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ABSTRACT
We present a statistical analysis of the He ii 4686 emission line in the spectra of the black hole and Wolf-Rayet (WR) star of
the high-mass X-ray binary IC10 X-1. This line is visibly skewed, and the third moment (skewness) varies with the binary’s
orbital phase. We describe a new method of extracting such weak/faint features lying barely above a noisy continuum. Using
the moments of these features, we have been able to decompose these skewed lines into two symmetric Gaussian profiles as a
function of the orbital phase. The astrophysical implications of this decomposition are significant due to the complex nature of
wind-accretion stream interactions in such binary systems. Previous studies have already shown a 0.25 phase lag in the radial
velocity curve of the star and the X-ray eclipse, which indicates that the He ii emitters might be in the stellar wind, hence not
tracing the star’s orbital motion. Results from this work further suggest the existence of two separate emitting regions, one in the
stellar wind in the shadow of the WR star, and another in the accretion stream that impacts the black hole’s outer accretion disk;
and the observed skewed He ii lines can be reproduced by superposition of the two corresponding time-dependent Gaussian
emission profiles.

Key words: accretion, accretion discs – black hole physics – methods: statistical – stars: Wolf-Rayet – techniques: spectroscopic
– X-rays: binaries

1 INTRODUCTION

Spectroscopic observations of Wolf-Rayet (WR) stars have always
revealed interesting physics about their environments. WR stellar
spectra are dominated by multiple emission lines (He, N, C, and O)
due to a massive and optically thick wind emanating from the WR
star (Wolf &Rayet 1867; Crowther 2007). Analyzing these spectral
features serves the versatile purpose of studying the star itself, its
companion, and their interactions. In this work, we are studying a
member of this rare subset of binaries, IC10 X-1, an eclipsing high-
mass X-ray binary (HMXB) consisting of a black hole (BH) of es-
timated mass ∼15-35M⊙ and a WN3-type WR star (Prestwich et al.
2007; Laycock et al. 2015a,b). Clark &Crowther (2004) determined
[MAC92] 17A to be the donor star in the IC10 X-1 system and iden-
tified it as a WNE star situated in a crowded field with three other
stars to within 0.3′′-0.4′′ of the X-ray source. In this study, a model
spectrum (Hillier &Miller 1998) was used to find the stellar param-
eters: T∗ = 85,000 K, log(L/L⊙) = 6.05, Ṁ= 4 × 10−6 M⊙ yr−1, and
v∞ = 1750 km s−1. Several early-type WR stars in the Small Mag-
ellanic Cloud (SMC) (similar in metallicity to IC10) have similar
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properties to [MAC92] 17A. On the other hand, the association of
[MAC92] 17A with a compact object makes it more similar to X-ray
sources, such as Cyg X-3 and NGC300 X-1, rather than isolated or
non-compact binary WR stars. Silverman &Filippenko (2008) mon-
itored this system with 10 Keck spectra and determined a radial ve-
locity of 370±20 km s−1. This resulted in a BH mass in the range of
23.1 ± 2.1 M⊙ to 32.7 ± 2.6 M⊙, making IC10 X-1 the most massive
stellar-mass BH at that time.

In HMXBs, the compact object (possibly a BH in our case) ac-
cretes material from the stellar wind of the massive companion (the
WR star in IC10 X-1), and in turn, it emits X-ray photons. Most
of the stellar wind is highly ionized, except for the shadow region
behind the WR star with respect to the BH. This phenomenon is
very clearly observed in the spectra of these systems. The He ii 4686
line presumably originates from the relatively smaller and less ion-
ized shielded region behind the WR star (Van Kerkwijk et al. 1992;
Van Kerkwijk 1993; Van Kerkwijk et al. 1996). The radial velocity
curve determined from this configuration (Silverman &Filippenko
2008) tracks the wind’s motion rather than the stellar orbital mo-
tion (Laycock et al. 2015a), hence we observe a 0.25 phase lag in
the radial velocity (RV) curve, rendering the BH’s mass determina-
tion inaccurate. In the absence of a well-determined compact object
mass, the other parameters (orbital period of the system, eclipse du-
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2 Bhattacharya et al.

ration, and the stellar parameters of the WR star) can be used to
explore more plausible solutions (Binder et al. 2021). This mass co-
nundrum also opens the door for consideration of a low-mass BH or
even a neutron star (NS) companion, as shown in Table 1 of Laycock
et al. (2015b). Although the He ii emission line is not useful in de-
termining accurate Keplerian binary parameters, it can provide solid
information about the stellar wind itself, viz., its ionization structure
and velocity distribution. In this work, we have studied the time evo-
lution of statistical moments (primarily up to the fourth moment) of
the He ii emission line and we have deciphered the physics govern-
ing the outflow from the orbiting WR+BH binary in IC10 X-1.

The WR wind has a high mass loss rate and outflowing veloc-
ity (Castor et al. 1975; Prinja et al. 1990), and the accretion by the
compact object varies drastically around the stellar orbit (Tutukov
&Fedorova 2016). The velocity vectors of multiple wind compo-
nents imprint their signatures on the optical emission lines. The pro-
nounced skewness of the He ii 4686 emission line and its variation
over the binary orbit can be used to understand the accretion (BH) -
wind (WR star) interaction. The data can even be used to determine
the locations of individual He ii emitters around the binary orbit, as
we show in this work.

Comparisons of the WN star in IC10 X-1 with WR stars, espe-
cially the WN population in the Large Magellanic Cloud (Hainich
et al. 2014) and the SMC (Hainich et al. 2015), can help us under-
stand the effects of the compact object’s presence in more detail.
Such studies derive fundamental stellar parameters of WN stars in-
cluding the distribution of terminal velocities (v∞). The value of v∞
of our WN star in IC10 X-1 is comparable to the results of the above-
mentioned studies; a more complete comparison of other parameters
using fits to radiative transfer models requires much higher-quality
spectra.

An emission line profile can be mathematically approximated by
a Gaussian function. Depending on the movement of the line’s cen-
troid, we can determine the velocity of the emitting regions using
Doppler shifts. This is a very well-known phenomenon, but when
the observed emission line is skewed, the measured velocity could be
a representation of multiple superposed velocity vectors. When we
decompose such a skewed Gaussian line profile into two (or more)
unskewed components, then the velocities of individual components
can be determined. Such asymmetry in the profile could be caused
by an inhomogeneous stellar wind from the WR star, as shown by
Hamann &Koesterke (1998); in their work, the inhomogeneity is
caused by clump formation inside the wind. Profile asymmetry may
also be caused by the presence of a compact object around its orbit,
and we have tried to model this scenario in the present work; we have
formulated a new analytic method to decompose the skewed emis-
sion lines into distinct Gaussian components, and we discuss the
physics of two such components as they evolve with orbital phase.

The outline of the paper is as follows: In § 2, we describe the
archival data used in this work and the method used to detect and
analyze the especially weak He ii 4686 emission lines at different
phase bins. In § 3, we describe the analytic results of decomposing a
skewed Gaussian profile into two unskewed Gaussian components.
In § 4, we discuss the astrophysical implications of this decomposi-
tion for IC10 X-1, and we conclude in § 5 with a summary of our
results.

2 OBSERVATIONS AND REDUCTION METHODS

IC10 X-1 has been observed by the GEMINI-North/GMOS tele-
scope through multiple observation campaigns over a long time span

Table 1. GEMINI/GMOS Available Archival Data

Program Slit Start End Number
ID Width (′′) Date Date of Spectra
GN-2001B-Q-23 0.8 2001-12-22 2002-01-17 5
GN-2004B-Q-12 1.2 2004-07-16 2004-08-13 9
GN-2010B-Q-58 0.75 2010-09-02 2010-09-07 6
GN-2017B-Q-20 1.0 2017-11-10 2017-11-15 7
GN-2018B-Q-127 1.0 2018-12-13 2019-01-04 10
GN-2018B-Q-127 1.0 2019-07-02 2019-07-04 15

(2001-2019), and we have analyzed all of these archival data. The
spectral data are summarized in Table 1, all collected in the MOS
mode and archived by Bhattacharya (2022) (see also Bhattacharya
et al. 2023). All the spectra were obtained using the B600 grating in
the MOS mode, most of the time with a slit-width of 1.0′′. The B600
grating has a resolving power R=1688 at the blaze wavelength of
461 nm. The 0.5 Å/pixel dispersion results in a ≈ 32 km/s velocity
resolution per pixel at 4686 Å. Spectra from different observation
campaigns with different observing conditions have been phasewise
stacked, hence the quality varies significantly in each phase bin. In
particular, spectra around phase ϕ = 0.7 are of very low quality, and
the He ii line is barely detected above the noise.

The gemini package in iraf was used to process the raw data.
Steps described in gmosexample have been followed to perform
standard calibrations and extraction of the one-dimensional spec-
tra. No preliminary sky subtractions were performed at this stage
because of the faintness of the source. The background was sub-
tracted by a new procedure described in detail in § 2.1 below. Con-
ventional techniques do not "see" the He ii 4686 emission line pro-
truding above the noise. The new procedure starts by taking into
account the asymptotic decay of the line into the surrounding back-
ground.

In the process, we obtained a significant number of spectra (52);
yet, the He ii line was not detected in most of them individually;
hence, we had to stack them to amplify the signal. The spectra were
stacked phase-wise to increase the signal-to-noise ratio in each phase
bin. Two binning schemes were used, one involving 10 bins of width
∆ϕ = 0.1, and another with 4 bins of width ∆ϕ = 0.25. Then, the two
data sets were analyzed together in order to look for variations in the
moments of the He ii 4686 line as a function of the orbital phase.

2.1 New Data Fitting Procedure for a Noisy Distribution with a
Weak Embedded Signal

At faint stellar magnitudes, the Gemini/GMOS spectra are dominated
by strong emission lines due to the intervening atmosphere and by
the noise that makes it hard to find out where the continuum lies
around the location of a weak optical emission line such as the He ii
4686 line coming from the WR star or its wind in IC10 X-1 and
similar WR binary systems. The usual procedures for spectrum de-
contamination do not work, even after piling up many spectra within
each phase bin to amplify the signal. So, we had to devise an al-
ternative procedure capable of fitting the He ii line along with its
true continuum. (An example, the ϕ = 0 case with a bin width of
∆ϕ = 0.25, is illustrated in Figure 1.) The method proceeds in the
following steps:

(a) Fitting starts with a visual inspection of the combined spec-
trum in each phase bin. We determine through experimentation the
footpoints of the line and the level C1 of the apparent continuum on
the left side of the line. The left side is used because there are no im-
portant lines except N III 4630/43, which is in this case buried in the
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Figure 1. Models (in red) fitted to the He ii 4686 data (in blue) in a sequence of steps at phase ϕ = 0 ± 0.125. (a) Exponential fits on either side of λ = 4691.5
Å using the same maximum (1022 counts). True continuum (984 counts) is determined by the fit and the nearby background on the left side of the line. (b)
Exponential fits on either side of the maximum (38 counts) after a vertical shift of −984 counts and a horizontal shift of −4691.5 Å. (c) Half-Gaussian fits on
either side of the mean (µ = 0). Integrating this synthetic model, we obtain the higher-order moments of the combined distribution (top row with ϕ = 0.0 in
Table 4 below).

jitter, and we avoid that region in all cases. The right side is inappro-
priate for use because the apparent continuum is very much raised
due to the presence of strong nearby emission lines such as the Hβ
4861 line. The jitter of a long segment on the left side is not fitted
by a polynomial function, as is usually done. That would depress
the apparent continuum significantly. Instead, we find the maximum
number of counts in the jitter near the left side of the left footpoint
of the He ii 4686 line, and we adopt this value for C1. Note that this
value also includes the asymptotic left tail of the He ii line.

(b) We fit the left side of the He ii line with a decaying exponential
function, C(λ) = L1 + (Cmax −L1) exp(−|λ−µ|/(23)), where (µ,Cmax)
is the mode and 3 is a free parameter resembling variance; and we
determine L1, the asymptotic value of the line that contributes to the
region of the apparent continuum. Then, the true continuum lies at a
level of C0 = C1−L1. In this region devoid of other lines, if C1 > L1,
we obtain a reasonable value of true continuum C0. In the few cases
in which L1 ≳ C1 (differing by no more than 3-5 counts), we reset
C0 = L1 (because this is where the tail of the line is headed after
all; and then, it specifies the true continuum all by itself). Such cases
arise from the poor quality of the spectra that we are analyzing, but
the differences in counts are too small to be of particular signifi-
cance. On the other hand, any traditional attempt to use the mean
jitter level (ignoring background flaring and the tail of the line) for
removing the “visible continuum” is doomed to failure—the weak
He ii line signal is washed out by the noise.

(c) Having determined the true continuum C0, we proceed to fit
both sides of the He ii line, again with exponential functions that
have the appropriate asymptotic behavior C0 (Figure 1a), and we
determine their pseudo-variances, say 3LS and 3RS (on the left side
and the right side, respectively). In the few cases with C0 = L1, then
3LS = 3.

(d) The newly fitted curves are still not Gaussian because their
amplitudes and areas are not consistent (Figure 1b). Thus, we reset
the amplitudes so that the area under each half-curve is 1/2; and we
fit again the two half-profiles, this time with actual half-Gaussian
functions, to determine their true variances, say Vℓ and Vr. For con-
venience, we also shift F(λ) in wavelength space, so that its mode is
located at µ = 0.

(e) We concatenate the two half-Gaussians into one distribution
function F(λ) (Figure 1c). It is easy to verify by numerical integra-
tion that the total area under the curve is equal to 1, and we did so.

(f) Now, we are ready to extract the He ii signal out of the noisy
spectral data. The best-fitted profile is not noisy at all, although
we can assign typical error bars to its values by standard uncer-
tainty propagation analysis. We find that the relative errors do not
exceed ±10% in all observed points. We choose a grid spacing of
1 mÅ(so that numerical errors are negligible), and we generate syn-
thetic data points from the distribution F(λ) out to −5

√
Vℓ on the

left and +5
√

Vr on the right of the mode µ = 0. The large number
of data points generated guarantees that all corrections for bias will
be quite small. Nevertheless, we apply the small bias corrections
(Joanes &Gill 1998) to the moments discussed below.

2.2 The Distribution Function F(λ)

The final distribution function F(λ) is obviously asymmetric with a
discontinuity at µ = 0 (Figure 1c). This does not prevent us from
determining its moments by direct integrations. We computed and
inspected the results up to the 8th normalized moment u(8)/[u(2)]4,
and we confirmed that we see a real signal in all of these moments
(for example, moment u(8)/[u(2)]4 must be significantly larger than
7!! = 105 — indeed, it is, in all phase intervals under consideration).

We also investigated whether skewness could arise from instru-
mental effects. We used a WN star model spectrum (PoWR model;
Gräfener et al. 2002), and we convolved it using the instrumental
line spread function. We did not find any significant skewness in this
synthetic model of the He ii 4686 line. Hence, we can be confident
that the observed skewness is due to physical causes associated with
the IC10 X-1 compact binary system.

In this work, we are primarily interested in the lower three nor-
malized moments of the distribution function F(λ) besides the mean;
specifically, the 2nd (variance V), 3rd (skewness S), and 4th (kyrtosis1

K) moments. We analyze these moments analytically in § 3, where
we decompose the signal into two partially overlapping Gaussian
components, and we follow their evolution as a function of orbital
phase.

1 This ought to be the Latinized spelling of the Greek word “κύρτοσις” that
translates to “curvature” or “bending," also used in the title; we note that
Greek authors consistently use “kyrtosis" (with a "y") in the literature.
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3 SKEW-KYRTIC MODEL DECOMPOSITION INTO TWO
PURE GAUSSIAN COMPONENTS

We assume that the best-fit model for the He ii line of IC10 X-1 is
a unimodal superposition of two Gaussians, each of which carries a
weight of p = 1/2, and that are located on either side of the observed
mode µ. In this pilot study, we have no reason to favor one distribu-
tion against the other by using different weights, in which case we
would have to include the 5th moment too, and then solve a 9th-order
polynomial equation (Pearson 1894; Everitt 1981).

3.1 Toward an Analytic Solution

With the parameters µ,V,S, and K determined by the above pro-
cedure in each phase bin around the orbit of the binary system, we
proceed to decompose the skewed and kyrtic distribution function
F(λ) (see, e.g., Figure 1c) into two partially overlapping Gaussians
with means µi, variances Vi, and corresponding normalized moments
S i = 0 and Ki = 3, where i = 1, 2, respectively, and µ1 ≥ µ2 by de-
sign. Having adopted p = 1/2 for the weights of the mixture, we
are called to solve only a cubic polynomial equation, an analytically
tractable endeavor, which we describe below.

Considering the first four equations in the nonlinear system of
equations (2.10) given by Everitt (1981) and using p = 1/2, S i = 0,
and Ki = 3, we reduce the Gaussian solution set {µ±,V±} (where
± corresponds to i = 1, 2, respectively) to obeying the following
system of equations:

0 = δ1 + δ2

2V = V1 + δ
2

1 + V2 + δ
2

2

2S = δ1

(
3V1 + δ

2
1

)
+ δ2

(
3V2 + δ

2
2

)
2K = 3V 2

1 + 6V1δ
2

1 + δ
4

1 + 3V 2
2 + 6V2δ

2
2 + δ

4
2

, (1)

where

δi = µi − µ for i = 1, 2 . (2)

The above equations can be reduced to a system involving a
cubic equation for a new variable x ≥ 0 (defined in equation (8)
below), viz.

6x3 + 3 (K − 3) x − S2 = 0 , (3)

µ± = µ ± c , (4)

c =
√
Vx = D

√
x , (5)

and

V± = V

(
1 − x ±

S

3
√

x

)
, (6)

where D ≡ V1/2 is the standard deviation of the original input dis-
tribution. These equations also imply some important auxiliary rela-
tions between parameters, viz.

µ1 + µ2 = 2µ , µ1 − µ2 = 2c ≥ 0 , (7)

and

x = (c/D)2 ≥ 0 . (8)

We see now that x is dimensionless, since c and D have dimensions
of [length].

Equation (3) can be solved analytically for the nontrivial case,
where S , 0. Depending on the parameters S and K , it has either

-1.5 -1 -0.5 0 0.5 1 1.5

-4

-3

-2

-1

0

1

2

Figure 2. The cubic function y(x) is plotted versus x for S2 = 1 and various
values of the kyrtosis K . Solid dots mark the zeroes in the interval of interest
x ∈ (0, 1]. For K < 4/3, the positive zeroes move out beyond x = 1. For
K = 1.8553, the equation y(x) = 0 has a double root at x = −0.43679. For
K = 3, the function has one real zero at x = 0.55032, and an inflection point
at point (0,−1). For K > 3, the function has one real zero in the interval
x ∈ (0, 0.55032). The curves for K ≤ 2 (and zeroes x ≥ 0.83624) have no
physical significance for S2 = 1 (equation (15) below).

one real positive root or three real roots, two of which are negative.
Thus, a solution to our problem (a positive real root) always exists
and it is unique. Figure 2 shows an example in which we set S2 = 1
in equation (3) and we plotted the cubic polynomial y(x) = 6x3 +

3 (K − 3) x − 1 for various values of K . The caption describes the
various cases involving the zeroes of y(x).

The general equations that we used to obtain the critical points
shown in Figure 2 are obtained from the cubic function of equa-
tion (3), viz.

y(x) = 6x3 + 3 (K − 3) x − S2 , (9)

as follows:
(a) The critical point (1, 0) is obtained directly from y(1) = 0. Then,

we find that it occurs for K = 1 + S2/3 (K = 4/3 in Figure 2).
(b) The inflection point at x = 0 is obtained from y′′(0) = 0. We also

find that y′(0) = 0 for K = 3, as seen in Figure 2.
(c) The real double root at negative x-values is obtained by solving

simultaneously the system of equations { y(x) = 0, y′(x) = 0 }. We
then find that x = −(S2/12)1/3 and K = 3 − (3S4/2)1/3 (x =
−0.43679 and K = 1.8553 in Figure 2).

(d) The zero of the K = 3 case is obtained easily from 6x3 − S2 = 0.
We find that x = (S2/6)1/3 (x = 0.55032 in Figure 2).

(e) The zero of the K = 2, S2 = 1 case (x = 0.83624), given in the
caption of Figure 2, is found analytically by solving the particular
cubic equation 6x3 − 3x − 1 = 0.

3.2 The Analytic Solution

The “discriminant” of equation (3) takes the form

d = 6 (K − 3)3 + 9S4 , (10)

and d > 0 for leptokyrtic distributions (“slender” ones with K > 3)
and mesokyrtic distributions (“middle” ones with K = 3), such as
the those we obtained for the He ii line of IC10 X-1. For d < 0, the
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above system of equations has two negative real roots and one posi-
tive real root. The critical case d = 0 corresponds to the double-root
case described in § 3.1, item (c) above. In such platykyrtic (“broad”
top, light tails) cases, the signal cannot be composed of a mixture
of two Gaussians—no matter how the two Gaussians are arranged,
close or far apart, they cannot get both the top of the mixture to be
broad and the tails to be thin.

When d > 0 in equation (10) (i.e., for K > 3−(3S4/2)1/3; cf. § 3.1,
item (c) above), another intermediate variable appears to dominate
the solution, viz.

Q = 3S2 +
√

d , (11)

so that the solution of equation (3) takes the relatively compact form

x =
(
Q

36

)1/3

−

(
(K − 3)3

6Q

)1/3

, (12)

where, in general, we expect that 0 < x ≤ (S2/6)1/3 (for K ≥ 3) in
this work. Yet another, equivalent form of this solution turns out to
be more convenient for computations:

x =
(
S2

12

)1/3
(1 + √

1 + g
)1/3

−

 g

1 +
√

1 + g

1/3 , (13)

where

g =
2
3

(K − 3)3

S4 . (14)

As stated above, here S , 0, but the normalized kyrtosis could po-
tentially take the value K = 3, in which case, we deduce that g = 0
and x = (S2/6)1/3. We also find that, as g → 0, the combination of
terms in the square brackets tends to 21/3

[
1 − (g/4)1/3 + O(g)

]
and

then

x ≈ (S2/6)1/3 [1 − (g/4)1/3] .

Since x < 1 in our problem, the normalized skewness should then be
restricted approximately in the interval of S2 < 6 for K ≈ 3, but this
range turns out to be too wide. A much more accurate constraint on
S2 can be obtained from the momentous condition that

S2 < K − 1 , (15)

proven by Pearson (1916, 1936) for any distribution. For K = 3,
this inequality predicts emphatically that S2 < 2, thus we expect
that S ∈ (−1.414,+1.414) in our problem as well.

3.3 Significance of the Output Parameters

With x determined from equation (12) or equation (13), we can
proceed to find the means µ± (equation (4)) and the variances V±

(equation (6)) of the two Gaussian signals in the mixture that pro-
duces the observed weak He ii line in IC10 X-1. The main results
are listed in Table 2, where the means of the two Gaussian lines are
shown relative to the rest-frame wavelength of 4686 Å. Before we
interpret these results, we should revisit the fundamental parameters
discussed in the subsections above, and assign physical meaning to
what is measured and derived in this analysis.

Pivotal parameter c (equations (4) and (5)-(8)) comes first in this
deeper examination. According to equation (7), c = (µ1 − µ2)/2 ≡

∆µ/2 ≥ 0, thus c is one-half of the separation ∆µ of the two Gaussian
means. Thus, we think of c as unnormalized “standard deviation” of
the two means, and we define a dimensionless separation distance
Dµ of the means by

Dµ ≡ ∆µ/(2D) = c/D =
√

x , (16)

Table 2. He ii Line Decomposition into Two Gaussian Signals

ϕ µ ⋆
1 µ ⋆

2 V1 V2 D1 D2

0.1 8.12 3.94 5.24 15.08 2.29 3.88
0.2 5.11 −0.21 5.39 22.30 2.32 4.72
0.3 6.35 1.66 5.45 18.19 2.33 4.26
0.4 −1.16 −3.43 25.89 23.74 5.09 4.87
0.6 −5.28 −7.72 9.90 12.57 3.15 3.54
0.7 0.77 −0.32 4.12 3.62 2.03 1.90
0.8 3.76 0.19 3.42 10.72 1.85 3.27
0.9 6.92 5.47 3.76 4.70 1.94 2.17
1.0 7.09 5.01 6.35 4.30 2.52 2.07

⋆(Line Center) − (4686 Å).

where D = V1/2. Obviously then, the positive root of the cubic equa-
tion (3) provides the separation distance squared (x = D 2

µ ). Further-
more, since x < 1, then 0 ≤ ∆µ < 2D (although these limits are too
wide), where we emphasize again that D is the standard deviation of
the original mixed sample. Finally, we note that the inverse of Dµ,
i.e., 1/

√
x, resembles the well-known “coefficient of variation CV ,”

which is equal to D/µ for the original sample.
A surprising realization concerning the equations of § 3.1 is that,

just like equation (16), they all practically “beg” to be normalized to
the variance V of the original skewed and kyrtic data set, and not to
a combination of the derived Gaussian variances V1 and V2. This ap-
proach has not been implemented previously in a statistical context,
probably because people do not generally feel comfortable mixing
input and output parameters in the same normalized expression. We
undertook a literature search, and we found one work (Chaudhuri
&Agrawal 2010) in which the original sample’s V was used as a
normalization factor in the proposed bimodality index k, which in
our notation would read k = (V1 + V2)/(2V).

Based on the above elaboration, we also define a dimensionless
separation distance DV of the variances of the two Gaussians by

DV ≡
V1 − V2

2V
=

S

3
√

x
=

S

3Dµ

, (17)

and a dimensionless bimodality index Bk of the variances (akin to
index k of Chaudhuri &Agrawal 2010) of the two Gaussians by

Bk ≡
V1 + V2

2V
= 1 − x = 1 − D 2

µ . (18)

The separation distances Dµ and DV (equations (16) and (17)) are
plotted versus ϕ ∈ [0, 1] in Figure 3, along with the skewness S of
the original data set.

We note the following properties of the above relations:
(a) When x = 0 (or Dµ = 0), then S ≡ 0 necessarily, and the last two

fractions in equation (17) become indeterminate; then, DV , which
may be nonzero, can only be determined from the first equality in
equation (17). In this case, µ1 = µ2 = µ, ∆µ = c = 0, and Bk = 1.

(b) Equation (17) shows that DV < 0 when V1 < V2 (i.e., when the
larger mean is associated with the smaller variance). Furthermore,
S ∝ (V1 − V2)/V, implying that the sign of (V1 − V2) is determined
from the sign of the skewness S of the initial distribution.

(c) There is no need to define a bimodality index for the means µ1

and µ2, analogous to Bk in equation (18). Such an index would be
equal to µ/D, the inverse of the coefficient of variation CV ≡ D/µ

that describes the original distribution. Naturally then, CV also de-
scribes the same sample after its decomposition to two overlapping
Gaussian distributions.

(d) The inverse of the original CV is the harmonic mean of the inverses
of CV± = D/µ±, where ± corresponds to i = 1, 2, respectively. That
is, 1/CV+ + 1/CV− = 2/CV for the inverse coefficients of variation
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Figure 3. Variation of separation distances Dµ and DV during one phase.
Distance DV tracks closely the skewness S of the original distribution, which
is also shown by dashed line segments. Distance Dµ is anticorrelated to S,
except in the blind sector around ϕ = 0.5.

Table 3. Diagnostic Tests for Mixture Modality

ϕ Dµ DV d1 d2 d3 d4 d5

0.10 0.548 −0.339 0.70 1.31 0.34 0.70 0.41
0.20 0.581 −0.404 0.80 1.43 0.38 0.66 0.46
0.25 0.572 −0.386 0.77 1.40 0.37 0.67 0.45
0.30 0.564 −0.368 0.74 1.37 0.36 0.68 0.43
0.40 0.222 +0.041 0.23 0.46 0.11 0.95 0.33
0.50 0.584 +0.411 0.81 1.44 0.38 0.66 0.46
0.60 0.341 −0.105 0.36 0.73 0.18 0.88 0.34
0.75 0.564 −0.368 0.74 1.37 0.36 0.68 0.43
0.80 0.558 −0.356 0.73 1.34 0.35 0.69 0.42
0.90 0.333 −0.100 0.35 0.71 0.18 0.89 0.34
1.00 0.484 +0.241 0.57 1.11 0.28 0.77 0.37

Unimodality Condition d1 ≤1 d2<2 d3 1 d4≲1 d5 ≤
5
9

Predicted Modality⋆ CU CU MLU CU CU
⋆CU: Certainly Unimodal; MLU: Most Likely Unimodal.

of the two decomposed Gaussian distributions with values given by

1
CV±

=
1

CV
± Dµ . (19)

(e) Suppose one can determine µ1 and µ2 through some other means.
For example, if the original distribution is clearly bimodal, then it
seems reasonable to assume that the two visible modes represent the
two Gaussian means. Then, there is no need to go through the long
procedure that we described above. The separation distance Dµ is
determined from the first equality in equation (16), and the variances
are readily determined from equation (6) with x = D 2

µ , viz.

V± = V

(
1 − D 2

µ ±
S

3Dµ

)
. (20)

3.4 Modality

In a final set of diagnostic tests, we should also consider the modal-
ity of the mixture of the two derived Gaussian distributions (despite

the fact that we can graph the combined distribution and see for our-
selves whether two distinct modes emerge in the mixture). We con-
sider 5 diagnostic test values of modality (for equal weights p = 1/2)
that we can obtain rather easily from the input parameters and the re-
sults listed in Table 2 and in Table 4 given below:

(1) A likelihood ratio test for bimodality (Robertson &Fryer
1969; Holzmann &Vollmer 2008), based on the value of d1 =

Dµ

√
V/(D1D2), where Di =

√
Vi (i = 1, 2). The mixture of the

two Gaussians is unimodal if d1 ≤ 1, or if

d1 > 1 and ln
[
d1 − (d 2

1 − 1)1/2
]
+ d1(d 2

1 − 1)1/2 ≤ 0 .

(2) Ashman’s d2 statistic (Ashman et al. 1994) in astrophysics,
where d2 = 2Dµ(1 − D 2

µ )−1/2. A clear separation of the components
is expected when d2 ≥ 2, or equivalently, when Dµ > 1/

√
2.

(3) A bimodal separation index d3 (Zhang et al. 2003), defined by
d3 = Dµ[D/(D1 + D2)]. This index moves above 1 only if the two
Gaussian distributions essentially do not overlap.

(4) The bimodality index Bk = d4 of Chaudhuri &Agrawal (2010),
based on variances and discussed in § 3.3 above. In our notation, it
takes the form d4 = 1 − D 2

µ (equation (18)), so if the separation
distance between the two means is large, the index will assume low
values.

(5) A bimodality coefficient d5 (Ellison 1987), based on the semi-
nal work of Pearson (1916, 1936), and defined by d5 = (S2 + 1)/K ,
where d5 ∈ (0, 1) (cf. equation (15)). A bimodal distribution is ex-
pected to have light tails (low kyrtosis) and/or a strongly asymmetric
form (high skewness), in which case the value of d5 will be high. On
the other hand, if d5 ≤ 5/9 (the value for a uniform distribution),
then the distribution is certainly unimodal (Pfister et al. 2013).

We calculated the above diagnostic quantities d j ( j = 1-5) from
the input parameters and the results listed in Table 2 (and including
additional values at each quarter phase from Table 4 shown below).
We collect these results in Table 3, where we also show the separa-
tion distances Dµ and DV , the conditions for a unimodal distribution,
and the predictions of the diagnostic quantities. All diagnostics indi-
cate that the derived mixture is unimodal in each phase bin.

Naturally, we have confirmed the above results by plotting the
mixture of the two Gaussian distributions for each phase bin, which
resembles the skewed He ii 4686 lines observed in the spectra of
IC10 X-1. The diagnostic analysis then serves to verify the robust-
ness of the five criteria used for theoretical modality predictions.

3.5 Signal Decomposition to Two Gaussian Emitters

We can now follow the two distinct Gaussian components at var-
ious phases, as they move around and switch positions relative to
one another. An illustration is shown in Figure 4, where the two
emitting components are shown in cyan and purple colors, respec-
tively. The utilized spectra have been averaged in order to capture
nearly equidistant phases separated by ∆ϕ = 0.25 (see also Table 4
for the decomposed values corresponding to the four frames of the
figure). Phases are roughly a quarter phase apart because stacking
spectra does not produce exact quarter phases. This is noticeable
in the quarter phases of Figure 4, where the emission is systemati-
cally redshifted, with the implication that the average phase values
are ϕ ≲ 0.25 and ϕ ≳ 0.75, respectively. The cyan component does
however show blueshifted tails, especially at ϕ = 0.75. We have in-
corporated these approximations in Figure 5 below, where we show
schematic diagrams of the two emitting components around the bi-
nary orbit.

The purple component is clearly more slender and taller than the
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Figure 4. Decomposed Gaussians for the skewed and kyrtic He ii 4686 emis-
sion line of IC10 X-1. The two emitters switch places about their average
wavelength every quarter phase. Their behavior is discussed in the text. Both
component wavelengths shift to red or blue in unison. Average redshifts
(z > 0) and blueshifts (z < 0) are noted in the frames, whereas individual
component values are listed in Table 3.5 below. In mid-X-ray eclipse, the
hotspot is not directly observable; the average wavelength over the interval
ϕ = 0.5±0.125 is blueshifted by −8.5 Å relative to 4686 Å; but the switching
trend between the two components still occurs in this phase too.

Table 4. He ii Line Decomposition at Four Equidistant Phases

Input Signal (Skewed He ii Lines)
ϕ µ⋆ V S K

0.00 5.5 3.601 0.349 3.064
0.25 4.5 2.281 −0.662 3.231
0.50 −8.5 9.971 0.721 3.274
0.75 5.5 14.212 −0.623 3.204

Decomposition to Two Gaussians with Means µ1 > µ2
ϕ µ ⋆

1 µ ⋆
2 V1 V2 D1 D2 1 2

0.00 6.43 4.59 3.62 1.89 1.90 1.38 Wind HS
0.25 5.37 3.65 0.65 2.41 0.81 1.55 HS Wind
0.50 −6.66 −10.35 10.66 2.47 3.27 1.57 Wind HS
0.75 7.64 3.38 4.45 14.92 2.11 3.86 HS Wind

⋆(Line Center) − (4686 Å).

Phase Shielded Wind Shift Hotspot Shift
ϕ zwind zHS

0.00 1.37 × 10−3 9.80 × 10−4

0.25 7.78 × 10−4 1.15 × 10−3

0.50 −1.42 × 10−3 −2.21 × 10−3

0.75 7.22 × 10−4 1.63 × 10−3

cyan component, which is always spread out in λ-space (the area
under each curve is equal to 1). These characteristics support the hy-
pothesis that the two components originate in different regions of the
WR wind outflow, and that they move independently because they
switch positions roughly every quarter phase. We believe that the
extended (cyan) component originates in the expanding wind (in the
shadow of the WR star; Laycock et al. 2015b); whereas the slender
(purple) component comes from a hotspot (HS) and the accretion

stream impacting the accretion disk that has formed around the BH
(Binder et al. 2021). This is because when the shielded wind ex-
pands along our line of sight (LOS) (ϕ = 0 and 0.5), we expect to
see a large dispersion of velocities originating at various distances
from the WR star. Specifically, we imagine the orbital configuration
of the two emitters evolving as follows (see also Tables 4 and 3.5,
and the schematic diagrams drawn with precision in Figure 5):

(a) Phase ϕ = 0.5: Both components show maximum blueshifts and
the wind velocities show a much larger dispersion (Dwind/DHS = 2;
Table 4). The shielded wind is directed toward us, and the HS is
located close to 9:00 on a 12-hour wall-clock centered on the BH
(top view of Figure 5). Figure 5 also shows that the BH is 10◦ before
coming to mid-eclipse because the average binary phase depicted in
this panel is actually ϕ = 0.44.

(b) Phase ϕ = 0: The shielded wind shows here maximum redshift (Ta-
ble 3.5), as was expected. The slender stream/HS component shows
a smaller redshift (Figure 4). Then, the HS must be located close
to 1:00 on its clock (Table 3.5: cos−1(0.980/2.21) ≃ 64◦, i.e., 2 hr
behind the 3:00 mark, and no more than a few minutes off of the
1:00 mark). This configuration presents a ∼40% larger dispersion of
velocities, and a ∼40% larger redshift to the shielded wind.

(c) Phase ϕ = 0.25: The shielded sector of the wind is nearly orthogo-
nal to the observer, yet it manages to produce a small mean redshift
(Table 3.5). The HS shows about the same redshift as at ϕ = 0, thus
it has not moved too far off from its previous location. Note how-
ever that its orbital period does not have to be 1:1 with the binary
period; the HS could have done a full orbit returning back to about
the same location. (See Appendix A for an in-depth investigation of
the orbital motion of the HS.) In this phase, the dispersion of wind
velocities is about twice as much now as that of the HS; we note
that the ratio Dwind/DHS is ≃2 in the next two quarter phases as well
(see Table 4, where the last two columns clarify the sources in each
phase).

(d) Phase ϕ = 0.75: The shielded sector of the wind is again nearly
orthogonal to our LOS, and it manages again to produce a small
mean redshift (Table 3.5). On the other hand, the HS shows its
largest redshift (∼74% of the maximum blueshift), which places it
close to 4:30 on its clock (Table 3.5: cos−1(1.63/2.21) ≈ 45◦, i.e.,
1.5 hr ahead of the 3:00 mark, and no more than 5 minutes off of
4:30). In this phase, characterized by the poorest quality spectra, we
find only one striking difference relative to phase 0.25: the velocity
dispersions of both the HS and the wind have more than doubled
(D0.75/D0.25 ≈ 2.5, as obtained from the values listed in Table 4).

We summarize the counterclockwise movements of the HS
around its clock during the BH orbital quarter phases from ϕ = 0 to
ϕ = 1, respectively. In sequence, the HS is located roughly at 1:00,
0:50, 9:00, 4:30, and returns back to 1:00. Its orbit is somewhat ec-
centric as would be expected for an accretion stream that impacts the
outer accretion disk of the BH. These timings allow us to determine
approximately the axes of the ellipse, and dynamical theory allows
us to work out the kinematics of the HS. We undertake this task in
the next subsection, where our investigation comes to fruition.

3.6 The Eccentric Stream/Hotspot Orbit

The HS appears to be moving quite slowly (1:03→0:53) within the
first quarter of the orbital phase; and much faster within the third
quarter (9:00→4:25). These extremes allow us to determine the axes
of the ellipse: the major axis is along the 0:42-6:42 line; periastron is
at 6:42 for the orbiting HS, and apastron is at 0:42 due to the slow HS
motion around the top of the clock; the minor axis then is along the
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Figure 5. Schematic diagrams showing the motions of the two stars (WR star and BH), the shielded wind, and the hotspot (HS) at four orbital phases. All
vectors and HS locations have been drawn to scale; the HS orbits counterclockwise (ccw) about the BH, as seen from above; the stars orbit ccw about their
center of mass (CM); the velocities of the stars were scaled for a mass ratio of MBH/MWR = 0.5. Average phase values for the BH around the CM are noted in
gray color, and wall-clock times for the HS around the accretion disk are noted in brown color. The brown axes fixed to the disk denote the inclination of the
elliptical stream/HS orbit to our LOS (the major axis is tilted by −21◦ from the 6:00-12:00 line).
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Table 5. Ellipse Geometry and Kinematics of the HS Orbit about the BH

Property Symbol Definition Value

Rotation from LOS ψ Negative Clockwise −21◦

Orbital Period PHS 2π/Ω ∗ 6.96

Area A PHS/2 3.48
Areal Speed dA/dt h/2 = constant ∗∗ 0.5

Circumference C π(a + b)[1 + f (ξ)] ∗∗∗ 6.614

Semimajor Axis a (rmax + rmin)/2 1.071
Semiminor Axis b

√
rmaxrmin 1.035

Ellipticity ε b/a 0.9665
Eccentricity e

√
1 − ε2 0.2568

Linear Eccentricity c ae 0.275

Distances r from the Focus (BH)
r−periastron rmin a(1 − e) 0.7957

r−apastron rmax a(1 + e) 1.3455
r−covertex rcov a 1.071

rmax,min−ratio rmax/rmin (1 + e)/(1 − e) 1.691
rmax,cov−ratio rmax/rcov 1 + e 1.257

Orbital Speeds Vr
√

2/r − 1/a Vr(r)
. . . at periastron Vmax Vr(rmin) = 1 + e 1.257
. . . at apastron Vmin Vr(rmax) = 1 − e 0.743

. . . at covertices Vcov Vr(a) = 1/
√

a 0.967

Vmax,min−ratio Vmax/Vmin rmax/rmin 1.691
Vmax,cov−ratio Vmax/Vcov rmax/rcov 1.300

∗ Ω is the angular velocity of the orbit (Appendix A).
∗∗ h ≡ 1 is the specific angular momentum of the orbit.
∗∗∗ f (ξ) = 3ξ

(
10 +

√
4 − 3ξ

)−1
(Ramanujan 1914), with ξ ≡ (a−b)2/(a+b)2

and an error of O(ξ5). The same result, accurate to 3 decimal places can
be obtained from C = 2A/rH, where rH is the harmonic mean of a and b
(Christodoulou 2016).

Round-clock Time-stamps of the HS in each Binary Phase

Binary Phases ϕ: 0.0 0.25 0.5 0.75 1.0
HS Motion: Counterclockwise

HS Time-stamps: 1:03 0:53 9:00 4:25 1:03

Apsaidal Points: 0:42 6:42
Apastron Periastron

Covertices: 9:42 3:42
Left Right

3:42-9:42 line that connects the covertices of the ellipse. Therefore,
the apastron is tilted by −21◦ (i.e., clockwise) from 12:00. Since the
HS clock does not rotate about the BH and the 6:00 mark always
faces the observer, this angle is also the inclination of the apsidal
line to our LOS.

The geometric properties of the above ellipse and the kinematics
of the orbiting HS are collected in Table 5. We use units such that
the specific angular momentum h of the HS and the standard gravi-
tational parameter GMBH (Bate et al. 1971) are both equal to 1, and
times are expressed in hours. This normalization scheme also causes
the semilatus rectum ℓ = b2/a (Coxeter 1969) to be 1, giving us
the useful relation a = b2 between the semiaxes a and b < a of the
ellipse. The condition

b < a ,

imposed by the kinematics (Doppler shifts) allows us to pinpoint the
orbital period of the HS with surprising accuracy (PHS = 6.96 hr; see

Appendix A). This value implies that the HS executes 5 full orbits
about the BH for every full orbit of the BH (i.e., 1 1

4 orbits per quarter
of the binary phase).

We also see in Table 5 that the eccentricity of the orbit is low
(b/a ≈ 0.97) and that the ratio of speeds

Vmax :Vcov :Vmin = 1.69:1.30:1 .

Thus, the HS is orbiting faster(slower) by a factor of 1.3 as it tra-
verses each of these locations on the upper(lower) half of the el-
lipse. As a consequence of Kepler’s second law, this speed differ-
ential causes the HS to spend 2.91 hr between covertices when go-
ing around periastron (0.418PHS), compared to 4.05 hr when going
around apastron (0.582PHS).

4 DISCUSSION

4.1 Winds and Accretion Streams in HMXBs

Relatively strong and broad emission lines, such as the He ii 4686
line, appear in WR stars due to their pronounced stellar winds, and
these spectral features most likely originate in regions within the
outflowing winds, hence containing no tangible information about
the binary orbits of such massive stars (Laycock et al. 2015b; Binder
et al. 2021). So, it seems that the dynamical information is encoded
in the powerful winds emanating from these stars (§§ 3.5 and 3.6).
The stellar wind structure is quite complex in WR stars because of
its enormous spatial extent and the presence of a nearby compact
accreting object (presumably a BH) that intensifies and complicates
the dynamics and the emission processes in both optical and X-ray
wavelengths.

Castor et al. (1975) and Nugis &Lamers (2000) carried out theo-
retical investigations of stellar-wind velocities in isolated WR stars.
Several other authors (Clark &Crowther 2004; Carpano et al. 2007;
Tutukov &Fedorova 2016) studied the wind velocities of WR stars
in HMXBs, such as IC10 X-1 and NGC300 X-1 (Binder et al. 2021).
In the theoretical studies (e.g., Nugis &Lamers 2000), the wind ve-
locity vw(r) at distance r from the WR star is generally expressed by
the relation

vw(r) = v0 + (v∞ − v0)
(
1 −

R
r

) β
, (21)

where v0 is the outflow speed at the surface of the WR star, R is
its photospheric radius, and β ≈ 0.8-1 (Castor et al. 1975). For the
terminal (asymptotic) velocity v∞ in IC10 X-1, Clark &Crowther
(2004) suggest a characteristic value of 1750 km s−1, corresponding
to a rest-frame redshift of zCC = 5.83 × 10−3.

The largest rest-frame shift, |z|HS = 2.21× 10−3, that we measured
is the blueshift of the HS at 9:00 (Table 3.5; Figure 5), which is
∼ 0.4zCC corresponding to a typical speed of ∼700 km s−1. One may
expect higher speeds in the accretion stream, in case the HS is not
precisely located at 9:00 at orbital phase ϕ = 0.5 and a larger velocity
vector is projected on to our LOS (Appendix A3); and also because
of dispersion in the component velocities (Figure 4). In any case,
we do not expect to observe speeds much higher then ∼1000 km s−1

at optical wavelengths (Table A2). These assertions will be put to
the test in Appendix A1 (see also Table A1), where we describe the
unique determination of the orbital period of the HS about the BH.

4.2 WR+BH Binary System IC10 X-1

In the HMXB system IC10 X-1, the accretion process involves the
capture of the stellar wind by the compact object and the creation of
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an accretion disk around the companion BH. The origin of the He ii
4686 emission line detected in this system can be the shadowed sec-
tor of the stellar wind (Laycock et al. 2015b), or the accretion stream
that impacts the outer accretion disk of the compact object (Binder
et al. 2021), or both. In this study, we have decomposed the skewed
and kyrtic He ii emission from IC10 X-1 at various phases into two
Gaussian components that presumably emanate from different wind
regions around the binary (and, apparently, not close to the stellar
surface of the WR star, as was deduced by Bhattacharya et al. 2023).

Figure 4 and Table 4 show that the two emitters switch posi-
tions relative to one another at different phases, as the skewness of
the combined signal switches from positive to negative and back,
roughly twice during each binary orbit (Figure 3). The skewness of
the He ii 4686 line is created by the sleek (purple) component, as it
dances around the more extended (cyan) component identified with
wind emission. As the shadowed sector of the wind goes about its
orbital phases, the purple component, identified with emission from
the accretion stream/HS (Binder et al. 2021), executes its own orbital
motion around the BH.

A consistent model that shows these behaviors and precisely-
scaled velocity vectors in each binary phase is drawn in Figure 5. In
the four frames of the figure, we also assign to the HS accurate clock
times (in brown color) drawn from a 12-hour wall-clock attached to
the BH/accretion disk. These times help us describe the location of
the HS in time, as it executes its own motion about the BH. So, for
clarity, we use phase values for the binary orbit and BH-clock cycles
for the HS.

In the orbital quarter phases, where we expected nearly zero red-
shifts, the wind managed to show small nonzero redshifts, as com-
pared to the "eclipse phase" in which both components are strongly
blueshifted despite the average phase being ϕ = 0.44 (the BH is
∼10◦ off of superior conjunction with respect to the observer in the
ϕ = 0.5 frame of Figure 5). But, to our surprise, the HS displays
sizeable redshifts at the same times (in fact, maximum redshift at
ϕ = 0.75). It is obvious that this component is executing an indepen-
dent motion about the BH and that its speed is varying along its orbit.
In Table 3.5, we list the blueshifts (negative) and redshifts (positive)
of the He ii 4686 line that we have deduced around a full orbit of the
binary. At ϕ = 0, we caught the shielded wind moving away from
the observer (as was expected), at the same time that the HS shows
a relatively small redshift. At ϕ ≈ 0.5, with the BH at 10◦ (i.e., 1 hr)
before mid-eclipse, both components show maximum blueshifts.

4.3 Hotspot Orbital Period and Distance from the BH

Imagine another 12-hour wall-clock overlaid on to the binary orbit
and centered at the CM in Figure 5. The BH is at 6:00 (inferior con-
junction) at ϕ = 0 and moves counterclockwise by 3 clock hours
during each quarter of its phase. The overall orbit of the HS appears
to be at least as fast as the binary orbit, implying a stream/HS period
of PHS = 34.8 hr (Carpano et al. 2007; Laycock et al. 2015a) in the
model depicted in Figure 5. But this does not have to be the actual
period of the HS, and most likely it is not (see Appendix A): Dur-
ing a phase change ∆ϕ = 0.25, the HS can in principle complete any
number of full cycles plus a fraction of a cycle that takes it to its next
location. This extra fractional cycle is the only condition imposed on
the HS by the results of the data analysis. In fact, the model cannot
distinguish HS prograde versus retrograde rotation either: were the
HS located at 3:00 on its own clock at ϕ = 0.5 and moving clock-
wise, the observed Doppler shifts would have been the same as those
quoted in Figure 5.

Because we do not know with certainty the masses of the two stars

in the binary (Laycock et al. 2015b); in order to make some progress;
we had to carry out a separate analysis for the viable values of the
orbital period of the accretion stream/HS and its distance from the
BH. We summarize this dynamical analysis in Appendix A, where
we calculate these quantities assuming various stellar masses and re-
lying on the insights gained from the model depicted in Figure 5. An
important contribution to this investigation comes from an analysis
of the time-dependent velocity dispersion of the stream/HS (phase-
dependent standard deviations are listed in λ-space in Table 4), pre-
sumably caused by shear due to the tidal forces exerted by the BH
itself.

5 SUMMARY OF RESULTS

Our investigation of the He ii 4686 emission line from the WR+BH
binary system IC10 X-1 produced the following results:

(1) The He ii 4686 line, although weak in the Gemini/GMOS spectra,
is definitely skewed (skewness S , 0) and kyrtic/curved (kyrtosis
K > 3).

(2) These asymmetric optical properties likely arise from a mixture of
two approximate Gaussian emitters that do not emanate from the
bulk of the WR star. We are convinced that one emitting component
lies in the extended wind of the WR star, in particular, in the shad-
owed sector that is shielded from the X-rays emanating from the BH
companion (Laycock et al. 2015b); whereas the other (always less
dispersed) component originates from a HS in the BH’s outer ac-
cretion disk, which is impacted by the backflowing accretion stream
that develops from a stagnation point behind the BH (Binder et al.
2021).

(3) Our decomposition of the overall signal into two Gaussian compo-
nents reveals how these two emitting regions are evolving in time,
as the binary is orbiting around its CM (Figures 4 and 5; Tables 4
and 3.5). Figure 5 depicts quite accurately that both components
show maximum blueshift near mid-X-ray eclipse ϕ ≈ 0.5—when the
HS is at 9:00 on a 12-hour wall-clock fixed on to the BH/accretion
disk for the sake of describing the motion of the stream/HS; and that
only the wind shows maximum redshift at the BH’s inferior conjunc-
tion (ϕ = 0) relative to the observer.

(4) The HS appears to be in a low-eccentricity orbit about the BH. At
ϕ = 0, it is located near 1:00 on its clock (assuming counterclock-
wise motion), and, for this reason, it shows a relatively small red-
shift. On the other hand, it displays maximum redshift at ϕ = 0.75,
after it has come around the clock to 4:30, on its way back to 1:00.
Our efforts to investigate the kinematics and the dynamics of the
stream/HS are described in § 3.6 and Appendix A.

ACKNOWLEDGEMENTS

We appreciate the comments and suggestions made by the referee
that helped us produce a precise model of the binary system (Fig-
ure 5 and Table 5). We thank UMass Lowell and the Lowell Cen-
ter for Space Sciences and Technology for supporting this research.
This work was supported in part by NSF-AAG grant 2109004.

The research was also supported in part by the international GEM-
INI Observatory, a program of NSF’s NOIRLab, which is man-
aged by the Association of Universities for Research in Astron-
omy (AURA) under a cooperative agreement with the National Sci-
ence Foundation, on behalf of the GEMINI partnership of Argentina,
Brazil, Canada, Chile, the Republic of Korea, and the United States
of America. Our investigation was enabled by observations made

MNRAS 000, 1–13 (2022)



Skewness in the WR+BH Binary IC10 X-1 11

from the Gemini-North telescope, located within the Maunakea Sci-
ence Reserve and adjacent to the summit of Maunakea.

This investigation has made use of Astropy (www.astropy.org)
a community-developed core Python package and an ecosystem of
tools and resources designed specifically for astronomy (Astropy
Collaboration et al. 2013, 2018, 2022).

DATA AVAILABILITY

The raw data were downloaded from the GEMINI telescope data
archive. The extracted spectra are available in this repository (Bhat-
tacharya 2022) in fits format. Additional processed data and prod-
ucts (extracted spectra in ASCII or pdf formats, tables, and figures)
can be obtained by contacting the corresponding author.

References

Ashman K. M., Bird C. M., Zepf S. E., 1994, AJ, 108, 2348
Astropy Collaboration et al., 2013, AAP, 558, A33
Astropy Collaboration et al., 2018, AJ, 156, 123
Astropy Collaboration et al., 2022, ApJ, 935, 167
Bate R. R., Mueller D. D., White J. E., 1971, New York
Bhattacharya S., 2022, Replication Data For “Probing the Stellar Wind of

the Wolf-Rayet Star in IC 10 X-1”, doi:10.7910/DVN/U3PFZB, https:
//doi.org/10.7910/DVN/U3PFZB

Bhattacharya S., Laycock S. G., Chené A.-N., Binder B. A., Christodoulou
D. M., Roy A., Sorabella N. M., Cappallo R. C., 2023, The Astrophysical
Journal, 944, 52

Binder B. A., et al., 2021, ApJ, 910, 74
Carpano S., Pollock A. M., Prestwich A., Crowther P., Wilms J., Yungelson

L., Ehle M., 2007, A&A, 466, L17
Castor J. I., Abbott D. C., Klein R. I., 1975, ApJ, 195, 157
Chaudhuri D., Agrawal A., 2010, Defence Science Journal, 60, 290
Christodoulou D., 2016, Forum Geometricorum, 16, 291
Clark J. S., Crowther P. A., 2004, A&A, 414, L45
Coxeter H., 1969, Inc, New York
Crowther P. A., 2007, ARA&A, 45, 177
Eggleton P. P., 1983, The Astrophysical Journal, 268, 368
El Mellah I., Sundqvist J. O., Keppens R., 2019, A&A, 622, L3
Ellison A. M., 1987, American Journal of Botany, 74, 1280
Everitt B., 1981, The British Journal of Psychiatry, 138, 336
Gräfener G., Koesterke L., Hamann W.-R., 2002, Astronomy & Astro-

physics, 387, 244
Hainich R., et al., 2014, Astronomy & Astrophysics, 565, A27
Hainich R., Pasemann D., Todt H., Shenar T., Sander A., Hamann W.-R.,

2015, Astronomy & Astrophysics, 581, A21
Hamann W.-R., Koesterke L., 1998, Astronomy and Astrophysics, 335, 1003
Hillier D. J., Miller D. L., 1998, The Astrophysical Journal, 496, 407
Holzmann H., Vollmer S., 2008, AStA, 92, 57
Huarte-Espinosa M., Carroll-Nellenback J., Nordhaus J., Frank A., Black-

man E. G., 2013, MNRAS, 433, 295
Joanes D. N., Gill C. A., 1998, Journal of the Royal Statistical Society: Series

D (The Statistician), 47, 183
Laycock S. G., Cappallo R. C., Moro M. J., 2015a, MNRAS, 446, 1399
Laycock S. G., Maccarone T. J., Christodoulou D. M., 2015b, MNRAS, 452,

L31
Nugis T., Lamers H. J., 2000, A&A, 360, 227
Pearson K., 1894, Philosophical Transactions of the Royal Society of Lon-

don. A, 185, 71
Pearson K., 1916, Philosophical Transactions of the Royal Society of Lon-

don. Series A, Containing Papers of a Mathematical or Physical Charac-
ter, 216, 429

Pearson K., 1936, Biometrika, 28, 34
Pfister R., Schwarz K. A., Janczyk M., Dale R., Freeman J. B., 2013, Fron-

tiers in Psychology, 4, 700

Prestwich A., et al., 2007, ApJL, 669, L21
Prinja R. K., Barlow M., Howarth I. D., 1990, ApJ, 361, 607
Ramanujan S., 1914, Quart. J. Pure App. Math., 45, 350
Robertson C., Fryer J., 1969, Scandinavian Actuarial Journal, 1969, 137
Silverman J. M., Filippenko A. V., 2008, ApJL, 678, L17
Stevens I. R., Pollock A., 1994, MNRAS, 269, 226
Tutukov A., Fedorova A., 2016, ARep, 60, 106
Van Kerkwijk M., 1993, A&A, 276, L9
Van Kerkwijk M., et al., 1992, Nature, 355, 703
Van Kerkwijk M., Geballe T., King D., van der Klis M., van Paradijs J., 1996,

A&A, 314, 521
Wolf C., Rayet G., 1867, CRAS, 65, 292
Zhang C., Mapes B. E., Soden B. J., 2003, Quarterly Journal of the Royal

Meteorological Society: A journal of the atmospheric sciences, applied
meteorology and physical oceanography, 129, 2847

APPENDIX A: STREAM/HS ORBITS AND DISPERSIONS
FOR VARIOUS ASSUMED BH MASSES AND HS PERIODS

We investigate dynamical scenarios for an outer accretion stream/HS
orbiting the BH faster than the BH is orbiting the WR star (which
has a period of Porb = 34.8 hr; Carpano et al. 2007; Laycock et al.
2015a); such as the unique solution with

PHS = 6.96 hr , (A1)

whose geometric properties and kinematics are listed in Table 5
above. This particular scenario and PHS-value are singled out from
the two-component model depicted with the utmost precision in Fig-
ure 5, along with the dynamical considerations that follow.

A1 The Unique Orbit of the Stream/HS about the BH

Table A1 lists some possible periods and physical characteristics of
the orbiting HS according to the diagram in Figure 5 for a BH mass
of 17M⊙ and 32M⊙, respectively. The possible number of HS cy-
cles during each quarter binary phase (∆ϕ = 0.25) is shown in the
second column of the table. Multiplication by 4 produces column
3, the number of complete HS cycles (1, 5, 9, 13) during one com-
plete binary orbit. In the following calculations, we solve first for a
roughly circular HS orbit around a BH using the famous Keplerian
and kinematic equations

V =
3√
GMΩ , (A2)

and

R =
V
Ω
, (A3)

where V and R are the HS orbital speed and the mean distance from
the BH, respectively, G is the Newtonian gravitational constant, and

Ω ≡
2π
PHS

, (A4)

is the angular velocity of the HS (column 3 in Table A1).
Speed V in Table A1 characterizes the accretion stream/HS which

is produced from a stagnation point behind the BH (Stevens &Pol-
lock 1994) and the accelerated backflow of the gas returning to-
ward the accretion disk (Huarte-Espinosa et al. 2013; El Mellah
et al. 2019). HS distance R is given in units of the solar radius
R⊙ = 6.957 × 105 km; it should be compared to the separation of
the two stars a = 20.0R⊙ and the volumetric size of the BH Roche
lobe

(RL)BH = 6.41R⊙ , (A5)
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Table A1. IC10 X-1 HS physical characteristics in various PHS-scenarios (columns 2-4) with a BH mass of 17M⊙ (such as the BH in IC10 X-1’s "twin" X-ray
source NGC300 X-1; Binder et al. 2021) and 32M⊙ (Laycock et al. 2015b). In the last column, we display the ellipticity of the orbit of the HS about the BH.

HS Physical Characteristics HS Orbit Geometry
HS Cycles per BH MBH = 17M⊙ MBH = 32M⊙ Ellipticity

No. PHS Quarter Full Ω R V R V b/a
(hr) Orbit (rad s−1) (R⊙) (km s−1) (R⊙) (km s−1)

1 34.80 1
4 1 5.0 × 10−5 13.86 484 17.12 597 0.565

2 6.96 1 1
4 5 2.5 × 10−4 4.74 827 5.85 1021 0.966

3 3.87 2 1
4 9 4.5 × 10−4 3.20 1006 3.96 1242 1.176

4 2.68 3 1
4 13 6.5 × 10−4 2.51 1137 3.10 1404 1.329

Table A2. IC10 X-1 HS physical and geometric characteristics of the best HS model 2, listed also in Table A1, and determined to be unique by the analysis
conducted in Section A1. In the last two columns, we display the ellipticity and the eccentricity of the orbit of the HS about the BH.

HS Physical Characteristics HS Orbit Geometry (from Table 5) ∗

HS Cycles per BH MBH = 17M⊙ MBH = 32M⊙ Ellipticity Eccentricity
No. PHS Quarter Full Ω R V R V ε = b/a e = c/a

(hr) Orbit (rad s−1) (R⊙) (km s−1) (R⊙) (km s−1)

2 6.96 1 1
4 5 2.5 × 10−4 4.74 827 5.85 1021 ∗∗ 0.9665 0.2568

∗ Major axis of the mild ellipse tilted clockwise from the LOS by −21◦.
∗∗ A 32M⊙ BH mass does not appear to be viable, according to our observations; the circular HS speed it generates is too high (see also § 4.1).

Observed Velocity Dispersion ∆V and Associated Spread ∆R in the Stream/HS

Binary HS Clock Trigonometric HS Speed Vel. Dispersion Rel. Half-Width⋆

ϕ Timestamp Angle (◦) V (km s−1) ∆V (km s−1) (∆R)/R
0.0 0:53 64 294 ± 44 ± 0.150
0.25 1:03 59 344 ± 26 ± 0.075
0.5 9:00 180 662⋆⋆ ± 50 ± 0.076
0.75 4:25 318 489 ± 67 ± 0.138

⋆ Half-width |∆R| < 1R⊙ using the R values from model 2 at the top of the table. So, in both BH-mass cases covered in model 2, the stream extends out to
≤85% of the BH Roche lobe.

⋆⋆ HS orbital speed V = 662 km s−1 was observed near BH superior conjunction (also mid-X-ray eclipse). To make model 2 agree with this value, we could
reduce the BH mass to MBH = 8.7M⊙. Then, MBH/MWR = 0.256, a = 18.8R⊙, (RL)BH = 5.07R⊙, and R = 3.79R⊙, i.e., 75% of the Roche lobe size.

Alternatively, we could displace the HS from its 9:00 position at ϕ = 0.5 and determine its new location in each of the other three orbital phases. That action
would also cause a rotation of the axes of the elliptical orbit (Section A3).

for a mass ratio of MBH/MWR = 0.5 (using the rL(q, a) formula of
Eggleton 1983); correspondingly, for the case with MBH/MWR = 1
(Laycock et al. 2015b) in Table A1, we find that a = 21.6R⊙ and

(RL)BH = 8.17R⊙ . (A6)

Here, we also find that the WR star (for RWR ≈ 8R⊙) fills its own
Roche lobe (RWR/(RL)WR = 0.98), as compared to the former case
in which RWR/(RL)WR = 0.91.

From the top row of Table A1, we see that an HS:BH periodicity
of 1:1 (as in the illusion seen in Figure 5) is not acceptable since
the HS distance R ≳ 2(RL)BH in both cases, and the BH accretion
disk/stream crosses well inside the Roche lobe of the WR star (for
which (RL)WR = 8.80R⊙ and (RL)WR = 8.17R⊙, respectively). Thus,
the HS has to be faster than the binary, and model 1 in Table A1 is
discarded.

Models 3 and 4 are also discarded, but for a different reason: In
the last column of Table A1, we have also listed the ellipticity b/a of
orbit of the stream/HS about the BH (see § 3.6), as this was deduced
from the nonequidistant clock timings of the HS in the binary orbital
phases of Figure 5. Obviously, models 3, 4, and subsequent models
with faster HS orbits must be discarded because they get the axis of
the ellipse wrong. Therefore, we are left with only one viable model
of the HS orbit, model 2 in Table A1.

A2 Properties of the Unique Model 2 Listed in Table A1

The physical and geometric properties of model 2, the only viable
model of the stream/HS orbiting about the BH, are summarized
in Table A2. The most important dynamical characteristics of the
stream and the BH have been pointed out by asterisks and have been
discussed in the footnotes to the table.

The geometric properties at the rightmost columns of the table
indicate that the stream/HS orbit is only mildly elliptical. This allows
us to not iterate on the circular model described in the main text
(Figure 5) and make ellipticity corrections to the orbit of the HS.

A3 Wrap-up of Procedures and the Two Unbroken Symmetries
of the Model

In the work that we described above, we undertook the following
cumbersome steps concerning observations, data reduction, and
data analysis and interpretation of the He ii 4686 emission line
emanating from the high-mass X-ray binary IC10 X-1:

(1) We dealt with low-quality spectra of the source, the kind that most
people would not consider useful at all.

(2) We devised a new technique to remove the continuum without los-
ing the embedded weak signal.
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(3) We devised a new analytical method that exploits skewness in the
line profiles and separates the signal into two different Gaussian
components.

(4) We observed these components moving independently and danc-
ing around one another (Figure 4), as the BH+WR star binary kept
orbiting, as usual, about its own center of mass.

(5) We tried to interpret the motions of the two distributed components
according to their mean Doppler shifts and their variances. We iden-
tified them with the shielded wind (large variances) blowing away
from the WR star in the direction opposite to the BH, and with an
accretion stream/HS (smaller variances) orbiting about the BH itself,
just outside its accretion disk.

(6) We constructed a precise model of the motions of all emitting com-
ponents during various orbital phases (Figure 5), and the model told
us that the orbit of the HS is mildly elliptical (ellipticity b/a ≃ 0.97).

(7) We determined the geometry and kinematics of the mildly elliptical
orbit (Table 5) and the orbital period of the HS about the BH (PHS ≃

7.0 hr).
(8) Finally, we analyzed various dynamical models of the stream/HS

orbiting the BH, but we could not constrain the mass of the BH or
the size of its accretion disk (Section A1).

We have learned to execute these steps with minimum hardship,
and to obtain useful results that make physical sense. Our next tar-
get is IC10 X-1’s "twin" X-ray source NGC300 X-1 for which high-
quality spectra of the He ii 1640 emission line are readily available
(Binder et al. 2021), and the measured Dopper shifts are quite dif-
ferent than those in IC10 X-1.

Two obstacles still remain that prevent a categorical determina-
tion of the stream/HS orbit in the IC10 X-1 binary system:

(a) We cannot resolve a prograde versus a retrograde motion of the
stream/HS around the BH (§ 4.3). In Figure 5, the HS is assumed to
rotate in the counterclockwise direction about the BH, just as the BH
does about the center of mass of the binary. This is prograde motion.
For the retrograde motion of the HS, we relocate it from 9:00 to 3:00
on its clock at ϕ = 0.5 and imagine that it rotates clockwise.

(b) We have no way of knowing whether the HS at ϕ = 0.5 is indeed
close to 9:00, as depicted in Figure 5. We can place the HS anywhere
on the left semicircle of its orbit, and it will still show a blueshift
upon projection onto the LOS. Because the HS shows maximum
Doppler shift at ϕ = 0, we assumed that its velocity vector is parallel
to our LOS, thus we do not just see a large projection of an even
larger invisible velocity vector.

The former symmetry creates ambiguity as to the location of the
HS in each orbital phase. But there exist only two possibilities. The
latter symmetry creates many more ambiguities. For example, we
can easily match the large velocities (827 and 1021 km s−1) of the
two (very different) dynamical models listed in Table A2 to the ob-
served projected HS speed of 662 km s−1 at ϕ = 0.5 by relocating
the HS 1hr+14min and 1hr+39min, respectively, away from 9:00 in
either direction. The only good news in this conundrum is that the
major axis of the elliptical orbit then rotates away from its −21◦ ori-
entation to the LOS by only ±13◦ and ±15◦ for MBH = 17M⊙ and
32M⊙, respectively.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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