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I. INTRODUCTION

A computational experiment is deemed reproducible if the same data, methods, and implementations are

available to replicate quantitative results by any independent researcher, anywhere and at any time, granted

they have the required computing power. Such computational reproducibility is a growing challenge that

has been extensively studied among computational researchers as well as within the signal processing and

machine learning research community [1], [2]. Note, however, that there exists much confusion about how

one defines reproducibility and how it differs from similar terms such as repeatibility and replicability

[3], [4]. We follow the approach in [5], which considers reproducibility to exist on a spectrum, and

view computational reproducibility as a minimum standard for assessing the scientific impact of a study

in signal processing and machine learning. Other works have considered this notion of reproducibility

under the term ‘replicability’ [6] or ‘Results Reproducibility’ [4]. This differs from other interpretations

of reproducibility such as ‘Inferential Reproducibility’ where qualitatively similar results can be obtained

by an independent replication of a scientific study [4], which may help validate the meaningfulness

and statistical significance of the results and conclusions. While computational reproducibility is only

one component within the broader spectrum of reproducibility, it is nonetheless an important one that

computational researchers are still struggling to solve [7]–[9]. Moreover, it is only through first achieving

computational reproducibility that one can begin to address the other components of reproducible research.

Signal processing research is becoming increasingly reliant on computational experiments to test hy-

potheses and validate claims, which is in contrast to the yesteryears when one typically used computational

experiments to elucidate rigorous theory and mathematical proofs. Therefore it has become more important

than ever to ensure the reproducibility of computational experiments, as this is the first step in confirming

the validity of research claims supported through the outcomes of computational experiments. But this is

not turning out to be an easy task. The paradigm shift from the theory-driven research to the compute-

driven claims in signal processing and machine learning has been facilitated by powerful computing

resources, accessibility of massive datasets, and a myriad of new libraries and frameworks (such as NumPy
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[10], Scikit-learn [11], MATLAB Toolboxes [12], and TensorFlow [13]) that provide a layer of abstraction

allowing for rapid implementation of complex algorithms. Unfortunately this changing research landscape

is also bringing with it new obstacles and unseen challenges in developing reproducible experiments.

Computational experiments today often incorporate various scripts for preprocessing data, running

algorithms, and plotting results, all while utilizing huge datasets which require computing clusters that

often take days or weeks to finish computing with multiple manual interventions needed to successfully

produce the desired results. This is contrary to the way computational experiments used to be conducted

and the way new researchers are introduced to computational resources in the classroom, where they

typically use simple and intuitive interactive computing software consisting of a single script that runs

locally on one’s computer [14]. This new paradigm of computational experiments is now requiring the

scientific community to rethink how we publicize and share our code to encapsulate all the necessary

information about our experiments and make computational reproducibility practically possible. Addition-

ally our extensive dependence on libraries and frameworks leads to brittle codebases that typically only

output correct results when executed on the original machine of the researcher. Furthermore, the nature

of these data-driven experiments often require careful parameter tuning, random number generations, and

data preprocessing, all of which are independent from the main finding, such as a new algorithm, being

implemented or investigated.

Evolution of Computational Experiments: Computational experiments in signal processing and machine

learning today have transformed from the way they used to be conducted in the early days of these
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fields. Due to the rise in the availability of computational resources and large datasets, many of our

computational experiments can no longer be carried out on local workstations, as was the norm in

the past. Rather, they are often carried out on large computing clusters and can take hours or days to

complete. This fact, coupled with the dependencies on multiple third-party libraries, hyperparameter

tuning, and random number generators makes it very time consuming, and sometimes nearly impossible,

to try and reproduce published computational results by trial and error.

Due to these new challenges most experiments have become difficult, if not impossible, to be reproduced

by an independent researcher. As an anecdote, when attempting to reproduce computational results in

our lab from a paper published just months prior, even the original authors of the experiment were

unable to completely reproduce the results. However, this phenomenon is not unique to our lab. In 2016

a survey conducted by the journal Nature found that 50% of researchers were unable to reproduce their

own experiments [15]. And while the issue of reproducibility has been discussed in the literature [1] and

specifically within the signal processing community [16], [17], it is still unclear to most researchers what

are the most practical approaches to ensure computational reproducibility without impinging on their

primary responsibility of conducting research. This is because the guidelines and best practices provided

for computational reproducibility in the existing works [16], [17] do not account for all the obstacles to

reproducibility of the increasingly complex and large-scale computational experiments. In addition to the

complexity of modern computational experiments, these obstacles include the potential for human errors

and the rapidly evolving technological landscape that is changing at an unprecedented rate. This article

complements the existing works by explicitly focusing on these and related obstacles for computational

reproducibility and, in contrast to the discussion in [16], [17], advocates that researchers should plan for

the computational reproducibility of their experiments long before any code is written.

In summary, although works such as [1], [16], [17] have helped researchers understand the importance

of making computational experiments reproducible, the lack of a clear set of standards and tools makes

it difficult to incorporate good reproducibility practices in most labs. It is in this regard that we aim to

present signal processing researchers with a set of practical tools and strategies that can help mitigate

many of the obstacles to producing reproducible computational experiments.

A. Why Computational Reproducibility

Making computational experiments reproducible is a necessary step for ensuring the credibility of the

conclusions made from a research study. If researchers are regularly unable to validate the computational

results in a study, it becomes impossible to investigate whether or not the latest results presented in a



4

research paper are indeed state-of-the-art. For example, a group of researchers recently published work

that presented a new recurrent neural network architecture for language modelling which appeared to

achieve state-of-the-art performance in terms of perplexity on the Penn Treebank dataset. However, a

different group of researchers found that they can control the hyperparameters in a more fine-tuned way

than the original researchers. This led to the discovery that—after careful hyperparameter tuning—the

traditional long short-term memory (LSTM) recurrent neural network model can achieve better perplexity

on the same dataset, contrary to what was found by the first group. This specific example demonstrates

the significance of hyperparameters and other meta data in assessing the performance of new machine

learning algorithms. The claims of state-of-the-art performance in particular are directly related to these

incidental details and without the ability to reproduce previous computational results it can become

difficult to discern the true novelty of new research findings.

This example, which is far from a rarity, illustrates the broader point that the field of computational

sciences cannot truly advance until we are confident in the past progress. Not only does ensuring

computational reproducibility protect the integrity of the research, it also allows fellow researchers

to develop their own experiments quickly by utilizing code written by others investigating the same

problem. In addition, implementing reproducible computational experiments has numerous benefits for

the researchers themselves [18]. By utilizing the techniques outlined in this article and making the

experiments as transparent and detailed as possible, one can avoid catastrophes such as a hard drive that

gets corrupted, resulting in a loss of all data and source code, or a loss of older promising results due

to a bug that was introduced in the code later on. Additionally, old research problems often get revisited

and improved upon; thus having reproducible code for the experiments in the original study can save

hours of frustration for the researcher(s) trying to reproduce old computational results, before embarking

on the new research. Finally, making one’s computational experiments reproducible can add value to

the research itself; by lowering the barrier of entry for other researchers to engage and expand on the

experiments, it makes the research more accessible to the community, which can in turn lead to more

impactful work [19].

While the importance of reproducible research in general and computational reproducibility in particular

is obvious to many, the exact tools and techniques that one must utilize when building computational

experiments to ensure that they are reproducibile for the foreseeable future after publication are still not

very clear. In particular, a common misconception is that simply publishing all the code and data used

to obtain the results makes computational experiments reproducible. But this is almost never the case,

as the raw source code and data along with the paper alone cannot give enough details on how to run
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the experiment, the necessary dependencies, or the required computational power. It is in this regard that

we worked on making two experiments from two different research projects here at the INSPIRE Lab

reproducible and, in the process, investigated the best ways to create reproducible experiments organically,

taking into consideration the extra overhead that comes with such an endeavour. The best techniques and

tools were considered in light of the fact that one’s goal as a computational researcher is typically to

conduct and disseminate research and not maintain or develop commercial software. By sharing our

experiences and best techniques with the readers of the IEEE Signal Processing Magazine, it is our hope

that we can go beyond just highlighting the importance of computational reproducibility by providing a

clear and practical guide for developing experiments in a reproducible manner.

We have organized the rest of the article as follows. First, the common pitfalls to computational

reproducibility are explained. Next, the standards for computational reproducibility are discussed. The last

three sections discuss solutions and tools that can be utilized to avoid the reproducibility pitfalls discussed

earlier. These topics include version control for organizing a dynamic and collaborative codebase, package

managers for handling multiple dependencies and finally, techniques on how to eventually share the code

accompanying the computational experiments.

II. THE COMPUTATIONAL REPRODUCIBILITY PITFALLS

Most papers in the field of signal processing and machine learning tend to include a section at the end

where the authors explain their computational experiments along with figures that provide some evidence

that the proposed research has practical implications. However, due to the limitations in space and in

the interest of conciseness, this section of the research papers cannot provide all the necessary details to

reproduce the results. Even when computational experiments are only meant to give some justification

for a rigorous theory, these results are important and should be explained as clearly as the theorems

and proofs on which they are based. While publishing all the source code used for the computational

experiments is a step in the right direction and may seem to fill in all the missing gaps from the research

paper, it is often still not enough to completely reproduce the original results [3]. This is in part due to

the fact that most researchers are not trained on how to write clean, maintainable code in a collaborative

setting [20]. This lack of training has the potential to result in highly disorganized code that is difficult

to parse and understand by an independent researcher.

Another potential pitfall we identified, which can seem benign for small experiments, is that researchers

have multiple versions of the same computational experiment with slightly different code, which makes

it impossible to know which was the one used in obtaining the reported results. Thus, attempting to

reproduce the final set of results requires one to first run each version of the codebase individually until
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they produce the desired results. On large computational experiments that take days to finish, this is

of course impractical. Another issue is that researchers typically do not describe in enough detail the

dependencies needed for running the code used for the experiment [3]. Even when the dependencies

are mentioned, researchers might omit the exact version that was used when originally obtaining results,

which could make computational reproducibility impossible for those attempting to run the code on a

different machine. For example, if the original code used a certain feature from a library that has since

been deprecated in later versions, those running the code using the latest version of the library cannot

reproduce the results, and may not know that they need to downgrade their dependency. Therefore, there

must be a way for the original researchers to preserve and share the exact computational environment

used when generating results in order to share it with others looking to run their code to reproduce results.

Additionally, as mentioned earlier, the source code alone does not provide instructions on how to run

the computational experiments nor the order in which the scripts should be executed. Another piece of

information that is rarely mentioned in enough detail when sharing the code is the computational power

needed for an experiment [3] and the time it takes to finish executing. This information is necessary for

those trying to reproduce the computational results as they must first verify that they are equipped with

the right amount of computational power to run the code.

Even when these pitfalls are accounted for, there is still the challenge of sharing the necessary meta

data accompanying the experiments. The description of the experiments present in most research papers

simply cannot encapsulate all the necessary meta data needed to successfully reproduce computational

results. For instance, while the authors typically mention the dataset being used in a particular experiment,

there may exist some ambiguity about the exact source of the data. And this can be true even for

established benchmark datasets such as the “House” image or the MNIST dataset [21]. While the authors

might believe that these are “standard” datasets, it is often the case that different versions of these

datasets are circulating around the internet, each with slight variations that may not be immediately

noticeable but can yield different results when used for the same experiment [16]. Even if the sources

of the datasets are explained, the preprocessing steps performed on the data can be vital to obtaining

the published computational results, but these might not be thoroughly explained in research papers.

All of these seemingly benign or superfluous details can have an effect on the computational results

produced from the experiment that others may be trying to reproduce. Moreover, for computational

experiments that use synthetic data, the way in which the data was produced may not be explained

in enough detail. Furthermore, signal processing and machine learning algorithms typically rely on

finely tuned hyperparameters that, when changed, can also give different results and even invalidate



7

the conclusions made in the paper, yet the hyperparameters or the methods by which they are found are

not always described in enough detail [3]. For example, most machine learning experiments make use of

cross-validation to find optimal hyperparameters and while the researchers may mention this detail, they

might omit information about how exactly the dataset was split up. This in turn could lead to different

hyperparameters when the experiment is run by someone trying to reproduce the original results.

Finally, most experiments rely on random number generators somewhere in the codebase. An example

of this would be the stochastic gradient descent (SGD) algorithm [22], which is a popular method for

large-scale training in machine learning. In each iteration of the vanilla SGD, a random sample from the

dataset is used to compute the gradient of the loss function and update the parameters of interest. As a

result, the rate of convergence and the values of the optimized parameters depend on the order in which

the samples were selected [23] and will be different if the randomly chosen sample in each iteration is

not consistent every time the experiment is run. By not saving the random seed in the code as part of the

experimental meta data, the sequence of randomly chosen samples will vary every time someone tries to

run the experiment, making it almost impossible to exactly reproduce the original computational results

each time the codebase is run.

In the rest of this article we discuss what it means for a computational experiment to be computationally

reproducible and the potential techniques for overcoming each of the pitfalls discussed. While the

suggested methodologies for creating computational experiments may incur some additional work for

the researcher, it strikes a good balance between ensuring reproducible results and becoming an obstacle

to further research. Furthermore, through practice over time, it is our hope that the tools and techniques

discussed below will become commonplace for researchers, giving them the ability to naturally create

computional experiments that are readily computationally reproducible.

III. THE GOALS FOR REPRODUCIBILITY

There has been a lot of discussion across many domains, including within the signal processing and

machine learning community, about how to successfully make computational experiments reproducible.

However, much of the work discussing computational reproducibility tends to advocate for new software

tools that can be used to easily publish computational experiments that are reproducible. One such

example is the “Whole Tale” [24], a platform that enables researchers to create tales—executable research

objects that capture data, code, and computational environments—for the computational reproducibility

of the research findings. While tools like this may seem promising, they have limitations. The first

is that these reproducibility tools attempt to encapsulate the whole process of running an experiment

from preprocessing to plotting, treating the computational experiment as a blackbox and this in turn
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TABLE I

A TABLE OF THE COMMON PITFALLS DISCUSSED IN THIS SECTION AND WHERE TO FIND THEIR RESPECTIVE REMEDIES

THROUGHOUT THIS ARTICLE.

Pitfall Short description Remedy

1 Disorganized codebases and multiple

versions.

Section IV

2 Differences in computational

environments and failure to

disseminate necessary dependencies.

Section V

3 Missing critical meta data such as

hyperparameters, computing power

and dataset sources.

Section VI

leaves the actual code in a state that is difficult to interpret for those who might be interested in

digging deeper or expanding upon it. Additionally, due to the fact that they attempt to encapsulate every

component of an experiment, they tend to be highly inflexibility and may not be appropriate for every

computational experiment, making the process of creating computationally reproducible experiments even

more cumbersome. This is especially true for the research labs that tend to focus more on the theoretical

and algorithmic aspects of signal processing and machine learning, rather than the applied aspects, and

therefore provide only simple computational experiments to give empirical justifications for their claims.

In such labs the actual codebases for the computational experiments are not very large and they tend to

focus narrowly on a newly proposed idea, insight, or algorithm, which is in contrast to large data analysis

projects found in other computational sciences. In addition, the encapsulation-based reproducibility tools

are often funded by grant money and are typically only maintained by a single lab; thus when the grant

money runs out, there is no guarantee that the tool will be maintained and it may become obsolete within

a few short years [25]. Therefore relying on these computational reproducibility tools would require one

to relearn a new platform for publishing their experiments in a computationally reproducible way every

time an old one gets abandoned. In summary, while an encapsulation tool could in theory be the optimal

solution to the computational reproducibility crisis, there currently does not exist any widely adopted

off-the-shelf tool that overcomes the issues highlighted here.

Because of the aforementioned reasons, the focus of this article is not on finding or creating the

best computational reproducibility software that can automatically encapsulate all the components of the

computational experiment. Rather, the goal is to find how one can achieve computational reproducibility
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by relying on robust open-source tools, used across both industry and academia. This involves formulating

a methodology for developing computational experiments such that the reproducible codebase supporting

a new research finding can be released in parallel with the publication of the paper. To be more precise, the

methodology should enable any independent researcher studying a similar problem to obtain, understand,

and easily run the code used in the computational experiments in order to reproduce the exact same

figures, plots or values without enduring a painstaking trial and error process. Furthermore, this should

be possible without the need to ever contact the researchers responsible for the original computational

experiment.

The goals of computational reproducibility espoused in this article also emphasize the importance of

making experiments computationally reproducible throughout their development, since trying to retroac-

tively make the experiments computationally reproducible after the results have been obtained and

published is usually a much more difficult task. If computational reproducibility is only attempted after

publication, the researcher is likely to have already fallen into one of the pitfalls mentioned earlier, and

must struggle with first reproducing their own results, perhaps unsuccessfully, before being able to share

the code with others. While it may be cumbersome at first, after researchers get accustomed to the tools

and techniques presented in this article, the process of making experiments computationally reproducible

should incur minimal overhead on their research. In particular, it is our hope that the solutions put

forth in this article can help overcome all the current hurdles to seamless computational reproducibility.

These solutions are discussed under three main themes in the following. Version control systems keep

track of changes in the codebase as well as eliminate the issue of multiple concurrent versions of the

experiments. Therefore, in order to support organized and understandable codebases, we first present the

best tools for implementing version control. Next, in an effort to ensure that dependencies are accurately

and easily shared, we discuss the simplest tools for dependency management that allow the researchers to

disseminate their exact computational environment to others. Finally, in order to make the codebase easily

explorable and provide thorough instructions on how to computationally reproduce the experiments, we

offer some advice on the best ways to document and publish the code for sharing with the rest of the

research community.

IV. MANAGING A DEVELOPING EXPERIMENT

Research is all about taking incremental steps towards a result. This is true when trying to prove

theorems as well as in developing computational experiments. In practice the algorithms that get applied

to datasets always need some level of tuning in order to run the computational experiments correctly or

obtain the best possible results. Oftentimes one wants to investigate how changing a certain piece of the
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code (e.g., a specific hyperparameter) alters the results without losing the current version of the code they

have. A naïve solution to this problem is to make a copy of the source code with the desired changes

without deleting the original. For example, a file named my_algo.py containing an implementation

of the main algorithm for the experiment might get copied and renamed to my_algo_1.py with a

few subtle changes made within it. Later the researchers may be interested in changing things a little

differently but still keep my_algo.py and my_algo_1.py just in case the new version performs

worse, so they create another file named my_algo_2.py, and this pattern repeats for multiple versions

of the file. Finally, a few months after the work is published, someone might ask about how the figures

were produced and the original researchers are left scrambling through up to a dozen different versions

of the codebase, trying to find the one that actually produced the right results. Clearly this is not a good

solution and can quickly become an unwieldy situation, forcing one to re-run multiple versions of the

codebase while trying to find the correct one. Though this ad-hoc approach may have been feasible for

small computational experiments that only take seconds or minutes to finish computing, with the rise in

larger datasets and higher wall-clock time per computational experiment, re-running multiple versions of

the experiments until one finds the right version can take days or even weeks. This is the precise problem

we found in one of our codebases that we tried to computationally reproduce, which had multiple versions

of the same experiment. Even the original researchers on the project were not able to recall the version

that corresponded to figures in the published work. Given that some of these computational experiments

took up to five days to finish running, finding the version that reproduced the original plots took us

weeks.

Another common hurdle that researchers must overcome is trying to develop computational experiments

with collaborators. Due to the nature of computational research, developing computational experiments

collaboratively can be done without having to physically share the same computational resources, lab

or even the same country. While this certainly makes collaboration easier compared to other scientific

domains, collaborating in the development of a codebase is still not a simple task. Some of the current

solutions that researchers employ are faulty and have many drawbacks. For instance a researcher may treat

source code like any other file and rely on tools such as Google Drive [26], DropBox [27], Microsoft

OneDrive [28] and email to share their code amongst collaborators. While these tools are great for

sharing images, documents and other forms of media, they are not the best tools for sharing a developing

codebase, as they require the collaborators to constantly download and then upload the codebase every

time a change has been made. There is also a responsibility on the one making the changes to alert all

other collaborators in order for them to re-sync their codebases. In short, this mode of collaboration can
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actually slow down collaboration and is prone to errors because it makes it very cumbersome to track

changes made in the codebase and ensure that everyone is using the latest version of the codebase.

One of the best solutions to both of the aforementioned problems is an effective use of a good version

control system, the most popular being git, a free and open-source distributed version control system

known for its efficiency compared to other version control systems, making it easy to keep track of all

the changes being made to an experiment throughout the development process. Due to its popularity and

utility git integrates well with many online code hosting services, such as GitHub [29], BitBucket [30],

and GitLab [31]. The advantage of git is that it allows one to track every change that has been made

to any file in the codebase, often referred to as the repository. Once one of the files in the repository

being tracked has been changed, the researcher can then move that file or set of files to the staging area.

From the staging area the changes are then committed, which assigns the current state of the repository a

unique SHA-1 hash and saves it in a history database so that it can be compared to future versions of the

codebase or recovered when things go wrong. These commits also contain information of who made the

changes and are accompanied by a short comment or message to explain what change were made and

why. By committing regularly, a researcher is able to traverse through all changes of the codebase and

see precisely which lines of code were changed, by whom they were changed, and a short description

of why they were changed. The git branching feature also lends itself very well to experimenting and

trying out different parameters or techniques. By branching, one can create an alternate tracking history

of the repository starting from the current commit, and from there one can edit the code and run the

experiments without affecting the current implementation on the main branch.

However, git truly shines in a collaborative setting. This is primarily due to its design as a distributed

version control system, which means that it provides each collaborator a full commit history of the entire

repository. When used jointly with a code hosting platform, such as GitHub [29], BitBucket [30], or

GitLab [31], it allows researchers to upload their repository to the internet and pull down changes from

the hosting service to their local environment every time they intend to develop on the codebase. This

ability to pull down the changes is substantially better than the traditional approach of re-downloading a

codebase from cloud storage providers because it eliminates the need to ask collaborators about what was

altered or alert other collaborators of the changes implemented. This is because every commit that was

made is already documented by the commit message accompanying it, along with the name of the person

who made the commit. Furthermore, due to the efficient design of git, pulling down changes from a

repository only takes seconds even if numerous changes were made; this is in contrast to re-downloading

an entire codebase from a cloud storage provider, which can take minutes every time. Additionally git is
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intelligently designed to handle merging the changes between the current version of the code on one’s

local machine and the updated codebase online, making the process very seamless and facilitating efficient

asynchronous collaboration.

While some researchers may argue that git is a complex tool which ultimately impedes their productiv-

ity, this is only temporary and we believe that that it is worth the investment for computational researchers.

Furthermore, most researchers in machine learning and signal processing collaborate extensively with

industry where version control is expected to be used in maintaining any codebase. Perhaps the most

appealing feature of using git for version control over other alternatives is its widespread use among

programmers. Over the years, this has resulted in numerous resources all over the internet in the form

of videos, blog posts [32], and books [33]. Additionally, online communities such as StackOverflow [34]

provide answers to nearly any confusion one may have about git and its features. There are also a

number of graphical interface tools for using git for those not yet comfortable using the command

line. While git is an extremely flexible tool and can be a tremendous aid in writing organized and

manageable code for experiments across multiple researchers working together, it is only effective when

utilized properly. Researchers must ensure that they are committing changes frequently and are providing

providing concise and accurate descriptions of the changes made for easy reference as the codebase is

developed.

Version Control: By effectively using version control and making frequent commits, researchers do

not have to save multiple versions of the same file in their codebase, because they are always able
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to easily revert back to an earlier commit. With version control, specifically git, one is also free to

pursue multiple versions of the experiment without impinging on each other. This is most effectively

done by branching, which allows one to create multiple version histories.

Going beyond version control, the next important step for ensuring reproducibility is to make sure that

those trying to reproduce the code are able to capture the same exact computational environment as the

one used by the original researchers. This is the topic of our next discussion.

V. MANAGING DEPENDENCIES

One of the simplest ways to ensure a robust and reproducible codebase is to try and minimize the use

of external packages and libraries in the code. However, due to the immense utility of modern software

libraries, the codebases for modern signal processing and machine learning experiments are seldom

developed without the use of several external libraries. These include popular scientific programming and

machine learning libraries such as NumPy [10], Scikit-learn [11], TensorFlow [13], CVX [35], and Tensor

Toolbox [36]. Although there are multiple programming languages available for scientific computing, such

as R [37], Julia [38], and MATLAB [12], we focus the discussion specifically on the Python programming

language as it is free, open source and widely popular in the machine learning community. However, the

techniques discussed in this section can still be utilized for other popular programming languages.

Without first knowing which exact dependencies need to be installed on a researcher’s machine, it

becomes impossible to reproduce results. The reproducer must not only be aware of what dependencies

are being used, but also the precise version being used at the time when the results were originally

generated. One popular way to encapsulate the original researcher’s computational environment perfectly

is by using Docker [39], as suggested in [40]. While Docker is a powerful containerization tool and it

does indeed solve the problem of dependency management by encapsulating the original researcher’s

computational environment into isolated containers, it could be too much of an overhead for researchers

who have no prior experience using Docker or managing large software projects. This is especially true in

labs and research groups where researchers focus primarily on the mathematical and algorithmic aspects of

their research and only utilize a small codebase for experiments, which relies on only a few dependencies.

In these computational experiments one typically does not attempt to synthesize and manage multiple

programming languages, frameworks and dependencies, as is often the case in real-world commercial

applications, making Docker-based solutions an overkill.

Therefore, a more appropriate tool would be a simple and light dependency manager similar to pip, the

default dependency manager for Python. But the most fitting environment and dependency manager for

computational experiments is conda [41], an open-source environment and package management tool.
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Although conda can be used independently in any codebase, it is automatically included in the Anaconda

[42] distribution of Python, which is already the distribution of choice for many computational researchers.

Unlike other package managers, conda is specifically designed to easily manage the dependencies most

commonly encountered in scientific computing, and overcomes the many shortcomings of pip. One

major advantage of using conda is that when one attempts to installs a new package, conda ensures

that all the requirements for this new package are met before adding it, and if this is not the case

an error is shown immediately with steps on how to rectify the issue. This is contrary to pip, which

does not check this condition before installing a new package and can result in unexpected errors later

during development. However, conda’s greatest advantage is allowing one to create independent virtual

environments for each experiment, so that all projects do not share the same global dependencies. This in

turn ensures that each environment contains only the packages that are absolutely needed for the current

experiment associated with it and nothing more. Creating these virtual environments is also important

because when the version of a package from one project gets upgraded on the researcher’s machine, it

will not interfere with the current version of that same package in the other environments, allowing the

original computational environment on which the experiment was carried out to be preserved. Finally,

while Python’s standard library does include its own virtual environment manager through the venv

module, conda is unique in that it allows one to create environments with different versions of Python

itself.

Conda Environments: A conceptual diagram that illustrates the usefulness of conda environments

for reproducible research. On the left, “env1” is a python environment with four different libraries

commonly used in machine learning experiments. On the right, the environment “env2” has some
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Fig. 1. An example of an environment.yml file with common libraries and dependencies used in typical machine learning
experiments.

of the same libraries but with different version numbers and a different version of python itself; this

could, for example, be an environment for an older variant of the experiment. Both these environments

are independent of each other and preserve the computational environment that was originally used

to produce experimental results. They can also be easily exported and shared with outside researchers

through an environment.yml file. The environment can be reconstructed on a new computer using

the command ‘‘conda env -f environment.yml’’.

Based on the above, we recommend using conda for managing dependencies in reproducible experi-

ments. This involves creating an environment.yml (or a similarly named) file for each project, which

specifies the necessary dependencies, and then constructing a new environment based on the specifications

in this file, which can be done with a simple command. This should be done before any code for the

experiment is written in order to ensure no dependencies are unaccounted for. If one wants to later add a

dependency they can do so by adding it to their environment.yml file and updating their environment

according to the new additions made to the file. Then, when another independent researcher wishes to
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run the experiment, they can quickly and easily reconstruct the same conda environment with all the

necessary dependencies by simply using the environment.yml file. Additionally, one can specify

the exact version number for the important dependencies in the “environment.yml“ file to ensure that

when the “conda“ environment gets reconstructed on another machine (potentially with another operating

system) the same dependency version is used. Also, for those who prefer some other dependency manager

as opposed to conda, they can still inspect the plain text yaml file to see all the necessary dependencies

with their respective versions. A typical “environment.yml“ for a machine learning experiment is shown in

Figure 1, demonstrating its readability and effectiveness in organizing dependencies. Here we have pinned

the version for TensorFlow to ensure that this same version is always preserved when the environment

is reconstructed on a different machine. By utilizing this tool, managing dependencies becomes very

straightforward and makes it possible for others to replicate the same computational environment that

one had used when originally running the experiment, without the need to resort to trial and error or to

contact the original researchers.

Proper version control and dependency management tools are critical first steps to promoting repro-

ducibility throughout development of an experiment. However, ensuring reproducibility for the foreseeable

future is made most probable through properly shared code and data, detailed documentation and thought-

ful organization of the codebase developed. We now shift our focus to this aspect of reproducibility.

VI. SHARING CODE

While version control and dependency management make it possible for others to run the code and

help to keep the codebase organized, this does not provide any information about the order in which the

scripts should be executed and what computational resources were utilized in obtaining the original results.

Furthermore, when researchers look to reproduce other’s experiments, they do not necessarily want to

reproduce each and every figure in the paper. This is especially true for papers with multiple experiments.

Sometimes they are only interested in a specific plot or the implementation of a particular algorithm that

was described in the original work. Therefore it is important to ensure that one’s experiments do not get

crammed into a single source file that includes preprocessing, algorithmic implementations, analysis and

visualization. Indeed, by making the codebase modular and organizing the project structure carefully, as

discussed in the following, it becomes significantly easier for others to download and inspect what they

want to reproduce from the codebase without too much digging.

Project Structure: Typically, a computational experiment in signal processing and machine learning

can be broken down into three parts:

1) Preprocessing of data or generation of synthetic data.
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2) Execution of the actual experiment on the data.

3) Analysis of results and generation of figures.

It is often advantageous to keep the project folder organized in a similar fashion by creating separate

scripts, or even subfolders, for each of these tasks. Keeping the codebase modular and structured in this

manner allows others looking to reproduce a particular set of results to do so without needing to analyze

or execute the entire codebase. For example, in our lab’s experiments on learning mixtures of separable

dictionaries for tensor data [43], we found it necessary to split the experiments up into different subfolders

as the original work [44] compared four different algorithms on both synthetic and real datasets. Object-

oriented design within the code can also be helpful as this increases the modularity of the experiments

and allows extensions to be developed by other researchers naturally. Last, but not the least, the data

used in the experiments must also be shared correctly; this involves ensuring that not only the raw data

get shared but also all the intermediate steps or scripts used to preprocess the data before using them in

the experiments are shared.

Coding Standards: Additionally, it is worth following a set of guidelines for clear and concise

comments that can describe every function or class definition in the codebase. For Python the convention

is to add a docstring [45] to each module, as many text editors and integrated development environments

(IDEs) often search for these in the project files to allow programmers to quickly inspect what a function

is doing without actually going to its destination in the source code. This should be accompanied by

standard coding practices, such as proper variable naming conventions and indentations, which can make

the codebase easier to read and interpret by others.

Documentation: The most important thing that must accompany the project being shared is a detailed

README file. We recommend that the README contain all the following elements:

1) Brief description of the project and related paper(s).

2) Steps to install necessary dependencies, e.g., via conda and environment.yml file.

3) Computational resources used to run the experiments along with their respective runtimes.

4) Scripts used to preprocess the data, in the case of real data, or generate them for the case of

synthetic data.

5) Description of which scripts one should run for which experiments and how to then plot the results.

We found that each of these pieces of information were necessary when attempting to reproduce the

results from a codebase. Such documentation that accompanies the code provides a full picture of how

an experiment should be run and how one actually acquires the desired results without having to spend

much time laboring through every detail in the code.
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Publicization: The way in which the code is publicized also needs careful consideration to ensure

ease of access and, most importantly, permanency. Typically experiments are shared by hosting the

accompanying source code on the lab’s website or on a code hosting platform, such as GitHub, GitLab

or BitBucket. However, posting it on the lab’s website is unlikely to be the most robust solution; for

instance, if a researcher leaves his or her position, their website often disappears along with the code.

Code hosting services, however, are linked to an account and repositories can be easily transferred to

different owners with minimal hassle. Sharing the code this way also allows others to fork the repository

and develop further on it. Additionally, others can add their comments or questions about the code in the

form of “Issues.” These discussions become public for anyone else viewing the repository as well, which

can eliminate redundant questions that the community may have. One of the biggest issues with both of

these solutions is that they are still dependent on the organization hosting the website. This means that if

the hosting website were to ever disappear, the code hosted on it would go with it. But permanency on

the internet is necessary for ensuring that the results are reproducible for the forseeable future. One way

to ensure permanency is to assign the codebase a digital object identifier (DOI) to give it a permanent

presence on the internet, which can be done with tools such as Zenodo [46].

VII. CONCLUSION

While there has been much discussion in the literature about the reproducibility crisis in computational

research, not enough emphasis has been given on the best practices and techniques to solve this problem

with established tools. The solutions to computational reproducibility have been especially unaddressed for

the more theoretically bent research groups within the signal processing and machine learning community

that typically develop smaller computational experiments compared to other computational sciences. In

this article, we presented the main pitfalls to achieving reproducible experiments and then provided

common tools and techniques that can be used to overcome each of those pitfalls, while bearing in mind

that making experiments reproducible can entail extra effort that may divert our attention away from our

primary task of research. By utilizing the right tools for version control and dependency management as

well as careful structuring and documentation when sharing the codebase, we can work towards ensuring

that every computational experiment in our research is readily reproducible.
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