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Abstract— We study convergence properties of competing epi-
demic models of the Susceptible-Infected-Susceptible (SIS) type.
The SIS epidemic model has seen widespread popularity in
modelling the spreading dynamics of contagions such as viruses,
infectious diseases, or even rumors/opinions over contact net-
works (graphs). We analyze the case of two such viruses spreading
on overlaid graphs, with non-linear rates of infection spread
and recovery. We call this the non-linear bi-virus model and,
building upon recent results, obtain precise conditions for global
convergence of the solutions to a trichotomy of possible outcomes:
a virus-free state, a single-virus state, and to a coexistence state.
Our techniques are based on the theory of monotone dynam-
ical systems (MDS), in contrast to Lyapunov based techniques
that have only seen partial success in determining convergence
properties in the setting of competing epidemics. We demonstrate
how the existing works have been unsuccessful in characterizing a
large subset of the model parameter space for bi-virus epidemics,
including all scenarios leading to coexistence of the epidemics.
To the best of our knowledge, our results are the first in providing
complete convergence analysis for the bi-virus system with non-
linear infection and recovery rates on general graphs.

Index Terms— Epidemics on networks, bi-virus models, multi-
layer graphs, monotone dynamical systems.

I. INTRODUCTION AND OVERVIEW

GRAPH-BASED epidemic models are widely employed

to analyze the spread of real world phenomena such

as communicable diseases [2], [3], computer viruses, mal-

ware [4], [5], [6], product adoption [7], [8], [9], opinions, and

rumors [10], [11], [12], [13]. The propagation of such phenom-

enon (which we cumulatively refer to as epidemics or viruses)
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usually takes place via processes such as human contact,

word-of-mouth, exchange of emails or even in social media

platforms. Graph based techniques, with edge based mecha-

nisms to model information spread, have therefore proven to

be effective in capturing such epidemic dynamics, and have

been a research focus over the past few decades [14], [15],

[16], [17]. In recent years, the development of models which

capture the competition of two or more of such epidemics

has seen a surge of interest. In particular, models capturing

the behavior of two competing epidemics of the Susceptible-
Infected-Susceptible (SIS) types, also known as the bi-virus
or bi-SIS models, have garnered significant attention over the

years [8], [18], [19], [20], [21].

Epidemic models take the form of ordinary differential

equations (ODEs) and their analysis involves the identification

of fixed points of the system, their uniqueness properties, and

ultimately showing the convergence of the solution trajectories

to those fixed points. The technique via Lyapunov functions

has historically been a popular method to prove convergence

to fixed points and was also used in epidemiology literature to

derive the convergence properties of the SIS epidemic model.

The SIS model was originally introduced in [2] to capture

the spread of Gonorrhea due to contact between individuals

in a population, and was further developed in [22], [23],

[24], [25], [26], [27], [28], and [29]. The central result for

SIS epidemics, originally proved using Lyapunov functions

in [2], is a dichotomy arising from the relation between model

parameter (τ > 0) representing the effective infection rate or

strength of the virus,1 and a threshold value (τ∗ > 0). When

τ ≤ τ∗, the virus spread is not strong enough and the system

converges to a ‘virus-free’ state. When τ > τ∗, it converges

to a state where the virus infects a non-zero portion of the

population. Attempts have also been made to perform similar

convergence analysis for the bi-virus epidemic model [8], [19],

[20], [21]. The key questions posed in such literature are: Can

both competing epidemics coexist over the network? If not,

which one prevails? Or do both die out? This trichotomy of

possible results is what the recent literature has been trying to

characterize.

When the propagation of the two epidemics occurs over

the same network [8], [30], it has been established that

coexistence of two viruses is impossible except in the

1τ = β/δ, where β > 0 stands for the infection rate of the virus and δ >
0 the recovery rate from the virus. Section II provides a detailed explanation.
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rare cases where their effective strengths (τ1, τ2 > 0 for

viruses 1, 2, respectively) are equal [8], [18], [19], [20],

[21]; the virus with the larger effective strength otherwise

wiping out the other, a phenomenon sometimes referred to as

winner takes all [8]. The situation is much more complicated

when the two viruses spread over two distinct networks

overlaid on the same set of nodes. This modeling approach

is more representative of the real world, where competing

rumors/products/memes may not use the same platforms to

propagate, though they target the same individuals. Recent

works [18], [19], [20], [21], [31], [32], [33], [34] therefore

consider this more general setting, but unfortunately, a com-

plete characterization of the trichotomy of outcomes has still

proven to be elusive and remains open as of now.

While the original SIS model introduced in [2] had the

aggregate infection and recovery rates of a node as linear
functions of the number of infected neighbors, there has

been a push towards studying more generalized models where

these rates are made heterogeneous (across nodes) and non-
linear [35], [36], [37], [38], [39]. Realistic assumptions such

as infection rates tending to saturation with continual increase

in neighborhood infection [40], [41], [42], [43] have become

more commonplace, implying that the models employing

strictly linear spreading dynamics often provide overestimates

to the real world infection rates [20], [24]. This paper does

not concern itself with answering which non-linear infection

rate best captures the exact dynamics, but we direct the readers

to [20] which provides simulation results comparing non-linear

rate functions to the exact Markovian dynamics for some

special randomly generated graph topologies. In some special

cases, non-linear recovery rates also have an interpretation

linking them to reliability theory in the form infection duration

with increasing failure rates (failure here being the recovery

of an infected node). Allowing for non-linear infection and

recovery rates leads to a more general version of the bi-virus

model on overlaid graphs, albeit much more complicated,

and the complete convergence criterion is yet to be fully

established [19], [20]. It should be noted that while we

extensively refer to the infection and recovery rates being

either linear or non-linear in this paper, the bi-virus epi-

demic model itself will always be a system of non-linear

ODEs.

Limitations of existing works Of all the recent works

concerning the spread of SIS type bi-virus epidemics on

overlaid networks, [20] and [19] provide conditions under

which the system globally converges to the state where one

virus survives while the other dies out. [20] approaches the

problem of showing global convergence by employing the

classic technique via Lyapunov functions. However, finding

appropriate Lyapunov functions is a highly non-trivial task,

and as mentioned in [19], is even more difficult due to the

coupled nature of the bi-virus ODE system. This can be seen in

the condition they derive in [20] for the case where, say, Virus

1 dies out and Virus 2 survives. When τ1 and τ2 represent the

effective strengths of Virus 1 and Virus 2, respectively, their

condition translates to τ1 ≤ τ∗
1

where τ∗
1

is the threshold

corresponding to the single-virus case, meaning that Virus

1 would not have survived even if it was the only epidemic

present on the network. More importantly, [20] is unable to

characterize convergence properties for τ1 > τ∗
1

and τ2 > τ∗
2

.

The authors in [19] take a different approach and tackle

this problem by applying their ‘qualitative analysis’ technique,

which uses results from other dynamical systems that bound

the solutions of the bi-virus ODE; and provide conditions

under which the system globally converges to single-virus

equilibria. As we show later in Section V-B, however, their

conditions not only characterize just a subset of the actual

space of parameters that lead to global convergence to the

single-virus equilibria (which they themselves pointed out),

but the size of this subset is highly sensitive to the graph

topology, often much smaller than what it should be in general.

In other words, a complete characterization of the entire space

of model parameters, on which the system globally converges

to one of the trichotomic states, has still been recognized as

an open problem in the bi-virus literature [19], [20], [21].

Our contributions In this paper, we analyze the bi-virus

model with non-linear infection and recovery rates (or the

non-linear bi-virus model in short) and provide the complete

characterization of the trichotomy of the outcomes with neces-

sary and sufficient conditions under which the system globally

converges to one of the three possible points: (i) a ‘virus-free’

state, (ii) a ‘single-virus’ equilibrium, or (iii) an equilibrium

where both viruses coexist over the network. While the result

for convergence to the virus-free state of the bi-SIS model

is not new for non-linear infection and linear recovery rates,

our proof for the same is the most general form known to

date, covering the case with both infection and recovery rates

being non-linear. The proof of convergence to the virus-free

state of the bi-virus model is straightforward, and directly

follows from the convergence criterion for the single-virus SIS

model with non-linear rates. However, the convergence results

for fixed points where only one of the two viruses survives,

or to the equilibrium where both viruses coexist, are not as

straightforward to establish, rendering the typical Lyapunov

based approach largely inapplicable.

In proving these results, we first show, using a specially

constructed cone based partial ordering, that the bi-virus epi-

demic model possesses some inherent monotonicity properties.

We then use novel techniques from the theory of monotone
dynamical systems (MDS) [44] to prove our main results.

In recent control systems literature [45], [46], [47], [48], [49],

techniques based on the construction of cone based partial

orderings that leverage the monotonicity properties of dynam-

ical systems have indeed been studied. Dynamical systems

exhibiting such monotonicity properties are also sometimes

called deferentially positive systems [50] and cooperative

systems [51] in the ODE setting, with interesting applications

in consensus problems for distributed systems [52] and even

neural networks [53]. In this paper, we utilize these MDS tech-

niques in the setting of competing epidemics, and as a result

demonstrate an alternative to Lyapunov based approaches

to analyze convergence properties of epidemic models. The

novelty of using the MDS approach for analysis also lies

with [54], which uses similar techniques to analyze the bi-virus

system for the special case of linear infection and recovery

rates, and was developed concurrently and independently with
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the initial version of this work [1]. This further highlights the

utility of MDS techniques for the analysis of epidemic models

on graphs.

This paper is an extension of our previous work [1], which

gives necessary and sufficient conditions for convergence to

the three types of equilibria only for the special case of the

bi-virus model with linear infection and recovery rates (or

the linear bi-virus model in short). Our conditions therein

take a more precise form in terms of the model parameters

τ1 and τ2 and one can visualize an exact partition of the

model parameter space into regions corresponding to various

convergence outcomes. We note that this partition of the model

parameter space coincides with that in [18], wherein they

employed only local stability results via bifurcation analysis

– concerning only solution trajectories that originate from a

small neighborhood of those fixed points. In contrast, our

results in this paper concern global stability of the system with

any combination of linear as well as more general, non-linear

infection and recovery rates.

Structure of the paper In Section II, we first introduce

the basic notation used throughout the paper, along with the

classical (single-virus) SIS model and the bi-virus model.

We then provide the generalization to non-linear infection

and recovery rates in Section III with some key assumptions

on the infection and recovery rate functions, complimented

by a discussion in Appendix A regarding a special class

of recovery rates. In Section IV, we provide a primer to

the MDS theory, and establish monotonicity results for the

single-virus SIS model, proving the convergence result for the

single-virus model with non-linear infection and recovery rates

whose proofs are deferred to Appendix C. We then go on

to show in Section V-A that the non-linear bi-virus model is

also a monotone dynamical system with respect to a specially

constructed cone-based partial ordering, and include the main

convergence results in Section V-B. In Section VI we take the

opportunity to provide a more intuitive version of our results

by considering the special case of linear infection and recovery

rates, along with brief comparisons with the existing literature.

In Section VII, we provide numerical results which confirm

our theoretical findings. We then conclude in Section VIII.

We include additional Appendices for our paper as supple-

mentary material [55]. For better readability of the paper, all

technical proofs of the main results are deferred to Appendix F

in [55]. The appendices also include some selected definitions

and results from matrix theory (Appendix D), ODE theory

(Appendix E), and from MDS theory (Appendix B), which

we use as part of our proofs of the Theorems in Section V-B.

II. PRELIMINARIES

A. Basic Notations
We standardize the notations of vectors and matrices by

using lower case, bold-faced letters to denote vectors (v ∈
R

N ), and upper case, bold-faced letters to denote matrices

(M ∈ R
N×N ). We denote by λ(M) the largest real part2 of

2We use the λ notation instead of something like λRe, since it will mostly
be used in cases where the largest eigenvalue is real, for which λ itself is the
largest real eigenvalue. For example, λ(A) becomes the spectral radius for
any non-negative matrix A [56], [57].

all eigenvalues of a square matrix M. We use diag(v) or Dv

to denote the N × N diagonal matrix with entries of vector

v ∈ R
N on the diagonal. Also, we denote 1 � [1, · · · , 1]T

and 0 � [0, · · · , 0]T , the N -dimensional vector of all ones and

zeros, respectively. For vectors, we write x ≤ y to indicate that

xi ≤ yi for all i; x < y if x ≤ y and x 6= y; x � y when all

entries satisfy xi < yi. We use G(N , E) to represent a general,

undirected, connected graph with N � {1, 2, · · · , N} being

the set of nodes and E being the set of edges. When we refer

to a matrix A = [aij ] as the adjacency matrix of some graph

G(N , E), it satisfies aij � 1{(i,j)∈E} for any i, j ∈ N ; we use

dmin(A) and dmax(A) to denote the minimum and maximum

degrees of the nodes of the corresponding graph. Since we

only consider connected graphs, all the adjacency matrices in

this paper are automatically considered to be irreducible (see

Definition D.1 in Appendix D).

B. SIS Model With Linear Rates
Consider the graph G(N , E), and assume that at any given

time t ≥ 0, each node i ∈ N of the graph is either in an

infected (I), or in a susceptible (S) state. An infected node can

infect each of its susceptible neighbors with rate β > 0.3 It can

also, with rate δ > 0, be cured from its infection and revert to

being susceptible again. We write x(t) = [xi(t)] ∈ R
N , where

xi(t) represents the probability that node i ∈ N is infected at

any given time t ≥ 0. Then, the dynamics of the SIS model

can be captured via the system of ODEs given by

dxi(t)

dt
� β(1 − xi(t))

X

j∈N

aijxj(t) − δxi(t) (1)

for all i ∈ N and t ≥ 0. In a matrix-vector form, this can be

written as

dx

dt
� βdiag(1 − x)Ax − δx (2)

where we suppress the (t) notation for brevity. The system (2)

is positively invariant in the set [0, 1]N , and has 0 as a fixed

point (the virus-free equilibrium). The following result is well

known from [2], which we will generalize in Section IV-B.

Theorem 2.1 (Theorem 3.1 in [2]): Let τ � β/δ. Then,

(i) either τ ≤ 1/λ(A), and x∗ = 0 is a globally asymptot-

ically stable fixed point of (2);

(ii) or τ > 1/λ(A), and there exists a unique, strictly

positive fixed point x∗ ∈ (0, 1)N such that x∗ is globally

asymptotically stable in [0, 1]N \ {0}. �

C. Bi-Virus Model With Linear Rates
Consider two graphs G1(N , E1) and G2(N , E2), on the same

set of nodes N but with different edge sets E1 and E2. At any

given time t ≥ 0, a node i ∈ N is either infected by Virus
1, infected by Virus 2, or is susceptible. A node infected by

Virus 1 infects each of its susceptible neighbors with rate

β1 > 0, just like in the SIS model, but does so only to nodes

which are its neighbors with respect to the graph G1(N , E1).

3We say an event occurs with some rate α > 0 if it occurs after a random
amount of time, exponentially distributed with parameter α > 0.
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Nodes infected by Virus 1 also recover with rate δ1 > 0,

after which they enter the susceptible state. Similarly, nodes

infected by Virus 2 infect their susceptible neighbors, this time

with respect to the graph G2(N , E2), with rate β2 > 0, while

recovering with rate δ2 > 0. This competing bi-virus model

of epidemic spread, also referred to as the SI1I2S model, can

be represented by the following ODE system:

dxi

dt
� β1 (1 − xi − yi)

X

j∈N

aijxj − δ1xi

dyi

dt
� β2 (1 − xi − yi)

X

j∈N

bijyj − δ2yi (3)

for all i ∈ N and t ≥ 0. In matrix-vector form, (3) becomes:

dx

dt
� β1diag (1− x− y)Ax − δ1x

dy

dt
� β2diag (1− x− y)By − δ2y, (4)

where A = [aij ] and B = [bij ] are the adjacency matrices of

graphs G1(N , E1) and G2(N , E2), respectively.

III. EPIDEMIC MODELS WITH NON-LINEAR

INFECTION AND RECOVERY RATES

In this section, we introduce the single-virus and bi-virus

SIS models with non-linear infection and recovery rates. Non-

linearities can be attributed to the spread and recovery from

the virus being related to the susceptibility of the disease

(or its prevalence in the population) in a more complicated

manner. This is more general than simply exponential random

variables with constant rates used to model the spreading and

recovery processes, which in aggregate scale linearly with

the infection probabilities.4 This is shown to be limiting in

accurately modelling the trajectories of an infection spread;

the linear scaling of the infection and recovery rates shown to

being an overestimate to what is observed in reality [20], [37].

Many works thus argue for the modelling of these spreading

processes with non-linear functions [35], [36], [38], [40].

We first present the more general single-virus SIS model with

a set of intuitive assumptions (A1)–(A5) for the non-linear

infection and recovery rates.

A. SIS Model With Non-Linear Rates

In (1) the term
P

j∈N aijxj(t) denotes the overall rate at

which a susceptible node i ∈ N gets infected by its neighbors.

In what follows, we replace this by a generic function fi(x(t)),
thereby allowing the overall infection rate for each node to

be any non-linear function of xj(t) for all neighbors j of i.
Similarly, we replace the term δxi(t), denoting the overall

recovery rate for any node i ∈ N , by a non-linear function

4‘Aggregate’ here refers to the mean field approximation which is one way
to derive SIS-type ODEs. Another way is the large population mean field
limit of a stochastic process, where the connection to the corresponding ODE
system is formed via the Kurtz’s theorem [16]. In this case, linearity is induced
by the uniform or homogeneous mixing assumption which is also a subject
of criticism in epidemiology literature [35], [36], [37], [38].

qi(x(t)). This generic version of the SIS model, allowing for

non-linear infection and recovery rates, is given by the ODE

dxi(t)

dt
= f̄i(x(t)) � (1 − xi(t))fi(x(t)) − qi(x(t)) (5)

for all i ∈ N and t ≥ 0. In a matrix-vector form, this can be

written as

dx

dt
= F̄ (x) � diag(1 − x)F (x) − Q(x) (6)

where F (x) = [fi(x)] ∈ R
N , and Q(x) = [qi(x)] ∈ R

N are

the vectors of non-linear infection and recovery rate functions,

respectively. We assume that they are continuous and twice

differentiable in [0, 1]N , with JF (x) and JQ(x) denoting the

Jacobians of F and Q respectively, evaluated at any point

x ∈ [0, 1]N . We now make the following key assumptions:

(A1) F (0) = 0 and Q(0) = 0;

(A2) [JF (x)]ij = ∂fi(x)
∂xj

> 0 ∀i 6= j with aij > 0, otherwise

[JF (x)]ij = 0;

(A3) [JQ(x)]
ii

= ∂qi(x)
∂xi

> 0, and [JQ(x)]
ij

= ∂qi(x)
∂xj

≤

0 for all i 6= j, x ∈ [0, 1]N . Moreover,
P

j 6=i

[JQ(x)]
ij

<

[JQ(x)]
ii

;

(A4) fi(x) is concave in [0, 1]N , that is, ∂2fi

∂xj∂xk
≤ 0 for all

i, j, k ∈ N ;

(A5) qi(x) is convex function of xi ∈ [0, 1]N , and a concave

function of xj for all j 6= i. That is, ∂2qi

∂2xi
≥ 0 and

∂2qi

∂xj∂xk
≤ 0 for all i ∈ N , and j, k ∈ N \ {i}.

Assumption (A1) ensures that the virus-free state is a fixed

point of (6), while (A2) is a proximity assumption that models

infection spread only through edges of the underlying graph.

Assumption (A3) concerns with the recovery rate, allowing

it to be reduced by infected neighbors while still being no-

negative. (A4) and (A5) assume concavity properties of the

functions fi(x) and qi(x) in xj for any neighbor j of i. This

allows the effect of neighborhood infection xj to saturate5

as xj increases. Assumption (A5) also assumes convexity of

qi(x) in local infection xi, which means that increase in

recovery rate caused by xi can be larger as xi increases.

Examples for non-linear infection rates satisfying

(A1)–(A5) include logarithmic functions fi(x) =
P

j aij ln (1 + xj), similar to those in [20]. Examples

of non-linear recovery rates include polynomial functions

such as qi(x) = (1 + xi)
k − 1 for any k ≥ 1. A special

class of the permissible non-linear recovery rates, where the

infection duration is dependent solely on local infection xi,

is related to processes that have decreasing failure rates
(DFR).6 This special class of recovery processes that are

DFR also includes the case of linear recovery rates. Note that

our assumptions allow fi(x) and qi(x) to be heterogeneous

5As xj increases for any neighbor j of node i, the magnitude of the resulting
change in both infection rate fi(x) and recovery rate qi(x) decreases. This
is similar to the case of diminishing returns.

6Failure rate for a non-negative random variable is defined as the ratio
between its probability density function (PDF) and its complimentary cumu-
lative distribution function (CCDF). In the context of infection duration,
decreasing failure rate means that nodes recover at a decreased rate the longer
they stay continuously infected. A more detailed discussion regarding the
connection to SIS recovery rates can be found in Appendix A.



DOSHI et al.: CONVERGENCE OF BI-VIRUS EPIDEMIC MODELS WITH NON-LINEAR RATES ON NETWORKS 1191

Fig. 1. Bi-Virus epidemic spread across overlaid graphs sharing the same set
of nodes. Red and Blue arrows denote the spread of Virus 1 and 2, respectively
from infected nodes j and k (coloured Red and Blue) to the susceptible node
i (uncoloured) with the instantaneous rates as shown. The infected Red and
Blue nodes also recover with a total rate of ri(x) and si(y) for any node
i ∈ N , respectively.

across all nodes i ∈ N , and the case with linear rates in (2)

readily satisfies (A1)–(A5). This also extends to the linear

bi-virus model (4) being a special case of the non-linear

bi-virus model introduced in the next subsection, with

infection and recovery rate functions therein satisfying the

same assumptions (A1)–(A5).

B. Bi-Virus Model With Non-Linear Rates
The Bi-Virus model with non-linear infection and recovery

rates is given by the following coupled system of ODEs:

dxi

dt
= ḡi(x,y) � (1 − xi − yi) gi(x(t)) − ri(x)

dyi

dt
= h̄i(x,y) � (1 − xi − yi) hi(y(t)) − si(y) (7)

for all i ∈ N and t ≥ 0. In a matrix-vector form, (7) becomes:

dx

dt
= Ḡ(x,y) � diag (1 − x − y)G(x) − R(x)

dy

dt
= H̄(x,y) � diag (1− x − y) H(y) − S(y), (8)

where G(x) = [gi(x)], R(x) = [ri(x)], and H(y) =
[hi(y)], S(y) = [si(y)] are the non-linear infection and

recovery rate functions for viruses 1 and 2, respectively.

The pairs (G, R) and (H, S) each satisfy the assumptions

(A1)–(A5); where G and H specifically satisfy (A2) with

respect to their corresponding graphs with adjacency matri-

ces A and B, respectively. Figure 1 illustrates of how these

competing epidemics spread over the corresponding overlaid

graphs.

Assumptions (A1)–(A5) are also more general (weaker)

than those assumed in [19] and [20], where the recovery

rates are restricted to being linear functions and are thus a

special case of our model. We emphasize that while the set off

assumptions for non-linear rates are mostly similar to (slightly

more general than) those in literature, the characterization of

all convergence scenarios for their respective bi-virus models

is incomplete, as we shall discuss later in Section VI.

IV. MONOTONE DYNAMICAL SYSTEMS AND

THE SINGLE VIRUS EPIDEMIC

In this section, we provide a succinct introduction to

monotone dynamical systems (MDS) and some important

definitions therein. We go on to show that the SIS model (6)

is a monotone dynamical system (specifically a cooperative

system) and briefly apply these MDS techniques to epidemic

models by deriving the exact convergence result of the non-

linear SIS model. We also observe that Theorem 2.1 is a

special case for when the infection and recovery rates are

linear.

A. Monotone Dynamical Systems - A Primer
A well known result from real analysis is that monotone

sequences in compact (closed and bounded) subsets of R
n

converge in R
n [58]. This simple, yet powerful result has been

fully integrated with the theory of dynamical systems in a

series of works [51], [59], [60], [61], [62], [63], [64], [65],

[66], [67], which cumulatively form the theory of monotone
dynamical systems (MDS). The foundations of MDS were laid

down in [51], [59], [60], [61], and [62] which study ordinary

differential equations, specifically cooperative ODE systems.

We here provide a brief, informal introduction to such ODE

systems, with more details in Appendix B.

A central tool in the theory of MDS is the notion of

generalized cone-orderings, which extends the concept of

monotonicity in vector spaces.

Definition 4.1: Given a convex cone K ⊂ X for any vector

space X , the cone-ordering ≤K (<K , �K) generated by K
is an order relation that satisfies

(i) x ≤K y ⇐⇒ (y − x) ∈ K;

(ii) x <K y ⇐⇒ x ≤K y and x 6= y; and

(iii) x �K y ⇐⇒ (y − x) ∈ int(K), for any x,y ∈ X .

Note that, ‘�K’ implies ‘<K’ and is a stronger relation.

Cone-orderings generated by the positive orthant K = R
n
+

are simply denoted by ≤ (<,�), that is, without the ‘K’

notation.

Let φt(x) denote the solution of a dynamical system at some

time t > 0 starting from an initial point φ0(x) = x ∈ R
n.

Definition 4.2: Given a cone-ordering ≤K (<K , �K), the

dynamical system is said to be monotone if for every x,y ∈
R

n such that x ≤K y, we have φt(x) ≤K φt(y) for all t > 0.

The system is called strongly monotone if for all x,y ∈ R
n

such that x <K y, we have φt(x) �K φt(y) for all t > 0.

The main result from MDS theory says that (almost)

every solution trajectory of a strongly monotone system always

converges to some equilibrium point of the system [44], [59],

[65], [66]. If the system has only one stable fixed point,

then this in itself is enough to prove global convergence.

Monotonicity properties of a dynamical system can therefore

be leveraged as an alternative to constructing Lyapunov func-

tions, which is often intractable.

Consider the following autonomous ODE system

ẋ = F̄ (x), (9)

where F̄ (x) = [f̄i(x)] ∈ R
n is the vector field. If φt(x) is the

solution of this ODE system, we say the system is co-operative
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if it is monotone. There are ways to find out whether an ODE

system is co-operative or not. In particular, one can answer

this by observing the Jacobian of the vector field [68]. The

so-called Kamke condition [67] says that (9) is co-operative

with respect to the cone-ordering generated by the positive

orthant K = R
n
+ if and only if

∂f̄i

∂xi

≥ 0, for all i 6= j. (10)

While it is not straightforward to obtain such a clean condition

for any general convex cone K , one can still deduce the

co-operative property of the ODE with respect to any one of

the other orthants of R
n by observing the signed entries of

the Jacobian. We will show how this is done for the bi-virus

system (4) later in Section V-A.

If the Jacobian of an ODE system is an irreducible matrix in

a subset D of the state space, we say that the ODE system is

irreducible in D (Definition B.2 in Appendix B). If the ODE

system is co-operative in D as well as irreducible in D, then

it is strongly monotone in D (Theorem B.4 in Appendix B).

To prove convergence properties, we should ideally be able to

show that our system is strongly monotone in the entirety of

the state space it is contained in, for which we can directly

apply the main MDS convergence result. However, this is

often not the case, and one needs additional results from MDS

literature to prove convergence. These details are deferred to

Appendix B.

B. Monotonicity and Convergence of SIS Epidemic Models
The following proposition establishes the monotonicity of

the single-virus SIS model with non-linear infection and

recovery rates with respect to the regular ordering relationship

(cone-ordering generated by RN
+ ).

Proposition 4.3: The ODE system (6) is cooperative in

[0, 1]N and irreducible in (0, 1)N with respect to the

cone-ordering generated by the positive orthant R
N
+ . �

We now state the convergence criterion for the non-linear

single-virus SIS model.

Theorem 4.4: Let JF (x) and JQ(x) denote the Jacobian

matrices of the vector valued infection and recovery rate

functions F (x) and Q(x) from (6), respectively. Then,

(i) either λ(JF (0)−JQ(0)) ≤ 0, and x∗ = 0 is the globally

asymptotically stable fixed point of (6);

(ii) or λ(JF (0) − JQ(0)) > 0, and there exists a unique,

strictly positive fixed point x∗ � 0 such that x∗ is

globally asymptotically stable in [0, 1]N \ {0}. �

The proof for Theorem 4.4 utilizes a result from the

monotone dynamical systems literature, provided as Theo-

rem C.1 in Appendix C. It was originally proved and applied

to linear SIS epidemics in [69] as an alternate proof of the

convergence properties of the model for Gonorrhea spread

in [2], which is a special case of our non-linear model (6).

We can also see this in the following remark.

Remark 4.5: For the single-virus SIS model with linear

infection and recovery rates (2), the conditions derived in

Theorem 4.4 reduce to those in Theorem 2.1.

Proof: By substituting F (x) = βAx and Q(x) = δx
in (21) (Jacobian of the single-virus system (6), mentioned in

the proof of Theorem 4.4) and evaluating at x = 0, we get

JF̄ (0) = JF (0)−JQ(0) = βA−δI. The condition λ(JF (0)−
JQ(0)) = λ(βA − δI) > 0 (≤ 0) can be rewritten as τ >
1/λ(A) (≤ 1/λ(A)) where τ = β/δ, which as the same as

in Theorem 2.1.

While Theorem 4.4 could be proved using the steps in [2],

which were recreated again in [20], it requires first the

application of two different Lyapunov functions and also

requires proving the uniqueness of the positive fixed point.

Alternatively, one could apply Theorem 1 in [70] to establish

the uniqueness of the positive fixed point by first showing that

the Jacobian of F̄ (x) evaluated at any point x � 0 satisfying

F̄ (x) = 0, is Hurwitz. This, combined with Proposition 4.3,

could then provide the necessary convergence criterion. How-

ever, we maintain that using Theorem C.1 would be a simpler

way to derive the same results, whose proof is deferred to

Appendix C.

V. MAIN RESULTS FOR THE NON-LINEAR

Bi-VIRUS MODEL

We provide the necessary and sufficient results on the

non-linear infection and recovery rates of the bi-virus sys-

tem (8) for convergence to each of the three different kinds

of equilibria: the virus-free, the single-virus equilibrium, and

the co-existence equilibrium. However, before stating the main

convergence results (proofs deferred to Appendix F in [55]),

we establish the monotonicity of the non-linear bi-virus model.

A. Monotonicity of the Bi-Virus Epidemic Models
We first revisit the Kamke condition from Section IV-A,

in this instance given for a the southeast cone-ordering as

stated below.

Southeast cone-ordering and the Kamke condition Con-

sider the cone-ordering generated by the convex cone K =
{R

N
+ ×R

N
−} ⊂ R

2N . This cone is one of the orthants of R
2N ,

and for N = 1, it would correspond to the southeast orthant

of R
2

(

K = {R+ × R−} ⊂ R
2
)

. For any two points (x,y),
(x̄, ȳ) ∈ R

2N , it satisfies the following:

(i) (x,y) ≤K (x̄, ȳ) ⇐⇒ xi ≤ x̄i and yi ≥ ȳi for all

i ∈ N ;

(ii) (x,y) <K (x̄, ȳ) ⇐⇒ (x,y) ≤K (x̄, ȳ) and (x,y) 6=
(x̄, ȳ);

(iii) (x,y) �K (x̄, ȳ) ⇐⇒ xi < x̄i and yi > ȳi for all

i ∈ N .

This type of cone-ordering is often referred to as the southeast
cone-ordering, and the corresponding cone K is the southeast
orthant of R

2N . As shown in [68], the Kamke condition for

determining whether an ODE system is cooperative or not

with respect to the positive orthant R
2N
+ can be generalised

for cone-orderings generated by any orthant of R
2N , including

the southeast orthant. Once again, this is done by observing

the Jacobian of the respective ODE system. Consider the 2N
dimensional system given by

ẋ = Ḡ(x,y) and ẏ = H̄(x,y),

where Ḡ(x,y) = [ḡi(x,y)] and H̄(x,y) = [h̄i(x,y)] are

vector-valued functions in R
N . The Kamke condition for this
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system with respect to the southeast cone-ordering [68] is

∂ḡi

∂xj

≥ 0,
∂h̄i

∂yj

≥ 0, ∀i 6= j, and
∂ḡi

∂yj

≤ 0,
∂h̄i

∂xj

≤ 0, ∀i, j.

Roughly speaking, the Jacobian JGH(x,y) of the system,

evaluated at all points in the state space, should be in the

following block matrix form (where the signs are not strict):

JḠH̄ =

















∗ + + − − −
+ ∗ + − − −
+ + ∗ − − −
− − − ∗ + +
− − − + ∗ +
− − − + + ∗

















(11)

Note that the state space of the ODE system (4) is given by

D �
�

(x,y) ∈ [0, 1]2N | x + y ≤ 1



.

Proposition 5.1: The ODE system (8) (the non-linear bi-

virus model) is cooperative in D with respect to the southeast

cone-ordering. It is also irreducible in Int(D).
Proof: For all (x,y) ∈ D and i 6= j ∈ N , we have

∂ḡi(x,y)

∂xj

= (1 − xi − yi)
∂gi(x)

∂xj

−
∂ri(x)

∂xj

≥ 0,

∂h̄i(x,y)

∂yj

= (1 − xi − yi)
∂hi(y)

∂yj

−
∂si(x)

∂yj

≥ 0

since
∂gi(x)

∂xj
≥ 0,

∂ri(x)
∂xj

≤ 0 and
∂hi(y)

∂yj
≥ 0,

∂si(y)
∂yj

≤ 0 from

assumptions (A2) and (A3), and (1− xi − yi) ≥ 0. Moreover

for all i ∈ N ,

∂ḡi

∂yi

= −gi(x) ≤ 0 and
∂h̄i

∂xi

= −hi(y) ≤ 0,

with ∂ḡi/∂yj = ∂h̄i/∂xj = 0. Thus, the Kamke conditions

are satisfied and the system is cooperative in D.

The Jacobian JḠH̄(x,y) of system (4) is written as (12), as

shown at the bottom of the next page, where Sx,y � diag(1−
x−y), DG(x) � diag(G(x)) and DH(y) � diag(H(y)). Since

the infection rate functions satisfy assumption (A2) for their

corresponding underlying graphs, JG(x) and JH(y) follow

the sign structure of A and B respectively and are irreducible.

The off-diagonal blocks of JḠH̄(x,y) are diagonal matrices

with non-zero diagonal entries for (x,y) ∈ Int(D), and there

does not exist a permutation matrix that would transform this

into a block upper triangular matrix. Hence, by Definition B.2,

the system is irreducible in Int(D), and this completes the

proof.

From Proposition 5.1, we deduce that the non-linear bi-virus

system of ODEs (8) is co-operative in D, and thus strongly

monotone in Int(D) in view of Theorem B.4 in Appendix B.

This property also extends to the linear bi-virus system (4)

which is a special case of (8).

B. Convergence and Coexistence Properties of the Bi-Virus
Model

We are now ready to establish results on convergence

properties of the bi-virus model and provide conditions for

coexistence of two viruses in the non-linear bi-virus model as

in (8).

Let x∗ and y∗ be the globally attractive fixed points of the

single-virus SIS models that system (8) would reduce to when

Virus 2 and 1, respectively, are not present over the network.

These systems are given by

ẋ = F x(x) � Ḡ(x,0) = diag(1− x)G(x) − R(x), (13)

ẏ = F y(y) � H̄(0,y) = diag(1− y)H(y) − S(y); (14)

and by Theorem 4.4, x∗ = 0 (y∗ = 0) if

λ (JG(0) − JR(0)) ≤ 0 (if λ (JH(0) − JS(0)) ≤ 0), and

x∗ � 0 (y∗ � 0) otherwise.

We first state the result when the virus-free equilibrium

is globally attractive. We prove this by presenting simple

arguments which require only Theorem 4.4 for SIS model

along with the monotonicity properties derived in the previous

section, eliminating the need of a Lyapunov based approach.

Theorem 5.2 (Convergence to virus-free equilibria):
If λ (JG(0) − JR(0)) ≤ 0 and λ (JH(0) − JS(0)) ≤ 0,

trajectories of (8) starting from any point in D converge to

(0,0). �

We next characterize the conditions when the system glob-

ally converges to equilibria when only one of the viruses

survives over the network. Let Sx � diag(1 − x) and

Sy � diag(1 − y) for any x,y ∈ R
N . Also denote by

Bx � {(x,y) ∈ D | x > 0} the set of all points (x,y) ∈
D for which xi > 0 for some i ∈ N, and let By �

{(x,y) ∈ D | y > 0} be a similar set for the yi entries.

Theorem 5.3 (Convergence to single-virus equilibria):
When λ (Sy∗JG(0) − JR(0)) > 0 and λ

(

Sx∗JH(0) −
JS(0)

)

≤ 0, (x∗,0) is globally attractive in Bx;7 that is,

every trajectory of system (8) starting from points in Bx

converges to (x∗,0).
Similarly, when λ (Sy∗JG(0) − JR(0)) ≤ 0 and

λ (Sx∗JH(0) − JS(0)) > 0 is globally attractive in By . �

Proof: [Sketch of the proof (convergence to (x∗,0))] The

idea behind the proof is illustrated in Figure 2. For every

(x,y) ∈ Bx (for example p1 and p2 in Figure 2), we construct

a point (xr ,ys) which eventually bounds the trajectory starting

from (x,y); that is, we have (xr ,ys) �K φt1 (x,y) ≤K

(x∗,0)8 for some t1 ≥ 0. From the monotonicity shown in

Proposition 5.1, we have φt(xr,ys) �K φt+t1(x,y) ≤K

(x∗,0) for all time t ≥ 0. We prove that the trajectory

starting from (xr,ys) converges to (x∗, 0) monotonically, with

respect to the southeast cone-ordering (Figure 2(a)). Using

this, we show the convergence of trajectories starting from

(x,y) via a sandwich argument (Figure 2(b)). See Appendix

F in [55] for detailed proof.

Finally, we give the necessary and sufficient conditions that

guarantee the co-existence of the two viruses in the long run.

Let E denote the set of all fixed points of the system in (8).

Theorem 5.4 (Convergence to coexistence equilibria): If

λ (Sy∗JG(0) − JR(0)) > 0 and λ (Sx∗JH(0) − JS(0)) > 0,

there exist fixed points of system (8) (x̂, ŷ) � (0,0) and

7We consider Bx as the global domain of attraction instead of D because
x = 0 for all points in the set D \Bx . Starting from such points the system
is no longer a bi-virus epidemic, but a single-virus SIS system for Virus 2.

8φt(x, y) denotes the solution of (4) at t ≥ 0, with initial point (x,y).
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Fig. 2. Illustration of the convergence to (x∗, 0).

(x̄, ȳ) � (0,0) such that

(0,y∗) �K (x̂, ŷ) ≤K (x̄, ȳ) �K (x∗,0),

with the possibility that (x̂, ŷ) = (x̄, ȳ). All tra-

jectories of system (8) starting from Bx ∩ By con-

verge to the set of coexistence fixed points S �

{(xe,ye) ∈ E | (x̂, ŷ) ≤K (xe,ye) ≤K (x̄, ȳ)}. �

The proof of Theorem 5.4 follows similar arguments to that

of the previous theorem, and is the first convergence result

for coexistence fixed points in the competing SIS literature.

Note that while we have convergence to ‘a’ coexistence

equilibrium, it may or may not be unique in the state space.

The global convergence is therefore to the set of possible

coexistence equilibria, and not necessarily a singular point.

Thus, via Theorems 5.2, 5.3 and 5.4 we cover all possible

convergence scenarios of the bi-virus SIS system (8), and

successfully establish the complete theoretical characterization

for the trichotomy of possible outcomes.

VI. LINEAR INFECTION AND RECOVERY RATES -

DISCUSSION AND COMPARISON TO LITERATURE

We now take a look at the special case of the bi-virus epi-

demic model where infection and recovery rates scale linearly

with the local infection probability. This is the most commonly

analysed setting in literature [21], [31], [32], [33], [34], [54],

and allows us to provide a comprehensive discussion on the

related works. With the exception of [54], a line of work

seemingly developed concurrently to ours, we observe that

most existing works only provide limited results regarding

convergence to coexistence equilibria. In what follows, we pro-

vide corollaries of Theorems 5.2, 5.3 and 5.4 which charac-

terize convergence to the trichotomy of possible outcomes

for the special case of linear infection and recovery rates.

These results, along with Figure 3, are reproduced here as

they originally were in our previous work [1] which focused

only on characterizing the convergence properties in the case

of linear infection and recovery rates.

The model considered in this section is the bi-virus sys-

tem (4) with homogeneous infection and recovery rates.9

While at first this may seem too simplistic compared to the

case of linear, heterogeneous rates,10 and even generic, non-

linear rates analyzed in literature [19], [20], [21], [31], [32],

[33], [34], [54], the discussions in the ‘Comparison to existing
ilterature’ subsection will still hold for these more general

cases. We only stick to the bi-virus system with homogeneous

rates as in (4) to be able to illustrate our results in the form of

Figure 3; the axes capturing the parameters of the system. This

enables us to better explain our contribution, using visual aids

in the form of Figure 3, helping us compare our work with

some of the existing literature more effectively, as opposed to

presenting any other special case of the bi-virus model.

Consider the linear bi-virus system (4). By setting G(x) =
β1Ax, R(x) = δ1x and H(y) = β2By, S(y) = δ2y, we get

JG(0) = β1A, JR(0) = δ1I,

and

JH(0) = β2B, JS(0) = δ2I.

Defining τ1 � β1/δ1, τ2 = 4β2/δ2, and plugging in the

above expressions for the Jacobians in Theorems 5.2 and 5.3,

we have the following Corollaries.

Corollary 6.1: If τ1λ(A) ≤ 1 and τ2λ(B) ≤ 1, trajectories

of (4) starting from any point in D converge to (0,0). �

Corollary 6.2: When τ1λ(Sy∗A) > 1 and τ2λ(Sx∗B) ≤ 1,

(x∗,0) is globally attractive in Bx;11 that is, every trajectory

of system (4) starting from points in Bx converges to (x∗,0).
Similarly, when τ1λ(Sy∗A) ≤ 1 and τ2λ(Sx∗B) > 1,

(0,y∗) is globally attractive in By . �

From Corollary 6.2, we can deduce that the threshold values

for τ1 and τ2 below which each of the viruses will die out

are given by the equations τ1 = 1/λ(Sy∗A) and τ2 =
1/λ(Sx∗B), respectively. Figure 3(b) plots these threshold

values for Virus 1 (in blue) and Virus 2 (in red) for varying

values of τ1 and τ2, and partitions the entire parameter space

into regions R1 – R6 as shown. When τ1 > 1/λ(A) and

τ2 > 1/λ(B), for which values of τ1, τ2 do not lie in regions

R1, R2 or R3, the blue curve lies above the red curve as in

Figure 3(b). This was originally shown in [18] by deducing

that the ratio of slopes of the red and blue curves at point

(τ1, τ2) = (1/λ(A), 1/λ(B)) is less than one. This means

9Every infected node i ∈ N infects its susceptible neighbor with the same
rate β1 > 0 or β2 > 0, and in turn recovers with the same rate δ1 > 0 or
δ2 > 0, depending on whether it is infected by Virus 1 or 2 respectively.

10The adjacency matrices A and B in (4) can be symmetric, irreducible,
weighted; with aij , bij ≥ 0 (not necessarily 0/1 valued) multiplied by β1 and
β2 respectively, being the infection rates from node j → i for Viruses 1 and
2. Recovery rates can similarly be heterogenized as δ1 = [δi

1
] and δ2 = [δi

2
]

for Viruses 1 and 2; written as recovery rate matrices diag(δ1) and diag(δ1),
respectively.

11We consider Bx as the global domain of attraction instead of D because
x = 0 for all points in the set D \Bx . Starting from such points the system
is no longer a bi-virus epidemic, but a single-virus SIS system for Virus 2.

JḠH̄(x,y) =

�

SxyJG(x)−DG(x)−JR(x) −DG(x)

−DH(y) SxyJH(y)−DH(y)−JS(y)

�

, (12)



DOSHI et al.: CONVERGENCE OF BI-VIRUS EPIDEMIC MODELS WITH NON-LINEAR RATES ON NETWORKS 1195

Fig. 3. Characterization of the parameter space.

there exist combinations of τ1, τ2 for which τ1 lies to the right

of the blue curve (τ1λ(Sy∗A) > 1), and τ2 lies above the red

curve (τ2λ(Sx∗B) > 1).12 This corresponds to region R6 in

Figure 3(b), and our final corollary (derived from Theorem 5.4)

shows that for values of τ1, τ2 which lie in R6, we observe

convergence to coexistence equilibria.

Corollary 6.3 (Convergence to Coexistence Equilibria): If

τ1λ(Sy∗A) > 1 and τ2λ(Sx∗B) > 1, there exist fixed points

of system (4) (x̂, ŷ) � (0,0) and (x̄, ȳ) � (0,0) such that

(0,y∗) �K (x̂, ŷ) ≤K (x̄, ȳ) �K (x∗,0),

with the possibility that (x̂, ŷ) = (x̄, ȳ). All tra-

jectories of system (4) starting from Bx ∩ By con-

verge to the set of coexistence fixed points S �

{(xe,ye) ∈ E | (x̂, ŷ) ≤K (xe,ye) ≤K (x̄, ȳ)}. �

Comparison to existing literature: Now that we have estab-

lished all our results, we briefly compare our work with results

from [19], [20], which also talk about global convergence

to single-virus equilibria. To this end, we first illustrate the

limitations of the existing conditions for global convergence

in [19] and [20] in Figure 3(a); and use Figure 3(b), where

we provide complete characterization of the parameter space,

to draw comparisons with our results. We then discuss the

works [31], [32], [33], [34] which consider more general

models where there can be more than two viruses, but present

sharper results in the bi-virus setting. Finally, we will briefly

comment on the finiteness of the coexistence equilibria, citing

results from [54].

When translated to the setting of linear infection and

recovery rates as in 4, the result from [19] says that when

τ1dmin(A) > τ2dmax(B), the Virus 2 is sure to die out (Virus

1 could persist or die out), and similarly when τ1dmax(A) <
τ2dmin(B), the Virus 1 is sure to die out. We illustrate these

conditions in Figure 3(a), where Virus 1 (Virus 2) is sure to

die out if parameters (τ1, τ2) lie above (below) the blue (red)

line. Therefore, the entire yellow-shaded region in Figure 3(a),

between the blue and red lines, is left uncharacterized in [19].

12Note that τ1λ(Sy∗A) ≤ 1 and τ2λ(Sx∗B) ≤ 1 is only possible in
region R1, since it is the only region where τ1 can lie to the left of the
blue curve, and τ2 can lie below the red curve. This effectively reduces the
expressions to τ1λ(A) ≤ 1 and τ2λ(B) ≤ 1, the conditions for convergence
to the virus-free equilibrium as in Corollary 6.1.

When A and B are regular graphs with the same degree

(dmin = dmax = d), the blue and red lines coincide,

making coexistence infeasible. This is also mentioned in [18]

where they show that for regular graphs with same degree,

the system behaves as if the two graphs were the same -

rendering coexistence impossible (which is also in line with

results in [8]). In contrast, the maximum degree of graphs can

also be much larger than the minimum degree (e.g., power

law graphs), causing the yellow-shaded space to become very

large, possibly spanning almost the entire parameter space.

The main result in [20], when similarly translated to our

setting as above, says that when τ1λ(A) > 1 and τ2λ(B) ≤
1, Virus 1 survives and Virus 2 dies out. Similarly, when

τ2λ(B) > 1 and τ1λ(A) ≤ 1, Virus 2 survives and Virus

1 dies out. These correspond to regions R2 and R3 in Fig-

ure 3(b). However, their results do not cover the convergence

properties for τ1, τ2 which lie in regions R4 – R6. Our

Theorems 5.3 and 5.4, through their corresponding corollaries,

do account for these values of τ1, τ2, and show convergence

to (0,y∗), (x∗,0) or to a coexistence fixed point whenever

they lie in regions R4, R5, or R6, respectively.

The works [32], [33] consider the bi-virus epidemic model

with heterogeneous linear infection and recovery rates as a

special case of their respective multi-virus models. Corollary

2 in [33], a more general version of Theorem 5 in [32]

which considers the case where N = 2, establishes existence

conditions for the coexistence equilibria. These conditions are

identical to the ones emerging out of Theorem 5.4 when

applied to the bi-virus model considered therein (also identical

to the conditions in Corollary 6.3 for the special case of

homogeneous, linear infection and recovery rates), and our

result can therefore be considered as an extension of those

in [32] and [33]; providing convergence results in addition to

their existence results. Theorem 6 in [34] (Theorem 8 in [31])

is another interesting result concerning coexistence equilibria,

where they show for the special case of viruses spreading

over the same (possibly weighted) graph that the survival

probability vectors of both the viruses are the same up to a

constant multiple; that is, they are parallel.

The finiteness of the number of single-virus equilibria

is evident from Theorem 4.4, which proves its uniqueness.

However, Theorem 5.4 and Corollary 6.3 do not explicitly

show that coexistence equilibria are finitely many, let alone
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TABLE I

SUMMARY OF INFECTION AND RECOVERY RATE FUNCTIONS CHOSEN

Fig. 4. Phase plots for a system with linear infection and recovery rates (CASE 1) on the AS-733 graph.

uniqueness.13 For linear, heterogeneous infection and recov-

ery rates, Theorem 3.6 in [54] uses novel techniques from

algebraic geometry to prove that the coexistence equilibria are

finitely many for all possible values of infection and recovery

rates that do not lie in an algebraic set of measure zero.

However, this remains an open problem for general, non-linear

infection and recovery rate functions satisfying (A1)–(A5).

In summary, without our Theorems 5.3 and 5.4, convergence

results from literature fail to characterize a sizeable portion

of the parameter space as shown in Figure 3(a) by the ‘?’

region (part of the shaded region surrounded by the arrows).

The parameters leading to coexistence are entirely contained

in this region as well - explaining the dearth of convergence

results for such equilibria in the existing literature.

VII. NUMERICAL RESULTS

In this section, we present simulation results to support our

theoretical findings for the bi-virus SIS model for combina-

tions of non-linear as well as linear infection and recovery

rates. To this end, we consider an undirected, connected

graph (103 nodes, 239 edges), called Autonomous System

(AS-733), from the SNAP repository [71]. For both the linear

and non-linear bi-virus model, we generate an additional

graph, overlaid on the same set of nodes, by modifying the

original graph (AS-733-A with λ(A) = 12.16), removing

and adding edges while ensuring connectivity between the

nodes. The new additional graph, AS-733-B, has 741 edges

with λ(B) = 15.53. Note that since our theoretical results

hold for any general graphs, we only use this set as example

graphs to numerically demonstrate the convergence properties.

Similar numerical results can indeed be obtained for any other

networks (such as social networks).

13In Section VII, we show with the aid of simulation results that the
coexistence equilibria are indeed not unique in general.

We test the convergence dynamics of the bi-virus model

over a range of combinations of linear and non-linear infection

and recovery rates. To this end, we consider three different bi-

virus models, and Table I summarizes the three cases with

the corresponding infection and recovery rate functions as

shown. Note that for non-linear infection and recovery rates,

we consider the logarithmic and polynomial functions briefly

mentioned in Section III, to ensure that our three cases satisfy

assumptions (A1)–(A5).

For each of the three cases, we construct combinations

of parameters (τ1 or τ2 for linear rates, and α1 or α2 for

non-linear rates), to develop three convergence scenarios, that

satisfy the assumptions of Theorems 5.3 and 5.4. These

three scenarios correspond to global convergence of the

bi-virus system to fixed points where (a) Virus 1 is the

surviving epidemic (which spreads on graph AS-733-A),

(b) Virus 2 is the surviving epidemic (which spreads on graph

AS-733-B), (c) both viruses coexist, (where Virus 1 spreads

on graph AS-733-A and Virus 2 on AS-733-B). Parameters

corresponding to these three scenarios are provided in the

table inset in Figures 4–6(a)–(c) corresponding to the three

cases.

To visualize our system in two dimensions, we use avgX �

(1/N)
P

i∈N xi on the x-axis, and avgY � (1/N)
P

i∈N yi

on the y-axis. We plot trajectories of the bi-virus system

starting from different initial points in the state space D to

observe their convergence, with red arrows representing the

trajectories’ direction of movement at various time intervals.

Here, the state space D is the region that lies below the dotted-

line (for example, in Figure 4), ensuring xi + yi ≤ 1 for all

i ∈ N , for every initial point. To ensure that the convergences

observed in our phase plots match the conditions laid out

in Theorems 5.3 and 5.4, we track the eigenvalues λ(U) �

λ(Sy∗JG(0) − JR(0)) and λ(V) � λ(Sx∗JH(0) − JS(0)).
λ(U) (λ(V)) being positive or negative corresponds to Virus 1

(Virus 2) surviving or dying out, respectively.
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Fig. 5. Phase plots for a system with non-linear infection and linear recovery rates (CASE 2) on the AS-733 graph.

Fig. 6. Phase plots for a system with non-linear infection and recovery rates (CASE 3) on the AS-733 graph.

Fig. 7. Coexistence condition with Multiple equilibrium points.

In Figures 4–6(a)–(c), we show numerical results for the

three cases, respectively. Figures 4–6(a) and 4–6(b) show

convergence to the two different single-virus equilibria, where

the parameters therein satisfy the two set of conditions as

in Theorem 5.3. Figures 4–6(c) show convergence to the

coexistence equilibria, which also satisfies the coexistence

conditions as outlined in Theorem 5.4. We observe a unique

coexistence equilibrium when the viruses are competing over

graphs AS-733-A and AS-733-B, for which the eigenval-

ues λ(A) and λ(B) are significantly different. Interestingly,

we also observe multiple coexistence equilibria as shown in

Figure 7. We obtain this result by creating another additional

graph by modifying the original graph AS-733-A such that

the eigenvalue of this new graph is as close to the original

one where this new graph AS-733-C has 259 edges with

λ(C) = 12.26. The ‘upper left’ and ‘lower right’ coexistence

fixed points characterize the set S of all such equilibria, as in

Theorem 5.4. This can be seen more closely in the inset in

Figure 7, where the number beside each fixed point (in red)

corresponds to the different initial starting points (in blue) of

the trajectories. Thus, convergence to set S occurs globally

over the state space, but exactly which coexistence fixed point

the system converges to is dependent on the initial point.

We are thus able to observe all possible convergence scenarios

from Section V-B, including multiple coexistence equilibria.

VIII. CONCLUDING REMARKS

By utilizing the techniques from Monotone Dynamical

Systems (MDS), in this paper, we show that a generic bi-virus

epidemic model with non-linear infection and recovery rates

is monotone with respect to a specially constructed partial

ordering. This monotonicity allows us to give necessary and

sufficient conditions on the non-linear infection and recovery

rates, and thus completely characterize the entire parameter

space of the bi-virus system, a contrast to the usual Lyapunov

based approach. We bridge the gap between linear stability

properties and global convergence results (or lack thereof)

for the bi-virus model with non-linear rates (including the

special case with linear rates) in the literature, and succeed

in providing a complete characterization of the trichotomy

of possible outcomes for such competing epidemics - a well

known open problem. Our results demonstrate how powerful

these alternative proving techniques can be, compared to clas-

sical Lyapunov approaches; and we note that it may be worth

exploring such monotonicity properties in other dynamics



1198 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

on graphs as well, where competition is a general theme.

Additionally, establishing a rigorous relationship between the

SIS ODE models with non-linear rates as studied in this paper,

and the correct probabilistic dynamics describing these non-

linear rates, is of interest in order to complete the theoretical

pictures for SIS models with non-linear rates.

APPENDIX A

DFR PROCESSES AS NON-LINEAR RECOVERY RATES

In this appendix, we form the connection between failure
rates from reliability theory [72], and the infection duration

at any node in SIS type epidemics. To this end, we start by

formally defining the term failure rate.

Definition A.1 [72]: Let T > 0 be any continuous random

variable with distribution FT (s) = P(T ≤ s), and density

function fT (s) for all s > 0, with F̄T (s) = 1 − FT (s) =
P(T > s). Then, the failure rate at any given time s > 0 is

defined as

rT (s) �
fT (s)

F̄T (s)
. (15)

We say T has a decreasing/increasing failure rate (DFR/IFR)

if rT (s) is a decreasing/increasing function of s > 0.

When T is the lifetime of a system, the DFR case corre-

sponds to the system aging negatively. This means that as time

elapses, the residual time (time till the system fails) is more

likely to increase rather than decrease. T could also have an

interpretation in the context of node recovery. For the linear

SIS epidemic model as in (1), consider an infected node i ∈ N
and define T � time taken for node i to recover (random),

with fT (s) and F̄T (s) as in Definition A.1. Loosely speaking,

we can ignore the infection rate terms in (1) to take a closer

look at the recovery process via the ODE

ẋi(s) = −δxi(s), (16)

with the initial condition xi(0) = 1 (implying that node i
is last infected at time s = 0). The ODE (16) has an exact

solution for all s > 0, given by xi(s) = e−δs. This solution

allows us to interpret xi as the cumulative distribution function

(CCDF) of an exponential random variable14 with rate δ >
0. Using this interpretation, we have xi(s) = P (T > s) =
F̄T (s), and −ẋi(s) = fT (s). (16) can then be rewritten as

rT (s) =
−ẋi(s)

xi(s)
= δ,

for any s > 0. T is thus exponentially distributed, and has a

constant failure rate (it is both DFR and IFR).

We now consider the case where the random variable T
is defined for the more general SIS epidemic model with

non-linear recovery rate qi(xi) for node i.15 Ignoring the

infection rate terms in (5) like before, we obtain

ẋi(s) = −qi (xi(s)) , (17)

14When T ∼ exp(δ), we have F̄T (s) = P (T > s) = e−δs.
15Note that this is the special case where qi is only a function of xi, not

of xj for neighbors j of node i.

retaining the previous interpretation of xi as the CCDF of T .

This can be further rearranged to obtain an expression for the

failure rate as

rT (s) =
−ẋi(s)

xi(s)
=

qi (xi(s))

xi(s)

for any s > 0. From Definition A.1 we know T is DFR if

rT (s) is decreasing in s > 0. Supposing qi is such that T is

indeed DFR, log(rT (s)) is also decreases in s, and we get

d

ds
log (rT (s)) =

q0i(xi(s))ẋi(s)

q(xi(s))
−

ẋi(s)

xi(s)
≤ 0,

where q0i(xi(s)) denotes the derivative with respect to xi.

Since ẋi(s) = −qi(xi(s)) from (17) and q0i(x(s)) ≥ 0 from

(A3), rearranging the previous equation gives us following the

condition for T to be DFR

xiq
0
i(xi) − qi(xi) ≥ 0. (18)

In (18), the (s) notation has been suppressed for clarity. Since

qi(0) = 0, the convexity of qi with respect to xi implies (18).

Roughly speaking, the DFR case (which also includes linear

recovery rates as in (1)) is a subclass of recovery rate functions

qi(x) satisfying assumptions (A1)–(A5). Even though the

above steps may not be exact, they provide intuition on how

infections which fester and grow worse with time form part

of our modelling assumptions in Section III.

APPENDIX B

RESULTS FROM MDS AND COOPERATIVE SYSTEMS

Definition B.1 ([44], [51], [63]): A flow φ is said to be

monotone if for all x,y ∈ R
n such that x ≤K y and any

t ≥ 0, we have φt(x) ≤K φt(y).
If the flow represents the solution of an ODE system, we say

that the ODE system is co-operative.

Definition B.2: Consider the system (9) and let JF (x) �

[dfi(x)/dxj ] be the Jacobian of the right hand side evaluated

at any point x ∈ R
n. We say that (9) is an irreducible ODE

in set D ∈ R
n if for all x ∈ D, JF (x) is an irreducible

matrix.

Definition B.3: [44], [63], [67] The flow φ is said to be

strongly monotone if it is monotone, and for all x,y ∈ R
n

such that x <K y, and time t ≥ 0, we have φt(x) �k φt(y).
Theorem B.4: [44], [63], [67] Let (9) be irreducible and

co-operative in some set D ⊂ R
n. Then the solution φ

(restricted to t ≥ 0) is strongly monotone. �

As part of the main result of monotone dynamical systems,

trajectories of strongly monotone systems, starting from almost

anywhere (in the measure theoretic sense) in the state space,

converge to the set of equilibrium points [44], [59], [65], [66].

However, often the systems are strongly monotone only in the

interior of the state spaces instead of the entirety of the state

space. In such cases, the following results are useful.

Proposition B.5: (Proposition 3.2.1 in [67]) Consider the

ODE system (9) which is cooperative in a compact set D ⊂
R

n with respect to some cone-ordering, and let <r stand

for any of the order relations ≤K , <K ,�K . Then, P+ �

{x ∈ D | 0 <r F (x)} and P− � {x ∈ D | F (x) <r 0} are
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positively invariant, and the trajectory {φt(x)}t≥0 for any

point x ∈ P+ or x ∈ P− converges to an equilibrium. �

Theorem B.6: (Theorem 4.3.3 in [67]) Let (9) be coopera-

tive (with respect to some cone-ordering ≤K) in a compact set

D ⊂ R
n and let x0 ∈ D be an equilibrium point. Suppose that

s � λ(JF (x0)) > 0 (i.e. x0 is an unstable fixed point) and

there is an eigenvector v �K 0 such that JF (x0)v = sv.

Then, there exists �0 ∈ (0, �] and another equilibrium point

xe such that for each r ∈ (0, �0], the solution φt(xr) has the

following properties:

(1) xr �K φt1(xr) �K φt2(xr) �K xe, for any 0 < t1 <
t2.

(2) dφt(xr)/dt �K 0, for any t > 0.

(3) φt(xr) → xe, as t → ∞. �

APPENDIX C

PROOFS OF THE RESULTS IN SECTION IV

Proof of Proposition 4.3: To prove that system (6) is

co-operative with respect to the positive orthant, we show that

it satisfies Kamke’s condition in (10). Differentiating the right

hand side of (5) with respect to xj , we get

∂f̄i(x)

∂xj

= (1 − xi)
∂fi(x)

∂xj

=
∂qi(x)

∂xj

.

This corresponds to the (ij)’th off-diagonal entry of the

Jacobian JF̄ (x) evaluated at x ∈ [0, 1]N . It is non-negative

for any i 6= j ∈ N since (1 − xi) ≥ 0 and due to assumption

(A3), and the ODE (6) is therefore co-operative in [0, 1]N with

respect to the regular cone ordering.

From assumption (A3), JF̄ (x)ij is also strictly positive for

any x ∈ (0, 1)N whenever aij > 0. This means that JF̄ (x),
and as a consequence the ODE system, is irreducible for any

x ∈ (0, 1)N . �

To derive the convergence properties of the non-linear SIS
model, we make use of a result form [69], rewritten below in

a simpler form suitable for our setting.

Theorem C.1 (Theorem 4 in [69]): Consider a generic

ODE system (9) invariant to some subset S ⊂ R
N
+ , and let

JF̄ stand for its Jacobian matrix. Suppose that:

(C1) fi(x) ≥ 0 for all x ≥ 0 with xi = 0;

(C2) for all x � 0 in S, α ∈ (0, 1), it satisfies JF̄ (x)ij ≤
JF̄ (αx)ij for all i, j ∈ N , with strict inequality for at

least one pair of i, j;

(C3) for all u � w in S, it satisfies JF̄ (w) ≤ JF̄ (u);
(C4) it is co-operative in S with respect to the regular

ordering relation, and irreducible in Int(S).

Then, exactly one of the following outcomes occurs:

(i) φt(x) is unbounded for all x ∈ S \ {0};

(ii) φt(x) → 0 as t → ∞, for all x ∈ S \ {0};

(iii) There exists a unique, strictly positive fixed point x∗ �
0 such that φt(x) → x∗ as t → ∞, for all x ∈ S\{0}.�

We now use the above to prove Theorem 4.4.

Proof of Theorem 4.4: We prove Theorem 4.4 by showing

that it satisfies conditions (C1)-(C4) of Theorem C.1, and then

performing stability analysis to evaluate conditions for each of

the three possible outcomes therein.

From Proposition (4.3), we know that (6) already satisfies

(C4). The right hand side of (5) satisfies (C1) because qi(xi) =
0 when xi = 0, and because (1 − xi) and fi(x) are all

non-negative for any x ∈ [0, 1]N . To check whether (C2) and

(C3) is satisfied, observe that from assumptions (A2)–(A5),

we have

JF (u) > JF (w) (19)

JQ(u) < JQ(w) (20)

for all u < w.16 Here, JQ is a diagonal matrix since

∂qi/∂xj = 0 for all i 6= j ∈ N .

Denote by JF̄ the Jacobian matrix of system (6). Note that

for any point x ∈ [0, 1]N , we have

JF̄ (x) = diag(1 − x)JF (x) − diag (F (x)) − JQ(x) (21)

Combining the above with (19) and (20), we have for any

points u < w that

JF̄ (u) = diag(1− u)JF (u) − diag (F (u)) − JQ(u)

> diag(1− w)JF (w) − diag (F (u)) − JQ(w)

≥ diag(1− w)JF (w) − diag (F (w)) − JQ(w)

= JF̄ (w),

where the first inequality is due to (1−u) > (1−w) and (19)

and (20). The second inequality is from the non-negativity and

monotonicity assumptions (A2) and (A3) implying F (u) ≤
F (w). Since JF̄ (u) > JF̄ (w) for any u < w, this is enough

to satisfy both conditions (C2) and (C3).

Since system (6) satisfies (C1)–(C4), Theorem C.1 applies.

Since the system is invariant in [0, 1]N , which is a bounded

subset of R
N , outcome (i) of Theorem C.1 never occurs. From

assumption (A1), the vector 0 = [0, · · · , 0]T (the virus-free

equilibrium) is always a fixed point of the system. We now

find conditions under which trajectories of (6) starting from

anywhere in [0, 1]N \ {0} converge to either zero, or to a

unique strictly positive fixed point (outcomes (ii) and (iii) in

Theorem C.1 respectively), by check the stability properties

of the system.

The virus-free fixed point zero is unstable [73] when

λ(JF̄ (0)) = λ(JF (0) − JQ(0)) ≤ 0. Under this condition,

outcome (ii) in Theorem C.1 is not possible, and there exists

a unique, strictly positive fixed point x∗ � 0 which is

globally asymptotically stable in [0, 1]N \ {0}. Conversely

when zero is a stable fixed point, that is when λ(JF̄ (0)) =
λ(JF (0) − JQ(0)) > 0, it is globally attractive. �

REFERENCES

[1] V. Doshi, S. Mallick, and D. Y. Eun, “Competing epidemics on graphs—
Global convergence and coexistence,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), May 2021, pp. 1–10.

[2] A. Lajmanovich and J. A. Yorke, “A deterministic model for Gonorrhea
in a nonhomogeneous population,” Math. Biosci., vol. 28, nos. 3–4,
p. 221–236, 1976.

[3] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Rev.,
vol. 42, no. 4, pp. 599–653, 2000, doi: 10.1137/S0036144500371907.

16Here, the ordering between matrices Ma < Mb means Ma
ij ≤ Mb

ij
with the inequality being strict for at least one pair of i, j.

http://dx.doi.org/10.1137/S0036144500371907


1200 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

[4] M. Garetto, W. Gong, and D. Towsley, “Modeling malware spreading
dynamics,” in Proc. 32nd Annu. Joint Conf. IEEE Comput. Com-
mun. Societies (INFOCOM), San Francisco, CA, USA, May 2003,
pp. 1869–1879.

[5] L.-X. Yang, X. Yang, J. Liu, Q. Zhu, and C. Gan, “Epidemics of
computer viruses: A complex-network approach,” Appl. Math. Comput.,
vol. 219, no. 16, pp. 8705–8717, Apr. 2013.

[6] S. Hosseini and M. A. Azgomi, “A model for malware propagation in
scale-free networks based on rumor spreading process,” Comput. Netw.,
vol. 108, pp. 97–107, Oct. 2016.

[7] K. R. Apt and E. Markakis, “Diffusion in social networks with compet-
ing products,” in Proc. Int. Symp. Algorithmic Game Theory, Oct. 2011,
pp. 212–223.

[8] B. A. Prakash, A. Beutel, R. Rosenfeld, and C. Faloutsos, “Winner takes
all: Competing viruses or ideas on fair-play networks,” in Proc. 21st Int.
Conf. World Wide Web, Apr. 2012, pp. 1037–1046.

[9] S. F. Ruf, K. Paarporn, P. E. Pare, and M. Egerstedt, “Dynamics
of opinion-dependent product spread,” in Proc. IEEE 56th Annu.
Conf. Decis. Control (CDC), Melbourne, VIC, Australia, Dec. 2017,
pp. 2935–2940.

[10] D. Trpevski, W. K. S. Tang, and L. Kocarev, “Model for rumor
spreading over networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 81, no. 5, May 2010, Art. no. 056102.

[11] L. J. Zhao, H. X. Cui, X. Y. Qiu, X. L. Wang, and J. J. Wang, “SIR
rumor spreading model in the new media age,” Phys. A, vol. 392, no. 4,
pp. 995–1003, Feb. 2013.

[12] X. Lin, Q. Jiao, and L. Wang, “Opinion propagation over signed net-
works: Models and convergence analysis,” IEEE Trans. Autom. Control,
vol. 64, no. 8, pp. 3431–3438, Aug. 2019.

[13] I. Koprulu, Y. Kim, and N. B. Shroff, “Battle of opinions over evolving
social networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 532–545,
Apr. 2019.

[14] S. Banerjee, A. Chatterjee, and S. Shakkottai, “Epidemic thresholds with
external agents,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Toronto, ON, Canada, Apr. 2014, pp. 2202–2210.

[15] A. Ganesh, L. Massoulie, and D. Towsley, “The effect of network
topology on the spread of epidemics,” in Proc. IEEE 24th Annu. Joint
Conf. IEEE Comput. Commun. Societies., Miami, FL, USA, Dec. 2005,
pp. 1455–1466.

[16] M. Draief and L. Massoulié, Epidemics and Rumours in Complex
Networks, 1st ed. Cambridge, U.K.: Cambridge Univ. Press, 2010.

[17] F. D. Sahneh, C. Scoglio, and P. V. Mieghem, “Generalized epidemic
mean-field model for spreading processes over multilayer complex
networks,” IEEE/ACM Trans. Netw., vol. 21, no. 5, pp. 1609–1620,
Oct. 2013.

[18] F. D. Sahneh and C. Scoglio, “Competitive epidemic spreading over
arbitrary multilayer networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 89, no. 6, 2014, Art. no. 062817.

[19] A. Santos, J. M. F. Moura, and J. M. F. Xavier, “Bi-virus SIS epidemics
over networks: Qualitative analysis,” IEEE Trans. Netw. Sci. Eng., vol. 2,
no. 1, pp. 17–29, Jan. 2015.

[20] L.-X. Yang, X. Yang, and Y. Y. Tang, “A bi-virus competing spreading
model with generic infection rates,” IEEE Trans. Netw. Sci. Eng., vol. 5,
no. 1, pp. 2–13, Jan./Mar. 2018.

[21] J. Liu, P. E. Pare, A. Nedic, C. Y. Tang, C. L. Beck, and T. Basar,
“Analysis and control of a continuous-time bi-virus model,” IEEE Trans.
Autom. Control, vol. 64, no. 12, pp. 4891–4906, Dec. 2019.

[22] P. Van Mieghem, “The N -intertwined SIS epidemic network model,”
Computing, vol. 93, nos. 2–4, pp. 147–169, Dec. 2011.

[23] J. Omic and P. Van Mieghem, “Epidemic spreading in networks—
Variance of the number of infected nodes,” Delft Univ. Technol., Delft,
The Netherlands, Tech. Rep. 20090707, 2009.

[24] P. V. Mieghem, J. Omic, and R. Kooij, “Virus spread in networks,”
IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 1–14, Jun. 2008.

[25] A. Gray, D. Greenhalgh, L. Hu, X. Mao, and J. Pan, “A stochastic
differential equation SIS epidemic model,” SIAM J. Appl. Math., vol. 71,
no. 3, pp. 876–902, Jan. 2011.

[26] C. Li, R. van de Bovenkamp, and P. V. Mieghem, “Susceptible-infected-
susceptible model: A comparison of N-intertwined and heterogeneous
mean-field approximations,” Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 86, no. 2, Aug. 2012, Art. no. 026116.

[27] Y. Wang, Z. Jin, Z. Yang, Z.-K. Zhang, T. Zhou, and G.-Q. Sun,
“Global analysis of an SIS model with an infective vector on complex
networks,” Nonlinear Anal., Real World Appl., vol. 13, pp. 543–557,
Apr. 2012.

[28] D. Guo, S. Trajanovski, R. van de Bovenkamp, H. Wang, and
P. Van Mieghem, “Epidemic threshold and topological structure of
susceptible-infectious-susceptible epidemics in adaptive networks,”
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 88,
no. 4, Oct. 2013, Art. no. 042802.

[29] M. Benaïm and M. W. Hirsch, “Differential and stochastic epidemic
models,” Fields Inst. Commun., vol. 21, pp. 31–44, Jul. 1999.

[30] Y. Wang, G. Xiao, and J. Liu, “Dynamics of competing ideas in complex
social systems,” New J. Phys., vol. 14, no. 1, Jan. 2012, Art. no. 013015.

[31] P. E. Paré, J. Liu, C. L. Beck, A. Nedić, and T. Başar, “Multi-competitive
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