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In this paper, we investigate an arithmetic analogue of the gonality of a smooth
projective curve C over a number field k: the minimal e such that there are infinitely
many points P € C(k) with [k(P) : k] < e. Developing techniques that make use of an
auxiliary smooth surface containing the curve, we show that this invariant can take
any value subject to constraints imposed by the gonality. Building on work of Debarre-
Klassen, we show that this invariant is equal to the gonality for all sufficiently ample

curves on a surface S with trivial irregularity.

1 Introduction

Let C be a nice (smooth, projective, and geometrically integral) curve over a number
field k. For an algebraic point P € C(k), the degree of P is the degree of the residue field

extension [k(P) : k]. In this paper, we investigate the sets

Coi={Peck):deg) <e| = |J c@)
[F:kl<e

of algebraic points on C with residue degree bounded by e.
When e = 1, this is the set of k-rational points on C. If the genus of Cis O or 1,

then there is always a finite extension K/k of the base field over which (Cy); = C(K) is
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infinite. On the other hand, if the genus of C is at least 2, then for all finite extensions
K /k, Faltings’ theorem guarantees that the set (Cy), is finite [6]. While understanding
the set of rational points is an interesting and subtle problem, here we will be primarily
concerned with the infinitude of the sets C, as e varies. Define the arithmetic degree of
irrationality to be

a.irri (C) := min(e : C,is infinite).

This invariant is not preserved under extension of the ground field, so we also define
a.irrg(C) := min(e : there exists a finite extension K/k with(Cg), infinite).

As is implicit in the notation, this notion depends only upon the k-isomorphism class of

C, see Remark 3.3. The situation for k-points can therefore be summarized as
a.irrg(C) =1 < genus of C < 1.

For e > 2, the situation for higher genus curves is more interesting. Recall that
the k-gonality of C/k,

gon; (C) := min(e : there exists a dominant map C — IP’,Ic of degree e),

is a measure of the “geometric degree of irrationality” of C. This notion is also not
invariant under extension of the base field (e.g., a genus 0 curve has k-gonality 1 if
and only if it has a k-point). For that reason, we also define the geometric gonality to
be gong(C) := gong(Cy), which is stable under algebraic extensions. If f: C — ]P’,lc is
dominant of degree at most e, then f~!(P!(k)) C C,. Therefore, we always have the upper
bound

a.irr;(C) < gong(C). (1)

This bound need not always be sharp: if f: C — E is a dominant map of degree at most
e onto a positive rank elliptic curve E, then f~1(E(k)) C C, is also infinite. When e = 2
(resp. e = 3) then Harris-Silverman and Hindry [9, 11] (resp. Abramovich-Harris [1])

showed
a.irr(C) = e e is minimal such that Cj, is a degree e cover of a curve of genus < 1.

Debarre-Fahlaoui [3] gave examples of curves lying on projective bundles over an elliptic

curve that show the analogous result is false for all e > 4. The arithmetic degree of
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424 G. Smith and I. Vogt

irrationality is therefore a subtle invariant of a curve, capturing more information than
only low degree maps.

Implicit in the work of Abramovich-Harris [1] and explicit in a theorem of Frey
[8] is the fact that Faltings’ theorem implies that if C, is infinite, then C admits a map of

degree at most 2e onto IP’,IC. Therefore, we have an inequality in both directions

gon(C)/2 < a.irry(C) < gong(C). (2)

In this paper, we develop and apply geometric techniques to compute a.irr,(C)
and gon; (C) when C lies on a smooth auxiliary surface S. The first result in this direction
is that the inequalities in (2) are sharp, and that subject to these bounds, we may

decouple a.irry (C) and gon; (C).

Theorem 1.1. Given any number field k and a pair of integers «, y > 1, there exists a

nice curve C/k such that

a.irr (C) = a.irrg(C) = «, gon (C) = gong(C) =y (3)

if and only if y/2 < o < y.Infact, for y > 4, the equalities (3) are satisfied for all smooth

curves in numerical class (y,«) on S = E x P}, where E/k is a positive-rank elliptic curve.

Using these geometric techniques, we next describe classes of curves where
the arithmetic and geometric degrees of irrationality agree; that is, where there are
as few points as allowed by the gonality. In such cases, we have the strongest finiteness
statements on low degree points.

The 1st explicit examples of this kind were given by Debarre and Klassen for
smooth plane curves C/k of degree d sufficiently large. Max Noether calculated the

gonality for d > 2:

1. If C(k) # ¥, then gony(C) = d — 1, and all minimal degree maps are projection
from a k-point of C, and
2. If C(k) = @, then gon, (C) = d.

For smooth plane curves of degree d > 8, Debarre-Klassen [4] prove an arithmetic

strengthening of this result:
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Low Degree Points on Curves 425

1. If C(k) # 0, then C;_, is finite, and so a.irrp (C) = gom(C) = d — 1.
Furthermore, all but finitely many points of degree d — 1 come from
intersecting C with a line over k through a k-point of C.

2. If C(k) =9, then C;_, is finite, and so a.irr,(C) = gon,(C) = d.

We generalize this result to smooth curves on other surfaces S. The key property
of P? that we need in general is that it has discrete Picard group; that is, in the classical
language of surfaces, it has irregularity 0. The explicit condition d > 8 can be replaced
by requiring that the class of C is “sufficiently positive” in the ample cone in the sense
that it is sufficiently far from the origin, and sufficiently far from the boundary of the

ample cone.

Theorem 1.2. Let S/k be a nice surface with h!(S, Og) = 0. If C/k is a smooth curve in

an ample class on S, then

02
a.irr (C) > min (gonk(C), 3) .

In particular, let P be a very ample divisor on S, and define the set

Excp = {integral classes H in Amp(S) such that H?2<9H -P- 1)}.

1. If C C S is a smooth curve with class [C] € Amp(S) \ Excp, then a.irr; (C) =
gon, (0).
2. For any closed subcone N € Amp(S), the set Excp(lV) := Excp N N is finite.

As an immediate consequence, we obtain an effective generalization of the

Debarre-Klassen result to other surfaces with k! (S, Og) =0.

Corollary 1.3. Suppose that C embeds in a nice surface S/k having h!(S, Og) = 0, with
Og(1) very ample and C € |Og(a)|. If

8 : 0s(1)2=1

9 : otherwise,

then a.irry (C) = gong (C).
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426 G. Smith and I. Vogt

Corollary 1.4. Under the hypotheses of Corollary 1.3, if S satisfies Pic(Sg) = Z - Og(1),
then there are finitely many points of degree strictly less than (¢ — 1)(95(1)2 on Cy for

any finite extension K/k.

Proof. By [12, Lemma 4.4], (¢ — 1)(’)5(1)2 < gong(C) < gong(C). Therefore, by
Corollary 1.3,

(@ — 1)04(1)? < a.irrg(C).
[ |

Corollary 1.3 combined with [12, Theorem 3.1] is enough to deduce the analogous
result for most complete intersection curves in P}, generalizing in another direction

Debarre and Klassen's original result when n = 2:

Corollary 1.5. Let C/k be a smooth complete intersection curve in P?, n > 3, of type
9<d; <dy;<---<d,_;. Then

a.irry (C) = gong (0).

In particular, by Lazarsfeld's computation of the minimal gonality of such a curve
[15, Exercise 4.12], there are finitely many points of degree strictly less than

(d; — 1)dy---d,,_, on Cg for any finite extension K /k.

For any surface S and any finite polyhedral subcone N C Amp(S), the set
Excp(N) in Theorem 1.2 is effectively computable. Given some particular surface S,
our techniques are amenable to explicit computations and can sometimes yield a full
computation of all classes [C] € Amp(S) for which a.irr, (C) is strictly less than gon,(C).

For example:

Theorem 1.6. Let C be a nice curve of type (d,,d,), with 1 < d; < d,, on P} x P}. Then
if (d,,d,) # (2,2) or (3, 3), we have that a.irr; (C) = gon; (C) = d,. In particular, this lets

us compute:

1 :d, <lor(d,dy)=(22),
airrg(C)=12 : d, =2andd, > 3,0r (d,,d,) = (3,3) and C bielliptic

d, : otherwise.
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Low Degree Points on Curves 427

Remark 1.7. We say that a point P € C(k) is sporadic if [k(P) : k]l < a.irr(C).
From the perspective of the arithmetic of elliptic curves, there is much interest in
understanding sporadic points on modular curves, for example, the classical X; (),
since these indicate “usual” level structure. Since X;(N)(Q) # ¥, X;(IN) is always a
subvariety of its Jacobian variety J; (V). And whenever #J, (IV)(Q) is finite, we have that
a.ier(X1 (V)) = gong(X;(V)). In particular, this holds for N < 55 and N # 37,43,53
by work of Derickx and van Hoeij [5]; in the same article, they compute the gonality
(and therefore the arithmetic degree of irrationality when N # 37) for all N < 40. It is
our hope that the geometric techniques we develop here might prove useful for specific

curves of arithmetic interest.

As in previous work, the proofs of these results begin by translating the
problem of understanding degree e points on C to understanding rational points on
Sym® C =: C'®, which is a parameter space for effective divisors of degree e on C. There

is a natural map
c® — Ppic®C,

sending an effective divisor D to the class of the line bundle O(D). We denote the
image of this map W,(C). We now have two problems: understand the infinitude of
rational points on the fibers of C® — Pic® C (which is related to the dimension of the
space of sections of the corresponding line bundle), and understand the infinitude of
rational points on the image W,(C) (which, by Faltings’ Theorem, is related to positive-
dimensional abelian varieties in W,(C)).

The majority of this paper is therefore devoted to proving purely geometric
results over C about nonexistence of positive-dimensional abelian varieties in W,(C)
for appropriate e. Using the theory of stability conditions on vector bundles, we show
that such an abelian variety in W,C forces the existence of a certain type of effective
divisor on S. Given a particular surface S, we can often use the geometry of S to
obtain a contradiction; this is how we proceed with Theorem 1.1. When the surface
is not explicitly given, the fact that such a divisor class does not move in a positive
dimensional family (from h!(S,Og) = 0) allows us to construct an embedding of the

abelian variety into W;C for smaller f and eventually obtain a contradiction.

2 Abelian Varieties in W,C

In this section, we prove purely geometric results (Theorems 2.7 and 2.9) about nonexis-

tence of abelian subvarieties that will imply our main theorems. Therefore, the basefield

€202 1940100 90 U Josn Aleuqr seousig Aq 09¥E986/2Z 1/ 1/2202/a101e/uiwl/Wwoo"dno-olwapede/:sdpy woly papeojumod



428 G. Smith and I. Vogt

is assumed to be C, unless otherwise noted, and gon(C) := gong(C) denotes the geometric
gonality.

The proofs of these results will proceed by contradiction: the existence of a
positive-dimensional abelian variety A C W,C will force the existence of a family
of effective divisors of moderately low degree moving in basepoint-free pencils. We
will then use a geometric lemma proved in Section 2.1 to produce interesting effective
divisors on an auxiliary surface containing the curve. The proof ideas bifurcate here:
when the auxiliary surface is specified explicitly, we may then directly use the geometry
to obtain a contradiction. When the surface is simply known to have h'(O) = 0, we use
the interesting effective divisor to inductively produce such a family of effective line
bundles on C of even lower degree that will force a contradiction for all but finitely
many possible starting classes of curves C.

The 1st step in this procedure relies on the following observation, due originally
to Abramovich and Harris [1, Lemma 1], and whose consequence for the gonality of C
was noted by Frey [8]. Assume that A C W,C is a translate of an abelian variety of
dimension at least 1 and A ¢ x + W,_,C for any x € C. Let A, denote the image of A x A
under the addition map W,Cx W,C — W,,C. Note that A, is (noncanonically) isomorphic
to A: a choice of basepoint in A induces an isomorphism Pic® C ~ Jac;, under which the
addition map on W,C agrees with the group law on Jac, and A C Jac; is an abelian

subvariety.

Lemma 2.1.  The line bundle L, corresponding to a point p € A, € W,,C < Pic?® C is

basepoint-free and has
h°(C,L,) — 1 > dim A.

Proof. Let C'®© denote the eth symmetric power of C. We have the following commuta-

tive diagram

c© x clo finite, ~(2¢)

l om. J{
W,C x W,C — W,,C -
Ul Ul

AxA — A,

Given a point p € W,,C, the fibers of the map C*® — W,,C are of dimension h%(C, L,)—1.
As the fibers of the bottom map A x A — A, are (dim A)-dimensional, we see that if
p € A,, the fiber of C?® — W,,C over p must be at least this large. Furthermore, if x € C

is in the base locus of this (dim A)-dimensional linear system, then it would necessarily
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Low Degree Points on Curves 429

be the case that x is always in the linear system parameterized by the points of A. This

is impossible, as we assumed that A is not contained in a translate of W,_,C. [ |

2.1 Linear series of low degree

In this section, we prove the key geometric input on linear series of moderately low
degrees on curves C whose class is ample on a surface S. This is a purely geometric
result over an algebraically closed field of characteristic 0.

We first recall some of the basic theory of torsion-free coherent sheaves on
varieties over algebraically closed fields k = k. Let F be a torsion-free coherent sheaf on
a nice variety X of dimension m. Given an ample class H on X, we define the slope of F

with respect to H
cy(F)-H™ !
rk(F)

In what follows, we leave the reliance on H implicit, and just refer to the slope as w(F).

pg(F) =

The sheaf F is called p-unstable (with respect to H) if there exists a coherent sheaf
E C F such that

R(E) > w(F).

Otherwise, we say that F is pu-semistable (with respect to H).

The p-semistable sheaves are the building blocks of torsion-free coherent
sheaves on X. More precisely, for F any torsion-free coherent sheaf, by [13, Theorem
1.6.7], there exists a unique Harder-Narasimhan filtration of F,

0=F,CF,C...CF,=F,

which is characterized by the following properties

1. Each quotient G; := F;/F,_; is a torsion free u-semistable sheaf.
2. If 1 <i<j< n,then u(G) > w(Gj).

In particular, we will use the fact that given an unstable torsion free coherent sheaf F,
there is a unique nonzero subsheaf E C F such that F/E is semistable and torsion free,
and p(E) is maximal among subsheaves of F. We call this E the maximal destabilizing
subsheaf of F.

Remark 2.2. If X is a curve (i.e., m = 1), then a vector bundle F is unstable if and
only if it is destabilized by a subbundle E C F, since the saturation of a destabilizing

subsheaf will yield a destabilizing subbundle. However, saturation does not in general
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430 G. Smith and I. Vogt

yield a subbundle (though, by the fact that the quotient is torsion free, the maximal
destabilizing subsheaf of a vector bundle is always saturated [13, Definition 1.1.5]). If
X is a surface (i.e., m = 2) and F is a vector bundle, then the maximal destabilizing
subsheaf is itself also a vector bundle (though not in general a subbundle), as we now
show. By [10, Corollary 1.4], any sheaf E on X that is reflexive (i.e., the natural map
E — EYV is an isomorphism) is locally free. Furthermore, a saturated subsheaf E C F of
a locally free sheaf is reflexive (as EYY/E — F/E would otherwise be a torsion subsheaf,
see also [10, Corollary 1.5]). The maximal destabilizing subsheaf is saturated, and hence

reflexive, and hence locally free.

We also define the discriminant of a coherent sheaf F on a smooth complex

projective surface in terms of Chern characters as the quantity
A(F) := 2 chy(F) ch,(F) — ch; (F)2.

The following fundamental theorem of Bogomolov [13, Theorem 3.4.1] implies

that the property of u-stability of sheaves on surfaces is numerical.

Theorem 2.3 (Bogomolov inequality). Let S be a smooth complex projective surface. If
F is a u-semistable torsion-free coherent sheaf on S with respect to some ample class,
then A(F) < 0.

Remark 2.4. Once one knows that stability is a numerical property, the fact that A(F)
is the precise combination of Chern classes capturing this follows from the fact that it
is the minimal polynomial in the Chern classes that is invariant under twisting by line
bundles.

We now apply Bogomolov's Inequality to prove a geometric result that will
ultimately produce the bounds we desire. The following result is originally due to Reider

[17], see Prop. 2.10, Remark 2.11 and Cor. 1.40, but we include a proof for completeness.

Proposition 2.5. Let S be a smooth projective surface and C C S a smooth curve
such that Og(C) is ample. If T is a divisor on C that moves in a basepoint-free pencil,
satisfying

degl" < C?/4,

then there exists a divisor D on S satisfying the following four conditions:

1. h9(S,D) > 2,
2. C-D<C?)2,
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3. degl' > D-(C—D).
4. If E is any divisor on S such that

ROy (El;-T))=0 and E-C<C? (4)
then h%(O4(E — D)) = 0. In particular, h°(O,(D|, — T)) > 0.

Proof. As I' moves in a basepoint-free pencil, there is a choice of two sections
generating the line bundle and hence giving a surjection 0?2 — O¢(T). This map fits

into an exact sequence
0 — Og(-T) = 0%* — Oy(I') — 0. (5)

Let i: C — S be the inclusion map. Then i, O,(I') is a torsion sheaf on S. We

define the coherent sheaf F on S via the exact sequence of coherent sheaves
0—F— 0% - i,0.) — 0, (6)

where the right map factors through the surjection 0%? — 0%2.

As the only associated point of i, O(I") is the generic point of the divisor C C S,
the sheaf F is reflexive [10, Corollary 1.5], and hence locally free [10, Corollary 1.4].

Set e := degI'. Using Grothendieck-Riemann-Roch to calculate the Chern classes
of the pushforward i, O.(I'), we may compute the discrete invariants of F from the exact

sequence (6):

chy(F) = rk(F) = tk(0$?) = 2
ch, (F) = ¢, (F) = ¢, (0%?) — ¢,(i,0.(I") = —[C]

ch, (F) = ch,(02?) — chy(i,04(I) = €?/2 — ¢,(i,00(I)) = C?/2 —e.

The vector bundle F therefore has Chern character ch(F) = (2, —[C], C?/2 — e) and hence
has discriminant A(F) = C? — 4e. Therefore, by assumption, A(F) > 0, so F is u-unstable
with respect to any ample class on S; we will use C as the ample class on S.

Let L to be the maximal destabilizing subsheaf of F, which by Remark 2.2 is
locally free and hence a line bundle. Write L = O(—D), where D is some divisor on S. We

show this D satisfies properties (1)—(4) of the proposition.
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Property (2): C-D < C?/2:

By the definition of the maximal destabilizing subsheaf, we have
pcL) =(=D)-C > (=C)-C/2 = pucF),

which is equivalent to property (2).
Property (3):e > D - (C — D):

In the exact sequence
0—-OD)—-F—->Q—0, (7)

the quotient Q is u-semistable with respect to C.
Therefore, A(Q) < 0, which is equivalent to

e>D-(C—D).

Property (1): h°(S,D) > 2:

Dualizing the inclusion O(-D) — 0?2, it suffices to show that the map
HY(S,0%9%) — HO(S,0(D)) is injective. If it is not injective, then we may
assume that one map HO(S, Og) — HO(S,O(D)) is zero, and hence (since
Og and O(—D) are reflexive), the original inclusion must factor O(—D) —
Og — (9?2. In particular, D is effective and the quotient of the inclusion
O(-D) — (9;92 is isomorphic to Og @ Op,.

Because C - D < C?/2 and C is integral and ample, we have that D N C
must be zero-dimensional. Hence, Hom(Op,i,O;(I')) = 0. Furthermore, Og
admits no surjective maps onto i, O(I'). Therefore, O ® Og does not surject
onto 1, Oy (). This is a contradiction, as the inclusion O(-D) — (9?2
factors through F — O?Z, and (’)?z/F = 1,0,(T"). Therefore, we must have
ho(S, O(D)) > 2.

Property (4): A divisor E satisfying equation (4) also satisfies h®(Og(E —
D)) = 0:

Let E be a divisor on S such that

OOy (E|;-T))=0 and E-C<C?%
By the projection formula we have

Og(E) ® i,0p(+T) ~ i, Op(E|; £ T).

€202 1940100 90 U Josn Aleuqr seousig Aq 09¥E986/2Z 1/ 1/2202/a101e/uiwl/Wwoo"dno-olwapede/:sdpy woly papeojumod



Low Degree Points on Curves 433

We therefore have the diagram with exact rows

0 —— FROE) ——— Og(E)®? ——— i,0,(T") @ Og(E) —— 0

Jres H

0 —— 1,0c(Ele —T) — 1,0c(E|0)®? —— i,O(E|+T) —— 0

By assumption, we have E-C < C?; therefore, as C is ample, h’°(Og(E—C)) =0,
and so the vertical map res is injective on global sections. Combined with
the assumption that h%(C,E|. — I') = 0, we have that h%(S,F ® O4(E)) = 0.
Tensoring (7) with Og(E) and taking global sections, this implies h%(S, E —
D) = 0 as desired.

e Since C-D < C?/2 < C?,if hO(C,D|C —TI') = 0, then we could take E = D and
obtain the contradiction h(S, Og) = 0. Hence, we must have that O,(D|,—T")

is effective. [

Remark 2.6. The use of Bogomolov's inequality as a tool for proving the existence of
divisors satisfying nice positivity properties originates in Reider’s proof [18] of Reider’s
theorem and has been developed by Lazarsfeld [15] and others. In particular, see [12, 16]

for recent applications in the Picard rank 1 case.

2.2 Examples: curves on E x Pl

As a first example, let us now see how these techniques apply when C is a smooth curve

on S = E x P!. We denote the projection maps
E x P!

E P!
to E and P!, respectively. Then
PicS = 7} PicE @ n} Pic P!,
As is standard, if £, is a line bundle on E and £, is a line bundle on P!, we write £, X £,

for nfL, ® m;L,. Furthermore, the Néron-Severi group is NS(S) = Z @ Z, spanned by the

classes F; and F, of fibers of the 1st and 2nd projections, respectively. These satisfy the
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434 G. Smith and I. Vogt
intersection relations
F?=0, F2=0, F -F,=1.

We will denote the numerical class xF; + yF, of a divisor by (x, y). The effective cone of
S is then the set of all classes with x,y > 0, and the ample cone is the set of all classes
with x,y > 0.

The following geometric result is the main ingredient in the proof of

Theorem 1.1.

Theorem 2.7. Let C be a smooth curve on S = E x P! in numerical class (y,«) for
2<y/2<ax<y.

Then C satisfies the following properties.
(a) gon(C) =y.
(b) W,C contains an elliptic curve isogenous to E.
() If e < «, then W,C does not contain any positive-dimensional abelian

varieties.

Remark 2.8. Note that Bertini's theorem guarantees that there exist smooth curves in
numerical class (y,«) once y > 2 and « > 1, as the linear equivalence class is necessarily

basepoint free.

Proof. We have Og(C) ~ Og(ye) X Opi (a) for some point e € E; then C? = 2ay. The
two projection maps exhibit C as a y-sheeted cover of P!, and an «-sheeted cover of E.
Therefore, gon(C) < y. Furthermore, we have a nonconstant map E — W,(C) sending

xe€Eto O(nfl(x)), proving part (b).

(a) Suppose to the contrary that I is a divisor on C of degree at most y — 1 that

moves in a basepoint free pencil. Then
degI' <y — 1 <ay/2=C?/4,

as « > 2. So by Proposition 2.5, there exists an effective divisor D on S with
at least two sections, satisfying

2.5(2): C-D < C?/2;

2.5(3):D-(C—D) < degT.
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The divisor D is in numerical class xF; + yF, for some x > 0 and y > 0, and
so these numerical conditions translate into

ax +yy <oy,

ax+yy—2xy <TI' <vy.

Upon rearrangement we have:
2)aly/2-x)+y@/2—-y)>0,(3):
v/2—x)/2-y)> (y/2)(2/2—-1) 20,

as a > 2. Therefore, both y/2—x and «/2—y have to be positive. Furthermore,

we have
v/2)(e/2—-y) 2 (/2 —=x)(/2-y) > (y/2)(«/2 1),
so y = 0. Plugging y = 0 back into inequality (3), we see
(/2)(y/2 —x) > (y/2)(e/2 — 1)

and so x < y/a < 2. So x is 0 or 1. But every divisor of numerical class 0 or
F, has at most 1 section, which is a contradiction.

Suppose to the contrary that there exists a positive dimensional abelian
variety A — W,C for e < o — 1; and further that e is minimal for this
property. Then by Lemma 2.1, the points p € A, parameterize basepoint

free linear systems Fp. On the other hand,
degT, = 2 < 20 — 2 < ay/2 = C?/4,

since y > 4. Proposition 2.5 produces a divisor D, on Ex P!, say in numerical
class xF, + yF,, satisfying the following properties:

2.5(1): hO(Dy) > 2;

2502 ax+yy <ay;

2.53):ax+ yy — 2xy < deng <2a0a—-2<2y -2

2.5(4): OC(Dplc -Tp is effective.

We may write the two inequalities as

a(y/2—=x)+y(@/2—-y) >0, (r/2=x)(@/2—-y)>a(y/4=1) 20,
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with the rightmost inequality coming from our assumption that y > 4.

Therefore, both /2 — x and @/2 — y must be positive. We have
r/2=x)(a/2) 2 (/2 =x)(a/2 —y) > a(y/4-1),

and so x < 2. Similarly for y we obtain y < 2«/y < 2. Combining this with
the requirement that D, move in a pencil on E x P!, we see that it must be in
numerical class F, or F; + F,.

Let D be a divisor on S in numerical class F; + F, that contains D,,. Let g € E
be such that O¢(D) ~ Op(q) X Op1 (1). Then

Dlg—T, >Dplg—T, >0,

p

by 2.5(4). By the Kiinneth formula
HY(S,D) = HY(E x P!, 05(q) R Opi (1)) =~ HY(E, Oz(q)) ® H° (P!, Opi (1))

and so every divisor in |D| is reducible, the union of the fiber nfl(q) and

some fiber of 7,. As
Og(D—C) = Ox(q—ve) XOp (1 —a),

and both H(E, Oz(q—ye)) and H*(P!, Op:1 (1 —«)) are 0, the Kiinneth formula
implies that h%(S,D—C) = h'(S,D—C) = 0. Therefore, the map H(ExP!, D) —
HO(C,D|C) is an isomorphism. We therefore have hO(C,ch) = 2 and every
divisor on C linearly equivalent to D|. is the union of nl_l (@9NC and n2—1 @nc
for some z € P!. The linear system |D|;| has base locus exactly 7; '(q) N C.

By assumption, |I'| is a basepoint free sub-linear series of |D|C|. As such, a
general element of IT',| cannot pass through the basepoints of |D|C|, and so
must be supported in a fiber of the 2nd projection 7,: C — P!. Therefore,

75 (Op1 (1) — I, is effective. Since I, is basepoint free,
deg(T",) > gon(C) =y,

by part (a). We also have deg(n;(Opi(1))lc) = y, which forces r, =
75 (Op1(1))] ¢ for all p. Since r, is independent of p, the dimension of A4, is 0.

This contradicts the fact that A has positive dimension. [
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2.3 Nonexistence of abelian subvarieties

We now show how Lemma 2.1 in combination with Proposition 2.5 can prove the
nonexistence of positive-dimensional abelian subvarieties in W,C when C lies on an

arbitrary smooth surface with k! (S, Og) = 0 and e is small.

Theorem 2.9. LetS/C be a nice surface with h!(S, Og) =0, and let C be a smooth ample
curve on S. Then for e < C?/9, the locus W,C contains no positive-dimensional abelian

varieties.

Proof. Suppose to the contrary that for some e < C?/9, there exists a positive-
dimensional abelian variety A contained in W,C. Choose e minimal. By Lemma 2.1, if
pisin A, € W,,C, then the corresponding effective line bundle O(T',) moves in a base
point free pencil.
By our hypothesis on e, we have that 2e < C?/4. Applying Proposition 2.5 to the

divisor I', on C, there exists a divisor D,, on S satisfying:

2.5(2): C-D, < C*/2;
2.5(3): Dy, - (o Dp) < deg I, = 2e¢;

2.5(4): HO(DP|C —T,) #0.
For each p, let (A2)p be the locus of g € A, such that OC(Dp|C -Ty is effective. Then

U @y, =4,

DEA2

by Proposition 2.5(4). Further, by the upper semicontinuity of dim H, the locus (Ap)p is
closed for any particular p, and since h!(S, Og) = 0, we have that Pic(S) is discrete and
countable. As a result, there must be some single p such that (Az)p =A,.Let D=D,, so
O¢(Dl¢ — Ty is effective for all g € A,.

The map A, = (4;), > W p_,.C sending a point p € A, to the effective divisor
class Dl — I', € Wgp_5,C is an embedding. Therefore, W¢.p_,.C contains an abelian

subvariety, and so by minimality of e we conclude that C- D — 2e > e, and hence
C-D > 3e. (8)
Set my = D?/(C - D). As the curve C is ample, the Hodge index theorem implies

C%’D? < (C-D)?, (9)

€202 1940100 90 U Josn Aleuqr seousig Aq 09¥E986/2Z 1/ 1/2202/a101e/uiwl/Wwoo"dno-olwapede/:sdpy woly papeojumod



438 G. Smith and I. Vogt

and so myC? < C - D. Combining this with inequalities 2.5(2) and 2.5(3), respectively,

we get
my < ¢-b _1 (10)
~X — 9 < _l
0= ¢2 2
myC?>(1 —my) < C-D(1 —my) =D - (C—D) < 2e. (11)

Furthermore, combining inequality (8) with 2.5(3), we have
3e(l —my) < C-D(1 —mg) < 2e,

and so together with (10), we have 1/3 < m, < 1/2.
The function my(1 — m) is monotonically increasing in the range [1/3,1/2), and

so (11) gives

2C? )
T <my(l —my)Ce < 2e,

so we conclude C? < 9e, which contradicts our hypothesis. [ |

For a very ample divisor P on S, recall that we define the exceptional subset with
respect to P to be

Excp := {integral classes H in Amp(S) such that H><9H-P-— D}.

Corollary 2.10. Let S/k be a smooth projective surface with h!(S, Og) = 0. For any very

ample divisor P, if C C S is a smooth curve with class
[C] € Amp(S) \ Excp,

then for all e < gon;(C), the locus W,C does not contain any positive-dimensional

abelian varieties.

Proof. Suppose that e < gony(C). Then gony(C) < P-C, as exhibited by projection from
a codimension 2 plane in ]P’HO(C,Plc)V. Therefore, e < P- C — 1. As [C] ¢ Excp, we have
that P-C—1 < C?/9. Combining these inequalities gives e < C?/9. Therefore, by Theorem

2.9, (W,C)¢ (and hence W,C) does not contain positive-dimensional abelian varieties. B
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To imply the result stated in the introduction, we need the following elementary
results about the intersection
Excp(N) := Excp NN,

for N a closed subcone of the ample cone.

Lemma 2.11. For any closed subcone N and any very ample divisor P on S, the set

Excp(NV) of exceptional classes in IV with respect to P is finite.
We will deduce this from the following elementary result.

Lemma 2.12. Suppose that N C R" is a closed cone and let f: N — R be a continuous
function taking positive values away from 0. Let A be any lattice in R”. If for all H € N

and all A > 0, we have
SOH) = A f(H)

then for any c € R, the set

{(HeN:f(H)<c}NnA
is finite.
Proof. Let S be the unit sphere in R”. Set ¢ = inf{ f(H)|H € SNN}. Since S is compact
and N is closed, the intersection S N N is compact. So this minimum is achieved by f on
S NN, and in particular c,,;, > 0. By the hypothesis f(AH) = Af(H), we then have that

fH) > rc,,;, for all H € N\ B,, where B, is the closed ball of radius r. Then for any ¢ > 0,
the set

min

{H e N|f(H) < c}

is a closed set contained in the compact set B, . and is hence compact. So its

intersection with the discrete set A is finite. [ |

Proof of Lemma 2.11. If H2 < 9(P-H — 1), then H? < 9H - P; hence it suffices to show
that there are finitely many such integral classes H in N. Let f: N \ {0} — R be the

continuous function
2

Hw— f(H) = T
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As H and P are both ample, the function f is positive and clearly satisfies f(AH) = Af (H).

Therefore by Lemma 2.12 there are only finitely many integral classes H for which

HZ
9P -H

< 1.

fH) =

2.4 Example: curves on P! x P!

When the divisor structure on S is sufficiently well understood, our techniques allow
one to explicitly compute the exceptional set for the entire ample cone. We present one

example here.

Proposition 2.13. Let S = P! x P!, and let C be a smooth curve of any bidegree (d,,d,)
with d; < d, and (d,,d,) # (3,3) or (2,2). Then, for e < d;, W,C contains no positive-

dimensional abelian varieties.

Remark 2.14. The assumption that (d;,d,;) # (3,3) or (2,2) in the proposition is
necessary, as we now explain. The smooth (3,3) curves on P! x P! (the complete
intersection of a quadric and a cubic surface under the embedding of P! x P! in P3
by O(1,1)) are canonical curves of genus 4, and there exist bielliptic genus 4 curves.
Explicitly, if the cubic surface is the cone over a smooth plane cubic and the quadric is
general, then projection from the cone point gives a degree 2 map from the curve to the
cubic plane curve.
Likewise, if (d;,d,) = (2,2), then C is elliptic and W;C = C.

Proof. The cases of curves with d; < 1 are trivial. If d; = 2, by assumption d, > 3, so
the genus of the curve is d, — 1 > 1, and W, C contains no positive-dimensional abelian
varieties. So we may assume d; > 3 and d, > 4. Let C be a smooth curve of bidegree
(dy.dy) with d; > 3 and d, > 4, and suppose the conclusion of the proposition fails for
C. Let e be minimal such that W,C contains a positive dimensional abelian variety A so
e < d,. By Lemma 2.1, the points p of A, give rise to basepoint free pencils I, of degree
2e. Then

degT, = 2e < 2d, < d,dy/2 = C*/4.

So we apply Proposition 2.5 to guarantee the existence of an effective divisor D,
say of class (x,y) with x,y > 0, satisfying
2.5(2):dy +d,x=C-D < C?/2 =d,d,;
25@3):dyy+dy,x—2xy=D-(C—D) < 2e < 2d; < 2d,.
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In exactly the same way as in the proof of Theorem 2.7, this forces x,y < 1. Thus, (x,y)
is (0,1), (1,0), or (1, 1). As in the proof of Theorem 2.9, there is a single choice of divisor
class D such that O;(D|; — I'y) is effective for all p. In the 1st two cases, sending I,
to the effective divisor of class D|; — Fp, whose degree is D - C — 2e < D?>=2xy =0
by 2.5(3), induces an isomorphism between A, and W,(C) = pt, which contradicts that
A is positive-dimensional.

Now we consider the case (x,y) = (1,1). By 2.5(3) we have the inequality
d,+d,—2<2e.
Combining this with

2e<2d, -2<d;+dy—2

shows that equality must hold everywhere. Therefore, d; = d, and e = d; — 1. Now
D-C—degl, < D? = 2, so we have an inclusion A, — W,C, so W,C contains a positive-
dimensional abelian variety. This is a contradiction since we have e = d, — 1 > 3 and

assumed e was minimal such that W,C contains an abelian variety. u

3 Number-Theoretic Consequences

Lang's general conjecture [14, §3, Statement 3.6] on rational points is known in its

entirety for subvarieties of abelian varieties by the work of Faltings.

Theorem 3.1 (Faltings [7]). Let k be a number field. Let X C A be a subvariety
of an abelian variety A over k. Then there exist finitely many translates of abelian

subvarieties
Z,=z;+ B, (B; < A abelian subvariety)

that contain all of the rational points of X. In particular, if X(k) is infinite, then X

contains a translate of a positive-dimensional abelian subvariety of A.

Recall that C® is the eth symmetric power of C, and W,C is the image of C® —
Pic® C. We will apply Faltings’ theorem to W,C.

Lemma 3.2. Let e, < gon,(C) be some positive integer. If for all e < ey, the subvariety

W,Cy, € Pic® Cy, does not contain any positive-dimensional abelian varieties, then
a.irr,(C) > e,.

In particular, if this holds with e, = gony(C), then a.irr; (C) = gon, (C).
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Proof. Ife < gon,(C), then C¥ (k) — W,C(k) is injective, so C® (k) is finite if and only if
W,C(k) is finite. As W,C is a subvariety of the torsor Pic® C of the abelian variety Pic® C,
Faltings’ theorem implies that the set of points W,C(L) is finite for all finite extensions

L/k if and only if W,C; does not contain any positive-dimensional abelian varieties. W

Remark 3.3. Lemma 3.2 shows that a.irr;(C) < e if and only if gon(C;) < e or W, Cy,
contains a positive-dimensional abelian subvariety for some f < e. Thus, a.irrg(C)

depends only on Cy.

Proof of Theorem 1.1. Suppose that y,« are such that 0 < y/2 < «a < y. It suffices to
find a nice curve C over Q such that a.ier(C) = a.ier(C) = o and gong(C) = gon@(C) =y.

For y = 1, then ¢ = 1 and we take C = ]P’(l@. If y = 2 and « = 1, we may take
C to be an elliptic curve over QQ of positive rank. For y = 2 and « = 2, we may take C
to be any hyperelliptic curve of genus at least 2. For y = 3 and « = 2, we may take
any non-hyperelliptic curve that is a double cover of a positive-rank elliptic curve (see
Remark 2.14 for a construction in genus 4). For y = 3 and « = 3, we may take any non-
hyperelliptic, non-bielliptic trigonal curve by the work of Harris-Silverman [9, Corollary
3] and Lemma 3.2 (e.g., a canonical curve of genus 4 that is non-bielliptic).

Therefore, we may assume that y > 4 (and so « > 2). Let E be a positive rank
elliptic curve over Q. By Theorem 2.7, a smooth curve C on E x IP’}Q in numerical class
(y,a) has gong(C) =y and a.irr@(C) > «. As C has a map n; of degree « to E, we further
have nfl(E(Q)) € C,, and so a.ier(C) < «; therefore, equality holds. [ |

Proof of Theorem1.2. Suppose that C <— S/k is a smooth ample curve. Let

c?
€y :=min (gonk(C), 3) .

Then by Theorem 2.9, W,C contains no positive-dimensional abelian varieties for e <
ey < gony(C). Therefore, by Lemma 3.2, we have that a.irr, (C) > e,. Now let P be any
choice of very ample divisor on S. If 9C - P < C? (i.e., [C] & Excp), then by Corollary 2.10,
W,C contains no positive-dimensional abelian varieties for e < gon;(C). Therefore,
a.irry (C) = gony(C) by Lemma 3.2.

On the other hand, for any closed subcone N € Amp(S), Lemma 2.11 guarantees
that Excp NN is finite. n
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Proof of Corollary 1.3. If Pic(Sp) ~ Z - Og(1) for a very ample line bundle Og(1) and
Og(C) =~ Og(a), then [C] € Excp,(q) is equivalent to o > 9. |

Proof of Corollary 1.5. The gonality of any complete intersection curve C C P}, of type
(dy.dy,...,d,_;) is at most degC = d,;d,---d,_;. It therefore suffices by Lemma 3.2
to show the nonexistence of abelian subvarieties in W,(C¢) fore < d;d,---d,_;. By [12,
Theorem 3.1],if4 < d; <d, <--- < d,_4,
surface S/C of type (d,, - -- ,d,,_;) with Pic S =~ Z:[O4(1)] and [C] equals O¢(d;). Therefore,
the result follows from Theorem 1.3 with P = Og(1),as P-C=dd,---d,_;. n

then C lies on a smooth complete intersection

Proof of Theorem 1.6. Let C be a nice curve of type (d,,d,) on Py x Py with 1 < d; <
d,. Then we claim that gon,(C) = gong(C) = d;. The upper bound is provided by the

projection
C— Py xP; — P

onto the 1st factor. As the tensor product of a p-very ample and a g-very ample bundle

is (p + q)-very ample, the line bundle

Ko =0p(d) —2,dy —2) = Op(d) —2,d, —2) ® Op(0,dy — dy)

is (d; — 2)-very ample (as O,(0,d, — d,) is either trivial or base point free.) Therefore,
we have the lower bound gong(C) > d; (in fact even a weaker statement is true, see
[2, Lemma 1.3]). By Proposition 2.13, W,C contains no positive-dimensional abelian
subvarieties for e < d, as long as (d;,d,) # (2,2) or (3,3). Therefore, Cy _, is finite
for all such (d,,d,) and a.irr (C) = gong(C) = d,. If (d,,d,) = (2,2), then Cj is an
elliptic curve and so a.irrg(C) = 1. If (d;,d;) = (3,3), then C is a canonical curve of
genus 4, and in particular is not hyperelliptic. If C is bielliptic, then (Cy), is infinite for
any finite extension K of k over which the underlying genus 1 curve acquires infinitely
many K-points, so a.irr(C) = 2. If C is not bielliptic, then the work of Harris-Silverman

[9, Corollary 3] implies that (Cg), is finite for every finite extension K of k, so

a.irrg(C) > 3 = gong(C) > a.irrg(C),

and a.irrg(C) = 3. [ |
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