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In this paper, we investigate an arithmetic analogue of the gonality of a smooth

projective curve C over a number field k: the minimal e such that there are infinitely

many points P ∈ C(k̄) with [k(P) : k] � e. Developing techniques that make use of an

auxiliary smooth surface containing the curve, we show that this invariant can take

any value subject to constraints imposed by the gonality. Building on work of Debarre–

Klassen, we show that this invariant is equal to the gonality for all sufficiently ample

curves on a surface S with trivial irregularity.

1 Introduction

Let C be a nice (smooth, projective, and geometrically integral) curve over a number

field k. For an algebraic point P ∈ C(k̄), the degree of P is the degree of the residue field

extension [k(P) : k]. In this paper, we investigate the sets

Ce :=
{
P ∈ C(k̄) : deg(P) � e

}
=

⋃
[F:k]�e

C(F)

of algebraic points on C with residue degree bounded by e.

When e = 1, this is the set of k-rational points on C. If the genus of C is 0 or 1,

then there is always a finite extension K/k of the base field over which (CK)1 = C(K) is
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Low Degree Points on Curves 423

infinite. On the other hand, if the genus of C is at least 2, then for all finite extensions

K/k, Faltings’ theorem guarantees that the set (CK)1 is finite [6]. While understanding

the set of rational points is an interesting and subtle problem, here we will be primarily

concerned with the infinitude of the sets Ce as e varies. Define the arithmetic degree of

irrationality to be

a.irrk(C) := min(e : Ceis infinite).

This invariant is not preserved under extension of the ground field, so we also define

a.irrk̄(C) := min(e : there exists a finite extension K/k with(CK)e infinite).

As is implicit in the notation, this notion depends only upon the k̄-isomorphism class of

C, see Remark 3.3. The situation for k-points can therefore be summarized as

a.irrk̄(C) = 1 ⇔ genus of C � 1.

For e � 2, the situation for higher genus curves is more interesting. Recall that

the k-gonality of C/k,

gonk(C) := min(e : there exists a dominant map C → P1
k of degree e),

is a measure of the “geometric degree of irrationality” of C. This notion is also not

invariant under extension of the base field (e.g., a genus 0 curve has k-gonality 1 if

and only if it has a k-point). For that reason, we also define the geometric gonality to

be gonk̄(C) := gonk̄(Ck̄), which is stable under algebraic extensions. If f : C → P1
k is

dominant of degree at most e, then f −1(P1(k)) ⊂ Ce. Therefore, we always have the upper

bound

a.irrk(C) � gonk(C). (1)

This bound need not always be sharp: if f : C → E is a dominant map of degree at most

e onto a positive rank elliptic curve E, then f −1(E(k)) ⊂ Ce is also infinite. When e = 2

(resp. e = 3) then Harris–Silverman and Hindry [9, 11] (resp. Abramovich–Harris [1])

showed

a.irrk̄(C) = e ⇔ e is minimal such that Ck̄ is a degree e cover of a curve of genus � 1.

Debarre–Fahlaoui [3] gave examples of curves lying on projective bundles over an elliptic

curve that show the analogous result is false for all e � 4. The arithmetic degree of
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424 G. Smith and I. Vogt

irrationality is therefore a subtle invariant of a curve, capturing more information than

only low degree maps.

Implicit in the work of Abramovich–Harris [1] and explicit in a theorem of Frey

[8] is the fact that Faltings’ theorem implies that if Ce is infinite, then C admits a map of

degree at most 2e onto P1
k. Therefore, we have an inequality in both directions

gonk(C)/2 � a.irrk(C) � gonk(C). (2)

In this paper, we develop and apply geometric techniques to compute a.irrk(C)

and gonk(C) when C lies on a smooth auxiliary surface S. The first result in this direction

is that the inequalities in (2) are sharp, and that subject to these bounds, we may

decouple a.irrk(C) and gonk(C).

Theorem 1.1. Given any number field k and a pair of integers α, γ � 1, there exists a

nice curve C/k such that

a.irrk(C) = a.irrk̄(C) = α, gonk(C) = gonk̄(C) = γ (3)

if and only if γ /2 � α � γ . In fact, for γ � 4, the equalities (3) are satisfied for all smooth

curves in numerical class (γ , α) on S = E×P1
k, where E/k is a positive-rank elliptic curve.

Using these geometric techniques, we next describe classes of curves where

the arithmetic and geometric degrees of irrationality agree; that is, where there are

as few points as allowed by the gonality. In such cases, we have the strongest finiteness

statements on low degree points.

The 1st explicit examples of this kind were given by Debarre and Klassen for

smooth plane curves C/k of degree d sufficiently large. Max Noether calculated the

gonality for d � 2:

1. If C(k) �= ∅, then gonk(C) = d − 1, and all minimal degree maps are projection

from a k-point of C, and

2. If C(k) = ∅, then gonk(C) = d.

For smooth plane curves of degree d � 8, Debarre–Klassen [4] prove an arithmetic

strengthening of this result:
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Low Degree Points on Curves 425

1. If C(k) �= ∅, then Cd−2 is finite, and so a.irrk(C) = gonk(C) = d − 1.

Furthermore, all but finitely many points of degree d − 1 come from

intersecting C with a line over k through a k-point of C.

2. If C(k) = ∅, then Cd−1 is finite, and so a.irrk(C) = gonk(C) = d.

We generalize this result to smooth curves on other surfaces S. The key property

of P2 that we need in general is that it has discrete Picard group; that is, in the classical

language of surfaces, it has irregularity 0. The explicit condition d � 8 can be replaced

by requiring that the class of C is “sufficiently positive” in the ample cone in the sense

that it is sufficiently far from the origin, and sufficiently far from the boundary of the

ample cone.

Theorem 1.2. Let S/k be a nice surface with h1(S,OS) = 0. If C/k is a smooth curve in

an ample class on S, then

a.irrk(C) � min
(

gonk(C),
C2

9

)
.

In particular, let P be a very ample divisor on S, and define the set

ExcP := {
integral classes H in Amp(S) such that H2 � 9(H · P − 1)

}
.

1. If C ⊂ S is a smooth curve with class [C] ∈ Amp(S) � ExcP, then a.irrk(C) =
gonk(C).

2. For any closed subcone N ⊆ Amp(S), the set ExcP(N) := ExcP ∩ N is finite.

As an immediate consequence, we obtain an effective generalization of the

Debarre–Klassen result to other surfaces with h1(S,OS) = 0.

Corollary 1.3. Suppose that C embeds in a nice surface S/k having h1(S,OS) = 0, with

OS(1) very ample and C ∈ |OS(α)|. If

α �

⎧⎨
⎩

8 : OS(1)2 = 1

9 : otherwise,

then a.irrk(C) = gonk(C).
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426 G. Smith and I. Vogt

Corollary 1.4. Under the hypotheses of Corollary 1.3, if S satisfies Pic(Sk) = Z · OS(1),

then there are finitely many points of degree strictly less than (α − 1)OS(1)2 on CK for

any finite extension K/k.

Proof. By [12, Lemma 4.4], (α − 1)OS(1)2 � gonk̄(C) � gonk(C). Therefore, by

Corollary 1.3,

(α − 1)OS(1)2 � a.irrk(C).
�

Corollary 1.3 combined with [12, Theorem 3.1] is enough to deduce the analogous

result for most complete intersection curves in Pn
k , generalizing in another direction

Debarre and Klassen’s original result when n = 2:

Corollary 1.5. Let C/k be a smooth complete intersection curve in Pn
k , n � 3, of type

9 � d1 < d2 � · · · � dn−1. Then

a.irrk(C) = gonk(C).

In particular, by Lazarsfeld’s computation of the minimal gonality of such a curve

[15, Exercise 4.12], there are finitely many points of degree strictly less than

(d1 − 1)d2 · · · dn−1 on CK for any finite extension K/k.

For any surface S and any finite polyhedral subcone N ⊆ Amp(S), the set

ExcP(N) in Theorem 1.2 is effectively computable. Given some particular surface S,

our techniques are amenable to explicit computations and can sometimes yield a full

computation of all classes [C] ∈ Amp(S) for which a.irrk(C) is strictly less than gonk(C).

For example:

Theorem 1.6. Let C be a nice curve of type (d1, d2), with 1 � d1 � d2, on P1
k × P1

k. Then

if (d1, d2) �= (2, 2) or (3, 3), we have that a.irrk(C) = gonk(C) = d1. In particular, this lets

us compute:

a.irrk̄(C) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 : d1 � 1 or (d1, d2) = (2, 2),

2 : d1 = 2 and d2 � 3, or (d1, d2) = (3, 3) and C bielliptic

d1 : otherwise.
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Low Degree Points on Curves 427

Remark 1.7. We say that a point P ∈ C(k̄) is sporadic if [k(P) : k] < a.irrk(C).

From the perspective of the arithmetic of elliptic curves, there is much interest in

understanding sporadic points on modular curves, for example, the classical X1(N),

since these indicate “usual” level structure. Since X1(N)(Q) �= ∅, X1(N) is always a

subvariety of its Jacobian variety J1(N). And whenever #J1(N)(Q) is finite, we have that

a.irrQ(X1(N)) = gonQ(X1(N)). In particular, this holds for N � 55 and N �= 37, 43, 53

by work of Derickx and van Hoeij [5]; in the same article, they compute the gonality

(and therefore the arithmetic degree of irrationality when N �= 37) for all N � 40. It is

our hope that the geometric techniques we develop here might prove useful for specific

curves of arithmetic interest.

As in previous work, the proofs of these results begin by translating the

problem of understanding degree e points on C to understanding rational points on

Syme C =: C(e), which is a parameter space for effective divisors of degree e on C. There

is a natural map

C(e) → Pice C,

sending an effective divisor D to the class of the line bundle O(D). We denote the

image of this map We(C). We now have two problems: understand the infinitude of

rational points on the fibers of C(e) → Pice C (which is related to the dimension of the

space of sections of the corresponding line bundle), and understand the infinitude of

rational points on the image We(C) (which, by Faltings’ Theorem, is related to positive-

dimensional abelian varieties in We(C)).

The majority of this paper is therefore devoted to proving purely geometric

results over C about nonexistence of positive-dimensional abelian varieties in We(C)

for appropriate e. Using the theory of stability conditions on vector bundles, we show

that such an abelian variety in WeC forces the existence of a certain type of effective

divisor on S. Given a particular surface S, we can often use the geometry of S to

obtain a contradiction; this is how we proceed with Theorem 1.1. When the surface

is not explicitly given, the fact that such a divisor class does not move in a positive

dimensional family (from h1(S,OS) = 0) allows us to construct an embedding of the

abelian variety into Wf C for smaller f and eventually obtain a contradiction.

2 Abelian Varieties in WeC

In this section, we prove purely geometric results (Theorems 2.7 and 2.9) about nonexis-

tence of abelian subvarieties that will imply our main theorems. Therefore, the basefield
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428 G. Smith and I. Vogt

is assumed to be C, unless otherwise noted, and gon(C) := gonk̄(C) denotes the geometric

gonality.

The proofs of these results will proceed by contradiction: the existence of a

positive-dimensional abelian variety A ⊂ WeC will force the existence of a family

of effective divisors of moderately low degree moving in basepoint-free pencils. We

will then use a geometric lemma proved in Section 2.1 to produce interesting effective

divisors on an auxiliary surface containing the curve. The proof ideas bifurcate here:

when the auxiliary surface is specified explicitly, we may then directly use the geometry

to obtain a contradiction. When the surface is simply known to have h1(O) = 0, we use

the interesting effective divisor to inductively produce such a family of effective line

bundles on C of even lower degree that will force a contradiction for all but finitely

many possible starting classes of curves C.

The 1st step in this procedure relies on the following observation, due originally

to Abramovich and Harris [1, Lemma 1], and whose consequence for the gonality of C

was noted by Frey [8]. Assume that A ⊂ WeC is a translate of an abelian variety of

dimension at least 1 and A �⊂ x + We−1C for any x ∈ C. Let A2 denote the image of A × A

under the addition map WeC×WeC → W2eC. Note that A2 is (noncanonically) isomorphic

to A: a choice of basepoint in A induces an isomorphism Pice C � JacC, under which the

addition map on WeC agrees with the group law on JacC and A ⊂ JacC is an abelian

subvariety.

Lemma 2.1. The line bundle Lp corresponding to a point p ∈ A2 ⊆ W2eC ⊆ Pic2e C is

basepoint-free and has

h0(C, Lp) − 1 � dim A.

Proof. Let C(e) denote the eth symmetric power of C. We have the following commuta-

tive diagram

Given a point p ∈ W2eC, the fibers of the map C(2e) → W2eC are of dimension h0(C, Lp)−1.

As the fibers of the bottom map A × A → A2 are (dim A)-dimensional, we see that if

p ∈ A2, the fiber of C(2e) → W2eC over p must be at least this large. Furthermore, if x ∈ C

is in the base locus of this (dim A)-dimensional linear system, then it would necessarily
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Low Degree Points on Curves 429

be the case that x is always in the linear system parameterized by the points of A. This

is impossible, as we assumed that A is not contained in a translate of We−1C. �

2.1 Linear series of low degree

In this section, we prove the key geometric input on linear series of moderately low

degrees on curves C whose class is ample on a surface S. This is a purely geometric

result over an algebraically closed field of characteristic 0.

We first recall some of the basic theory of torsion-free coherent sheaves on

varieties over algebraically closed fields k = k̄. Let F be a torsion-free coherent sheaf on

a nice variety X of dimension m. Given an ample class H on X, we define the slope of F

with respect to H

μH(F) := c1(F) · Hm−1

rk(F)
.

In what follows, we leave the reliance on H implicit, and just refer to the slope as μ(F).

The sheaf F is called μ-unstable (with respect to H) if there exists a coherent sheaf

E ⊆ F such that

μ(E) > μ(F).

Otherwise, we say that F is μ-semistable (with respect to H).

The μ-semistable sheaves are the building blocks of torsion-free coherent

sheaves on X. More precisely, for F any torsion-free coherent sheaf, by [13, Theorem

1.6.7], there exists a unique Harder–Narasimhan filtration of F,

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F,

which is characterized by the following properties

1. Each quotient Gi := Fi/Fi−1 is a torsion free μ-semistable sheaf.

2. If 1 � i < j � n, then μ(Gi) > μ(Gj).

In particular, we will use the fact that given an unstable torsion free coherent sheaf F,

there is a unique nonzero subsheaf E ⊂ F such that F/E is semistable and torsion free,

and μ(E) is maximal among subsheaves of F. We call this E the maximal destabilizing

subsheaf of F.

Remark 2.2. If X is a curve (i.e., m = 1), then a vector bundle F is unstable if and

only if it is destabilized by a subbundle E ⊆ F, since the saturation of a destabilizing

subsheaf will yield a destabilizing subbundle. However, saturation does not in general
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430 G. Smith and I. Vogt

yield a subbundle (though, by the fact that the quotient is torsion free, the maximal

destabilizing subsheaf of a vector bundle is always saturated [13, Definition 1.1.5]). If

X is a surface (i.e., m = 2) and F is a vector bundle, then the maximal destabilizing

subsheaf is itself also a vector bundle (though not in general a subbundle), as we now

show. By [10, Corollary 1.4], any sheaf E on X that is reflexive (i.e., the natural map

E → E∨∨ is an isomorphism) is locally free. Furthermore, a saturated subsheaf E ⊆ F of

a locally free sheaf is reflexive (as E∨∨/E ↪→ F/E would otherwise be a torsion subsheaf,

see also [10, Corollary 1.5]). The maximal destabilizing subsheaf is saturated, and hence

reflexive, and hence locally free.

We also define the discriminant of a coherent sheaf F on a smooth complex

projective surface in terms of Chern characters as the quantity

�(F) := 2 ch0(F) ch2(F) − ch1(F)2.

The following fundamental theorem of Bogomolov [13, Theorem 3.4.1] implies

that the property of μ-stability of sheaves on surfaces is numerical.

Theorem 2.3 (Bogomolov inequality). Let S be a smooth complex projective surface. If

F is a μ-semistable torsion-free coherent sheaf on S with respect to some ample class,

then �(F) � 0.

Remark 2.4. Once one knows that stability is a numerical property, the fact that �(F)

is the precise combination of Chern classes capturing this follows from the fact that it

is the minimal polynomial in the Chern classes that is invariant under twisting by line

bundles.

We now apply Bogomolov’s Inequality to prove a geometric result that will

ultimately produce the bounds we desire. The following result is originally due to Reider

[17], see Prop. 2.10, Remark 2.11 and Cor. 1.40, but we include a proof for completeness.

Proposition 2.5. Let S be a smooth projective surface and C ⊂ S a smooth curve

such that OS(C) is ample. If � is a divisor on C that moves in a basepoint-free pencil,

satisfying

deg � < C2/4,

then there exists a divisor D on S satisfying the following four conditions:

1. h0(S, D) � 2,

2. C · D < C2/2,
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Low Degree Points on Curves 431

3. deg � � D · (C − D).

4. If E is any divisor on S such that

h0(OC(E|C − �)) = 0 and E · C < C2, (4)

then h0(OS(E − D)) = 0. In particular, h0(OC(D|C − �)) > 0.

Proof. As � moves in a basepoint-free pencil, there is a choice of two sections

generating the line bundle and hence giving a surjection O⊕2
C → OC(�). This map fits

into an exact sequence

0 → OC(−�) → O⊕2
C → OC(�) → 0. (5)

Let i : C ↪→ S be the inclusion map. Then i∗OC(�) is a torsion sheaf on S. We

define the coherent sheaf F on S via the exact sequence of coherent sheaves

0 → F → O⊕2
S → i∗OC(�) → 0, (6)

where the right map factors through the surjection O⊕2
S → O⊕2

C .

As the only associated point of i∗OC(�) is the generic point of the divisor C ⊆ S,

the sheaf F is reflexive [10, Corollary 1.5], and hence locally free [10, Corollary 1.4].

Set e := deg �. Using Grothendieck–Riemann–Roch to calculate the Chern classes

of the pushforward i∗OC(�), we may compute the discrete invariants of F from the exact

sequence (6):

ch0(F) = rk(F) = rk(O⊕2
S ) = 2

ch1(F) = c1(F) = c1(O⊕2
S ) − c1(i∗OC(�)) = −[C]

ch2(F) = ch2(O⊕2
S ) − ch2(i∗OC(�)) = C2/2 − c2(i∗OC(�)) = C2/2 − e.

The vector bundle F therefore has Chern character ch(F) = (2, −[C], C2/2 − e) and hence

has discriminant �(F) = C2 −4e. Therefore, by assumption, �(F) > 0, so F is μ-unstable

with respect to any ample class on S; we will use C as the ample class on S.

Let L to be the maximal destabilizing subsheaf of F, which by Remark 2.2 is

locally free and hence a line bundle. Write L ∼= O(−D), where D is some divisor on S. We

show this D satisfies properties (1)–(4) of the proposition.
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• Property (2): C · D < C2/2:

By the definition of the maximal destabilizing subsheaf, we have

μC(L) = (−D) · C > (−C) · C/2 = μC(F),

which is equivalent to property (2).

• Property (3): e � D · (C − D):

In the exact sequence

0 → O(−D) → F → Q → 0, (7)

the quotient Q is μ-semistable with respect to C.

Therefore, �(Q) � 0, which is equivalent to

e � D · (C − D).

• Property (1): h0(S, D) � 2:

Dualizing the inclusion O(−D) → O⊕2
S , it suffices to show that the map

H0(S,O⊕2
S ) → H0(S,O(D)) is injective. If it is not injective, then we may

assume that one map H0(S,OS) → H0(S,O(D)) is zero, and hence (since

OS and O(−D) are reflexive), the original inclusion must factor O(−D) →
OS → O⊕2

S . In particular, D is effective and the quotient of the inclusion

O(−D) → O⊕2
S is isomorphic to OS ⊕ OD.

Because C · D < C2/2 and C is integral and ample, we have that D ∩ C

must be zero-dimensional. Hence, Hom(OD, i∗OC(�)) = 0. Furthermore, OS

admits no surjective maps onto i∗OC(�). Therefore, OD ⊕OS does not surject

onto i∗OC(�). This is a contradiction, as the inclusion O(−D) ↪→ O⊕2
S

factors through F ↪→ O⊕2
S , and O⊕2

S /F = i∗OC(�). Therefore, we must have

h0(S,O(D)) � 2.

• Property (4): A divisor E satisfying equation (4) also satisfies h0(OS(E −
D)) = 0:

Let E be a divisor on S such that

h0(OC(E|C − �)) = 0 and E · C < C2.

By the projection formula we have

OS(E) ⊗ i∗OC(±�) � i∗OC(E|C ± �).
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Low Degree Points on Curves 433

We therefore have the diagram with exact rows

By assumption, we have E ·C < C2; therefore, as C is ample, h0(OS(E−C)) = 0,

and so the vertical map res is injective on global sections. Combined with

the assumption that h0(C, E|C − �) = 0, we have that h0(S, F ⊗ OS(E)) = 0.

Tensoring (7) with OS(E) and taking global sections, this implies h0(S, E −
D) = 0 as desired.

• Since C · D < C2/2 < C2, if h0(C, D|C − �) = 0, then we could take E = D and

obtain the contradiction h0(S,OS) = 0. Hence, we must have that OC(D|C −�)

is effective. �

Remark 2.6. The use of Bogomolov’s inequality as a tool for proving the existence of

divisors satisfying nice positivity properties originates in Reider’s proof [18] of Reider’s

theorem and has been developed by Lazarsfeld [15] and others. In particular, see [12, 16]

for recent applications in the Picard rank 1 case.

2.2 Examples: curves on E × P1

As a first example, let us now see how these techniques apply when C is a smooth curve

on S = E × P1. We denote the projection maps

to E and P1, respectively. Then

Pic S = π∗
1 Pic E ⊕ π∗

2 PicP1.

As is standard, if L1 is a line bundle on E and L2 is a line bundle on P1, we write L1 �L2

for π∗
1L1 ⊗ π∗

2L2. Furthermore, the Néron–Severi group is NS(S) = Z⊕ Z, spanned by the

classes F1 and F2 of fibers of the 1st and 2nd projections, respectively. These satisfy the
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intersection relations

F2
1 = 0, F2

2 = 0, F1 · F2 = 1.

We will denote the numerical class xF1 + yF2 of a divisor by (x, y). The effective cone of

S is then the set of all classes with x, y � 0, and the ample cone is the set of all classes

with x, y > 0.

The following geometric result is the main ingredient in the proof of

Theorem 1.1.

Theorem 2.7. Let C be a smooth curve on S = E × P1 in numerical class (γ , α) for

2 � γ /2 � α � γ .

Then C satisfies the following properties.

(a) gon(C) = γ .

(b) WαC contains an elliptic curve isogenous to E.

(c) If e < α, then WeC does not contain any positive-dimensional abelian

varieties.

Remark 2.8. Note that Bertini’s theorem guarantees that there exist smooth curves in

numerical class (γ , α) once γ � 2 and α � 1, as the linear equivalence class is necessarily

basepoint free.

Proof. We have OS(C) � OE(γ e) � OP1(α) for some point e ∈ E; then C2 = 2αγ . The

two projection maps exhibit C as a γ -sheeted cover of P1, and an α-sheeted cover of E.

Therefore, gon(C) � γ . Furthermore, we have a nonconstant map E → Wα(C) sending

x ∈ E to O(π−1
1 (x)), proving part (b).

(a) Suppose to the contrary that � is a divisor on C of degree at most γ − 1 that

moves in a basepoint free pencil. Then

deg � � γ − 1 < αγ/2 = C2/4,

as α � 2. So by Proposition 2.5, there exists an effective divisor D on S with

at least two sections, satisfying

2.5(2): C · D < C2/2;

2.5(3): D · (C − D) � deg �.
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The divisor D is in numerical class xF1 + yF2 for some x � 0 and y � 0, and

so these numerical conditions translate into

αx + γ y < αγ ;

αx + γ y − 2xy � � < γ .

Upon rearrangement we have:

(2’): α(γ /2 − x) + γ (α/2 − y) > 0, (3’):

(γ /2 − x)(α/2 − y) > (γ /2)(α/2 − 1) � 0,

as α � 2. Therefore, both γ /2−x and α/2−y have to be positive. Furthermore,

we have

(γ /2)(α/2 − y) � (γ /2 − x)(α/2 − y) > (γ /2)(α/2 − 1),

so y = 0. Plugging y = 0 back into inequality (3’), we see

(α/2)(γ /2 − x) > (γ /2)(α/2 − 1)

and so x < γ/α � 2. So x is 0 or 1. But every divisor of numerical class 0 or

F1 has at most 1 section, which is a contradiction.

(c) Suppose to the contrary that there exists a positive dimensional abelian

variety A ↪→ WeC for e � α − 1; and further that e is minimal for this

property. Then by Lemma 2.1, the points p ∈ A2 parameterize basepoint

free linear systems �p. On the other hand,

deg �p = 2e � 2α − 2 < αγ/2 = C2/4,

since γ � 4. Proposition 2.5 produces a divisor Dp on E×P1, say in numerical

class xF1 + yF2, satisfying the following properties:

2.5(1): h0(Dp) � 2;

2.5(2): αx + γ y < αγ ;

2.5(3): αx + γ y − 2xy � deg �p � 2α − 2 � 2γ − 2;

2.5(4): OC(Dp|C − �p) is effective.

We may write the two inequalities as

α(γ /2 − x) + γ (α/2 − y) > 0, (γ /2 − x)(α/2 − y) > α(γ /4 − 1) � 0,
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with the rightmost inequality coming from our assumption that γ � 4.

Therefore, both γ /2 − x and α/2 − y must be positive. We have

(γ /2 − x)(α/2) � (γ /2 − x)(α/2 − y) > α(γ /4 − 1),

and so x < 2. Similarly for y we obtain y < 2α/γ � 2. Combining this with

the requirement that Dp move in a pencil on E ×P1, we see that it must be in

numerical class F2 or F1 + F2.

Let D be a divisor on S in numerical class F1 + F2 that contains Dp. Let q ∈ E

be such that OS(D) � OE(q) � OP1(1). Then

D|C − �p � Dp|C − �p � 0,

by 2.5(4). By the Künneth formula

H0(S, D) = H0(E × P1,OE(q) � OP1(1)) � H0(E,OE(q)) ⊗ H0(P1,OP1(1))

and so every divisor in |D| is reducible, the union of the fiber π−1
1 (q) and

some fiber of π2. As

OS(D − C) � OE(q − γ e) � OP1(1 − α),

and both H0(E,OE(q−γ e)) and H0(P1,OP1(1−α)) are 0, the Künneth formula

implies that h0(S, D−C) = h1(S, D−C) = 0. Therefore, the map H0(E×P1, D) →
H0(C, D|C) is an isomorphism. We therefore have h0(C, D|C) = 2 and every

divisor on C linearly equivalent to D|C is the union of π−1
1 (q)∩C and π−1

2 (z)∩C

for some z ∈ P1. The linear system
∣∣D|C

∣∣ has base locus exactly π−1
1 (q) ∩ C.

By assumption, |�p| is a basepoint free sub-linear series of
∣∣D|C

∣∣. As such, a

general element of |�p| cannot pass through the basepoints of
∣∣D|C

∣∣, and so

must be supported in a fiber of the 2nd projection π2 : C → P1. Therefore,

π∗
2 (OP1(1))|C − �p is effective. Since �p is basepoint free,

deg(�p) � gon(C) = γ ,

by part (a). We also have deg(π∗
2 (OP1(1))|C) = γ , which forces �p =

π∗
2 (OP1(1))|C for all p. Since �p is independent of p, the dimension of A2 is 0.

This contradicts the fact that A has positive dimension. �
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2.3 Nonexistence of abelian subvarieties

We now show how Lemma 2.1 in combination with Proposition 2.5 can prove the

nonexistence of positive-dimensional abelian subvarieties in WeC when C lies on an

arbitrary smooth surface with h1(S,OS) = 0 and e is small.

Theorem 2.9. Let S/C be a nice surface with h1(S,OS) = 0, and let C be a smooth ample

curve on S. Then for e < C2/9, the locus WeC contains no positive-dimensional abelian

varieties.

Proof. Suppose to the contrary that for some e < C2/9, there exists a positive-

dimensional abelian variety A contained in WeC. Choose e minimal. By Lemma 2.1, if

p is in A2 ⊆ W2eC, then the corresponding effective line bundle O(�p) moves in a base

point free pencil.

By our hypothesis on e, we have that 2e < C2/4. Applying Proposition 2.5 to the

divisor �p on C, there exists a divisor Dp on S satisfying:

2.5(2): C · Dp < C2/2;

2.5(3): Dp · (C − Dp) � deg �p = 2e;

2.5(4): H0(Dp|C − �p) �= 0.

For each p, let (A2)p be the locus of q ∈ A2 such that OC(Dp|C − �q) is effective. Then

⋃
p∈A2

(A2)p = A2,

by Proposition 2.5(4). Further, by the upper semicontinuity of dim H0, the locus (A2)p is

closed for any particular p, and since h1(S,OS) = 0, we have that Pic(S) is discrete and

countable. As a result, there must be some single p such that (A2)p = A2. Let D = Dp, so

OC(D|C − �q) is effective for all q ∈ A2.

The map A2 = (A2)p → WC·D−2eC sending a point p ∈ A2 to the effective divisor

class D|C − �p ∈ WC·D−2eC is an embedding. Therefore, WC·D−2eC contains an abelian

subvariety, and so by minimality of e we conclude that C · D − 2e � e, and hence

C · D � 3e. (8)

Set m0 = D2/(C · D). As the curve C is ample, the Hodge index theorem implies

C2D2 � (C · D)2, (9)
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and so m0C2 � C · D. Combining this with inequalities 2.5(2) and 2.5(3), respectively,

we get

m0 � C · D

C2 <
1

2
, (10)

m0C2(1 − m0) � C · D(1 − m0) = D · (C − D) � 2e. (11)

Furthermore, combining inequality (8) with 2.5(3), we have

3e(1 − m0) � C · D(1 − m0) � 2e,

and so together with (10), we have 1/3 � m0 < 1/2.

The function m0(1 − m0) is monotonically increasing in the range [1/3, 1/2), and

so (11) gives

2C2

9
� m0(1 − m0)C2 � 2e,

so we conclude C2 � 9e, which contradicts our hypothesis. �

For a very ample divisor P on S, recall that we define the exceptional subset with

respect to P to be

ExcP := {
integral classes H in Amp(S) such that H2 � 9(H · P − 1)

}
.

Corollary 2.10. Let S/k be a smooth projective surface with h1(S,OS) = 0. For any very

ample divisor P, if C ⊂ S is a smooth curve with class

[C] ∈ Amp(S) � ExcP,

then for all e < gonk(C), the locus WeC does not contain any positive-dimensional

abelian varieties.

Proof. Suppose that e < gonk(C). Then gonk(C) � P · C, as exhibited by projection from

a codimension 2 plane in PH0(C, P|C)∨. Therefore, e � P · C − 1. As [C] �∈ ExcP, we have

that P ·C−1 < C2/9. Combining these inequalities gives e < C2/9. Therefore, by Theorem

2.9, (WeC)C (and hence WeC) does not contain positive-dimensional abelian varieties. �
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To imply the result stated in the introduction, we need the following elementary

results about the intersection

ExcP(N) := ExcP ∩N,

for N a closed subcone of the ample cone.

Lemma 2.11. For any closed subcone N and any very ample divisor P on S, the set

ExcP(N) of exceptional classes in N with respect to P is finite.

We will deduce this from the following elementary result.

Lemma 2.12. Suppose that N ⊂ Rn is a closed cone and let f : N → R be a continuous

function taking positive values away from 0. Let � be any lattice in Rn. If for all H ∈ N

and all λ � 0, we have

f (λH) = λ f (H)

then for any c ∈ R, the set

{H ∈ N : f (H) � c} ∩ �

is finite.

Proof. Let S be the unit sphere in Rn. Set cmin = inf{ f (H)|H ∈ S∩N}. Since S is compact

and N is closed, the intersection S ∩ N is compact. So this minimum is achieved by f on

S ∩ N, and in particular cmin > 0. By the hypothesis f (λH) = λf (H), we then have that

f (H) > rcmin for all H ∈ N \Br, where Br is the closed ball of radius r. Then for any c > 0,

the set

{H ∈ N| f (H) � c}

is a closed set contained in the compact set Bc/cmin
and is hence compact. So its

intersection with the discrete set � is finite. �

Proof of Lemma 2.11. If H2 � 9(P · H − 1), then H2 < 9H · P; hence it suffices to show

that there are finitely many such integral classes H in N. Let f : N � {0} → R be the

continuous function

H �→ f (H) = H2

9P · H
.
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As H and P are both ample, the function f is positive and clearly satisfies f (λH) = λf (H).

Therefore by Lemma 2.12 there are only finitely many integral classes H for which

f (H) = H2

9P · H
< 1.

�

2.4 Example: curves on P1 × P1

When the divisor structure on S is sufficiently well understood, our techniques allow

one to explicitly compute the exceptional set for the entire ample cone. We present one

example here.

Proposition 2.13. Let S = P1 × P1, and let C be a smooth curve of any bidegree (d1, d2)

with d1 � d2 and (d1, d2) �= (3, 3) or (2, 2). Then, for e < d1, WeC contains no positive-

dimensional abelian varieties.

Remark 2.14. The assumption that (d1, d2) �= (3, 3) or (2, 2) in the proposition is

necessary, as we now explain. The smooth (3, 3) curves on P1 × P1 (the complete

intersection of a quadric and a cubic surface under the embedding of P1 × P1 in P3

by O(1, 1)) are canonical curves of genus 4, and there exist bielliptic genus 4 curves.

Explicitly, if the cubic surface is the cone over a smooth plane cubic and the quadric is

general, then projection from the cone point gives a degree 2 map from the curve to the

cubic plane curve.

Likewise, if (d1, d2) = (2, 2), then C is elliptic and W1C = C.

Proof. The cases of curves with d1 � 1 are trivial. If d1 = 2, by assumption d2 � 3, so

the genus of the curve is d2 − 1 > 1, and W1C contains no positive-dimensional abelian

varieties. So we may assume d1 � 3 and d2 � 4. Let C be a smooth curve of bidegree

(d1, d2) with d1 � 3 and d2 � 4, and suppose the conclusion of the proposition fails for

C. Let e be minimal such that WeC contains a positive dimensional abelian variety A so

e < d1. By Lemma 2.1, the points p of A2 give rise to basepoint free pencils �p of degree

2e. Then

deg �p = 2e < 2d1 � d1d2/2 = C2/4.

So we apply Proposition 2.5 to guarantee the existence of an effective divisor D,

say of class (x, y) with x, y � 0, satisfying

2.5(2): d1y + d2x = C · D < C2/2 = d1d2;

2.5(3): d1y + d2x − 2xy = D · (C − D) � 2e < 2d1 � 2d2.
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In exactly the same way as in the proof of Theorem 2.7, this forces x, y � 1. Thus, (x, y)

is (0, 1), (1, 0), or (1, 1). As in the proof of Theorem 2.9, there is a single choice of divisor

class D such that OC(D|C − �p) is effective for all p. In the 1st two cases, sending �p

to the effective divisor of class D|C − �p, whose degree is D · C − 2e � D2 = 2xy = 0

by 2.5(3), induces an isomorphism between A2 and W0(C) = pt, which contradicts that

A is positive-dimensional.

Now we consider the case (x, y) = (1, 1). By 2.5(3) we have the inequality

d1 + d2 − 2 � 2e.

Combining this with

2e � 2d1 − 2 � d1 + d2 − 2

shows that equality must hold everywhere. Therefore, d1 = d2 and e = d1 − 1. Now

D · C − deg �p � D2 = 2, so we have an inclusion A2 → W2C, so W2C contains a positive-

dimensional abelian variety. This is a contradiction since we have e = d2 − 1 � 3 and

assumed e was minimal such that WeC contains an abelian variety. �

3 Number-Theoretic Consequences

Lang’s general conjecture [14, §3, Statement 3.6] on rational points is known in its

entirety for subvarieties of abelian varieties by the work of Faltings.

Theorem 3.1 (Faltings [7]). Let k be a number field. Let X ⊂ A be a subvariety

of an abelian variety A over k. Then there exist finitely many translates of abelian

subvarieties

Zi = zi + Bi, (Bi ⊆ A abelian subvariety)

that contain all of the rational points of X. In particular, if X(k) is infinite, then X

contains a translate of a positive-dimensional abelian subvariety of A.

Recall that C(e) is the eth symmetric power of C, and WeC is the image of C(e) →
Pice C. We will apply Faltings’ theorem to WeC.

Lemma 3.2. Let e0 � gonk(C) be some positive integer. If for all e < e0, the subvariety

WeCk̄ ⊆ Pice Ck̄ does not contain any positive-dimensional abelian varieties, then

a.irrk(C) � e0.

In particular, if this holds with e0 = gonk(C), then a.irrk(C) = gonk(C).
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Proof. If e < gonk(C), then C(e)(k) → WeC(k) is injective, so C(e)(k) is finite if and only if

WeC(k) is finite. As WeC is a subvariety of the torsor Pice C of the abelian variety Pic0 C,

Faltings’ theorem implies that the set of points WeC(L) is finite for all finite extensions

L/k if and only if WeCk̄ does not contain any positive-dimensional abelian varieties. �

Remark 3.3. Lemma 3.2 shows that a.irrk̄(C) � e if and only if gon(Ck̄) � e or Wf Ck̄

contains a positive-dimensional abelian subvariety for some f � e. Thus, a.irrk̄(C)

depends only on Ck̄.

Proof of Theorem 1.1. Suppose that γ , α are such that 0 < γ/2 � α � γ . It suffices to

find a nice curve C over Q such that a.irrQ(C)= a.irrQ̄(C) = α and gonQ(C) = gonQ̄(C) = γ .

For γ = 1, then α = 1 and we take C = P1
Q

. If γ = 2 and α = 1, we may take

C to be an elliptic curve over Q of positive rank. For γ = 2 and α = 2, we may take C

to be any hyperelliptic curve of genus at least 2. For γ = 3 and α = 2, we may take

any non-hyperelliptic curve that is a double cover of a positive-rank elliptic curve (see

Remark 2.14 for a construction in genus 4). For γ = 3 and α = 3, we may take any non-

hyperelliptic, non-bielliptic trigonal curve by the work of Harris–Silverman [9, Corollary

3] and Lemma 3.2 (e.g., a canonical curve of genus 4 that is non-bielliptic).

Therefore, we may assume that γ � 4 (and so α � 2). Let E be a positive rank

elliptic curve over Q. By Theorem 2.7, a smooth curve C on E × P1
Q

in numerical class

(γ , α) has gonQ̄(C) = γ and a.irrQ̄(C) � α. As C has a map π1 of degree α to E, we further

have π−1
1 (E(Q)) ⊆ Cα, and so a.irrQ̄(C) � α; therefore, equality holds. �

Proof of Theorem1.2. Suppose that C ↪→ S/k is a smooth ample curve. Let

e0 := min
(

gonk(C),
C2

9

)
.

Then by Theorem 2.9, WeC contains no positive-dimensional abelian varieties for e <

e0 � gonk(C). Therefore, by Lemma 3.2, we have that a.irrk(C) � e0. Now let P be any

choice of very ample divisor on S. If 9C · P � C2 (i.e., [C] �∈ ExcP), then by Corollary 2.10,

WeC contains no positive-dimensional abelian varieties for e < gonk(C). Therefore,

a.irrk(C) = gonk(C) by Lemma 3.2.

On the other hand, for any closed subcone N ⊆ Amp(S), Lemma 2.11 guarantees

that ExcP ∩N is finite. �
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Proof of Corollary 1.3. If Pic(Sk̄) � Z · OS(1) for a very ample line bundle OS(1) and

OS(C) � OS(α), then [C] �∈ ExcOS(1) is equivalent to α � 9. �

Proof of Corollary 1.5. The gonality of any complete intersection curve C ⊂ Pr
k of type

(d1, d2, . . . , dr−1) is at most deg C = d1d2 · · · dr−1. It therefore suffices by Lemma 3.2

to show the nonexistence of abelian subvarieties in We(CC) for e < d1d2 · · · dr−1. By [12,

Theorem 3.1], if 4 � d1 < d2 � · · · � dn−1, then CC lies on a smooth complete intersection

surface S/C of type (d2, · · · , dn−1) with Pic S � Z·[OS(1)] and [C] equals OS(d1). Therefore,

the result follows from Theorem 1.3 with P = OS(1), as P · C = d1d2 · · · dr−1. �

Proof of Theorem 1.6. Let C be a nice curve of type (d1, d2) on P1
k × P1

k with 1 � d1 �
d2. Then we claim that gonk(C) = gonk̄(C) = d1. The upper bound is provided by the

projection

C ↪→ P1
k × P1

k → P1
k

onto the 1st factor. As the tensor product of a p-very ample and a q-very ample bundle

is (p + q)-very ample, the line bundle

KC = OC(d1 − 2, d2 − 2) = OC(d1 − 2, d1 − 2) ⊗ OC(0, d2 − d1)

is (d1 − 2)-very ample (as OC(0, d2 − d1) is either trivial or base point free.) Therefore,

we have the lower bound gonk̄(C) � d1 (in fact even a weaker statement is true, see

[2, Lemma 1.3]). By Proposition 2.13, WeC contains no positive-dimensional abelian

subvarieties for e < d1 as long as (d1, d2) �= (2, 2) or (3, 3). Therefore, Cd1−1 is finite

for all such (d1, d2) and a.irrk(C) = gonk(C) = d1. If (d1, d2) = (2, 2), then Ck̄ is an

elliptic curve and so a.irrk̄(C) = 1. If (d1, d2) = (3, 3), then C is a canonical curve of

genus 4, and in particular is not hyperelliptic. If C is bielliptic, then (CK)2 is infinite for

any finite extension K of k over which the underlying genus 1 curve acquires infinitely

many K-points, so a.irrk̄(C) = 2. If C is not bielliptic, then the work of Harris–Silverman

[9, Corollary 3] implies that (CK)2 is finite for every finite extension K of k, so

a.irrk̄(C) � 3 = gonk̄(C) � a.irrk̄(C),

and a.irrk̄(C) = 3. �
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