod 2).

Proof. If char(k) = 2, then N∨
C (1) ≃ π∗K for some vector bundle K on P

1. Write K ≃
⊕

OP1(ki ). Since

π∗OP1(a) ≃ OP1(2a), we have NC ≃
⊕

OP1(d − 2ki ), as desired. □

Corollary 3.3. Let C be a general rational curve in P
r of degree d ≥ r . Then NC is semistable only if

2d ≡ 2 (mod r − 1); in characteristic 2, this can be strengthened to d ≡ 1 (mod r − 1).

Proof. In any characteristic, NC can only be semistable if µ(NC) = d + (2d − 2)/(r − 1) is an integer. In

characteristic 2, Lemma 3.2 implies that furthermore µ(NC) − d must be an even integer. □

Remark. When r = 3, we prove in Section 6 that Corollary 3.3 gives the only obstruction to semistability

for the normal bundle of a rational curve in characteristic 2. With a little more work, one can show the

same in any projective space.

4. Stability and degeneration, I

In this section, by specializing to the union of a general Brill±Noether curve and a 4-secant conic, we

reduce the main theorem to the cases g ≤ 8. Our main tool will be the following first basic lemma proving

stability by degeneration.

Lemma 4.1. Suppose that C = X ∪ Y is a reducible curve and E is a vector bundle on C such that E |X

and E |Y are semistable. Then E is semistable. Furthermore, if one of E |X or E |Y is stable, then E is

stable.

Proof. Write ν : X̃ ⊔ Ỹ → C for the normalization map. For any subbundle F ⊆ ν∗E we have

µadj(F) ≤ µ
adj

X (F |X̃ ) + µ
adj

Y (F |Ỹ )
(
≤

)
µ(E |X ) + µ(E |Y ) = µ(E). □

4-secant conic degenerations. Let C be a Brill±Noether curve of degree d ≥ 4 and genus g in P
3. Let

H ⊂ P
3 be a 2-plane meeting C transversely; let p1, . . . , p4 be four points in C ∩ H . For R ⊂ H a

conic through p1, . . . , p4, the union C ∪ R is a Brill±Noether curve of degree d + 2 and genus g + 3

by Lemma 2.10(iii):
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p1

p4

p2

p3

C

R

Lemma 4.2. In the above setup, if C is a general Brill±Noether curve with (d, g) ̸= (3, 0) or (4, 1), then

NC∪R|R ≃ OP1(5) ⊕OP1(5)

is semistable.

Proof. We will prove this lemma by degeneration of C . If C admits a degeneration to X ∪ Y , where

deg X ≥ 4, then we may consider degenerations X ∪ Y ∪ R of C ∪ R where the conic R meets X alone;

this reduces the case of C to the case of X .

By repeatedly applying Lemma 2.10 to pull off 1-secant lines, 2-secant lines, or 4-secant conics, we

thus reduce to the case where (d, g) satisfies

ρ(g, 3, d) ≥ 0, g ≥ 0, and (d, g) ̸= (3, 0), (4, 1), (16)

but (d ′, g′) fails to satisfy (16) for each of (d ′, g′) = (d − 1, g), (d − 1, g − 1), and (d − 2, g − 3).

By inspection, this is only possible if (d, g) = (4, 0), (5, 2), or (6, 4). (Indeed, if g ≥ 5, then

(d ′, g′) = (d − 2, g − 3) satisfies (16); if g ≤ 4 and d ≥ 7, then (d ′, g′) = (d − 1, g) satisfies (16); the

finitely many cases with g ≤ 4 and d ≤ 6 are easily verified.)

In these cases, C is of type (3, d −3) on a quadric. Specializing C to the union of a curve of type (3, 1)

with d − 4 lines of type (0, 1), it thus remains only to consider the case (d, g) = (4, 0).

When C is a rational quartic curve, we specialize C to C ′ ∪ L , where C ′ is a rational normal curve and

L is a 1-secant line meeting C ′ at a point x . Since C has degree 4, we must specialize R to meet L in

one point y and C ′ in a set {z1, z2, z3} of three points:

L R

C ′

z3

yx

z1

z2
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Since NC ′ ≃OP1(5)⊕OP1(5), we may arrange for C ′ to have general tangent directions at the points zi .

Thus, NC ′∪R|R ≃ OP1(5)⊕OP1(4). In particular, we have a distinguished subspace of NR|y given by the

positive subbundle OP1(5)|y ⊂ NC ′∪R|y ≃ NR|y Ð or equivalently, a distinguished plane 3 ⊃ Ty R. Since

x ∈ C ′ is general, we have x /∈ 3. Thus

NC ′∪L∪R|R ≃ NC ′∪R|R(y)[y → x] ≃ OP1(5) ⊕OP1(5). □

Remark. For (d, g) = (4, 1), the conclusion of Lemma 4.2 is false: for any R, the curve C lies on a

quadric Q containing R, and N(C∪R)/Q|R is destabilizing.

Let p′
i be a point on Tpi

R ∖ pi . Then by Lemma 4.2 combined with Lemma 4.1, stability for

NC [p1 → p′
1][p2 → p′

2][p3 → p′
3][p4 → p′

4]

implies stability for NC∪R , and hence for the normal bundle of a general Brill±Noether space curve of

degree d + 2 and genus g + 3.

Deformations of r-secant rational curves. In our application of the above degeneration to reduce to a

finite list of genera, we will specialize to the union of a Brill±Noether D and two quasitransverse 4-secant

conics through the same set of 4 points. To employ this degeneration, we must know that such conics can

be suitably deformed while preserving the incidence conditions with D.

In greater generality, let D be a Brill±Noether curve, and R be a rational curve meeting D at distinct

points p1, p2, . . . , pr . The following key assumption generalizes the conclusion of Lemma 4.2:

Assumption 4.3. The restricted normal bundle ND∪R|R is perfectly balanced with slope

µ(ND∪R|R) ≥ r + 1.

Lemma 4.4. Under Assumption 4.3, there exists a deformation R(t) of R, and pi (t) of pi , such that

the rational curve R(t) meets D quasitransversely in p1(t), p2(t), . . . , pr (t), and pi (t) has nonzero

derivative at t = 0 for all i .

Proof. For any i , let Ni denote the vector bundle on R obtained by making elementary modifications

to NR at all points of D ∩ R except pi in the direction of D (i.e., the vector bundle obtained by gluing the

vector bundles NR∪D|R∖pi
and NR|R∖{p1,..., p̂i ,...,pr } along the natural isomorphism NR∪D|R∖{p1,...,pr } ≃

NR|R∖{p1,...,pr }). This bundle Ni controls the deformations of D∪R along D that remain equisingular at pi

(see the discussion in Section 2E). Obstructions to lifting deformations of pi to deformations of R that

preserve the incidence conditions with D at the p j lie in H 1(Ni (−p1 −· · ·− pr )); it thus suffices to show

H 1(Ni (−p1 − · · · − pr )) = 0.

The bundle Ni (−p1 − · · · − pr ) fits in an exact sequence

0 → NR∪D|R(−p1 − · · · − pi−1 − 2pi − pi+1 − · · · − pr ) → Ni (−p1 − · · · − pr ) → Opi
→ 0.
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The long exact sequence of cohomology implies the desired vanishing since by assumption ND∪R|R is

perfectly balanced with slope µ(ND∪R|R) ≥ r + 1, and hence

H 1(NR∪D|R(−p1 − · · · − pi−1 − 2pi − pi+1 − · · · − pr )) = 0. □

Reduction to a finite list of genera.

Lemma 4.5. Suppose that the main theorem is true for all g ≤ 8. Then it is true for all g.

Proof. If ρ(g, 3, d) ≥ 0 and g ≥ 9, then

ρ(g −6, 3, d −4) = ρ(g, 3, d)+2 ≥ 0 and g −6 ≥ 2 and (d −4, g −6) /∈ {(5, 2), (6, 4)}, (17)

d − 4 ≥ 4. (18)

By (17), a general Brill±Noether curve D of degree d − 4 and genus g − 6 has ND stable by induction.

Let H be a general hyperplane; by (18), we may let R1 ⊆ H and R2 ⊆ H be general 4-secant conics,

both of which meet D at p1, . . . , p4:

R2

R1

D

p1

p4

p2

p3

By Lemma 4.4, we may deform Ri to 4-secant conics Ri (t) meeting D at pi1(t), pi2(t), pi3(t),

and pi4(t) such that p1 j (t) and p2 j (t) have distinct derivatives:

Combining Lemmas 4.1 and 4.2, it remains to show the stability of NC [pi j (t) → p′
i j (t)] for t ∈ 1

general, where p′
i j (t) denotes a point on Tpi j (t)C ∖ pi j (t). By the discussion in Section 2D, these

vector bundles fit together to form a vector bundle over D × 1 whose fiber over 0 ∈ 1 is the bundle

ND(−p1 − p2 − p3 − p4) Ð which is stable since we have already seen that ND is stable by induction. □

5. Stability and degeneration, II: Gluing data

In order to settle the base cases g ≤ 8, we will need to use degenerations of C to reducible curves X ∪ Y

where neither NX∪Y |X nor NX∪Y |Y are necessarily stable. The basic idea is to compare destabilizing

subbundles of NX∪Y |X and NX∪Y |Y and show that they cannot agree sufficiently over X ∩ Y .
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1-secant degenerations. In some cases, we can construct a modification of the restriction NX∪Y |X whose

stability rules out a destabilizing subbundle of NX∪Y |X that could agree sufficiently with a destabilizing

subbundle of NX∪Y |Y . This technique works well when we can understand the geometry of Y explicitly.

Here we apply this technique when Y = L is a 1-secant line.

Let D be a smooth Brill±Noether curve and L a quasitransverse 1-secant line meeting D at p. Although

ND∪L |L is not semistable, so we cannot apply Lemma 4.1, we can identify the unique destabilizing

subbundle of ND∪L |L , and construct a modification of ND∪L |D as described above.

For inductive arguments it will be more useful to consider a slightly more general setup: Let N ′
D∪L be

any vector bundle equipped with an isomorphism with ND∪L over an open set U of D ∪ L containing L ,

and write N ′
D for the bundle obtained by gluing ND|U to N ′

D∪L |D∖p along the isomorphism ND|U∖p ≃

ND∪L |U∖p ≃ N ′
D∪L |U∖p. To state the lemma, let q ∈ L ∖ p:

D
L

p

q

Lemma 5.1. In the above setup, if N ′
D[p → q][p → q] ≃ N ′

D[2p → q] is (semi)stable, then N ′
D∪L is

also (semi)stable.

Proof. Write ν : D ⊔ L → D ∪ L for the normalization map, and p̃1 and p̃2 for the points above p on L

and D respectively. Suppose that F ⊆ ν∗N ′
D∪L is a line subbundle.

First, we consider the restriction of F to L . Let x be a point on Tp D and let 3 be the plane spanned

by x and L . Let H be another plane such that L = 3 ∩ H . Then by Lemma 2.4 and Example 2.6,

N ′
D∪L |L ≃ NL(p)[p → x] ≃ NL/H ⊕ NL/3(p) ≃ OP1(1) ⊕OP1(2).

Consequently,

µ(F |L) ≤

{
2 if F | p̃1

= NL/3(p)| p̃1
,

1 otherwise.
(19)

Second, we consider the restriction of F to D. If F | p̃2
= ND→q(p)| p̃2

, then, by the first remark on

page 924, F |D is a subbundle of N ′
D∪L |D[p → q]≃ N ′

D(p)[2p → q]; otherwise F |D(− p̃2) is a subbundle

of N ′
D(p)[2p → q]. Because N ′

D[2p → q] is (semi)stable by assumption and of slope µ(N ′
D) − 1, it

follows that N ′
D(p)[2p → q] is (semi)stable of slope µ(N ′

D). Consequently,

µ(F |D)
(
≤

)

{
µ(N ′

D) + 1 if F | p̃2
̸= ND→q(p)| p̃2

,

µ(N ′
D) otherwise.

(20)
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Finally, by [Atanasov et al. 2019, Lemma 8.5], the subspace NL/3(p)| p̃1
glues to the subspace

ND→q(p)| p̃2
. Consequently,

codimF (F | p̃1
∩ F | p̃2

) ≥

{
1 if F | p̃1

= NL/3(p)| p̃1
and F | p̃2

̸= ND→q(p)| p̃2
,

0 otherwise.
(21)

To finish the proof, we simply combine (19), (20), and (21), to obtain

µadj(F) = µ(F |L) + µ(F |D) − codimF (F | p̃1
∩ F | p̃2

)
(
≤

)
µ(N ′

D) + 2 = µ(N ′
D∪L). □

Lemma 5.2. Assume that the characteristic of the ground field is not 2. Suppose that ND is (semi)stable.

If q ∈ P
3 is a general point and p ∈ D has ordinary ramification, then the elementary modification

ND[2p → q] is (semi)stable.

Proof. Let 3 ⊂ P
3 be a 2-plane containing Tp D that is not the osculating 2-plane to D at p. For parameter

s ∈ P
1, let Ls be the pencil of lines through p in 3 specializing to Tp D when s = 0 and let q(s) be a

choice of point on Ls ∖ p:

D

Tp D

p

As (semi)stability is open, and ND(−p) is (semi)stable by assumption, it suffices to show that the

modifications ND[2p → q(s)] for s ̸= 0 fit together into a flat family specializing to ND(−p) when

Ls = Tp D. To do this, we first observe that, for s ̸= 0,

ND[2p → q(s)] := ker

(
ND →

ND|2p

ND→q(s)|2p

)

is determined by the 2-dimensional subspace ND→q(s)|2p of the 4-dimensional space ND|2p. As the

Grassmannian Gr(2, 4) is separated and proper, there is a unique limit of these spaces as s → 0. It suffices

to prove, by a calculation in local coordinates, that this subspace is ND(−p)|2p ⊆ ND|2p.

Choose an affine neighborhood A
3
xyz ⊆ P

3 and coordinates such that p = (0, 0, 0), the tangent line

Tp D is y = z = 0, the osculating two-plane is z = 0, and 3 is y = 0. Let q(s) = (1, 0, s) so that Ls is the

line through (1, 0, s) and (0, 0, 0).

Let t be an étale local coordinate at p for D. Then in an étale neighborhood of p, the curve D is given

parametrically by

D(t) =




t

t2 + a3t3 + · · ·

b3t3 + · · ·


 .

We trivialize ND in a neighborhood of p by ∂/∂y and ∂/∂z. A section of ND is then given by

(m0 + m1t + m2t2 + · · · )
∂

∂y
+ (n0 + n1t + n2t2 + · · · )

∂

∂z
. (22)
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We must determine the conditions on the mi and ni such that this section points towards q(s) to second

order in t . The vector from D(t) on D to q(s)

D(t) − q(s) =




t − 1

t2 + a3t3 + · · ·

b3t3 + · · · − s




is equivalent as a section of ND to its translate by a tangent vector,

D(t) − q(s) − (t − 1)D′(t) =




t − 1

t2 + a3t3 + · · ·

b3t3 + · · · − s


 −




t − 1

(t − 1)(2t + 3a3t2 + · · · )

(t − 1)(3b3t2 + · · · )




=




0

2t + (3a3 − 1)t2 + · · ·

−s − 3b3t2 + · · ·


 .

This normal vector now corresponds to the section

(2t + (3a3 − 1)t2 + · · · )
∂

∂y
+ (−s − 3b3t2 + · · · )

∂

∂z

under our chosen trivialization. The condition on the mi and ni for a section as in (22) to point towards q(s)

at 2p is that

det

(
2t + · · · m0 + m1t + · · ·

−s + · · · n0 + n1t + · · ·

)
= −sm0 + (2n0 + sm1)t + · · ·

vanish to second order in t . When s ̸= 0, this cuts out the 2-dimensional subspace m0 = 2n0 + sm1 = 0

in the four-dimensional vector space with coordinates m0, m1, n0, n1.

In characteristic distinct from 2, the limit as s → 0 of this subspace is simply m0 = n0 = 0, i.e., the

subspace ND(−p)|2p ⊂ ND|2p, as claimed. □

Corollary 5.3. Suppose that ND is (semi)stable for D a general Brill±Noether curve of degree d and

genus g in P
3. Then NC is (semi)stable for C a general Brill±Noether curve of degree d + ϵ and genus g

in P
3, where

ϵ =

{
1 if char(k) ̸= 2,

2 if char(k) = 2.

Proof. We specialize C to the union of a general Brill±Noether curve D with ϵ 1-secant lines. Applying

Lemma 5.1, it suffices to show that ND[2p → q] (respectively ND[2p1 → q1][2p2 → q2]) is (semi)stable,

where the pi denote general points on D, and the qi denote general points in P
3.

As we limit p1 and p2 together to a common point p, the vector bundles ND[2p1 → q1][2p2 → q2] fit

together to form a vector bundle with central fiber ND(−2p) (see the discussion in Section 2D) Ð which

is (semi)stable by assumption.

In characteristic distinct from 2, we apply Lemma 5.2 to conclude that ND[2p → q] is (semi)stable,

as desired. □
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6. Reduction to a finite list of (d, g)

In this section we combine the results of the previous section to reduce the proof of the main theorem to

a finite list of base cases.

Proposition 6.1. Suppose that the main theorem holds for curves of degree d and genus g with

(d, g) ∈
{
(3, 0), (4, 1), (5, 1), (6, 2), (7, 2), (6, 3), (7, 3), (7, 4), (8, 4), (7, 5), (8, 5), (8, 6),

(9, 6), (9, 7), (10, 7), (9, 8), (10, 8)
}
. (23)

Then the main theorem holds in all cases. If the characteristic of the ground field is not 2, then it suffices

to replace list (23) with

(d, g) ∈ {(3, 0), (4, 1), (6, 2), (6, 3), (7, 4), (7, 5), (8, 6), (9, 7), (9, 8)}. (24)

Proof. We will prove this by induction on d and g. By Lemma 4.5, it suffices to prove this when g ≤ 8.

If the characteristic is not equal to 2, then by Corollary 5.3, it suffices to check (semi)stability for the

smallest degree in each genus for which the main theorem asserts that the normal bundle is (semi)stable.

Similarly, if the characteristic is 2, it suffices to check (semi)stability for the two smallest degrees.

Note that, for rational curves of even degrees in characteristic 2, we have already established that the

normal bundles are unstable. Thus we do not need to include (4, 0) in our list (23). □

Remarks. (1) By Lemma 2.9, we already know semistability for (d, g) = (3, 0) and (4, 1). This

establishes the main theorem for curves of genus 0 in any characteristic, and for curves of genus 1 in

characteristic distinct from 2.

(2) The reason that the cases (6, 2) and (7, 4) appeared in our list (23) of remaining cases is that the

cases (5, 2) and (6, 4) were exceptions to the main theorem, and so our induction on the degree broke

down. In fact, one cannot degenerate such curves to the union of a Brill±Noether curve D of degree d −1

and genus g with a 1-secant line and apply Lemma 5.1 (even without applying Lemma 5.2); in both cases,

ND[2p → q] is unstable (if Q denotes the unique quadric containing D then ND/Q(−2p) ⊂ ND[2p → q]

is destabilizing).

7. Base cases: applications of gluing data

In this section, we establish those base cases appearing in Proposition 6.1 which can be studied using the

techniques of Section 5.

The case (d, g) = (5, 1). We degenerate to the union of an elliptic normal curve C with a 1-secant line.

By Lemma 5.1, it suffices to show NC [2u → v] is semistable, where u ∈ C and v ∈ P
3 are general. Fix a

quadric Q containing C , and specialize v to a general point on C . By Lemma 2.8, there are exactly two

points on C at which the fibers of NC→v and NC/Q meet transversely; specialize u to one of them. Then

applying (6) with k = 1 (by virtue of Lemma 2.8) to the normal bundle exact sequence (2) for C ⊂ Q, we
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see that NC [2u → v] fits in an exact sequence

0 → [NC/Q(−u) ≃ OC(2)(−u)] → NC [2u → v] → [NQ |C(−u) ≃ OC(2)(−u)] → 0,

so is semistable, as desired.

The cases (d, g) = (9, 7), (10, 7), (9, 8), and (10, 8). When (d, g) = (10, 7), or (10, 8), respectively,

we first degenerate the curve to the union of a general Brill±Noether curve C of degree 9 and genus 7 or 8,

respectively, and general 1-secant line M , meeting C at u. Choose a point v ∈ M ∖ u so M = uv. By

Lemma 5.1, it suffices to show that NC(u)[2u → v] is stable.

Therefore, in order to deal with all of our cases (d, g) ∈ {(9, 7), (10, 7), (9, 8), (10, 8)}, we begin

with a curve C of degree 9 and genus 7 or 8. We will degenerate C to the union of a general canonical

curve D (of degree 6 and genus 4) and a union R of rational curves meeting D quasitransversely at a

set 0 of 6 points (three general 2-secant lines when g = 7, and the union of a general 2-secant line with a

general 4-secant conic when g = 8, respectively):

D R

(d, g) = (9, 7)

D R

(d, g) = (9, 8)

Write Q for the unique quadric containing D. In both cases, the tangent lines to R at 0 are transverse

to Q, and so applying (6) with k = 0 to the normal bundle exact sequence (2) for D ⊂ Q, we see that the

restricted normal bundle ND∪R|D fits into a balanced exact sequence:

0 → [ND/Q ≃ OD(3)] → ND∪R|D → [NQ |D(0) ≃ OD(2)(0)] → 0. (25)

In particular, ND∪R|D is strictly semistable, and ND/Q gives a destabilizing line bundle.

Similarly, after specializing v to a point on D, Lemma 2.8 asserts that there are 4 points u on D

where the fibers ND→v|u and ND/Q |u coincide to first order. Specializing u to one of these points, and

applying (6) with k = 1, we again have a balanced exact sequence:

0 → ND/Q → ND∪R|D(u)[2u → v] → NQ |D(0) → 0. (26)

In particular, ND∪R|D(u)[2u → v] is strictly semistable, and ND/Q gives a destabilizing line bundle.

Let L be a line component of R, meeting D at p1 and p2 with p′
i ∈ Tpi

D ∖ pi , and denote by 3i the

plane spanned by p′
i and L . Then

ND∪R|L ≃ NL/31
(p1) ⊕ NL/32

(p2) ≃ OP1(2) ⊕OP1(2).
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Combining this with Lemma 4.2, the restriction of ND∪R (resp. ND∪R(u)[2u → v]) to each of the

components of R is also strictly semistable.

In particular, writing ν : D⊔R → D∪R for the normalization, any destabilizing subbundle F ⊂ ν∗ND∪R

(resp. F ⊂ ν∗ND∪R(u)[2u → v]) must be destabilizing on every component and agree at the points lying

over the nodes D ∩ R. The key observation is that, because ND/Q is a subbundle of ND as well, its fiber

at each of the points of 0 is exactly the subspace that does not smooth that node. On the other hand, if L

denotes a component of R which is a line, then any destabilizing O(2) has a fiber at one or more of the

nodes that fails to smooth it (otherwise it would be a subbundle of NL ≃ O(1)⊕O(1)). It thus remains

to show that ND/Q is the unique destabilizing subbundle of ND∪R|D (resp. ND∪R|D(u)[2u → v]), or

equivalently:

Lemma 7.1. The sequences (25) and (26) are nonsplit, i.e.,

H 0(ND∪R|D(−2)(−0)) = 0 and H 0(ND∪R|D(−2)(−0)(u)[2u → v]) = 0.

Proof. To show the desired vanishing, we degenerate two points of 0 together to a common point p on D:

p p

Let N denote the bundle obtained by gluing ND∪R|D∖p to ND(p)|D∖(0∖p) along the natural isomorphism

ND∪R|D∖0 ≃ ND(p)|D∖0 . By Section 2D, the bundles ND∪R|D (resp. ND∪R|D(u)[2u → v]) fit together

to form a bundle whose central fiber is the bundle N (resp. N (u)[2u → v]). It thus remains to show

H 0(N (−2)(−0)) = 0 and H 0(N (u)[2u → v](−2)(−0)) = 0.

To do this, we use the exact sequences coming from applying (6) (with k = 1 for the modification at u in

the second case) to the normal bundle sequence for D ⊂ Q:

0 → [ND/Q(p) ≃ OD(3)(p)] → N → [NQ |D(0 − p) ≃ OD(2)(0 − p)] → 0,

0 → [ND/Q(p) ≃ OD(3)(p)] → N (u)[2u → v] → [NQ |D(0 − p) ≃ OD(2)(0 − p)] → 0;

twisting these sequences by OD(−2)(−0) and taking global sections, it remains to check that

H 0
(
OD(1)(−(0 − p))

)
= H 0(OD(−p)) = 0.

This is clear since the five points of 0 − p = 0red are in linear general position. □
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8. Stability and degeneration, III: Limits of gluing data

As in the previous section, we again want to degenerate to reducible curves X ∪ Y where neither NX∪Y |X

nor NX∪Y |Y are necessarily stable, but the destabilizing subbundles on each component do not agree

at X ∩ Y . The fundamental difficulty we address in this section is that it is often difficult to compute

the destabilizing subbundles on each component without further degeneration. We therefore study the

agreement conditions at X ∩ Y as the points of X ∩ Y come together.

Let D be a Brill±Noether curve. Fix distinct points q, p11, . . . , p1r1
, p21, . . . , p2r2

∈ D. Let Ri be a

rational curve meeting D quasitransversely exactly at q, pi1, . . . , piri
, such that the tangent directions

at q to D, R1, and R2 span P
3:

R1 R2

D
q

p1 j

p2 j

Assume that both Ri satisfy Assumption 4.3. Using this assumption we may apply Lemma 4.4 to

show that there exists an étale neighborhood 1 = qi (t) of q ∈ D, which we normalize so q1(t) and q2(t)

have distinct derivatives at t = 0, and deformations Ri (t) of Ri , and pi j (t) of pi j , such that for t ∈ 1, the

rational curve Ri (t) meets D quasitransversely in qi (t), pi1(t), . . . , piri
(t):

Suppose that, for t ∈ 1∗ := 1∖ 0, the normal bundle ND∪R1(t)∪R2(t) is not stable. These bundles fit

together to form a vector bundle N̂ over 1∗. However, since D ∪ R1 ∪ R2 is not lci, its normal sheaf is

not a vector bundle; there is therefore no obvious way to extend N̂ over 1. Thus, extracting information

at the central fiber is subtle.

By the discussion in Section 2D, we may nevertheless extend the restriction N̂ |D to a bundle N on D×1

whose fiber N :=N |0 over 0 ∈1 is obtained from gluing ND∪R1∪R2
|D∖q to ND(q)|D∖{p11,...,p1r1

,p21,...,p2r2
}

along the natural isomorphism

ND∪R1∪R2
|D∖{q,p11,...,p1r1

,p21,...,p2r2
} ≃ ND|D∖{q,p11,...,p1r1

,p21,...,p2r2
} ≃ ND(q)|D∖{q,p11,...,p1r1

,p21,...,p2r2
}.

Write ν : D ⊔ R1(t) ⊔ R2(t) → D ∪ R1(t) ∪ R2(t) for the normalization map. Let L̂ ⊂ ν∗N̂ be a

destabilizing line bundle, i.e., which satisfies µadj(L̂) ≥ µ(N̂ ). Let ℓD, ℓ1, and ℓ2 denote the slopes of

the restriction of L̂ to D, R1(t), and R2(t), and c denote the number of nodes of D ∪ R1(t)∪ R2(t) above

which the fibers of L̂ do not coincide (for t ∈ 1∗). Since being perfectly balanced is open, Assumption 4.3
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implies that the N̂ |Ri (t) are perfectly balanced. We therefore have

ℓi ≤ µ(N̂ |Ri (t)) and c ≥ 0, (27)

but

µadj(L̂) = ℓ1 + ℓ2 + ℓD − c ≥ µ(N̂ |R1(t)) + µ(N̂ |R2(t)) + µ(N̂ |D).

If ℓD > µ(N̂ |D), i.e., N ∗ = N̂ |D is unstable, then N is unstable by Proposition 2.3. Thus either

(i) N is unstable, or

(ii) (27) is an equality Ð i.e., ℓi = µ(N̂ |Ri (t)) and c = 0 Ð and ℓD = µ(N ).

In case (ii), our first task is to translate the condition that (27) is an equality to information about the

restriction L∗ = L̂|D . (The condition that ℓD = µ(N ) already concerns L∗.) To do this, observe that since

the N̂ |Ri (t) are perfectly balanced, we have a canonical isomorphism

ϕ∗
i j : PN

∗|qi (t)
∼−→ PN

∗|pi j (t) for t ∈ 1∗.

Writing L∗ = L̂|D , the condition that (27) is an equality then implies that

L
∗|pi j (t) = ϕ∗

i j (L
∗|qi (t)) for t ∈ 1∗. (28)

By Proposition 2.3, we can extend L∗ across the central fiber to a subbundle L ⊂ N , and consider

the restriction L := L|0 ⊂ N to the central fiber. Our second task is to figure out what (28) implies

for L . (Figuring out what ℓD = µ(N ) implies for L is easy: since µ is constant in flat families, it implies

µ(L) = µ(N ).)

To do this, we observe that the bundles ND∪Ri (t) fit together to form bundles N̂ i over 1 (including

over t = 0). Writing Ni = N̂ i |D , there are natural inclusions Ni ⊂N , which are isomorphisms away from

Rī (t)∩ D (here ī = 3 − i denotes the other index) Ð so in particular at qi (t) for t ̸= 0, and at pi j (t) for

all t . This inclusion induces a birational isomorphism on projectivizations PNi 99K PN . The advantage

to working with Ni is that N̂ i |Ri (t) is perfectly balanced, so we obtain regular maps defined over 1 (in

particular for t = 0),

ϕi j : PNi |qi (t)
∼−→ PNi |pi j (t) for t ∈ 1,

that are compatible with the ϕ∗
i j in the sense that the following diagram commutes:

PNi |qi (t) PNi |pi j (t)

PN |qi (t) PN |pi j (t)

ϕi j

ϕ∗
i j

We now restrict to the graph of qi (t). Then the map Ni ⊂ N drops rank exactly over t = 0. Its kernel

at t = 0 is the one-dimensional subspace Di ⊂ ND∪Ri
|q corresponding to sections that fail to smooth the

node at q, and its image is given by the one-dimensional subspace of Fi ⊂ N |q corresponding to the
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tangent direction of Ri at q. The rational map PNi 99K PN is thus obtained by blowing up at Di , and

contracting the proper transform of the fiber over q to Fi :

PNi |qi (t) Di Fi PN |qi (t)

The line subbundle L|qi (t) ⊂N |qi (t) defines a section of PN |qi (t) and (by curve-to-projective extension)

of PNi |qi (t); if the first of these sections does not pass through Fi , then the second must pass through Di .

Combining this with (28), when we pass to the central fiber, the fibers of L at the pi j can sometimes be

described in terms of

Di j := ϕi j (Di ).

Namely, by our assumption that the tangent directions to D, R1, and R2 span P
3, the subspaces F1

and F2 are disjoint. The fiber L|q ⊂ N |q thus either

(a) coincides with neither F1 nor F2, in which case L|pi j
= Di j ;

(b) coincides with F1 but not F2, in which case L|p2 j
= D2 j and L|q = F1;

(c) coincides with F2 but not F1, in which case L|p1 j
= D1 j and L|q = F2.

The upshot of this is the following lemma.

Lemma 8.1. With the above notation, if

every line subbundle of. . . has slope. . .

N ≤ µ(N ),

N [pi j → Di j ] < µ(N ),

N [q → F1][p2 j → D2 j ] < µ(N ),

N [q → F2][p1 j → D1 j ] < µ(N ),

then ND∪R1(t)∪R2(t) is stable, for t ∈ 1 generic. In particular, if these four vector bundles are merely

semistable, then ND∪R1(t)∪R2(t) is stable for t ∈ 1 generic.

Now suppose that Ri is a 2-secant line (meeting D at q and pi1), and write q ′ ∈ Tq D ∖ q and

p′
i1 ∈ Tpi1

D∖ pi1 for points on the tangent lines to D at q and pi1 respectively. Then we have the explicit

decomposition (see Example 2.6)

ND∪Ri
|Ri

≃ NRi →q ′(q) ⊕ NRi →p′
i1
(pi1) ≃ OP1(2)⊕2. (29)
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In particular, we see that Assumption 4.3 is satisfied. Moreover, we may use this decomposition to

compute the subspace Di1: In terms of (29),

Di = NRi →p′
i1
(pi1)|q ⇒ Di1 = NRi →p′

i1
(pi1)|pi1

.

To describe this in a way that is compatible with the isomorphism

ND∪Ri
|D ≃ ND(q + pi1)[q → pi1][pi1 → q],

we apply Lemma 8.4 of [Atanasov et al. 2019], which states that under this isomorphism we have

Di1 = ND→q(pi1)|pi1
⊂ ND(q + pi1)[q → pi1][pi1 → q]|pi1

. (30)

When both R1 and R2 are 2-secant lines, we have N ≃ ND[p11 → q][p21 → q]. Substituting in the Di1

given in (30), Lemma 8.1 thus gives:

Corollary 8.2. If R1 and R2 are 2-secant lines, and the bundles

(a) ND[p11 → q][p21 → q],

(b) ND[2p11 → q][2p21 → q],

(c) ND[p11 → q][q → p11][2p21 → q], and

(d) ND[2p11 → q][p21 → q][q → p21]

are all semistable, then ND∪R1(t)∪R2(t) is stable for t ∈ 1 generic.

Remark. Since (d) is obtained from (c) by permuting p21 and p11, it suffices to prove semistability

of (a)±(c).

Now suppose only that R1 is a 2-secant line. Applying Lemma 8.1, the stability of ND∪R1(t)∪R2(t)

for t ∈ 1 generic follows from the assertions that:

every line subbundle of. . . has slope. . .

N ≤ µ(N ),

N [p11 → q][p2 j → D2 j ] < µ(N ),

N [q → p11][p2 j → D2 j ] < µ(N ),

N [q → F2][p11 → q] < µ(N ).

This follows in turn from the assertion that

N [p11 → q] and N [q → p11]

are stable. We therefore have:

Corollary 8.3. Suppose that R1 is a 2-secant line, and write p′
2 j ∈ Tp2 j

R2 ∖ p2 j for points on the tangent

lines to R2 at the p2 j . If the bundles

(a) ND[p2 j → p′
2 j ][2p11 → q] and

(b) ND[p2 j → p′
2 j ][p11 → q][q → p11]

are both stable/semistable, then ND∪R1(t)∪R2(t) is stable for t ∈ 1 generic.
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The bundles ND[p2 j → p′
2 j ][2p11 → q] and ND[p2 j → p′

2 j ][p11 → q][q → p11] appearing in

Corollary 8.3 are rank 2 vector bundles of odd degree, and hence stability is equivalent to semistability.

9. Base cases: applications of limits of gluing data

The cases (d, g) = (7, 2), (6, 3), (7, 3), (7, 4), (8, 4), and (8, 5). In these cases, we degenerate to the

union of a general Brill±Noether D curve of degree d − 2 and genus g − 2, a 2-secant line R1 through

general points q and p11, and a 2-secant line R2 through q and another general point p21:

R1R2

q

p21
p11

D

Then R1 and R2 satisfy Assumption 4.3, and so by Lemma 4.4, the union D ∪ R1 ∪ R2 deforms to the

union of D and two general 2-secant lines, which by Lemma 2.10(ii) is a Brill±Noether curve of degree d

and genus g. By Corollary 8.2, it suffices to check that the three bundles (a)±(c) there are semistable

when D is a general curve of degree d − 2 and genus g − 2.

The case (d, g) = (7, 2). Here D is of degree 5 and genus 0. We further degenerate D to the union of a

general rational normal curve C (i.e., degree 3 and genus 0) and two general 1-secant lines u1, v1 and

u2, v2 meeting C at u1 and u2 respectively. By Lemma 5.1, it therefore suffices to show that the bundles

(a) NC [p11 → q][p21 → q][2u1 → v1][2u2 → v2], and

(b) NC [2p11 → q][2p21 → q][2u1 → v1][2u2 → v2], and

(c) NC [p11 → q][q → p11][2p21 → q][2u1 → v1][2u2 → v2]

are semistable. Limiting u1 to p11 and u2 to p21 (see the discussion in Section 2D), we obtain

(a) NC(−p11 − p21)[p11 → v1][p21 → v2],

(b) NC(−2p11 − 2p21),

(c) NC(−p11 − 2p21)[p11 → v1][q → p11].

After further limiting p11 to p21 in (a) (resp. q to p11 in (c)), and using the fact that NC→v1
|p11

is a general

subspace, these bundles all specialize to twists of NC , and are therefore semistable.

The cases (d, g) = (6, 3) and (7, 3). If (d, g) = (6, 3), then D is of degree 4 and genus 1. For uniformity

of notation, we write C = D.

If (d, g) = (7, 3), then D is of degree 5 and genus 1. We further degenerate D to the union of a

general Brill±Noether curve C of degree 4 and genus 1, with a general 1-secant line M meeting C at u.

Write v ∈ M ∖ u for another point on M . By Lemma 5.1, in these cases it suffices to prove semistability

of the bundles in Corollary 8.2(a)±(c) with the extra modification [2u → v].
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Combining these cases, it suffices to show that the following 6 bundles on C are semistable:

(a) NC [p11 → q][p21 → q] and NC [2u → v][p11 → q][p21 → q],

(b) NC [2p11 → q][2p21 → q] and NC [2u → v][2p11 → q][2p21 → q],

(c) NC [p11 → q][q → p11][2p21 → q] and NC [2u → v][p11 → q][q → p11][2p21 → q].

Lemma 9.1. Let C be an irreducible curve, and u, v, p11, p21, q be general points on C. Suppose that

the following bundles are semistable:

(1) NC [2p11 → q],

(2) NC [2p11 → q][2p21 → q],

(3) NC [p11 → q][q → p11][2p21 → q].

Then all of the following bundles are also semistable:

(a) NC [p11 → q][p21 → q],

(b) NC [p11 → q][p21 → v],

(c) NC [2u → v][p11 → q][p21 → q],

(d) NC [2u → v][2p11 → q][2p21 → q],

(e) NC [2u → v][p11 → q][q → p11][2p21 → q],

(f) NC [u → v][v → u][p11 → q][p21 → q],

(g) NC [u → v][v → u][2p11 → q][2p21 → q],

(h) NC [u → v][v → u][2p11 → q][p21 → q][q → p21].

Proof. We argue by specializing the various points on C , to reduce to twists of bundles that we already

assumed or proved were semistable:

(a) specializing p21 to p11, the resulting bundle is NC [2p11 → q], i.e., (1);

(b) specializing v to q , the resulting bundle is NC [p11 → q][p21 → q], i.e., (a);

(c) specializing u to p21, the resulting bundle is NC [p11 → q][p21 → v](−p21) Ð see (b);

(d) specializing u to p21, the resulting bundle is NC [2p11 → q](−2p21) Ð see (1);

(e) specializing u to q , the resulting bundle is NC [p11 → q][q → v][2p21 → q](−q), and then special-

izing v to p11, the resulting bundle is NC [p11 → q][q → p11][2p21 → q](−q) Ð see (3);

(f) specializing u to p21, the resulting bundle is NC [p11 → q][v → p21](−p21), and exchanging v

and p21, this is NC [p11 → q][p21 → v](−v) Ð see (b);

(g) specializing v to p21, the resulting bundle is NC [u → p21][2p11 → q][p21 → q](−p21), and then

specializing u to p11, the resulting bundle is NC [p11 → q][p21 → q](−p11 − p21) Ð see (a);

(h) specializing v to p11, the resulting bundle is NC [u → p11][p11 → q][p21 → q][q → p21](−p11),

and then specializing u to q , the resulting bundle is NC [p11 → q][p21 → q](−p11 −q) Ð see (a). □
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Applying Lemma 9.1(a)(c)(d)(e), and using (2) and (3) directly, it remains only to show that the three

bundles (1)±(3) are semistable.

Let Q be a quadric containing C . In cases (1) and (3), specialize p11 to one of the two points guaranteed

by Lemma 2.8 for the point q ∈ C ; in case (2), specialize both p11 and p21 to the two points guaranteed

by Lemma 2.8 for the point q ∈ C . After these specializations, the inclusion C ⊂ Q induces normal

bundle exact sequences for the modified bundles (1), (2), and (3):

0 → NC/Q(−p11) → NC [2p11 → q] → NQ |C(−p11) → 0,

0 → NC/Q(−p11 − p21) → NC [2p11 → q][2p21 → q] → NQ |C(−p11 − p21) → 0,

0 → NC/Q(−2p21) → NC [p11 → q][q → p11][2p21 → q] → NQ |C(−p11 − q) → 0.

These sequences are balanced because µ(NC/Q) = 8 = µ(NQ |C), so this establishes the semistability of

the modified bundles in (1), (2), and (3), as desired.

The cases (d, g) = (7, 4), (8, 4), and (8, 5). If (d, g) = (7, 4), then D is of degree 5 and genus 2. For

uniformity of notation, we write C = D.

If (d, g) = (8, 4), then D is of degree 6 and genus 2. We further degenerate D to the union of a

general Brill±Noether curve C of degree 5 and genus 2, with a general 1-secant line M meeting C at u.

Write v ∈ M ∖ u for another point on M . By Lemma 5.1, in these cases it suffices to prove semistability

of the bundles in Corollary 8.2(a)±(c) with the extra modification [2u → v].

If (d, g) = (8, 5), then D is of degree 6 and genus 3. We further degenerate D to the union of a

general Brill±Noether curve C of degree 5 and genus 2, with a general 2-secant line M meeting C

at u and v. Since NC∪L |L ≃ OL(2) ⊕OL(2) is semistable, it suffices to show that each of the bundles

in Corollary 8.2(a)±(c) are semistable when restricted to C , i.e., it suffices to prove semistability of the

bundles in Corollary 8.2(a)±(c) with the extra modification [u → v][v → u].

Combining these cases, we have to check the semistability of 9 modifications of NC . Applying

Lemma 9.1(a)(c)(d)(e)(f)(g)(h), and using (2) and (3) directly, it suffices to check that the three modifica-

tions (1), (2), and (3) are semistable for C a general curve of degree 5 and genus 2.

Let Q be the unique quadric containing C . In all cases, specialize p21 to one of the three points

on C guaranteed by Lemma 2.8 for which NC→q |p21
and NC/Q |p21

coincide to first order. Then after

these specializations, the inclusion C ⊂ Q induces the following normal bundle exact sequences for the

modified bundles in (1), (2), and (3):

0 → NC/Q(−2p11) → NC [2p11 → q] → NQ |C → 0,

0 → NC/Q(−2p11 − p21) → NC [2p11 → q][2p21 → q] → NQ |C(−p21) → 0,

0 → NC/Q(−p11 − p21 − q) → NC [p11 → q][q → p11][2p21 → q] → NQ |C(−p21) → 0.

These sequences are balanced because µ(NC/Q) = 12 and µ(NQ |C) = 10, so this establishes the semista-

bility of the modified bundles in (1), (2), and (3), as desired.
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The cases (d, g)= (8, 6) and (9, 6). In these cases, we degenerate to the union of a general Brill±Noether

curve D of degree d − 3 and genus g − 4 = 2, a general 2-secant line R1, meeting D quasitransversely

precisely at q and p11, a general 4-secant conic R2, meeting D quasitransversely precisely at q , p21, p22,

and p23:

R1

p11

p21

q

p22

p23

D

R2

Then R1 and R2 satisfy Assumption 4.3, and so by Lemma 4.4, the union D ∪ R1 ∪ R2 deforms to the

union of D, a 2-secant line, and a 4-secant conic, which by Lemma 2.10(ii) and (iii) is a Brill±Noether

curve of degree d and genus g. By Corollary 8.3, it suffices to check that the two bundles

(a) ND[p21 → p′
21][p22 → p′

22][p23 → p′
23][2p11 → q] and

(b) ND[p21 → p′
21][p22 → p′

22][p23 → p′
23][p11 → q][q → p11]

are stable when D is a general curve of degree d − 3 and genus 2. Limiting p11 to p21, these bundles fit

into families whose central fibers are

(a) ND[p22 → p′
22][p23 → p′

23][p21 → q],

(b) ND[p22 → p′
22][p23 → p′

23][q → p21].

These bundles are symmetric under exchanging p21 and q , so it suffices to show the stability of the first

bundle.

If (d, g) = (8, 6), then D is of degree 5 and genus 2; in this case, for uniformity of notation, we write

C = D, so our problem is simply to show the stability of the bundle

NC [p22 → p′
22][p23 → p′

23][p21 → q]. (31)

If (d, g) = (9, 6), then D is of degree 6 and genus 2. We further degenerate D to the union of a general

Brill±Noether curve C of degree 5 and genus 2, with a general 1-secant line M meeting C at u. Write

v ∈ M∖u for another point on M . By Lemma 5.1, in these cases it suffices to prove stability for the bundle

NC [p22 → p′
22][p23 → p′

23][p21 → q][2u → v].

Limiting u to p21 reduces the stability of this bundle to the stability of

ND[p22 → p′
22][p23 → p′

23][p21 → v],

and subsequently limiting v to q reduces its stability to the stability of (31).

All that remains is thus to show that (31) is stable. The normal bundle exact sequence for the inclusion

of C in the unique quadric Q containing it gives rise to the exact sequence

0 → NC/Q(−p21 − p22 − p23) → NC [p22 → p′
22][p23 → p′

23][p21 → q] → OC(2) → 0. (32)
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These bundles have slopes 9, 9.5, and 10, respectively; hence it suffices to show that this sequence is

nonsplit, i.e., that

H 0(NC(−2)[p22 → p′
22][p23 → p′

23][p21 → q]) = 0.

By Lemma 3.1, all sections of NC(−2) come from H 0(NC/Q(−2)), which has dimension 2. After

imposing three negative modifications out of the quadric at general points, we therefore have no global

sections, as desired.

10. Curves of degree 6 and genus 2

This case was done by Sacchiero [1983]. For completeness, we provide a characteristic-independent

proof here. We shall need the following lemma:

Lemma 10.1. Let E be a vector bundle on a smooth curve C sitting in an exact sequence

0 → L1 → E → L2 → 0,

where L1 and L2 are line bundles. If µ(L2) = µ(L1) + 2, and

Hom(L2(−p), E) ≃ H 0(E ⊗ L∨
2 (p)) = 0

for all p ∈ C , then E is stable.

Proof. Let φ : F ↪→ E be a line subbundle (which recall is always assumed to be saturated). Then either φ

factors through L1 ↪→ E , in which case F ≃ L1 is not destabilizing, or projection from E to L2 gives a

nonzero map F → L2.

In the second case, F ≃ L2(−p1 −· · ·− pn). Since Hom(L2(−p), E) = 0 for all p ∈ C by assumption,

but Hom(L2(−p1 − · · · − pn), E) ̸= 0, we must have n ≥ 2. Therefore

µ(F) = µ(L2) − n = µ(E) − n + 1 < µ(E). □

Now let C be a general Brill±Noether curve of degree d = 6 and genus g = 2. Since d > g + r ,

our curve C is a projection of a general Brill±Noether curve C̃ ⊂ P
4; by Lemma 13.2 and the proof of

Proposition 13.5 of [Atanasov et al. 2019], C̃ is a quadric section of a cubic scroll. Thus, C lies on a

cubic surface S singular along a line (the projection of the cubic scroll), and the normal bundle exact

sequence for C in S gives

0 → OC(2) → NC/P3 → L → 0, (33)

for some line bundle L . Taking the second wedge power, we have

OC(2) ⊗ L ≃
∧2

NC/P3 = KC(4).

Thus L ≃ KC(2). We have µ(OC(2)) = 12 and µ(KC(2)) = 14, so by Lemma 10.1, it suffices to show

for any p ∈ C ,

H 0(NC(−2) ⊗ K ∨
C (p)) = 0.
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Let q ∈ C be conjugate to p under the hyperelliptic involution on C , so K ∨
C (p) ≃ OC(−q) and we must

show H 0(NC(−2)(−q)) = 0. As NC/S(−2) ≃ OC has one nowhere-vanishing section, it suffices to show

NC/S(−2) ↪→ NC(−2) is surjective on global sections; i.e., that h0(NC(−2)) = 1.

We now prove this by degeneration. (We could not degenerate first, since our desired degeneration

would break the exact sequence (33).) Namely, we degenerate C to the union D ∪u L of a general curve D

of degree 5 and genus 2, and a general 1-secant line L meeting at the point u. Let v be a point on L away

from u. By [Atanasov et al. 2019, Lemma 8.5], it suffices to show h0(ND(−2)(u)[2u → v]) = 1.

Let Q be the unique quadric containing D. By Lemma 3.1, H 0(ND(−2)) is 2-dimensional. When we

twist up by u, we have an exact sequence

0 → ND/Q(−2)(u) → ND(−2)(u) → OD(u) → 0.

As ND/Q(−2)(u) ≃ K D(u) has exactly a 2-dimensional space of global sections and vanishing H 1, the

associated long exact sequence in cohomology gives h0(ND(−2)(u)) = 3. Consequently, the image of

the evaluation map

H 0(ND(−2)(u)) → ND(−2)(u)|u

is a 1-dimensional subspace of the fiber at u. Since the line L is general, the fiber ND→v|u will not

coincide with this 1-dimensional subspace. Therefore, the inclusion ND(−2) ⊂ ND(−2)(u)[u → v]

induces an isomorphism on global sections. Combining this with Lemma 3.1, the inclusion

ND/Q(−2) ⊂ ND(−2)(u)[u → v]

also induces an isomorphism on global sections. Modifying once more towards v, and noting that the

generality of v guarantees that ND→v and ND/Q are transverse at u, we conclude that ND/Q(−2)(−u) ⊂

ND(−2)(u)[2u → v] induces an isomorphism on global sections. Thus

h0(ND(−2)(u)[2u → v]) = h0(ND/Q(−2)(−u)) = h0(K D(−u)) = 1.

11. Curves of degree 7 and genus 5

In this section, for completeness, we recall the argument of Ballico and Ellia [1984] that shows that if C

is a nonhyperelliptic and nontrigonal space curve of degree 7 and genus 5, then NC is stable. Equivalently,

they show that N∨
C (3) is stable. The bundle N∨

C (3) has degree 6, hence we need that it does not admit a

line bundle of degree 3 or more. Let

0 → L → N∨
C (3) → M → 0

be a destabilizing sequence. An elementary Riemann±Roch calculation shows that h0(IC(3)) ≥ 3,

where IC denotes the ideal sheaf of C in P
3. Since there cannot be a cubic surface double along a curve

of degree 7, the long exact sequence associated to the exact sequence

0 → I
2
C(3) → IC(3) → N∨

C (3) → 0
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shows that the image of

h : H 0(IC(3)) → H 0(N∨
C (3))

has dimension at least 3. Consequently,

dim(H 0(L) ∩ im(h)) + dim(H 0(M)) ≥ 3.

If the degree of L is at least 3, then the degree of M is at most 3. Since the curve is not trigonal

or hyperelliptic, we conclude that h0(M) ≤ 1. Hence, dim(H 0(L) ∩ im(h)) ≥ 2. Thus, there are two

cubics in the ideal of C whose image in N∨
C (3) lie in the same line subbundle L . Hence, these cubics are

everywhere tangent along C . By Bézout’s theorem, these cubic surfaces intersect in a curve of degree 9

and cannot be tangent along a curve of degree 7. Consequently, N∨
C (3) cannot have a line subbundle of

degree 3 or more and is stable.

This completes the proof of the main theorem.
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