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Abstract

This paper examines a system of partial differential equations describing dislocation dynamics in
a crystalline solid. In particular we consider dynamics linearized about a state of zero stress and
use linear semigroup theory to establish existence, uniqueness, and time asymptotic behavior of
the linear system.
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1 Introduction

Dislocations are topological defects in elasticity and their dynamics and interaction are of significant
scientific and technological interest. They were introduced in the theory of elasticity by Volterra in
1907 and continue to be vigorously studied to this day, with a complete dynamical theory within
continuum mechanics of unrestricted material and geometric nonlinearity taking shape in recent
years (see, e.g., [Ach22, AKS19, ZAWB15, AA20, AA19, AZA20] with detailed bibliographic threads
to earlier works in the overall subject). Here, we give a mathematical analysis of the governing
nonlinear pde system of dislocation mechanics, linearized about a state of vanishing stress.

This paper has two additional sections after this Introduction. Section 2 presents the ‘small
deformation’ model of nonlinear dislocation mechanics, see e.g. [Ach22]. We then linearize this
system about a state of vanishing stress to obtain a linear system of partial differential equations
which describe the evolution of a class of deformations of an elastic solid. In Section 3 we use the
Lumer-Phillips Theorem [Yos71] to establish existence and uniqueness of solutions to our linear
evolutionary system. Specifically, the Lumer-Phillips Theorem yields existence of a CY semigroup
of contractions on a Hilbert space H. Furthermore, this evolution is dissipative and allows us to
determine the time-asymptotic behavior via an application of a theorem of S. Foguel [Fog66]. Here,
time asymptotic behavior is only given with respect to weak convergence in the Hilbert space H as
lack of a compact resolvent for the infinitesimal generator of our C° semigroup appears to preclude
application of a theorem of Dafermos and Slemrod [DS73] for strong convergence. Finally, two
examples are presented which show that the limit dynamics predicted by the linearized dissipative
theory allows for both a non-trivial static solution as well as an oscillating motion.
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2 Linearized dislocation mechanics

We consider the following ‘small deformation’ model of nonlinear dislocation mechanics:

0jv; — Oguij — Jij =0
—p Op; + 0T = 0
Cijriur = Tij
ejrsir Vs = Jij
erjk OjUit, = iy

esmnTpmapn =V

where v is the material particle velocity, u = € 4+ w is the elastic distortion, &;; = %(uw + ;) is
the elastic strain, w;; = %(uw —u;;) is the elastic rotation, J is the dislocation flux or plastic strain
rate, p is the mass density, T' is the stress, C is the tensor of elastic moduli with major and minor
symmetries, « is the dislocation density tensor, and V is the dislocation velocity vector.

For any « field that is the curl of a skew symmetric tensor field, and with O-traction boundary
conditions (i.e., Tjjn; = 0, where n; is the outward unit normal field on the body), the unique
solution (in a simply connected body) for stress T;; = Cjjnup = Cjjriep corresponding to the
system

0;(Cijrrurg) =0
erjkOjlik = Qir

isT = 0 with e = 0. Thus, for the entire class of such dislocation density distributions, J =0,V = 0,
and the class {(vi,uij)]vi =0,u; = %(uZJ — u;j), i.e., skew} constitutes steady state solutions of
(1). Motivated by the above, we linearize (1) about any state (v;, u;;) with (v; = 0,¢;; = 0), with
the field @ defined from (1)5, regardless of the topology of the body. Such O-stress steady state
solutions represent (within the confines of the ‘small deformation’ theory (1) being considered)
non-trivial elastic distortion and dislocation density fields (e.g. arbitrarily fine distributions of
dislocation walls) - unlike in classical linear elasticity.

Henceforth, we will assume T'=0,J =0, and V = 0. ‘

We denote the dependent fields of the linearized system with overhead dots ‘( )’ to obtain the
system

0;0; — Dyt — Jij = 0
—p0; + 0j(Cyjpiér) =0
Cijklé{cl = ng @)

ejrsQir Vs = Jij
€rjk0jlik, = Cuir
CsmnTpmpn = V.

We then have the following energy equality for the linearized system:

Cijricr (aﬂ'}z’ — Ojui; — jij) =0,
— p0;0; 4 0;05(Cyjrcr) = 0 (3)
1

= 0; (0:Cijmicn) — O <2/)Uwz' + 2Cijkl5ij5kl) = Cijuendij = Tijdij.



From (2)4,6 we have
Vs = esjrnjair
Tz’jJij = Tijesjrairvs = sts > 07
which yields energy dissipation and will be crucial to our analysis. Introducing the notation
Jij = esjrairesmnTpmapn = (esjrairesmnapn)cpmklukl = IBijklakl = IBijklékl (5)

(2) becomes
Opttij — O050; + Byjpti = 0
p0y0; — 0;(Cijptu) = 0,

with ‘nonnegative dissipation’ (4) in force.

3 Analysis of linearized dislocation mechanics

For the analysis of system (2) it is useful to decompose it into symmetric and skew parts as follows

. L. . :
61561']‘ = 5(@-@2- + ain) — ‘](U)
pOv; = 0;C4 ik (7)
. L. . :
8twij = 5(8]'%‘ — Oivj) — J[ZJ]
Here, and in the following, we use the index notation A_
LA i —A i)
( S RS ji... ).

2
We note from (5) that B;;r = Bjjx), a property inherited from the minor symmetries of the
elastic moduli C, and

if)e. = $(A ij. +A_j.) and A .. =

Jij = Bij(ki)Eki-

3.1 Existence and Uniqueness

Let £2 be an open, bounded, connected set in R3. By 02 we denote the boundary of 2 which is
C'-smooth and by n;,J = 1,2,3 the unit normal on 92 pointing towards the exterior. We denote
by 021,002 fixed subsets of 312, and 92 := 92 — 3y, 995 := 9 — ds.

Introduce the Sobolev spaces

LQ(Q) = {U (2 — Rg\ / dx viv; < oo}
o)
H() = {5 AP Rg’;n?; ] /de €ij€ij < oo} Ri;n%, is the set of 3 x 3 symmetric matrices
Hl(Q) = {v 2R3 | Ojv; in the sense of distributions, / dx 0;v;05v; + v;v; < oo} ,
(0]
and we insist on
Cijrt = Cjirr = Cijir = Chyij

Cijrigijers = ao €ijerl, Ve, a0 > 0 a constant.

Let
U = (¢ij, 0i)



so that (2) is written as
oU =AU

9300y — Bagy ()€t (8)
AU = .
%aj«Cijklékl)

We wish to establish that A is the infinitesimal generator of a C” semi-group of contractions S(t)
on the Hilbert space
H = H(2) x L*(12)

with inner product (, )y defined as
((eijvi); (Eigy i) i = (Cijment; Eij) o) + (pvis Vi) 12(0)
D(A) {(513,1)1) S H| AU € H, vl( ) =0,a.e.x € 8(21,<Cijklakmj =0ae x € 8!22}
{(5137%) € Hlv; € HI(Q)yaj((Cz‘jkwm) € LQ(Q),CijklEklnj =0a.e x € 8!22}

HY () = {vs e H(n )vi=0a.cxed}.

- 9)
We note that D(A) = H. Furthermore, we have (U, AU)y = (AU, U)g < 0 for all U € D(A),

i.e., A is dissipative. To see this, we compute
(U, AU = /Q 0 Criyi (0t — Beatypmyiom) + 3:05(Cigiénr)
= / da 0;Cijpiepm; — /Q dz Crii€iiB (k1) (pm)Epm
/ dx Thy Jr = /de V.V, <0.

By the Lumer-Phillips Theorem [Yos71, p. 250] A will then be the infinitesimal generator of a C°
semigroup of contractions on H if the range condition

range(A — A) = H,
for some A € R, i.e., we need solvability of the system

)\éz] a(jvl) + B(z] kl)gkl fz]
Apv; — 0 (Cijrigr) = gi,
for given (f,g) € H.
We ensure this by writing for A sufficiently large
€ij = Gy (O0k + frr)

where Gyjp is the inverse of (Adydji + Bijyk)), or more succintly, with D == Bjy), G =
R(—A,D) where R(\, D) denotes the resolvent of D.
The usual expansion of the resolvent (see, e.g., [Yos71, p. 211]) gives

AR(=A,D) =T+ DAY “(=A) 7DV,
j=0



Hence for r = @ < 1, where ||D|| denotes the operator norm of B, the series converges and we

define

K=DA"Y (=)D
=0 (11)
K[| =r1—r)
to get
AG=I+K=—G=\""T+)1"'K,

where [[A7!K|| < const A2, Hence Gjjr = A" k0 + A7 Ky jpr, and
Eij = A0y + fig) + A Kijna (Oimy + fra) (12)
Now substitute (12) into (10) to obtain
N2v; — 05 (Cijra (Orin + frt)) — 05(CijrKtmn (Onm + frn)) = Agi
= A2v; — 9;(Cijr0tn) — 95(CijraKitmnOnm) = 0;(Cijrafur) + 0j(CijraKetmn fnn) + Agi
Write (13) in weak form

(13)

/ dx /\2@‘1')1‘ + @m@ijkl&z}k + ajﬁi((cijleklmn)ani)m
kp]

= /Q dr — 0;0,Cyjk1 frr — 050 (CijraKiimn ) from + AUi g (14)
Vv € HY().
The left hand side of (14) defines a bilinear form B(v,v) which satisfies

1. B(v,v) < const||vHﬁ1(Q)HEHﬁl(Q) (boundedness)

2. B(v,v) > constHvH%l(m for A sufficiently large by (11) (coercivity).
Here we have assumed that C;ji, o;; are continuous on {2 and used Korn’s inequality (see, e.g,
Ciarlet [Cial0]). R

As the right hand side of (14) defines a bounded linear functional on H 1(£2), the Lax-Milgram
Theorem [Yos71, p. 92] yields a unique solution ©; € H(£2) to the weak form (14). Substituting
this ¥; into (12) we have defined €;; where the pair

(24, 05) € HO(£2) x H (1)

solves (10). From (10) we see that 0;(C;jrér) € L*(£2). Furthermore, retracing our steps from
(14) back to (10) tells us that

/ @iCijklékl n; da =0

082y

and hence (€;;,7;) € D(A). Thus, the range condition of the Lumer-Phillips theorem is satisfied
and we we have

Theorem 3.1. A is the infinitesimal generator of a C° semi-group of contractions S(t) on Hand
for Uy € H, S(t)Uy provides the unique weak solution to (7)1 .

Corollary 3.1.1. (S(t)Uy,w;;) yields the unique weak solution of (7), where w;; is defined via the
definite integral in t of the right hand side of (7)3 with initial condition &;;(0) € H°(£2) at t = 0.

Proof. Substitute S(t)Uy = (w;;(t),vi(t)) into the well-defined right hand side of (7)3 yielding a
continuous in time right hand side. ]



3.2 Time-asymptotic behavior

Since our system (7)1 2 is linear, we are able to exploit the special properties of linear contraction
semigroup on Hilbert space. As it is not obvious that (Al — A)~™' : H — H is compact, we cannot
immediately apply the results of Dafermos and Slemrod [DS73] on strong decay in H. Instead,
we follow an argument of O’Brien [O’B78] which in turn was based on the following theorem of S.
Foguel [Fog66]:

Theorem 3.2. For a C° semigroup of contractions S(t) on a Hilbert space H define the isometric
subspace H,, of H as

Hy ={Ur € H [ [SOULllg = |Uilla = IS*@®)U1l g ,t = 0}

Then H, is a closed invariant subspace and S(t) forms a C° semi-group of unitary operators on
H,, and for Wy orthogonal to H,

S(t)Wy = S*(t)Wy — 0 (15)
as t — 0o, where — denotes weak convergence in H.

We apply Foguel’s theorem as follows:

Decompose
A=A+ A
303) =By (k1) Ert
(A1U)ij = (A2U)ij =
50i(Cijrién) 0
with D(A;) = D(A). Recall from the dissipation inequality (4) and (9) that

(U, AU) = (U, A2U) = ~|[V |72 (q)- (16)

Now decompose the initial data Uy € H as Uy = Uy + Wy with Uy € H,, and Wy | H,,. By Foguel’s
theorem
(S Uy — S(t)Uy) =0 as t — 00. (17)

Hence time-asymptotic behavior of S(¢)Uy is determined by time-asymptotic behavior of S(t)U;.
Furthermore, since H,, is invariant under S(¢) and D(A) is dense in H, then H, N D(A) is dense in
H,. Take U; € H, N D(A) so that S(t)U; € D(A). We know from Foguel’s theorem that

d
ISOUE = hlE = ZISOUE =0. (18)

On the other hand, the dissipation inequality (16) gives us

d .
@Hs(t)UlH%{ = (S(t)Ur, A2S(t)U1) g = _HVHQLQ(Q)’ (19)
where '
Vs = esmnpnCpmriér =: Dspiér =: (DU)s, (20)
ie.,
d
@HS(UUHH% = —HDS(t)Ulﬂizm) VteR" (21)



Comparison of (18) and (21) gives
DS(HU; =0 V>0 (22)
But if DS(¢)U; = 0 for t > 0 then A3S(¢t)U; = 0 for ¢t > 0 and our system reduces to

d
—U = AU
dt 1Y,

U = S(t)U;. But A generates the unitary semigroup Si(t), i.e., S1(t)U; is the unique weak solution
to the system of linear elasticity where ©; now plays the role of the displacement. Hence
S(t)Uy = S1(t)Uy, t>0, (23)
and from (22)
DS, (t)Uy =0, t>0. (24)
By density of H, N D(A) in H, (23) and (24) hold for all U; € H,,. Hence we have proven

Theorem 3.3. (S(t)Uy—S1(t)U1) — 0 ast — oo when DS1(t)Uy = 0 fort > 0, i.e. weak solutions
of our system (7)12 weakly approach weak solutions of the equations of linear elasticity which are
constrained by egjraiy T = €sjroirCijricry = 0. The limit system is given by

1
8tgij = 5((%’@@‘ + aﬁj)

p 0i0; = 05(CyjiiEm)
0= 65mn04pn(cpmkl§kl in {2,

and T; =0 on 0}

(Cijklgklnj =0 on 0.

(25)

Corollary 3.3.1. 9y;(t) — 3(9;5; — 9;0;)(t) — 0 as t — oo in the sense of distributions, where
€;,0; satisfies (25).

Proof. We know from Theorem 3.3 that
((2),0(t)) — (€(1),0(t)) = 0
in H as t — oo, where (2, ) satisfy (25). Hence for all w € C5°({2) we have
(003 (t), w)r2(2) — (00 (1), w)r2(2) >0 ast — o0
<j[ij](t)7w>L2(Q) —0 as t — 00.

That is

in the sense of distributions.
By Corollary 3.1.1, (7)3 is satisfied in the sense of distributions for w(0) € H®(£2). Hence for
(7)3 we have

1
Opwij(t) — 5(9@-@} (t) =0 as t — 00

in the sense of distributions, where (g;;,7;) satisfy (25). O
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3.3 Limit system analysis

We now provide an analysis of the limit system (25) following the argument of Dafermos [Daf68].
First assume that the data for the limit system is in D(A?%) = {(513, v;) € H|A1(855,7;) € H} so
that we may differentiate w.r.t ¢ to obtain pdyv; = 0;(Cijp0iEw), 1.

pOuT; = 05(Cy110,0k) in 2,t e R, (26)

with 7; = 0 on 921, (C;10,Ux)n; = 0 on 02 (the restriction on the data is only for temporary
convenience since our results for the general data in H follow by density of D(A4%) in H).
Express solutions of (26) as

Ty = Z C(p)ei/\(p)tgbgp), ¢\P) constants. (27)
p

Then, (26) implies

) —pA®) )NV g ) Z et <Cijklal¢l(ep)>
p
with gbl(p) =0 on 02X, (Cijklal(bk)nj =0 on 0f2.

Hence, for eigenfunctions qﬁgp ) satisfying
0. ((C ) (P)) _ )\(p)2 (») . 0 wi ® _ .. o
i | Cijudidy” ) = —p ¢;’ in £2 with ¢;”" = 0 on 942y, (Cijr0ipr)nj = 0 on 082y, (28)

(27) yields a solution of (25) 2.
The eigenfunctions exist and are orthogonal in H°(f2). Furthermore, we may assume they are

normalized so that ||| go() = 1. Thus, ¢P) may be determined by initial data 7;(0) = > C(p)¢§p ),

ie. ¢® = (0(0),0") o
Note that since (25)3 holds for all t € R, we may differentiate w.r.t ¢ to obtain egmnpnCpmriOiEr =

0 for all £ € R, and hence by (25)
€smnpnCpmi1 010 = 0. (29)
Substitute (27) into (29) to obtain
€smn0pnCpmpkl Z c(q)ei/\@)t(‘)l(bg) =0in 2 for all t € RT. (30)
q
We assume there are no repeated eigenvalues for our domain 2. Then the lhs of (30) defines
an almost periodic function and we must have

CsmnpnCpmii @ 8l¢,(f) =0 no sum on q. (31)

Thus there are two cases to consider:
Case 1:

€smnOpnCpmk 8ld>§€q) =0 for some gq.

In this case ¢, # 0 for this choice of ¢ and the limit solution (25) may contain non-trivial oscillations.
Case 2:

EsmnpnCpmkl ald),(cq) #0 for all q.



In this case ¢, = 0 for all ¢ and we have
v; = 0 in {2 for all ¢

and hence by (25)
0¢€i; = 0 in {2 for all ¢

i.e. €;; is a time-independent equilibrium solution of (25) with

0j(CijriEr) =0
esmnapn(cpmklgkl =0

in 2. We provide two explicit examples corresponding to Cases 1 and 2.
Examples

Recall that we need the base «a;; state to be the curl of a skew-symmetric tensor field to have
T;j = 0, i.e. a stress-free base state. Thus, a;; must be of the form

®ij = €jmkOm(eikrr) = —(0r1r)dij + Oit;.
We choose the vector field ¢ of the form

Yr(x1, 22, x3) = A(x1, 2, 23)0k1

which yields
Qpp = —(BlA)cSpn + 8pA6n1.

This distribution corresponds to a ‘crossed-grid’ of screw dislocations parallel to the coordinate
axes superposed on an edge dislocation distribution with line direction along x; and Burgers vector
in the 9 — x3 plane.

Furthermore, choose the ansatz of uniaxial stress fields

Tpm = O'(.’El, t)6p16m1 (33)
to note that the r.h.s. of (25)3 becomes
Csmn, ((81A)5pn + (8pA)5n1) 06p15m1 = 0.

Thus, by our chosen ansatz for «;; and the (time-dependent, for now) limit stress field T;;, (25)3
is satisfied.

Physically, the screw dislocation distributions along x5 and x3 directions (i.e., awag,as23) do
not have a Burgers vector favorably aligned to the uniaxial stress field along the x; direction to
produce a non-trivial Peach-Koehler driving force. The edge and screw distributions with line
direction in the x; direction do not lie parallel to a plane on which the uniaxial stress field ansatz
00p10m1 = Tpm can produce a traction, and hence these see no driving force for motions as well
(the edge distributions with Burgers vector in the xo — x3 plane share both of these ‘null’ driving
force attributes).



3.3.1 Static solution of limit system

Consider an isotropic elastic material with Cijr; = X0j;j0k + (9051 + d4dji), where A, u are the
Lamé parameters. Consider a time-independent, uniaxial stress field of the form (33) with o(z1).
Now define g;; through

1 A
gii(x1, 20,23, 1) := — | o(21)0;10;1 — ————0(21)0;;
zj(l 2,43 ) 2,u<(1) 11051 3)\+2’u (1) zy>
(which can also be expressed as S;jx (0(21)dk1671), where S;jp = ﬁ(dikéﬂ +6;0;1) — m&jékl
is the elastic compliance tensor, the inverse of the elastic stiffness, C;;z;, on the space of symmetric
second-order tensors). Hence, C;jx Epi(21, T2, 23,t) = o(x1)d;19;1 in this case. Making the choice
o(x1) = 09, where oy € R is an arbitrary constant, and setting

Eij = Sijri000k1001

v; =0,

we have a non-trivial static solution to the limit system (25) with 02 = ¢.

3.3.2 Oscillating solution of the limit system

We consider a time-dependent, uniaxial stress field ansatz corresponding to isotropic linear elasticity
with shear modulus p and the other Lamé parameter set to 0 in terms of the function U(z1,t) given
by

Tij(l'l, t) = M(&jU(l’l, t)&ﬂ + aiU($1, t)(Sj )
Comparison with (33) yields the definition
O’(xl, t) = 2M 81U(.%'1, t).

We consider a cylinder with a uniform rectangular cross-section normal to the x; direction as the
body (2, with free (i.e.traction-free) bounding surfaces perpendicular to zy and z3. The lateral
surfaces of the cylinder correspond to 0f22, and 0f2; comprises the boundaries of the cylinder
perpendicular to its axis, x1. Let the xj-coordinate of the planar surfaces comprising 021 be x;
and z,.. We now set

Vi1, 22, 3, 1) = O U (21,1)614 (34)
Eij (1‘1, T9, X3, t) = 81U(ZE1, t)511-61j,

and require that

p(?tatU = 2/,6 8181U in 2
U(z1,t) =0= 0 U(x1,t) =0 for z1 = zy, ;.

Non-trivial solutions to this wave equation exist and define oscillating solutions to the limit system

(25) through the definitions (34) (with C;jrem = Tij(z1,t)).
In summary, our limit system analysis yields the following consequence of Theorem 3.3:

Corollary 3.3.2. Assume (28) has no repeated eigenvalues. For initial data Uy € H the limit
system solution S(t)Uy must lie in either Case 1: non-trivial oscillations or Case 2: a non-trivial
solution € to (32) representing a static solution.
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