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This paper considers the problem of understanding the exit time for trajectories of gradient-related first-
order methods from saddle neighborhoods under some initial boundary conditions. Given the ‘flat’ geom-
etry around saddle points, first-order methods can struggle to escape these regions in a fast manner due to
the small magnitudes of gradients encountered. In particular, while it is known that gradient-related first-
order methods escape strict-saddle neighborhoods, existing analytic techniques do not explicitly leverage
the local geometry around saddle points in order to control behavior of gradient trajectories. It is in this
context that this paper puts forth a rigorous geometric analysis of the gradient-descent method around
strict-saddle neighborhoods using matrix perturbation theory. In doing so, it provides a key result that
can be used to generate an approximate gradient trajectory for any given initial conditions. In addition,
the analysis leads to a linear exit-time solution for gradient-descent method under certain necessary initial
conditions, which explicitly bring out the dependence on problem dimension, conditioning of the saddle
neighborhood, and more, for a class of strict-saddle functions.
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1. Introduction

The problem of finding the convergence rate/time of gradient-related methods to a stationary point of
a convex function has been studied extensively. Moreover, it has been well established that stronger
conditions on function geometry yield better convergence guarantees for the class of gradient-related
first-order methods. For instance, conditions like strong convexity and quadratic growth result in the
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so-called ‘linear convergence rate’ to a stationary point for gradient-related first-order methods. Though
there is also a class of second-order (Hessian-related) methods like the Newton method that yield super-
linear convergence to stationary points of strongly convex functions, that comes at the cost of very high
iteration complexity.

More recently much of the focus has shifted towards obtaining rates of convergence for gradient-
related methods to stationary points of non-convex functions. To this end, there are some local geometric
conditions like the Kurdyka-Łojasiewicz property [21, 26] that guarantee linear convergence rates pro-
vided the iterate is in some bounded neighborhood of the function’s second-order stationary point [25].
Such guarantees, however, are hard to obtain for non-convex functions in a global sense and the linear
convergence rates are often eventual, i.e., these methods usually exhibit such linear convergence only
asymptotically. The main reason that restricts this speedup behavior to the asymptotic setting is the
non-convex geometry that can impede fast traversal of these methods across the geometric landscape of
the function. This is due to the fact that trajectories of gradient-related methods can encounter extremely
flat curvature regions very near to first-order saddle points. Such regions are characterized by gradients
that have very small magnitudes and it can take exponential time for the trajectory of an algorithm to
traverse this extremely flat region. A natural question to ask then is whether there exist gradient-related
first-order methods for which a subset of non-zero measure trajectories escape first-order saddle points
of a class of non-convex functions in ‘linear’ time.1 The non-zero measure of such fast escaping tra-
jectories is important since studying fast escape is only useful when the initialization set is dense in
such trajectories. Section 3.2 (see Remark 3.1) in particular establishes that indeed fast saddle escape is
possible from an initialization set of positive measure.

We address this question in this work by deriving an upper bound on the exit time for a certain
class of gradient-descent trajectories escaping some bounded neighborhood of the first-order saddle
point of a class of smooth, non-convex functions. Specifically, let x∗ be a saddle point of a smooth,
non-convex function f : Rn → R and, without loss of generality, define the bounded neighborhood
around the saddle point to be an open ball of radius ε around x∗, denoted by Bε(x∗). Recall that the
gradient at saddle point x∗ is a zero vector, i.e., it is necessarily a first-order stationary point. In addition,
the saddle neighborhood Bε(x∗) exhibits certain properties that depend on Lipschitz boundedness of
the function and its derivatives as well as eigenvalues of the Hessian at x∗. The class of trajectories
we focus on in here is assumed to have the current iterate sitting on the boundary of Bε(x∗) and it
comprises of all those trajectories of gradient descent that escape this saddle neighborhood with at least
linear rate. Note that the current iterate could have reached the boundary of Bε(x∗) using any gradient-
related method, but that problem is not our concern. Rather, our focus here is whether there exists
any gradient-descent trajectory from the current iterate that can escape Bε(x∗) in almost linear time of
order O

(
log(ε−1)

)
or better. And if such a trajectory exists, then an immediate subsequent question

asks for the necessary conditions required for the existence of such gradient-descent trajectories. To
answer both these questions effectively, we present a rigorous analysis of gradient-descent trajectories
{xk} starting at time k = 0, when the initial iterate x0 sits on the boundary of the ball Bε(x∗), till
the time they exit Bε(x∗), which we term the exit time and denote by Kexit . It should be noted that
we analyze in this work the first-order approximations of the exact trajectories, instead of the exact
trajectories themselves, where the approximation error is sufficiently small. Specifically, the presence
of higher-order terms (O(ε2) terms) in the forthcoming analysis accounts for the approximation in our

1We are slightly abusing terminology here and, in keeping with the convention of linear convergence rates in optimization
literature, we are defining ‘linear exit time’ for the trajectory of a discrete method to be one in which the trajectory escapes an
O(ε) saddle neighborhood in O(log(ε−1)) number of iterations.
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analysis, while things are proved about trajectories and perturbations up to the first order in ε .
We conclude by noting the relevance of the exit-time results derived in this paper to the broader field

of non-convex optimization. First, to the best of our knowledge, there are no works other than the ones
listed in Table 1 that explicitly investigate the exit times from saddle neighborhoods of the trajectories
of discrete first-order methods. Rather, the focus in much of the related works discussed in Section 1.1
is on providing rates of convergence to second-order stationary points. While such analysis necessarily
implies saddle escape, this is typically accomplished through the use of noisy perturbations that allow
the trajectories to move along a negative curvature direction; in particular, such approaches do not yield
an explicit expression for the exit time of a trajectory from a saddle neighborhood. Second, and most
importantly, the rate of convergence to a second-order stationary point is trivially a function of the time a
trajectory spends near a saddle point. It therefore stands to reason that the existing convergence rates for
some of the recent first-order methods can possibly be improved by identifying trajectories with linear
exit time, which is the focus of this paper.

1.1 Relation to prior work

Convergence rates of optimization methods to the minima of convex functions have been studied for
quite some time. For instance, the seminal work dealing with convergence rate analysis of gradient-
related methods has been well summarized in [36], while a recent work by [33] summarizes convergence
rates of Newton-type methods. These prior works rely heavily on the Lipschitz boundedness of the
function along with some other form of curvature property. The works [2] and [3] utilize the local
Kurdyka–Łojasiewicz property [21, 26] of a function to develop convergence guarantees and the ergodic
rates using monotonicity of gradient sequences in a bounded neighborhood of the function’s stationary
point. However, for non-convex functions these seminal works do not analyze the exit time from a
bounded neighborhood of a first-order saddle point. With the focus shifting towards characterizing the
efficacy of gradient-related methods on non-convex geometries in recent years, it becomes imperative to
conduct such an analysis. To the best of our knowledge, currently no work exists that analyzes (discrete)
gradient-descent trajectories in the saddle neighborhood using eigenvector perturbations. Therefore, this
is the first work that incorporates matrix perturbation theory to extract the local geometric information
around a saddle point necessary for analyzing gradient trajectories at such small scales. As a result
of the perturbation analysis, the hidden dependence of exit time on the trajectory’s initialization point,
conditioning of the saddle neighborhood, problem dimension, and more, is also revealed in this work
(cf. Table 2 in Section 3.5).

There is a plethora of existing methods in the literature that deal with non-convex optimization prob-
lems. Within the context of this paper, we broadly classify these methods into continuous-time Ordinary
Differential Equations (ODE)-type methods/analysis and discrete-time gradient-descent related algo-
rithms/analysis. The latter class of methods can be further categorized into first-order and higher-order
methods. Starting with the continuous-time ODE-type algorithms, we first refer to [3] that has developed
upon the gradient flow curve analysis of non-smooth convex functions. Although this work focuses on
convex problems, yet it is important in the sense that it motivates us in drawing some parallels between
the discrete gradient trajectories and the continuous flow curves in our analysis of non-convex functions.

Another recent work [15] within the continuous-time setting analyzes the saddle escape problem
using a stochastic ODE to characterize the rates of escape in terms of a multiplicative noise factor.
Remarkably, the results in [15] give a linear rate of escape in expectation for very small stochastic
noise. This work also extends these results to cascaded saddle geometries. Note that the analysis in [15]
relies on an earlier important work by [20], which characterizes the probability distribution of the exit
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time of gradient curves from saddle point vicinities. The hyberbolic flow curves discussed in [3, 15, 20]
are the building blocks of our intuition towards analyzing discrete gradient trajectories in this work.

A Stochastic Differential Equation (SDE) approach has also been utilized in a recent work [39]
to study gradient-based (stochastic) methods for non-convex functions in the continuous-time setting.
While this work also guarantees linear rates of global convergence for non-convex problems under cer-
tain assumptions, a few of which are more restrictive than our work, it does not lend itself to understand-
ing the behavior of discrete gradient trajectories around first-order saddle points. Similarly the analysis
done in [32] shows that fast evasion is possible for trajectories generated by normalized gradient flow
from strict saddle neighborhoods of Morse functions but such an analysis is not sufficient to explain the
behavior of discrete trajectories around saddle points.

Next, there exists a large collection of work analyzing discrete gradient-related methods in non-
convex settings. The very basic yet most often investigated approach in these works is the Stochastic
Gradient Descent (SGD) method and its variants. Such methods have been extensively studied in the
literature for the purpose of escaping saddles, specifically first-order saddle points. For instance, [12, 17]
provide the rates of convergence to a second order stationary point with very high probability using
perturbed gradient descent, where the perturbation vector is an isotropic noise. In contrast, the work
in [12] shows that—in the worst case—the time to escape cascaded saddles scales exponentially with
the problem dimension, thereby making the method impractical for highly pathological problems like
optimization over jagged functions.

The work in [23] provides new insights into the efficacy of gradient-descent method around strict
saddle points. The authors in this work present a measure-theoretic analysis of the gradient-descent
trajectories escaping strict saddle points almost surely. Their analysis uses the stable center manifold
theorem in [19] to prove that random initializations of gradient-descent trajectories in the vicinity of
a strict saddle point almost never terminate into this saddle point. Note that while this is an intuitive
inference, it is somewhat hard to prove for gradient flow curves around saddle points. The work [9]
also provides rates and escape guarantees under certain strong assumptions of high correlation between
the negative curvature direction and a random perturbation vector. Interestingly, the convergence rate
put forth in this work does not depend on the problem dimension. However due to the nature of the
somewhat restrictive assumptions in [9], the resulting method is not suited to work over a general class
of non-convex problems. We also note two related recent works [13, 37] that analyze global convergence
behavior of Langevin dynamics-based variants of the SGD (and simulated annealing) for non-convex
functions. Neither of these works, however, focuses on the escape behavior of trajectories around saddle
neighborhoods.

There also is a sub-category of first-order methods leveraging acceleration and momentum tech-
niques to escape saddle points. For instance, [34] uses the stable center manifold theorem to show
that the heavy-ball method almost surely escapes a strict saddle neighborhood. But the rate of escape
derived in this work is limited to quadratic functions; further, the ensuing analysis does not bring out
the dependence on problem dimension, conditioning of the saddle neighborhood, etc. The work in [38]
provides extensions of SGD methods like the Stochastic Variance Reduced Gradient (SVRG) algorithm
for escaping saddles. Recently, in works like [18] and [41], methods approximating the second-order
information of the function (i.e., Hessian) have been employed to escape the saddles and at the same
time preserve the first-order nature of the algorithm. Specifically, [18] shows that the acceleration step
in gradient descent guarantees escape from saddle points with provably better rates; yet the rate is still
worse than the linear rate. Along similar lines, the method in [41] utilizes the second-order nature of the
acceleration step combined with a stochastic perturbation to guarantee escape and provide escape rates.

Finally, higher-order methods are discussed in [30, 35], which utilize the Hessian of the function or
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its combinations with first-order algorithms to escape saddle neighborhoods with an impressive super
linear rate while trading-off heavily with per-iteration complexity. Going even a step further, the work
in [1] poses the problem with second-order saddles, thereby making higher-order methods an absolute
necessity. Though these techniques optimize well over certain pathological functions like degenerate
saddles or very ill-conditioned geometries, yet they suffer heavily in terms of complexity. In addition,
none of these methods leverage the initial boundary condition of their methods around saddle points,
which could not only influence the future trajectory but also control its exit time from some bounded
neighborhood of the saddle point. This further motivates us to conduct a rigorous analysis of (approxi-
mations of) gradient-descent trajectories around saddle points for some fixed initial boundary conditions.

We conclude by noting that the use of careful initial boundary conditions in order to avoid saddle
points in non-convex optimization is not a fundamentally new idea. Consider, for instance, the non-
convex formulation of the phase retrieval problem in [5]. A variant of the gradient descent method,
termed the Wirtinger flow algorithm, can be used to solve this problem as long as the algorithm is care-
fully initialized along the direction of the negative curvature by means of a spectral method [5]. How-
ever, one of the implications of the results in this paper are that spectral initializations such as the one in
[5], which require costly computation of the dominant eigenvector of a matrix, are not always required
for saddle escape. Rather, one might be able to escape the saddle neighborhoods in approximately linear
time provided the projection of the initial gradient descent iterate along the negative curvature direction
is lower bounded by a small quantity.

1.2 Our contributions

Having discussed the relevant works pertaining to the problem of characterizing the exit time of first-
order methods from saddle neighborhoods, we now elaborate upon the contributions of our work.

First, none of the earlier discussed works exploit the dependence of the function gradient in saddle
neighborhood on the eigenvectors of the Hessian at the saddle point. This dependence results from the
eigenvector perturbations of the Hessian in the saddle neighborhood. Therefore, to our knowledge, this
is the first work that utilizes the Rayleigh–Schrödinger perturbation theory to approximate the Hessian
∇2 f (x) at any point x ∈ Bε(x∗). This approximate Hessian is then used to obtain the function gradient
∇ f (x) for any point x ∈ Bε(x∗).

Second, using the value of the function gradient, for any given initialization x0 and some fixed step
size, we generate an approximate trajectory for the gradient-descent method inside the ball Bε(x∗). As
a consequence, we obtain the distance between the saddle point x∗ and any point on the approximate
trajectory inside the ball Bε(x∗) as a function of (discrete) time. Once this distance function is known,
we can estimate the exit time of the approximate trajectory from the ball Bε(x∗). In this vein, we
develop an analytical framework in this work that approximates the trajectory for gradient descent within
the saddle neighborhood and establish the fact that a linear escape rate from the saddle neighborhood is
possible for some approximate trajectories generated by the gradient-descent method.

Third, we utilize the initial conditions on our iterate by projecting it onto a stable and an unstable
subspace of the eigenvectors of the Hessian at the saddle point. This is extremely important since
the escape rate and the associated necessary conditions are heavily dependent on where the iterate or
gradient trajectory started. To this end, we simply make use of the strict saddle property to split the
eigenspace of the Hessian at the saddle point into orthogonal subspaces of which two are of interest,
namely, the stable subspace and the unstable subspace.2 Taking the inner product of the iterate with these

2There can be one more orthogonal subspace corresponding to the zero eigenvalues of the Hessian at a strict saddle point.
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subspaces yields the respective projections. (Note that this analysis of ours can be readily adapted to
obtain these projections for any gradient-related method.) As a consequence, for any given initialization
of our iterate within the saddle neighborhood, we provide the approximate iterate expression for the
entire trajectory as long as it stays within this saddle neighborhood.

Finally, and most importantly, this work provides an upper bound on the exit time Kexit for approxi-
mations of (discrete) gradient-descent trajectories that is of the order O(log(ε−1)), where the constants
inside the O(·) term explicitly depend on the condition number, dimension, and eigenvalue gap, as
detailed in Section 3.5. Also, we develop a necessary condition on the initial iterate that is required
for the existence of this exit time. It is worth noting that though the trajectory analysis developed in
this work for the gradient-descent method is only approximate, we show in a follow-up work [11] that
this approximation can only have a maximum relative error of order O(log2(ε−1)ε3/2), provided the
exit time Kexit is at most of the order O(log(ε−1)). Therefore our approximate analysis of the gradient-
descent trajectories and their time of exit from the saddle neighborhood can be readily adapted to develop
efficient algorithms for escaping first-order saddle points at a linear rate. One such algorithm has already
been developed in [11], which extends the boundary conditions developed in this work for the linear exit
time gradient trajectories and escapes saddle neighborhoods in linear time. The algorithm is designed
to check the initial boundary conditions, after which it decides to either keep traversing along the same
gradient trajectory or switch to a higher-order method for one iteration. To get a detailed understanding
of this extension of our current work, we refer the reader to [11].

We conclude with Table 1, which highlights the similarities and differences between this work and
other prior works that explicitly investigate the problem of characterizing the exit time from saddle
neighborhoods. The asymptotic analyses in this table refer to works that provide measure-theoretic
results in terms of the non-convergence of trajectories to a strict saddle point, whereas the non-asymptotic
works deal with the analysis of trajectories exiting local saddle neighborhoods. The function classes C 2

and C ω in the table represent twice continuously differentiable functions and analytic functions, respec-
tively, while the class of quadratics (⟨x,Ax⟩) represents functions with constant Hessian. The class of
Morse functions is defined in Assumption A4 in the next section. The map πEUS(.) is the projection map
onto the unstable subspace EUS of the Hessian ∇2 f (x∗), where this subspace will be formally defined in
Lemma 3.2. Notice that the references [15, 32] provide exit times from a strict saddle neighborhood for
the class of C 2 functions but analyze continuous time dynamical systems, whereas this work provides
the exit time analysis for the gradient descent method, which is a discrete dynamical system. Simi-
larly the work [34] develops escape rates for discrete dynamical systems like gradient descent and the
heavy ball method but restricts itself to the class of quadratic functions. The only work that develops
escape rates for a discrete dynamical system on the class of C 2 functions is [35] but that analysis is for
a second-order Newton based method whereas we provide an exit time bound for a first-order method.

1.3 Notation

All vectors are in bold lower-case letters, all matrices are in bold upper-case letters, 0 is the n-dimensional
null vector, I represents the n×n identity matrix, and ⟨·, ·⟩ represents the inner product of two vectors.
In addition, unless otherwise stated, all vector norms ∥·∥ are ℓ2 norms, while the matrix norm ∥ · ∥2
denotes the operator norm. Also, for any matrix expressed as Z+O(c) where c is some scalar, the
matrix-valued perturbation term O(c) is with respect to the Frobenius norm. Further, the symbol (·)T

is the transpose operator, the symbols O , Ω , and Θ represent the Big-O, Big-Omega, and Big-Theta

Under the assumption of the function being a Morse function, however, this subspace vanishes.
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Reference Nature of analysis Dynamical system analyzed Function class Exit time bound Necessary initial conditions

[24] Asymptotic Gradient descent method C 2 functions ✗ ✗

[34] Asymptotic Heavy ball method C 2 functions ✗ ✗

[34] Non-asymptotic General accelerated methods, Quadratics (⟨x,Ax⟩) O(log(1
∆
)) iterations from the

∥∥πEUS(x0−x∗)
∥∥⩾ ∆

Gradient descent method unit ball B1(x∗)

[32] Non-asymptotic Normalized gradient flow C 2 Morse functions O(ε) exit time from a x0 ̸= x∗

small neighborhood Bε(x∗)

[15] Non-asymptotic SDE-based gradient flow C 2 Morse functions O(log(1
τ
)) mean exit time from some ✗

open neighborhood; τ is the scale

of random perturbation

[35] Non-asymptotic Newton-based method C 2 functions O(log(1
∆
)) iterations from some

∥∥πEUS(∇ f (x0))
∥∥⩾ ∆

open neighborhood

This work Non-asymptotic Gradient descent method Locally C ω Morse functions, O(log(1
ε
)) iterations from the

∥∥πEUS(x0−x∗)
∥∥2

⩾ ∆ > Ω(ε)

C 2 Morse functions ball Bε(x∗)

Table 1: Summary of the similarities and differences between this work and some related prior works.

notation, respectively, and W (·) is the Lambert W function [8]. Throughout the paper, t represents the
continuous-time index, while k,K are used for the discrete time. Next, ⪆ and ⪅ mean ‘approximately
greater than’ and ‘approximately less than’, respectively. Finally, the operator dist(·, ·) returns the dis-
tance between two sets, diam(·) returns the diameter of a set, and all the eigenvectors in this work are
normalized to be unit vectors.

2. Problem formulation

Consider a non-convex smooth function f (·) that has strict first-order saddle points in its geometry. By
strict first-order saddle points, we mean that the Hessian of function f (·) at these points has at least one
negative eigenvalue, i.e., the function has negative curvature. Next, consider some neighborhood around
a given saddle point. Formally, let x∗ be some first-order strict saddle point of f (·) and let Bε(x∗) be
an open ball around x∗, where ε is sufficiently small. We then generate a sequence of iterates xk from
a gradient-related method on the function f (·), where we call the vector uk = xk − x∗ inside the ball
Bε(x∗) the radial vector (see Figure 1). Also, it is assumed that the initial iterate x0 ∈ B̄ε(x∗)\Bε(x∗),
where B̄ε(x∗) is the closure of set Bε(x∗). With this initial boundary condition, we are interested in
analyzing the behavior of our gradient-related sequence xk in the vicinity of saddle point x∗. More
importantly, we are interested in finding some Kexit for which the subsequence {xk}k>Kexit lies outside
Bε(x∗) and establishing that Kexit ⩽ O(log(ε−1)). Finally, we have to obtain any necessary conditions
on x0 that are required for the existence of this ‘linear’ exit time Kexit .
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FIG. 1: The radial vector evolution in a saddle neighborhood for a function defined on R2.

2.1 Assumptions

Having briefly stated the problem, we formally state the set of assumptions that are required for this
problem to be addressed in this work.

A1. The function f : Rn → R is globally C 2, i.e., twice continuously differentiable, and locally
C ω in sufficiently large neighbodhoods of its saddle points, i.e., all the derivatives of this function
are continuous around saddle points and the function f (·) also admits Taylor series expansion in
these neighborhoods.

A2. The gradient of the function f (·) is L−Lipschitz continuous: ∥∇ f (x)−∇ f (y)∥⩽ L∥x−y∥.

A3. The Hessian of the function f (·) is M−Lipschitz continuous:
∥∥∇2 f (x)−∇2 f (y)

∥∥
2 ⩽M ∥x−y∥.

A4. The function f (·) has only well-conditioned first-order stationary points, i.e., no eigenvalue
of the function’s Hessian is close to zero at these points (see Figure 2). Formally, if x∗ is the
first-order stationary point for f (·), then we have

∇ f (x∗) = 0, and

min
i
|λi(∇

2 f (x∗))|> β ,

where λi(∇
2 f (x∗)) denotes the ith eigenvalue of the matrix ∇2 f (x∗) and β > 0. Note that such a

function is termed a Morse function.

We now make a few remarks concerning these assumptions as well as their implications. Notice that
Assumption A1 requires f (·) to be locally real analytic, which may seem too restrictive to some readers
since the theory of non-convex optimization is often developed around only the assumption that f ∈ C 2
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Non-strict saddle Degenerate strict saddle Morse function strict saddle

FIG. 2: Possible cases of saddle points where the first figure corresponds to a monkey saddle, the second
figure is a strict saddle with non-invertible Hessian at the saddle point and the third figure is strict saddle
with invertible Hessian at the saddle point.

with Lipschitz-continuous Hessian. It is worth reminding the reader, however, that many practical non-
convex problems such as quadratic programs, low-rank matrix completion, phase retrieval, etc., with
appropriate smooth regularizers satisfy this assumption of real analyticity around the saddle neighbor-
hoods; see, e.g., the formulations discussed in [7, 27]. Similarly, the loss functions in deep neural net-
works with analytic activation functions also satisfy Assumption A1 under certain mild conditions [22].
It is also worth noting here that Assumption A1 enables highly precise estimates of the exit time and the
initial boundary condition, which is something that does not happen when dealing with purely C 2 func-
tions; see Section 3.2 for further discussion on this topic. Next, Assumptions A2 and A3 are satisfied
locally around any saddle point since any locally analytic function is locally C ∞ smooth and therefore
is gradient and Hessian Lipschitz continuous in some compact neighborhood of the saddle point.

Lastly, the problem formulation in this work assumes the class of Morse functions (Assumption A4),
i.e., functions whose Hessians are invertible at their critical points. Since Morse functions can only
have isolated critical points [28], the insights from this work are not directly applicable to non-convex
optimization problems with connected saddle points. While this may appear to be a limitation of this
work, Morse functions are an important tool in the study of general non-convex optimization problems
since they are dense in the class of C 2 functions [28]. It is therefore no surprise that they are routinely
invoked in the non-convex optimization literature (see, e.g., [29, 31, 42]), while neural networks with
smooth activation functions are also known to be Morse functions under certain mild assumptions [22].
Additionally, since connected saddle points for smooth functions generally arise only when their Hessian
at the critical points has one or more zero eigenvalues, one could always add a quadratic regularization
term with a sufficiently small constant to any smooth function so as to make the Hessian of the function
invertible at its critical points and thus transform the function into a Morse function. As an example,
we have circumvented the problem of connected saddle points within the low-rank matrix factorization
problem in our follow-up work [11] by adding a regularization term that makes the objective function a
Morse function.

Assumption A4 also implies the following two propositions, both of which will be routinely invoked
as part of the forthcoming analysis.

PROPOSITION 2.1 Under Assumption A4, the function f (·) has only first-order saddle points in its
geometry. Moreover, these first-order saddle points are strict saddle, i.e., for any first-order saddle point
x∗, there exists at least one eigenvalue λi of ∇2 f (x∗) that satisfies λi(∇

2 f (x∗))<−β .

Proof. For any C m-smooth function f (·) with m ⩾ 2, if x∗ is its second- or higher-order saddle point
then it must necessarily satisfy ∇ f (x∗) = 0 and ∇2 f (x∗) ⪰ 0, where at least one of the eigenvalues of
∇2 f (x∗) is 0. But this is not possible in our case because of Assumption A4. The fact that an eigenvalue
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λi exists such that λi(∇
2 f (x∗))<−β is also a direct consequence of Assumption A4. □

PROPOSITION 2.2 Under Assumption A4, for any sufficiently small ε where ε ≪ β , we can group the
eigenvalues of the Hessian ∇2 f (x∗) at any strict saddle point x∗ into m disjoint sets {G1,G2, . . . ,Gm}
with 2 ⩽ m ⩽ n based on the level of degeneracy of eigenvalues (closeness to one another) such that for
some δ = Ω(ε1−a) where a ∈ (0,1], we have the following conditions:

dist(Gp,Gq)⩾ δ ∀ Gp,Gq s.t. p ̸= q, and (2.1)

max
p

{diam(Gp)}= O(ε1−a). (2.2)

Proof. From Assumption A4, the eigenvalues of the Hessian ∇2 f (x∗) at any strict saddle point x∗
can always be separated into two distinct groups, one consisting of positive eigenvalues and the other
comprising negative eigenvalues. By this construction, the distance between these groups will be at
least 2β . Since ε ≪ β , we get a δ = 2β for this construction which satisfies the constraint δ = Ω(1).
Next, we check whether the diameter of these two groups is larger than Θ(ε1−a); if yes then we split
that particular group into two more groups at the first eigenvalue where the consecutive eigenvalue gap
within that group exceeds Θ(ε1−a). This eigenvalue gap becomes our new δ and by construction it
will satisfy the constraint δ = Ω(ε1−a) for some a > 0 since δ > Θ(ε1−a). Repeating this process
recursively, we would have constructed the disjoint sets {G1,G2, . . . ,Gm} with 2 ⩽ m ⩽ n. Since n is
finite, this process will terminate in finite steps (maximum n− 1 steps) and therefore after the final
splitting, we will obtain δ = Ω(ε1−a) for some a ∈ (0,1] such that maxp{diam(Gp)}= O(ε1−a). □

Proposition 2.2 describes a fundamental property of any C 2 function that arises due to the algebraic
multiplicity / (approximate) degeneracy of the eigenvalues of its Hessian at the saddle points. Note that,
as a consequence of the strict-saddle property (Assumption A4 / Proposition 2.1) and Proposition 2.2,
we get the following necessary condition:

β ⩾
δ

2
. (2.3)

3. Gradient trajectories and their approximations around strict saddle point

In this section, we analyze the behavior of the gradient descent algorithm in the vicinity of our strict sad-
dle point, i.e., the region given by the set of points contained in Bε(x∗). It has been already established
that gradient descent converges to minimizers and almost never ends up terminating into a strict saddle
point [24]. However, the geometric structure of the region Bε(x∗) has not been utilized completely in
prior works when it comes to developing rates of escape (possibly linear). Although linear rates of diver-
gence from a strict saddle point are provided in [34] for the Nesterov accelerated gradient method, their
analysis is reserved only for quadratic functions. Intuitively, for saddle neighborhoods with sufficient
curvature magnitude β (Assumption A4, Proposition 2.1), there should exist some gradient trajectories
that escape the saddle neighborhood Bε(x∗) with linear rate every time. Moreover, these trajectories
should have some dependence on their initialization x0. To support this intuition of a linear escape rate,
we first need an understanding of the behavior of gradient flow curves in the saddle point neighborhood,
following which parallels can be drawn between flow curves and gradient trajectories.

We start by formally defining the gradient descent update and the corresponding flow curve equation.
For a constant step size, the gradient descent method is given by

xk+1 = xk −α∇ f (xk), (3.1)
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where α is the step size and we require that α ⩽ 1
L .

Next, the corresponding gradient flow curve is defined. If the step size α in (3.1) is taken to 0, the
discrete iterate equation in index k of gradient descent can be transformed into a continuous-time ODE
in t given by

dx(t)
dt

=−∇ f (x(t)), (3.2)

which is the gradient flow equation in the limit of α → 0 [4]. Note that although ∥xk+1 −xk∥ is O(ε)
here since both xk and xk+1 lie inside Bε(x∗), we still require that α → 0 to transform the discrete iterate
update into a continuous-time ODE.

We now state the following lemma about the gradient norm ∥∇ f (x)∥ when x ∈ Bε(x∗).

LEMMA 3.1 For every point x ∈ Bε(x∗), the gradient ∇ f (x) will have O(ε) magnitude.

Proof. This can be verified using Assumption A2:

∥∇ f (x)−∇ f (x∗)∥⩽ L∥x−x∗∥⩽ Lε. (3.3)

□
This lemma is of importance since it will help us in characterizing the gradients in the ball Bε(x∗)

in terms of the Hessian ∇2 f (x∗) at the saddle point, from which we will develop approximations of
gradient trajectories around the saddle point.

3.1 Intuition behind the linear time of escape

From the ODE analysis of flow curves for gradient-related methods such as those in [15, 20], it can be
readily inferred that the gradient flow curves show hyperbolic behavior in the vicinity of saddle points.
Since the discrete gradient method (3.1) is the Euler discretization of the gradient flow curve ODE (3.2),
the geometric behavior of these two equations should be similar to one another with a deviation between
them not more than of order O(α) when the step size α is sufficiently small.3 Therefore a crude analysis
of flow curves should be sufficient to make approximate deductions for the discrete gradient method.

Concretely, we first define a time-varying vector u(t) that points to our iterate x(t) from the first-
order strict saddle point x∗. By this definition, we have that

u(t) = x(t)−x∗ =⇒ du(t)
dt

=
dx(t)

dt
. (3.4)

Now, computing the norm squared of u(t), differentiating it with respect to t and using (3.2), we get

∥u(t)∥2 = ∥x(t)−x∗∥2 (3.5)

=⇒ d ∥u(t)∥2

dt
= 2⟨(x(t)−x∗),−∇ f (x(t))⟩. (3.6)

Next, let the gradient flow curve enter Bε(x∗) ball at time t = 0 and exit this ball at time t = T . Geomet-
rically, the inner product defined in (3.6) is negative at the entry point of the ball Bε(x∗) (i.e., vectors

3The actual deviation between the gradient flow curve and the gradient descent method after k iterations tends to be on the
order of O(kα) for a fixed ε . However, the factor k can be suppressed provided the trajectories generated by the two methods do
not have large exit times.
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(x(0)−x∗) and −∇ f (x(0)) form an obtuse angle), becomes equal to 0 at some point xcritical inside this
ball and is positive at the exit point (i.e., vectors (x(T )−x∗) and −∇ f (x(T )) form an acute angle).

Using Taylor’s expansion around x∗ along the direction x(t)− x∗, we can write ∇ f (x(t)) in the
following manner:

∇ f (x(t)) = ∇ f (x∗)+
∫ p=1

p=0
∇

2 f (x∗+ pu(t))u(t)d p. (3.7)

If ∥u(t)∥ is sufficiently small or is of order O(ε), we can approximate ∇2 f (x∗ + pu(t)) ≈ ∇2 f (x∗).
After substituting this approximation in (3.7) we obtain

∇ f (x(t))≈ ∇
2 f (x∗)u(t). (3.8)

Using this result in (3.6) yields

d ∥u(t)∥2

dt
= 2⟨(x(t)−x∗),−∇ f (x(t))⟩ ≈ −2⟨u(t),∇2 f (x∗)u(t)⟩. (3.9)

Also using (3.2) and (3.8) we get that

du(t)
dt

=
dx(t)

dt
≈−∇

2 f (x∗)u(t). (3.10)

Now consider the case where Assumptions A1 to A4 are satisfied. Since the eigenvalues of ∇2 f (x∗) are
both positive and negative, the approximate ODE (3.10) will have the following solution:

u(t) =
n

∑
i=1

civi(0)e−λi(0)t , (3.11)

where (λi(0),vi(0)) represents the ith eigenvalue–eigenvector pair for the Hessian ∇2 f (x∗) and ci are
non-negative constants that depend on the initialization u(0). (Here, the non-negativity of ci’s can be
assumed without loss of generality because the sign of the eigenvectors can be chosen arbitrarily.)

From this equation it is clear that we have a solution that is exponential in t. Moreover from the
approximate ODE (3.9), it is evident that a hyperbolic curve is generated with an exponential rate of
change. Therefore, for any initialization, i.e., for any choice of constants ci, ∥u(t)∥2 eventually increases
at an exponential rate, thereby giving a linear escape rate for x(t) from the region Bε(x∗) provided ci ̸= 0
corresponding to at least one of the negative eigenvalues.

However, the approximation ∇2 f (x∗+ pu(t))≈ ∇2 f (x∗) fails to capture the first-order perturbation
terms in the Hessian ∇2 f (x∗+ pu(t)). Given a sufficiently small saddle neighborhood Bε(x∗), for any
x ∈ Bε(x∗), the eigenvalues and eigenvectors of the Hessian ∇2 f (x) can have O(ε) variations with
respect to those of the Hessian ∇2 f (x∗). Taking this O(ε) perturbation into account complicates the
gradient flow curve analysis inside the Bε(x∗) ball,4 which otherwise is straightforward from (3.10).
Moreover, for all practical purposes, we cannot take our step size α → 0 for the sake of using ODE
analysis. Choosing arbitrarily small step sizes causes the number of iterations needed to escape from
the ball Bε(x∗) increase to infinity. Therefore a discrete gradient trajectory analysis using matrix per-
turbation theory becomes an absolute necessity to obtain trajectories (or approximate trajectories) with
linear exit time from Bε(x∗).

4This is formally taken into account in subsequent sections using matrix perturbation theory.
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3.2 Warm-up: Rudimentary analysis of the exit time for discrete gradient trajectories

The intuition developed as part of the ODE-based analysis suggests linear time escape of discrete gradi-
ent trajectories from strict-saddle neighborhoods. We now present a rudimentary analysis of the gradient
descent method that uses elementary facts about first-order methods, as opposed to matrix perturbation
theory, to derive a bound on the exit time of the gradient descent method from the saddle neighborhood
Bε(x∗). The purpose of this analysis is twofold. First, it shows that (discrete) gradient-descent trajec-
tories can indeed escape strict-saddle neighborhoods in linear time. Second, it highlights the limitations
of existing analytical techniques in deriving linear escape rates for discrete gradient trajectories, thereby
motivating the need for the matrix perturbation-based analysis of gradient trajectories in the next section
for derivation of a linear escape rate from Bε(x∗).

Note that the analysis in this section requires only a relaxed version of Assumption A1 on the
function f (·), namely, it is twice continuously differentiable: f ∈ C 2. But the remaining assumptions
(Assumptions A2–A4) stay the same. Now consider the following that follows from the gradient descent
iteration:

xk+1 −x∗ = xk −x∗−α∇ f (xk) (3.12)

= xk −x∗−α∇
2 f (x∗)(xk −x∗)−α(∇ f (xk)−∇

2 f (x∗)(xk −x∗)) (3.13)

= (I−α∇
2 f (x∗))(xk −x∗)−αr(xk), (3.14)

where r(xk) = (∇ f (xk)−∇2 f (x∗)(xk − x∗)). Using the Hessian Lipschitz continuity of f (·) and the
fact that ∇ f (xk) = ∇ f (x∗)+

∫ p=1
p=0 ∇2 f (x∗+ p(xk −x∗))(xk −x∗)d p since f ∈ C 2, we get that

∥r(xk)∥=
∥∥∥∥∫ p=1

p=0
∇

2 f (x∗+ p(xk −x∗))(xk −x∗)d p−∇
2 f (x∗)(xk −x∗)

∥∥∥∥ (3.15)

⩽

(∫ p=1

p=0

∥∥∇
2 f (x∗+ p(xk −x∗))−∇

2 f (x∗)
∥∥d p

)
∥(xk −x∗)∥ (3.16)

⩽
M ∥(xk −x∗)∥2

2
. (3.17)

Thus, ∥r(xk)∥⩽ Mε2

2 whenever xk ∈ Bε(x∗). Inducting (3.14) up to k = 0 yields:

xk+1 −x∗ = (I−α∇
2 f (x∗))k+1(x0 −x∗)−α

k

∑
i=0

(I−α∇
2 f (x∗))k−ir(xi). (3.18)

Next, in order to analyze the worst case bounds on the exit time, assume that the unstable subspace
of ∇2 f (x∗) has dimension 1, i.e., λ j > 0 for all j ∈ {1,2, . . . ,n− 1} and λn < 0, where λ j is the jth

eigenvalue of ∇2 f (x∗). Also let vn be an eigenvector of ∇2 f (x∗) of unit norm corresponding to the
eigenvalue λn, where λn < −β from Assumption A4. Since divergence can happen only from the
unstable subspace, our assumption on ∇2 f (x∗) will leave only a single direction of escape, i.e. along
vn, for the gradient trajectories. Moreover since both vn and −vn will be the eigenvectors of ∇2 f (x∗),
hence without loss of generality let us assume that ⟨vn,(x0 −x∗)⟩⩾ 0, where x0 ∈ B̄ε(x∗)\Bε(x∗), and
we are required to find the exit time Kexit that satisfies

Kexit = inf
k>0

{k|∥xk −x∗∥> ε}. (3.19)
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As we show in Lemma A.1 in Appendix A, this is equivalent to the following condition:

Kexit = inf
k>0

{k|⟨vn,(xk −x∗)⟩> γkε}, (3.20)

where γk =
⟨vn,(xk−x∗)⟩
∥xk−x∗∥ and we have assumed for the sake of the crude analysis that γk ∈ (0,1] for every

k. Now, taking the inner product of vn with (xk+1 − x∗) in (3.14), and using the Hessian Lipschitz
continuity and ∥r(xk)∥⩽ Mε2

2 , we get:

⟨vn,xk+1 −x∗⟩= ⟨vn,(I−α∇
2 f (x∗))(xk −x∗)⟩−α⟨vn,r(xk)⟩⩾ (1+αβ )⟨vn,xk −x∗⟩− αMε2

2
,

(3.21)

where we have used the substitution (I−α∇2 f (x∗)) =
n
∑
j=1

(1−αλ j)v jvT
j . To show divergence from x∗,

it then suffices to show that for some ρ ∈ (0,1) we have

(1+αβ )⟨vn,xk −x∗⟩− αMε2

2
⩾ (1+ραβ )⟨vn,xk −x∗⟩ (3.22)

hold for all k, which will then imply that ⟨vn,xk − x∗⟩ is strictly monotonically increasing with k.5

Further simplifying (3.22) we get the condition

β (1−ρ)⟨vn,xk −x∗⟩⩾ Mε2

2
, (3.23)

which should hold for all k. A sufficient boundary condition for this inequality to hold is:

⟨vn,x0 −x∗⟩⩾ Mε2

2β (1−ρ)
. (3.24)

Now if the boundary condition (3.24) holds then from (3.21) and (3.22) we have:

⟨vn,xk −x∗⟩⩾ (1+ραβ )k⟨vn,x0 −x∗⟩⩾ (1+ραβ )k Mε2

2β (1−ρ)
. (3.25)

Then using (3.20), exit from the ball Bε(x∗) can be guaranteed by setting the following condition:

⟨vn,xk −x∗⟩⩾ (1+ραβ )k Mε2

2β (1−ρ)
> γkε (3.26)

⇐⇒ k ⩾
log( 2γkβ (1−ρ)

Mε
)

log(1+ραβ )
, (3.27)

which implies Kexit ⩽
log

(
2γKexit

β (1−ρ)

Mε

)
log(1+ραβ ) as long as the sufficient condition (3.24) is satisfied.

5In general, we do not need the monotonicity condition for all k but only after a sufficiently large k that is smaller than the exit
time. Such trajectories will also have linear exit times as proved in a subsequent counterexample.
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The preceding rudimentary analysis guarantees a linear exit time bound for the gradient descent
method under the sufficient boundary condition (3.24). But the resulting exit time bound is loose due to
its dependency on the unknown factors γKexit and ρ , where γKexit could be arbitrarily small and the pres-
ence of ρ in the boundary condition makes this analysis more restrictive than the matrix perturbation-
based analysis presented in Section 3.5. Also, the exit time analysis in this section does not bring out the
dependence of boundary conditions and exit time bound on the problem dimension, conditioning of the
neighborhood, and spectral gap, etc. Such dependencies are captured in the analysis of Section 3.5 and
Table 2 in Section 3.6 summarizes the corresponding differences between the two analytical approaches.
More importantly this analysis guarantees a linear exit time bound only for those trajectories starting at
x0 that satisfy the monotonicity property implied by (3.21) and (3.22). That is, it does not capture the tra-
jectories for which ⟨vn,xk−x∗⟩ does not increase monotonically with k. A simple counterexample to the
need for this monotonicity property for derivation of a linear exit time bound can be easily constructed.
We refer the reader to Appendix F for one such counterexample. This implies there exist gradient tra-
jectories that can exit in a linear time while violating the monotonicity condition, thereby illustrating
that the rudimentary exit time analysis does not capture all the trajectories with linear exit times.

REMARK 3.1 Note that the sufficient condition of ⟨vn,x0 −x∗⟩⩾ Mε2

2β (1−ρ) from (3.24) guarantees linear
exit time gradient trajectories. Moreover this condition makes sure that such trajectories do not have
zero measure since the set of initialization given by {x0 | ⟨vn,x0 −x∗⟩⩾ Mε2

2β (1−ρ)} has positive measure
for sufficiently small ε .

In summary, to analyze the complete set of gradient trajectories around the saddle point that escape
in linear time and develop a precise exit time bound we need more than the class of twice-differentiable
functions; hence the need to work with analytic functions.6 Note that many optimization and learn-
ing problems, such as quadratic functions and deep neural networks with smooth activation functions,
satisfy real analyticity in some neighborhoods of stationary points, if not over the entire domain.

3.3 An informal statement of the main result

In this section, we provide an informal statement of the main result of this paper as well as a brief
discussion of the implications of this result.

THEOREM 3.1 (Informal Main Result) Under Assumptions A1–A4, the approximate trajectories of the
gradient descent method with step size α = 1

L , when initialized on the boundary of some ε neighborhood

of a strict saddle point x∗ of f (·), where ε < min
{

2β

M ,Ω

(
δ

n2

)}
and ε ≪ 1, can exit this neighborhood

in approximately linear time, i.e., Kexit ⪅ O

(
log

(
δ

εn

))
, where Kexit is the exit time for the approx-

imate trajectory, n is the problem dimension and δ is the eigen gap from Proposition 2.2. However,
this linear exit time bound holds only if the initial radial vector u0 = x0 − x∗ is not orthogonal to the
unstable subspace of ∇2 f (x∗) and subtends some non-zero angle with the stable subspace of ∇2 f (x∗).
In particular, the cosine square of the angle between the initial radial vector and the unstable subspace

6In order to get a highly precise bound on exit time, we need the best possible first-order approximations of gradient trajectories,
which can only be obtained for analytic functions. Therefore even the class of C ∞ functions is not sufficient for our analysis; see
also the discussion in Remark 3.5 in Section 3.5.1 in this regard.
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of ∇2 f (x∗) must be at least of the order Ω

(
εn
δ

)
, where this cosine square is referred to as the unstable

subspace projection value.

A formal statement of this result, which includes precise characterizations of the approximate tra-
jectory, exit time, and the bounds on ε as well as the necessary initial unstable subspace projections,
is provided in Theorem 3.3. We also refer the reader to Figure 3 for a concrete intuition of the angle
between the initial radial vector and the unstable subspace of ∇2 f (x∗) as well as its relation to the
unstable subspace projection.

We now briefly summarize the implications of this main result, while additional discussion is pro-
vided after Theorem 3.3. For a function f (·) satisfying Assumptions A1–A4, let the gradient descent
method with step size α = 1

L be initialized on the boundary of some ε neighborhood of a strict saddle
point x∗ of f (·) such that the initial radial vector u0 = x0 − x∗ subtends some angle with the unstable
subspace of ∇2 f (x∗) that is not equal to π

2 . Then we have the following statements:

S1. There exists some lower bound on the cosine square of this angle (termed as the ‘sufficient con-
dition’) for which the approximate trajectories of the gradient descent method will exit the saddle
neighborhood in linear time.

S2. Also, there exists a strict lower bound on the cosine square of this angle (termed as the ‘necessary

condition’) that is of the order Ω

(
εn
δ

)
. If the cosine square of the angle between the initial radial

vector and the unstable subspace of ∇2 f (x∗) is smaller than Θ

(
εn
δ

)
, the approximate trajectories

of the gradient descent method can never exit the saddle neighborhood in linear time.

This work rigorously establishes Statement S2 and also shows that Statement S1 is not vacuous (cf. Sec-
tion E.0.3 in Appendix E). Note that a rigorous characterization of the lower bound in Statement S1
requires a more sophisticated proof machinery, which has been pursued in our follow-up work [11].

REMARK 3.2 A fast exit time in terms of the scaling with 1
ε

in and of itself might not preclude the
gradient descent method from converging super slowly in the worst case. The carefully constructed
function with cascaded saddles in [12], in particular, is a prime example of this behavior, as the gradient
descent method takes an exponentially—in dimension n—large time in the worst case to escape the
cascaded saddles and converge to a local minimum for this function. However, the particular class of
functions within the family of Morse functions being considered in this work excludes the construction
in [12]. Going further, we have established in a follow-up work [11] that the time to escape cascaded
saddles and reach a second-order stationary point for functions in this class does not scale exponentially
in the dimension for a simple variant of the gradient descent method.

3.4 Brief overview of results and proof sketch for the linear exit time bound

Our matrix perturbation-based analysis utilizes the standard gradient-descent method (3.1) in the saddle
neighborhood Bε(x∗). Since we are interested in developing analysis suited only for the region Bε(x∗),
we assume that initially our iterate x0 sits on the boundary of B̄ε(x∗). We then follow the given sequence
of steps in order to obtain linear exit time bound for approximations of gradient descent trajectories
around a saddle point.

1. Starting with Lemma 3.2 we show that the region Bε(x∗) around the strict saddle point x∗ is
comprised of a stable and an unstable subspace, which are orthogonal to one another.
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2. Next, for any x ∈ Bε(x∗) we write ∇ f (x) in terms of the radial vector u = x− x∗ as ∇ f (x) =(∫ p=1

p=0
∇

2 f (x∗+ pu)d p
)

u.

3. Then in Lemma 3.3 using matrix perturbation theory we express the Hessian ∇2 f (x) at x =
x∗+ pu, where x ∈ Bε(x∗), p ∈ [0,1], and ∥u∥⩽ ε in terms of a perturbation of ∇2 f (x∗), as

∇
2 f (x∗+ pu) = ∇

2 f (x∗)+D(x),

with the perturbation matrix D(x) bounded as

∥D(x)∥⩽ Mpε.

4. We iterate the Gradient descent method in terms of the radial vector uk as follows:

uk+1 = xk −x∗−α∇ f (xk) =

(
I−α

∫ 1

0
∇

2 f (x∗+ puk)d p
)

uk

=⇒ uk+1 =

(
I−α∇

2 f (x∗)−α

∫ 1

0
D(x∗+ puk)d p︸ ︷︷ ︸
R(uk)=O(ε)

)
uk

where ∥R(uk)∥ =
∥∥∥α

∫ 1
0 D(x∗+ puk)d p

∥∥∥ = O(ε) from the last step. Using this radial vector
update in Lemma 3.4, we induct the above recursion up to initialization u0 and obtain the exact
trajectory expression:

uK+1 = Π
K
k=0

(
I−α∇

2 f (x∗)−R(uk)

)
u0.

5. In Lemma 3.5 we expand the product of the K +1 non-commuting matrices from the last step up
to first order as follows:

ũK+1 := Π
K
k=0Aku0 −

K

∑
r=0

(Π K
k=r+1ArR(ur)Π

r−1
k=0 Ar)u0,

where ũK+1 ≈ uK+1 and Ak := I−α∇2 f (x∗) for all k in the case of gradient descent. This is the
most crucial step in the analysis since we obtain the approximate trajectory {ũK} in this step.7

6. The approximate trajectory {ũK} obtained above cannot be uniquely determined since it is a
function of the eigenvalues of the Hessian ∇2 f (x∗), which are known only up to an interval.
Therefore in Lemma 3.6 we obtain a parametrized family of approximate trajectories for a fixed
u0, denoted by {ũτ

K}, where the parameter τ ∈ R varies with variations in the eigenvalues of the
Hessian ∇2 f (x∗). Next, we construct the minimal approximate trajectory from this family, defined
as one that stays closest to x∗ for each K and show that this minimal approximate trajectory has
the maximum exit time among all approximate trajectories.

7Even though Ak is constant for the gradient-descent iteration (3.1), we have purposefully not removed its subscript k since it
may not be constant for a general dynamical system. Consider, for instance, gradient descent with variable step size αk instead of
constant step size α and we then have Ak = I−αk∇2 f (x∗). Hence, with the subscript k intact, the expression for the approximate
trajectory {ũK} can be easily adapted to a general class of first-order methods.
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7. In Theorem 3.2 we obtain the closed form expression of the normalized radial distance for the
minimal approximate trajectory given by Ψ(K) where ε2Ψ(K)⩽ infτ ∥ũτ

K∥
2 < ε2.

8. Finally in Theorem 3.3 we obtain the smallest upper bound on K of the order O(log(ε−1)) that
satisfies the condition Ψ(K) > 1 which will imply ε2 < ε2Ψ(K) ⩽ infτ ∥ũτ

K∥
2. This condition

gives the linear exit time bound from the saddle neighborhood. We then derive any necessary
conditions on x0 for guaranteeing this linear exit time.

Before formally beginning our analysis of discrete gradient trajectories, we state the following
lemma that will be utilized frequently in our analysis.

LEMMA 3.2 For any point x ∈Bε(x∗), the vector u given by u = x−x∗ belongs to a vector space E that
is comprised of a stable subspace ES (subspace corresponding to contraction dynamics) and an unstable
subspace EUS (subspace corresponding to expansive dynamics). Formally, this can be written as

E = ES
⊕

EUS,

where
⊕

denotes the direct sum of two spaces.

Proof. The eigenvalues of the Hessian ∇2 f (x∗) are both positive and negative. Without loss of general-
ity, these can be classified into two sets of stable and unstable eigenvalues with the stable set comprising
positive eigenvalues and the unstable set having negative eigenvalues. Then the corresponding subspaces
can be written as

ES = span{vi|λi(∇
2 f (x∗))> 0}, and (3.28)

EUS = span{v j|λ j(∇
2 f (x∗))< 0}, (3.29)

where λi(∇
2 f (x∗)),vi represent the ith eigenvalue-eigenvector pair. Since these subspaces are orthogo-

nal and span the complete space E = Rn, any vector u = x− x∗ is spanned by these subspaces. Next,
we define the two index sets NS = {i|λi(∇

2 f (x∗)) > 0} and NUS = { j|λ j(∇
2 f (x∗)) < 0} for the two

subspaces. Since these subspaces are orthogonal, their index sets are disjoint. □

3.5 Analysis of discrete gradient trajectories using matrix perturbation theory

Now that we have established all the necessary preliminaries, we can move on to develop approximate
bounds on the escape time from the region Bε(x∗) for gradient descent. From here onward we restrict
ourselves to discrete time iterates denoted by subscripts k and the entire analysis is carried out in discrete
time. Also, we assume that Assumptions A1 to A4 hold along with the additional condition of m = n
in Proposition 2.2, i.e., there are no degenerate eigenvalues. Section 3.5.1 after Lemma 3.3 discusses
the analysis for the degenerate eigenvalues, i.e., the case when m ̸= n in Proposition 2.2. In there, we
show that the analysis for the degenerate case is very straightforward and easy to extend from the non-
degenerate analysis. It should also be noted that instead of analyzing exact trajectories, we analyze
from here onward the first-order approximations of the exact trajectories, where the approximation error
is sufficiently small. The presence of the higher-order terms (O(ε2) terms) in the forthcoming analysis
accounts for the approximation in our analysis, and things are proved about trajectories and perturbations
up to the first order in ε . To summarize our next set of steps, we begin with a lemma that characterizes
the approximate Hessian behavior in the region Bε(x∗), followed by a lemma that expresses xk for any
k ⩾ 0 approximately in terms of x0 and a theorem that characterizes an approximate lower bound on the
distance of xk from x∗.
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LEMMA 3.3 Let r j(u) be a function of the vector u defined as r j(u) =
∥∥∥∥( d j

dw j ∇2 f (x∗+wu)
∣∣∣∣
w=0

)∥∥∥∥
2

and ε > 0 be a constant that satisfies the necessary condition of ε < inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

.

Then for any xk ∈ Bε(x∗) such that xk = x∗+ puk with 0 < p ⩽ 1, the Hessian ∇2 f (xk) is given by

∇
2 f (xk) = ∇

2 f (x∗)+ p∥uk∥H(ûk)+O(ε2), (3.30)

where ûk =
uk
∥uk∥

and we have that

H(ûk) =
n

∑
i=1

(
⟨vi(0),H(ûk)vi(0)⟩vi(0)vi(0)T +λi(0)(∑

l ̸=i

⟨vl(0),H(ûk)vi(0)⟩
λi(0)−λl(0)

vl(0))vi(0)T

+λi(0)vi(0)(∑
l ̸=i

⟨vl(0),H(ûk)vi(0)⟩
λi(0)−λl(0)

vl(0))T
)

(3.31)

with λi(0),vi(0) being the ith eigenvalue–eigenvector pair of the Hessian ∇2 f (x∗).

The proof of this lemma is given in Appendix B. Note that the expression for H(ûk) in the lemma
statement is more of a property rather than a definition, where ∥H(ûk)∥2 is bounded. However, it may
not be the case that H(ûk) = O(ε). In particular, we have the following bound from inequality (C.16)
in Appendix C:

∥H(ûk)∥2 ⩽ M+O(ε), (3.32)

which suggests that ∥H(ûk)∥2 could even be a constant-order term; see Appendix C for further details.

REMARK 3.3 The condition ε < inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

is necessary but may not be sufficient

to guarantee this lemma’s result. Since evaluating the radius of convergence for an expansion generated
by the Rayleigh–Schrödinger perturbation analysis is beyond the scope of this work, we only put forth
this necessary condition here.

REMARK 3.4 Note that the quantity inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

is exactly equal to the radius

of convergence for the Taylor series expansion of the matrix ∇2 f (x∗ +wu) about w > 0 for all {u :
∥u∥2 = 1}, which is strictly positive due to the analytic nature of f (·). A proof of this claim is given in
Appendix B.

3.5.1 Statement about the generality of Lemma 3.3. It should be noted that while obtaining (3.31),
we assumed a minimum gap of δ between any two eigenvalues of the Hessian ∇2 f (x∗). However,
we can have many groups of equal or almost similar eigenvalues from Proposition 2.2; this creates
singular terms in the coefficient denominators of first-order eigenvector corrections in (3.31). This can
be solved easily from the degenerate matrix perturbation theory, which extends the results of Rayleigh–
Schrödinger theory. From that we obtain the following new first-order correction term in place of (B.16)
in the proof of the lemma for the ith eigenvector ṽi(w):

d
dw

(ṽi(w))
∣∣∣∣
w=0

= ∑
l ̸∈Gp

⟨ṽl(0),H(ûk)ṽi(0)⟩
λi(0)−λl(0)

ṽl(0), (3.33)



20 of 70 DIXIT, GÜRBÜZBALABAN, AND BAJWA

where the corresponding ith unperturbed eigenvalue λi(0) belongs to the set Gp. Also note that we have
a new basis of eigenvectors ṽi instead of vi, which resolves the degeneracy issue within the groups of
similar eigenvalues. This change of basis can always be done since there are infinitely many solutions
to the eigenvectors belonging to the degenerate subspaces. More importantly, we are never required to
compute these eigenvectors explicitly in our analysis. To get a detailed understanding of the degenerate
matrix perturbation theory, the reader can refer to [6, 14].

Therefore for the case with degenerate eigenvalue sets, the analysis will remain the same, but with
fewer first-order perturbation terms ((3.33) has n−|Gp| orthogonal terms in the summation instead of
the n− 1 orthogonal terms that appear in (B.16)). Now, these fewer O(ε) terms in (3.33) will result
in weaker first-order perturbations on the distance ∥xk −x∗∥ when compared to that from (B.16). In a
subsequent lemma (Lemma 3.6), it will be established that the worst-case trajectory is obtained when
the first-order perturbation terms are used to minimize ∥xk −x∗∥ for every k. This worst-case trajec-
tory stays inside the ball Bε(x∗) for the maximum number of iterations. For the case of degenerate
eigenvalues, fewer first-order terms from (3.33) means a weaker perturbation effect over ∥xk −x∗∥,
which implies that ∥xk −x∗∥ cannot be minimized completely. This is in contrast to the case of (B.16)
which has more first-order terms (n−1) and hence a stronger perturbation effect over ∥xk −x∗∥. Now, a
stronger perturbation can be used to contain the worst-case trajectory inside Bε(x∗) for a longer duration
(part of the proof for Lemma 3.6). As a consequence, the worst-case trajectory from the non-degenerate
case will have a larger exit time compared to that of the degenerate case. Therefore, we are not required
to perform the analysis for the degenerate case because the worst-case performance in terms of exit time
is captured in the current analysis for the non-degenerate case.

REMARK 3.5 It is worth noting here that the exit time analysis in this work could have been carried out
using the Davis–Kahan theorem [10]. Such an analysis would have required the function f (·) to only be
C 2, as opposed to analytic, but it would have necessitated the eigensubspaces of the Hessian ∇2 f (x∗)
to be non-degenerate. However, non-degeneracy of the eigensubspaces is a much stronger assumption
in many real-world problems than the analyticity assumption of the function f (·), which is needed for
use of the degenerate matrix perturbation theory in our analysis.

We now move on to the lemmas that express xK ∈ Bε(x∗) for any K ⩾ 0 approximately in terms of
x0 provided K and ε satisfy certain necessary conditions.

LEMMA 3.4 Given an initialization of the radial vector u0 and ε < inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

,

at any iteration K the radial vector uK is given by the product

uK =
K−1

∏
k=0

[
Ak + εPk

]
u0, (3.34)

where εPk = Bk +O(ε2), Bk = O(ε) for xk ∈ Bε(x∗) and Ak,Bk are given by the following equations:

Ak = ∑
i∈NS

cs
i (k)vi(0)vi(0)T + ∑

j∈NUS

cus
j (k)v j(0)v j(0)T (3.35)

Bk =
n

∑
i=1

∑
l ̸=i

(
dl,i(k)vl(0)vi(0)T +di,l(k)vi(0)vl(0)T

)
. (3.36)
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The coefficient terms cs
i (k), cus

j (k), di,l(k) and dl,i(k) are as follows:

cs
i (k) =

(
1−αλi(0)−α

∥uk∥
2

⟨vi(0),H(ûk)vi(0)⟩
)
, (3.37)

cus
j (k) =

(
1−αλ j(0)−α

∥uk∥
2

⟨v j(0),H(ûk)v j(0)⟩
)
, and (3.38)

di,l(k) = dl,i(k) =
⟨vl(0),H(ûk)vi(0)⟩λi(0)α ∥uk∥

2(λl(0)−λi(0))
. (3.39)

Further, suppose νn ⩽ · · ·⩽ ν1 are the absolute values of the eigenvalues of the matrix ∏
K−1
k=0

[
Ak+εPk

]
and we have that sup0⩽k⩽K−1 ∥Ak∥2 = ∥A∥2, sup0⩽k⩽K−1

∥∥A−1
k

∥∥
2 =

∥∥A−1
∥∥

2 and sup0⩽k⩽K−1 ∥Pk∥2 =

∥P∥2 for some matrices A and P. Then for ε < min
{

inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

,
∥A−1∥−1

2
∥P∥2

}
and

Kε ≪ 1, the following condition holds provided Ak is non-singular for all k:

∥∥A−1∥∥−K
2

(
1−Kε

∥P∥2

∥A−1∥−1
2

−O

(
(Kε)2

))
⩽ νn ⩽ · · ·⩽ ν1 ⩽ ∥A∥K

2

(
1+Kε

∥P∥2
∥A∥2

+O

(
(Kε)2

))
.

(3.40)

The proof of this lemma is given in Appendix C. This lemma states that the radial vector uK evolves
linearly at every iteration K, where the transition matrix from the initial state u0 to the state uK is

given by ∏
K−1
k=0

[
Ak + εPk

]
. This lemma also states that the absolute value of the eigenvalues of this

transition matrix are bounded between terms that are expressed up to Kε precision if Kε ≪ 1 and ε is
upper bounded by the value provided in the lemma. This result is extremely useful in establishing that

the matrix product given by ∏
K−1
k=0

[
Ak + εPk

]
can be computed explicitly up to Kε precision without

trading off much on the accuracy of the radial vector uK .

REMARK 3.6 Notice that the matrix product ∏
K−1
k=0

[
Ak +εPk

]
in this lemma is hard to compute where

expansion of this product will generate K terms. The hardness lies in the fact that the higher order terms
in ε appearing in the expansion do not simplify due to the fact that matrices Pk do not commute. Beyond
first order the expansion of this matrix product cannot be simplified with ease. Therefore Lemma 3.4 is
of utmost importance in the sense that it provides the conditions under which the the tail error generated

by the first order approximation ∏
K−1
k=0

[
Ak + εPk

]
≈ ∏

K−1
k=0 Ak + ε

K
∑

r=0
(Π K

k=r+1ArPrΠ
r−1
k=0 Ar) remains

bounded.

LEMMA 3.5 Given an initialization of the radial vector u0, at any iteration K such that K = O

(
1
ε

)
and ε < min

{
inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

, 2δ (1−αL)
αM(2Ln2+δ )

+O(ε2)

}
when α ∈

(
0, 1

L −O(ε)

]
or

ε < min
{

inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

, 2Lδ

M(2Ln2−δ )
+O(ε2)

}
when α ∈

(
1
L −O(ε), 1

L

]
, the radial
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vector uK can be approximately given as

uK ≈ ũK = ε ∑
i∈NS

(K−1

∏
k=0

cs
i (k)θ

s
i + ∑

l∈NS

K−1

∑
r=0

r−1

∏
k=0

cs
i (k)di,l(r)

K−1

∏
k=r+1

cs
l (k)θ

s
l

+ ∑
l∈NUS

K−1

∑
r=0

r−1

∏
k=0

cs
i (k)di,l(r)

K−1

∏
k=r+1

cus
l (k)θ us

l

)
vi(0)+

ε ∑
j∈NUS

(K−1

∏
k=0

cus
j (k)θ

us
j + ∑

l∈NS

K−1

∑
r=0

r−1

∏
k=0

cus
j (k)d j,l(r)

K−1

∏
k=r+1

cs
l (k)θ

s
l

+ ∑
l∈NUS

K−1

∑
r=0

r−1

∏
k=0

cus
j (k)d j,l(r)

K−1

∏
k=r+1

cus
l (k)θ us

l

)
v j(0), (3.41)

where εθ s
i = ⟨u0,vi(0)⟩, εθ us

j = ⟨u0,v j(0)⟩ and we have that

u0 = ε ∑
i∈NS

θ
s
i vi(0)+ ε ∑

j∈NUS

θ
us
j v j(0) (3.42)

with θ s
i ⩾ 0, θ us

j ⩾ 0 for all i, j. The coefficient terms cs
i (k), cus

j (k), di,l(k), dl,i(k) are the same as in
Lemma 3.4.

The proof of this lemma is given in Appendix C. The approximation ũK in this lemma for the radial

vector uK is generated by explicitly computing the matrix product ∏
K−1
k=0

[
Ak + εPk

]
from Lemma 3.4

up to first order in ε . Also note that the non-negativity of θ s
i and θ us

j here can be assumed without loss
of generality.

REMARK 3.7 The conditions ε < min
{

inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

, 2δ (1−αL)
αM(2Ln2+δ )

+O(ε2)

}
when

α ∈
(

0, 1
L −O(ε)

]
or ε < min

{
inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

, 2Lδ

M(2Ln2−δ )
+O(ε2)

}
when we have

α ∈
(

1
L −O(ε), 1

L

]
are necessary but may not be sufficient due to unavailability of the radius of con-

vergence from the Rayleigh–Schrödinger perturbation analysis. Also note that here r j(u) has the same
definition as in Lemma 3.3.

In words, this lemma states that the radial vector uK can be expressed by explicitly computing the

matrix product ∏
K−1
k=0

[
Ak + εPk

]
from Lemma 3.4 to Kε precision provided Kε ≪ 1 and ε is bounded

above. This approximate solution represented by ũK generates the trajectory {ũK}Kexit
K=1, which we refer

to as the ε-precision trajectory.

REMARK 3.8 Notice that from (3.41) we obtain a closed form expression for the ε precision trajectory
inside Bε(x∗) for some initialization u0. However the solution is not unique due to the fact that the
coefficients cs

i (k),c
us
j (k),dl,i(k) from Lemma 3.4 are known only up to an interval. This is due to the

fact that the eigenvalues λi(0),λ j(0) are known up to an interval. Hence we will obtain a family of ε

precision trajectories from the expression of ũK . The next lemma provides a handle on the exit times
for such a family of approximate trajectories.
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FIG. 3: A 2-D representation of the approximate trajectories, where every approximate trajectory has its
own exit time and the minimal approximate trajectory is the one which has the largest exit time. The
initial radial vector subtends a very large angle of ∠OAP (0 ≪∠OAP < π

2 ) from the unstable subspace,
where the initial unstable projection is given by ∑ j∈NUS

(θ us
j )2.

LEMMA 3.6 Let Sε =

{
{ũτ

K}
Kτ

exit
K=1

∣∣∣∣u0

}
be the set of all possible τ-parameterized ε-precision trajecto-

ries generated by the approximate equation (3.41) in Lemma 3.5, where the parameter τ ∈ R varies

with variations in the sequence
{
{cs

i (k),c
us
j (k),dl,i(k)}K−1

k=0

}Kexit

K=1
. Let Kτ

exit be the exit time of the τ-

parameterized trajectory {ũτ
K}

Kτ
exit

K=1 from the ball Bε(x∗) where we have that

Kτ
exit = inf

K⩾1

{
K

∣∣∣∣ ∥ũτ
K∥

2 > ε
2
}
. (3.43)

Formally, ũτ
K is a possible solution to the equation (3.41) in ũK , where 1 ⩽ K ⩽ Kτ

exit and ũK varies with
variations in the sequence {cs

i (k),c
us
j (k),dl,i(k)}K−1

k=0 .
Let Kι be the exit time of the infimum over all possible τ-parameterized trajectories, where infimum

is taken with respect to the squared radial distance ∥ũτ
K∥

2. This Kι can be defined as

Kι = inf
K⩾1

{
K

∣∣∣∣ inf
τ

{
∥ũτ

K∥
2
}
> ε

2
}
. (3.44)
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Then we have the following condition:

Kι ⩾ sup
τ

{
Kτ

exit

}
= sup

τ

inf
K⩾1

{
K

∣∣∣∣ ∥ũτ
K∥

2 > ε
2
}
. (3.45)

The proof of this lemma is given in Appendix D. This particular lemma states an important result
about the exit time Kι of the trajectory generated by selecting that approximate vector ũτ

K from all
possible τ that has the minimum radial distance from x∗ at each K. It claims that this minimal trajectory
has the maximum exit time from Bε(x∗). Though seemingly trivial, this result is extremely important in
proving the worst-case exit time for trajectories with linear escape rates. A representation of the family
of approximate trajectories along with the constructed minimal approximate trajectory is provided in
Figure 3.

THEOREM 3.2 For every value of the parameter τ , there exists a lower bound on the squared radial

distance ∥ũτ
K∥

2 for all K in the range 1 ⩽ K ⩽ supτ

{
Kτ

exit

}
provided Kε ≪ 1. Moreover, this lower

bound can be expressed using a function of K called the trajectory function Ψ(K). Formally, for 1 ⩽

K < supτ

{
Kτ

exit

}
we have that

ε
2 ⩾ inf

τ
∥ũτ

K∥
2 >ε

2
Ψ(K), (3.46)

where the trajectory function Ψ(K) is defined as follows:

Ψ(K) =

(
c2K

1 −2Kc2K−1
2 b1 −b2cK

3 cK
2 −b2c2K

3

)
∑

i∈NS

(θ s
i )

2 +

(
c2K

4 −2Kc2K−1
3 b1 −b2cK

3 cK
2 −b2c2K

3

)
∑

j∈NUS

(θ us
j )2

(3.47)

with c1 =

(
1−αL− αεM

2 −O(ε2)

)
, c2 =

(
1−αβ + αεM

2 +O(ε2)

)
, c3 =

(
1+αL+ αεM

2 +O(ε2)

)
,

c4 =

(
1+αβ − αεM

2 −O(ε2)

)
, b1 =

(
αεMLn

2δ
+O(ε2)

)
, b2 =

(
αεMLn

2δ
+O(ε2)

)(
1+O(Kε)

)
(

αL+αβ+O(ε2)

) and δ is

defined in Proposition 2.2.

We also require that ε < min
{

inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

, 2δ (1−αL)
αM(2Ln2+δ )

+O(ε2)

}
when α ∈(

0, 1
L −O(ε)

]
, while ε < min

{
inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

, 2Lδ

M(2Ln2−δ )
+O(ε2)

}
when we have

α ∈
(

1
L −O(ε), 1

L

]
.

The proof of this theorem is given in Appendix D. Theorem 3.2 states that for a given initialization
u0, all the possible ε-precision trajectories generated have their radial distance from x∗ lower bounded
using some function Ψ(K). Now this Ψ(K) can be used to determine Kι and hence Kexit for any choice
of the step size α .
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REMARK 3.9 Notice that the trajectory function Ψ(K) corresponds to the minimal approximate trajec-
tory infτ ∥ũτ

K∥. Now Kι can be obtained by solving the condition Kι = inf K⩾1
K=O(log(ε−1))

{K | Ψ(K)> 1}.

The condition K = O(log(ε−1)) ensures linear time solutions, which are the only solutions of interest
to the problem. Then from Lemma 3.6 we will have Kexit < Kι = O(log(ε−1)). It is worth reminding
the reader here that the O(ε2) terms in the theorem statement account for the approximation in analysis
and things are proved about trajectories and perturbations up to first order in ε .

Observe that in the expression for the trajectory function Ψ(K), the term accompanying ∑i∈NS
(θ s

i )
2

is
(

c2K
1 −2Kc2K−1

2 b1 −b2cK
3 cK

2 −b2c2K
3

)
, which is a decreasing function of K since c1 < 1. Moreover,

the rate of decrease of the term
(

c2K
1 −2Kc2K−1

2 b1−b2cK
3 cK

2 −b2c2K
3

)
for small values of K is governed

by c1 and not by c3, where c3 > 1 due to the fact that b1,b2 are of order O(ε) and so −2Kc2K−1
2 b1,

−b2c2K
3 will not decrease as fast as c2K

1 for small enough K since we assumed Kε ≪ 1. Next, by a similar

argument the term accompanying ∑ j∈NUS
(θ us

j )2 given by
(

c2K
4 −2Kc2K−1

3 b1 −b2cK
3 cK

2 −b2c2K
3

)
is an

increasing function of K for Kε ≪ 1 since c4 > 1 and so c2K
4 dominates the term 2Kc2K−1

3 b1+b2cK
3 cK

2 +
b2c2K

3 . Also notice that Ψ(K)< 1 at K = 0 since ∑i∈NS
(θ s

i )
2 +∑ j∈NUS

(θ us
j )2 = 1. Therefore, provided

the initial unstable subspace projection ∑ j∈NUS
(θ us

j )2 is not too small, the trajectory function Ψ(K) first
increases for small K, where Kε ≪ 1, and then decreases to −∞. Then for some small K if Ψ(K)> 1, we
are guaranteed that the minimal approximate trajectory infτ ∥ũτ

K∥ escapes Bε(x∗). Section 4.1 simulates
the evolution of the trajectory function Ψ(K) on the phase retrieval problem, which corroborates this
theoretical understanding.

Before moving on to the next theorem, we introduce the notion of conditioning of a function. The
condition number at the stationary point of a non-convex function is given by the ratio of the largest
absolute eigenvalue to the smallest absolute eigenvalue of the Hessian of the function at that point.
Also, a function is called perfectly conditioned if the condition number is equal to 1. In the current
problem setting, the condition number of the function f (·) at the saddle point x∗ is given by L

β
. Now,

the function f (·) is well-conditioned if the condition number L
β

is not arbitrarily large or equivalently β

L
is bounded away from 0.

THEOREM 3.3 For the gradient update equation with the step size α = 1
L , there exists a minimum

projection ∆ of the radial vector initialization u0 on the unstable subspace EUS such that whenever
∑ j∈NUS

(θ us
j )2 ⩾ ∆ , where u0 + x∗ ∈ B̄ε(x∗)\Bε(x∗), u0 = ε ∑i∈NS

θ s
i vi(0)+ ε ∑ j∈NUS

θ us
j v j(0), the

ε-precision trajectories {ũK}Kexit
K=1 can exit Bε(x∗) in linear time. Moreover their exit time Kexit from the

ball Bε(x∗) is approximately upper bounded as follows:

Kexit < Kι ⪅
log

((
2+ εM

2L

)
log

(
2+ εM

2L

1+ β

L −
εM
2L

)
2δ

εMn

)
2log

(
2+ εM

2L

1+ β

L −
εM
2L

) , (3.48)

where ε < min
{

inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

, 2Lδ

M(2Ln2−δ )
+O(ε2), 2β

M

}
and we must necessarily

have that ∆ > ε
MLn

δ (L+β ) with δ defined in Proposition 2.2.
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The proof of this theorem is given in Appendix E. In terms of the order notation, we have Kexit ⪅

O

(
log

(
δ

εn

))
and the initial unstable subspace projection satisfies ∑ j∈NUS

(θ us
j )2 ⩾ ∆ > Ω

(
εn
δ

)
.

REMARK 3.10 This theorem guarantees the existence of ε-precision trajectories with linear exit time
and gives an upper bound on their exit time Kexit from the ball Bε(x∗). However, the sufficient condi-

tions that guarantee the existence of this exit time Kexit ⪅O

(
log

(
1
ε

))
depend on the quantity ∆ . Note

that the condition ∆ > ε
MLn

δ (L+β ) is necessary for the existence of order O

(
log

(
1
ε

))
solution of Kι but

not sufficient. Since this work only deals with the existence of linear exit time solutions, we refrain from
developing tighter lower bounds on ∆ . Obtaining such sufficient conditions requires a more rigorous
analysis of the trajectory function Ψ(K), which is beyond the scope of current work. In particular, our
followup work [11] derives one such sufficient condition.

REMARK 3.11 Observe that the bound on the exit time from Theorem 3.3 depends on quantities like
the Lipschitz parameters, condition number, problem dimension and the eigen gap. However for struc-
tured problems such as those in [7], one can leverage the specialized function geometry and obtain rates
of convergence independent of these parameters. But in the absence of any other assumption on the
function, and since we are dealing with a much larger function class, i.e., the class of Morse functions,
these parameters become necessary to evaluate the escape rates. In order to better understand the utility
of these local Lipschitz parameters in the derivation of our results for the general (as opposed to the
specialized) non-convex functions, observe that the local Hessian Lipschitz parameter M is required to
bound ∥H(ûk)∥2, where H(ûk) is used to determine the Hessian at any point xk ∈ Bε(x∗) from Lemma
3.3. Next, the local gradient Lipschitz parameter L controls the coefficient terms cs

i (k), cus
j (k), di,l(k)

from Lemmas 3.4 and 3.5, where these terms depend on the eigenvalues of ∇2 f (x∗), the difference
between these eigenvalues, and the matrix H(ûk), which comes from Lemma 3.3. Since these coeffi-
cient terms determine the expression for the approximate gradient trajectory in Lemma 3.5, one cannot
generate a closed-form expression of the approximate gradient trajectory in the absence of the gradient
Lipschitz parameter. Finally, the minimal approximate trajectory function from Theorem 3.2 relies on
the precise bounds for these coefficients. Without the gradient Lipschitz parameter, the eigenvalues of
∇2 f (x∗) cannot be bounded and similarly without the Hessian Lipschitz parameter one cannot obtain
an upper bound on ∥H(ûk)∥2.

Theorem 3.3 guarantees a linear exit time bound from the ball Bε(x∗) for ε-precision trajectories
under some necessary initial conditions on x0. The necessary condition of ∆ > ε

MLn
δ (L+β ) requires that

the initial radial vector is not aligned too much with the stable subspace of the Hessian ∇2 f (x∗) and
has some order Ω(ε) alignment with the unstable subspace so as to facilitate the linear time escape. It
should be noted that this necessary condition of ∆ > ε

MLn
δ (L+β ) is sufficient to claim that these gradient

descent trajectories for α < 1
L will almost surely not terminate into the strict saddle point x∗ from the

following Lemma 3.7.

LEMMA 3.7 The discrete gradient trajectories for α < 1
L ending into the first-order strict saddle point

x∗ have zero Lebesgue measure with respect to the space E and are referred to as trivial trajectories.
This result can be established using the stable center manifold theorem from [40].

We refer the reader to [24] for a proof of this lemma. Note that the assumption on the step size α < 1
L
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in Lemma 3.7 is necessary since the zero measure result can only be developed when the map G : xk 7→
xk+1, where xk+1 = xk −α∇ f (xk) =: G(xk), is a diffeomorphism (or is at least locally bi-Lipschitz). A
crucial step in [24] where this diffeomorphism property is utilized involves pulling back measure zero
sets under the diffeomorphism G to again get measure zero sets. However for the case of α = 1

L , the
map G : xk 7→ xk+1 fails to be a diffeomorphism (or even locally bi-Lipschitz); see details in [24].

We also note that the condition of minimal non-zero projection of the initial point on the unstable
subspace of ∇2 f (x∗) from Theorem 3.3, given by the bound ∆ > ε

MLn
δ (L+β ) , is tight. Moreover, this

necessary condition does not contradict any existing results regarding the almost sure non-convergence
of randomly initialized gradient descent to strict saddle points. Further, recall that the gradient descent
method may get stuck at the saddle point for a particular set of initializations. In Theorem 3.3, however,
we provide a condition on the initialization that ensures its exclusion from such a set. This condition,
which is one of the major contributions of this work, requires the projection of the initial point on the
unstable subspace of the Hessian ∇2 f (x∗) at the saddle point x∗ to be at least on the order of Ω(ε).
Take, for instance, a specific example of the strict saddle Morse function f (x,y) = x2 − y2 with the
initialization scheme of (x0,0) for any x0 ∈ R. Under this given initialization scheme, the gradient
descent method will eventually get stuck at the origin, which is a strict saddle point. However, since the
initialization point completely lies in the stable subspace of ∇2 f (0,0), which is span{(1,0)}, it has a
null projection on the unstable subspace of ∇2 f (0,0), which is span{(0,1)}. Therefore, this example
violates the minimal projection condition of Theorem 3.3 and does not affect the validity of our claims.

3.6 Comparison with the exit time bound from Section 3.2

It can be seen from Theorem 3.3 that the exit time bound for the approximate trajectory and the necessary
initial condition using the matrix perturbation-based analysis depend on quantities like the inverse of
the condition number β

L , minimum eigenvalue gap δ , function’s dimension n and the size of the saddle
neighborhood ε . In contrast, the rudimentary analysis in Section 3.2 does not bring out the dependence
of the exit time bound and the initial boundary condition on these key problem parameters. Moreover,
the analysis developed in Section 3.2 leaves more open questions by introducing unknown parameters
like ρ and γKexit , where γKexit could be arbitrarily small and the presence of ρ in the boundary condition
makes the analysis from Section 3.2 more restrictive than the analysis presented in Section 3.5 where
matrix perturbation theory is used. The main reason for this difference between the results of Section
3.2 and those of Theorem 3.3 is that, by restricting the class of functions from C 2 to real analytic, we
are able to develop tight approximations to discrete trajectories using the matrix perturbation theory that
lead to precise expressions for the exit time bound and the initial boundary condition that depend on
the key problem parameters. These differences between the rudimentary analytical approach of Section
3.2 and the matrix perturbation-based approach of Section 3.5 are also summarized in Table 2. Notice
that there is a cross (✗) marked against the ‘Closed form expression for the trajectory’ in Table 2 in
the column corresponding to the analysis of Section 3.2. This is because although (3.18) provides an
expression for the trajectory inside the ball Bε(x∗), its exact closed form cannot be determined due to
the fact that we only have information on ∥r(xk)∥ in Section 3.2. In contrast, the same r(xk) is known
up to first-order precision in Section 3.5 and therefore a closed-form expression for the ε-precision
trajectory is available from Lemma 3.5.
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Assumptions / Techniques / Metrics Exit Time Analysis from Section 3.2 Exit Time Analysis from Section 3.5

Function class C 2 Morse functions locally C ω Morse functions

Proof techniques Sequential monotonicity of Matrix perturbation theory and

the unstable subspace projection approximation theory

Key metrics Saddle neighborhood’s radius ε , Saddle neighborhood’s radius ε ,

unknown factors γKexit ,ρ dimension n and eigenvalue gap δ

Closed-form expression for the trajectory / ✗ ✓

approximate trajectory inside Bε(x∗)

Constraints on the set of trajectories / Gradient trajectories for which ⟨vn,xk −x∗⟩ No constraints

approximate trajectories analyzed increases monotonically with k

Linear exit time bound O

(
log

(
γKexit (1−ρ)

ε

))
O

(
log

(
δ

εn

))
Nature of the exit time bound Exact Approximate

Initial boundary conditions ⟨v0,x0 −x∗⟩⩾ Ω

(
ε2

1−ρ

)
∑ j∈NUS

(θ us
j )2 ⩾ ∆ > Ω

(
εn
δ

)
Bounds on ε ✗ ✓

Table 2: Comparison of the exit time analyses that follow from existing analytical techniques (Section
3.2) and the novel matrix perturbation-based analytical approach of Section 3.5.

4. Numerical results

To support the theoretical framework developed in this work and showcase the effectiveness of gradient
trajectories with large initial unstable projections in escaping from strict saddle neighborhoods, we
evaluate the performance of the gradient descent method on the phase retrieval problem [5]. Briefly, the
phase retrieval problem formulation is given by

min
x∈Rn

f (x) =
1

4m

m

∑
j=1

[
⟨a j,x⟩2 − y j

]2

, (4.1)

where the y j’s are known observations and the a j’s are independent and identically distributed (i.i.d.)
random vectors whose entries are generated from a normal distribution. Note that the variable ’m’ here
in (4.1) should not be confused with the number of eigenvalue groups ’m’ defined in proposition 2.2. The
formulation in (4.1) is the least-squares problem reformulation for the Short-Time Fourier Transform
(STFT) of the actual phase retrieval problem (see [16]). Moreover, the above least-squares reformulation
of the original phase retrieval problem can also be found in recent works like [27], which highlight the
efficacy of simple gradient descent method on structured non-convex functions. Clearly, the function in
(4.1) satisfies Assumption A1 and also Assumptions A2 and A3 locally in every compact set.
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FIG. 4: Simulating gradient trajectories on the phase retrieval problem with α = 0.1/L under certain
initial unstable projections for various values of m, n and ε .

In the simulations, we set y j = 1 for 1 ⩽ j ⩽
⌊m

2

⌋
and y j = −1 otherwise. Also, for the sake of

simplicity we always set m = n so that the system of equations y j = ⟨a j,x⟩2 is neither under determined
nor over determined and the Hessian of the function f (·) is full rank. The i.i.d. nature of the a j’s thus
implies that the parameter β

L is not too small and therefore Assumption A4 gets satisfied. The closed-
form expressions for the gradient and the Hessian of the function in (4.1) are, respectively, as follows:

∇ f (x) =
1
m

m

∑
j=1

(
⟨a j,x⟩2 − y j

)
⟨a j,x⟩a j, and (4.2)

∇
2 f (x) =

1
m

m

∑
j=1

(
3⟨a j,x⟩2 − y j

)
a jaT

j . (4.3)

For the particular choice of y′js it is observed that x∗ = 0 is a strict saddle point. We now initialize the
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FIG. 5: Simulating gradient trajectories on the phase retrieval problem with α = 1/L under certain initial
unstable projections for various values of m, n and ε .

gradient descent method in the ε-neighborhood of x∗ and examine the exit-time behavior of its trajec-
tories for different values of n,m,ε, and the ‘projection’ of the initial iterate on the unstable subspace,
which corresponds to the quantity ∑ j∈NUS

(θ us
j )2. The results are reported in Figure 4 for the step size of

α = 0.1/L and in Figure 5 for the step size of α = 1/L, with L being the largest eigenvalue of ∇2 f (x∗).
Note that each subplot in both of the figures corresponds to different random a j’s. In order to highlight
the dependence of the exit time on the unstable projection, we compare two different initializations of
the gradient descent method for the same set of problem parameters in terms of the radial distance of the
respective generated trajectories from the saddle point. Also the ”first exit time” (the iteration when the
gradient trajectory exits Bε(x∗) for the first time) from the saddle neighborhood for the two trajectories
are marked on each of the curves in colors matching with their respective radial distance curves.

It is evident from the two figures that, as suggested by the theoretical developments in this paper,
a larger initial unstable subspace projection results in a faster exit time. More importantly, Figure 5
corroborates our findings from Theorem 3.3 that for the step size of 1

L , even with very small initial
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unstable subspace projections, i.e., ∑ j∈NUS
(θ us

j )2 = O(ε) such as those in Figure 5(a) and Figure 5(b),
faster exit times are possible. Such conclusion does not necessarily hold for small step size, as in Figure
4(a) and Figure 4(b), where small initial unstable subspace projections yield relatively larger exit times.

We next illustrate the dependence of the exit time estimate on the dimension n and eigen gap δ . We
first develop a numerical setup to showcase the dependence on δ . To give an idea of our experimental
setup, below is a step-by-step methodology used to perform simulations:

1. Suppose the Hessian of function f (·) for the phase retrieval problem (4.1) has three distinct groups
of eigenvalues,8 where the eigenvalues within any group are identical such that one group has
eigenvalues equal to the gradient Lipschitz constant L (as before, L is the largest eigenvalue of
∇2 f (x∗), where x∗ is the strict saddle point), the other group has eigenvalues equal to −β , and
the third group is placed on the eigenvalue spectrum so that it is at a δ distance from one of
these groups. Further, suppose the third eigenvalue group has eigenvalues −β + δ where (L+
β )/2 > δ > 2β . This construction preserves the parameters L,β from Assumptions A2, A4 for
the function f (·) as the eigen gap δ is varied. Though the Hessian Lipschitz parameter M for the
function f (·) may not be preserved by this construction,9 yet this setup is still able to control a
given maximum number of parameters, i.e., L,β and the problem dimension n.

2. Next, we set m = n = 100 in the phase retrieval problem (4.1), where x ∈ Rn, a j’s are taken to
be the canonical basis of Rn, and the eigen gap δ varies in the range [0.15,2.13]. Using the setup
described in the previous bullet point, we then set the y j’s as follows:

y j =


m
20 ; 1 ⩽ j ⩽

⌊m
3

⌋
m
20 −mδ ;

⌊m
3

⌋
+1 ⩽ j ⩽ 2

⌊m
3

⌋
−5m ; otherwise.

(4.4)

3. Since the a j’s are orthonormal, it can be readily checked using (4.3) that the eigenvalues of ∇2 f (x)
at x = 0 are −y j/m and we have L = 5, β = 1/20 from the given choice of y j’s. By the above
choice of y j’s, the eigenvalues belong to three distinct groups and x = 0 is a strict saddle point. In
particular, the choice y j =

m
20 −mδ from above corresponds to the case where the free eigenvalue

group has eigenvalues equal to (δ − 1
20 ).

4. Finally, for the eigen gap δ in the range [0.15,2.13], we compute the exit time from ε-neighborhood
of the origin for different values of the initial unstable subspace projections.

The results for this numerical setup are plotted in Figure 6 for two values of the initial unstable
subspace projections for α = 0.1/L, where we have displayed the exit time versus δ on the logarithmic
scale. We observe from the figure that the exit time increases with increasing eigen gap δ at least
initially, which agrees with Theorem 3.3 where we have Kexit ⪅ O(logδ ).

Next, we illustrate the dependence of the exit time on the problem dimension. Note that in general
as the dimension n increases, the gradient as well as the Hessian Lipschitz parameters (L,M) increase.
In particular, we have L = Θ(n), M = Θ(n) (see the discussion within Section 3 of [7]). However, we

8We can introduce more groups of eigenvalues but refrain from doing so for the sake of simplicity.
9The Hessian Lipschitz parameter M may change but will remain bounded in every compact set and therefore will be upper

bounded by a constant term in the ball Bε (x∗). Also, M will remain constant with respect to the dimension n since n is fixed here.
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FIG. 6: Exit time versus the eigen gap δ (logarithmic scale) under certain initial unstable subspace
projections for given values of n, L, β , and ε .

can showcase the dependence of the exit time on the problem dimension for very particular choice of
functions by keeping the gradient and Hessian Lipschitz parameters fixed with respect to the order of
dimension. To this end, we modify the cost function in the phase retrieval problem (4.1) by normalizing
it with dimension n and rewriting (4.1) as:

min
x∈Rn

f (x) =
1

4mn

m

∑
j=1

[
⟨a j,x⟩2 − y j

]2

, (4.5)

where the normalization factor of 1/n helps in keeping the Hessian Lipschitz parameter independent
of the dimension n. Note that in the earlier formulation (4.1) if we had M = Θ(n) then in the new
formulation (4.5) we will have M =Θ(1).

Next, we once again set m = n in (4.5), where x ∈Rn, and vary n in the interval [20,800]. As before
the a j’s are the canonical basis of Rn, while the eigen gap δ is fixed at 0.1. We then set the y j’s as
follows:

y j =


mn
20 ; 1 ⩽ j ⩽

⌊m
2

⌋
−mn

20 ;
⌊m

2

⌋
+1 ⩽ j ⩽ 2

⌊m
2

⌋
−1

−5mn ; otherwise.
(4.6)

Since the a j’s are orthonormal, it can be readily checked after adapting (4.3) for the modified formulation
(4.5) that the eigenvalues of ∇2 f (x) at x = 0 are −y j

mn and we have L = 5, β = 1/20, and δ = 0.1 from
the given choice of y j’s. This construction preserves the parameters L,β from Assumptions A2, A4 and
the eigen gap δ from Proposition 2.2 for the function f (·) as the problem dimension n is varied (the
parameter M from Assumption A3 also gets independent of the dimension n). Finally, for n ∈ [20,800]
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we compute the exit time from the ε-neighborhood of origin for different values of initial unstable
subspace projections. The results are plotted in Figure 7 for two values of initial unstable subspace
projections for α = 0.1/L, where we have displayed the exit time versus dimension n on the logarithmic
scale. We observe that the exit time decreases with increasing dimension n, which agrees with Theorem
3.3 where we have Kexit ⪅ O(logn−1).
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FIG. 7: Exit time vs dimension n under certain initial unstable subspace projections for given values of
δ , L, β and ε .

4.1 Evolution of the trajectory function Ψ(K) from Theorem 3.2 on phase retrieval problem

We now illustrate that the trajectory function Ψ(K) first increases to a maximum and then continuously
decreases to −∞ from the example of the phase retrieval problem. In particular, if the initial unstable
subspace projection is not too small then there exists a non-trivial finite K where Ψ(K) > 1, which is
the upper bound on the exit time. In the phase retrieval problem (4.1) we set m = n = 20, where x ∈Rn,
the a j’s are taken to be the canonical basis of Rn, the eigen gap δ = 0.5, L = 20, and β = 2. We then set
the y j’s as follows:

y j =


m(β +δ ) ; j = 1
mβ ; j = 2
−mβ ; 3 ⩽ j ⩽ m−1
−mL ; otherwise.

(4.7)

The results are plotted in Figure 8 for two values of initial unstable subspace projections for α = 1/L.
Clearly, the trajectory function Ψ(K) first increases to a maximum and then continuously decreases to
−∞, which agrees with Theorem 3.2 (see also the discussion following Remark 3.9).
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FIG. 8: Ψ(K) vs K under certain initial unstable subspace projections for given values of n, L, β , δ

and ε . The blue curve has a sufficient initial unstable subspace projection that allows it to first increase,
become greater than 1 and then decrease whereas the red curve always remains below Ψ(K) = 1 and
keeps on decreasing since it has a very small initial unstable subspace projection.

5. Conclusion

This work has focused on the analysis of gradient-descent trajectories in some small neighborhoods of
a strict saddle point. Using tools from matrix perturbation theory and first-order eigenvector perturba-
tions, a proof technique has been developed that describes the behavior of gradient-descent method as a
function of the local geometry around a strict saddle point. Two novel lemmas have been presented in
this work that quantify the radius of a saddle neighborhood within which an approximate analysis for
the gradient-descent trajectory can be developed, provided the trajectory stays inside this neighborhood
for a bounded interval. Next, this work has also presented two novel theorems that quantify this approxi-
mate trajectory distance from the saddle point at every iteration and provide an exit time from the saddle
neighborhood based on the initial unstable projection of the radial vector. Developing a robust algorithm
that can leverage this analysis so as to efficiently escape saddle neighborhood and a rigorous analysis
of the trajectory function are some of the directions that have been pursued in a follow-up paper [11] to
this work.
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The data underlying this paper are available in the paper and in its online supplementary material.
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Appendices

A. On the equivalence of (3.19) and (3.20)

LEMMA A.1 In the setting of Section 3.2, the exit time (3.19) is equivalent to (3.20).

Proof. First, we show that the condition ∥xk −x∗∥ = 0 does not hold for any finite k ⩾ 0. For k = 0,
this is a trivial statement as our initialization is such that ∥xk −x∗∥ = ε > 0. We then proceed by
induction. Suppose that ∥xk−1 −x∗∥ > 0 and ∥xk −x∗∥ = 0 for some finite k ⩾ 1. Since xk − x∗ =
xk−1 − x∗ −α∇ f (xk−1), we can write ∥xk −x∗∥ = ∥(I−αM)(xk−1 −x∗)∥ with M =

∫ 1
p=0 ∇2 f (x∗ +

p(xk−1 −x∗))d p, where we have used Taylor’s formula (with an integral form) to represent the gradient
of f as an integral over the Hessian of f . By assumption, we have α ⩽ 1

L and we first consider the

case of α < 1
L so that α ∥M∥2 < 1, which implies

∥∥(I−αM)−1
∥∥−1

2 > 0 and we can therefore write

(I−αM)−1(xk −x∗) = xk−1 −x∗. Then, ∥xk −x∗∥⩾
∥∥(I−αM)−1

∥∥−1
2 ∥(xk−1 −x∗)∥> 0, which leads

to a contradiction. Therefore, we conclude that ∥xk −x∗∥> 0 for every k. Correspondingly, the quantity
γk =

⟨vn,(xk−x∗)⟩
∥xk−x∗∥ is well-defined in the sense that its denominator cannot vanish. Here, γk ∈ [0,1] because

the vectors vn and xk−x∗
∥xk−x∗∥ are both unit vectors and if the dot product is negative, we can always

flip the sign of the eigenvector vn. Note that throughout this crude analysis section, for the sake of
simplicity, we assume the dot product does not vanish, i.e., γk ̸= 0 for any k, because otherwise the set
{k|⟨vn,(xk −x∗)⟩> γkε} can be empty.10

Next, notice that by the definition of γk, we have ⟨vn,(xk − x∗)⟩ > γkε ⇐⇒ ∥xk −x∗∥ > ε; this
is because by multiplying the latter inequality with the positive scalar γk, we can simply obtain the
former inequality. Therefore, we conclude that the sets {k|∥xk −x∗∥> ε} and {k|⟨vn,(xk −x∗)⟩> γkε}
(defined in (3.19) and (3.20) respectively) are identical for γk ∈ (0,1] and α < 1

L . When α = 1
L , we can

have ∥xk −x∗∥= 0 for some finite k = K, but since x∗ is a fixed point of the gradient descent iteration,
we will get ∥xk −x∗∥ = 0 for all k > K, which implies infk>0{k|∥xk −x∗∥ > ε} = ∞. Since we are
looking for finite exit times in the crude analysis, we can disregard the case of ∥xk −x∗∥ = 0 for some
finite k when α = 1

L , and then for γk ∈ (0,1], we again conclude that the sets {k|∥xk −x∗∥ > ε} and
{k|⟨vn,(xk − x∗)⟩ > γkε} are identical. Therefore, we conclude that (3.19) and (3.20) are equivalent.
This completes the proof. □

10This assumption would be satisfied for instance for quadratic objectives if the initialization has a non-zero component in the
stable subspace of the Hessian at the saddle point; this can be verified as the solutions admit an explicit formula for every k in the
quadratic case.
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B. Proof of Lemma 3.3 (Hessian perturbation)

Proof. From the Taylor expansion around the strict saddle point x∗ along the direction xk −x∗ we have
the following:

∇ f (xk) = ∇ f (x∗)+
∫ p=1

p=0
∇

2 f (x∗+ puk)ukd p (B.1)

=⇒ ∇ f (xk) = ∇ f (x∗)+
∫ p=1

p=0
∇

2 f (x∗+ p∥uk∥ ûk)ukd p, (B.2)

where uk = xk − x∗ and {xk} is the sequence of iterates generated from the gradient descent method
(3.1).

Note that here in the last step, we have made the substitution of uk = ∥uk∥ ûk and we have that
∥uk∥⩽ ε since our iterate xk lies inside the ball Bε(x∗). ûk represents the unit vector in the direction of
uk.

Next, we start developing the term ∇2 f (x∗+ p∥uk∥ ûk) using matrix perturbation theory and varia-
tional calculus. We start with introducing a matrix function G(·) : R→ Rn×n which is given by

G(w) = ∇
2 f (x∗+wûk), (B.3)

where w = p∥uk∥, p being the variable of previous integration and therefore w = O(ε). For sufficiently
small ε we can utilize the Taylor series expansion of G(w) around w = 0:

G(w) = G(0)+w
dG
dw

∣∣∣∣
w=0

+
w2

2
d2G
dw2

∣∣∣∣
w=0

+ + . . . (B.4)

=⇒ ∇
2 f (x∗+wûk) = ∇

2 f (x∗)+w
d

dw
(∇2 f (x∗+wûk))

∣∣∣∣
w=0︸ ︷︷ ︸

S1

+
w2

2
d2

dw2 (∇
2 f (x∗+wûk))

∣∣∣∣
w=0

+ + . . .︸ ︷︷ ︸
R1

.

(B.5)

With w = O(ε) and the eigenvalues of ∇2 f (x∗) separated by δ or more, we can get rid of all the
higher-order terms in the Taylor sequence from w2 onwards. It is a reasonable approximation from the
Rayleigh–Schrödinger perturbation theory ([6, 14, 43]) as long as we have Proposition 2.2, i.e., there
are at least two eigenvalue groups of ∇2 f (x∗) that are not degenerate or too close to one another. This
leaves us with the following first order approximation:

∇
2 f (x∗+wûk) = ∇

2 f (x∗)+w
d

dw
(∇2 f (x∗+wûk))

∣∣∣∣
w=0

+O(ε2), (B.6)

where we have that S1 = ∇2 f (x∗)+w d
dw (∇

2 f (x∗+wûk))

∣∣∣∣
w=0

and the order of the remainder term R1

is O(ε2). This remainder term R1 is easy to obtain from Taylor’s Remainder theorem. Applying this
theorem to (B.5) with the substitution ∇2 f (x∗+uûk) = G(u) yields

R1 =
∫ w

0
u

d2G
du2 du (B.7)

=⇒ ∥R1∥2 =

∥∥∥∥∫ w

0
u

d2G
du2 du

∥∥∥∥
2
<

(∫ w

0

∥∥∥∥d2G
du2

∥∥∥∥2

2
du

) 1
2
(∫ w

0
u2du

) 1
2
⩽

B2w2
√

3
<

B2ε2
√

3
. (B.8)
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Here in the last step we applied the Cauchy-Schwarz inequality followed by an extra assumption on
the spectral radius of d2G

du2 which is
∥∥∥ d2G

du2

∥∥∥
2
⩽ B2 for some finite positive value B2. The final inequality

follows from the fact that w = p∥uk∥ < ε where 0 < p ⩽ 1. Hence the remainder term R1 is of order
O(ε2). Note that the condition of

∥∥∥ d2G
du2

∥∥∥
2
⩽ B2 < ∞ is valid for any analytic function f (·). Moreover,

it bounds the variations of the Hessian inside the ball Bε(x∗).
Next, using a matrix substitution of H(ûk)=

d
dw (∇

2 f (x∗+wûk))|w=0, our first order Hessian approx-
imation becomes

∇
2 f (x∗+wûk) = ∇

2 f (x∗)+wH(ûk)+O(ε2) (B.9)

=⇒ ∇
2 f (x∗+ puk) = ∇

2 f (x∗)+ p∥uk∥H(ûk)+O(ε2). (B.10)

B.1 Rayleigh–Schrödinger perturbation analysis

We can now find the matrix H(ûk) using the spectral theorem and the Rayleigh–Schrödinger perturba-
tion theory. Note that this matrix H(ûk) depends on the unit vector ûk.

We first apply the spectral theorem on the real symmetric matrix ∇2 f (x∗+wûk) to get the following
decomposition in terms of its eigenvalues λi(w) and the eigenvectors vi(w):

∇
2 f (x∗+wûk) =

n

∑
i=1

λi(w)vi(w)vi(w)T . (B.11)

Now, differentiating this decomposition w.r.t. the variable w and obtaining its value at the point w = 0
we get

d
dw

(∇2 f (x∗+wûk)) =
n

∑
i=1

d
dw

(λi(w)vi(w)vi(w)T ) (B.12)

=⇒ d
dw

(∇2 f (x∗+wûk))

∣∣∣∣
w=0

=
n

∑
i=1

(
d

dw
(λi(w))

∣∣∣∣
w=0

vi(0)vi(0)T +λi(0)
d

dw
(vi(w))

∣∣∣∣
w=0

vi(0)T

+λi(0)vi(0)
d

dw
(vi(w)T )

∣∣∣∣
w=0

)
(B.13)

=⇒ H(ûk) =
n

∑
i=1

(
d

dw
(λi(w))

∣∣∣∣
w=0

vi(0)vi(0)T +λi(0)
d

dw
(vi(w))

∣∣∣∣
w=0

vi(0)T

+λi(0)vi(0)
d

dw
(vi(w)T )

∣∣∣∣
w=0

)
. (B.14)

Note that the pair (λi(0),vi(0)) represents the ith eigenvalue-eigenvector pair of the unperturbed matrix
∇2 f (x∗). From the Rayleigh–Schrödinger perturbation theory ([43]), for a given first order perturbation
matrix H(ûk) in (B.9), we have the following first order correction terms:

d
dw

(λi(w))
∣∣∣∣
w=0

= ⟨vi(0),H(ûk)vi(0)⟩ (B.15)

d
dw

(vi(w))
∣∣∣∣
w=0

= ∑
l ̸=i

⟨vl(0),H(ûk)vi(0)⟩
λi(0)−λl(0)

vl(0). (B.16)
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Observe that under Proposition 2.2, we are considering the case of m = n, i.e., no degenerate eigenval-
ues in our analysis. However, we have a subsection after Lemma 3.3 (generality of Lemma 3.3) that
discusses the degenerate case as well.

Substituting these first-order correction terms in (B.14), we get the following result:

H(ûk) =
n

∑
i=1

(
⟨vi(0),H(ûk)vi(0)⟩vi(0)vi(0)T +λi(0)(∑

l ̸=i

⟨vl(0),H(ûk)vi(0)⟩
λi(0)−λl(0)

vl(0))vi(0)T

+λi(0)vi(0)(∑
l ̸=i

⟨vl(0),H(ûk)vi(0)⟩
λi(0)−λl(0)

vl(0))T
)
. (B.17)

Now, combining this result with (B.14) and substituting the subsequent matrix approximation in (B.2)
leads to the following result:

∇ f (xk) = ∇ f (x∗)+
∫ p=1

p=0
(∇2 f (x∗)+ p∥uk∥H(ûk)+O(ε2))ukd p (B.18)

=

(
∇

2 f (x∗)+
∥uk∥

2
H(ûk)+O(ε2)

)
uk. (B.19)

Note that ∥uk∥H(ûk) and uk do not depend on p and hence can be pulled out of the integral.

B.2 Validity of the Taylor expansion in Rayleigh–Schrödinger analysis

Recall that we used the Taylor expansion in (B.5) for the matrix G(w) around w = 0. Next, we evaluated
the first-order perturbation term H(ûk) in this expansion using the Rayleigh–Schrödinger perturbation
analysis, which is dependent on this Taylor expansion (see derivations in [6, 14]). In other words, the
perturbation analysis is only valid for those values of w where the Taylor expansion for the matrix G(w)
around w = 0 converges. This directly reduces to the problem of finding the radius of convergence for
the expansion (B.5).

Although evaluating the radius of convergence in the Rayleigh–Schrödinger perturbation analysis
remains an open problem in general, we can still find the radius of convergence for the expansion (B.5)
using matrix power series.

For the Taylor expansion in (B.5), consider the sequence {r j(ûk)} for all j ∈ {1,2, ...} such that

r j(ûk) =

∥∥∥∥(d jG
dw j

∣∣∣∣
w=0

)∥∥∥∥
2
, (B.20)

where G(w) = ∇2 f (x∗+wûk) and w = p∥uk∥ with 0 < p ⩽ 1.
Next by the Cauchy–Hadamard theorem, for any power series defined by

h(z) =
∞

∑
j=0

c j(z−a) j (B.21)

where z ∈ C, the radius of convergence for the series is given by

r =
(

limsup
j→∞

j
√
|c j|

)−1

. (B.22)
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For the case of matrix power series, the spectral radius of a matrix is used to determine the radius

of convergence. From the expression of the r j(ûk) in (B.20), it is clear that the matrix d jG
dw j

∣∣∣∣
w=0

is

real-symmetric since G is real-symmetric. Hence, the spectral radius of this matrix is equal to its l2
norm.

Using the Cauchy–Hadamard theorem on our expansion (B.5) for |c j|=
r j(ûk)

j! , we get the following
radius of convergence:

r(ûk) =

(
limsup

j→∞

j

√
r j(ûk)

j!

)−1

. (B.23)

Therefore, if j
√

r j(ûk)
j! is upper bounded for all j, then a non-zero radius of convergence is guaranteed.

This implies that

w = p∥uk∥<
(

limsup
j→∞

j

√
r j(ûk)

j!

)−1

. (B.24)

Since w < ε for any xk ∈ Bε(x∗), where xk = x∗ +wûk, by setting a condition on ε such that ε <(
limsup j→∞

j
√

r j(ûk)
j!

)−1

, we can guarantee the inequality (B.24). However this result should hold for

any possible unit directional vector ûk. Hence we must have

ε < inf
ûk

(
limsup

j→∞

j

√
r j(ûk)

j!

)−1

(B.25)

=⇒ ε < inf
∥u∥=1

(
limsup

j→∞

j

√
r j(u)

j!

)−1

, (B.26)

where

r j(u) =
∥∥∥∥( d j

dw j ∇
2 f (x∗+wu)

∣∣∣∣
w=0

)∥∥∥∥
2
. (B.27)

It is to be noted that this bound on ε only guarantees convergence of the expansion (B.5) and not
the convergence of terms generated by the Rayleigh–Schrödinger perturbation analysis. Evaluating
the convergence radius from the Rayleigh–Schrödinger perturbation theory is beyond the scope of the
current work. Hence this condition on ε is necessary but may not be sufficient.

B.3 Note on the existence of a positive upper bound on ε

For the condition (B.26) to make sense, we must have inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

> 0. To this

end, consider the following Taylor expansion with respect to the variable w ⩾ 0:

∇
2 f (x∗+wu) =

∞

∑
j=0

d j

dw j ∇
2 f (x∗+wu)

∣∣∣∣
w=0

w j

j!
, (B.28)
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where the above matrix-valued series converges with some strictly positive radius of convergence (ROC)
R (i.e., w ⩽ R) for all {u : ∥u∥2 = 1} due to the analytic nature of f (·). Here, we focus on convergence
of the series with respect to the operator (spectral) norm and note that for any n-dimensional symmetric
matrix A we have the inequality 1

n maxi,l{|[A]i,l |}⩽ 1
n ∥A∥F ⩽ ∥A∥2 ⩽ ∥A∥F . Thus, if the matrix-valued

series (B.28) converges for w ⩽ R in the spectral norm then the matrix sum on the right-hand side of
(B.28) must also element-wise converge for the same ROC R. For the (i, l)th element of ∇2 f (x∗+wu)

to converge in (B.28), we must have w ⩽ R ⩽

(
limsup j→∞

j

√
1
j!

∣∣∣∣ d j

dw j [∇2 f (x∗+wu)]i,l
∣∣∣∣
w=0

∣∣∣∣)−1

for any

unit vector u. Precisely, the ROC for (B.28) is given by

R = min
i,l

inf
∥u∥=1

(
limsup

j→∞

j

√
1
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]i,l

∣∣∣∣
w=0

∣∣∣∣)−1

which is strictly positive. Next, due to 1
n maxi,l{|[A]i,l |} ⩽ ∥A∥2, we will have the following for any

(i, l)th element of A = d j

dw j ∇2 f (x∗+wu)
∣∣∣∣
w=0

:

1
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]i,l

∣∣∣∣
w=0

∣∣∣∣⩽ n
j!

∥∥∥∥ d j

dw j ∇
2 f (x∗+wu)

∣∣∣∣
w=0

∥∥∥∥
2

(B.29)

=⇒ j

√
1
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]i,l

∣∣∣∣
w=0

∣∣∣∣⩽ j

√
n
j!

∥∥∥∥ d j

dw j ∇2 f (x∗+wu)
∣∣∣∣
w=0

∥∥∥∥
2

(B.30)

=⇒ limsup
j→∞

j

√
1
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]i,l

∣∣∣∣
w=0

∣∣∣∣⩽ limsup
j→∞

n1/ j j

√
1
j!

∥∥∥∥ d j

dw j ∇2 f (x∗+wu)
∣∣∣∣
w=0

∥∥∥∥
2

(B.31)

=⇒
(

limsup
j→∞

j

√
1
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]i,l

∣∣∣∣
w=0

∣∣∣∣)−1

⩾

(
limsup

j→∞

j

√
1
j!

∥∥∥∥ d j

dw j ∇2 f (x∗+wu)
∣∣∣∣
w=0

∥∥∥∥
2

)−1

=

(
limsup

j→∞

j

√
r j(u)

j!

)−1

(B.32)

=⇒ R = min
i,l

inf
∥u∥=1

(
limsup

j→∞

j

√
1
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]i,l

∣∣∣∣
w=0

∣∣∣∣)−1

⩾ inf
∥u∥=1

(
limsup

j→∞

j

√
r j(u)

j!

)−1

,

(B.33)

where we used the limsup product rule in the second last step. Now (B.33) implies that the quan-

tity inf∥u∥=1

(
limsup j→∞

j
√

r j(u)
j!

)−1

is upper bounded by the radius of convergence R of the series in

(B.28). Next, due to the inequality 1
n2 ∥A∥2 ⩽ 1

n2 ∥A∥F ⩽ 1
n maxi,l{|[A]i,l |}, for the maximum abso-

lute element of A = d j

dw j ∇2 f (x∗ +wu)
∣∣∣∣
w=0

denoted by
∣∣∣∣ d j

dw j [∇
2 f (x∗ +wu)]m( j),q( j)

∣∣∣∣
w=0

∣∣∣∣ we have the
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following:11

n
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]m( j),q( j)

∣∣∣∣
w=0

∣∣∣∣⩾ 1
j!

∥∥∥∥ d j

dw j ∇
2 f (x∗+wu)

∣∣∣∣
w=0

∥∥∥∥
2

(B.34)

=⇒ j

√
n
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]m( j),q( j)

∣∣∣∣
w=0

∣∣∣∣⩾ j

√
1
j!

∥∥∥∥ d j

dw j ∇2 f (x∗+wu)
∣∣∣∣
w=0

∥∥∥∥
2

(B.35)

=⇒ limsup
j→∞

n1/ j j

√
1
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]m( j),q( j)

∣∣∣∣
w=0

∣∣∣∣⩾ limsup
j→∞

j

√
1
j!

∥∥∥∥ d j

dw j ∇2 f (x∗+wu)
∣∣∣∣
w=0

∥∥∥∥
2

(B.36)

=⇒
(

limsup
j→∞

j

√
1
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]m( j),q( j)

∣∣∣∣
w=0

∣∣∣∣)−1

⩽

(
limsup

j→∞

j

√
1
j!

∥∥∥∥ d j

dw j ∇2 f (x∗+wu)
∣∣∣∣
w=0

∥∥∥∥
2

)−1

=

(
limsup

j→∞

j

√
r j(u)

j!

)−1

(B.37)

=⇒ R ⩽ inf
∥u∥=1

(
limsup

j→∞

j

√
1
j!

∣∣∣∣ d j

dw j [∇
2 f (x∗+wu)]m( j),q( j)

∣∣∣∣
w=0

∣∣∣∣)−1

⩽ inf
∥u∥=1

(
limsup

j→∞

j

√
r j(u)

j!

)−1

,

(B.38)

where the L.H.S. of the last inequality holds by mini,l inf∥u∥=1

(
limsup j→∞

j

√
1
j!

∣∣∣∣ d j

dw j [∇2 f (x∗+wu)]i,l
∣∣∣∣
w=0

∣∣∣∣)−1

⩽

inf∥u∥=1

(
limsup j→∞

j

√
1
j!

∣∣∣∣ d j

dw j [∇2 f (x∗+wu)]m( j),q( j)

∣∣∣∣
w=0

∣∣∣∣)−1

. Finally, combining (B.33) and (B.38)

we get:

R ⩽ inf
∥u∥=1

(
limsup

j→∞

j

√
r j(u)

j!

)−1

⩽ R (B.39)

=⇒ inf
∥u∥=1

(
limsup

j→∞

j

√
r j(u)

j!

)−1

= R. (B.40)

□

C. Radial vector uk in terms of the initialization u0

C.1 Proof of Lemma 3.4

Proof. Combining the equation uk = xk −x∗ this with gradient descent update yields

uk+1 −uk =−α∇ f (xk). (C.1)

11Notice that the position (m( j),q( j)) of the maximum absolute element depends on j.
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Next, substituting (B.19) here, we get the following recursion:

uk+1 −uk =−α

(
∇

2 f (x∗)+
∥uk∥

2
H(ûk)+O(ε2)

)
uk (C.2)

uk+1 =

(
I−α

(
∇

2 f (x∗)+
∥uk∥

2
H(ûk)+O(ε2)

))
uk. (C.3)

Finally substituting (B.17) here and applying the spectral theorem to the matrices I and ∇2 f (x∗) yields

uk+1 =

( n

∑
i=1

vi(0)vi(0)T −α

( n

∑
i=1

λi(0)vi(0)vi(0)T +
∥uk∥

2

( n

∑
i=1

(
⟨vi(0),H(ûk)vi(0)⟩vi(0)vi(0)T

+λi(0)(∑
l ̸=i

⟨vl(0),H(ûk)vi(0)⟩
λi(0)−λl(0)

vl(0))vi(0)T +λi(0)vi(0)(∑
l ̸=i

⟨vl(0),H(ûk)vi(0)⟩
λi(0)−λl(0)

vl(0))T
)))

+O(ε2)

)
uk

(C.4)

uk+1 =

[ n

∑
i=1

(
1−αλi(0)−α

∥uk∥
2

⟨vi(0),H(ûk)vi(0)⟩
)

vi(0)vi(0)T

−α
∥uk∥

2

n

∑
i=1

∑
l ̸=i

⟨vl(0),H(ûk)vi(0)⟩λi(0)
λi(0)−λl(0)

(
vl(0)vi(0)T +vi(0)vl(0)T

)]
uk +O(ε2)uk. (C.5)

Next, we start analyzing the coefficients of spectral components vi(0)vl(0)T for any (i, l) pair.

C.1.1 Coefficient bounds:. We start with (C.5) and analyze it in terms of the stable subspace ES and
unstable subspace EUS of the Hessian ∇2 f (x∗). To this end we rewrite (C.5) and split its first term into
the stable and unstable spectral components. The stable spectral components result from the positive
eigenvalues of ∇2 f (x∗) whereas the unstable spectral components result from its negative eigenvalues.

uk+1 =

[ n

∑
i=1

(
1−αλi(0)−α

∥uk∥
2

⟨vi(0),H(ûk)vi(0)⟩
)

vi(0)vi(0)T

−α
∥uk∥

2

n

∑
i=1

∑
l ̸=i

⟨vl(0),H(ûk)vi(0)⟩λi(0)
λi(0)−λl(0)

(
vl(0)vi(0)T +vi(0)vl(0)T

)]
uk +O(ε2)uk (C.6)

=

[
∑

i∈NS

(
1−αλi(0)−α

∥uk∥
2

⟨vi(0),H(ûk)vi(0)⟩
)

vi(0)vi(0)T

+ ∑
j∈NUS

(
1−αλ j(0)−α

∥uk∥
2

⟨v j(0),H(ûk)v j(0)⟩
)

v j(0)v j(0)T

−α
∥uk∥

2

n

∑
i=1

∑
l ̸=i

⟨vl(0),H(ûk)vi(0)⟩λi(0)
λi(0)−λl(0)

(
vl(0)vi(0)T +vi(0)vl(0)T

)]
uk +O(ε2)uk (C.7)

=

[
∑

i∈NS

cs
i (k)vi(0)vi(0)T + ∑

j∈NUS

cus
j (k)v j(0)v j(0)T

+
n

∑
i=1

∑
l ̸=i

(
dl,i(k)vl(0)vi(0)T +di,l(k)vi(0)vl(0)T

)]
uk +O(ε2)uk, (C.8)



EXIT TIME ANALYSIS OF GRADIENT DESCENT TRAJECTORIES 43 of 70

where the coefficient terms cs
i (k), cus

j (k) and dl,i(k) in (C.8) are as follows:

cs
i (k) =

(
1−αλi(0)−α

∥uk∥
2

⟨vi(0),H(ûk)vi(0)⟩
)

(C.9)

cus
j (k) =

(
1−αλ j(0)−α

∥uk∥
2

⟨v j(0),H(ûk)v j(0)⟩
)

(C.10)

di,l(k) = dl,i(k) =
⟨vl(0),H(ûk)vi(0)⟩λi(0)α ∥uk∥

2(λl(0)−λi(0))
. (C.11)

Now, from (B.10) and the Lipschitz continuity of the Hessian (Assumption A3), we get the following
bound:

∇
2 f (x∗+ puk) = ∇

2 f (x∗)+ p∥uk∥H(ûk)+O(ε2). (C.12)

Recall that the term O(ε2) comes from (B.7). Therefore, to further simplify the above equation, we
replace O(ε2) with

∫ w
0 u d2G

du2 du from (B.7) where w = p∥uk∥. Then taking the norm of both sides,
followed by triangle inequality and using Assumption A3 yields

∇
2 f (x∗+ puk) = ∇

2 f (x∗)+ p∥uk∥H(ûk)+
∫ w

0
u

d2G
du2 du (C.13)

∥H(ûk)∥2 =
1

p∥uk∥

∥∥∥∥∇
2 f (x∗+ puk)−∇

2 f (x∗)−
∫ w

0
u

d2G
du2 du

∥∥∥∥
2

(C.14)

⩽
M

p∥uk∥
∥x∗+ puk −x∗∥+

∥∥∥∫ w
0 u d2G

du2 du
∥∥∥

2
p∥uk∥

(C.15)

⩽ M+

(∫ w
0

∥∥∥ d2G
du2

∥∥∥2

2
du

) 1
2
(∫ w

0 u2du
) 1

2

w
⩽ M+

B2w√
3

⩽ M+O(ε). (C.16)

Note that in the last step, we used the Cauchy Schwarz inequality followed by the same bound
∥∥∥ d2G

du2

∥∥∥
2
⩽

B2 as in the steps following (B.7). For the case when p∥uk∥ → 0, the bound on ∥H(ûk)∥2 can be
evaluated by using the substitution w = p∥uk∥:

∥H(ûk)∥2 ⩽ lim
p∥uk∥→0

M
p∥uk∥

∥x∗+ puk −x∗∥+ lim
p∥uk∥→0

(∫ w
0

∥∥∥ d2G
du2

∥∥∥2

2
du

) 1
2
(∫ w

0 u2du
) 1

2

p∥uk∥
(C.17)

⩽ lim
w→0

M
w

w+ lim
w→0

(∫ w
0

∥∥∥ d2G
du2

∥∥∥2

2
du

) 1
2
(∫ w

0 u2du
) 1

2

w
(C.18)

⩽ M+ lim
w→0

(∫ w
0

∥∥∥ d2G
du2

∥∥∥2

2
du

) 1
2
w1/2

√
3

= M+ lim
w→0

(∫ w

0

∥∥∥∥d2G
du2

∥∥∥∥2

2
du

) 1
2

lim
w→0

w1/2
√

3
= M.

(C.19)
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Note that in the last step, we used limw→0

(∫ w
0

∥∥∥ d2G
du2

∥∥∥2

2
du

) 1
2
=

(∫ 1
0 limw→01[0,w]

∥∥∥ d2G
du2

∥∥∥2

2
du

) 1
2
= 0 by

the dominated convergence theorem where 1[0,w] is the indicator function on [0,w].
Hence for any eigenvectors vi(0),v j(0) we have that

−M−O(ε)⩽ ⟨vi(0),H(ûk)v j(0)⟩⩽ M+O(ε). (C.20)

Using Assumptions A2 and A4, for the stable subspace ES, we have the following bound on λi(0):

β ⩽ λi(0)⩽ L. (C.21)

Similarly for the unstable subspace EUS, we have the following bound on λ j(0) from Assumptions A2
and A4:

−L ⩽ λ j(0)⩽−β . (C.22)

Now substituting these bounds into (C.9), (C.10), (C.11) and using the fact that ∥uk∥ < ε , we get the
following bounds on the coefficients:(

1−αL− αεM
2

−O(ε2)

)
⩽ cs

i (k)⩽
(

1−αβ +
αεM

2
+O(ε2)

)
(C.23)(

1+αβ − αεM
2

−O(ε2)

)
⩽ cus

j (k)⩽
(

1+αL+
αεM

2
+O(ε2)

)
(C.24)

−αεML
2δ

−O(ε2)⩽ di,l(k)⩽
αεML

2δ
+O(ε2). (C.25)

After establishing the bounds on the coefficients cs
i (k),c

us
j (k),di,l(k), we further analyze the recur-

sive vector update equation (C.8) and induct it from k = 0 to k = K − 1 so as to obtain uK in terms of
u0:

uk+1 =

[
∑

i∈NS

cs
i (k)vi(0)vi(0)T + ∑

j∈NUS

cus
j (k)v j(0)v j(0)T

+
n

∑
i=1

∑
l ̸=i

(
dl,i(k)vl(0)vi(0)T +di,l(k)vi(0)vl(0)T

)]
uk +O(ε2)uk (C.26)

=⇒ uK =
K−1

∏
k=0

[
O(ε2)+ ∑

i∈NS

cs
i (k)vi(0)vi(0)T + ∑

j∈NUS

cus
j (k)v j(0)v j(0)T

+
n

∑
i=1

∑
l ̸=i

(
dl,i(k)vl(0)vi(0)T +di,l(k)vi(0)vl(0)T

)]
u0. (C.27)

Observe that in the above expression, the vector uK results from a product of K matrices. Each of these
matrices comes from a linear combination of n2 different matrices given by vi(0)vi(0)T for i ∈ NS,
v j(0)v j(0)T for j ∈ NUS, the cross terms vl(0)vi(0)T ,vi(0)vl(0)T with i ̸= l and in addition to this a
matrix term of order O(ε2).

Next, using the orthogonality of eigenvectors we obtain vi(0)T v j(0) = 0 for i ̸= j and vi(0)T v j(0) =
1 for i = j. Therefore by induction it can be readily inferred that the K matrix product is a linear
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combination of the same n2 matrices plus all the matrix error terms of the order O(ε2) and above.
Hence we rewrite (C.27) as follows:

uK =
K−1

∏
k=0

[
Ak +Bk +O(ε2)

]
u0, (C.28)

where Ak =∑i∈NS
cs

i (k)vi(0)vi(0)T +∑ j∈NUS
cus

j (k)v j(0)v j(0)T and Bk =∑
n
i=1 ∑l ̸=i

(
dl,i(k)vl(0)vi(0)T +

di,l(k)vi(0)vl(0)T
)

. From (C.25) the term Bk is of order O(ε). Therefore, this equation can be written

more compactly as

uK =
K−1

∏
k=0

[
Ak + εPk

]
u0, (C.29)

where εPk = Bk +O(ε2).

Next we analyze the matrix product ∏
K−1
k=0

[
Ak + εPk

]
. Taking the norm of this product, followed

by the supremum over k and using the triangle inequality yields∥∥∥∥∥K−1

∏
k=0

[
Ak + εPk

]∥∥∥∥∥
2

⩽
K−1

∏
k=0

∥∥∥∥[Ak + εPk

]∥∥∥∥
2

(C.30)

⩽
K−1

∏
k=0

sup
0⩽k⩽K−1

∥∥∥∥[Ak + εPk

]∥∥∥∥
2

(C.31)

⩽
K−1

∏
k=0

[
sup

0⩽k⩽K−1
∥Ak∥2 + ε sup

0⩽k⩽K−1
∥Pk∥2

]
(C.32)

⩽
K−1

∏
k=0

[
∥A∥2 + ε ∥P∥2

]
=

(
∥A∥2 + ε ∥P∥2

)K

, (C.33)

where in the last step we have used the substitutions sup0⩽k⩽K−1 ∥Ak∥2 = ∥A∥2 and sup0⩽k⩽K−1 ∥Pk∥2 =
∥P∥2 for some arbitrary matrices A and P.

Now observe that the product term on the right-hand side of (C.33) has a binomial expansion which
can be written compactly as∥∥∥∥∥K−1

∏
k=0

[
Ak + εPk

]∥∥∥∥∥
2

⩽
K

∑
r=0

(
K
r

)
(ε ∥P∥2)

r ∥A∥K−r
2 = ∥A∥K

2

(
1+ ε

∥P∥2
∥A∥2

)K

. (C.34)

Next, consider the term
(

1+ε
∥P∥2
∥A∥2

)K

on the right-hand side of above bound. For the function gω(x) =

(1+ x)ω such that ω ∈ R, its expansion and the remainder term are given by

(1+ x)ω =
∞

∑
k=0

(
ω

k

)
xk (C.35)

R j(x) =
∫ x

0

(x− z) j

j!
( j+1)!

(
ω

j+1

)
(1+ z)ω− j−1dz, (C.36)
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where we have that limsup j→∞ R j(x) = 0 for |x|< 1.

Therefore using this remainder expression for the term
(

1+ ε
∥P∥2
∥A∥2

)K

with x = ε
∥P∥2
∥A∥2

we will have

R1(x) =
∫ x

0

(x− z)
1!

2!
(

K
2

)
(1+ z)K−2dz (C.37)

= K(K −1)
(

(1+ x)K

K(K −1)
− 1+ x

K −1
+

1
K

)
. (C.38)

For |x| < 1 and |Kx| ≪ 1, we can use the approximation (1+ x)K ≈ 1+Kx+
(K

2

)
x2. Substituting this

approximation in (C.38), we get R1(x) as

R1(x)≈ K(K −1)
(

1+Kx+
(K

2

)
x2

K(K −1)
− 1+ x

K −1
+

1
K

)
=

K(K −1)
2

x2 (C.39)

R1

(
ε
∥P∥2
∥A∥2

)
≈ K(K −1)

2

(
ε
∥P∥2
∥A∥2

)2

= O

(
(Kε)2

)
. (C.40)

Hence for ε
∥P∥2
∥A∥2

< 1 and Kε ≪ 1, we can substitute this bound in (C.34) as follows:∥∥∥∥∥K−1

∏
k=0

[
Ak + εPk

]∥∥∥∥∥
2

⩽ ∥A∥K
2

(
1+ ε

∥P∥2
∥A∥2

)K

(C.41)

= ∥A∥K
2

(
1+Kε

∥P∥2
∥A∥2

+R1

(
ε
∥P∥2
∥A∥2

))
(C.42)

≈ ∥A∥K
2

(
1+Kε

∥P∥2
∥A∥2

+O

(
(Kε)2

))
. (C.43)

This approximate upper bound implies that the upper bound on the norm of matrix product ∏
K−1
k=0

[
Ak +

εPk

]
can be approximately expanded up to an ε precision term accompanied with a remainder term of

O

(
∥A∥K

2 (Kε)2
)

as long as Kε ≪ 1.

Next we obtain a lower bound on the inverse of the norm of matrix product ∏
K−1
k=0

[
Ak + εPk

]−1

.

Taking the inverse of the norm of this product, using the identities ∥Z∥2 ⩾
∥∥Z−1

∥∥−1
2 ,

∥∥(I+Z)−1
∥∥−1

2 ⩾
(1−∥Z∥2), followed by taking the infimum over k yields∥∥∥∥∥K−1

∏
k=0

[
Ak + εPk

]−1
∥∥∥∥∥
−1

2

⩾
K−1

∏
k=0

∥∥A−1
k

∥∥−1
2

(
1− ε

∥∥A−1
k Pk

∥∥
2

)
(C.44)

⩾
K−1

∏
k=0

inf
0⩽k⩽K−1

∥∥A−1
k

∥∥−1
2

(
1− ε sup

0⩽k⩽K−1

∥∥A−1
k Pk

∥∥
2

)
(C.45)

⩾

(
inf

0⩽k⩽K−1

∥∥A−1
k

∥∥−1
2

)K(
1− ε sup

0⩽k⩽K−1

∥∥A−1
k Pk

∥∥
2

)K

. (C.46)
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Now repeating the previous analysis of the upper bound here will give the conclusion that the lower

bound on inverse of the norm of matrix product ∏
K−1
k=0

[
Ak + εPk

]−1

can be approximately computed

up to Kε precision provided ε sup0⩽k⩽K−1
∥∥A−1

k Pk
∥∥

2 < 1 and Kε ≪ 1 if the step size α < 1
L . The

reasoning for having α < 1
L will be discussed in the subsequent section when we derive some feasible

range for ε as well as the case where α ≈ 1
L . In particular, the inequality (C.46) can be simplified further

as

∥∥∥∥∥K−1

∏
k=0

[
Ak + εPk

]−1
∥∥∥∥∥
−1

2

⩾
∥∥A−1∥∥−K

2

(
1−Kε

∥P∥2

∥A−1∥−1
2

−O

(
(Kε)2

))
(C.47)

for Kε ≪ 1 and ε
∥P∥2

∥A−1∥−1
2

< 1 where we have that sup0⩽k⩽K−1
∥∥A−1

k

∥∥
2 =

∥∥A−1
∥∥

2 and sup0⩽k⩽K−1 ∥Pk∥2 =

∥P∥2 for the matrices A and P used previously.

Now, if νn ⩽ · · · ⩽ ν1 are the absolute value of the eigenvalues of the matrix product ∏
K−1
k=0

[
Ak +

εPk

]
, then using (C.43) and (C.47), we have the condition

∥∥A−1∥∥−K
2

(
1−Kε

∥P∥2

∥A−1∥−1
2

−O

(
(Kε)2

))
⩽ νn ⩽ · · ·⩽ ν1 ⩽ ∥A∥K

2

(
1+Kε

∥P∥2
∥A∥2

+O

(
(Kε)2

))
.

(C.48)

Therefore we can conclude that the matrix product (C.27) can be approximately computed up to Kε

precision provided Kε ≪ 1, ε
∥P∥2
∥A∥2

< 1 and ε
∥P∥2

∥A−1∥−1
2

< 1. At this point, we are interested in analyzing

the matrix product in (C.27) only for iterations K = O( 1
ε
). This is done so as to derive exit times and

initial conditions for trajectories that can escape a strict saddle point in linear time. It is also remarked

that we could have retained the higher-order terms O

(
∥A∥K

2 (Kε)r
)

in the above matrix product (C.46)

if we wanted to analyze trajectories with polynomial or even exponential rates of escape. □

C.2 Proof of Lemma 3.5

Proof. For values of K = O( 1
ε
) we explicitly compute the matrix product in (C.27) up to Kε precision

and drop all the higher order terms (ε2 and above) that collectively act as a single remainder term of

an approximate order O

(
∥A∥K

2 (Kε)2
)

. From (C.25) we know that only the coefficients di,l(k) are

of order O(ε), hence we now expand (C.27) only up to first order in di,l(k) to obtain the following
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approximation:

uK ≈ ũK =

[
∑

i∈NS

(K−1

∏
k=0

cs
i (k)

)
vi(0)vi(0)T + ∑

j∈NUS

K−1

∏
k=0

(
cus

j (k)
)

v j(0)v j(0)T

+ ∑
i∈NS

∑
l∈NS

K−1

∑
r=0

( r−1

∏
k=0

cs
i (k)

)
di,l(r)

( K−1

∏
k=r+1

cs
l (k)

)(
vl(0)vi(0)T +vi(0)vl(0)T

)

+ ∑
i∈NS

∑
l∈NUS

K−1

∑
r=0

( r−1

∏
k=0

cs
i (k)

)
di,l(r)

( K−1

∏
k=r+1

cus
l (k)

)(
vl(0)vi(0)T +vi(0)vl(0)T

)

+ ∑
i∈NUS

∑
l∈NS

K−1

∑
r=0

( r−1

∏
k=0

cus
i (k)

)
di,l(r)

( K−1

∏
k=r+1

cs
l (k)

)(
vl(0)vi(0)T +vi(0)vl(0)T

)

+ ∑
i∈NUS

∑
l∈NUS

K−1

∑
r=0

( r−1

∏
k=0

cus
i (k)

)
di,l(r)

( K−1

∏
k=r+1

cus
l (k)

)(
vl(0)vi(0)T +vi(0)vl(0)T

)]
u0, (C.49)

where we have that ũK as the ε approximate trajectory.
Next we express u0 as the sum of projections onto the stable subspace and unstable subspace of

∇2 f (x∗) as follows:

u0 = ε ∑
i∈NS

θ
s
i vi(0)+ ε ∑

j∈NUS

θ
us
j v j(0) (C.50)

∑
i∈NS

(θ s
i )

2 + ∑
j∈NUS

(θ us
j )2 = 1, (C.51)

where εθ s
i = ⟨u0,vi(0)⟩, εθ us

j = ⟨u0,v j(0)⟩ with vi(0) ∈ ES and v j(0) ∈ EUS respectively. Observe
that (C.50) has an ε multiplier because ∥u0∥ = ε . This is due to the fact that u0 + x∗ = x0 and x0 ∈
B̄ε(x∗)\Bε(x∗).

Now for all i and j, the Hessian ∇2 f (x∗) can have eigenvectors vi(0) and v j(0) as well as −vi(0)
and −v j(0). Therefore for the sake of analysis, the signs with these eigenvectors are chosen such that
the respective coefficients θ s

i and θ us
j are positive for all i and j. It is easy to show that such a choice

always exists for all i and j because if ⟨u0,vi(0)⟩> 0 then ⟨u0,−vi(0)⟩< 0 and vice versa for any i (and
analogously for the index j).

Finally substituting u0 in (C.49), we get the following result for uK :

uK ≈ ũK = ε ∑
i∈NS

(K−1

∏
k=0

cs
i (k)θ

s
i + ∑

l∈NS

K−1

∑
r=0

r−1

∏
k=0

cs
i (k)di,l(r)

K−1

∏
k=r+1

cs
l (k)θ

s
l

+ ∑
l∈NUS

K−1

∑
r=0

r−1

∏
k=0

cs
i (k)di,l(r)

K−1

∏
k=r+1

cus
l (k)θ us

l

)
vi(0)+

ε ∑
j∈NUS

(K−1

∏
k=0

cus
j (k)θ

us
j + ∑

l∈NS

K−1

∑
r=0

r−1

∏
k=0

cus
j (k)d j,l(r)

K−1

∏
k=r+1

cs
l (k)θ

s
l

+ ∑
l∈NUS

K−1

∑
r=0

r−1

∏
k=0

cus
j (k)d j,l(r)

K−1

∏
k=r+1

cus
l (k)θ us

l

)
v j(0). (C.52)
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C.2.1 Bounds on ε:. Recall that from (C.43) we established that the first-order approximation of
the matrix product (C.27) is only valid for ε

∥P∥2
∥A∥2

< 1 and Kε ≪ 1. Next, from (C.33) we have that
sup0⩽k⩽K−1 ∥Ak∥2 = ∥A∥2 and sup0⩽k⩽K−1 ∥Pk∥2 = ∥P∥2.

From (C.28) we have the following:

Ak = ∑
i∈NS

cs
i (k)vi(0)vi(0)T + ∑

j∈NUS

cus
j (k)v j(0)v j(0)T , and (C.53)

Bk =
n

∑
i=1

∑
l ̸=i

(
dl,i(k)vl(0)vi(0)T +di,l(k)vi(0)vl(0)T

)
, (C.54)

with εPk = Bk +O(ε2).
Observe that Ak is a matrix in its spectral decomposed form where the coefficients cs

i (k) and cus
i (k)

correspond to the eigenvalues of Ak. Therefore applying the bounds (C.23) and (C.24) we have the
following result:

∥A∥2 = sup
0⩽k⩽K−1

∥Ak∥2 (C.55)

= sup
0⩽k⩽K−1

{
max

i∈NS, j∈NUS
{cs

i (k),c
us
j (k)}

}
(C.56)

=

(
1+αL+

αεM
2

+O(ε2)

)
. (C.57)

Next, taking the norm of both sides of εPk = Bk +O(ε2), taking supremum over k followed by the
triangle inequality and then using (C.25) we get the following upper bound:

sup
0⩽k⩽K−1

∥εPk∥2 = sup
0⩽k⩽K−1

∥∥Bk +O(ε2)
∥∥

2 (C.58)

⩽ sup
0⩽k⩽K−1

∥Bk∥2 +O(ε2) (C.59)

⩽
n

∑
i=1

∑
l ̸=i

(
sup

0⩽k⩽K−1

∥∥dl,i(k)vl(0)vi(0)T∥∥
2 + sup

0⩽k⩽K−1

∥∥di,l(k)vi(0)vl(0)T∥∥
2

)
+O(ε2)

(C.60)

⩽
n

∑
i=1

∑
l ̸=i

(
sup

0⩽k⩽K−1

∥∥dl,i(k)vl(0)vi(0)T∥∥
F + sup

0⩽k⩽K−1

∥∥di,l(k)vi(0)vl(0)T∥∥
F

)
+O(ε2)

(C.61)

=
n

∑
i=1

∑
l ̸=i

(
sup

0⩽k⩽K−1
|dl,i(k)|+ sup

0⩽k⩽K−1
|di,l(k)|

)
+O(ε2) (C.62)

⩽
αεMLn2

δ
+O(ε2), (C.63)

where in the last couple of steps we used the following properties of any matrix Z: ∥Z∥2 ⩽ ∥Z∥F , and
∥Z∥F =

√
tr(ZZT ).
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Now we require that ε
∥P∥2
∥A∥2

< 1. Using (C.57), this condition becomes

sup
0⩽k⩽K−1

∥εPk∥2 = ∥εP∥2 < ∥A∥2 =

(
1+αL+

αεM
2

+O(ε2)

)
. (C.64)

Therefore to obtain a bound on ε we can utilize (C.63) and set this condition as follows:

sup
0⩽k⩽K−1

∥εPk∥2 = ∥εP∥2 ⩽
αεMLn2

δ
+O(ε2)< ∥A∥2 =

(
1+αL+

αεM
2

+O(ε2)

)
(C.65)

αεMLn2

δ
− αεM

2
< 1+αL+O(ε2) (C.66)

ε <
2δ (1+αL)

αM(2Ln2 −δ )
+O(ε2). (C.67)

Note that this condition on ε is sufficient but may not be necessary since we are using an upper bound
on sup0⩽k⩽K−1 ∥εPk∥2 from (C.63) as a lower bound for ∥A∥2. Hence, the inequality may shrink the
feasible set for ε making it a sufficient condition but not necessary.

Having established a range for ε from the upper bound (C.43), we utilize the lower bound (C.46) to
get the complete feasible range for ε . From the bound (C.46) we need that ε sup0⩽k⩽K−1

∥∥A−1
k Pk

∥∥
2 < 1.

Now for this particular condition to work, Ak should not have eigenvalues close to 0 or of order O(ε).
Recall that from (C.53), Ak has its eigenvalues as cs

i (k) and cus
j (k) which are bounded by the inequalities

in (C.23), (C.24). For α ≈ 1
L , the lower bound in (C.23) becomes O(ε). Hence we analyze the two cases

corresponding to different ranges of α separately.

C.2.2 Case 1—α ∈
(

0, 1
L −O(ε)

]
:. For this case, we can use the condition ε sup0⩽k⩽K−1

∥∥A−1
k Pk

∥∥
2 <

1 in (C.46). To obtain a certain feasible range on ε , this condition can be set as follows:

ε sup
0⩽k⩽K−1

∥∥A−1
k Pk

∥∥
2 < sup

0⩽k⩽K−1

∥∥A−1
k

∥∥
2 sup

0⩽k⩽K−1
∥εPk∥2 < 1 (C.68)

sup
0⩽k⩽K−1

{
max

i∈NS, j∈NUS

{
1

cs
i (k)

,
1

cus
j (k)

}}
sup

0⩽k⩽K−1
∥εPk∥2 < 1 (C.69)(

1−αL− αεM
2

−O(ε2)

)−1(
αεMLn2

δ
+O(ε2)

)
< 1 (C.70)

2δ (1−αL)
αM(2Ln2 +δ )

+O(ε2)> ε. (C.71)

Note that this condition on ε is sufficient but may not be necessary.
Moreover, combining the conditions (C.67) and (C.71) with (B.26) we get the following necessary
bound:

ε < min
{

inf
∥u∥=1

(
limsup

j→∞

j

√
r j(u)

j!

)−1

,
2δ (1−αL)

αM(2Ln2 +δ )
+O(ε2)

}
. (C.72)

Finally it is also required to have Kε ≪ 1 or K ≪ 1
ε

. Therefore this condition implies

K = O

(
1
ε

)
. (C.73)
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C.2.3 Case 2—α ∈
(

1
L −O(ε), 1

L

]
: . For this case, observe that the lower bound in (C.46) is of

order O(εK). Further simplifying this lower bound and taking the infimum term inside, we obtain the
following:∥∥∥∥∥K−1

∏
k=0

[
Ak + εPk

]∥∥∥∥∥
2

⩾

(
inf

0⩽k⩽K−1

∥∥A−1
k

∥∥−1
2

)K(
1− ε sup

0⩽k⩽K−1

∥∥A−1
k Pk

∥∥
2

)K

(C.74)

⩾

(
inf

0⩽k⩽K−1

∥∥A−1
k

∥∥−1
2

)K(
1− sup

0⩽k⩽K−1

∥∥A−1
k

∥∥
2 sup

0⩽k⩽K−1
∥εPk∥2

)K

(C.75)

⩾

(
inf

0⩽k⩽K−1

∥∥A−1
k

∥∥−1
2 −

sup0⩽k⩽K−1
∥∥A−1

k

∥∥
2

sup0⩽k⩽K−1
∥∥A−1

k

∥∥
2

sup
0⩽k⩽K−1

∥εPk∥2

)K

(C.76)

⩾

(∣∣∣∣(1−αL− αεM
2

−O(ε2)

)∣∣∣∣−(
αεMLn2

δ
+O(ε2)

))K

. (C.77)

Now for α = 1
L , the above lower bound will be (Cε)K where C is some constant. Therefore, for this

lower bound to converge to 0 for large K we must necessarily have Cε < 1 which implies∣∣∣∣εM
2L

− εMn2

δ
+O(ε2)

∣∣∣∣< 1 (C.78)

1
Mn2

δ
− M

2L

+O(ε2)> ε (C.79)

2Lδ

M(2Ln2 −δ )
+O(ε2)> ε. (C.80)

Finally, combining this condition on ε with (C.67) and (B.26) for α = 1
L , we get that

ε < min
{

inf
∥u∥=1

(
limsup

j→∞

j

√
r j(u)

j!

)−1

,
4Lδ

M(2Ln2 −δ )
+O(ε2),

2Lδ

M(2Ln2 −δ )
+O(ε2)

}
(C.81)

ε < min
{

inf
∥u∥=1

(
limsup

j→∞

j

√
r j(u)

j!

)−1

,
2Lδ

M(2Ln2 −δ )
+O(ε2)

}
. (C.82)

The condition K = O

(
1
ε

)
is still required to hold. □

D. Lower bounds on the distance between xK and x∗

D.1 Proof of Lemma 3.6

Proof. An approximate equation for uK in terms of u0 is given by (C.52). This approximation holds
for all values of K from 1 to Kexit , where Kexit denotes the iteration number of escape from Bε(x∗).
Formally Kexit can be expressed as

Kexit = inf
K⩾1

{
K

∣∣∣∣ ∥ũK∥2 > ε
2
}
, (D.1)
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where the squared norm is used for the sake of simplifying subsequent analysis involving lower bounds.
However, the sequence {ũK}Kexit

K=0 cannot be determined solely from the initialization u0. To uniquely
determine any ũK , we still need to know the coefficient terms cs

i (k), cus
j (k) and dl,i(k) for all values

of k from 0 to K − 1. The only information available in this regard is the bound on these coefficients
from (C.23), (C.24) and (C.25). Therefore it becomes impossible to predetermine the entire sequence
{ũK}Kexit

K=0 just based on the knowledge of u0 .
To circumvent this problem, we introduce a set Sε which is the set of all possible ε precision tra-

jectories generated by the approximate equation (C.52). Recall that while deriving the approximation
(C.52), we expanded terms appearing in the product (C.27) only up to order O(ε); hence we can call
these approximate sequences as ε precision trajectories with respect to x∗. For a fixed initialization of
u0, the set Sε is given by

Sε =

{
{ũτ

K}
Kτ

exit
K=1

∣∣∣∣ u0

}
, (D.2)

where each possible ε precision trajectory is parameterized by some τ ∈ R, Kτ
exit is the escape iteration

for the τ-parameterized ε-precision trajectory and ũτ
K satisfies (C.52) for every τ . Note that τ varies with

variations in the sequence
{
{cs

i (k),c
us
j (k),dl,i(k)}K−1

k=0

}Kexit

K=1
which are in turn controlled by variations in

the coefficient terms from the bounds (C.23), (C.24) and (C.25). Since the set Sε contains all possible
ε precision trajectories, the actual ε-precise trajectory that the radial vector uK takes inside the ball
Bε(x∗) will also belong to the set Sε . Let this actual ε precision trajectory be parameterized by some
τ = ω . Therefore we have that

{ũω
K}

Kω
exit

K=1 ∈ Sε . (D.3)

Moreover, ũω
K satisfies the approximate equation (C.52). Next using (D.1), we can write the escape

iteration for the τ-parameterized ε precision trajectory as

Kτ
exit = inf

K⩾1

{
K

∣∣∣∣ ∥ũτ
K∥

2 > ε
2
}
. (D.4)

We now define a quantity Kι such that

Kι = inf
K⩾1

{
K

∣∣∣∣ inf
τ

{
∥ũτ

K∥
2
}
> ε

2
}
. (D.5)

D.1.1 Claim of the lemma:.

Kι ⩾ sup
τ

{
Kτ

exit

}
= sup

τ

inf
K⩾1

{
K

∣∣∣∣ ∥ũτ
K∥

2 > ε
2
}
. (D.6)

Proof by contradiction: Let us assume that for some τ = a the escape iteration Ka
exit is such that Ka

exit >

Kι . From the definition of Kι in (D.5), Kι is the smallest iteration such that infτ

{∥∥ũτ

Kι

∥∥2
}
> ε2. This

implies
∥∥ũa

Kι

∥∥2
> ε2. However, this is not possible since it contradicts the definition of infimum from

(D.4) for τ = a. Therefore we must have Ka
exit ⩽ Kι and this should hold for any a. Hence, we must

have Kι ⩾ supτ

{
Kτ

exit

}
.



EXIT TIME ANALYSIS OF GRADIENT DESCENT TRAJECTORIES 53 of 70

Since the actual ε-precise trajectory given by {ũω
K}

Kω
exit

K=1 belongs to the τ-parameterized set Sε , hence
Kω

exit ⩽ Kι . Therefore it is sufficient to develop an upper bound on Kι in order to draw conclusions about
Kω

exit . In the subsequent section, we analyze the lower bound on ∥ũK∥2 to obtain this Kι . □

D.2 Proof of Theorem 3.2

Proof.
Taking the norm squared on both sides of (C.52) we get the following:

∥ũK∥2 = ε
2

∑
i∈NS

(K−1

∏
k=0

cs
i (k)θ

s
i︸ ︷︷ ︸

T1

+ ∑
l∈NS

K−1

∑
r=0

r−1

∏
k=0

cs
i (k)di,l(r)

K−1

∏
k=r+1

cs
l (k)θ

s
l︸ ︷︷ ︸

T2

+ ∑
l∈NUS

K−1

∑
r=0

r−1

∏
k=0

cs
i (k)di,l(r)

K−1

∏
k=r+1

cus
l (k)θ us

l︸ ︷︷ ︸
T3

)2

+

ε
2

∑
j∈NUS

(K−1

∏
k=0

cus
j (k)θ

us
j︸ ︷︷ ︸

T4

+ ∑
l∈NS

K−1

∑
r=0

r−1

∏
k=0

cus
j (k)d j,l(r)

K−1

∏
k=r+1

cs
l (k)θ

s
l︸ ︷︷ ︸

T5

+ ∑
l∈NUS

K−1

∑
r=0

r−1

∏
k=0

cus
j (k)d j,l(r)

K−1

∏
k=r+1

cus
l (k)θ us

l︸ ︷︷ ︸
T6

)2

(D.7)

= ε
2
(

∑
i∈NS

(T1 +T2 +T3)
2 + ∑

j∈NUS

(T4 +T5 +T6)
2
)
. (D.8)

Now this equation is satisfied by ũτ
K for every τ . Hence for any given τ we can write

∥ũτ
K∥

2 = ε
2
(

∑
i∈NS

(T1(τ)+T2(τ)+T3(τ))
2 + ∑

j∈NUS

(T4(τ)+T5(τ)+T6(τ))
2
)
, (D.9)

where τ varies with variations in the sequence
{
{cs

i (k),c
us
j (k),dl,i(k)}K−1

k=0

}Kexit

K=1
.

Using (C.23), (C.24) and (C.25) we get the bounds on these coefficient product terms from T1(τ) to
T6(τ). Starting with the term T1(τ) we have that

inf
τ

T1(τ) =
K−1

∏
k=0

inf
τ

{
cs

i (k)
}

θ
s
i =

(
1−αL− αεM

2
−O(ε2)

)K

θ
s
i , and (D.10)

sup
τ

T1(τ) =
K−1

∏
k=0

sup
τ

{
cs

i (k)
}

θ
s
i =

(
1−αβ +

αεM
2

+O(ε2)

)K

θ
s
i (D.11)
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for positive cs
i (k). Next for the term T2(τ), first consider the lower bound

inf
τ

T2(τ)⩾ ∑
l∈NS

K−1

∑
r=0

inf
τ

{
di,l(r)

r−1

∏
k=0

cs
i (k)

K−1

∏
k=r+1

cs
l (k)

}
θ

s
l (D.12)

⩾ ∑
l∈NS

K−1

∑
r=0

−sup
τ

{
|di,l(r)|

}
sup

τ

{ r−1

∏
k=0

cs
i (k)

K−1

∏
k=r+1

cs
l (k)

}
θ

s
l (D.13)

⩾ ∑
l∈NS

K−1

∑
r=0

−
(

αεML
2δ

+O(ε2)

)
sup

τ

{ r−1

∏
k=0

cs
i (k)

K−1

∏
k=r+1

cs
l (k)

}
θ

s
l (D.14)

= ∑
l∈NS

K−1

∑
r=0

−
(

αεML
2δ

+O(ε2)

) r−1

∏
k=0

sup
τ

{
cs

i (k)
} K−1

∏
k=r+1

sup
τ

{
cs

l (k)
}

θ
s
l (D.15)

=−K
(

1−αβ +
αεM

2
+O(ε2)

)K−1(
αεML

2δ
+O(ε2)

)
∑

l∈NS

θ
s
l , (D.16)

where we have cs
i (k)⩾ 0 for all i and k. The upper bound on T2(τ) is as follows:

sup
τ

T2(τ)⩽ ∑
l∈NS

K−1

∑
r=0

sup
τ

{
di,l(r)

r−1

∏
k=0

cs
i (k)

K−1

∏
k=r+1

cs
l (k)

}
θ

s
l (D.17)

⩽ ∑
l∈NS

K−1

∑
r=0

sup
τ

{
|di,l(r)|

}
sup

τ

{ r−1

∏
k=0

cs
i (k)

K−1

∏
k=r+1

cs
l (k)

}
θ

s
l (D.18)

= ∑
l∈NS

K−1

∑
r=0

(
αεML

2δ
+O(ε2)

)
sup

τ

{ r−1

∏
k=0

cs
i (k)

K−1

∏
k=r+1

cs
l (k)

}
θ

s
l (D.19)

= K
(

1−αβ +
αεM

2
+O(ε2)

)K−1(
αεML

2δ
+O(ε2)

)
∑

l∈NS

θ
s
l . (D.20)
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For the term T3(τ), first consider the lower bound

inf
τ

T3(τ)⩾ ∑
l∈NUS

K−1

∑
r=0

inf
τ

{ r−1

∏
k=0

cs
i (k)di,l(r)

K−1

∏
k=r+1

cus
l (k)

}
θ

us
l (D.21)

⩾ ∑
l∈NUS

K−1

∑
r=0

−sup
τ

{
|di,l(r)|

}
sup

{ r−1

∏
k=0

cs
i (k)

K−1

∏
k=r+1

cus
l (k)

}
θ

us
l (D.22)

= ∑
l∈NUS

K−1

∑
r=0

−
(

αεML
2δ

+O(ε2)

) r−1

∏
k=0

sup
τ

{
cs

i (k)
} K−1

∏
k=r+1

sup
τ

{
cus

l (k)
}

θ
us
l (D.23)

= ∑
l∈NUS

K−1

∑
r=0

−
(

αεML
2δ

+O(ε2)

)(
1−αβ +

αεM
2

+O(ε2)

)r(
1+αL+

αεM
2

+O(ε2)

)K−r−1

θ
us
l

(D.24)

=−
(

αεML
2δ

+O(ε2)

)(
1+αL+ αεM

2 +O(ε2)

)K

−
(

1−αβ − αεM
2 +O(ε2)

)K

(αL+αβ +O(ε2)) ∑
l∈NUS

θ
us
l

(D.25)

>−
(

αεML
2δ

+O(ε2)

)(
1+αL+ αεM

2 +O(ε2)

)K

(αL+αβ +O(ε2)) ∑
l∈NUS

θ
us
l . (D.26)

Note that here in the last step we used a loose lower bound by dropping the negative term from the
numerator for the sake of simplifying the subsequent analysis. Similarly, an upper bound on T3(τ) can
be obtained, which is as follows:

sup
τ

T3(τ)<

(
αεML

2δ
+O(ε2)

)(
1+αL+ αεM

2 +O(ε2)

)K

(αL+αβ +O(ε2)) ∑
l∈NUS

θ
us
l . (D.27)

Now that we have derived the bounds for the terms T1(τ),T2(τ),T3(τ), the bounds for remaining terms
T4(τ),T5(τ),T6(τ) can be derived along similar lines. Since the algebra is somewhat tedious, we leave
these derivations to the reader and directly present the bounds.

The term T4(τ) is bounded as

inf
τ

T4(τ) =

(
1+αβ − αεM

2
−O(ε2)

)K

θ
us
j , and (D.28)

sup
τ

T4(τ) =

(
1+αL+

αεM
2

+O(ε2)

)K

θ
us
j . (D.29)
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The lower and upper bound on term T5(τ) are as follows:

inf
τ

T5(τ)>−
(

αεML
2δ

+O(ε2)

)(
1+αL+ αεM

2 +O(ε2)

)K

(αL+αβ +O(ε2)) ∑
l∈NS

θ
s
l , and (D.30)

sup
τ

T5(τ)<

(
αεML

2δ
+O(ε2)

)(
1+αL+ αεM

2 +O(ε2)

)K

(αL+αβ +O(ε2)) ∑
l∈NS

θ
s
l . (D.31)

The lower and upper bound on term T6(τ) are as follows:

inf
τ

T6(τ)⩾−K
(

1+αL+
αεM

2
+O(ε2)

)K−1(
αεML

2δ
+O(ε2)

)
∑

l∈NUS

θ
us
l , and (D.32)

sup
τ

T6(τ)⩽ K
(

1+αL+
αεM

2
+O(ε2)

)K−1(
αεML

2δ
+O(ε2)

)
∑

l∈NUS

θ
us
l . (D.33)

Using these results and dropping higher order terms (O(ε2) and above), we can get the lower bound on
∥ũτ

K∥
2. From (D.9), observe that

∥ũK∥2 =ε
2
(

∑
i∈NS

(T1 +T2 +T3)
2 + ∑

j∈NUS

(T4 +T5 +T6)
2
)
. (D.34)

Let Y1(τ) = ∑i∈NS
(T1(τ)+T2(τ)+T3(τ))

2 and Y2(τ) = ∑ j∈NUS
(T4(τ)+T5(τ)+T6(τ))

2. Using (D.9),
we can see that

∥ũτ
K∥

2 =ε
2
(

Y1(τ)+Y2(τ)

)
. (D.35)
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Now using the bounds for T1(τ),T2(τ),T3(τ) we have the following lower bound on Y1(τ):

inf
τ

Y1(τ)⩾ ∑
i∈NS

(
inf
τ

{
T 2

1 (τ)+T 2
2 (τ)+T 2

3 (τ)+2T1(τ)T2(τ)+2T2(τ)T3(τ)+2T3(τ)T1(τ)

})
(D.36)

⩾ ∑
i∈NS

(
inf
τ

T 2
1 (τ)︸ ︷︷ ︸
>0

+ inf
τ

T 2
2 (τ)︸ ︷︷ ︸
⩾0

+ inf
τ

T 2
3 (τ)︸ ︷︷ ︸
⩾0

+2inf
τ

{
T1(τ)T2(τ)

}
︸ ︷︷ ︸

<0

+2inf
τ

{
T2(τ)T3(τ)

}
︸ ︷︷ ︸

<0

+2inf
τ

{
T3(τ)T1(τ)

}
︸ ︷︷ ︸

<0

)

(D.37)

>

(
∑

i∈NS

inf
τ

T 2
1 (τ)︸ ︷︷ ︸
>0

+0+0−2sup
τ

|T1(τ)|︸ ︷︷ ︸
>0

sup
τ

|T2(τ)|︸ ︷︷ ︸
>0

−2sup
τ

|T2(τ)|︸ ︷︷ ︸
>0

sup
τ

|T3(τ)|︸ ︷︷ ︸
>0

−2sup
τ

|T3(τ)|︸ ︷︷ ︸
>0

sup
τ

|T1(τ)|︸ ︷︷ ︸
>0

)

(D.38)

= ∑
i∈NS

((
1−αL− αεM

2
−O(ε2)

)2K

(θ s
i )

2 −2Kθ
s
i

(
1−αβ +

αεM
2

+O(ε2)

)2K−1(
αεML

2δ
+O(ε2)

)
∑

l∈NS

θ
s
l

−2K
(

1−αβ +
αεM

2
+O(ε2)

)K−1(
αεML

2δ
+O(ε2)

)2

(
1+αL+ αεM

2 +O(ε2)

)K

(αL+αβ +O(ε2)) ∑
l∈NUS

θ
us
l ∑

i∈NS

θ
s
i

)

−2
(

1−αβ +
αεM

2
+O(ε2)

)K(
αεML

2δ
+O(ε2)

)(
1+αL+ αεM

2 +O(ε2)

)K

(αL+αβ +O(ε2)) ∑
l∈NUS

θ
us
l ∑

i∈NS

θ
s
i

(D.39)

= ∑
i∈NS

((
1−αL− αεM

2
−O(ε2)

)2K

(θ s
i )

2 −2Kθ
s
i

(
1−αβ +

αεM
2

+O(ε2)

)2K−1(
αεML

2δ
+O(ε2)

)
∑

l∈NS

θ
s
l

)

−2
(

1+
K ∑i∈NS

(
αεML

2δ
+O(ε2)

)
(

1−αβ + αεM
2 +O(ε2)

))(
1−αβ +

αεM
2

+O(ε2)

)K(
αεML

2δ
+O(ε2)

)(
1+αL+ αεM

2 +O(ε2)

)K

(αL+αβ +O(ε2)) ∑
l∈NUS

θ
us
l ∑

i∈NS

θ
s
i

(D.40)

= ∑
i∈NS

((
1−αL− αεM

2
−O(ε2)

)2K

(θ s
i )

2 −2Kθ
s
i

(
1−αβ +

αεM
2

+O(ε2)

)2K−1(
αεML

2δ
+O(ε2)

)
∑

l∈NS

θ
s
l

)

−2
(

1+O(Kε)

)(
1−αβ +

αεM
2

+O(ε2)

)K(
αεML

2δ
+O(ε2)

)(
1+αL+ αεM

2 +O(ε2)

)K

(αL+αβ +O(ε2)) ∑
l∈NUS

θ
us
l ∑

i∈NS

θ
s
i ,

(D.41)

where in the last step we replaced the term K ∑i∈NS

(
αεML

2δ
+O(ε2)

)
(

1−αβ+ αεM
2 +O(ε2)

) with O(Kε) for Kε ≪ 1 and
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1−αβ + αεM

2 +O(ε2)

)
≫ ε . This is because the numerator

(
αεML

2δ
+O(ε2)

)
is of O(ε); hence,

we require the denominator
(

1−αβ + αεM
2 +O(ε2)

)
to be of constant order, i.e., independent of ε .

Similarly, using the bounds for T4(τ),T5(τ),T6(τ) we have the following lower bound for Y2(τ):

inf
τ

Y2(τ)⩾ ∑
j∈NUS

(
inf
τ

{
T 2

4 (τ)+T 2
5 (τ)+T 2

6 (τ)+2T4(τ)T6(τ)+2T6(τ)T5(τ)+2T5(τ)T4(τ)

})

(D.42)

⩾ ∑
j∈NUS

(
inf
τ

T 2
4 (τ)︸ ︷︷ ︸
>0

+ inf
τ

T 2
5 (τ)︸ ︷︷ ︸
⩾0

+ inf
τ

T 2
6 (τ)︸ ︷︷ ︸
⩾0

+2inf
τ

{
T4(τ)T6(τ)

}
︸ ︷︷ ︸

<0

+2inf
τ

{
T6(τ)T5(τ)

}
︸ ︷︷ ︸

<0

+2inf
τ

{
T5(τ)T4(τ)

}
︸ ︷︷ ︸

<0

)

(D.43)

>

(
∑

j∈NUS

inf
τ

T 2
4 (τ)︸ ︷︷ ︸
>0

+0+0−2sup
τ

|T4(τ)|︸ ︷︷ ︸
>0

sup
τ

|T6(τ)|︸ ︷︷ ︸
>0

−2sup
τ

|T6(τ)|︸ ︷︷ ︸
>0

sup
τ

|T5(τ)|︸ ︷︷ ︸
>0

−2sup
τ

|T5(τ)|︸ ︷︷ ︸
>0

sup
τ

|T4(τ)|︸ ︷︷ ︸
>0

)

(D.44)

= ∑
j∈NUS

((
1+αβ − αεM

2
−O(ε2)

)2K

(θ us
j )2 −2Kθ

us
j

(
1+αL+

αεM
2

+O(ε2)

)2K−1(
αεML

2δ
+O(ε2)

)
∑

l∈NUS

θ
us
l

)

−2
(

1+O(Kε)

)(
αεML

2δ
+O(ε2)

)(
1+αL+ αεM

2 +O(ε2)

)2K

(αL+αβ +O(ε2)) ∑
l∈NS

θ
s
l ∑

j∈NUS

θ
us
j . (D.45)

Finally combining these two bounds yields the following lower bound on infτ ∥ũτ
K∥

2:

inf
τ
∥ũτ

K∥
2 =ε

2
(

inf
τ

Y1(τ)+ inf
τ

Y2(τ)

)
(D.46)

> ε
2
[(

1−αL− αεM
2

−O(ε2)

)2K

∑
i∈NS

(θ s
i )

2 −2K
(

1−αβ +
αεM

2
+O(ε2)

)2K−1(
αεML

2δ
+O(ε2)

)
( ∑

i∈NS

θ
s
i )

2+

(
1+αβ − αεM

2
−O(ε2)

)2K

∑
j∈NUS

(θ us
j )2 −2K

(
1+αL+

αεM
2

+O(ε2)

)2K−1(
αεML

2δ
+O(ε2)

)
( ∑

j∈NUS

θ
us
j )2−

2
(

1+O(Kε)

) (
αεML

2δ
+O(ε2)

)
(αL+αβ +O(ε2))

(
1+αL+

αεM
2

+O(ε2)

)K(
1−αβ +

αεM
2

+O(ε2)

)K

∑
j∈NUS

θ
us
j ∑

i∈NS

θ
s
i −

2
(

1+O(Kε)

) (
αεML

2δ
+O(ε2)

)
(αL+αβ +O(ε2))

(
1+αL+

αεM
2

+O(ε2)

)2K

∑
j∈NUS

θ
us
j ∑

i∈NS

θ
s
i

]
(D.47)
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> ε
2
[(

1−αL− αεM
2

−O(ε2)

)2K

∑
i∈NS

(θ s
i )

2 −2nK
(

1−αβ +
αεM

2
+O(ε2)

)2K−1(
αεML

2δ
+O(ε2)

)
∑

i∈NS

(θ s
i )

2+

(
1+αβ − αεM

2
−O(ε2)

)2K

∑
j∈NUS

(θ us
j )2 −2nK

(
1+αL+

αεM
2

+O(ε2)

)2K−1(
αεML

2δ
+O(ε2)

)
∑

j∈NUS

(θ us
j )2−

n
(

1+O(Kε)

) (
αεML

2δ
+O(ε2)

)
(αL+αβ +O(ε2))

(
1+αL+

αεM
2

+O(ε2)

)K(
1−αβ +

αεM
2

+O(ε2)

)K(
∑

i∈NS

(θ s
i )

2 + ∑
j∈NUS

(θ us
j )2

)
−

n
(

1+O(Kε)

) (
αεML

2δ
+O(ε2)

)
(αL+αβ +O(ε2))

(
1+αL+

αεM
2

+O(ε2)

)2K(
∑

i∈NS

(θ s
i )

2 + ∑
j∈NUS

(θ us
j )2

)]
.

(D.48)

Note that in the last step we have used the following inequalities:

n ∑
i∈NS

(θ s
i )

2 ⩾ ( ∑
i∈NS

θ
s
i )

2,

n ∑
j∈NUS

(θ us
j )2 ⩾ ( ∑

j∈NUS

θ
us
j )2, and

2 ∑
j∈NUS

θ
us
j ∑

i∈NS

θ
s
i ⩽ n ∑

j∈NUS

(θ us
j )2 +n ∑

i∈NS

(θ s
i )

2,

where n is the dimension of the domain of the function f (·). The above condition can be more compactly
written as

ε
2 ⩾ inf

τ
∥ũτ

K∥
2 >ε

2
Ψ(K), (D.49)

where we have that

Ψ(K) =

(
c2K

1 −2Kc2K−1
2 b1 −b2cK

3 cK
2 −b2c2K

3

)
∑

i∈NS

(θ s
i )

2 +

(
c2K

4 −2Kc2K−1
3 b1 −b2cK

3 cK
2 −b2c2K

3

)
∑

j∈NUS

(θ us
j )2,

(D.50)

and c1 =

(
1−αL− αεM

2 −O(ε2)

)
, c2 =

(
1−αβ + αεM

2 +O(ε2)

)
, c3 =

(
1+αL+ αεM

2 +O(ε2)

)
,

c4 =

(
1+αβ − αεM

2 −O(ε2)

)
, b1 =

(
αεMLn

2δ
+O(ε2)

)
and b2 =

(
αεMLn

2δ
+O(ε2)

)(
1+O(Kε)

)
(

αL+αβ+O(ε2)

) .

The condition in (D.49) holds for all such K where infτ ∥ũτ
K∥

2 ⩽ ε2. Therefore to obtain Kι defined
in (D.5), we need to solve for K where ε2 ⩽ ε2Ψ(K) or equivalently 1 ⩽ Ψ(K) where the condition
infτ ∥ũτ

K∥
2 ⩽ ε2 gets inverted using inequality (D.49).

D.2.1 Claim for the value of K in Theorem 3.2:. Since the infimum in (D.49) is taken over all τ , the

condition in (D.49) holds true for all K in the range 1 ⩽ K < supτ

{
Kτ

exit

}
.
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Proof of the claim: Recall that from the definition of Kι from (D.5), Kι satisfies the following condition:

inf
τ

∥∥ũτ

Kι−1

∥∥2
⩽ ε

2 < inf
τ
∥ũτ

Kι ∥2 , (D.51)

where the lower bound implies that the infimum over all τ-parameterized approximate trajectories has

not yet escaped the ball Bε(x∗). Let there exist some K̄ where K̄ ∈
{

1,2, ...,supτ

{
Kτ

exit

}}
such that the

condition in (D.49) holds for all K ∈
{

1, ..., K̄−1
}

and fails to hold for all K ∈
{

K̄, ...,supτ

{
Kτ

exit

}}
,

i.e. we have the condition ε2 ⩽ ε2Ψ(K)< infτ ∥ũτ
K∥

2 for K ⩾ K̄. This implies that

ε
2
Ψ(K̄ −1)< inf

τ

∥∥ũτ

K̄−1

∥∥2
⩽ ε

2 ⩽ε
2
Ψ(K̄)< inf

τ

∥∥ũτ

K̄

∥∥2
. (D.52)

From conditions (D.51) and (D.52) we get that K̄ = Kι . Since K̄ ∈
{

1,2, ...,supτ

{
Kτ

exit

}}
we have

that Kι = K̄ ⩽ supτ

{
Kτ

exit

}
⩽ Kι . Hence we must have that K̄ = supτ

{
Kτ

exit

}
. □

E. Proof of Theorem 3.3 (Exit time for the infimum of ε-precision trajectories)

Proof.
Further simplifying the inequality in (D.48) by dropping order O(ε2) and O(Kε) terms (for Kε ≪ 1)

appearing on its right hand side and using (D.49), we get the following approximate lower bound:

1 ⪆

([(
1−αL− αεM

2

)2K

−2K
(

1−αβ +
αεM

2

)2K−1
αεMLn

2δ

]
∑

i∈NS

(θ s
i )

2+

[(
1+αβ − αεM

2

)2K

−2K
(

1+αL+
αεM

2

)2K−1
αεMLn

2δ

]
∑

j∈NUS

(θ us
j )2

− αεMLn
2δ (αL+αβ )

(
1+αL+

αεM
2

)K(
1−αβ +

αεM
2

)K(
∑

i∈NS

(θ s
i )

2 + ∑
j∈NUS

(θ us
j )2

)

− αεMLn
2δ (αL+αβ )

(
1+αL+

αεM
2

)2K)(
∑

i∈NS

(θ s
i )

2 + ∑
j∈NUS

(θ us
j )2

)
(E.1)

1 ⪆

([(
1−αL− αεM

2

)2K

−2K
(

1−αβ +
αεM

2

)2K−1
αεMLn

2δ

]
∑

i∈NS

(θ s
i )

2+

[(
1+αβ − αεM

2

)2K

−2K
(

1+αL+
αεM

2

)2K−1
αεMLn

2δ

]
∑

j∈NUS

(θ us
j )2 − εMLn

(
1+αL+ αεM

2

)2K

δ (L+β )

)
,

(E.2)

where in the last step we used the relation
(

∑i∈NS
(θ s

i )
2 +∑ j∈NUS

(θ us
j )2

)
= 1 and the inequality

(
1−

αβ + αεM
2

)
<

(
1+αL+ αεM

2

)
. Now, if we substitute the step size α = 1

L , we get the following
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approximate inequality:

1 ⪆

([(
− εM

2L

)2K

−2K
(

1− β

L
+

εM
2L

)2K−1
εMn
2δ

]
∑

i∈NS

(θ s
i )

2+

[(
1+

β

L
− εM

2L

)2K

−2K
(

2+
εM
2L

)2K−1
εMn
2δ

]
∑

j∈NUS

(θ us
j )2 − εMLn

(
2+ εM

2L

)2K

δ (L+β )

)
(E.3)

1 ⪆

([
−2K

(
1− β

L
+

εM
2L

)2K−1
εMn
2δ

]
∑

i∈NS

(θ s
i )

2+

[(
1+

β

L
− εM

2L

)2K

−2K
(

2+
εM
2L

)2K−1
εMn
2δ

]
∑

j∈NUS

(θ us
j )2 − εMLn

(
2+ εM

2L

)2K

δ (L+β )

)
, (E.4)

where in the last step we dropped the
(
− εM

2L

)2K

term from right hand side.

In order to obtain Kι and hence the exit time Kexit , we need to solve for values of K where the
approximate inequality in (E.4) becomes an equality. Hence, we look into the two possible cases for
this value K, i.e., large K and small K. Note that in the next subsections we only consider those cases
where our unstable projection ∑ j∈NUS

(θ us
j )2 is not too close to 0. We now obtain the exit time Kexit for

the two cases.

E.0.1 Case 1—Large K:. If K is large with K = O

(
1
ε

)
then we can use the Lambert W function

[8] to solve the above transcendental inequality (E.4). Specifically for obtaining linear escape rates i.e.,

K =O

(
log

(
1
ε

))
, we set 1(

2+ εM
2L

)2K = ρεc for some ρ > 0, c > 0,
(

1− β

L + εM
2L

)2K

= ηεd for some

η > 0, d > 0 where
(

1− β

L + εM
2L

)
< 1 and divide both sides of (E.4) by the term

(
2+ εM

2L

)2K

to get

the following approximate inequality:

1(
2+ εM

2L

)2K ⪆

([
−2K

(
1− β

L + εM
2L

)2K−1

(
2+ εM

2L

)2K
εMn
2δ

]
∑

i∈NS

(θ s
i )

2

︸ ︷︷ ︸
F1

+

[(1+ β

L − εM
2L

)2K

(
2+ εM

2L

)2K −2K
(

2+
εM
2L

)−1
εMn
2δ

]
∑

j∈NUS

(θ us
j )2 − εMLn

δ (L+β )

)
. (E.5)
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Dropping the first term F1 on right hand side for large K (this term has order O

(
ε(1+c+d) log

(
1
ε

))
with c > 0, d > 0) and making the substitution of ρεc on the left hand side, we get the following bound:

ρε
c ⪆

(
1+ β

L − εM
2L

2+ εM
2L

)2K

∑
j∈NUS

(θ us
j )2−2K

(
2+

εM
2L

)−1
εMn
2δ

∑
j∈NUS

(θ us
j )2 − εMLn

δ (L+β )
(E.6)

(
1+ β

L − εM
2L

2+ εM
2L

)2K

⪅ 2K
(

2+
εM
2L

)−1
εMn
2δ

+

ε

(
ρε(c−1)+ MLn

δ (L+β )

)
∑ j∈NUS

(θ us
j )2 . (E.7)

When the problem is well conditioned, i.e.,
(

1− β

L + εM
2L

)
< 1 or equivalently β

L > εM
2L , then we are

guaranteed fast escape under good initial unstable projections. Now, solving for the values of K where
the inequality (E.7) becomes equality, we make use of the general transcendental equation qx = ax+b
whose solution is given by

x =−
W (− logq

a q−
b
a )

logq
− b

a
, (E.8)

where W (·) is the Lambert W function. On comparing the coefficients, we have x= 2K and the constants
as follows:

a =

(
2+

εM
2L

)−1
εMn
2δ

,b =

ε

(
ρε(c−1)+ MLn

δ (L+β )

)
∑ j∈NUS

(θ us
j )2 ,q =

(
1+ β

L − εM
2L

2+ εM
2L

)
. (E.9)

For large values of any argument y, the Lambert W function is bounded by W (y) ⩽ log(y). If the
quantity ∑ j∈NUS

(θ us
j )2 is not too close to 0 and is lower bounded, i.e., ∑ j∈NUS

(θ us
j )2 ⩾ ∆ then we have

an initial projection onto the unstable subspace of the saddle point. Using the Lambert W function
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bound and substituting the coefficients, we have following bound on K:

2K =
1

log
(

2+ εM
2L

1+ β

L −
εM
2L

)W
((

2+
εM
2L

)
2δ

εMn
log

(
2+ εM

2L

1+ β

L − εM
2L

)(
2+ εM

2L

1+ β

L − εM
2L

) 2δ

(
2+ εM

2L

)(
ρε(c−1)+ MLn

δ (L+β )

)
Mn∑ j∈NUS

(θus
j )2

)
−

2δ

(
2+ εM

2L

)(
ρε(c−1)+ MLn

δ (L+β )

)
Mn∑ j∈NUS

(θ us
j )2 (E.10)

2K ⩽
1

log
(

2+ εM
2L

1+ β

L −
εM
2L

) log
((

2+
εM
2L

)
2δ

εMn
log

(
2+ εM

2L

1+ β

L − εM
2L

)(
2+ εM

2L

1+ β

L − εM
2L

) 2δ

(
2+ εM

2L

)(
ρε(c−1)+ MLn

δ (L+β )

)
Mn∑ j∈NUS

(θus
j )2

)
−

2δ

(
2+ εM

2L

)(
ρε(c−1)+ MLn

δ (L+β )

)
Mn∑ j∈NUS

(θ us
j )2 (E.11)

2K ⩽
log

((
2+ εM

2L

)
log

(
2+ εM

2L

1+ β

L −
εM
2L

)
2δ

εMn

)
log

(
2+ εM

2L

1+ β

L −
εM
2L

) +

2δ

(
2+ εM

2L

)(
ρε(c−1)+ MLn

δ (L+β )

)
Mn∑ j∈NUS

(θ us
j )2 −

2δ

(
2+ εM

2L

)(
ρε(c−1)+ MLn

δ (L+β )

)
Mn∑ j∈NUS

(θ us
j )2

(E.12)

K ⩽
log

((
2+ εM

2L

)
log

(
2+ εM

2L

1+ β

L −
εM
2L

)
2δ

εMn

)
2log

(
2+ εM

2L

1+ β

L −
εM
2L

) = O

(
log

(
1
ε

))
. (E.13)

Notice that the K solved here is an approximate solution to (E.7) where the inequality in (E.7) gets
inverted. Since the condition (E.4) gets reversed at K = Kι , we therefore get the condition Kι ⪅

log

((
2+ εM

2L

)
log

(
2+ εM

2L
1+ β

L − εM
2L

)
2δ

εMn

)
2log

(
2+ εM

2L
1+ β

L − εM
2L

) and using the fact that Kexit < Kι gives the desired conclusion of

Kexit ⩽ Kι = O

(
log

(
1
ε

))
. The bound ε < 2β

M follows from the fact that β

L > εM
2L .

Hence, we have escape rates of order O

(
log

(
1
ε

))
for the case when our problem is well condi-

tioned and does not have a very small unstable projection. It is remarked that this is only an upper bound
on K and the iterate is likely to escape way before this time. Also, this result supports our analysis of

the trajectory function for values of K = O

(
1
ε

)
.

It is worth mentioning that dropping of the first term F1 with order O

(
ε(1+c+d) log

(
1
ε

))
from the
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right hand side of inequality (E.5) is justified since from the particular upper bound of Kι from (E.13) it
can be inferred that c > 1.

From the substitution 1(
2+ εM

2L

)2K = ρεc where 2K =

log

((
2+ εM

2L

)
log

(
2+ εM

2L
1+ β

L − εM
2L

)
2δ

εMn

)
log

(
2+ εM

2L
1+ β

L − εM
2L

) we have that

log
(

1
ρεc

)
= 2K log

(
2+

εM
2L

)
(E.14)

c log
(

1
c
√

ρε

)
=

log
((

2+ εM
2L

)
log

(
2+ εM

2L

1+ β

L −
εM
2L

)
2δ

εMn

)
log

(
2+ εM

2L

1+ β

L −
εM
2L

) log
(

2+
εM
2L

)
(E.15)

c =
log

(
2+ εM

2L

)
log

(
2+ εM

2L

)
− log

(
1+ β

L − εM
2L

) > 1, (E.16)

where we have log
(

1
c√ρε

)
= log

((
2+ εM

2L

)
log

(
2+ εM

2L

1+ β

L −
εM
2L

)
2δ

εMn

)
. Now with c > 1, we will have the

following condition for any d > 0:

lim
ε→0+

ε(1+c+d) log
(

1
ε

)
ε2 = 0. (E.17)

Hence, for sufficiently small ε , the term F1 can be of at most order O(ε2).
Comments on the projection ∑ j∈NUS

(θ us
j )2 : Recall that from (E.7), we solved for values of K

where this inequality becomes an equality. However, this solution for such K may not necessarily exist.

For instance, the left hand side of (E.7) given by
(

1+ β

L −
εM
2L

2+ εM
2L

)2K

is a decreasing function of K whereas

the right hand side of this inequality given by 2K
(

2+ εM
2L

)−1
εMn
2δ

+

ε

(
ρε(c−1)+ MLn

δ (L+β )

)
∑ j∈NUS

(θ us
j )2 is an increasing

function of K. Hence for a solution K to exist where these two quantities become equal, we must
necessarily have that

(
1+ β

L − εM
2L

2+ εM
2L

)2K∣∣∣∣
K=0

>2K
(

2+
εM
2L

)−1
εMn
2δ

∣∣∣∣
K=0

+

ε

(
ρε(c−1)+ MLn

δ (L+β )

)
∑ j∈NUS

(θ us
j )2 (E.18)

∑
j∈NUS

(θ us
j )2 >ε

(
ρε

(c−1)+
MLn

δ (L+β )

)
> ε

MLn
δ (L+β )

, (E.19)

where we can set ∆ > ε
MLn

δ (L+β ) and therefore require the condition ∑ j∈NUS
(θ us

j )2 ⩾ ∆ . Note that this is
only a necessary condition for the existence of K from (E.13) but is not sufficient.
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E.0.2 Case 2—Small K:. Recall that while developing the inequality (E.5) from (E.4), we used the

fact that K is sufficiently large. However, for very small values of K, i.e., K < O

(
log

(
1
ε

))
, the

transformation of the inequality (E.4) into (E.5) may not necessarily hold true. In that case, a different
approach is required to solve for K. Since the new solutions for K will be very small values, we can skip

the analysis for small K case and extrapolate it to the previous result of K ⩽ Kι = O

(
log

(
1
ε

))
which

is a linear exit time solution. We now complete the proof of Theorem 3.3 by establishing one last result.

E.0.3 Claim: The set of ε-precision trajectories with linear exit times from the ball Bε(x∗) is non-empty.
Proof. Observe that from (E.4), we need to find K where this approximate inequality becomes an
equality. Let the initial condition be such that ∑ j∈NUS

(θ us
j )2 = 1; then (E.4) can be given by

1 ⪆

(
1+

β

L
− εM

2L

)2K

−
[

2K
(

2+
εM
2L

)2K−1
εMn
2δ

+ εMLn

(
2+ εM

2L

)2K

δ (L+β )

]
(E.20)(

2+
εM
2L

)−2K

⪆

(
1+ β

L − εM
2L

2+ εM
2L

)2K

−
[

2K
(

2+
εM
2L

)−1
εMn
2δ

+
εMLn

δ (L+β )

]
︸ ︷︷ ︸

L1

. (E.21)

It is easy to infer that the right-hand side of (E.21) is negative for K =

log

((
2+ εM

2L

)
log

(
2+ εM

2L
1+ β

L − εM
2L

)
2δ

εMn

)
2log

(
2+ εM

2L
1+ β

L − εM
2L

)
where this value of K comes from (E.13). Hence, the approximate inequality in (E.21) holds for this
value of K. However, for small positive values of K, one can check that the right-hand side of (E.21) is
greater than its left-hand side, provided ε is sufficiently small and the problem is well-conditioned. This
is because the term L1 on the right-hand side of (E.21) is of order O(ε) for small positive values of K

whereas we have that
(

2+ εM
2L

)−2K

<

(
1+ β

L −
εM
2L

2+ εM
2L

)2K

for any positive K.

Therefore, the approximate inequality in (E.21) becomes an equality for some K = O(log(ε−1))
and we have that Kι = O(log(ε−1)). As a result, the exit time Kexit is linear for the initial condition
∑ j∈NUS

(θ us
j )2 = 1 since Kexit < Kι . It should be noted that the proof of a linear exit time for the general

initial condition ∆ ⩽ ∑ j∈NUS
(θ us

j )2 < 1 can be developed along similar lines though it may require more
effort. □

F. Counterexample to the monotonicity property

Consider a trajectory of the gradient descent method that satisfies the following boundary condition for
some ρ ∈ (0,1):

Mε2

2β (1−ρ)
=

M ∥x0 −x∗∥2

2β (1−ρ)
> ⟨vn,x0 −x∗⟩⩾ ⟨vn,x1 −x∗⟩⩾ M ∥x1 −x∗∥2

2β (1−ρ)︸ ︷︷ ︸
I1

, (F.1)
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where ∥x0 −x∗∥= ε by definition. This trajectory violates the strict monotonicity of ⟨vn,xk−x∗⟩ for k =
0. But it is straightforward to see that the condition I1 along with (3.21)–(3.23), in which ε is replaced
by ∥x1 −x∗∥, ensures geometric growth of ⟨vn,xk − x∗⟩ for all k ⩾ 1. This in turn guarantees linear
exit time from Bε(x∗) for the trajectory starting at x0, even though the strict monotonicity property is
violated. Now our goal is to prove the existence of at-least one such trajectory that satisfies (F.1) so as
to construct the counterexample. In order to have the condition ⟨vn,x0 −x∗⟩⩾ ⟨vn,x1 −x∗⟩ from (F.1)
with ∥x1 −x∗∥⩽ ε , we require

⟨vn,x0 −x∗⟩⩾ ⟨vn,x1 −x∗⟩ (F.2)
⇐⇒ ⟨vn,x0 −x∗⟩⩾ ⟨vn,x0 −x∗⟩−α⟨vn,∇ f (x0)⟩ (F.3)

⇐⇒ α⟨vn,∇ f (x0)⟩⩾ 0 (F.4)

⇐⇒
〈

vn,
∫ p=1

p=0
∇

2 f (x∗+ p(x0 −x∗))(x0 −x∗)d p
〉
⩾ 0 (F.5)

⇐⇒ ⟨vn,∇
2 f (x∗)(x0 −x∗)⟩+ ⟨vn,P(x0)(x0 −x∗)⟩⩾ 0, (F.6)

where P(x0) =
∫ p=1

p=0 ∇2 f (x∗ + p(x0 − x∗))d p−∇2 f (x∗) and ∥P(x0)∥2 ⩽ Mε

2 . Next, without loss of

generality, write x0 −x∗ = ε
n
∑
j=1

a jv j with a j ∈ [0,1] for all j, ∑ j a2
j = 1, and an =

⟨vn,x0−x∗⟩
ε

= Mεσ

2β (1−ρ)

for some positive σ (note that σ cannot be 1 since we require the condition ⟨vn,x0−x∗⟩< Mε2

2β (1−ρ) from
the left-hand-side of (F.1)). Substituting the expression for x0 −x∗ in (F.6) followed by substituting an
and using the fact that λn ⩾−L from Assumption A2 yields

⟨vn,∇ f (x0)⟩= ⟨vn,(∇
2 f (x∗)+P(x0))(x0 −x∗)⟩ (F.7)

= εanλn + ⟨vn,P(x0)(x0 −x∗)⟩⩾−L
Mε2σ

2β (1−ρ)
+ ε⟨vn,P(x0)

n

∑
j=1

a jv j⟩⩾ 0. (F.8)

Now there will exist some twice continuously differentiable function f (·) for which ∥P(x0)∥2 = Mε

2
for a given x0. Writing P(x0) in terms of the v j’s using the rank-one decomposition we get P(x0) =

n
∑

i=1

n
∑
j=1

ci jvivT
j where ci j = c ji since P(x0) is symmetric and we have the constraint Mε

2 ⩽

√
n
∑

i=1

n
∑
j=1

c2
i j ⩽

Mnε

2 . Hence one can fix cin = Mε

2 ai for some twice continuously differentiable f (·) and substitute the
resulting P(x0) into (F.8) to get

−L
Mε2σ

2β (1−ρ)
+ ε⟨vn,P(x0)

n

∑
j=1

a jv j⟩⩾ 0 (F.9)

⇐⇒ ε

〈 n

∑
i=1

n

∑
j=1

ci jvivT
j vn,

n

∑
j=1

a jv j

〉
⩾ L

Mε2σ

2β (1−ρ)
(F.10)

⇐⇒ ε

〈 n

∑
i=1

cinvi,
n

∑
j=1

a jv j

〉
⩾ L

Mε2σ

2β (1−ρ)
(F.11)

⇐⇒ Mε2

2
⩾ L

Mε2σ

2β (1−ρ)
(F.12)

⇐⇒ β (1−ρ)

L
⩾ σ . (F.13)
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Also, from (3.14) we have that x1 −x∗ = (I−α∇2 f (x∗))(x0 −x∗)−αr(x0) where ∥r(x0)∥⩽ Mε2

2 .

Hence, ∥x1 −x∗∥⩽ ε

√
n
∑
j=1

(1−αλ j)2a2
j +

Mε2

2 < ε(
√

(1−αβ )2 +4a2
n+

Mε

2 )= ε(
√
(1−αβ )2 +O(ε2)+

Mε

2 ). Next, using (F.8) and (F.13) we get that ⟨vn,x1 −x∗⟩= ⟨vn,x0 −x∗⟩−α⟨vn,∇ f (x0)⟩= Mε2σ

2β (1−ρ) −

O(ε3) = Mε2

2L −O(ε3) by choosing σ = β (1−ρ)
L −O(ε) when evaluating ⟨vn,∇ f (x0)⟩. For the inequality

I1 to hold, we require ⟨vn,x1 −x∗⟩⩾ M∥x1−x∗∥2

2β (1−ρ) . This can be achieved by requiring the condition

⟨vn,x1 −x∗⟩= Mε2σ

2β (1−ρ)
−O(ε3)⩾

Mε2

2β (1−ρ)

(√
(1−αβ )2 +O(ε2)+

Mε

2

)2

⩾
M ∥x1 −x∗∥2

2β (1−ρ)
(F.14)

=⇒ β (1−ρ)

L
−O(ε) = σ ⩾

(√
(1−αβ )2 +O(ε2)+

Mε

2

)2

+O(ε). (F.15)

Now both (F.13) and (F.15) will be satisfied for α = 1
L provided β

L is close to 1, ε is sufficiently small
and ρ is not too large. Hence we have obtained a value of σ and in turn an = ⟨vn,x0−x∗⟩

ε
= Mεσ

2β (1−ρ) ,
i.e., the initial boundary condition, for which (F.1) is satisfied on some twice continuously differentiable
function f (·).
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