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ABSTRACT. Recent work of Kass—Wickelgren gives an enriched count of the 27 lines on a smooth
cubic surface over arbitrary fields. Their approach using A'-enumerative geometry suggests that
other classical enumerative problems should have similar enrichments, when the answer is computed
as the degree of the Euler class of a relatively orientable vector bundle. Here, we consider the closely
related problem of the 28 bitangents to a smooth plane quartic. However, it turns out the relevant
vector bundle is not relatively orientable and new ideas are needed to produce enriched counts. We
introduce a fixed “line at infinity,” which leads to enriched counts of bitangents that depend on
their geometry relative to the quartic and this distinguished line.

1. INTRODUCTION

Let k be a field of characteristic different from 2. Over k, it is a beautiful and classical result
of Jacobi [5] that for any smooth plane quartic curve @ < IP’%, there exist exactly 28 distinct lines
L c IP’% that are bitangent to ). The 28 bitangent lines in IP’% are intimately connected with the
geometry of ). As @ is a canonically-embedded genus 3 curve, each bitangent gives an effective
divisor D on @ such that 2D is linearly equivalent to the canonical divisor Kg. In this way, the
28 bitangent lines correspond to the 28 odd theta characteristics of the genus 3 curve Q). As a set,
the bitangent lines in ]P’% also completely determine the curve [2].

Over non-algebraically closed fields k, the situation is more subtle. For example, over R, Zeuthen
proved that every smooth plane quartic has at least 4 real bitangents [17], but depending upon the
real topology of the quartic, it can have in total either 4, 8, 16, or 28 real bitangents. The real
bitangents play an important role in [14], which studies the representations of real plane quartic
equations as sums of squares.

The 28 bitangents of a smooth plane quartic are closely related

to the 27 lines on a smooth cubic surface. Indeed, projection
from a point p not contained on a line on the cubic surface gives @ @
a degree 2 map to P? branched over a plane quartic curve; the
images of the 27 lines and the tangent plane section at p give
the 28 bitangents to this branch curve. Over R, a smooth cubic
surface can have 3,7, 15, or 27 real lines. Segre observed that each
real line can be given a sign that distinguishes its real geometry in
the cubic (interpreted topologically in [I]); Finashin—Kharlamov
[4] and Okonek—Teleman [I3] prove that, independent of the total M
number of real lines, the corresponding signed count is always 3.
Given the intimate relationship between the 28 bitangents to a ﬁ ?
plane quartic and these 27 lines, it is natural to ask: Can we
associate a sign to each bitangent that captures its real geometry
relative to the quartic and gives rise to a constant signed count?
We present an answer to this question.

The 28 real bitangents to the
Trott curve colored by sign.
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by the Hertz Foundation and NSF GRFP under grant DGE-1656518.
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Our approach is to study the bitangents problem over arbitrary fields k& in the context of
Al-enumerative geometry. Generalizing the signed count of Finashin-Kharlamov and Okonek—
Teleman, Kass—Wickelgren give an enriched count of 27 lines on a smooth cubic surface over k
valued in the Grothendieck-Witt group of k [6]. This comes from an enrichment of the Euler class
of a rank 4 vector bundle on the Grassmannian G(1, 3) of lines in P3. Similarly, the classical count
of 28 bitangents can be found as the degree of the Euler class of a rank 4 vector bundle on the space
of lines L in P? together with a degree 2 subscheme Z — L. However, the this vector bundle is not
relatively orientable, and so the machinery of Kass—Wickelgren giving a constant enriched count
breaks down. The bitangents problem therefore serves as a testing ground for using enrichment
techniques on problems that are not relatively orientable.

A first example of an enriched count is the signed count of real zeros of a polynomial over R,
weighted by the sign of the derivative. A polynomial of even degree always has the same number
of roots with positive sign as negative sign; therefore the overall signed count is always 0. When a
polynomial has odd degree, the answer depends on the sign of the leading term of the polynomial.
When it is positive, the overall signed sum is +1, and when it is negative, the overall signed sum
is —1.

The constant count in the even degree case is explained by the existence of a relative orientation
for the relevant line bundle on P!, which does not exist in the odd degree case (see Example [2.1)).
Nevertheless, the count in the odd degree case is constrained to a limited number of possible values,
that imply, in particular, that any odd degree polynomial has at least one real root.

Our basic observation is that even if a vector bundle is not relatively orientable over the entire
base, it always is away from a suitable divisor. This gives rise to the notion of “relatively orientable
relative to a divisor”, which we explore in Section 2] We hope that the techniques developed there
will be useful when studying other enumerative problems that lack relative orientations. After
discussion with the authors, these ideas have already found application in the forthcoming work
of McKean on enriching Bezout’s Theorem when intersecting curves in P? whose degrees have the
same parity [11].

For the bitangents problem, our divisor comes from a choice of line Lo, in ]P’i and leads us to
consider only quartics all of whose bitangent lines do not meet it along L.,. The space of such
quartics is not Al-connected, so the standard enrichment techniques do not give a constant count.
Over R, the space is not even connected in the real topology. In Section we provide examples
attaining different counts over R. Just as in the case of zeros of an odd degree polynomial, we
observe that the (changing) count nevertheless contains meaningful geometric information and
prove that it is constrained. Finally, we relate our enriched counts of bitangents to the lines on a
cubic surface by choosing Ly, to be one of the bitangents. Our construction then specializes to give
a constant count of the 27 remaining bitangents, which is equal to the Kass—Wickelgren count of
lines on a cubic surface, over any ground field.

1.1. The type of a bitangent. When working over non-algebraically closed fields, by a line in
P? we mean a closed point [L] of P2". We write k(L) for the residue field of the point [L]. For an
extension K /k, when we wish to specify a rational point of }P’%{V, we refer to the line as “defined
over K”.
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The type of a bitangent defined over K will be an element of the Grothedieck-Witt ring GW (K).
Given a € K*, we denote by {a) the equivalence class of the binary quadratic form (z,y) — axy.
Note that the isomorphism class of this binary quadratic form depends only on the class of a €
K*/(K*)2. Since R*/(R*)? ~ {£1}, over R, {a) depends only on the sign of a and counts in GW(R)
are the same as signed counts (assuming one knows the number of zeros over C).

Over R, the Qtype of a bitangent relative to a fixed real line at infinity Lo, will measure the
following geometric phenomenon. A line L # Ly, partitions A%2(R) = P?(R) \. Lo (R) into two
connected components in the real topology. The affine equations for the quartic () and line L allow
us to choose a pair of consistent normal vectors to @ at the points of bitangency with L. If the
two normal vectors lie in the same component, then Qtype; (L) = (1) € GW(R). If they lie in
different components, then Qtype; (L) ={(-1)e GW(R).

Qtyper,, (L) = (1) Qtyper,, (L) = (1)

Because the rank and signature induce an isomorphism GW(R) ~ Z @ Z, there is no difference
between a signed count over R, and a count valued in GW(R). However, we define the Qtype of
a real bitangent as an element of GW(R) to set the stage for our more general definition. In the
picture on page 1, relative to the line Lo, = V(z), the 16 red bitangent lines are type (1), and the
12 blue bitangent lines are type (—1).

A real bitangent is called split if its points of tangency are defined over R. Our Qtype will
always be (1) for non-split bitangents, and can be (1) or (—1) for split bitangents, depending on
the relative geometry of the contact with the quartic and the line at infinity.

Remark 1.1. In a different direction, Klein [7] gives a constant signed count of flexes plus non-split
bitangents:

8 = #{real flexes} + 2#{real non-split bitangents}
= #{real cusps of the dual curve} + 2#{real non-split nodes of dual curve}.

Notice Klein’s formula does not count split bitangents. For a modern treatment see [16, [I8], 19]

and [20, Thm. 7.3.7].

More generally, given a line L < IP’%{ defined over K, write 0, for a derivation with respect to a
linear form over K vanishing along L; note that this is only well-defined up to multiplication by
scalars in K. Suppose we have fixed a line Lo defined over k, and we are given a homogeneous
polynomial f and a degree 2 subscheme Z = z; + zo < L defined over K such that Z n Ly, = .
By 0rf(z1) - 0 f(22) we mean to evaluate this quantity using some choice of d;, and some choice
of affine equation for f on A%( = IP)%( N Lo. If the z; are defined over a quadratic extension K'/K,
then 01, f(z1) and 0 f(22) are elements of K’ that are Galois conjugate over K. In any case, the
product 0 f(z1) - 0 f(22) will be a well-defined element of K /(K*)2.

Definition 1.2. Suppose that f is a homogeneous degree 4 polynomial in k[y;,ys2,y3] defining a
smooth plane quartic V(f). Let L be a line with residue field K that is bitangent to V(f) with
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2Z =V(f)nLand Zn Ly = & for Z = z1 + 29 a degree 2 divisor on L. We define the type of
the bitangent L relative to Ly to be

Qtyper,, (L) = (0 f(21) - dLf(22)) € GW(K).

By slight abuse of notation, given a closed point L of IP’%V with residue field K, we take Qtype;_ (L)
to mean Qtypey (L') for L' any line in the base change of Li (which is a Galois orbit of lines
defined over K). Then Try)/, Qtyper (L) is a well-defined element of GW (k).

1.2. Statement of results. Failure of orientability manifests itself in the dependence of this type
on the line at infinity. Nevertheless, when the ground field is R, we obtain constant signed counts
for those quartics that do not meet the line at infinity over R. The real points of such curves are
compact quartics in the affine plane P? \. L.

Theorem 1. Fiz a line Ly, defined over R. If Q does not meet Lo, over R, then
" (Teal bitangents with) B ( real bitangents with) 4
Qtypey,, (L) = (1) Qtypey,, (L) = {(=1) ’
and therefore
> Tryzyn Qtyper,, (L) = 16¢1) + 12(~1).

lines L bitangent to Q

Remark 1.3. Theorem [I| immediately implies that if the real points of () form a compact quartic
in an affine plane R?, then @ has at least 4 real bitangent lines. By [I5], such an affine plane exists
for every smooth plane quartic; however, this proof presuposes the existence of one real bitangent.

We will see in Section that moving the line at infinity can change the signed count. Code
available at [I0] computes all signed counts that can be realized for a fixed quartic by varying
Ly. In Proposition we prove that the signed count is always nonnegative. Further, based on
a randomized search of over 10000 quartics — using code from [I4] to generate quartics of each
topological type — we conjecture that the signed count is always at most 8.

Conjecture 2. Let () be a smooth plane quartic defined over R, and let Ly, IP)%Q be a line defined
over R such that L n Q N Lo = @ for all bitangents L. Then

(Teal bitangents with) ( real bitangents with

Qtyper,, (L) =<1) Qtyper,, (L) = {(=1)

Finally, over any ground field &, if the line at infinity is chosen to be one of the bitangents, then
the remaining 27 have a constant enriched count relative to the distinguished one.

) € {0,2,4,6,8}.

Theorem 3. Let Q) be a smooth plane quartic defined over k and let Lo be a bitangent to () defined
over k. Then

> Try )k Qtyper, (L) = 15(1) + 12(—1) e GW (k).
lines L bitangent to Q
L#Lo
Remark 1.4. Both theorems apply over R when L, is a non-split bitangent. In this case, taking
the trace in Theorem [3] gives a signed count of 3 for bitangents other than L.,. Non-spit bitangents
always have type (1), so if Ly, is counted too then we recover Theorem

Remark 1.5. During the preparation of this paper, V. Kharlamov, R. Rasdeaconu, and S. Finashin
informed us of a related signed count. Instead of real bitangents to a smooth plane quartic, they
consider real lines on a real del Pezzo surface Y that is the double cover of the projective plane
branched over the quartic, so that each real bitangent is replaced by two such lines. Their signed
count of real lines on Y uses an appropriate Pin™ structure and, for instance, attributes opposite
signs to two real lines covering the same real bitangent. Thus, the signed count of all the real lines
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on Y is zero. However, the partial sum over all the real lines intersecting a fixed line with odd
multiplicity (including itself) is equal to +4 (which gives another explanation of the existence of at
least 4 real bitangents to a smooth plane quartic).

Acknowledgements. Thanks to Jesse Kass and Kirsten Wickelgren for many insightful conver-
sations, comments on several drafts of this article, and for advising the A'-enumerative geometry
problem session at the the 2019 Arizona Winter School. We are grateful to the organizers, funders,
and other participants — in particular Ethan Cotterill, Ignacio Darago, and Changho Han — of
the Winter School for fostering the stimulating environment that inspired this work. We also thank
Sam Payne and Hannah Markwig for introducing us to the grouping of bitangents by avoidance
locus, which is a key idea in the proof of Proposition

2. RELATIVE ORIENTABILITY RELATIVE TO A DIVISOR

Many classical enumerative questions are solved by counting the zeros of sections of a vector
bundle on a projective variety. If a section o of a rank n vector bundle £ on an n-dimensional
smooth projective variety X has isolated zeros, the degree of the top Chern class or Euler class
cn(E) € H?"(X) gives the number of zeros of o over the algebraic closure, counted with multiplicity.
Over non-algebraically closed fields, the number of zeros of a section need not be constant. Recall
that a manifold X is orientable if det T'x =~ Ox and a choice of isomorphism is called an orientation.
Given a vector field (i.e. a global section of T'x) with isolated zeros on an orientable real manifold,
one can obtain a constant signed count of zeros using local indices, as defined by Milnor in [12]. If
p is a simple zero of o, the local index is computed as follows: On an open neighborhood U 3 p
where (T )|y = R®", the vector field is represented by n functions (o1, ...,0,). The local index is
the sign of the Jacobian determinant sign Jy(c). It turns out that the sum of these local indices is
independent of the vector field, giving the first example of an “enriched count.”

The above has been generalized to sections of relatively orientable vector bundles on projective
varieites over arbitrary fields, see work of Kass—Wickelgren [6] and references therein. A vector
bundle E is said to be relatively orientable if Hom(det T'x, det E) =~ L&? for some line bundle L and
the choice of such an isomorphism is called a relative orientation. They define an enriched Euler class
as a sum of local indices ind,, (see [6, Definition 30]) valued in the Grothendieck-Witt group of the
ground field

e(E,0):= ) indy(0) e GW(k),
pio(p)=0
and show that this class in GW (k) is constant on Al-connected components of the space of sections.

The rank provides an isomorphism GW(C) =~ Z; the rank and the signature induce an isomor-
phism GW(R) =~ Z®Z. Given a € k*, let {a) € GW(k) denote the class of the rank 1 bilinear form
(x,y) — azxy. Thus over R, {a) is the same as the information of the sign of a. For simple zeros of
a real section, the Kass-Wickelgren local index is {(Jp(0)), recovering Milnor’s local index. When
the rank is known, the enriched Euler class is therefore determined by the signed count

s(E,o):= 2 sgnind, (o) € Z.
pEX (R)
a(p)=0

The following example demonstrates the necessity of relative orientability for obtaining constant
enriched counts and suggests what we may study instead without it.

Example 2.1. Consider the line bundle E = Opi(d) on Pi. We have Tp1 =~ Opi(2), and so E
is relatively orientable if and only if d is even. Global sections of E correspond to homogeneous
degree d polynomials on P'. A relative orientation supplies an oriented coordinate ¢ in an affine
patch around any zero, and for simple zeros, the local index measures the sign of the derivative. If
d is even, for any section f, we have
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s(Op1(d), f) =0 P!

S N

If d is odd, we might still try to naively sum local indices of zeros of a section, and it will
make sense in an affine Aﬁ% c ]P’]%Q. With respect to a coordinate t on Aﬁ&, we may write f =
aqgt® + ...+ ait + ag. Then we find

Sﬁ%dd%f)={

1 ifad>0
—1 ifag<O.

Pl

@ D

St VRN =

In other words, we obtain an enriched count of the d zeros when agy # 0, but it depends on f.
Moreover, to make this enrichment, we had to choose a divisor oo € P'. We then considered only
sections that do not vanish along this divisor and found that there are two regions — corresponding
to positive and negative leading coefficient — where different signed counts are attained.

An alternative approach would be to choose o so that f has a simple zero at co: then the signed
count of the remaining zeros is constant.

The above example suggests that, even for non-orientable problems, we can make geometric
meaning of local indices away from a suitably chosen divisor.

Definition 2.2. We say that a vector bundle E on a smooth projective variety X is relatively
orientable relative to an (effective) divisor D if Hom(det T, det E) @ O(D) =~ L®? for some line
bundle L. Equivalently, E is relatively orientable on the open subvariety X \ D.

Remark 2.3. Every vector bundle is relatively orientable relative to a divisor, and there may be
many choices of a divisor. In practice, one should select an effective divisor that is geometrically
meaningful in some way.

Over R, Definition [2.2] allows us to make precise the phenomenon observed in Example [2.1]
The definition of local index by Milnor and its generalization by Kass—Wickelgren relies only on
compatible trivializations over open neighborhoods of zeros. Thus, the local index of a section of a
relatively orientable vector bundle on X ~\ D is well-defined at any isolated zero not in D.

Given a divisor D, we denote by Vp < HY(E) the locus of R-points of H(E) with a real zero
along D. The following lemma extends enrichment techniques over R to a broader setting, at the
expense of removing those sections in Vp.

Lemma 2.4. Let X be a smooth real projective variety. Suppose E is relatively oriented relative
to an effective divisor D < X. Let H°(E)° denote the space of sections with isolated zeros. Then
s(E,0), and hence e(E, o), is constant for o in any real connected component of H°(E)°(R)~ Vp.
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Proof. Because the rank of e(FE, o) is constant for algebraic sections, it suffices to show s(E, o) is
constant on real connected components of HY(E)°(R) \. Vp. More generally, the signed count is
continuous on the subset A ¢ C* (X, E) of C* sections of the real vector bundle E with isolated
zeros that are not contained in D.

Let A’ < A denote the subspace of sections which have simple zeros. Suppose p is a simple
zero of a section o € A’. Let p e U < X ~ D be an open neighborhood and choose isomorphisms
¢: Ely = R®" and ¢ : Ty =~ RO such that det ¢~ oy € Hom(det(Tx )(U),det E(U)) = L(U)®?is a
square under the relative orientation on X ~\.D. With respect to these trivializations, o is represented
by n functions (o1,...,0,) and ind, o = {(det J,(p)). Because the Jacobian is continuous, and
R* - GW(R) by a — {a) is continuous, it follows that s(F, ) is continuous on A’.

Via the composition 1! 0 ¢, each section o of E|y gives us a vector field v on U. We now apply
Milnor’s local alteration as in [12] “Step 2” of §6]. Suppose p is a non-simple zero. Let p € N; <
N c U be sufficiently small nested neighborhoods (in the real topology) and let A : U — [0, 1] be a
smooth function such that A(z) = 1 for x € N7 and A(z) = 0 for x outside N. If y is a sufficiently
small regular value of v, then v'(x) = v(z) — A(z)y defines a vector field which is non-degenerate
within N. By [12, §6, Thm. 1], the sum of Milnor’s local indices at the zeros within N is the
degree of the “Gauss mapping” 7 : 0N — S™ !, and hence does not change during this alteration.
Applying this alteration locally around each non-simple zero shows that s(E, o) is continuous on

A. 0

Remark 2.5. Working over an arbitrary ground field, a natural replacement for Vp is the algebraic
hypersurface Vp < H O(E) of sections vanishing at a closed point of D. In general, H(E)° \ Vb
need not admit any nonconstant maps from Al (and in particular is not A'-connected), so the
results of Kass—Wickelgren do not apply to give constant enriched counts. Thus, when working
over R, Lemma [2.4] is stronger than the Kass—Wickelgren machinery. However, we believe this
additional strength is special to R and does not generalize readily to other fields. Notice also that
over R, Vp is contained in the real points of XN/D but need not equal it. In other words, Lemma
provides signed counts even when ¢ has a pair of complex conjugate zeros along D.

Lemma [2.4] suggests the following approach to enriching non-orientable problems over R. First,
restrict attention to sections with zeros away from a suitably chosen divisor. The local index may
then have a geometrically meaningful interpretation relative to this divisor. The locus Vp < H°(E)
will be codimension 1, so we expect the complement H°(E)(R) \ Vp to have many components in
the real topology. However, on each component of the complement, the signed count is constant.
The locus Vp = HY(E)(R) should be thought of as “walls” in the space of sections, where the
relative orientation cannot be extended consistently. Signed counts change as one moves across
these walls. One might then try to characterize the different components of HY(E)(R) \ Vp and
thereby all of the possible signed counts.

In the remaining sections, we carry out this procedure for the problem of 28 bitangents. We
characterize a natural connected region where the signed count is constant and give examples
demonstrating different possible signed counts. We also conjecture a list of all signed counts that
are realized. Finally, we relate enriched counting of bitangents to the enriched count of 27 lines on
a cubic surface, in a manner akin to allowing one of the zeros in Example to be at co. This last
method yields results over arbitrary fields.

3. THE LOCAL INDEX FOR BITANGENTS

In this section we will define a space X of dimension 4 and a bundle F on X of rank 4, such that
every quartic equation f € HO(P?, Op2(4)) gives rise to a section oy of E whose zeros correspond
to the bitangents of V(f). A choice of a line Ly, in the plane determines a divisor Dy, < X such
that E is relatively orientable relative to Dy,. We compute the local index ind, oy with respect to
a relative orientation on X \ Dy, and show that it agrees with our geometric definition of Qtype.



8 HANNAH LARSON AND ISABEL VOGT

Let S denote the (rank 2) tautological bundle on the Grassmannian P2 of lines in P2. The

k-points of the projective bundle
X :=PSym* S

correspond to the pairs (L, Z), where L  P? is a line and Z < L is a degree 2 subscheme. Write
m: X — P?” for the natural projection map. As a projective bundle, intersection theory on X is
straightforward, and we recall the key facts here. The Picard group of X is generated by pullbacks
from P?” and by a (relative) hyperplane class Ox(1). The fiber of the bundle 7* Sym? SV at a
point (L, Z) is the 3-dimensional space of quadratic polynomials on the line L and the fiber of
the universal subbundle Ox(—1) <> 7* Sym? SV is the 1-dimensional space spanned by a choice of
quadratic equation defining Z < L.

The fiber of our vector bundle E at a point (L, Z) will be isomorphic to the space of quartic
polynomials on L modulo the square of an equation of Z. Precisely, we define E to be the quotient
of Sym* SV by the subbundle Ox(—2) including via the tensor product

Ox(-2) ~ Ox(-1) ® Ox(-1) - Sym? S¥ ® Sym? SV — Sym?* S".

Alternatively, recall that any degree 4 subscheme I' © P! imposes independent conditions on poly-
nomials of degree 4, and the kernel of the restriction map

HO(P', Op1(4)) — HO(I', Op1 (4)Ir)

is precisely the 1-dimensional space spanned by an equation of I'. In particular, we can apply this
to a degree 4 subscheme I' that is cut out by the square of an equation of a degree 2 subscheme
Z < L. We will denote this degree 4 subscheme by 2Z. The kernel of the restriction map is now
generated by the square of an equation of Z. Over the parameter space of such (L, Z7), we may
therefore view the map Sym* S¥ — FE in the presentation

0— Ox(-2) - Sym*SY - E -0

as evaluation of a quartic polynomial along 27 < L.

Given a quartic equation f € H(P?, Opz2(4)), restriction of f to any line L = P? defines a section
oy of Sym* SV, and hence of E. Alternatively, the section oy of E at (L, Z) takes the evaluation
of f along 2Z. Evidently, the section oy vanishes at (L, Z) if and only if L is a bitangent of the
quartic plane curve V(f) with points of tangency at Z in L. Using the splitting principle for Chern
classes of vector bundles [3, Section 5.4], it is not hard to show that degc4(FE) = 28, recovering the
classical count.

By the splitting principle we have

det E = det Sym* §¥ ® Ox(2) = (det S¥)® ® Ox(2) = 7*Op2v (10) ® Ox (2).

On the other hand, using the relative Euler sequence
0 — Ox — 7*Sym® $¥ @ Ox (1) — Tx/p2v — 0

for our projective bundle X, we compute

det Tx = 7* det Tpav @ det Ty pzv = ™ det Tpev ® det(r* Sym* SV ® Ox (1))

= 1*Op2v (3) @ det 7* Sym? SV ® Ox (3) = 7* Op2v (6) ® Ox (3).

In particular,
(1) Hom(det T'x,det F) = 7*Op2v (4) ® Ox (1),

which is not a tensor square. After tensoring with Ox (1), however, it is the square of 7*Op2v (2).

We now describe a section of Ox(1) defining an effective divisor Dy, away from which E is
relatively orientable. Sections of Ox (1) restricted to the fiber over L € P?” correspond to linear
forms on the space of quadratic polynomials on L. Given a line Lo, for each L # Lo, evaluation of
quadratic polynomials at the point L n Ly defines a section of Ox (1)|-1(z). Together, this defines
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a section of Ox (1) away from 7~1(Le,), which is codimension 2. Let Do, = {(L,Z) : Z " Ly # &}
be the closure in X of the vanishing locus of this section. As X is smooth and Ox (1)|xr—1(1.,) =
O(Do)|xr-1(L,) these line bundles are isomorphic on all of X. Equation shows that E is
relatively orientable on the complement of D,,. Thus, we can give E|x. p, a relative orientation
and make sense of the local index ind(, z) oy at a zero (L, Z) ¢ Dq.

E Y3Y3. Y3Y3, Y213, ys

@ -
b

We may choose coordinates [y1, y2,y3] on }P’%( so that

(2) Lo =V(ys), L=V(y), and Z=V(y3+ay3),

0

X

where a € K. (Our assumption Z N Ly, = @ means the coefficient of y3 in the defining equation of Z
is non-zero, so we may always complete the square.) Given coordinates [y1,y2,y3] on P? such that
holds, we now describe a procedure for giving “standard affine coordinates” around each K-point
(L,Z) ¢ Dy. Let A% = (P2)V be the affine patch with coordinates (a,b) corresponding to the line
Loy = V(yi +ay2+bys), so L = Lo is the origin. On this affine, the vector bundle SV is trivialized
by y2 and y3 (by which mean the sections obtained by restricting the linear forms y2 and y3 to each
of the lines). Thus, 7~ 1(A?) c X is identified with A% x P{y3, y2ys, y3, where (y3, y2y3, y3» denotes
the three-dimensional vector space spanned by y3, y2y3, and y§ Let A% < P(y3, yoys, y§> be the
affine plane with coordinates (s,t) corresponding to Zs; = V ((y3 + ay?) + syays +ty3), s0 Z = Zp g
is the origin (s,t) = (0,0) here. We refer to such an A? x A% =~ A* with coordinates (a, b, s,t) as
“standard affine coordinates centered at (L, Z).”

To each choice of coordinates as above, we associate a trivialization of E. Corresponding to
our trivialization of SV, the vector bundle Sym*SV is trivialized by Y, Ysys, y%yg, ygyg’ , and yg‘.
Over our standard affine chart, the tautological bundle Ox (—1) is trivialized by the non-vanishing
section (y2 + ay3) + syays +ty3, and Ox(—2) is trivialized by its square ((y2 + ay3) + sy2ys + ty2)>.
Using the relation

(3) vz = —(2sy3ys + 2(a + 1)y3y3 + 2sayay3 + (o + 2at)ys) + O((s,1)?),
the monomials y3ys, y%y%, ygyg, and yg‘ trivialize the quotient bundle F over our standard affine

chart.
The following lemma will allow us to use these nice coordinates to compute local indices.

Lemma 3.1. There exists a relative orientation Hom(det T'x p, ,det E|xp,) = 7*Op2v (2) |(?(2\Dw

on X N\ Dy such that for every standard affine chart U = A?a,b,s,t)’ the map det(Tx)|y — det E|y

induced by sending the basis (da, db,ds,dt) to the associated trivialization (y3ys, ysys, y2ys,y3) is a
tensor square of an element of HO(U,7*Op2v (2)|v/).
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Proof. Suppose that U is a standard affine associated to coordinates [y1,y2,y3] on P2. It suffices
to show that the orientation coming from
(da’a db7 d57 dt) = (ygy?n ?J%yga y2y§7 yg)

agrees with the orientation induced by any other choice of coordinates [y}, y5, y4] satisfying for
any L = Lgyp, and Z = Zg 4, with (ag, bo, So,to) € U. By convention, y3 and y4 vanish along L,
so y4 is a multiple of y3. Furthermore, the equation of Zs 4, restricted to V(y}) has no cross term
with respect to yj, 5. Thus, U’ corresponds to

Y1 = M(y1 + aoyz + boys)

Ys = N (?/2 + %m) + 1y

Y3 = A3ys
for some \; € K* and g € K. To determine the change of basis matrix for (da’,dV,ds’,dt’) to
(da, db, ds, dt) we write

50
Yy +d'yy + bys = (M 4+ d'p)(y1 + aoye + boys) + a’Xo (yz + *y3) + ' A3ys

2
"o CL’)\QSO + Qb/>\3
— () / _@A2 b 4 2220 T 2V A3
(1+GM)<Z/1+<6L0+)\1+Q,M Y2 + | 0o + 200 + a'p) Y3 |,
to see that at (a’,b") = (0,0), we have
A2 A250 A3
da = —d d db = da’ + ==db’.
a " a an oAy + N
Similarly, the equation for Z7, ;, on V (y) is
52 , A3 SoA3 A2
Y5+ s'yhys + (@ + )y = A3 <y§ + soyays + Y5 + 8 oyeys + 85w+ (o t’)Agyg)
2

A3 32 >\2 ;SO A2
2( 2 043 3 2
:)\2<y2+<80+s)\)y2y3+< +ap+ 2y +t/)\%>y3),

which shows that at (s,t) = (0,0), we have

80)\3 )\
ds = )ngs, and dt = 7 ds' + )\2 234t

Thus, the change of basis for (da’,dV/,ds’, dt") to (da,db,ds,dt) has determinant

)\2)\2
a multiple of y3, the change of basis for (y5y5, 5y, Yo%, y5') to (y2y3,y2y3,y2y3,y3) is upper-

triangular. The product of diagonal entries is (A3A3)(A3A3)(A2A3)(A3) = ASAL0. Because both
change of basis matrices have square determinants, the two possible relative orientations agree. [

Since y4 is

We now show that the local index encodes the Qtype of bitangents, as defined in Definition

Lemma 3.2. Let L be a line defined over K. Let f be a smooth quartic over K such that oy has
an isolated zero at (L, Z = z1 + z2) and Z N Loy = . Then

(4) ind(z, ) 0p = Qtyper,, (L) in GW(K).

Proof. If (L, Z) is a zero of oy, then working in standard affine coordinates centered at (L, Z), we
have f|r = (y5 + ay3)? for some a € K. In particular, f is of the form

Fy1,v2,93) = (U3 + ay3)?® + y1(c130Ys + C121Y3Y3 + C1.12Y2Y5 + c1.03Y3) + O(yh).
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To evaluate the right hand side of , we work in the affine patch y3 = 1, wherein z; = [0, d, 1]
and zp = [0,—d, 1] for d> = —a. Recall that the element (a) of GW(K) depends only on a €
K*/(K*)%. Up to squares, we have

orf(z1) - 0nf(22) = (c1,30d® + c121d* + c1,12d + €103)(—c1,30d> + c121d* — c112d + €10,3)
= = 30d° + (121 — 2c130011,2)d" + (=T 1 5 + 2¢10301,21)d” + €1 .3
(5) = ol 30+ (g1 — 2c13001,12)0° + (c] 15 — 2c103C121)0 + €1 3-

To evaluate the left hand side of , we use the associated trivialization of E as in Lemma,
Because (L, Z) is a simple zero, ind(, z) oy is determined by the Jacobian evaluated at 0 of the

induced map from A‘}( — A‘}( given by the section oy. With respect to our chosen trivializations,
the value in A‘}( of this map at the point (a, b, s,t) € A‘}( is the tuple of coefficients expressing f| Las

modulo (y3 + sy2ys + (a + t)y3)? as a linear combination of y3ys3, ¥3y3, y2y3 and y3. Using , we
have

Flia, = (W3 + 200393 + 0®y3) + (—ayz2 — bys)(c13095 + 121933 + c11.20295 + ¢10393) + O((a,)?)
= 20y3y3 + a’ys + (—ayz — bys)(c12193Y3 + ¢1,1,20203 + €1,03Y3) — be1,3,0U3Y3
+ (1= ac130)ys + O((a,b)?)
_ 292 24 2 2 3 3
= 2ayzy3 + @ y3 + (—ayz — bys) (1219293 + c1,1,25203 + c1,0,3Y3) — be1,3,0y5Ys
— (1 —ac1.30)(2sy5ys + 2(a + t)ysys + 2sayays + (® + 2at)y3) + O((a, b, s,1)%).
In particular, the Jacobian matrix at (a, b, s,t) = (0,0,0,0) is

2
—C121 2C13000—C112 —C1,03 C13,00

—C1,3,0 —C1,2,1 —C1,1,2 —C1,0,3
-2 0 —2a 0
0 -2 0 —2a
whose determinant is precisely 4 times . O

4. SIGNED COUNTS OVER R

Suppose we have fixed a line Lo, defined over R. Using the relative orientation of Lemma [3.1
Lemmashow that the signed count s(E, o) is locally constant as a function of f € H(E)°\Vp,,.
If @ =V(f), Lemma then shows that (the geometrically meaningful signed count)

o real bitangents with B real bitangents with
Le(Q) = # ( Qtyper,, (L) = (1) ) # (QtypeL@ (L) = <—1>>

is constant for f in real connected components of H*(E)° \ Vp,_ .
The following lemma describes a natural pair of connected regions in the space of allowed sections,
corresponding quartics whose real points are compact curves in Aﬁ = IP’]%Q N Lop.

Lemma 4.1. Let A be the space of real quartic polynomials f such that V(f) N Lo contains no real
points and let A° < A be those quartics with isolated bitangents. Then A° is a pair of connected
regions inside H°(E)° \ Vp,,, where every section in one connected component A° is the negative
of a section in the other component.

Proof. Any real bitangent of V'(f) meets Ly, in a real point. If V(f) n L, contains no real points,
it follows that no real bitangent is tangent to V(f) along Le,. Hence, A € HY(E) \ Vp, .

We first describe the two connected components of A. Restriction of polynomials to the line at
infinity defines a linear map

r: HY(E) = H(P?, Op2(4)) = RY — H(Ly, O (4)) = R5.
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Because the defining condition of A depends only on the restriction of polynomials to L, we
have A = r~1(r(A)). Thus, it suffices to describe 7(A). Give Ly, = P! coordinates z,y so that
HY(Ly, Oy, (4)) is identified with homogenous degree 4 polynomials in  and y. Consider the map
R®> — HY(Lo,, Or, (4)) defined by

(a,b,c,d,e) — e(x? — 2azxy + (a® + b*)y?)(z® — 2cxy + (¢ + d°)y?).

By construction, the image of {(a,b,c,d,e) : b,d > 0,e # 0} is r(A). Hence, r(A) has two connected
components corresponding to the images of the regions for e > 0 and e < 0, which give quartic
polynomials that are negatives of each other.

If V(f) has a positive-dimensional family of bitangents, then V' (f) has a non-reduced component;
the space of such f is symmetric under negation and occurs codimension greater than 2, so A° still
consists of two connected components with the described property. ]

Proof of Theorem[1 Lemma shows that the local index of a bitangent to V(f) is equal to its
Qtype, which depends only on f up to scaling. Thus, s(F,0¢) = s(E,0_¢), so Lemma together
with Lemma[4.I]shows that the signed count is the same for all real quartics not meeting the line at
infinity over R. Thus, it suffices to compute the signed count for a single such quartic. The Fermat
quartic, defined by f = yf + y5 + y§ is smooth, hence has isolated bitangents. Since the curve has
no real points, we may choose any line to be the line at infinity. An elementary calculation shows
that the Fermat quartic has precisely four real bitangents, defined by

5—1 V5—1
b f E—— b=+
V(y1 + ay2 + bys) or a== 5 3=

Each of these four bitangents meets the curve in a pair of complex conjugate points p and p, and
hence they all have type

(6) Qtyper, (L) = 0rf(p)oLf(P)) = Of(p)oLf(p)) = ().

for any line Ly,. Thus, the signed count of bitangents for the Fermat quartic is 4. O

4.1. Varying L. In this section, we explore how the signed count of bitangents to a fixed quartic
varies as Ly moves. This is equivalent to studying the signed counts with respect to a fixed line
for all of the quartics in a PGL3 orbit.

Equation @ shows that non-split bitangents and hyperflexes have type (1) with respect to any
line at infinity. On the other hand, split bitangents acquire type (—1) and (1) depending on their
geometry relative to the line at infinity.

Given any plane quartic Q < ]P’%{, fix a starting line at infinity M. Each split bitangent L to Q
determines a line segment gps(L) in Afg = ]P’%& N\ M called the grate of L with respect to M, defined
by joining the two points of L n ). For any other line Ly, with L n Loy 0 Q) = &, we have

Qtypey, (L) if Lo ngy(L) =@

— Qtypey (L) if Loy 0 g (L) # 2.

It follows that with respect to any line Ly, the signed count is

(1) s1,(Q) = sm(Q) — 2 - #{split bitangents L : Qtype,;(L) =1 and Lo, n gyr(L) # &}
+ 2 - #{split bitangents L : Qtype,;(L) = —1 and Lo, n g (L) # 2}

Qtypey,, (L) = {

Given a quartic ), we determine all possible signed counts using the following algorithm.

Algorithm 4.2. Input: equation f of a smooth plane quartic. Output: set of all possible signed
counts of bitangents.
(1) Compute equations defining the bitangents to V' (f) by elimination. Find endpoints of grates
of all split bitangents.
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FIGURE 1. The dual grate arrangement and test pencils in P?”

(2) Choose any starting line M = V(z) which does not meet the curve at the endpoint of any
grate. Compute the Qtype of each bitangent with respect to M.

(3) The endpoints of the grate of a split bitangent defines a pair of lines in P2” (intersecting
in the point of P?" corresponding to the bitangent). Call the collection of all such lines
the dual grate arrangement (pictured in solid blue below). The signed count is constant
for [Ly] in the complement of the dual grate arrangement. Thus, it suffices to check the
signed count with respect to a representative in each region. The vertices of dual grate
arrangement (black dots below) correspond to lines joining the endpoints of grates.

(4) We sample the finitely many regions of the complement of the dual grate arrangement with
red test lines in P2” through [M] as pictured below. It suffices to check a finite collection
of red lines, one in each region bounded by the dashed black lines joining [M] and vertices
of the dual grate arrangement.

If M = V(2) < P2, then a red line in P?" represents a family of parallel lines with fixed
slope in the (z,y) plane. Thus it suffices to check all lines of slope a for some finite and
computable set of a.

(5) As Lo, moves along lines of slope a, the signed count only changes when Lo, meets the
endpoint of a grate (when a red line crosses a blue line above). The order that different
endpoints in P2 are hit is determined by their projection onto a line of slope —1/a. Sort the
list of all endpoints accordingly, together with the effect they will have when crossed. The
partial sums of the effects in this sorted list determine all possible signed counts attained
in this pencil as in @

An implementation in Sage is available at [10].

4.2. Example: the Trott curve. The Trott curve @ is given by the vanishing of the homogeneous
quartic polynomial

f=122(z* + y*) — 15%(2? + y?) 22 + 3502%y% + 812%.
Topologically, the real points of this quartic form 4 non-nested ovals, and all 28 bitangents are
defined over R and split. Therefore the sign of every bitangent line depends on the choice of L.
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Carrying out Algorithmwith starting line M = V(z) verifies Conjecture for this quartic: as
Lo, ranges over all real lines in P2, s;_ (Q) always lies in the set {0,2,4,6,8}. Furthermore, every
such count is achieved for some choice of Ly. The colored band in Figure 2 below indicates the
possible signed counts for lines Lo, in the pencil of slope 5/4.

5L, =0
SL%ZQ
SLo, =
.SL%:6
.SLOOZS

FI1GURE 2. The possible signed counts of bitangents of the Trott curve with respect
to a line at infinity Lo, varying in the pencil of lines of slope 5/4

In Figure 3 we illustrate 5 lines Lg, Lo, L4, Lg, Lg from this pencil that achieve each of the five
possible signed counts. The figure shows the grates with respect to M that intersect each L;, and
hence change sign with respect to L;. Black indicates that Qtype,;(L;) = 1 and red indicates that

Qtypey(Li) = —1.

4.3. Non-negativity of the signed count. In this section, we exploit a natural partitioning of
the bitangents to prove that the signed count is non-negative. A real line L is said to be in the
avoidance locus of @Q if L does not meet ) over R. Every real bitangent lies in the closure of some
component of the avoidance locus, giving rise to a partition of the bitangents corresponding to
components. See [9] for a discussion of the relationship between real avoidance loci and real theta
characteristics.

Proposition 4.3. Let Q be a smooth real plane quartic and let Ly, be a line defined over R. Then
$1,(Q) = 0.

Proof. The number of components of the avoidance locus of @) is determined by the topological
type of Q. In each case, (see [0, Section 4])

4 - #(components of the avoidance locus) = #(real bitangents).

We claim that Qtypey (L) = (—1) for at most two bitangents L in the closure of any component
of the avoidance locus. To see this, fix some component of the avoidance locus and choose a line
M in that component. Let Lq,..., L, be the bitangents in the closure of that component of the
avoidance locus. These are the “exterior bitangents” when () is drawn as a compact affine plane
quartic in P2 ~ M.

This implies that Qtype,,;(L;) = 1 for all ¢ and therefore

1 if Lop N gM(L,) =

t Li) =

Now observe that the grates gpr(L1),. .., gnm(Ly) (if they are nonempty) are contained within the
sides of a polygon. (Consider the union of all lines in our component of the avoidance locus; the
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= V(y — 1.252 — 1.415) Ly = V(y—1.25z)
Lo=V(y—1.2520+0.3075) Lg=V(y—1250+1.233)  Lg=V(y—1.25z + 1.296)

FiGure 3. Choices for Ly achieving each of the possible signed counts

@

S

@Z

F1GURE 4. The black grates of the “exterior bitangents” of the Trott curve lie on
the grey dotted square.

boundary is a convex curve containing these grates.) It follows that L, can meet the grates gas(L;)
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for at most two 7. In particular, we have shown

1 bit ts with
s1,, (@) = #(real bitangents) — 2 - # <rea Hansents wi )

Qtyper,, (L) = (1)
> #(real bitangents) — 2 - 2 - #(components of the avoidance locus) = 0. O

5. COMPARISON WITH LINES ON SMOOTH CUBICS

In the previous sections, we gave a procedure for computing the local index relative to a line Lo,
and interpreted it as a geometric type in terms of the local geometry of the quartic. We now relate
the relative type of a bitangent to the type of a line on a cubic surface.

Definition 5.1. Let Q) be a smooth plane quartic and let L, be bitangent line defined over k. We
say that a pointed cubic (V,p) in P} is associated to (@, Lo) if the projection map from p

Tp: V. —=» P?
has branch divisor @ and m,(T,V N V) = L.

Lemma 5.2. Let ) IP% be a smooth plane quartic and let Lo, < Pz be a bitangent of QQ defined
over k. Then there exists an associated cubic (V,p) defined over k.

Proof. Choose a homogeneous polynomial f(x,y,z) of degree 4 defining @ such that f|. is a
square (this is well-defined up to multiplication by elements of (k*)?). Let V be the double cover
of IF’% specified in weighted projective space P(2,1,1,1)y4y- by the equation

(8) w? = f(z,y,2).

By the Hurwitz formula, the anticanonical bundle — K7 is the pullback of Op2(1) under the double
cover map; hence —Kj; is ample and (—K‘~/)2 = 2. Therefore, the surface V is a del Pezzo surface
of degree 2 (and the anticanonical map is the presentation as a double cover of P?). For more on
del Pezzo surfaces, see [8, Theorem II1.3.5]. As f|r is a square, the preimage of Ly in 1% splits
as two k-divisors Fy and Fs intersecting above the points at which L, is tangent to (). For either
choice of 7 = 1 or 2, the image of (V, E;) under the linear system | — Ky + E;| is a pointed smooth
cubic surface (V,p) in P = PHO(V, — K + E;)¥. The subspace HOV, —Ky) < HO(V, —Ky + E;)
induces a linear map PHO(V, —Ky + Ep)Y --» PHO(V, —K3;)Y, which is projection from the 1-
dimensional quotient H?(E;, (K + E;)|g,) ~ H(E;, Og,), i.e., the point p = ¢7K\7+E¢ (E;). In
other words, the composite map

V - PH(V,-Ky + E;)" --» PH(V,~Ky)"

~

is both the original double cover map ¢_ K away from E;, and projection of ¢_ K\7+E-(V) from

pePH 0(‘7, —Ky+ E;)V. Hence the branch divisor is the quartic curve @, as desired. Furthermore,
the image of E; for j # i in PHO(V, —Kjy + E;)Y is a curve of degree 3 = (=K + E;) - Ej with
multiplicity 2 = E; - E; at p. Any such curve is necessarily planar, and therefore ¢_ Koo p (E;) must

be the tangent plane section 7,V n V. The image of E; in ]P’HO(IN/, —Ky)Y ~ IP’% is evidentally the
bitangent L. O

Remark 5.3. In the proof of Lemma we chose the unique twist of such that the preimage
of Lo, on the double cover splits into two exceptional curves. This is essential so that we may blow
down just one of them to obtain a cubic surface.

Each of the remaining 27 bitangent lines to () corresponds to a unique line on a cubic surface
V', which therefore has the same field of definition. We will show that the type of the bitangent
line relative to Lo is equal to the type of the corresponding line on an associated cubic surface.
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Recall that if L < V is a line on a cubic surface, then projection from L restricts to a degree 2
cover L — P!, whose associated involution we denote ¢ : L — L. Kass—Wickelgren define the type
of L ¢ V, denoted type(L), to be the class in GW(k(L)) of the discriminant of the fixed locus of ¢.

Lemma 5.4. Suppose that @ is a smooth plane quartic and Lo, s a bitangent to Q) defined over
k. Let (V,p) be an associated cubic. For each bitangent L # Lo, to @ defined over K, we have

~

Qtyper,, (L) = type(L) € GW(K),
where L < V is the unique line such that my(L) = L.

Proof. Given a pointed cubic surface p € V' = V(F'), one can recover the equation of the corre-
sponding quartic explicitly, allowing us to relate our two notions of type. Fix some L < V. Our
assumption that L # Lo, means that p ¢ L. We may choose coordinates [xg, z1, 22, 3] on IP’% SO
that

(9) p=11,0,0,0], T,V = V(x3), and L =V(xg,x1).
With respect to these coordinates, our cubic equation has the form
F = Z ai’j’k’l:nélexgxé,
i+j+k+4=3

and the conditions in @ imply
a3,0,0,0 = @2,1,00 = @2,0,1,0 = @0,0,3,0 = @0,0,2,1 = @0,0,1,2 = @0,0,0,3 = 0.
By [6l, Lemma 50], the type of the line L is (M where
a1,0,2,0 0 ap,1,2,0 0
M — det | #1011 @1020 o111 0120

a10,02 0G1,01,1 001,02 a0,1,1,1
0 a1,0,0,2 0 a0,1,0,2

The lines through p in P? are parametrized by a P? with coordinates [y1, y2,y3] where

[y17 Y2, y3] - {[Sa ty1, tya, ty?)] : [87 t] € ]P)l}
The restriction of F' to one of these lines is given by
DT aignas'(tyn) (b))  (tys)" = t(s*A + stB + £2C),
it +h+0=3

where
A = 0a2,0,0,1Y3
B = a1,2,0,0y% +a1,1,1,0Y1Y2 + a1,1,0191Y3 + a1,0,2,0y% +a1,0,1,192Yy3 + a1,0,0,2y§
C= ao,1,2,oy1y§ + ap,1,1,1Y1Y2y3 + ao,1,0,2y1y32, + ao,2,1,oyfy2 + a0,2,0,1y%y3 + a0,3,0,0y%-

The branch divisor on P? is the locus where the residual quadratic s?A + stB + t2C has a double
root. Thus, the quartic is given by the vanishing of the equation f = B? — 4AC. The image
of L « V is the line V(y1) = P2, which one readily checks is a bitangent to V(f) < P2. Indeed,
substituting y1 = 0 into f gives the quartic (a1,0,2,0¥5 +a1,0,1,1¥2Y3 +a1,0,0.293). Thus, the tangency
subscheme of V(f) along V(y1) is 21 + 22 where

z1 =[0,—a10,11 +d,2a1020] and  z =[0,—a1,0,1,1 — d,2a1,0,20]
with d? = a%707171 —4a1,0,2,001,0,0,2- Explicit computation shows that

of of
Tyl(zl) : afyl(zz) = 1024@%,0,01“%,0,2,0 - M.
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Since the two quantities differ by a square, they are equal in the Grothendieck-Witt group of K.
In other words,

~

Qtyper,, (L) = Qtype, (v (mp(L)) = type(L). O

Recall that the Qtype of a line with residue field a non-trivial extension of k is defined to be the
Qtype of some representative line defined over k(L).

Corollary 5.5. For any bitangent line L of (Q, Ly) with associated cubic (V,p), we have

Tryrym Qtyper,, (L) = Try, ) type(L)
where L is the unique line on V such that m,(L) = L.

Proof of Theorem[3. Let (V,p) be a pointed cubic associated to (Q, Lo ). Summing over bitangents
to @ and applying Corollary the main theorem of Kass—Wickelgren [6, Thm. 2] now shows

> Try(r)(Qtyper, (L) = Y. Tryry type(L)
lines L bitangent to Q lines LV
L#Ly

15(1) + 12(—1) € GW (k). O
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