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ABSTRACT: Despite the fact that topological defects are a hallmark of liquid crystalline
materials, current computational techniques for identifying topological defects in particle-based
simulations of these materials�which rest upon Q-tensor theory�do not leverage topological
features of the system. In this work, we describe the topology-accommodating direction
assignment (TADA) algorithm, a novel approach for identifying disclination cores in liquid
crystalline materials, which is sensitive to topology: this method assigns to each mesogen a
unique vector, thereby extending the concept of the liquid crystal director field down to the
scale of mesogens. In systems containing disclination cores, TADA identifies line segments
along which this assigned vector field is discontinuous, with cores located at the interior
termination points of these line segments. The mere presence of defects can be identified by
searching far away from them. We validate this approach by comparing its results to those
obtained using the scalar order parameter for a variety of liquid crystalline assemblies sourced
from molecular-dynamics simulations. We also discuss several benefits of the TADA algorithm
over existing approaches for identifying topological defects in liquid crystalline materials.

■ INTRODUCTION
The primary goal of this work is to develop a computational
tool for the seamless identification of topological defects (i.e.,
disclinations) in liquid crystalline media, without relying on
calculations of local ordering. The historical procedure for
identifying such defects in nematics may be described as
follows (cf. refs 1, 2): consider a closed loop in the domain
occupied by the nematic. After arbitrarily assigning an
orientation to a director at a point on the loop, proceed to
assign vector orientations to the director along the loop in a
continuous manner. Upon returning to the starting point, if the
assigned vector orientation of the director is found to be
oppositely aligned to how it began, then there must necessarily
be a defect of strength 1/2 encircled by the loop. If, on the
other hand, the vector orientation returns to its original
direction, then there are either no defects within the loop, an
equal number of positive and negative disclinations encircled
by the loop, or (in principle) defects of integer strength
(although these do not arise in systems near equilibrium). In
this work, we develop a computational implementation of a
slight generalization of this simple idea for the identification of
disclinations, without relying on the construct of closed loops.
Moreover, noting the conceptual absence of any special length-
scale in defining the “director” in the above argument, we
successfully apply our technique to assemblies of individual
mesogens interacting through an intermesogen potential.
Our main idea is to assign vector orientations to a two-

dimensional assembly of individual mesogens, as shown in
Figure 1. We wish to do so in a manner that is as continuous as

possible within the domain. Completion of such an assignment
over the entire assembly automatically reveals “layers” across
which the assigned orientation field has to be discontinuous,
provided that there are defects present. Such layers are not
uniquely located in space but nevertheless must be present
somewhere, in the presence of disclinations; they either run
from the disclination cores to the boundaries or connect two
disclinations within the body. While the layers are not uniquely
located in space, their terminations within the domain must be;
these points of termination interior to the domain are the
locations of the disclination cores.
The algorithm we develop applies to a director distribution

obtained by any means, including through experiments,
numerical simulations, or exact solutions of theory of any
type.3,4 A recent class of vector field models for topological
defects in liquid crystals has been introduced by Zhang et al.,5

making connections with the same class of defects in the
elasticity of solids and in convection patterns. Our tool is
particularly suited for the validation of such models, which
explicitly deal with the layer-like features mentioned above.
Such models also need, in the definition of their energy density
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function, a parameter that defines the thickness of these layers
(nonunique in some systems) and another that defines the
core width of the defects. Our tool explicitly characterizes such
length-scales, in service of higher-scale continuum (partial-
differential-equation-based) models.
It is worth emphasizing that the approach we develop here is

distinct from existing approaches for identifying disclinations
in liquid crystalline assemblies. The core difference is that the
method described herein is sensitive to topological information
and does not depend upon information in the vicinity of each
disclination core, whereas existing methods necessarily rely
upon kinematic data near the core itself. For example, the
central idea employed by Callan-Jones et al.,6 Slavin et al.,7,8

and Humpert et al.9 is to identify disclinations as surfaces along
which certain measures of anisotropy (the so-called Westin
metrics) take on constant values; however, Westin metrics
cannot reveal the presence of a disclination using only data far
away from the disclinations. Recent work by Schimming and
Viñals10 takes a different strategy, namely, constructing a
quantity (the disclination density) that only takes on nonzero
values at disclinations. This approach also successfully
identifies disclinations; however, by its nature, it also
necessarily requires information in the vicinity of the
disclinations themselves. One existing approach with a mild
degree of conceptual similarity to our method is described by
Zapotocky et al.11 and Billeter et al.12 This approach uses the
Q-tensor to guide the creation of a director field, which is
evaluated at the corners of a square lattice imposed upon the
simulation domain. This approach identifies disclination cores
as being present within squares whose corners exhibit a
discontinuous flip in the director field (a topological insight);
however, as with all of the previously described methods, the
signature of a disclination that this method is sensitive to
necessarily requires information near the core itself. Moreover,
this method requires the selection of a length-scale to set the
spacing of the square lattice, and a suitable choice of this
quantity depends upon gradients in the order parameter field;
the method described below does not involve any choice of
such a length-scale.

■ METHODOLOGY
Molecular-Dynamics (MD) Simulations. We validate

and test the algorithm developed herein on molecular

assemblies obtained from molecular-dynamics (MD) simu-
lations performed in two dimensions using LAMMPS13 and
visualized and postprocessed using OVITO.14 In particular, we
study systems containing rod-shaped (calamitic) liquid crystal
mesogens, which we treat as ellipsoidal particles interacting via
the Gay−Berne (GB) potential,15,16 a generalization to
ellipsoids of the (spherically symmetric) Lennard-Jones
potential.17 Below, we briefly describe this potential; we refer
readers interested in full details on the GB potential (as
implemented in LAMMPS) to the exposition of Brown.18

Consider two ellipsoidal particles (indexed as 1 and 2, and
assumed to be of equal mass m) whose centers of mass are
separated by a distance r. With respect to the laboratory frame,
each particle has a relative orientation, which we describe using
the (unsigned) vectors û1 and û2. For these two particles, their
interparticle potential energy is given by

=U r u u r r r( ) 4( ( , , ) )( )1 2 0
12 6 (1)

+
r

r u u r( , , )1 2 0

0 (2)

where ε0 and σ0 are (respectively) an energy-scale and a
length-scale for the interparticle interactions, directly analo-
gous to their counterparts for the Lennard-Jones potential.
Both σ̃(û1, û2, r) and ϵ̃(û1, û2, r) are geometrical terms that
account for the relative angle between the two ellipsoids. The
quantity r ̃ represents the scaled (nondimensional) distance
between the two ellipsoids; it is a function of r (the
dimensional distance between the ellipsoid centers of mass),
σ̃(û1, û2, r), and σ0. In all discussion that follows, we scale all
quantities against the length-scale σ0, energy-scale ε0, time-
scale m /0

2
0 , density-scale m/σ0

3, pressure-scale ϵ0/σ0
3, and

temperature-scale kB/ε0, where kB is the Boltzmann constant.
All mesogens in this work have an aspect ratio (major-axis-to-
minor-axis ratio) of 2.5, and all results obtained from
computing dynamics employ a timestep of 10−3.
Below, we present results from two broad classes of systems:
1. “Synthetic” geometries: we initialize 1800 ≤ N ≤ 2000

mesogens with positions and orientations so as to create
a single disclination core in the center of the system.
Below, we consider four synthetic geometries (±1/2
defects and ±1 defects). For the defects of half-integer

Figure 1. Characteristic equilibrium assembly of a subset (N = 208) of mesogens from a “realistic” system. Blue arrows indicate the direction
assigned to each mesogen. In panel (i), these directions are directly obtained from LAMMPS output and are (as expected) topologically
inconsistent with each other; in panel (ii), we show an example of a topologically consistent assignment of directions for this same assembly (all
arrows pointing in the opposite direction would also qualify as topologically consistent).
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strength, we work with assemblies that have undergone
energy minimization; for the defects of integer strength,
we study assemblies that have undergone both energy
minimization and dynamics at finite temperature, as
described below.

2. “Realistic” geometries: we initialize N = 8100 mesogens
in a vapor phase (with temperature T = 50 and number
density ρ = 0.01) and then quench the system, making
use of the Nose−́Hoover thermostat and barostat,19,20 to
T = 10−3 and number density ρ = 0.45 (assuming hard
ellipsoids with minor axes of length 1 and major axes of
length 2.5, this number density corresponds to a packing
fraction of approximately 0.87, a couple percent less than
the maximum packing fraction possible for ellipsoids21).
We bound the system along one dimension with two
rigid walls made of mesogens, which are (for each wall)
all constrained to point in the same direction; for the
two walls, these directions are orthogonal to each other,
enforcing antagonistic orientational anchoring condi-
tions, as studied in refs 22, 23. The topological defect
analysis is carried out on snapshots obtained after an
equilibration period of at least 10 (nondimensional time
units) elapses.

Before describing the algorithm itself, we emphasize that the
purpose of MD simulations in this work is to provide mesogen
configurations on which we can test this algorithm. The ideas
described below apply equally well to configurations obtained
from any simulation method capable of supplying liquid crystal
configurations with mesogen-level resolution (including, e.g.,
any number of Monte-Carlo-based approaches24) or from any
experimental setup in which individual mesogens can be
imaged with clearly delineated edges for each mesogen.
TADA Algorithm. Motivated by the importance of

topology, in this section, we present a novel technique that
respects�and helps reveal�the topology of a liquid
crystalline assembly. Our approach, termed the topology-
accommodating direction assignment (TADA) algorithm,
assigns each mesogen a direction. We note that any given
mesogen possesses a major axis, which corresponds to two
possible directions (differing overall by a minus sign). The
ultimate goal of this approach is to select one of those two
directions to assign to this mesogen (and to carry out this
procedure for all mesogens in the system). Before describing

the technique itself, it is worth emphasizing several features of
this approach:

1. The TADA algorithm approach stands in contra-
distinction to the much more common assignment of
an unsigned vector to each mesogen, as is implicitly
done for any approach involving Q-tensor theory and
the scalar order parameter; for such a representation,
there is no distinction between the vectors n̂ and −n̂.

2. This approach to direction assignment is not the same as
mapping all vector orientations to a specified semi-
circular region (i.e., mapping n̂ → −n̂ whenever n̂ falls
outside of the specified semicircle). Such an approach,
by construction, produces directions that are restricted
to a subset of the unit circle (and, as a consequence,
such an approach is unable to capture topological
features, such as the rotation of π in the director field
that occurs when traversing a closed loop enclosing a
+1/2 defect).

We now describe the TADA algorithm:

1. Initialization: starting from the assembly of liquid crystal
mesogens (none of which have been assigned a
direction), we select (at random) a single mesogen
and assign it one of the two directions aligned with its
major axis (again at random). This assignment of
direction (and all subsequent assignments) takes the
form of a unit vector.
We add this mesogen to the list of assigned mesogens

(LAM) and also to the list of central mesogens (LCM).
2. Selection of the next mesogen for consideration: for the

mesogen most recently added to the LCM, we construct
a list of its neighboring mesogens (termed the list of the
most recent central mesogen’s neighbors, or LMRCMN)
out to a maximum mesogen center-to-center distance of
dmax. We sort this list of mesogens from nearest to
furthest, relative to the central mesogen. All particles on
this list are necessarily either on the LAM or not on the
LAM.
Of the latter (those mesogens not on the LAM), we

select the single nearest mesogen to the mesogen most
recently added to the LCM and designate it as the
mesogen under consideration for assignment (MUCA).

Figure 2. Scalar order parameter for two "synthetic" assemblies: (i) +1/2 defect and (ii) −1/2 defect. Defect cores are identifiable as regions of
blue-purple coloration.
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We identify the assigned director vr⃗ef for the mesogen on
the LAM that is closest to the MUCA.

3. Vector assignment for the MUCA: of the two possible
direction assignments for the MUCA, we select the
direction that makes the smaller angle with vr⃗ef, and the
MUCA is then added to the LAM.

4. Repetition until selection of the next central mesogen: as
long as there are still mesogens on the LMRCMN that
are not on the LAM, we return to step 2 (we skip the
construction of the LMRCMN, as it has already been
constructed).
Once every mesogen on the LMRCMN has been

assigned, we select the first mesogen on the LMRCMN,

Figure 3. Application of the TADA algorithm to identify defect cores for (i−iv) +1/2 defects and (v−viii) −1/2 defects; disclination cores are
located at the interior point of termination of each yellow segment. In each column of figures, we specify the spatial coordinates for the initially
assigned mesogen, which is different for each column.

Figure 4. Application of the scalar order parameter to identify disclination cores for (i, ii) +1 defects and (iii, iv) −1 defects. The first column
shows early-stage (ES) configurations prior to core splitting; the second column shows later-stage (LS) configurations after core splitting.
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remove it from the LMRCMN, and add it to the LCM.
We then return to step 2.
This process continues until all mesogens in the

system have been assigned a direction.
5. Identification of disclination cores: all pairs of

neighboring mesogens i and j (mesogens whose centers
are within dmax of each other) are identified, bearing
assigned directions n⃗i and n⃗j, respectively. For each pair,
if ∥n⃗i − n⃗j∥ > δ, then this pair of mesogens is highlighted.
Viewed collectively, these highlighted mesogens form

a set of continuous line segments. We identify all
termination points of these segments that are interior to
the domain as disclination cores.

For the results shown below, we use dmax = 3.5 and δ = 1.8.

■ RESULTS AND DISCUSSION

We now discuss several results obtained using the TADA
algorithm. We start with the synthetic assemblies before
moving to the more realistic cases. Along the way, for the sake

of comparison and to highlight contrasts with existing
approaches, we also provide calculations of the scalar order
parameter, making use of the same liquid crystal assemblies.
The calculation of the scalar order parameter is discussed in
the Appendix.

Synthetic Systems. We first consider four synthetic
systems: as a reminder, these systems have been constructed
so as to contain solitary disclinations (the four systems are
±1/2 and ±1 defects). By construction, in each of the
examples shown in this section, the disclination core is located
at the center of the image.
We begin with the ±1/2 cases. Based upon the regions of

blue-purple coloration located at the center of each image in
Figure 2 (where there is a significant difference between
individual mesogen orientations and the local average
director), we verify that the scalar order parameter can be
used to identify defect cores for these simple assemblies.
In Figure 3, we show that TADA can identify the same

disclination cores for the ±1/2 cases. In particular, to verify
that TADA is robust to the choice of the initially assigned

Figure 5. Application of the TADA algorithm to identify cores for (i−viii) +1 defects and (ix−xvi) −1 defects; cores are located at the interior
points of termination of yellow segments. The first and third rows show early-stage (ES) configurations prior to core splitting; the second and
fourth rows show later-stage (LS) configurations after core splitting. In each column of figures, we choose a different coordinate for the initially
assigned mesogen.
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mesogen, we run the algorithm using four distinct choices for
the initially assigned mesogen. In every case, the interior
termination point of the highlighted segment is indeed the
center of the domain, at the same location as identified using
the scalar order parameter, and also where the defect core was
placed by construction. It is worth emphasizing again that the
specific location and configuration of the highlighted segment
have no physical significance; only its termination point in the
interior of the domain carries physical meaning.
We turn now to the case of integer defect strength. Because

it is well understood that solitary ±1 defects are unstable, for
these two systems we focus on two snapshots in time: one at a
very early time (while the core remains intact) and one after a
period of dynamics and subsequent energy minimization (after
the core has had sufficient time to split). The results for the
scalar order parameter are shown in Figure 4; the results for
the TADA algorithm are shown in Figure 5. For both defect
types, we observe that at the early stage, both approaches
identify the core location to be at the center of the domain
(and we can visually verify that the TADA algorithm is robust
to the choice of the initially assigned mesogen). At the later
stage, as expected, both defects with an integer topological
charge split (for the specific cases visualized, the +1 defect
splits into two +1/2 defects that migrate along a roughly
north−south axis and the −1 defect splits into two −1/2
defects that migrate along a roughly east−west axis). Both
methods successfully identify this splitting; in particular, the
TADA algorithm generates a series of highlighted segments,
which produce a set of interior termination points close to the
defect core regions identified using the scalar order parameter.

We observe that at the later stage, there is a small amount of
discernible variability in the defect core locations identified
using the TADA algorithm, which depends upon the choice of
initial mesogen. This phenomenon is clearest in Figure 5 for
the −1 defect. Nevertheless, for all choices of initially assigned
mesogen, the maximum discrepancies in the observed core
location are comparable to the length of a single mesogen,
which is comparable to the uncertainty in core location using
the scalar order parameter (since the region where S takes on
its most negative values is not localized to a single mesogen).

(More) Realistic Systems. We turn now to an assembly of
higher complexity, which (as a reminder) was obtained by
rapidly quenching and compressing a mesogen vapor into a
condensed phase. We expect a priori that such a system will
feature a wealth of disclinations, not generally amenable to
identification by visual inspection. In Figure 6, we show that
both techniques generally identify the same defect cores, with
discrepancies that are at most on the order of a single mesogen
length.

Relative Merits of the TADA Algorithm. Having verified
that the TADA algorithm can identify the same disclinations as
the scalar order parameter (modulo at most one mesogen
length), we now discuss the advantages of the TADA algorithm
vis-a-̀vis the scalar order parameter. It is worth emphasizing at
the outset of this discussion that the TADA algorithm directly
follows in the footsteps of the historical (and topologically
focused) approach, as discussed in the Introduction section.
However, beyond merely being grounded in the historical
approach, we identify two key capabilities only possessed by
the TADA algorithm.

Figure 6. For a realistic configuration of mesogens, identical disclinations identified via (i) the scalar order parameter and (ii) the TADA algorithm.
In panels (iii) and (iv), we provide close-up views of the region circled in pink in panels (i) and (ii), containing two disclination cores. The color
bar shows the range for the scalar order parameter.
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Intermediate-Stage Identification of Defect Core Split-
ting. As shown in Figures 4 and 5, both the TADA algorithm
and the scalar order parameter are capable of revealing
eventual core splitting for integer-charge topological defects.
Here, we call attention to a (potentially unsurprising, but

nevertheless noteworthy) strength of TADA: at intermediate
times, just as the disclination core is beginning to split, TADA
unambiguously identifies the split before it is clear using the
scalar order parameter, which instead highlights a large region
of disorder (Figure 7). This result suggests that the TADA

Figure 7. Disclination core splitting at an intermediate stage (shortly after the core begins to split), for (i) +1 (scalar order parameter), (ii) +1
(TADA), (iii) −1 (scalar order parameter), and (iv) −1 (TADA). The color bar shows the range for the scalar order parameter.

Figure 8. Identification of defects within four synthetic assemblies, each with a specified amount of data removed from the overall data set. The top
row (i−iv) shows results from the TADA algorithm; the bottom row (v−viii) shows results from the scalar order parameter.
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algorithm is better suited for tracking defect evolution with fine
spatiotemporal resolution. This capability is especially
important for high-quality measurements of defect velocity.
Defect Identification in Cases of Limited Information. Yet

another advantage of the TADA algorithm is that it can infer
the presence of a disclination core in a region even when no
data is provided in the vicinity of the core itself. In Figure 8, we
show the TADA algorithm and the scalar order parameter for
synthetic assemblies corresponding to the four topological
charges previously studied; in each case, a certain portion of
the data set containing the core itself has been excised from the
data set. Whereas the scalar order parameter is insensitive in all
cases to the presence of a disclination (it is sensitive only to
local disorder in the vicinity of a defect), in every case with a
defect of strength 1/2, the TADA algorithm produces a
highlighted segment that terminates in the interior of the
domain, on the boundary of the excised region (indicating the
presence of a core somewhere within this region). In other
words, the TADA algorithm is truly sensitive to topological
considerations and does not require information near the core
itself to deduce that the region in which data is missing
contains a net topological charge with noninteger magnitude.
(In cases where the region in which data is missing has a
nonzero and integer topological charge, it is possible to either
see multiple lines terminating on the boundary of the excised
region or none.) It is worth noting that this analysis compares
favorably to�and is in fact directly inspired by�the
arguments in Section IIB of the landmark article by Mermin.2

We close our discussion by noting yet another advantage of
TADA, based on its suitability for use with efficient statistical
sampling techniques. In principle, one could start from a
trivially topologically consistent configuration (e.g., a smectic
assembly of mesogens with all directions assigned to the north)
and then obtain defected assemblies only through “gentle”
perturbations/deformations of this initial configuration (here,
gentle means that no mesogen ever experiences a force or
torque sufficiently large to cause it to flip to an inconsistent
direction within an otherwise ordered domain). Although such
an approach would ultimately produce a vector field of
directions identical to those generated by TADA, TADA opens
the door to the use of nonphysical decorrelation methods (via,
e.g., high-temperature dynamics25); this is because TADA
“works from a clean slate” each time it assigns directions and is
thus completely unaffected if it is initially fed a grossly
inconsistent set of directions (or no directions at all). Such
enhanced-sampling methods are critical for generating statisti-
cally representative ensembles of configurations, especially for
materials with large correlation length-scales and long
correlation time-scales, as is frequently the case for liquid
crystals.

■ CONCLUSIONS
We have developed a novel approach�the topology-
accommodating direction assignment (TADA) algorithm�
for assigning a vector field of directions to any assembly of
liquid crystal mesogens in a manner that is as continuous as
possible for that assembly. In assemblies where this is not
possible, the discontinuities identified by this algorithm form
line segments, whose termination points interior to the domain
represent topological defects. This strategy demonstrates that
it is possible (and in fact highly fruitful) to extend the concept
of a director field down to the length-scale of individual

mesogens within liquid crystalline media, without making any
reference to a local order parameter quantity.
We have validated the TADA algorithm by comparison to

disclination cores identified using the scalar order parameter
for a large variety of assemblies obtained using molecular-
dynamics simulations. In all cases, we find agreement up to the
length of a single mesogen. We have also discussed several
distinctive strengths that the TADA algorithm exhibits: chief
among these are the ability to unambiguously identify core
splitting earlier than the scalar order parameter and the ability
to infer the presence of a disclination in the presence of limited
data near the core itself.
There are several natural avenues to develop and leverage

the TADA algorithm, which will be the subject of future work.
At a basic level, all of the results and analysis herein focus on
the two-dimensional case (for which disclination cores are
zero-dimensional points); it would be natural to extend TADA
to three dimensions, enabling the identification of disclination
lines running through the body of a liquid crystalline assembly.
We expect that the benefits of TADA highlighted in this work
will be especially pronounced in the three-dimensional case
since disclination lines can only have strength 1/2 (see, e.g.,
discussion in ref 26). The TADA algorithm also generates
precisely the geometrical and topological information needed
to calibrate and test a recent class of continuum models
proposed for line defects in liquid crystals.5 As such, the TADA
algorithm is also a promising technique for supplying
nanoscale detail to macroscale models, enabling accurate and
efficient multiscale modeling of liquid crystalline materials.

■ APPENDIX: SCALAR ORDER PARAMETER
In this Appendix, we briefly describe the computation of the
scalar order parameter. This approach follows that of Callan-
Jones et al.,6 adapted to two dimensions. We direct the
interested reader to several other pieces of work that describe
similar or related approaches.3,7,27 The core idea is to construct
a second-order tensor field that identifies regions where there
is a significant difference between the orientations of individual
mesogens and the local average director.
We call the director for mesogen i as the unit vector n̂i =

(nx,ny). This can be used to construct a symmetric trace-free
tensor Qi for that mesogen,6 which is invariant under the
transformation n̂i → −n̂i (i.e., it can take as input an unsigned
director)
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The scalar order parameter evaluated for mesogen i, Si, is then
computed as 2λi, where λi is the largest-magnitude eigenvalue
of Qi,ave.
The scalar order parameter can be as large as unity (for a

mesogen whose neighboring environment exhibits perfect
orientational order) and as low as zero (indicating strong
amounts of local orientational disorder).
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