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Convergence of Bi-Virus Epidemic Models With
Non-Linear Rates on Networks—A Monotone
Dynamical Systems Approach

Vishwaraj Doshi

Abstract— We study convergence properties of competing epi-
demic models of the Susceptible-Infected-Susceptible (S15S) type.
The SIS epidemic model has seen widespread popularity in
modelling the spreading dynamics of contagions such as viruses,
infectious diseases, or even rumors/opinions over contact net-
works (graphs). We analyze the case of rwo such viruses spreading
on overlaid graphs, with non-linear rates of infection spread
and recovery. We call this the non-linear bi-virus model and,
building upon recent results, obtain precise conditions for global
convergence of the solutions to a trichotomy of possible outcomes:
a virus-free state, a single-virus state, and to a coexistence state.
Our techniques are based on the theory of monotone dynam-
ical systems (MDS), in contrast to Lyapunov based techniques
that have only seen partial success in determining convergence
properties in the setting of competing epidemics. We demonstrate
how the existing works have been unsuccessful in characterizing a
large subset of the model parameter space for bi-virus epidemics,
including all scenarios leading to coexistence of the epidemics.
To the best of our knowledge, our results are the first in providing
complete convergence analysis for the bi-virus system with non-
linear infection and recovery rates on general graphs.

Index Terms— Epidemics on networks, bi-virus models, multi-
layer graphs, monotone dynamical systems.

I. INTRODUCTION AND OVERVIEW

RAPH-BASED epidemic models are widely employed
Gto analyze the spread of real world phenomena such
as communicable diseases [2], [3], computer viruses, mal-
ware [4], [5], [6], product adoption [7], [8], [9], opinions, and
rumors [10], [11], [12], [13]. The propagation of such phenom-
enon (which we cumulatively refer to as epidemics or viruses)
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usually takes place via processes such as human contact,
word-of-mouth, exchange of emails or even in social media
platforms. Graph based techniques, with edge based mecha-
nisms to model information spread, have therefore proven to
be effective in capturing such epidemic dynamics, and have
been a research focus over the past few decades [14], [15],
[16], [17]. In recent years, the development of models which
capture the competition of two or more of such epidemics
has seen a surge of interest. In particular, models capturing
the behavior of two competing epidemics of the Susceptible-
Infected-Susceptible (SIS) types, also known as the bi-virus
or bi-SIS models, have garnered significant attention over the
years [8], [18], [19], [20], [21].

Epidemic models take the form of ordinary differential
equations (ODEs) and their analysis involves the identification
of fixed points of the system, their uniqueness properties, and
ultimately showing the convergence of the solution trajectories
to those fixed points. The technique via Lyapunov functions
has historically been a popular method to prove convergence
to fixed points and was also used in epidemiology literature to
derive the convergence properties of the SIS epidemic model.
The SIS model was originally introduced in [2] to capture
the spread of Gonorrhea due to contact between individuals
in a population, and was further developed in [22], [23],
[24], [25], [26], [27], [28], and [29]. The central result for
SIS epidemics, originally proved using Lyapunov functions
in [2], is a dichotomy arising from the relation between model
parameter (7 > 0) representing the effective infection rate or
strength of the virus,! and a threshold value (7* > 0). When
7 < 7%, the virus spread is not strong enough and the system
converges to a ‘virus-free’ state. When 7 > 7%, it converges
to a state where the virus infects a non-zero portion of the
population. Attempts have also been made to perform similar
convergence analysis for the bi-virus epidemic model [8], [19],
[20], [21]. The key questions posed in such literature are: Can
both competing epidemics coexist over the network? If not,
which one prevails? Or do both die out? This trichotomy of
possible results is what the recent literature has been trying to
characterize.

When the propagation of the two epidemics occurs over
the same network [8], [30], it has been established that
coexistence of two viruses is impossible except in the

lr=¢ /0, where 3 > 0 stands for the infection rate of the virus and § >
0 the recovery rate from the virus. Section II provides a detailed explanation.
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rare cases where their effective strengths (ry,72 > 0 for
viruses 1, 2, respectively) are equal [8], [18], [19], [20],
[21]; the virus with the larger effective strength otherwise
wiping out the other, a phenomenon sometimes referred to as
winner takes all [8]. The situation is much more complicated
when the two viruses spread over two distinct networks
overlaid on the same set of nodes. This modeling approach
is more representative of the real world, where competing
rumors/products/memes may not use the same platforms to
propagate, though they target the same individuals. Recent
works [18], [19], [20], [21], [31], [32], [33], [34] therefore
consider this more general setting, but unfortunately, a com-
plete characterization of the trichotomy of outcomes has still
proven to be elusive and remains open as of now.

While the original SIS model introduced in [2] had the
aggregate infection and recovery rates of a node as linear
functions of the number of infected neighbors, there has
been a push towards studying more generalized models where
these rates are made heterogeneous (across nodes) and non-
linear [35], [36], [37], [38], [39]. Realistic assumptions such
as infection rates tending to saturation with continual increase
in neighborhood infection [40], [41], [42], [43] have become
more commonplace, implying that the models employing
strictly linear spreading dynamics often provide overestimates
to the real world infection rates [20], [24]. This paper does
not concern itself with answering which non-linear infection
rate best captures the exact dynamics, but we direct the readers
to [20] which provides simulation results comparing non-linear
rate functions to the exact Markovian dynamics for some
special randomly generated graph topologies. In some special
cases, non-linear recovery rates also have an interpretation
linking them to reliability theory in the form infection duration
with increasing failure rates (failure here being the recovery
of an infected node). Allowing for non-linear infection and
recovery rates leads to a more general version of the bi-virus
model on overlaid graphs, albeit much more complicated,
and the complete convergence criterion is yet to be fully
established [19], [20]. It should be noted that while we
extensively refer to the infection and recovery rates being
either linear or non-linear in this paper, the bi-virus epi-
demic model itself will always be a system of non-linear
ODE:s.

Limitations of existing works Of all the recent works
concerning the spread of SIS type bi-virus epidemics on
overlaid networks, [20] and [19] provide conditions under
which the system globally converges to the state where one
virus survives while the other dies out. [20] approaches the
problem of showing global convergence by employing the
classic technique via Lyapunov functions. However, finding
appropriate Lyapunov functions is a highly non-trivial task,
and as mentioned in [19], is even more difficult due to the
coupled nature of the bi-virus ODE system. This can be seen in
the condition they derive in [20] for the case where, say, Virus
1 dies out and Virus 2 survives. When 7y and 7 represent the
effective strengths of Virus 1 and Virus 2, respectively, their
condition translates to 73 < 7 where 7 is the threshold
corresponding to the single-virus case, meaning that Virus
1 would not have survived even if it was the only epidemic
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present on the network. More importantly, [20] is unable to
characterize convergence properties for 7, > 71 and ™ > 75.

The authors in [19] take a different approach and tackle
this problem by applying their ‘qualitative analysis’ technique,
which uses results from other dynamical systems that bound
the solutions of the bi-virus ODE; and provide conditions
under which the system globally converges to single-virus
equilibria. As we show later in Section V-B, however, their
conditions not only characterize just a subset of the actual
space of parameters that lead to global convergence to the
single-virus equilibria (which they themselves pointed out),
but the size of this subset is highly sensitive to the graph
topology, often much smaller than what it should be in general.
In other words, a complete characterization of the entire space
of model parameters, on which the system globally converges
to one of the trichotomic states, has still been recognized as
an open problem in the bi-virus literature [19], [20], [21].

Our contributions In this paper, we analyze the bi-virus
model with non-linear infection and recovery rates (or the
non-linear bi-virus model in short) and provide the complete
characterization of the trichotomy of the outcomes with neces-
sary and sufficient conditions under which the system globally
converges to one of the three possible points: (i) a ‘virus-free’
state, (ii) a ‘single-virus’ equilibrium, or (iii) an equilibrium
where both viruses coexist over the network. While the result
for convergence to the virus-free state of the bi-SIS model
is not new for non-linear infection and linear recovery rates,
our proof for the same is the most general form known to
date, covering the case with both infection and recovery rates
being non-linear. The proof of convergence to the virus-free
state of the bi-virus model is straightforward, and directly
follows from the convergence criterion for the single-virus SIS
model with non-linear rates. However, the convergence results
for fixed points where only one of the two viruses survives,
or to the equilibrium where both viruses coexist, are not as
straightforward to establish, rendering the typical Lyapunov
based approach largely inapplicable.

In proving these results, we first show, using a specially
constructed cone based partial ordering, that the bi-virus epi-
demic model possesses some inherent monotonicity properties.
We then use novel techniques from the theory of monotone
dynamical systems (MDS) [44] to prove our main results.
In recent control systems literature [45], [46], [47], [48], [49],
techniques based on the construction of cone based partial
orderings that leverage the monotonicity properties of dynam-
ical systems have indeed been studied. Dynamical systems
exhibiting such monotonicity properties are also sometimes
called deferentially positive systems [50] and cooperative
systems [51] in the ODE setting, with interesting applications
in consensus problems for distributed systems [52] and even
neural networks [53]. In this paper, we utilize these MDS tech-
niques in the setting of competing epidemics, and as a result
demonstrate an alternative to Lyapunov based approaches
to analyze convergence properties of epidemic models. The
novelty of using the MDS approach for analysis also lies
with [54], which uses similar techniques to analyze the bi-virus
system for the special case of linear infection and recovery
rates, and was developed concurrently and independently with
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the initial version of this work [1]. This further highlights the
utility of MDS techniques for the analysis of epidemic models
on graphs.

This paper is an extension of our previous work [1], which
gives necessary and sufficient conditions for convergence to
the three types of equilibria only for the special case of the
bi-virus model with /inear infection and recovery rates (or
the linear bi-virus model in short). Our conditions therein
take a more precise form in terms of the model parameters
71 and 7o and one can visualize an exact partition of the
model parameter space into regions corresponding to various
convergence outcomes. We note that this partition of the model
parameter space coincides with that in [18], wherein they
employed only local stability results via bifurcation analysis
— concerning only solution trajectories that originate from a
small neighborhood of those fixed points. In contrast, our
results in this paper concern global stability of the system with
any combination of linear as well as more general, non-linear
infection and recovery rates.

Structure of the paper In Section II, we first introduce
the basic notation used throughout the paper, along with the
classical (single-virus) SIS model and the bi-virus model.
We then provide the generalization to non-linear infection
and recovery rates in Section III with some key assumptions
on the infection and recovery rate functions, complimented
by a discussion in Appendix A regarding a special class
of recovery rates. In Section IV, we provide a primer to
the MDS theory, and establish monotonicity results for the
single-virus SIS model, proving the convergence result for the
single-virus model with non-linear infection and recovery rates
whose proofs are deferred to Appendix C. We then go on
to show in Section V-A that the non-linear bi-virus model is
also a monotone dynamical system with respect to a specially
constructed cone-based partial ordering, and include the main
convergence results in Section V-B. In Section VI we take the
opportunity to provide a more intuitive version of our results
by considering the special case of linear infection and recovery
rates, along with brief comparisons with the existing literature.
In Section VII, we provide numerical results which confirm
our theoretical findings. We then conclude in Section VIII.

We include additional Appendices for our paper as supple-
mentary material [55]. For better readability of the paper, all
technical proofs of the main results are deferred to Appendix F
in [55]. The appendices also include some selected definitions
and results from matrix theory (Appendix D), ODE theory
(Appendix E), and from MDS theory (Appendix B), which
we use as part of our proofs of the Theorems in Section V-B.

II. PRELIMINARIES
A. Basic Notations

We standardize the notations of vectors and matrices by
using lower case, bold-faced letters to denote vectors (v &€
R™M), and upper case, bold-faced letters to denote matrices
(M € RV*N) We denote by \(M) the largest real part* of

2We use the \ notation instead of something like AR, since it will mostly
be used in cases where the largest eigenvalue is real, for which A itself is the
largest real eigenvalue. For example, A(A) becomes the spectral radius for
any non-negative matrix A [56], [57].

1189

all eigenvalues of a square matrix M. We use diag(v) or Dy
to denote the NV x N diagonal matrix with entries of vector
v € RY on the diagonal. Also, we denote 1 = [1,---,1]7
and 0 £ [0,---,0]7, the N-dimensional vector of all ones and
zeros, respectively. For vectors, we write x < y to indicate that
x; <y forall i; x <y if x <yand x #y; x <y when all
entries satisfy x; < y;. We use G(N, £) to represent a general,
undirected, connected graph with A" = {1,2,---, N} being
the set of nodes and £ being the set of edges. When we refer
to a matrix A = [a;;] as the adjacency matrix of some graph
G(N, &), it satisfies a;; = 1y(; jeey for any i,j € N; we use
dpmin(A) and dy,a.(A) to denote the minimum and maximum
degrees of the nodes of the corresponding graph. Since we
only consider connected graphs, all the adjacency matrices in
this paper are automatically considered to be irreducible (see
Definition D.1 in Appendix D).

B. SIS Model With Linear Rates

Consider the graph G(N, £), and assume that at any given
time ¢ > 0, each node i € N of the graph is either in an
infected (1), or in a susceptible (S) state. An infected node can
infect each of its susceptible neighbors with rate 3 > 0.3 It can
also, with rate § > 0, be cured from its infection and revert to
being susceptible again. We write x(t) = [z;(t)] € RY, where
x;(t) represents the probability that node i € A is infected at
any given time ¢ > 0. Then, the dynamics of the SIS model
can be captured via the system of ODEs given by

Tl 2 50 i) Y () —dwtt) ()

JEN

for all 4 € N and t > 0. In a matrix-vector form, this can be
written as

Ccli_)t( 2 Bdiag(1 — x)Ax — 6x 2)

where we suppress the (¢) notation for brevity. The system (2)

is positively invariant in the set [0, 1]V, and has 0 as a fixed

point (the virus-free equilibrium). The following result is well
known from [2], which we will generalize in Section IV-B.

Theorem 2.1 (Theorem 3.1 in [2]): Let T = (3/6. Then,
(i) either 7 < 1/A(A), and x* = 0 is a globally asymptot-
ically stable fixed point of (2);

(i) or 7 > 1/A(A), and there exists a unique, strictly

positive fixed point x* € (0,1)" such that x* is globally

asymptotically stable in [0,1]" \ {0}. O

C. Bi-Virus Model With Linear Rates

Consider two graphs G1 (N, 1) and Go (N, £2), on the same
set of nodes N but with different edge sets £ and £5. At any
given time ¢ > 0, a node ¢ € N is either infected by Virus
1, infected by Virus 2, or is susceptible. A node infected by
Virus 1 infects each of its susceptible neighbors with rate
B1 > 0, just like in the S1.5 model, but does so only to nodes
which are its neighbors with respect to the graph G (N, &r).

3We say an event occurs with some rate « > 0 if it occurs after a random
amount of time, exponentially distributed with parameter o > 0.
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Nodes infected by Virus 1 also recover with rate §; > 0,
after which they enter the susceptible state. Similarly, nodes
infected by Virus 2 infect their susceptible neighbors, this time
with respect to the graph Go(N, &), with rate B2 > 0, while
recovering with rate do > 0. This competing bi-virus model
of epidemic spread, also referred to as the S7; IS model, can
be represented by the following ODE system:

d(Ei

7 £6(1—z —y) Z AT — 01%;
JEN

dy;

dzjf £ B (1—ai— ) Z bijy; — 02y; (3)
JEN

for all 7 € A and ¢ > 0. In matrix-vector form, (3) becomes:

le_)t( £ fidiag (1 —x —y) Ax — 01x
dy N .
g Pediag (1-x—y)By —dy, “)

where A = [a;;] and B = [b;;] are the adjacency matrices of
graphs G1 (N, &) and G (N, &), respectively.

III. EPIDEMIC MODELS WITH NON-LINEAR
INFECTION AND RECOVERY RATES

In this section, we introduce the single-virus and bi-virus
SIS models with non-linear infection and recovery rates. Non-
linearities can be attributed to the spread and recovery from
the virus being related to the susceptibility of the disease
(or its prevalence in the population) in a more complicated
manner. This is more general than simply exponential random
variables with constant rates used to model the spreading and
recovery processes, which in aggregate scale linearly with
the infection probabilities.* This is shown to be limiting in
accurately modelling the trajectories of an infection spread;
the linear scaling of the infection and recovery rates shown to
being an overestimate to what is observed in reality [20], [37].
Many works thus argue for the modelling of these spreading
processes with non-linear functions [35], [36], [38], [40].
We first present the more general single-virus SIS model with
a set of intuitive assumptions (A1)—(AS) for the non-linear
infection and recovery rates.

A. SIS Model With Non-Linear Rates

In (1) the term ), \r a;;z;(t) denotes the overall rate at
which a susceptible node 7 € A gets infected by its neighbors.
In what follows, we replace this by a generic function f;(x(t)),
thereby allowing the overall infection rate for each node to
be any non-linear function of x;(¢) for all neighbors j of 1.
Similarly, we replace the term dx;(t), denoting the overall
recovery rate for any node ¢ € A, by a non-linear function

4‘Aggregate’ here refers to the mean field approximation which is one way
to derive SIS-type ODEs. Another way is the large population mean field
limit of a stochastic process, where the connection to the corresponding ODE
system is formed via the Kurtz’s theorem [16]. In this case, linearity is induced
by the uniform or homogeneous mixing assumption which is also a subject
of criticism in epidemiology literature [35], [36], [37], [38].
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qi(x(t)). This generic version of the SIS model, allowing for
non-linear infection and recovery rates, is given by the ODE

L) _ Felt) 2 (1w ) (x(0) ~ ax(t) )

for all 4 € A and t > 0. In a matrix-vector form, this can be
written as

B Fx) 2 ding(1 —x)F(x) ~ Q) (©)

where F(x) = [f;(x)] € RY, and Q(x) = [¢;(x)] € RV are
the vectors of non-linear infection and recovery rate functions,
respectively. We assume that they are continuous and twice
differentiable in [0, 1], with Jp(x) and Jg(x) denoting the
Jacobians of F' and () respectively, evaluated at any point
x € [0,1]V. We now make the following key assumptions:
(Al) F(0) =0 and Q(0) = 0;

(A2) [Jr(x)];; = agr(?x) > 0 Vi # j with a;; > 0, otherwise

Jr(x)]; = 0;8 )

(A3) [Jo(x)]; = 242 > 0, and [Jo(x)],; = gfm(j) <
0 for all i # j, x € [0,1]". Moreover, >_ [JQ(X)]ij

J#i

[JQ(X)]M; o2f

(A4) fi(x) is concave in [0, 1]", that is, raven < 0 for all
1,5,k e N;

(AS) gi(x) is convex function of z; € [0,1]", and a concave

02
function of z; for all j # i. That is, 3222:

aszg;k <O0forall i e NV, and j, k € N\ {i}.
Assumption (A1) ensures that the virus-free state is a fixed
point of (6), while (A2) is a proximity assumption that models
infection spread only through edges of the underlying graph.
Assumption (A3) concerns with the recovery rate, allowing
it to be reduced by infected neighbors while still being no-
negative. (A4) and (AS) assume concavity properties of the
functions f;(x) and ¢;(x) in z; for any neighbor j of . This
allows the effect of neighborhood infection z; to saturate’
as x; increases. Assumption (A5) also assumes convexity of
gi(x) in local infection x;, which means that increase in
recovery rate caused by x; can be larger as z; increases.
Examples for non-linear infection rates satisfying
(A1)-(AS5) include logarithmic functions f;(x) =
>_jaijIn(l+a;), similar to those in [20]. Examples
of non-linear recovery rates include polynomial functions
such as ¢;(x) = (1 + x;)¥ — 1 for any k > 1. A special
class of the permissible non-linear recovery rates, where the
infection duration is dependent solely on local infection x;,
is related to processes that have decreasing failure rates
(DFR).° This special class of recovery processes that are
DFR also includes the case of linear recovery rates. Note that
our assumptions allow f;(x) and ¢;(x) to be heterogeneous

> 0 and

SAs x ; increases for any neighbor j of node 7, the magnitude of the resulting
change in both infection rate f;(x) and recovery rate q;(x) decreases. This
is similar to the case of diminishing returns.

6 Failure rate for a non-negative random variable is defined as the ratio
between its probability density function (PDF) and its complimentary cumu-
lative distribution function (CCDF). In the context of infection duration,
decreasing failure rate means that nodes recover at a decreased rate the longer
they stay continuously infected. A more detailed discussion regarding the
connection to SIS recovery rates can be found in Appendix A.
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G1(WV, &)

Fig. 1. Bi-Virus epidemic spread across overlaid graphs sharing the same set
of nodes. Red and Blue arrows denote the spread of Virus 1 and 2, respectively
from infected nodes j and & (coloured Red and Blue) to the susceptible node
4 (uncoloured) with the instantaneous rates as shown. The infected Red and
Blue nodes also recover with a total rate of 7;(x) and s;(y) for any node
i € N, respectively.

across all nodes 7 € N, and the case with linear rates in (2)
readily satisfies (A1)-(AS). This also extends to the linear
bi-virus model (4) being a special case of the non-linear
bi-virus model introduced in the next subsection, with
infection and recovery rate functions therein satisfying the
same assumptions (A1)—(AS).

B. Bi-Virus Model With Non-Linear Rates

The Bi-Virus model with non-linear infection and recovery
rates is given by the following coupled system of ODEs:

W it y) 2 (11— 1) gx(1) — 7i(x)

W~ hiey) £ (121~ ) By (6) — si(y) )
for all i € A and ¢ > 0. In a matrix-vector form, (7) becomes:

X Glxy) 2 ding (1~ x—y) Gx) ~ B(x)

W Hxy) £ diag(1—x—y) H(y) - S(y). ®)

where G(x) = [g:i(x)], R(x) = [ry(x)]. and H(y) =
[hi(y)], S(y) = I[si(y)] are the non-linear infection and
recovery rate functions for viruses 1 and 2, respectively.
The pairs (G, R) and (H,S) each satisfy the assumptions
(A1)—(AS5); where G and H specifically satisfy (A2) with
respect to their corresponding graphs with adjacency matri-
ces A and B, respectively. Figure 1 illustrates of how these
competing epidemics spread over the corresponding overlaid
graphs.

Assumptions (A1)—(A5) are also more general (weaker)
than those assumed in [19] and [20], where the recovery
rates are restricted to being linear functions and are thus a
special case of our model. We emphasize that while the set off
assumptions for non-linear rates are mostly similar to (slightly
more general than) those in literature, the characterization of
all convergence scenarios for their respective bi-virus models
is incomplete, as we shall discuss later in Section VI.
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IV. MONOTONE DYNAMICAL SYSTEMS AND
THE SINGLE VIRUS EPIDEMIC

In this section, we provide a succinct introduction to
monotone dynamical systems (MDS) and some important
definitions therein. We go on to show that the ST.S model (6)
is a monotone dynamical system (specifically a cooperative
system) and briefly apply these MDS techniques to epidemic
models by deriving the exact convergence result of the non-
linear SIS model. We also observe that Theorem 2.1 is a
special case for when the infection and recovery rates are
linear.

A. Monotone Dynamical Systems - A Primer

A well known result from real analysis is that monotone
sequences in compact (closed and bounded) subsets of R™
converge in R"™ [58]. This simple, yet powerful result has been
fully integrated with the theory of dynamical systems in a
series of works [51], [59], [60], [61], [62], [63], [64], [65],
[66], [67], which cumulatively form the theory of monotone
dynamical systems (MDS). The foundations of MDS were laid
down in [51], [59], [60], [61], and [62] which study ordinary
differential equations, specifically cooperative ODE systems.
We here provide a brief, informal introduction to such ODE
systems, with more details in Appendix B.

A central tool in the theory of MDS is the notion of
generalized cone-orderings, which extends the concept of
monotonicity in vector spaces.

Definition 4.1: Given a convex cone K C X for any vector
space X, the cone-ordering <k (<p, <) generated by K
is an order relation that satisfies

(i) x<gy < (y—x) €K,

(i) x<gy <= x<gyand x#y;and

(ill) x<gy <= (y—x)€int(K), for any x,y € X.
Note that, ‘<’ implies ‘<g’ and is a stronger relation.
Cone-orderings generated by the positive orthant K = R’}
are simply denoted by < (<, <), that is, without the ‘K’
notation.

Let ¢+(x) denote the solution of a dynamical system at some
time ¢ > 0 starting from an initial point ¢p(x) = x € R™.

Definition 4.2: Given a cone-ordering <p (<g, <), the
dynamical system is said to be monotone if for every x,y €
R™ such that x <k y, we have ¢ (x) <x ¢:(y) for all ¢ > 0.
The system is called strongly monotone if for all x,y € R"
such that x <y y, we have ¢;(x) <x ¢:(y) for all t > 0.

The main result from MDS theory says that (almost)
every solution trajectory of a strongly monotone system always
converges to some equilibrium point of the system [44], [59],
[65], [66]. If the system has only one stable fixed point,
then this in itself is enough to prove global convergence.
Monotonicity properties of a dynamical system can therefore
be leveraged as an alternative to constructing Lyapunov func-
tions, which is often intractable.

Consider the following autonomous ODE system

x = F(x), ©)

where F(x) = [fi(x)] € R" is the vector field. If ¢;(x) is the
solution of this ODE system, we say the system is co-operative
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if it is monotone. There are ways to find out whether an ODE
system is co-operative or not. In particular, one can answer
this by observing the Jacobian of the vector field [68]. The
so-called Kamke condition [67] says that (9) is co-operative
with respect to the cone-ordering generated by the positive
orthant K = R if and only if
Afi
5‘xi
While it is not straightforward to obtain such a clean condition
for any general convex cone K, one can still deduce the
co-operative property of the ODE with respect to any one of
the other orthants of R™ by observing the signed entries of
the Jacobian. We will show how this is done for the bi-virus
system (4) later in Section V-A.
If the Jacobian of an ODE system is an irreducible matrix in
a subset D of the state space, we say that the ODE system is
irreducible in D (Definition B.2 in Appendix B). If the ODE
system is co-operative in D as well as irreducible in D, then
it is strongly monotone in D (Theorem B.4 in Appendix B).
To prove convergence properties, we should ideally be able to
show that our system is strongly monotone in the entirety of
the state space it is contained in, for which we can directly
apply the main MDS convergence result. However, this is
often not the case, and one needs additional results from MDS
literature to prove convergence. These details are deferred to
Appendix B.

>0, foralli##j. (10)

B. Monotonicity and Convergence of SIS Epidemic Models

The following proposition establishes the monotonicity of
the single-virus SIS model with non-linear infection and
recovery rates with respect to the regular ordering relationship
(cone-ordering generated by Rf ).

Proposition 4.3: The ODE system (6) is cooperative in
[0,1]Y and irreducible in (0,1)" with respect to the
cone-ordering generated by the positive orthant Rf . U

We now state the convergence criterion for the non-linear
single-virus SIS model.

Theorem 4.4: Let Jp(x) and Jo(x) denote the Jacobian
matrices of the vector valued infection and recovery rate
functions F'(x) and Q(x) from (6), respectively. Then,

(i) either A(Jr(0)—J(0)) < 0, and x* = 0 is the globally

asymptotically stable fixed point of (6);

(i) or A(Jp(0) — Jg(0)) > 0, and there exists a unique,
strictly positive fixed point x* > 0 such that x* is
globally asymptotically stable in [0, 1] \ {0}. O

The proof for Theorem 4.4 utilizes a result from the
monotone dynamical systems literature, provided as Theo-
rem C.1 in Appendix C. It was originally proved and applied
to linear SIS epidemics in [69] as an alternate proof of the
convergence properties of the model for Gonorrhea spread
in [2], which is a special case of our non-linear model (6).
We can also see this in the following remark.

Remark 4.5: For the single-virus SIS model with linear
infection and recovery rates (2), the conditions derived in
Theorem 4.4 reduce to those in Theorem 2.1.

Proof: By substituting F(x) = fAx and Q(x) = 0x
in (21) (Jacobian of the single-virus system (6), mentioned in
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the proof of Theorem 4.4) and evaluating at x = 0, we get
J7(0) =Jp(0)—Jg(0) = SA—IL. The condition A(J(0)—
Jo(0)) = AM(BA —6I) > 0 (< 0) can be rewritten as 7 >
1/A(A) (< 1/X(A)) where 7 = [3/0, which as the same as
in Theorem 2.1. [ ]

While Theorem 4.4 could be proved using the steps in [2],
which were recreated again in [20], it requires first the
application of two different Lyapunov functions and also
requires proving the uniqueness of the positive fixed point.
Alternatively, one could apply Theorem 1 in [70] to establish
the uniqueness of the positive fixed point by first showing that
the Jacobian of F'(x) evaluated at any point x > O satisfying
F(x) = 0, is Hurwitz. This, combined with Proposition 4.3,
could then provide the necessary convergence criterion. How-
ever, we maintain that using Theorem C.1 would be a simpler
way to derive the same results, whose proof is deferred to
Appendix C.

V. MAIN RESULTS FOR THE NON-LINEAR
Bi-VIRUS MODEL

We provide the necessary and sufficient results on the
non-linear infection and recovery rates of the bi-virus sys-
tem (8) for convergence to each of the three different kinds
of equilibria: the virus-free, the single-virus equilibrium, and
the co-existence equilibrium. However, before stating the main
convergence results (proofs deferred to Appendix F in [55]),
we establish the monotonicity of the non-linear bi-virus model.

A. Monotonicity of the Bi-Virus Epidemic Models

We first revisit the Kamke condition from Section IV-A,
in this instance given for a the southeast cone-ordering as
stated below.

Southeast cone-ordering and the Kamke condition Con-
sider the cone-ordering generated by the convex cone K =
{RY xRN} c R?M. This cone is one of the orthants of R?V,
and for N = 1, it would correspond to the southeast orthant
of R? (K = {Ry x R_} C R?). For any two points (X,y),
(%,¥) € R?V, it satisfies the following:

1) (x,y) <k (x,y) <= z; < T; and y; > y; for all

ieN;
(i) (x,y) <k (X,¥) <= (x,¥) <k (X,¥) and (x,y) #
(x,¥):
(i) (x,y) <k (X,¥) < x; < T; and y; > ¥; for all
ieN.
This type of cone-ordering is often referred to as the southeast
cone-ordering, and the corresponding cone K is the southeast
orthant of R2N . As shown in [68], the Kamke condition for
determining whether an ODE system is cooperative or not
with respect to the positive orthant RiN can be generalised
for cone-orderings generated by any orthant of R?Y | including
the southeast orthant. Once again, this is done by observing
the Jacobian of the respective ODE system. Consider the 2NV
dimensional system given by

x=G(x,y) and y=H(x,y),

where G(x,y) = [g:(x,y)] and H(x,y) = [Ei(x, y)| are
vector-valued functions in RY. The Kamke condition for this
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system with respect to the southeast cone-ordering [68] is
G Oh; a7i Oh;

950, L% 50, vi#j, and 2 <0, 22 <0, vi, ).
0z 0y 0y 0z

Roughly speaking, the Jacobian Jgpg(x,y) of the system,
evaluated at all points in the state space, should be in the
following block matrix form (where the signs are not strict):

x + 4+ - - -
+ ox + - - -
+ + o« - - -

Jen=|_ = ° . L . (11)
- - - 4 = o+
- - - 4+

Note that the state space of the ODE system (4) is given by
D2 {(x,y) €[0,1]*N | x+y <1}.

Proposition 5.1: The ODE system (8) (the non-linear bi-
virus model) is cooperative in D with respect to the southeast
cone-ordering. It is also irreducible in Int(D).

Proof: For all (x,y) € D and i # j € N/, we have

8] X, 0 (X Em X
J J J
Ohi(x,y) Ohi(y)  09si(x)
— =(1- T; —Yi - >0
dy; ( ) dy; dy;

since aég—x(x) >0, ag"—f‘) < 0 and 8}5;(?’) >0, ag"y(y) < 0 from

assumpti(;ns (A2) and (A3), and (1 - Ti—Yi) > 0. Moreover
for all 4 € NV,
oh;

gz: = —gi(x) <0 and oz, —hi(y) <0,
with 9g;/0y; = Oh;/0z; = 0. Thus, the Kamke conditions
are satisfied and the system is cooperative in D.

The Jacobian J &7 (x,y) of system (4) is written as (12), as
shown at the bottom of the next page, where Sy, = diag(1 —
x—y), Dg(x) £ diag(G(x)) and D () £ diag(H (y)). Since
the infection rate functions satisfy assumption (A2) for their
corresponding underlying graphs, Jo(x) and Jg(y) follow
the sign structure of A and B respectively and are irreducible.
The off-diagonal blocks of J=p(x,y) are diagonal matrices
with non-zero diagonal entries for (x,y) € Int(D), and there
does not exist a permutation matrix that would transform this
into a block upper triangular matrix. Hence, by Definition B.2,
the system is irreducible in Int(D), and this completes the
proof. [ ]

From Proposition 5.1, we deduce that the non-linear bi-virus
system of ODEs (8) is co-operative in D, and thus strongly
monotone in Int(D) in view of Theorem B.4 in Appendix B.
This property also extends to the linear bi-virus system (4)
which is a special case of (8).

B. Convergence and Coexistence Properties of the Bi-Virus
Model

We are now ready to establish results on convergence
properties of the bi-virus model and provide conditions for
coexistence of two viruses in the non-linear bi-virus model as
in (8).
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Let x* and y* be the globally attractive fixed points of the
single-virus SIS models that system (8) would reduce to when
Virus 2 and 1, respectively, are not present over the network.
These systems are given by

F*(x) 2 G(x,0) = diag(1 — x)G(x) — R(x), (13)

y = F'(y) £ H(0,y) = diag(1 —y)H(y) — S(y); (14)
and by Theorem 44, x* = 0 (y* = 0) if
A(Jc(0) —JR(0)) < 0 Gf A(Ju(0) —Js(0)) < 0), and

x* > 0 (y* > 0) otherwise.

We first state the result when the virus-free equilibrium
is globally attractive. We prove this by presenting simple
arguments which require only Theorem 4.4 for SIS model
along with the monotonicity properties derived in the previous
section, eliminating the need of a Lyapunov based approach.

Theorem 5.2 (Convergence to  virus-free  equilibria):
If A(JG(0) —JR(0) < 0 and A(Ju(0) — J5(0)) < 0,
trajectories of (8) starting from any point in D converge to
(0,0). O

We next characterize the conditions when the system glob-
ally converges to equilibria when only one of the viruses
survives over the network. Let S, £ diag(1 — x) and
Sy £ diag(l —y) for any x,y € RY. Also denote by
B, = {(x,y) € D | x > 0} the set of all points (x,y) €
D for which z; > 0 for some i € N, and let B, =
{(x,y) € D | y > 0} be a similar set for the y; entries.

Theorem 5.3 (Convergence to single-virus equilibria):
When A(Sy-Jg(0) —Jg(0)) > 0 and A(Sx-Jpg(0) —
Js(0)) < 0, (x*,0) is globally attractive in B,;’ that is,
every trajectory of system (8) starting from points in B,
converges to (x*,0).

Similarly, when A(Sy-Jg(0)—Jr(0)) < 0 and
A(Sx-Jm(0) —Js(0)) > 0 is globally attractive in B,,. [

Proof: [Sketch of the proof (convergence to (x*,0))] The
idea behind the proof is illustrated in Figure 2. For every
(x,¥) € B, (for example p; and po in Figure 2), we construct
a point (x,-, ys) which eventually bounds the trajectory starting
from (x,y); that is, we have (x,,ys) <k ¢4 (X,y) <k
(x*,0)® for some t; > 0. From the monotonicity shown in
Proposition 5.1, we have ¢¢(X,,ys) <k @i+, (X,y) <k
(x*,0) for all time ¢ > 0. We prove that the trajectory
starting from (x,,ys) converges to (x*, 0) monotonically, with
respect to the southeast cone-ordering (Figure 2(a)). Using
this, we show the convergence of trajectories starting from
(x,y) via a sandwich argument (Figure 2(b)). See Appendix
F in [55] for detailed proof. [ |

Finally, we give the necessary and sufficient conditions that
guarantee the co-existence of the two viruses in the long run.
Let E denote the set of all fixed points of the system in (8).

Theorem 5.4 (Convergence to coexistence equilibria): If
A(Sy+Jc(0) —JR(0)) > 0 and A (Sx~Ju(0) —J5(0)) > 0,
there exist fixed points of system (8) (%x,y) > (0,0) and

> >

TWe consider B, as the global domain of attraction instead of D because
x = 0 for all points in the set D \ B,. Starting from such points the system
is no longer a bi-virus epidemic, but a single-virus SIS system for Virus 2.

8¢+(x,y) denotes the solution of (4) at ¢ > 0, with initial point (x,y).
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(a) For every point pg, there is (b) Trajectories starting from py
a point (X,g,ysk) starting from eventually bounded by (X,k,ysk);
which, trajectories converge mono- monotonicity of the system gives
tonically (<g) to (x*,0). convergence to (x*,0).

Fig. 2. Tllustration of the convergence to (x*,0).

(%,¥) > (0,0) such that
(0,y") <k (%,9) <k (X,¥) <k (x*,0),

with the possibility that (X,y) = (X,y). All tra-
jectories of system (8) starting from B, N B, con-
verge to the set of coexistence fixed points S £
{(Xeaye)EE | ()A(ay) <K (Xeaye) <K ()_(,}_’)} .

The proof of Theorem 5.4 follows similar arguments to that
of the previous theorem, and is the first convergence result
for coexistence fixed points in the competing SIS literature.
Note that while we have convergence to ‘a’ coexistence
equilibrium, it may or may not be unique in the state space.
The global convergence is therefore to the set of possible
coexistence equilibria, and not necessarily a singular point.
Thus, via Theorems 5.2, 5.3 and 5.4 we cover all possible
convergence scenarios of the bi-virus SIS system (8), and
successfully establish the complete theoretical characterization
for the trichotomy of possible outcomes.

VI. LINEAR INFECTION AND RECOVERY RATES -
DISCUSSION AND COMPARISON TO LITERATURE

We now take a look at the special case of the bi-virus epi-
demic model where infection and recovery rates scale linearly
with the local infection probability. This is the most commonly
analysed setting in literature [21], [31], [32], [33], [34], [54],
and allows us to provide a comprehensive discussion on the
related works. With the exception of [54], a line of work
seemingly developed concurrently to ours, we observe that
most existing works only provide limited results regarding
convergence to coexistence equilibria. In what follows, we pro-
vide corollaries of Theorems 5.2, 5.3 and 5.4 which charac-
terize convergence to the trichotomy of possible outcomes
for the special case of linear infection and recovery rates.
These results, along with Figure 3, are reproduced here as
they originally were in our previous work [1] which focused
only on characterizing the convergence properties in the case
of linear infection and recovery rates.
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The model considered in this section is the bi-virus sys-
tem (4) with homogeneous infection and recovery rates.’
While at first this may seem too simplistic compared to the
case of linear, heterogeneous rates,'? and even generic, non-
linear rates analyzed in literature [19], [20], [21], [31], [32],
[33], [34], [54], the discussions in the ‘Comparison to existing
ilterature’ subsection will still hold for these more general
cases. We only stick to the bi-virus system with homogeneous
rates as in (4) to be able to illustrate our results in the form of
Figure 3; the axes capturing the parameters of the system. This
enables us to better explain our contribution, using visual aids
in the form of Figure 3, helping us compare our work with
some of the existing literature more effectively, as opposed to
presenting any other special case of the bi-virus model.

Consider the linear bi-virus system (4). By setting G(x) =
B1Ax, R(x) = d1x and H(y) = 2By, S(y) = d2y, we get

Je(0) = /1A, Jgr(0) =041,
and
Ju(0) = 52B, Js(0) = 4L

Defining 7, 2 (3,/61, 72 = /\B2/J2, and plugging in the
above expressions for the Jacobians in Theorems 5.2 and 5.3,
we have the following Corollaries.

Corollary 6.1: If 1 A(A) < 1 and 2 A(B) < 1, trajectories
of (4) starting from any point in D converge to (0,0). O

Corollary 6.2: When 11 A\(Sy-A) > 1 and mA(Sx-B) < 1,
(x*,0) is globally attractive in B;!! that is, every trajectory
of system (4) starting from points in B, converges to (x*,0).

Similarly, when 71 A(Sy-A) < 1 and TA(Sx-B) > 1,
(0,y*) is globally attractive in B,,. O
From Corollary 6.2, we can deduce that the threshold values
for 7 and 7 below which each of the viruses will die out
are given by the equations 71 = 1/A(Sy-A) and 7 =
1/A(Sx~B), respectively. Figure 3(b) plots these threshold
values for Virus 1 (in blue) and Virus 2 (in red) for varying
values of 71 and 79, and partitions the entire parameter space
into regions R1 — R6 as shown. When 73 > 1/A(A) and
79 > 1/A(B), for which values of 71,72 do not lie in regions
R1, R2 or R3, the blue curve lies above the red curve as in
Figure 3(b). This was originally shown in [18] by deducing
that the ratio of slopes of the red and blue curves at point
(t1,72) = (1/A(A),1/X(B)) is less than one. This means

9Every infected node i € N infects its susceptible neighbor with the same
rate 31 > 0 or B2 > 0, and in turn recovers with the same rate ;7 > 0 or
d2 > 0, depending on whether it is infected by Virus 1 or 2 respectively.

10The adjacency matrices A and B in (4) can be symmetric, irreducible,
weighted; with a;;,b;; > 0 (not necessarily 0/1 valued) multiplied by 51 and
(2 respectively, being the infection rates from node j — ¢ for Viruses 1 and
2. Recovery rates can similarly be heterogenized as 81 = [6%] and 82 = [53]
for Viruses 1 and 2; written as recovery rate matrices diag(d1) and diag(d1),
respectively.

We consider By as the global domain of attraction instead of D because
x = 0 for all points in the set D \ B,. Starting from such points the system
is no longer a bi-virus epidemic, but a single-virus SIS system for Virus 2.

JG‘EI(X7 Y) = _DH(y)

Snyc;(X) —Dg(x) —JR(X)

—Deax)

12
SnyH(y)_DH(y)_JS(y) ’ ( )
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(a) Limitations of the literature.

Fig. 3. Characterization of the parameter space.

there exist combinations of 77, 75 for which 7 lies to the right
of the blue curve (14 A(Sy~A) > 1), and 7 lies above the red
curve (T2A(Sx+B) > 1).!2 This corresponds to region R6 in
Figure 3(b), and our final corollary (derived from Theorem 5.4)
shows that for values of 7,7 which lie in R6, we observe
convergence to coexistence equilibria.

Corollary 6.3 (Convergence to Coexistence Equilibria): If
T1A(Sy+A) > 1 and T2 A(Sx~B) > 1, there exist fixed points
of system (4) (x,y) > (0,0) and (X,y) > (0,0) such that

(x",0),
with the possibility that (%X,y) = (X,y). All tra-
jectories of system (4) starting from B, N B, con-
verge to the set of coexistence fixed points S £
{(xe;ye) € E | (X,¥) <k (Xe,¥e) <k (X,¥)} U

Comparison to existing literature: Now that we have estab-
lished all our results, we briefly compare our work with results
from [19], [20], which also talk about global convergence
to single-virus equilibria. To this end, we first illustrate the
limitations of the existing conditions for global convergence
in [19] and [20] in Figure 3(a); and use Figure 3(b), where
we provide complete characterization of the parameter space,
to draw comparisons with our results. We then discuss the
works [31], [32], [33], [34] which consider more general
models where there can be more than two viruses, but present
sharper results in the bi-virus setting. Finally, we will briefly
comment on the finiteness of the coexistence equilibria, citing
results from [54].

When translated to the setting of linear infection and
recovery rates as in 4, the result from [19] says that when
T1dmin(A) > Todma(B), the Virus 2 is sure to die out (Virus
1 could persist or die out), and similarly when 71 d;q. (A) <
Tolmin(B), the Virus 1 is sure to die out. We illustrate these
conditions in Figure 3(a), where Virus 1 (Virus 2) is sure to
die out if parameters (71, 72) lie above (below) the blue (red)
line. Therefore, the entire yellow-shaded region in Figure 3(a),
between the blue and red lines, is left uncharacterized in [19].

(an*) <K ()A(vy) SK (ivy) <K

2Note that 71 A(Sy=A) < 1 and 72A(Sx=B) < 1 is only possible in
region RI, since it is the only region where 71 can lie to the left of the
blue curve, and 72 can lie below the red curve. This effectively reduces the
expressions to 71 A(A) < 1 and 2 A(B) < 1, the conditions for convergence
to the virus-free equilibrium as in Corollary 6.1.

A(B)
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(b) Complete characterization of the convergence trichotomy.

When A and B are regular graphs with the same degree
(dmin d), the blue and red lines coincide,
making coexistence infeasible. This is also mentioned in [18]
where they show that for regular graphs with same degree,
the system behaves as if the two graphs were the same -
rendering coexistence impossible (which is also in line with
results in [8]). In contrast, the maximum degree of graphs can
also be much larger than the minimum degree (e.g., power
law graphs), causing the yellow-shaded space to become very
large, possibly spanning almost the entire parameter space.

The main result in [20], when similarly translated to our
setting as above, says that when 74 A(A) > 1 and A\(B) <
1, Virus 1 survives and Virus 2 dies out. Similarly, when
T2A(B) > 1 and mA(A) < 1, Virus 2 survives and Virus
1 dies out. These correspond to regions R2 and R3 in Fig-
ure 3(b). However, their results do not cover the convergence
properties for 71,70 which lie in regions R4 — R6. Our
Theorems 5.3 and 5.4, through their corresponding corollaries,
do account for these values of 71,7, and show convergence
to (0,y*), (x*,0) or to a coexistence fixed point whenever
they lie in regions R4, RS, or R6, respectively.

The works [32], [33] consider the bi-virus epidemic model
with heterogeneous linear infection and recovery rates as a
special case of their respective multi-virus models. Corollary
2 in [33], a more general version of Theorem 5 in [32]
which considers the case where N = 2, establishes existence
conditions for the coexistence equilibria. These conditions are
identical to the ones emerging out of Theorem 5.4 when
applied to the bi-virus model considered therein (also identical
to the conditions in Corollary 6.3 for the special case of
homogeneous, linear infection and recovery rates), and our
result can therefore be considered as an extension of those
in [32] and [33]; providing convergence results in addition to
their existence results. Theorem 6 in [34] (Theorem 8 in [31])
is another interesting result concerning coexistence equilibria,
where they show for the special case of viruses spreading
over the same (possibly weighted) graph that the survival
probability vectors of both the viruses are the same up to a
constant multiple; that is, they are parallel.

The finiteness of the number of single-virus equilibria
is evident from Theorem 4.4, which proves its uniqueness.
However, Theorem 5.4 and Corollary 6.3 do not explicitly
show that coexistence equilibria are finitely many, let alone

= dmax =
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TABLE I

SUMMARY OF INFECTION AND RECOVERY RATE FUNCTIONS CHOSEN

9i(x) hi(y) 7i(x) si(y)
CASE1 | }; aiz; >, bijy; 01 doyi
CASE 2 Z] aij ln(l + Oéll'j) Z] bij hl(l =+ Oégyj) 61£Ui 52:{/,
CASE 3 E]‘ aij 1n(1+041$j) Z]‘ bij 1H(1+O{2yj) (1-’-{171)2 — 1 (1+y1)2 — ].

0 0.2 0.4 0.6 0 0.2
avg X
(@) A(U) > 0, A\(V) < 0; Virus 1 survives

avg X
(b) A(U) < 0, A(V) > 0; Virus 2 survives

0.4 0.6 0 0.2 0.4 0.6
avg X
(c) X(U) > 0, A(V') > 0; Both coexist

Fig. 4. Phase plots for a system with linear infection and recovery rates (CASE 1) on the AS-733 graph.

uniqueness.'? For linear, heterogeneous infection and recov-
ery rates, Theorem 3.6 in [54] uses novel techniques from
algebraic geometry to prove that the coexistence equilibria are
finitely many for all possible values of infection and recovery
rates that do not lie in an algebraic set of measure zero.
However, this remains an open problem for general, non-linear
infection and recovery rate functions satisfying (A1)—(AS).

In summary, without our Theorems 5.3 and 5.4, convergence
results from literature fail to characterize a sizeable portion
of the parameter space as shown in Figure 3(a) by the ‘?’
region (part of the shaded region surrounded by the arrows).
The parameters leading to coexistence are entirely contained
in this region as well - explaining the dearth of convergence
results for such equilibria in the existing literature.

VII. NUMERICAL RESULTS

In this section, we present simulation results to support our
theoretical findings for the bi-virus SIS model for combina-
tions of non-linear as well as linear infection and recovery
rates. To this end, we consider an undirected, connected
graph (103 nodes, 239 edges), called Autonomous System
(AS-733), from the SNAP repository [71]. For both the linear
and non-linear bi-virus model, we generate an additional
graph, overlaid on the same set of nodes, by modifying the
original graph (AS-733-A with A\(A) = 12.16), removing
and adding edges while ensuring connectivity between the
nodes. The new additional graph, AS-733-B, has 741 edges
with A(B) = 15.53. Note that since our theoretical results
hold for any general graphs, we only use this set as example
graphs to numerically demonstrate the convergence properties.
Similar numerical results can indeed be obtained for any other
networks (such as social networks).

BIn Section VII, we show with the aid of simulation results that the
coexistence equilibria are indeed not unique in general.

We test the convergence dynamics of the bi-virus model
over a range of combinations of linear and non-linear infection
and recovery rates. To this end, we consider three different bi-
virus models, and Table I summarizes the three cases with
the corresponding infection and recovery rate functions as
shown. Note that for non-linear infection and recovery rates,
we consider the logarithmic and polynomial functions briefly
mentioned in Section III, to ensure that our three cases satisfy
assumptions (A1)-(AS5).

For each of the three cases, we construct combinations
of parameters (77 or 7o for linear rates, and a; or as for
non-linear rates), to develop three convergence scenarios, that
satisfy the assumptions of Theorems 5.3 and 5.4. These
three scenarios correspond to global convergence of the
bi-virus system to fixed points where (a) Virus 1 is the
surviving epidemic (which spreads on graph AS-733-A),
(b) Virus 2 is the surviving epidemic (which spreads on graph
AS-733-B), (c) both viruses coexist, (where Virus 1 spreads
on graph AS-733-A and Virus 2 on AS-733-B). Parameters
corresponding to these three scenarios are provided in the
table inset in Figures 4-6(a)—(c) corresponding to the three
cases.

To visualize our system in two dimensions, we use avgX =
(1/N) > @i on the x-axis, and avgy £ (1/N) Yo\ vi
on the y-axis. We plot trajectories of the bi-virus system
starting from different initial points in the state space D to
observe their convergence, with red arrows representing the
trajectories’ direction of movement at various time intervals.
Here, the state space D is the region that lies below the dotted-
line (for example, in Figure 4), ensuring x; + y; < 1 for all
i € N, for every initial point. To ensure that the convergences
observed in our phase plots match the conditions laid out
in Theorems 5.3 and 5.4, we track the eigenvalues \(U) =
A(Sy-J(0) — Jr(0)) and A(V) £ A(Sx-T5(0) — J5(0)).
A(U) (A(V)) being positive or negative corresponds to Virus 1
(Virus 2) surviving or dying out, respectively.
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0 0.2 0.4 0.6 0
avg X

(@) A(U) > 0, A\(V) < 0; Virus 1 survives

0.2

& AU) < 0, A(V

0.4
avg X
) > 0; Virus 2 survives

0.6 0 0.2 0.4
avg X

(c) X(U) > 0, A(V') > 0; Both coexist

0.6

Fig. 5. Phase plots for a system with non-linear infection and linear recovery rates (CASE 2) on the AS-733 graph.
1< 1<
Y a, =090 | A(U)=8.94 Y a, =010 | A(U) =-1.60
0.8 a,=0.1
> 0.6
(<)
>
©0.4
0.2
0 - 0 0
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6
avg X avg X avg X
(@) A(U) > 0, A\(V) < 0; Virus 1 survives (b) A(U) < 0, A(V) > 0; Virus 2 survives (c) X(U) > 0, A(V') > 0; Both coexist
Fig. 6. Phase plots for a system with non-linear infection and recovery rates (CASE 3) on the AS-733 graph.
A(C) = 12.26. The ‘upper left’ and ‘lower right’ coexistence
fixed points characterize the set S of all such equilibria, as in
Theorem 5.4. This can be seen more closely in the inset in
Figure 7, where the number beside each fixed point (in red)
corresponds to the different initial starting points (in blue) of
the trajectories. Thus, convergence to set S occurs globally
over the state space, but exactly which coexistence fixed point
the system converges to is dependent on the initial point.
We are thus able to observe all possible convergence scenarios
0 , , | from Section V-B, including multiple coexistence equilibria.
0 0.2 0.4 0.6
avg X VIII. CONCLUDING REMARKS
Fig. 7. Coexistence condition with Multiple equilibrium points. By utilizing the techniques from Monotone Dynamical

In Figures 4-6(a)—(c), we show numerical results for the
three cases, respectively. Figures 4-6(a) and 4-6(b) show
convergence to the two different single-virus equilibria, where
the parameters therein satisfy the two set of conditions as
in Theorem 5.3. Figures 4-6(c) show convergence to the
coexistence equilibria, which also satisfies the coexistence
conditions as outlined in Theorem 5.4. We observe a unique
coexistence equilibrium when the viruses are competing over
graphs AS-733-A and AS-733-B, for which the eigenval-
ues A(A) and A(B) are significantly different. Interestingly,
we also observe multiple coexistence equilibria as shown in
Figure 7. We obtain this result by creating another additional
graph by modifying the original graph AS-733-A such that
the eigenvalue of this new graph is as close to the original
one where this new graph AS-733-C has 259 edges with

Systems (MDS), in this paper, we show that a generic bi-virus
epidemic model with non-linear infection and recovery rates
is monotone with respect to a specially constructed partial
ordering. This monotonicity allows us to give necessary and
sufficient conditions on the non-linear infection and recovery
rates, and thus completely characterize the entire parameter
space of the bi-virus system, a contrast to the usual Lyapunov
based approach. We bridge the gap between linear stability
properties and global convergence results (or lack thereof)
for the bi-virus model with non-linear rates (including the
special case with linear rates) in the literature, and succeed
in providing a complete characterization of the trichotomy
of possible outcomes for such competing epidemics - a well
known open problem. Our results demonstrate how powerful
these alternative proving techniques can be, compared to clas-
sical Lyapunov approaches; and we note that it may be worth
exploring such monotonicity properties in other dynamics
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on graphs as well, where competition is a general theme.
Additionally, establishing a rigorous relationship between the
SIS ODE models with non-linear rates as studied in this paper,
and the correct probabilistic dynamics describing these non-
linear rates, is of interest in order to complete the theoretical
pictures for SIS models with non-linear rates.

APPENDIX A
DFR PROCESSES AS NON-LINEAR RECOVERY RATES

In this appendix, we form the connection between failure
rates from reliability theory [72], and the infection duration
at any node in SIS type epidemics. To this end, we start by
formally defining the term failure rate.

Definition A.1 [72]: Let T > 0 be any continuous random
variable with distribution Frp(s) = P(T < s), and density
function fr(s) for all s > 0, with Fr(s) = 1 — Fp(s) =
P(T > s). Then, the failure rate at any given time s > 0 is
defined as

=

2 fr(s) (15)

Fr(s)
We say T' has a decreasing/increasing failure rate (DFR/IFR)
if rp(s) is a decreasing/increasing function of s > 0.

When T is the lifetime of a system, the DFR case corre-
sponds to the system aging negatively. This means that as time
elapses, the residual time (time till the system fails) is more
likely to increase rather than decrease. 1" could also have an
interpretation in the context of node recovery. For the linear
SIS epidemic model as in (1), consider an infected node i € N
and define T £ time taken for node i to recover (random),
with fr(s) and Fr(s) as in Definition A.1. Loosely speaking,
we can ignore the infection rate terms in (1) to take a closer
look at the recovery process via the ODE

rp(s)

z;(s) = —dx;(s), (16)
with the initial condition z;(0) = 1 (implying that node 4
is last infected at time s = 0). The ODE (16) has an exact
solution for all s > 0, given by x;(s) = e~%. This solution
allows us to interpret x; as the cumulative distribution function
(CCDF) of an exponential random variable'* with rate § >
0. Using this interpretation, we have z;(s) = P(T > s) =
Fr(s), and —2;(s) = fr(s). (16) can then be rewritten as

_ —idis)
rr(s) = z;(s)

)

for any s > 0. T is thus exponentially distributed, and has a
constant failure rate (it is both DFR and IFR).

We now consider the case where the random variable T’
is defined for the more general SIS epidemic model with
non-linear recovery rate ¢;(x;) for node 4. Ignoring the
infection rate terms in (5) like before, we obtain

£i(s) = —qi (z(s)), (17)
Y4 When T ~ exp(d), we have Frr(s) = P(T > s) = e~ 95,

5Note that this is the special case where ¢; is only a function of z;, not
of x; for neighbors j of node 4.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

retaining the previous interpretation of x; as the CCDF of T
This can be further rearranged to obtain an expression for the
failure rate as

—@i(s) _ qi (zi(s))
i(s) i(s)
for any s > 0. From Definition A.1 we know 7" is DFR if

rr(s) is decreasing in s > 0. Supposing ¢; is such that T is
indeed DFR, log(rr(s)) is also decreases in s, and we get

sy = L@i(8)Ei(s)  dils)
75 log (rr(s)) 1@:(3)) o) =0

where ¢}(z;(s)) denotes the derivative with respect to x;.
Since @;(s) = —qi(x;(s)) from (17) and ¢;(z(s)) > 0 from
(A3), rearranging the previous equation gives us following the
condition for 7' to be DFR

ro(s) =

ziq;(zi) — qi(w:) > 0. (18)
In (18), the (s) notation has been suppressed for clarity. Since
¢i(0) = 0, the convexity of ¢; with respect to x; implies (18).

Roughly speaking, the DFR case (which also includes linear
recovery rates as in (1)) is a subclass of recovery rate functions
gi(x) satisfying assumptions (A1)-(A5). Even though the
above steps may not be exact, they provide intuition on how
infections which fester and grow worse with time form part

of our modelling assumptions in Section III.

APPENDIX B
RESULTS FROM MDS AND COOPERATIVE SYSTEMS

Definition B.1 ([44], [51], [63]): A flow ¢ is said to be
monotone if for all x,y € R" such that x <x y and any
t > 0, we have ¢¢(x) <g ¢:(y).

If the flow represents the solution of an ODE system, we say
that the ODE system is co-operative.

Definition B.2: Consider the system (9) and let JF(x) =
[df;(x)/dx;] be the Jacobian of the right hand side evaluated
at any point x € R". We say that (9) is an irreducible ODE
in set D € R™ if for all x € D, JF(x) is an irreducible
matrix.

Definition B.3: [44], [63], [67] The flow ¢ is said to be
strongly moneotone if it is monotone, and for all x,y € R”
such that x <y y, and time ¢ > 0, we have ¢;(x) <i ¢+(y).

Theorem B.4: [44], [63], [67] Let (9) be irreducible and
co-operative in some set D C R™. Then the solution ¢
(restricted to ¢ > 0) is strongly monotone. O
As part of the main result of monotone dynamical systems,
trajectories of strongly monotone systems, starting from almost
anywhere (in the measure theoretic sense) in the state space,
converge to the set of equilibrium points [44], [59], [65], [66].
However, often the systems are strongly monotone only in the
interior of the state spaces instead of the entirety of the state
space. In such cases, the following results are useful.

Proposition B.5: (Proposition 3.2.1 in [67]) Consider the
ODE system (9) which is cooperative in a compact set D C
R™ with respect to some cone-ordering, and let <, stand
for any of the order relations <g,<pg,<r. Then, P, £
{xeD|0<, F(x)} and P_ 2 {x€ D | F(x) <, 0} are
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positively invariant, and the trajectory {¢¢(x)},., for any

point x € P, or x € P_ converges to an equilibrium. (]
Theorem B.6: (Theorem 4.3.3 in [67]) Let (9) be coopera-

tive (with respect to some cone-ordering <) in a compact set

D C R™ and let x¢g € D be an equilibrium point. Suppose that

s = AJF(x0)) > 0 (i.e. o is an unstable fixed point) and

there is an eigenvector v > 0 such that JF(xq)v = sv.

Then, there exists €y € (0, €] and another equilibrium point

X, such that for each r € (0, ¢g], the solution ¢¢(x,) has the

following properties:

(1) %, Kx b1, (Xr) KK b1, (%) KK X, for any 0 < ¢ <

to.
(2) doy(x,)/dt > 0, for any ¢ > 0.
(3) ¢t(xy) — X, as t — 0. O

APPENDIX C
PROOFS OF THE RESULTS IN SECTION IV

Proof of Proposition 4.3: To prove that system (6) is
co-operative with respect to the positive orthant, we show that
it satisfies Kamke’s condition in (10). Differentiating the right
hand side of (5) with respect to x;, we get

0fi(x) _ \Ofilx) _ 04i(x)
81‘]' N (1 _xl) 81‘]' N 8$j '

This corresponds to the (ij)’th off-diagonal entry of the
Jacobian J5(x) evaluated at x € [0,1]". It is non-negative
for any i # j € N since (1 — z;) > 0 and due to assumption
(A3), and the ODE (6) is therefore co-operative in [0, 1] with
respect to the regular cone ordering.

From assumption (A3), J 7(x),; is also strictly positive for
any x € (0,1)" whenever a;; > 0. This means that J z(x),
and as a consequence the ODE system, is irreducible for any

€ (0,1)N. [ |

To derive the convergence properties of the non-linear SIS
model, we make use of a result form [69], rewritten below in
a simpler form suitable for our setting.

Theorem C.1 (Theorem 4 in [69]): Consider a generic
ODE system (9) invariant to some subset S C RY, and let
J 7 stand for its Jacobian matrix. Suppose that:

(Cl) fi(x) >0 for all x >0 with z; = 0;

(C2) forall x > 01in S, a € (0,1), it satisfies J 7 (x);; <
J5(ax);; for all 4, j € N, with strict inequality for at
least one pair of 1, j;

for all u < w in S, it satisfies Jz(w) < Jz(u);

it is co-operative in S with respect to the regular
ordering relation, and irreducible in Int(S).

(€3)
(2))

Then, exactly one of the following outcomes occurs:

(i) ¢¢(x) is unbounded for all x € S\ {0};
(i) ¢¢(x) — 0 ast — oo, for all x € S\ {0};
(iii) There exists a unique, strictly positive fixed point x* >
0 such that ¢ (x) — x* as t — oo, forall x € S\ {0}.0

We now use the above to prove Theorem 4.4.

Proof of Theorem 4.4: We prove Theorem 4.4 by showing
that it satisfies conditions (C1)-(C4) of Theorem C.1, and then
performing stability analysis to evaluate conditions for each of
the three possible outcomes therein.
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From Proposition (4.3), we know that (6) already satisfies
(C4). The right hand side of (5) satisfies (C1) because ¢;(z;) =
0 when x; = 0, and because (1 — z;) and f;(x) are all
non-negative for any x € [0, 1]V, To check whether (C2) and
(C3) is satisfied, observe that from assumptions (A2)—(AS),
we have

JF(U) > JF(W)
Jo(u) < Jg(w)

(19)
(20)
for all u < w.'% Here, Jg is a diagonal matrix since
9q;/0x; =0 for all i # j € N.

Denote by J z# the Jacobian matrix of system (6). Note that
for any point x € [0, 1]V, we have

Jr(x) = diag(1 — x)J p(x) — diag (F'(x)) — Jo(x)

Combining the above with (19) and (20), we have for any
points u < w that

21

Jp(w) = diag(1 — w)Ip(w) — diag (F(u)) — Jo(u)
> diag(1 — w)Jp(w) — diag (F/(u)) — Jo(w)
> diag(1 — w)d p(w) — diag (F(w)) — Jg(w)
= Jp(w),

where the first inequality is due to (1 —u) > (1—w) and (19)
and (20). The second inequality is from the non-negativity and
monotonicity assumptions (A2) and (A3) implying F(u) <
F(w). Since Jjz(u) > Jz(w) for any u < w, this is enough
to satisfy both conditions (C2) and (C3).

Since system (6) satisfies (C1)-(C4), Theorem C.1 applies.
Since the system is invariant in [0, 1], which is a bounded
subset of R, outcome (i) of Theorem C.1 never occurs. From
assumption (A1), the vector 0 = [0,---,0]7 (the virus-free
equilibrium) is always a fixed point of the system. We now
find conditions under which trajectories of (6) starting from
anywhere in [0,1]" \ {0} converge to either zero, or to a
unique strictly positive fixed point (outcomes (ii) and (iii) in
Theorem C.1 respectively), by check the stability properties
of the system.

The virus-free fixed point zero is unstable [73] when
AJ#(0)) = AMJr(0) —Jg(0)) < 0. Under this condition,
outcome (ii) in Theorem C.1 is not possible, and there exists
a unique, strictly positive fixed point x* > 0 which is
globally asymptotically stable in [0,1]" \ {0}. Conversely
when zero is a stable fixed point, that is when A(J(0)) =
AJF(0) —Jg(0)) > 0, it is globally attractive. [ |
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