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Abstract

Model explanations that shed light on the

model’s predictions are becoming a desired ad-

ditional output of NLP models, alongside their

predictions. Challenges in creating these ex-

planations include making them trustworthy

and faithful to the model’s predictions. In this

work, we propose a novel framework for guid-

ing model explanations by supervising them ex-

plicitly. To this end, our method, LEXPLAIN,

uses task-related lexicons to directly supervise

model explanations. This approach consistently

improves the plausibility of model’s explana-

tions without sacrificing performance on the

task, as we demonstrate on sentiment analysis

and toxicity detection. Our analyses show that

our method also demotes spurious correlations

(i.e., with respect to African American English

dialect) on toxicity detection, improving fair-

ness.

1 Introduction

Extensive recent work has sought to advance NLP

models so that they offer explanations for their

predictions (Rajani et al., 2019; Lundberg and Lee,

2017; Camburu et al., 2018). Here we focus on

methods that extract features from the input text to

explain a classifier’s prediction, known variously

as “feature attribution” or “rationales” (Lundberg

and Lee, 2017; Li et al., 2016).

Beyond high accuracy on unseen data, classifiers

that offer explanations are expected to provide ex-

planations that are faithful to the workings of the

model and also intuitive to human users, goals that

might be contradicting. We begin with an approach

designed for faithfulness (SELFEXPLAIN, §2 and

Rajagopal et al., 2021a) and introduce supervision

that guides its explanations toward lexical clues

already established to be associated with the classi-

fication task. Ancillary goals are to improve model

accuracy through the construction of explanations,

and to remove reliance on spurious features that

can bias a classifier’s output in unwanted ways.

Our method, LEXPLAIN (§3), encourages the

model to be “confused” in the absence of words

from a task-specific lexicon, i.e., to assign a uni-

form probability distribution across labels, and pro-

motes model explanations that contain task-specific

lexemes. We apply LEXPLAIN to sentiment analy-

sis and toxicity detection tasks, and our controlled

experiments (§5, §6) comparing LEXPLAIN to

SELFEXPLAIN (which does not use supervision

for explanations) show that:

(a) LEXPLAIN does not show an accuracy drop

relative to the baseline. (b) LEXPLAIN not only

promotes lexicon entries as explanations, but also

generalizes to additional terms that are related to

them but excluded from the lexicon. (c) LEX-

PLAIN’s explanations are usually more sufficient

than the baseline’s explanations (i.e., the model

makes the same prediction on the explanation as on

the full input). (d) In toxicity detection, spurious

correlations between the toxicity label and African

American English (Sap et al., 2019) are reduced in

the predictions of LEXPLAIN, relative to the base-

line. We view this result as a positive side effect of

guiding the model to use task-relevant lexemes. (e)

Most importantly, LEXPLAIN’s explanations are

preferred by human judges 3–4× more often than

the baseline’s explanations.

We believe these results are encouraging, as they

suggest that type-level (lexicon) supervision is a

viable alternative to methods that require costly an-

notation of explanations (Zaidan and Eisner, 2008;

Huang et al., 2021).1

2 Background: SELFEXPLAIN

Our goal is to improve model explanations in su-

pervised text classification tasks. By supervising

explanations, we incorporate inductive biases into

models, making them robust to spurious artifacts.

Our base model is SELFEXPLAIN (Rajagopal et al.,

1Code available at https://github.com/orevaahia/

supex

207



2021a), a framework that explains a text classifier’s

predictions with phrase attribution. We describe

SELFEXPLAIN (omitting the global interpretable

layer, as we focus on local explanations) and in Sec-

tion 3 present our proposed method, LEXPLAIN.

Starting with a neural classifier, let us be the

masked LM’s (Yang et al., 2019) final layer repre-

sentation of the “[CLS]” token for one instance. us

is passed through ReLU, affine, and softmax layers

to yield a probability distribution over outputs; the

loss is the negative log probability, summed over

training instances i:

ℓ = softmax(affine(ReLU(us))) (1)

Ltask = −
∑

i log ℓ[y
∗
i ] (2)

y∗i is the correct label for instance i. Parameters of

the affine layer are suppressed here for simplicity.

A set of phrases is extracted from the data with

a phrase-structure parser (Kitaev and Klein, 2018).

Let uj be the average of the MLM representations

of tokens in phrase j. The output distribution with-

out phrase j is modeled by transforming the dif-

ference (Shrikumar et al., 2017; Montavon et al.,

2017) between us and uj .

sj = softmax(affine(ReLU(us)− ReLU(uj)))
(3)

Vector sj is a probability distribution over labels,

with phrase j absent: the closer sj is to ℓ (Eq. 1),

the less important phrase j is. A secondary log loss

LLIL is formed from the probability assigned to

the correct label without phrase j, taking a learned

weighted sum over all of instance i’s phrases, and

interpolating with the original log loss (Eq. 2) with

a hyperparameter α1 to weight the secondary loss:

loss = Ltask + α1LLIL (4)

The relevance of each phrase j can be defined as

the change in probability of the correct label when

j is included vs. excluded:

rj = [ℓ]y∗
i
− [sj ]y∗

i
(5)

where higher rj signify more relevant phrases to the

prediction, and as such serve as better explanations.

3 Supervising Explanations

On inspecting explanations retrieved from SELF-

EXPLAIN, in many cases they do not align intu-

itively with the predictions. Table 1 illustrates the

problem: the explanation of SELFEXPLAIN sen-

tence (1) is the phrase on this planet which is not

a good explanation for the predicted toxic label,

unlike the biggest idiot, which can better explain

the model’s prediction, having the toxic word idiot.

Our modeling innovation is to supervise the ex-

planations encoded in the LIL, rather than letting

them emerge from the secondary loss function

(LLIL in Equation 4). We incorporate a task lexi-

con as a source of supervision during training via

a third loss component to encourage the model to

prefer phrases that contain words in our lexicon as

explanations. Table 1 lists examples in the datasets,

showing the advantage of our method with more in-

tuitive explanations that better reflect the predicted

label.

Our proposed method, named LEXPLAIN, as-

sumes that good explanations within the input

are crucial for predictions, thus we encourage the

model to be “confused” in the absence of lexicon

entries, which we expect to be good explanations.

Formally, we minimize the KL divergence be-

tween the predicted label distribution sj , which

stands for the distribution in the absence of phrase

j (as described in Section 2) and the uniform distri-

bution sunif , for every phrase j:

LLEXPLAIN = DKL(sj , sunif ) (6)

This objective is used for only lexicon phrases.

LEXPLAIN interpolates the third loss, weighted

by hyperparameter α2, with the other two:

loss = Ltask + α1LLIL + α2LLEXPLAIN (7)

4 Experimental Setup

Datasets We experiment on three datasets and

evaluate explanations based on alignment with

model predictions and plausibility with humans.

We focus on sentiment analysis and toxicity detec-

tion, as judging explanations is easy, intuitive and

high-quality lexicons are available. Toxicity detec-

tion also allows us to analyze the efficacy of our

method in demoting spurious racial correlations, as

detailed in §6.

For sentiment analysis, we use the SST-2 dataset

(Socher et al., 2013), where the task is to predict

the sentiment of movie reviews. For toxicity de-

tection we use DWMW17 (Davidson et al., 2017)

and FDCL18 (Founta et al., 2018); both Twitter

datasets annotated for toxicity and dialect: African
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Input SELFEXPLAIN LEXPLAIN

she is the biggest idiot on the planet. on this planet the biggest idiot

Haha , says the little bitch who let someone take his phone . a real man

would n’t have let that happen . a little bitch would.

someone take his

phone

a little bitch would

All you hoes wanna be like me so bad. bad you hoe s

I ’m so ugly & april fools bitch you thought. you thought so ugly

He draw ( for “ big bad love ” ) is a solid performance by arliss howard. big bad love a solid performance

A lackluster , unessential sequel to the classic disney adaptation of j.m.

barrie ’s peter pan

the classic dis ney

adaptation

the classic disney adaptation

Table 1: Explanations from SELFEXPLAIN and LEXPLAIN for DWMW17, FDCL18 and SST2 (2 examples each).

Predicted labels are toxic for DWMW17 and FDCL18. First and second SST2 examples are positive and negative,

respectively. Explanations of LEXPLAIN align better with the model prediction and contain more task-related terms.

American English (AAE) and White American En-

glish. The AAE annotations are obtained from a de-

mographically aligned ensemble model that learns

a posterior distribution of topics corresponding to

African American tweets (Blodgett et al., 2016).

Our task lexicons and full experiment details are

described in appendix section A.

Training We use SELFEXPLAIN as our baseline.

When training both the baseline and LEXPLAIN,

we keep the same hyperparameters and weights

from the pretraining of the XLNet encoder and

finetune the model for 5 epochs. In LEXPLAIN

we do not use the GIL, since initial experiments

showed no difference between adding and remov-

ing the GIL.

For LEXPLAIN, we perform hyperparameter

tuning for α1 ∈ {0.01, 0.05, 0.1} and α2 ∈
{0.8, 1.5.2.0} on the development set. We report

results on the best configuration on the test sets.

We extract phrases from sentences, by parsing

each sentence with a constituency parser (Kitaev

and Klein, 2018) and extracting all non-terminals

with a token length of up to 5 words in the parse

tree.

5 Evaluating Explanations

The goal of LEXPLAIN is to train models to pro-

duce plausible explanations that align with their

predictions. We start with an intrinsic evaluation,

verifying that LEXPLAIN indeed promotes lexicon

entries as explanations. We then analyze the suffi-

ciency of the explanations and conduct human eval-

uation to show that explanations from LEXPLAIN

are more plausible and preferred by humans.

Intrinsic evaluation: are lexicon entries ranked

higher as explanations of the model? The LIL

outputs explanations as a rank of all input phrases.

Following lexicon supervision, we expect to see

that phrases ranked higher contain more lexicon

entries, indicating that supervision was effective.

To quantify this, we compute in Table 2 the mean

reciprocal rank (MRR) of the lexicon entries within

the ranked phrases of LEXPLAIN vs. the baseline.

Across all datasets, LEXPLAIN ranks lexicon en-

tries higher than the baseline on average, showing

the effectiveness of our supervision in providing

explanations included in the task lexicon. We note

that high-rank phrases should be the focus, thus

in Appendix 2 we plot the raw counts of lexicon

entries that appear in each rank, across sentences

in each dataset. Clearly, LEXPLAIN puts more lex-

icon entries higher in the rank, this is especially no-

ticeable in the highest ranked explanations (rank 1).

Dataset Model MRR(Full lexicon) MRR(50% lexicon)

FDCL18
Baseline 0.29 0.31

LEXPLAIN 0.33 0.35

DWMW17
Baseline 0.32 0.20

LEXPLAIN 0.35 0.24

SST2
Baseline 0.23 0.18

LEXPLAIN 0.25 0.22

Table 2: Mean reciprocal rank (MRR) of lexicon phrases

across the full ranking of explanations on the test set.

Do explanations sufficiently reflect model pre-

dictions? Sufficiency measures how indicative

explanations alone are of the model’s predicted la-

bel (Jacovi et al., 2018; Yu et al., 2019). Sufficient

explanations are expected to reflect the prediction

of the predicted label on their own. To measure

that, we use the FRESH pipeline (Jain et al., 2020):

we train a BERT-based classifier to perform the

task with only the explanations as input, and with

the originally predicted labels as output. Higher

accuracy on this task indicates that the explanations

are more reflective of the model predictions. We

train the sufficiency models with the top ranking

explanations of each sentence as input.

Following Jain et al. (2020), we measure this

with a BERT classifier trained with top ranked
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not present in the lexicon? We randomly select

50% of lexicon words and use them only to super-

vise while training. We compute MRR with respect

to the other half not used for supervision on the

same test set. If the phrases are ranked higher on

average, even without being seen during training, it

indicates that LEXPLAIN generalizes over lexicon

phrases.

Table 2 shows the MRR of lexicon entries (not

used as supervision). We show that our method gen-

eralizes consistently across all tasks: even lexicon

entries absent during supervision are ranked higher

with LEXPLAIN when compared to the baseline.

7 Related Work

Different works have approached interpreting mod-

els trained for various downstream tasks using

post hoc (Simonyan et al., 2014; Jin et al., 2020;

Smilkov et al., 2017) and intrinsic (Rajagopal et al.,

2021b; Alvarez Melis and Jaakkola, 2018) meth-

ods. In this work we focus on intrinsic methods

that highlight rationales (Denil et al., 2014; Rajani

et al., 2019; Luo et al., 2021) – where parts of the

input influential for prediction are extracted.

Some works leveraged interpretability methods

to improve model performance (Han and Tsvetkov,

2021; Hase and Bansal, 2022). Wei et al. (2022)

teach models to do commonsense tasks by pro-

viding step-by-step instructions. For classification

tasks, Madaan et al. (2021) use free-form explana-

tion generation and Hayati et al. (2022); Zaidan and

Eisner (2008); Huang et al. (2021) use human ra-

tionales as model feedback. These methods require

expensive annotation to elicit good explanations.

We instead aim to supervise rationales using task

lexicons, and show it yields improved explanations.

8 Conclusion

We propose LEXPLAIN, a method to improve

model explanations by directly supervising them

using task lexicons as the source of supervision.

We show that our method is indeed able to pro-

mote dictionary entries as explanations, resulting

in explanations that align well with the model’s pre-

dicted label without sacrificing accuracy, and that

the explanations are more plausible according to

human evaluation. We also show that LEXPLAIN

is able to generalize well to features that are not

present in the supervising lexicon. Finally, we show

that by promoting task related lexicon entries, we

are able to demote spurious correlations with AAE

annotations on toxicity datasets.
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Limitations and Future Work

One limitation of LEXPLAIN stems from the re-

liance on task lexicons. First, a reliable task lexicon

is required in order to adequately supervise expla-

nations, and this might be non-trivial to create for

an arbitrary task. We do show, however, that LEX-

PLAIN is able to generalize beyond lexicon entries,

which suggests that even partial lexicon for the task

at hand can provide a significant improvement in

explanations. Second, the chosen lexicon might

include certain biases itself, that might in turn be

incorporated in the model and its explanations.

Another limitation, shared with the majority of

existing interpretability methods, is that the faith-

fulness of interpretations is not guaranteed. In other

words, there is no theoretical guarantee that the re-

trieved explanations reflect the actual mechanisms

of the model in making predictions. We partially

mitigate this by choosing SELFEXPLAIN as our

base model. It is more faithful by design: it is

trained to enforce the alignment between model

outputs in the task classification and the LIL.

Finally, LEXPLAIN requires fine-tuning the

model for the task and incorporating the LIL on top

of a pretrained language model, and we established

its success only with one model (XLNet). Future

work should explore adaptations of other language

models, and extensions to language generation, to

facilitate model interpretability in new settings.

Ethics Statement

Our work aims at developing interpretable models

that do not overfit to artifacts in the training data.

However, there is no guarantee that we fully mit-

igate model reliance on all spurious correlations.

Further, by incorporating new lexicons that might

contain annotation biases (Sap et al., 2022), there is

an additional risk to incorporate and amplify social

biases. We mitigate these risks through manual

analyses and fairness evaluations presented in §6.

We conduct fairness evaluations on the com-

monly used toxicity datasets (Davidson et al., 2017;

Founta et al., 2018) annotated for AAE (Blodgett

et al., 2016). These AAE annotations for the tox-

icity datasets are a useful but imperfect proxy for

information about race. For example, these datasets

are not annotated by in-group members and anno-

tators had insufficient social context (Sap et al.,

2019). Future work should focus on a more careful

dataset curation that would enable a more reliable

fairness evaluation.
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A Experimental Details

Training We use SELFEXPLAIN as our baseline.

When training both the baseline and LEXPLAIN,

we keep the same hyperparameters and weights

from the pretraining of the XLNet encoder and

finetune the model for 5 epochs. In LEXPLAIN

we do not use the GIL, since initial experiments

showed no difference between adding and remov-

ing the GIL.

For LEXPLAIN, we perform hyperparameter

tuning for α1 ∈ {0.01, 0.05, 0.1} and α2 ∈
{0.8, 1.5.2.0} on the development set. We report

results on the best configuration on the test sets.

Toxicity Dataset DWMW17 is a Twitter dataset

with 25,000 tweets that have been annotated for

hate speech, offensive, or none alongside dialect la-

bels: African American English (AAE) and White

American English. We merge the hatespeech and

offensive examples and regard all of them as toxic.

FDCL18 is also a Twitter dataset with 100,000

tweets annotated for hate, abuse, spam, and none.

We select all instances, except for the ones labeled

as spam. Again, we merge the hate and abuse exam-

ples and regard all of them as toxic. For all datasets

we use the provided splits to train/dev./test.2

Task Lexicons Our sentiment lexicon of 2,470

words is derived by combining two existing lex-

icons: Hutto and Gilbert (2014) and Hu and Liu

(2004). For toxicity detection, we use the lexicon

from Wiegand et al. (2018), from which we extract

350 toxic words that appear in our datasets. We

were only able to obtain a toxic lexicon. Our at-

tempts to create a lexicon of non-toxic words by

extracting the most salient words present in the

non-toxic instances did not yield improved expla-

nations. We opt to only supervise toxic instances

in the training data.

B Human Evaluation

We ask annotators to select preferred explanations

between the baseline and LEXPLAIN. They are

presented with the model input, the original label

and the predicted label and also All annotators are

familiar with the tasks and are computer science

graduate students.

Instructions given to human evaluators The

task here is sentiment analysis. The labels are 0

2Train/dev./test: FDCL18: 54120/10145/11825,
DWMW17: 17849/3001/3501, SST2: 66976/872/1821.

for negative instances and 1 for positive instances.

Please enter X or Y in the last column for the al-

gorithm that provides the best explanation for the

predicted label. If the explanations are the same for

both algorithms, please enter XY. If the explana-

tions for both algorithms are not satisfactory, please

enter NXY. If explanations are not same, but both

are satisfactory, please enter SXY.
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