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Infectious diseases are a cause of humanitarian and economic crises across the world.
In developing regions, a severe epidemic can result in the collapse of healthcare infras-
tructure or even the failure of an affected state. The most recent 2013–2015 outbreak
of Ebola virus disease in West Africa is an example of such an epidemic. The eco-
nomic, infrastructural, and human costs of this outbreak provide strong motivation for
the examination of adaptive treatment strategies that allocate resources in response to
and anticipation of the evolution of an epidemic. We formalize adaptive management of
an emerging infectious disease spreading across a set of locations as a treatment regime
that maps up-to-date information on the epidemic to a subset of locations identified as
high-priority for treatment. An optimal treatment regime in this context is defined asmax-
imizing the expectation of a pre-specified cumulative utility measure, e.g., the number of
disease-free individuals or the estimated reduction in morbidity or mortality relative to a
baseline intervention strategy. Because the disease dynamics are not known at the begin-
ning of an outbreak, an optimal treatment regime must be estimated online, i.e., as data
accumulate; thus, an effective estimation algorithmmust balance choosing interventions
that lead to information gain and thereby model improvement with interventions that
appear to be optimal under the current estimated model. We develop a novel model-free
algorithm for the online management of an infectious disease spreading over a finite set
of locations and an indefinite or infinite time horizon. The proposed algorithm balances
exploration and exploitation using a semi-parametric variant of Thompson sampling.We
also introduce a graph neural network-based estimator in order to improve the perfor-
mance of this class of algorithms. Simulations, including those mimicking the spread
of the 2013–2015 Ebola outbreak, suggest that an adaptive treatment strategy has the
potential to significantly reduce mortality relative to ad hoc management strategies.
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1. INTRODUCTION

Infectious diseases are a persistent and serious threat to public healthworldwide (Mathers
2008; Lozano et al. 2013; Bloom and Cadarette 2019). Despite technological advances and
increasingly vigilant biosurveillance, global rates of infectious diseases are not decreasing
(Smith et al. 2014). An effective real-time intervention strategy for an emerging infectious
disease could have significant benefits, including reduction of mortality, morbidity, and
healthcare costs. Consequently, the development of such a strategy is a priority for public
health and security policy-makers (Cecchine and Moore 2006). We formalize such an inter-
vention system as a treatment regime that maps the current status of the epidemic to a subset
of locations identified as high-priority for treatment. An optimal treatment regime maxi-
mizes themean of a pre-specified cumulative utilitymeasure, e.g., the number of disease-free
individuals throughout the epidemic.

Our goal is to find an optimal treatment regime for the management of emerging infec-
tious diseases that, given the current outbreak information at different locations and resource
constraints, identifies which locations should be prioritized for treatment. This problem is
complicated by the following three issues: (i) spillover effects make the number of possible
interventions an exponential function of the number of treatment units; i.e., treatment at
one location can affect outcomes at other locations, so one must consider the joint treat-
ment allocation across all locations. (ii) Disease dynamics are unknown at the time of the
outbreak, so one must balance choosing interventions that lead to a significant information
gain and subsequently an improved disease dynamicmodel, with choosing interventions that
appear to be optimal based on current model estimates. (iii) Resource constraints impose
additional restrictions on how and where interventions can be applied. One approach to
estimating an optimal treatment regime is to posit a model for the disease dynamics and
then to use simulation-based optimization to estimate an optimal treatment regime (Carr
and Roberts 2010; Kasaie and Kelton 2013; Nowzari et al. 2015; Hu et al. 2017; Laber et al.
2018a; Kompella et al. 2020; Guan et al. 2022). If the posited model is low-dimensional and
accurately reflects the disease process, this approach can be particularly effective early in the
epidemic when data are scarce. However, such methods can perform poorly if the posited
model is misspecified. An alternative is to construct a semi-parametric estimator of the
optimal treatment regime that does not require a correctly specified dynamic model; exam-
ples of such estimators in non-spatiotemporal domains include regression-based estimators
(Murphy 2005; Henderson et al. 2010; Almirall et al. 2010; Zhao et al. 2011; Chakraborty
andMoodie 2013; Schulte et al. 2014;Moodie et al. 2014; Kosorok andMoodie 2015; Laber
et al. 2017; Ertefaie et al. 2021) and direct-search estimators (Orellana et al. 2010; Rubin and
van der Laan 2012; Zhang et al. 2012; Zhao et al. 2012; Zhang et al. 2013, 2015; Zhao et al.
2015; Zhou et al. 2017; Liu et al. 2018; Pan and Zhao 2020). Thus, a natural approach is to
apply a parametric simulation-optimization approach during the early stages of an epidemic,
and subsequently migrate to a semi-parametric estimator as data accumulates. Our goal is to
develop a class of online semi-parametric estimators that can be used in such a strategy. The
class estimators that we propose is based on fitted Q-iteration (FQI; Watkins 1989; Maei
et al. 2010; Ernst et al. 2005; Ertefaie 2014; Riedmiller 2005) and Thompson sampling
(Thompson 1933). A key challenge associated with extending reinforcement learning algo-
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rithms to spatio-temporal decision problems is using spatial information in a statistically and
computationally efficient manner. To this end, we propose an automated (i.e., data-driven)
feature construction algorithm based on graph neural networks (Yan et al. 2006; Cai et al.
2018; Fey and Lenssen 2019; Ma et al. 2020) that succinctly summarizes local information
which is then used in FQI. Our method is a variant of single-agent deep reinforcement
learning, which has achieved great empirical successes in the past decade (Riedmiller 2005;
Mnih et al. 2015, 2016; Arulkumaran et al. 2017). We note that our setup is related to but
distinct from the cooperative multi-agent reinforcement learning problem (Sunehag et al.
2017; Wang et al. 2020; Hernandez-Leal et al. 2019). Whereas the cooperative multi-agent
setting, involves a series agents learning locally, the optimal treatment regime in our setting
is centralized with treatments being coordinated jointly across locations.

This work is motivated by our involvement in a retrospective study of the 2013–2015
outbreak of Ebola virus disease in West Africa (Kramer et al. 2016a; Li et al. 2017). The
Ebola outbreak resulted in more than 10,000 deaths and the near-total collapse of healthcare
infrastructure in affected areas (WHO Ebola Response Team 2014; Hamel and Slutsker
2015). We consider the daily allocation of treatments across 290 contiguous geopolitical
regions. Our goal is to learn an optimal treatment regime that can be used to control future
outbreaks by studying if and how the spread of the 2013–2015 outbreak could have been
better controlled through adaptive treatment allocations subject to resource constraints. Both
simulation and real data analysis results indicate that management strategies based on the
proposed method can lead to significant reductions in the spread of the disease over ad hoc
allocation strategies.

The rest of this paper is organized as follows. In Sect. 2, we review the 2013–2015
outbreak of Ebola virus disease. In Sect. 3, we define an optimal treatment regime under the
framework of potential outcomes when the data-generating model forms a Markov decision
process. In Sect. 4, we define a spatial FQI with graph embeddings and a semi-parametric
variant of Thompson sampling. In Sect. 5, we reviewmodel-based policy search (Laber et al.
2018a) for spatio-temporal problems. We illustrate the proposed methods using a suite of
simulation experiments in Sect. 6 and a simulation of the spread of Ebola in West Africa in
Sect. 7. Open problems are discussed in Sect. 8.

2. EBOLA VIRUS

Ebola Virus Disease (EVD) is an acute hemorrhagic illness caused by a handful of
viruses collectively known as the ebolaviruses. The 2013-2015West Africa Ebola epidemic,
caused by the Zaire ebolavirus, originated in the Guéckédou Prefecture of Guinea, from
which it spread to neighboring Liberia and Sierra Leone. A major outbreak resulted in
more than 28,000 cases ensued, ignited small outbreaks in Nigeria, Mali, and the United
States. Patients with EVD may exhibit a range of symptoms, including fever, muscular
pain, vomiting, diarrhea, rash, organ failure, and death (Feldmann and Geisbert 2011).
The overall case fatality rate of the West Africa epidemic exceeds 39%. Person-to-person
transmission of Ebola is typically by exposure to infected body fluids. Although infectious
cases are typically symptomatic, Ebola is difficult to contain without adequate and quickly
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Figure 1. Observed outbreaks for West Africa with the first infections on April 26, 2014.

implemented infection control procedures. Additionally, the social disruption caused by
Ebola outbreaks can make the scope of incipient outbreaks challenging to determine.

Several models for the spread of Ebola in West Africa have been constructed. Rainsch
et al. (2015) fit regression models to weekly data on the incidence of infection. They found
that the case counts, population data, and distances between affected and unaffected areas
were significant predictors of transmission. Merler et al. (2015) developed an agent-based
simulator that accounts for the early decline of spread in terms of the increasing availability
of Ebola treatment units, safe burials, and distribution of household protection kits. Finally,
Kramer et al. (2016a) fit a coarse-grained gravity model to understand how the spread of the
infection to new areas was affected by the attributes of donor and recipient regions. Their
model considered only the first infection in a region to be of interest, and thus focused on
the spread path. They found that the spread was best explained by the distances between
source and recipient locations, population density, and border closures among neighboring
countries (Figs. 1, 2 and 3).

3. MODEL

We consider a decision process evolving in discrete time, t = 0, 1, . . ., and across a finite
set of locations L = {1, . . . , L}. In our application to EVD, the time points correspond to
days, and the locations are geopolitical units. We assume that at each location � and each
time point t , the following sequence of events transpires:

(i) A set of measurements is taken; these, together with past measurements, are sum-
marized as the current state of the location, S�

t ∈ S0 ⊆ R
m .

(ii) The decision maker selects a binary treatment A�
t ∈ A0 = {0, 1}. Thus, without any

restrictions, there are 2L possible treatment allocations at each time point.

(iii)We observe an outcome Yt ∈ Y0.
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Let S = SL
0 , A = AL

0 , and Y = YL
0 . Define St = (S1t , S2t , ..., SL

t

)� ∈ S ⊆ R
m×L ,

At = (A1
t , A

2
t , · · · , AL

t

)� ∈ A = {0, 1}L , and Y t = (Y 1
t ,Y 2

t , · · · ,Y L
t

)� ∈ Y . We assume
that Y t is contained in St+1 (this is without any loss of generality as the state can always be
expanded to ensure that this is the case). Let 2A denote the power set of binary vectorsA of
length L . We assume that there exists a functionψ : S → 2A \∅ such thatψ(s) denotes the
set of feasible treatments when the state is s. Further, we assume that there exists a function
u0 : Y0 → R such that U �

t = u0(Y �
t ) is the utility with location � and time t , and the total

utility at time t is

u(Y t ) =
L∑

�=1

U �
t .

The assumption of an additive utility model is a mild restriction in application as common
measures are aggregated across locations in this way, e.g., number of infected locations etc.

A treatment regime in this context is a map π : S → A which satisfies π(s) ∈ ψ(s)
for all s ∈ S. Define π�(s) as the �-th element of π(s). A decision maker following π

applies treatment π(st ), i.e., applies π�(st ) to location � ∈ L, if presented with St = st
at time t . An optimal treatment regime maximizes the mean discounted utility if used to
select treatments at each time point. We formalize this definition using potential outcomes
(Rubin 1974; Robins 1986, 1987; Splawa-Neyman et al. 1990; Tsiatis et al. 2019). Let
at = (a0, . . . , at ) and st = (s0, . . . , st ) denote the history up to time t . Let S∗

t (at−1) be
the potential state under treatment sequence at−1 where S0(a−1) ≡ S0, and let Y∗

t (at ) be
the potential outcome under treatment sequence at . The potential state at time t under a
regime π is S∗

t (π) =∑at−1
S∗
t (at−1)

∏t−1
v=0 1π{S∗

v(av−1)}=av
, where 1ν is an indicator that

evaluates to one if the clause ν is true and zero otherwise. Similarly, the potential outcome
at time t is Y∗

t (π) = ∑at Y
∗
t (at )
∏t

v=0 1π{S∗
v(av−1)}=av

. Letting γ ∈ (0, 1) be a fixed

discount factor, the value of treatment regime π is V (π) = E

[∑
t�0 γ t u

{
Y∗
t (π)
}]

so that

the optimal regime, πopt, satisfies V (πopt) � V (π) for all π . Note that our framework can
be extended to other measures of cumulative utility, e.g., average utility or total utility over
a finite horizon (see Linn et al. 2017; Wang et al. 2018; Rowland et al. 2019, for additional
discussion in non-spatial applications).

LetW∗ = {S∗
t (at−1),Y ∗

t (at ) : at ∈ {0, 1}L×(t+1)}
t�0 denote the set of potential states

and outcomes. To identify πopt in terms of the data generating model, we impose a series of
assumptions which are standard in the dynamic treatment regimes literature (Murphy 2003;
Robins 2004).

Assumption 1. We assume that for all t :
(A1) Consistency: St = S∗

t (At−1) and Y t = Y∗
t (At ).

(A2) Positivity: P(At = at
∣∣St = st , At−1 = at−1) > 0 for all st , at−1 with at ∈ ψ(st ).

(A3) Strong ignorability: At ⊥ W∗∣∣St , At−1.

In the context of online estimation, where treatment assignment is under the control
of the decision maker, (A2) and (A3) can be ensured by construction. We note that these
assumptions may not hold if the decision maker deviates from the recommendation of the



Z. Liu et al.

estimated regime. We discuss this point further in Sect. 8. Hereafter, we assume that (A1)-
(A3) hold implicitly.

In addition, it is standard in the context of dynamic treatment regimes to assume that
there are independent replicates, e.g., patients in a study, that make the optimal regime
nonparametrically identifiable. However, because of spatial interference (Karwa andAiroldi
2018;Tec et al. 2022; Forastiere et al. 2021), one cannot treat the locations as independent and
consequently additional structure must be imposed on the model to identify πopt (Hudgens
and Halloran 2008; Laber et al. 2018a). We assume that the decision process, possibly
transformed, is Markov and, under this assumption, impose a semi-parametric model on the
conditional mean discounted utility given state and treatment. These modeling assumptions
are standard in problemswith an infinite or indefinite time horizon (Powell 2007; Szepesvári
2010; Hernández-Lerma and Lasserre 2012; Puterman 2014; Sutton and Barto 2018). In
particular, we assume that the states St have been constructed so that the induced decision
process is Markov, i.e., P

(
St+1 ∈ B∣∣St , At

) = P
(
St+1 ∈ B∣∣St , At

)
with probability one

for any (measurable) set B ⊆ S, and this probability does not depend on the time t .

4. SPATIAL FITTED-Q ITERATION

Under Assumption 1, the optimal treatment regime can be characterized using a recursive
regression equation known as the Bellman optimality equation (Bellman 1957; Maei et al.
2010; Hernández-Lerma and Lasserre 2012; Puterman 2014; Ertefaie and Strawderman
2018). For any s ∈ S and a ∈ ψ(s), define

Q(s, a) = E

⎡

⎣u(Yt ) +
∑

k�1

γ ku
{
Y ∗
t+k(π

opt)
} ∣∣St = s, At = a

⎤

⎦ ,

so that Q(s, a) is the expected cumulative discounted utility starting state St = s, applying
treatment At = a, and then following the optimal regime thereafter. It can be shown
that πopt(s) = argmaxa∈ψ(s)Q(s, a) (Bertsekas et al. 1995). Furthermore, the Q-function
Q(st , at ) satisfies

Q(st , at ) = E

{
u (Y t ) + γ max

at+1∈ψ(St+1)
Q (St+1, at+1)

∣∣∣∣St = st , At = at

}
, (1)

which, importantly, identifies the Q-function in terms of the data generating model. One
approach to constructing an estimator of Q(s, a), and subsequently πopt, is to use (1) to
construct an estimating function to which Q(s, a) is a unique solution. For example, one
might posit a linear model of the form Q(s, a;βββ) = φ(s, a)ᵀβββ, where φ(s, a) is a known
feature vector, and βββ is a vector of unknown coefficients; in this case, if there existsβββ∗ such
that Q(s, a) ≡ Q(s, a;βββ∗), then it follows under mild conditions that βββ∗ is a solution to

E

[{
u(Y t ) + γ max

at+1∈ψ(St+1)
Q (St+1, at+1;βββ) − Q (St , At ;βββ)

}
φ(St , At )

]
= 0,
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which can be used to construct an estimator β̂ββ t of βββ∗ given data observed through time t
(see Ertefaie and Strawderman 2018; Luckett et al. 2020; Saghafian 2021).

The estimating equation approach to constructing an estimator of Q(s, a) is elegant due
to its simplicity and direct connection to the Bellman optimality equations. However, it
is not without drawbacks. One such drawback is that the form of the estimating equation
requires limiting the class of models for Q(s, a) to those which are amenable to root-solving
via standard software, such as smooth parametric models, or writing bespoke root-finding
algorithms. A second, potentially more important drawback, is that the estimating equation
formulation does not permit interactive model-building in the same way typical supervised
learning does. This is critical when the model is being used to inform public health decisions
in a pandemic. Thus, instead of considering the estimating equation characterization to
construct an estimator, we use the fact that Q(s, a) is the fixed point of the so-called Bellman
optimality operator to express the optimal policy as the limit of a series of regressions.

Define the Bellman optimality operator B, which acts on functions w : S × A → R,

as (Bw)(s, a) = E

{
u(Y t ) + γ maxat+1∈ψ(St+1) w(St+1, at+1) | St = s, At = a

}
. The

Bellman optimality equation is thus succinctly expressed as Q = BQ. Moreover, Q is
the unique fixed point of the operator B, which is a contraction in the sup-norm. The
associated fixed-point iteration algorithm known as value iteration is given by the update
Qk ← BQk−1 for k � 1, where the initial value, Q0 is initialized arbitrarily; under mild
regularity conditions, Qk converges geometrically to Q (Bertsekas and Tsitsiklis 1996).
This characterization leads to an iterative algorithm for the semi-parametric estimation of
the optimal Q-function given observations from the underlying decision process.

4.1. FITTED Q-ITERATION

Fitted Q-iteration is a regression-based approximation of the value iteration algorithm
(Ernst et al. 2005; Riedmiller 2005; Busoniu et al. 2010). We first describe the algorithm
without exploiting any underlying spatial structure. Let Q denote the posited class of the
Q-functions. At time t , let Q̂t,0 ≡ 0, and for k � 1, let

Q̂t,k = argmin
Q∈Q

t−1∑

v=0

{
u (Yv) + γ max

av+1∈ψ(Sv+1)
Q̂t,k−1 (Sv+1, av+1) − Q(Sv, Av)

}2
, (2)

which can be viewed as an application of approximate value iteration in which the empirical
distribution has been used in place of the true expectation. The estimated optimal regime is
π̂t (s) = argmaxa∈ψ(s) Q̂t,K (s, a), where K is the desired number of iterations. Note that the
least squares estimator in (2) can be constructed using essentially any regression estimator,
e.g., trees, neural networks, Gaussian Process models, and so on. Furthermore, these models
can be built interactively at each step to avoid severe misspecification.

When the process under study is a disease spreading across a network, the number of
locations may far exceed the number of time points, e.g., if L are individuals in social
network. Furthermore, the effects of treatment are likely to be local in that the greatest
impact will be on those to whom treatment is applied and their close contacts. With this
in mind, we now show how the generic fitted Q-iteration algorithm can be extended to
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pool information across locations and thus increase efficiency. We do this by showing that
the Q-functions defined in the preceding section, {Qk}k�0, can be expressed as sums of
‘location-specific Q-functions’ which can be estimated using local data thereby increasing
the number of observations in (2) from t to t × L .

The first (non-trivial) Q-function is

Q1(s, a) = E
{
u(Y t )
∣∣St = s, At = a

}

=
L∑

�=1

E

{
U �
t

∣∣St = s, At = a
}

=
L∑

�=1

q�
1(s, a),

where q�
1(s, a) = E(U �

t |St = s, At = a) is the first local Q-function. Define π
opt
1 (s) =

argmaxa∈ψ(s)Q1(s, a) and ν�
1(s) = q�

1

{
s, πopt

1 (s)
}
. The second Q-function is

Q2(s, a) = E

{
u(Y t ) + γ max

at+1∈ψ(St+1)
Q1(St+1, at+1)

∣
∣St = s, At = a

}

=
L∑

�=1

E

{
U �
t + γ ν�

1(St+1)
∣∣St = s, At = a

}
=

L∑

�=1

q�
2(s, a),

whereq�
2(s, a) = E

{
U �
t + γ ν�

1(St+1)
}
. For k � 1, defineπ

opt
k (s) = argmaxa∈ψ(s) Qk(s, a)

and ν�
k (s) = q�

k

{
s, πopt

k (s)
}
, and let q�

k+1(s, a) = E
{
U �
t + γ ν�

k (St+1)
∣∣St = s, At = a

}
,

so we have

Qk+1(s, a) =
L∑

�=1

q�
k+1(s, a),

which is a sum over local Q-functions q�
k+1(s, a)’s. We note that the Q-function in equation

(1) corresponds to Q∞ here.
Let � be a class of maps from S × A into R

J such that for any φ ∈ �, we have
φ(s, a) = {φ1(s, a), . . . ,φL(s, a)

}
, where φ�(s, a) ∈ R

J is a feature vector for location
� constructed from (s, a). Let Q be a class of maps from R

J into R; choices for � and
Q are discussed in the next section. We posit working models for q�

k (s, a) of the form
q�
k (s, a) = qk

{
φ�(s, a)

}
, where qk ∈ Q and φ ∈ �. The fitted Q-iteration algorithm with

this class of models is thus comprised of the following steps. At time t , the first (non-trivial)
iteration of the fitted-Q algorithm is

(φ̂t,1, q̂t,1) = argmin
(φ,q)∈�×Q

t∑

v=1

L∑

�=1

[
U �

v − q
{
φ�(Sv, Av)

}]2
,
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so that q̂�
t,1(s, a) = q̂t,1

{
φ̂

�

t,1(s, a)
}
. Define π̂t,1(s) = argmaxa∈ψ(s)

∑L
�=1 q̂

�
t,1(s, a) and

ν̂�
t,1(s) = q̂�

t,1

{
s, π̂t,1(s)

}
. For k � 2, the k-th iteration of the fitted-Q algorithm is

(φ̂t,k, q̂t,k) = argmin
(φ,q)∈�×Q

t−1∑

v=0

L∑

�=1

[
U �

v + γ ν̂�
t,k−1(Sv+1) − q

{
φ�(Sv, Av)

}]2
,

so that q̂�
t,k(s, a) = q̂t,k

{
φ̂

�

t,k(s, a)
}
, π̂t,k(s) = argmaxa∈ψ(s)

∑L
�=1 q̂

�
t,k(s, a), and

ν̂�
t,k(s) = q̂�

t,k

{
s, π̂t,k(s)

}
. After K iterations, estimated optimal regime is π̂t (s) =

argmaxa∈ψ(s)
∑L

�=1 q̂
�
t,K (s, a).

4.1.1. Spatial Fitted Q-Iteration with Graph Embeddings

Graph embeddings have been widely studied and used to great empirical success in ana-
lyzing structured data such as text (e.g., Yan et al. 2006;Mikolov et al. 2013; Cai et al. 2018).
They have also been used to estimate optimal policies in single-stage decision problems on
networks (Ma et al. 2020). We consider a supervised approach in which the embeddings are
adaptive, i.e., data-driven, to improve the quality of the estimated Q-functions. To the best
of our knowledge, the construction used here is new and may be of independent interest.

Our goal is to construct a class of features � : S × A → R
L×J so that each φ ∈ �

creates a vector of local-summaries of (s, a) φ(s, a) = {φ1(s, a), . . . ,φL(s, a)
}
, one for

each location, that is amenable to estimation as described in the preceding section. Recall
that s ∈ R

m . Let H be a class of functions mapping R
m+1 into R

J , and let G be a class
of functions mapping from R

J × R
J into R

J . In our implementation, we consider each of
these to be feed-forward neural networks (Bebis and Georgiopoulos 1994), though other
choices are possible. For given h ∈ H and g ∈ G, we construct the embedding of location �

at time t as follows. Define f (1) : Rm+1 → R
J as f (1)(b; g, h) = h(b) for all b ∈ R

m+1;
thus, f (1)(s�, a�; g, h) = h(s�, a�) is a summary of the state and treatment at location �.
Let f (2) : RJ × R

J → R
J be

f (2)
(
b1, b2; g, h

)
= 1

2
g
{
h(b1), h(b2)

}
+ 1

2
g
{
h(b2), h(b1)

}
,

for all b1, b2 ∈ R
m+1. Recursively, for k � 2, define f (k) :⊗k

R
J → R

J by

f (k)(b1, . . . , bk; g, h) = 1

k

k∑

j=1

g
{
h(b j ), f (k−1)(b− j ; g, h)

}
,

where b− j is b1, · · · , bk excluding b j . We consider all permutations tomake the embedding
invariant to the order in which locations are processed. Let N � ⊆ {1, . . . , L} be a neighor-
hood of location �, e.g., all m-order neighbors or the locations within some pre-specified
distance. Given h ∈ H, g ∈ G, let

φ�(s, a; g, h) = g

(
h(s�, a�), f (|N �|)

[{
(s j , a j )

}

j∈N �

])
.
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If the set N � is large, computing all possible permutations of its elements may be compu-
tationally infeasible. In this case, one can sample permutations uniformly at random. The
collection of feature maps is thus

� =
{
φ =
{
φ1(·; g, h), . . . ,φL(·; g, h)

}
: g ∈ G, h ∈ H

}
.

This construction can be understood as comprising the following steps: (i) computing a
basis expansion h ∈ H; (ii) recursively applying a binary operation, g ∈ G, to this basis
expansion along all orderings of elements in a given neighborhood of � and taking the
average of the results; and (iii) applying this binary operation to the features at � and this
average. This construction has a number of advantages. First, it can process a neighbor set
of any size. Second, the learned feature vector of location � is invariant to the ordering of its
neighbors inN �. Finally, it considers the interaction of all neighbor pairs through the binary
operation. We note that there are alternative constructions such as message passing graph
neural networks which possess the first two properties (Lee et al. 2019; Fey and Lenssen
2019).

4.2. GENERALIZED BOOTSTRAP AND THOMPSON SAMPLING

Methodologically, online sequential decision problems reside at the intersection of two
disciplines: (i) sequential optimal design which focuses on choosing treatments to maximize
information gain and thereby create high-quality estimated models (Chernoff 1972; Atwood
1973; Lai and Wei 1982; Bartroff et al. 2012); and (ii) dynamic programming which seeks
to efficiently derive an optimal treatment regime using the estimated models (Bellman 1957;
Powell 2007;Busoniu et al. 2010; Sutton andBarto 2018).As the primary goal ismaximizing
the discounted cumulative reward, the goal of many algorithms for online decision making
is to experiment, i.e., deviate from the current estimated optimal treatment regime, only if
and when such experimentation is likely to produce information that pays dividends in terms
of long-term performance. The need to judiciously balance experimentation for information
gain and optimizing for immediate utility gain is known as the exploration-exploitation
trade-off in computer science. A common strategy to ensure sufficient information gain is to
force exploration either through randomization or by maximizing at each step an objective
function that includes an additional term for information gain (Pronzato 2000; Auer 2000;
Russo and Van Roy 2014; Lattimore and Szepesvári 2020).

We consider a randomized treatment allocation strategy that can be viewed as a semi-
parametric variant of the celebrated Thompson sampling. This work is based on resampling
or purturbation in (non-spatial) decision problems (e.g., see Eckles and Kaptein 2014; For-
tunato et al. 2017; Plappert et al. 2017; Osband et al. 2019). Thompson sampling (Thompson
1933) was originally proposed as a Bayesian approach to exploration wherein at each time
point one draws a model from the posterior given current data and then selects the opti-
mal regime assuming the selected model is correct (Scott 2010; Agrawal and Goyal 2011;
Kaufmann et al. 2012; Agrawal and Goyal 2013; Korda et al. 2013; Gopalan et al. 2014;
Hu et al. 2017). However, Thompson sampling cannot be directly applied in this form as
we have not specified a model for the complete system dynamics; instead we use the more
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general concept of a confidence distribution in which the sampling distribution is used as a
kind of surrogate for the posterior and used to compute probabilities (confidence levels) of
interest (Xie and Singh 2013). We use the fact that Q̂0, Q̂1, . . . , Q̂K are M-estimators and
thus use a multiplier bootstrap appropriate for Markov processes to estimate the sampling
distributions of these estimators (Jin et al. 2001; Chatterjee and Bose 2005; Minnier et al.
2011). In particular, let Wt,0,1, . . . ,Wt,t−1,L denote i.i.d. random variables each with unit
mean and unit variance, and define

q̂ B
t,k = argmin

q∈Q

t−1∑

v=0

L∑

�=1

Wt,v,�

{
U �

v + γ ν̂�
t,k−1(sv+1) − q(φ�(sv, av))

}2
,

where q̂ B
t,0 ≡ 0. Let Q̂B

t,k = ∑L
�=1 q̂

B
t,k . The sampling distribution of Q̂t,k is thus

estimated by the conditional distribution of Q̂B
t,k obtained via repeated draws of the

weights Wt,0,1, . . . ,Wt,t−1,L . This induces a sampling distribution over the estimated
regime π̂t (st ) = argmaxat∈ψ(st ) Q̂t,k(st , at ). Let Q̂B

t,k denote the bootstrap analog of
Q̂t,k . Let P̂ B

t be the probability taken with respect to the bootstrap distribution at time
t . Define the confidence that treatment at is optimal in the current state as 	t (at ) =
P̂ B
t

{
at = argmaxat∈ ψ(St ) Q̂

B
t,k(st , at )

}
. At each time t we draw At so that P(At = at ) =

	t (at ). Implementation of this algorithm does not, however, require multiple draws of the
weights. Rather, one need only draw a single set of weights Wt,0,1, . . . ,Wt,t−1,L , compute
Q̂B

t,k using this set of weights, and subsequently At = argmaxat∈ψ(St ) Q̂
B
t,k(st , at ); i.e., one

does not actually have to estimate the sampling distribution of Q̂t,k .

4.3. OPTIMIZATION

Finding a maximizer of the estimated Q-function involves searching a combinatorially-
large space, which is intractable for moderately large L . In order to approximate
argmaxa∈ψ(s) Q̂t,k(s, a), we maximize a quadratic approximation, yielding a tractable
binary quadratic program. In particular, we introduce the approximation

q̃�
t,k(s, a; ξ �) � ξ�

0 (s) +
∑

i∈N �

ξ �
1,i (s)a

i +
∑

i, j∈N �

ξ �
2,i, j (s)a

ia j .

Each each time t , iteration k, and location �, we compute

ξ̂
�

t,k = ξ̂
�

t,k(St ) = argmin
ξ�

∑

ai

{
q̃�
t,k(St , ai ; ξ �) − q̂�

t,k(St , ai )
}2

,

where ai , i = 1, . . . , I is a collection of allocations in A; in our experiments we generate
ai uniformly at random. For a given treatment budget ρ, the approximate maximizer of
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Q̂t,k(s, ·) is given by the solution to

max
a∈{0,1}L

L∑

�=1

q̂�
t,k

(
St , a; ξ̂

�

t,k

)

subject to
L∑

�=1

a� = ρ.

(3)

Problem (3) is a binary quadratic program which can be solved efficiently with off-the-shelf
solvers such as Gurobi (Bixby 2007).

5. ESTIMATING THE OPTIMAL STRATEGY VIA
POLICY-SEARCH

The primary alternative to Q-learning that we consider in our simulation experiments is
model-based policy-search. Thus, we briefly review it here. In model-based policy-search,
one estimates a model for the underlying system dynamics, e.g., the disease model, and then
uses the fitted model to identify the optimal strategy within a pre-specified class via Monte
Carlo (Laber et al. 2018a).

For the purpose of illustration, we consider a class of candidate strategies of the form
� = {π(·; θ) : θ ∈ �} with � ⊂ R

p compact and

π(s; θ) = argmax
a

ϕ(s, a)ᵀθ,

where ϕ is a known feature vector.
Computing the value function, V (π), in closed form is not possible in general. Thus, we

estimate the value function using Monte Carlo approximation applied over a finite horizon.

Let V π
T (s) = E

π

{
∑T

t=0 γ t u(Y t )

∣∣∣∣S0 = s
}
be a surrogate for the value function; it follows

under mild moment conditions that V (π) ≈ VT (π) when T is large (Bertsekas 2007). To
construct as estimator V̂T (π) of VT (π), we postulate a model for the system dynamics.
As the process is assumed to be Markov and homogeneous, it is completely determined by
the transition kernel. We posit a parametric model for this kernel, κ(s′|s, a;β), which is
indexed by β ∈ B ⊆ R

q ; thus, under this model with parameters β we have

P
(
St+1 ∈ B∣∣St = s, At = a

) =
∫

κ(s′|s, a;β)dλ(s′),

where λ is a dominating measure. The T -step value function for strategy π under parameter
vector βββ, starting from state s is thus equal to

VT (s, π;β) =
∫ [T−1∑

t=0

γ t u(st+1)

]

κ(sT |sT−1, aT−1;β)

[ T−1∏

t=0

P {π(st ) = at } κ(st |st−1, at−1;β)

]
dλ(sT , aT−1),

(4)
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where λ is a dominating measure, f (s0|s−1, a−1, y−1) is taken to be a point mass at s, and
we have used the fact that Y t is St+1 measurable so that we can write u(Y t ) = u(St+1).

We use Thompson Sampling to balance exploration and exploitation when estimating
the optimal strategy. This yields the following algorithm which executes at each time point:
(i) obtain a posterior distribution for β using the observed data (at time t = 0 this is taken to
be the prior); (ii) draw β̃ from the posterior; and (iii) estimate the optimal strategy under the
belief that β̃ indexs the true underlying model. The policy search estimator of the optimal
strategy at each time point is thus π̂

opt
PS (s) = argmax

π∈�

V π
T (s; β̃). Stochasticity in π̂

opt
PS is

induced by the sampling variability of β̃.
When the model is not severely misspecified, the model-based policy-search based on

a low-dimensional dynamics can often yield better estimates of the optimal policy than
model-free approaches when data are scarce, i.e., early in the decision process. However, as
we illustrate in the next section, model-based methods can be highly sensitive to misspeci-
fication.

6. SIMULATION EXPERIMENTS

In our experiments, we consider a replicating agent spreading over a network according
to a susceptible-infected-susceptible (SIS) model (Weiss and Dishon 1971); this model was
chosen in part because it allows for correct specification for the model-based estimators that
we use as a baseline for comparison with our proposed method. Under the SIS model, each
location transitions among the three states: susceptible, infected, and susceptible. Infection
spreads from infected to susceptible locations. As soon as a location has been infected, it has
the potential to recover from the disease. Once a location recovers, it immediately becomes
susceptible to the disease again (see Keeling and Eames 2005, for discussion about epidemic
models and references).

We let Y �
t ∈ {0, 1} denote the infection status of location � at time t , i.e., Y �

t = 1 if
location � is infected at time t and zero otherwise. Define It = {� ∈ L : Y �

t = 1} to be the
set of infected locations at time t and Ic

t its complement. With each location is an associated
covariate x�

t ∈ R. The state at time t is thus St = (X t ,Y t−1). The evolution of the state is
governed by the following models

f (xt+1|st , at ; ν) =
L∏

�=1

φ

(
x�
t+1 − ν0x�

t

ν1

)

,

b( yt |st , yt−1, at ; η) =
[ ∏

�∈It−1

q�(st , at ; η)1−y�
t [1 − q�(st , at ; η)]y�

t

]
·

[ ∏

�∈Ic
t−1

p�(st , at ; η)y
�
t [1 − p�(st , at ; η)]1−y�

t

]
,

(5)
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Figure 2. Instances of the two network structures used in the simulation examples. Left: lattice network with
1000 locations. Right: random three-nearest-neighbor network with 1000 locations.

where φ(·) is the probability density function for the standard normal distribution,

p�(s, y, a; η) = 1 − {1 − p�,0(s, a; η)} ·
∏

�′∈It−1∩N �

{1 − p�,�′(s, a; η)}, (6)

and
logit
{
p�,0(s, a; η)

} = η0 + η1a
�,

logit
{
p�,�′(s, a; η)

} = η2 + η3a
� + η4a

�′
,

logit {q�(s, a; η)} = η5 + η6a
�.

(7)

Thus, the model is indexed by β = (ν0, ν1, η0, . . . , η6)
ᵀ. It can be seen that under this

model treating an uninfected location reduces the probability that it becomes infected, while
treating an infected location has the dual effect of reducing its likelihood of transmitting
infection to adjacent uninfected location and accelerating its recovery.

To study the effects of model misspecification, we introduce a contamination model
gContam for the conditional infection probabilities. For each ε ∈ [0, 1], we define a contam-
inated model bε whose infection probabilities are

bε(· | s, a; η) � (1 − ε)b(· | s, a, y; η) + εgContam(· | s, a).

Our contamination model gContam is based on a “shield-state” variant of the SIS model in
which infection probabilities are mediated by the covariate x (in particular, the indicator
1 {x ≤ 0}), modified such that the transmissions of infection to a location from its neighbors
are no longer independent. More details of the contamination model are in the Supplemental
Materials. Thus, in the case of full contamination (ε = 1), the SISmodel defined in equations
(5)–(7) is severely misspecified. Meanwhile, a logistic regression model with sufficiently
expressive features ϕ� is approximately correctly specified in each case, though with high
variance.

6.1. EXPERIMENT SETUP

Parameters indexing the generative models are tuned to have specified infection rates
using a network of size four. Thus, in tuning these parameters we have L = {1, 2, 3, 4} and
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Figure 3. An instance of the “lookahead” network structure, in which the location labeled A is infected. Amyopic
strategy with a budget of τ = 1 might treat location A in order to minimize the expected number of infections at
the next step, a non-myopic strategy would treat location B as it has more neighbors and therefore would cause
more infections if infected. In our experiments, a lookahead network of size L consists of L/7 repetitions of the
structure.

we assume that location 1 is a neighbor of all other locations. Each equation is given in
terms of location 1. The rates are defined as

p1,0({· · · }, {0, · · · }, 0) = 0.01,
p1({· · · }, {0, 1, 1, 1}, 0) = 0.5,

p1({+, · · · }, {0, 1, 1, 1}, {1, 0, 0, 0}) = 0.375,
p1({·,+,+,+}, {0, 1, 1, 1}, {0, 1, 1, 1}) = 0.125,

q1({· · · }, {1, · · · }, {0, · · · }) = 0.25,
q1({+, · · · }, {1, · · · }, {1, · · · }) = 0.125,

where · represents any value and+ represents a positive value. In particular, these equations
set the latent probability of infection without treatment to 0.01; the probability of infection
when 3 neighbors are infected without treatment to 0.5; preventative treatments to reduce
the probability of infection by a factor of 0.75 when three neighbors are infected and none
of which are treated; active treatments to reduce the probability of infecting a neighbor by a
factor of 0.25 assuming only three infected neighbors and all of which are treated; the base
probability of recovery with no treatment to 0.25; and the probability of not recovering to
decrease by a factor of 0.5 with a treatment.

We present simulation results from rolling out each of the strategies under consideration
for T = 25 time steps on lattice, random nearest neighbor, and custom network structures
with L = 100 locations, with contamination parameters ε ∈ {0, 0.5, 1}. We provide more
details in the Supplemental Materials.

6.2. FEATURE CONSTRUCTION FOR MODEL-FREE ESTIMATION IN SIS
ENVIRONMENTS

Weconsider classes of Q-functionswhich are linear in (1) the raw features at each location
(i.e., infection status, treatment status, and any covariates); (2) handcrafted features designed
to efficiently encode information about each locations’ neighbors; and (3) learned features
using the graph neural network as described in Sect. 4.1.1. We describe the construction of
the handcrafted features here; details on the graph neural network implementation such as
the number of neurons, tuning procedures, etc., can be found in the Supplemental Materials.
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In order to pool information across individual locations in the network, we construct
features at each location, which contain both that location’s state and treatment status as well
as its neighbors’ state. In our case, we define the binary covariate as ι� � 1

{
x� ≤ 0

}
; this is

informed by the shield-state variant of the SIS model mentioned above, in which infection
probabilities are mediated by the value of ι�. We summarize the features of a location’s
neighbors using binary encodings. Let N �

k be the set of paths of length k beginning with

location �, and for each r�
k ∈ N �

k with covariates {(ι�(1)
, a�(1)

, y�(1)
), . . . , (ι�

(k)
, a�(k)

, y�(k)
)},

let b(r�
k ) =∑k

i=1

(
23(i−1)ι�

(i) + 23(i−1)+1a�(i) + 23(i−1)+2y�(i)
)

+ 1. Then, writing the j th

basis vector in R
23k as e j , the handcrafted feature of location � is given by

∑
r�
k∈N �

k
eb(r�

k );
that is the vector of counts of each feature combination on each path of length k from a
location �.

Denoting ∪ as the vector concatenation, we write the feature function for each location
� as

ϕ�
k : {0, 1}L × {0, 1}L × {0, 1}L −→ R

23+23k

(s, a, y) �→
[
ι� a� y�

]
∪
( ∑

r�
k∈N �

k

eb(r�
k )

)
,

where
[
ι� a� y�

]
is the binary vector of length 8 corresponding to (ι�, a�, y�), and ∪ means

vector concatenation. For example, the first-order neighbor feature vector is of length 16
and the second-order neighbor feature vector is of length 72.

6.3. EXPERIMENT RESULTS

We compare the following learning algorithms:

– Model-free estimators of Q1, using either a graph neural net work architecture, a linear
architecture with raw features, or a linear architecture with the hand crafted features
described in Sect. 6.2. We refer to these as M-g, M-r, and M-h, respectively (“M”
represents myopic);

– Model-free estimators of Q2, which we referred to as F-g-2, F-r-2, and F-h-2

(“F” represents FQI since these entail applying two steps of spatial FQI);

– Model-free estimators of Q3, which we referred to as F-g-3, F-r-3, and F-h-3;

– The policy search (PS) algorithm of Laber et al. (2018a) (Sect. 5), using Bayesian
optimization (implemented in the BayesOpt package in Python (Nogueira 2018)) to
carry out the requisite optimizations.

Additionally,we compute the average performance of the randomstrategy,which chooses
a subset of ρ locations to treat. We also estimate the performance of two “oracle” strategies.
The first is the model-based policy search learning algorithm described above, except in this
case rollouts are conducted with the exact (and correctly specified) model, rather than an
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estimate (OPS). The second oracle strategy conducts one step of FQI using the true infection
probability (TP). (See the Supplemental Materials for more details on these algorithms.)

Let � be a learning algorithm, i.e., � : dom H t → A, where H t is a history of
observations. Define the utility to be the total number of infected locations at time t , i.e.,
u( yt ) = ∑L

�=1 y
�
t . Then let V (�;β) be the expected cumulative discounted utility over

T = 25 time steps incurred by learning algorithm � when the generative model is given by
β:

V (�;β) � E�,β

[
25∑

t=0

γ t u(Y t )

]

.

Figure4 displays the normalized mean infection counts under each learning algorithm
and each SIS environment considered. There are several features of these results worth
noting:

• For the myopic and FQI learning algorithms, the hand-crafted features and the neural
network features improve performance significantly relative to using the raw features.
This result is anticipated by the literature emphasizing the importance of feature con-
struction in reinforcement learning (Song et al. 2016). It is encouraging that the neural
network features perform better than the handcrafted features based on the structure
of the true generative model.

• Given the structure of these networks, FQI learning algorithms with handcrafted fea-
tures or neural network architecture outperform or have similar performance to their
myopic counterparts. Because of the dense connection among the locations in the
lattice and nearest neighbor network, FQI learning algorithms with neural network
architecture have a significant advantage compared with the random strategy. As the
connections in the custome network are very spare, the decrease in normalized mean
infection is relatively small. It is worth noting that the FQI with neural network archi-
tecture is consistently among the best.

• As expected, model-based policy-search performs well when the model is correctly
specified or moderately misspecified, but its performance deteriorates significantly as
the degree of misspecification increases (brittleness to model misspecification is also
shown in Rose et al. (2019)).

• FQI learning algorithm with neural network architecture is the most stable method in
that it is robust to the network type and model contamination. It is the only strategy
that outperforms the random strategy in all settings. Under the scenarios with ε = 1,
its performance is similar to the oracle myopic strategy and is better than the oracle
policy search strategy.

More results can be found in the Supplemental Materials.

7. MANAGEMENT OF THE EBOLA VIRUS

Demonstrating our method with Ebola virus disease requires some changes to our setup.
First, the dynamic model for Ebola is taken fromKramer et al. (2016a). This model is called
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Figure 4. Normalized mean infection counts under different learning algorithms in the SIS environment, for
lattice (left), nearest neighbor (center), and lookahead (right) network structures with L = 100 and different levels
of contamination. The solid line in each box represents the samplemedian, and the dotted line represents the sample
mean. F-hc: Q2 with handcrafted features; F-gnn: Q2 with graphical neural network architecture; M-hc: myopic
algorithm with handcrafted features; random: random allocation policy; PS: policy search algorithm; Oracle PS:
oracle policy search algorithm.

the gravity model, and the state-information is constant and given by the population of each
location n� as well as the distances between each location d�,�′

. We take the neighbors N �

of each location � to be the four locations �′ with the smallest values of d�,�′/n�n�′ . Under
the gravity model there is no recovery from infection, and the probability of transmission
of infection from an infected location �′ to an uninfected location � is defined by (∀� ∈
{1, . . . , L})(∀�′ ∈ N �)

logit[p�,�′(s, y, a; η)] = η0 − eη1
d�,�′

(n�n�′
)e

η2
+ η3a

� + η4a
�′
.

Thismodel acquires its name from the second term, know as the gravity term. The numerator
is the distance between two locations and it is normalized by the product of the populations
in each location in the denominator. To stabilize the estimation of the model, we force
the coefficient on the gravity term and the exponent on the population product to both be
positive.

We fit the gravity model with no treatment terms to the observed infection data from
the 2013–2015 Ebola epidemic to obtain η̂MLE

0 , η̂MLE
1 , η̂MLE

2 , and tuned the generative
model used in our experiments to meet two conditions. In the first, we took π1 to
be the policy that applies no treatment and considered models with parameters of the
form η(τ1) = {τ1η̂MLE

0 , log(τ1) + η̂MLE
1 , η̂MLE

2 , 0.0, 0.0}. We then choose τ̂1 such that

E{π1,η(τ )}
(∑L

�=1 Y
�
25

)
≈ 0.7 L (where E{π,η} refers to the expectation taken with respect

to trajectories in which the dynamics are given by the gravity model with parameter η and
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Figure 5. Cumulative discounted utility (left) and the normalized mean infection counts (right) under different
learning algorithms in the Ebola environment. The solid line represents the sample median, and the dotted line
represents the sample mean.

strategy π is followed). In the second, we took π2 to be the greedy policy under the true
generative model; π3 to be the uniformly random policy with budget �0.15L�; and, consid-
ering models with parameters of the form η(τ2) = {̂τ1η̂MLE

0 , log(̂τ1)+ η̂MLE
1 , η̂MLE

2 , τ2, τ2},
chose τ̂2 tominimizeE{π3,η(τ2)}

(∑L
�=1 Y

�
25

)
−E{π2,η(τ2)}

(∑L
�=1 Y

�
25

)
over a grid of values

between 0 and 10.

7.1. FEATURE CONSTRUCTION FOR MODEL-FREE ESTIMATION IN GRAVITY

ENVIRONMENT

As before, in addition to the graph neural net-based policies described above, we use a
linear Q-function architecture with hand-crafted features. We append each location’s pop-
ulation and action and infection status, i.e.,

(
n�, a�, y�

)
, to each of its neighbor’s features.

We also include the distances of a location to each of its neighbors. Thus the feature vector
at location � and time t is (using ∪ to denote vector concatenation):

ϕ�(st , at , yt ) =
[
n� a�

t y�
t

]
∪
( ⋃

�′∈N �

[
n�′

a�′
t y�′

t d�,�′]
)

.

7.2. RESULTS

Figure5 displays the results for each of the learning algorithms described above (in
the case of policy search, assuming correct specification of the model). We find that Q3

with graphical neural network architecture outperforms other learning algorithms. Q2 with
handcrafted features, Q2 with neural network architecture, and Q1 with handcrafted features
have similar performance, which are very close to the oracle TP strategy. Interestingly, FQIs
with graphical neural network architecture generate better performance than the model
based policy search algorithm with correct specified infection model. We conclude that our
methods can generate effective real-time intervention strategies, which lead to significant
reductions in the spread of EVD compared to random allocation strategies. The learned
strategies can provide adequate and in time implemented infection control procedures from
incipient outbreaks.
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8. CONCLUSION

We develop a semiparametric (model-free) approach to the online control of an emerg-
ing infectious disease. In simulation experiments, this approach provided better control
of an infectious disease than ad-hoc strategies and was robust to certain kinds of model
misspecification compared to the model based policy search approach.

There are a number of important and interesting open problems associated with spatio-
temporal decision-making. Disease surveillance data can be noisy, sparse, or incomplete.
Extending the proposed methods to accommodate such data, perhaps by generalizing the
underlying Markov decision process framework to a partially observable Markov decision
process (see, e.g., Ross et al. 2008), could potentially improve solution quality. While we
have proposed an online methodology, the updates to the policy estimator require significant
computation time. While this is acceptable for settings where decisions operate on a scale
of days, it would be desirable for decision support systems operating on a finer time scale
or deployed on CPU-limited devices (e.g., mobile phones) to develop estimators that can be
updated in linear time.

A set of critical open problems involves incorporating decision strategies such as those
presented here into a broader decision-support system. Estimated optimal treatment strate-
gies for human diseases are intended to inform, not dictate, decision-making. Thus, com-
munication and visualization tools are needed to assist decision makers in using data-driven
management strategies like the one proposed here. Additionally, if the recommendations of
the estimated strategy are only one input into the decision-making of the relevant actors—in
particular, if decision makers sometimes deviate from the recommendations on the basis
of some additional information—then the sequential decision-making model developed in
Sect. 3 no longer adequately models the decision process. (For instance, the assumption of
strong ignorability (A3)may be violated.) The development of tools for reinforcement learn-
ing and causal inference, which more fully account for the fact that reinforcement-learning
based decision support tools will likely be only one input into the final decisions made
regarding, say, the control of an epidemic, remains an essential and fascinating unsolved
problem.

One potential drawback of the proposed method is its black-box nature. It is difficult
to delineate the information used to construct the graph embeddings and the structure of
interference. The development of interpretable methods that provide additional insights into
the learned optimal strategy is an important area for future work.

[Received November 2022. Revised May 2023. Accepted May 2023.]

REFERENCES

Agrawal S, Goyal N (2011) Analysis of thompson sampling for the multi-armed bandit problem. arXiv preprint
arXiv:1111.1797

Agrawal S, Goyal N (2013) Thompson sampling for contextual bandits with linear payoffs. ICML 3:127–135

http://arxiv.org/abs/1111.1797


Deep Spatial Q- Learning

Almirall D, Ten Have T, Murphy SA (2010) Structural nested mean models for assessing time-varying effect
moderation. Biometrics 66:131–139

Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) A brief survey of deep reinforcement learning.
arXiv preprint arXiv:1708.05866

Atwood CL (1973) Sequences converging to d-optimal designs of experiments. The Annals of Statistics 342–352

Auer P (2000) Using upper confidence bounds for online learning. In: Proceedings 41st annual symposium on
foundations of computer science, pp 270–279. IEEE

Bartroff J, Lai TL, Shih M-C (2012) Sequential experimentation in clinical trials: design and analysis, vol 298.
Springer Science & Business Media, Berlin

Bebis G, Georgiopoulos M (1994) Feed-forward neural networks. IEEE Potentials 13:27–31

Bellman R (1957) Dynamic programming, 1st edn. Princeton University Press, Princeton

Bertsekas DP (2007) Dynamic programming and optimal control, vol II. Athena Scientific, Nashua

Bertsekas DP, Bertsekas DP, Bertsekas DP, Bertsekas DP (1995) Dynamic programming and optimal control, vol
1. Athena Scientific, Belmont

Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic programming, 1st edn. Athena Scientific, Nashua

Bixby B (2007) The gurobi optimizer. Transp Res Part B 41:159–178

Bloom DE, Cadarette D (2019) Infectious disease threats in the twenty-first century: strengthening the global
response. Front Immunol 10:549

Busoniu L, Babuska R, De Schutter B, Ernst D (2010) Reinforcement learning and dynamic programming using
function approximators, vol 39. CRC Press, Boca Raton

Cai H, Zheng VW, Chang KC-C (2018) A comprehensive survey of graph embedding: Problems, techniques, and
applications. IEEE Trans Knowl Data Eng 30:1616–1637

Carr S, Roberts S (2010) Planning for infectious disease outbreaks: a geographic disease spread, clinic location,
and resource allocation simulation. In: Proceedings of the 2010 winter simulation conference, pp. 2171–2184.
IEEE

Cecchine G, Moore M (2006) Infectious disease and national security: strategic information needs. Rand Corpo-
ration, Santa Monica

Chakraborty B, Moodie E (2013) Statistical methods for dynamic treatment regimes. Springer, Berlin

Chatterjee S, Bose A et al (2005) Generalized bootstrap for estimating equations. Ann Stat 33:414–436

Chernoff H (1972) Sequential analysis and optimal design. Vol. 8. SIAM, Philadelphia

Eckles D, Kaptein M (2014) Thompson sampling with the online bootstrap. arXiv preprint arXiv:1410.4009

Ernst D, Geurts P,Wehenkel L (2005) Tree-based batchmode reinforcement learning. JMach Learn Res 6:503–556

Ertefaie A (2014) Constructing dynamic treatment regimes in infinite-horizon settings. arXiv preprint
arXiv:1406.0764

Ertefaie A, McKay JR, Oslin D, Strawderman RL (2021) Robust q-learning. J Am Stat Assoc 116:368–381

Ertefaie A, Strawderman RL (2018) Constructing dynamic treatment regimes over indefinite time horizons.
Biometrika 105:963–977

Feldmann H, Geisbert TW (2011) Ebola haemorrhagic fever. Lancet 377:849–862

Fey M, Lenssen JE (2019) Fast graph representation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428

Forastiere L, Airoldi EM, Mealli F (2021) Identification and estimation of treatment and interference effects in
observational studies on networks. J Am Stat Assoc 116:901–918

Fortunato M, Azar MG, Piot B, Menick J, Osband I, Graves A, Mnih V, Munos R, Hassabis D, Pietquin O, et al
(2017) Noisy networks for exploration. arXiv preprint arXiv:1706.10295

Gopalan A, Mannor S, Mansour Y (2014) Thompson sampling for complex online problems. ICML 14:100–108

Guan Q, Reich BJ, Laber EB (2022) A spatiotemporal recommendation engine for malaria control. Biostatistics
3:1023–1038

Hamel MJ, Slutsker L (2015) Ebola: the hidden toll. Lancet Infect Dis 15:756–757

http://arxiv.org/abs/1708.05866
http://arxiv.org/abs/1410.4009
http://arxiv.org/abs/1406.0764
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1706.10295


Z. Liu et al.

Henderson R, Ansell P, Alshibani D (2010) Regret-regression for optimal dynamic treatment regimes. Biometrics
66:1192–1201

Hernandez-Leal P, Kartal B, Taylor ME (2019) A survey and critique of multiagent deep reinforcement learning.
Auton Agents Multi-Agent Syst 33:750–797

Hernández-Lerma O, Lasserre JB (2012) Discrete-time Markov control processes: basic optimality criteria, vol
30. Springer Science & Business Media, Berlin

Hu T, Laber E, Meyer N, Pacifici K, Drake J (2017) Note on thompson sampling for large decision problems.
Under review 1:1–10

Hudgens MG, Halloran ME (2008) Toward causal inference with interference. J Am Stat Assoc 103:832–842

Jin Z, Ying Z, Wei L-J (2001) A simple resampling method by perturbing the minimand. Biometrika 88:381–390

Karwa V, Airoldi EM (2018) A systematic investigation of classical causal inference strategies under mis-
specification due to network interference. arXiv preprint arXiv:1810.08259

Kasaie P, Kelton WD (2013) Simulation optimization for allocation of epidemic-control resources. IIE Trans
Healthc Syst Eng 3:78–93

Kaufmann E, Korda N, Munos R (2012) Thompson sampling: an asymptotically optimal finite-time analysis. In:
International conference on algorithmic learning theory, pp. 199–213. Berlin, Heidelberg: Springer

Keeling MJ, Eames KT (2005) Networks and epidemic models. J R Soc Interface 2:295–307

Kompella V, Capobianco R, Jong S, Browne J, Fox S,Meyers L,Wurman P, Stone P (2020) Reinforcement learning
for optimization of covid-19 mitigation policies. arXiv preprint arXiv:2010.10560

Korda N, Kaufmann E, Munos R (2013) Thompson sampling for 1-dimensional exponential family bandits. Adv
Neural Inf Process Syst 26:1448–1456

Kosorok MR, Moodie EE (2015) Adaptive treatment strategies in practice: planning trials and analyzing data for
personalized medicine. (Vol. 21). SIAM, Philadelphia

Kramer AM, Pulliam JT, Alexander LW, Park AW, Rohani P, Drake JM (2016) Spatial spread of the West Africa
Ebola epidemic. R Soc Open Sci 3:160294

Laber E, Rose E, Davidian M, Tsiatis A (2017) Q-learning. Wiley StatsRef. https://doi.org/10.1002/
9781118445112.stat07998

Laber EB, Meyer NJ, Reich BJ, Pacifici K, Collazo JA, Drake JM (2018) Optimal treatment allocations in space
and time for on-line control of an emerging infectious disease. J Roy Stat Soc Ser C (Appl Stat) 67:743–789

Lai TL, Wei CZ et al (1982) Least squares estimates in stochastic regression models with applications to identifi-
cation and control of dynamic systems. Ann Stat 10:154–166

Lattimore T, Szepesvári C (2020) Bandit algorithms. Cambridge University Press

Lee J, Lee Y, Kim J, Kosiorek A, Choi S, Teh YW (2019) Set transformer: a framework for attention-based
permutation-invariant neural networks. In: International conference on machine learning, pp 3744–3753.
PMLR

Li S-L, Bjørnstad ON, Ferrari MJ, Mummah R, Runge MC, Fonnesbeck CJ, Tildesley MJ, Probert WJM, Shea
K (2017) Essential information: Uncertainty and optimal control of ebola outbreaks. In: Proceedings of the
National Academy of sciences

Linn KA, Laber EB, Stefanski LA (2017) Interactive q-learning for quantiles. J Am Stat Assoc 112:638–649

Liu Y, Wang Y, Kosorok MR, Zhao Y, Zeng D (2018) Augmented outcome-weighted learning for estimating
optimal dynamic treatment regimens. Stat Med 37:3776–3788

Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY
et al (2013) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a
systematic analysis for the global burden of disease study 2010. Lancet 380:2095–2128

Luckett DJ, Laber EB, Kahkoska AR, Maahs DM, Mayer-Davis E, Kosorok MR (2020) Estimating dynamic
treatment regimes in mobile health using v-learning. J Am Stat Assoc 115:692–706

Ma Y, Wang Y, Tresp V (2020) Causal inference under networked interference. arXiv preprint arXiv:2002.08506

Maei HR, Szepesvári C, Bhatnagar S, Sutton RS (2010) Toward off-policy learning control with function approx-
imation. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 719–726

http://arxiv.org/abs/1810.08259
http://arxiv.org/abs/2010.10560
https://doi.org/10.1002/9781118445112.stat07998
https://doi.org/10.1002/9781118445112.stat07998
http://arxiv.org/abs/2002.08506


Deep Spatial Q- Learning

Mathers C (2008) The global burden of disease: 2004 update. World Health Organization, Geneva

Merler S, Ajelli M, Fumanelli L, Gomes MFC, Piontti AP, Rossi L, Chao DL, Longini IM Jr, Halloran ME,
Vespignani A (2015) Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in liberia and the
effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect Dis
15:204–211

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781

Minnier J, Tian L, Cai T (2011) A perturbation method for inference on regularized regression estimates. J Am
Stat Assoc 106:1371–1382

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous
methods for deep reinforcement learning. In: International conference on machine learning, pp 1928–1937.
PMLR

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK,
Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518:529–533

Moodie EE, Dean N, Sun YR (2014) Q-learning: flexible learning about useful utilities. Stat Biosci 6:223–243

Murphy SA (2003) Optimal dynamic treatment regimes. J R Stat Soc Ser B (Stat Methodol) 65:331–355

Murphy SA (2005) A generalization error for q-learning. J Mach Learn Res 6:1073–1097

Nogueira FMF Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python, 2014.
Accessd 6 Jan 2022

Nowzari C, PreciadoVM, PappasGJ (2015)Optimal resource allocation for control of networked epidemicmodels.
IEEE Trans Control Netw Syst 4:159–169

Orellana L, Rotnitzky A, Robins JM (2010) Dynamic regime marginal structural mean models for estimation of
optimal dynamic treatment regimes, part i: main content. Int J Biostat 6. https://doi.org/10.2202/1557-4679.
1200

Osband I, Van Roy B, Russo DJ, Wen Z et al (2019) Deep exploration via randomized value functions. J Mach
Learn Res 20:1–62

Pan Y, Zhao Y-Q (2020) Improved doubly robust estimation in learning optimal individualized treatment rules. J
Am Stat Assoc 116:283–294

Plappert M, Houthooft R, Dhariwal P, Sidor S, Chen RY, Chen X, Asfour T, Abbeel P, Andrychowicz M (2017)
Parameter space noise for exploration. arXiv preprint arXiv:1706.01905

Powell WB (2007) Approximate dynamic programming: solving the curses of dimensionality, vol 703. JohnWiley
& Sons, Hoboken

Pronzato L (2000) Adaptive optimization and d-optimum experimental design. Ann Stat 28:1743–1761

Puterman ML (2014) Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons,
Hoboken

Rainsch G, Shanker MB, Wellman M, Merlin T, Meltzer MI (2015) Regional spread of Ebola virus, West Africa,
2014. Emerg Infect Dis J 21:444

Riedmiller M (2005) Neural fitted q iteration–first experiences with a data efficient neural reinforcement learning
method. In: European conference on machine learning, pp 317–328. Springer

Robins J (1986) A new approach to causal inference in mortality studies with a sustained exposure period-
application to control of the healthy worker survivor effect. Math Model 7:1393–1512

Robins JM (1987) Addendum to “a new approach to causal inference in mortality studies with a sustained exposure
period-application to control of the healthy worker survivor effect“. Comput Math Appl 14:923–945

Robins JM (2004) Optimal structural nested models for optimal sequential decisions. In: Proceedings of the second
seattle symposium in biostatistics, pp 189–326. Springer

Rose EJ, Laber EB, Davidian M, Tsiatis AA, Zhao Y-Q, Kosorok MR (2019) Sample size calculations for smarts.
arXiv preprint arXiv:1906.06646

Ross S, Pineau J, Paquet S, Chaib-Draa B (2008) Online planning algorithms for POMDPs. J Artif Intell Res
32:663–704

http://arxiv.org/abs/1301.3781
https://doi.org/10.2202/1557-4679.1200
https://doi.org/10.2202/1557-4679.1200
http://arxiv.org/abs/1706.01905
http://arxiv.org/abs/1906.06646


Z. Liu et al.

Rowland M, Dadashi R, Kumar S, Munos R, Bellemare MG, Dabney W (2019) Statistics and samples in distribu-
tional reinforcement learning. arXiv preprint arXiv:1902.08102

RubinDB (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol
66:688

Rubin DB, van der LaanMJ (2012) Statistical issues and limitations in personalizedmedicine research with clinical
trials. Int J Biostat 8:18

Russo D, Van Roy B (2014) Learning to optimize via information-directed sampling. Adv Neural Inf Process Syst,
27: 1583–1591

Saghafian S (2021) Ambiguous dynamic treatment regimes: a reinforcement learning approach. arXiv preprint
arXiv:2112.04571

Schulte PJ, Tsiatis AA, Laber EB, Davidian M (2014) Q-and a-learning methods for estimating optimal dynamic
treatment regimes. Stat Sci Rev J Inst Math Stat 29:640

Scott SL (2010) A modern Bayesian look at the multi-armed bandit. Appl Stoch Model Bus Ind 26:639–658

Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen J, Chen C, Ramachandran S (2014) Global rise in human
infectious disease outbreaks. J R Soc Interface 11:20140950

Song Z, Parr RE, Liao X, Carin L (2016) Linear feature encoding for reinforcement learning. Adv Neural Inf
Process Syst 29

Splawa-Neyman J, Dabrowska D, Speed T et al (1990) On the application of probability theory to agricultural
experiments. Essay on principles. Section 9. Stat Sci 5:465–472

Sunehag P, Lever G, Gruslys A, Czarnecki WM, Zambaldi V, Jaderberg M, Lanctot M, Sonnerat N, Leibo JZ,
Tuyls K, et al (2017) Value-decomposition networks for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge

Szepesvári C (2010) Algorithms for reinforcement learning. Synth Lect Artif Intell Mach Learn 4:1–103

Tec M, Scott J, Zigler C (2022) Weather2vec: representation learning for causal inference with non-local con-
founding in air pollution and climate studies. arXiv preprint arXiv:2209.12316

Thompson WR (1933) On the likelihood that one unknown probability exceeds another in view of the evidence of
two samples. Biometrika 25:285–294

Tsiatis AA, Davidian M, Holloway ST, Laber EB (2019) Dynamic treatment regimes: statistical methods for
precision medicine. CRC Press, Boca Raton

WangL, ZhouY, SongR, SherwoodB (2018)Quantile-optimal treatment regimes. JAmStatAssoc 113:1243–1254

Wang Y, Xu T, Niu X, Tan C, Chen E, Xiong H (2020) STMARL: a spatio-temporal multi-agent reinforcement
learning approach for cooperative traffic light control. IEEE Trans Mob Comput 21:2228–2242

Watkins CJCH (1989) Learning from delayed rewards. PhD thesis, King’s College, Cambridge

Weiss GH, DishonM (1971) On the asymptotic behavior of the stochastic and deterministic models of an epidemic.
Math Biosci 11:261–265

WHO Ebola Response Team (2014) Ebola virus disease in West Africa-the first 9 months of the epidemic and
forward projections. N Engl J Med 2014:1481–1495

Xie M-G, Singh K (2013) Confidence distribution, the frequentist distribution estimator of a parameter: a review.
Int Stat Rev 81:3–39

Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2006) Graph embedding and extensions: a general framework
for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29:40–51

Zhang B, Tsiatis AA, Laber EB, Davidian M (2012) A robust method for estimating optimal treatment regimes.
Biometrics 68:1010–1018

Zhang B, Tsiatis AA, Laber EB, Davidian M (2013) Robust estimation of optimal dynamic treatment regimes for
sequential treatment decisions. Biometrika 100:681–694

Zhang Y, Laber EB, Tsiatis A, Davidian M (2015) Using decision lists to construct interpretable and parsimonious
treatment regimes. Biometrics 71:895–904

http://arxiv.org/abs/1902.08102
http://arxiv.org/abs/2112.04571
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/2209.12316


Deep Spatial Q- Learning

Zhao Y, Zeng D, Rush AJ, Kosorok MR (2012) Estimating individualized treatment rules using outcome weighted
learning. J Am Stat Assoc 107:1106–1118

ZhaoY, ZengD, SocinskiMA,KosorokMR (2011) Reinforcement learning strategies for clinical trials in nonsmall
cell lung cancer. Biometrics 67:1422–1433

ZhaoY-Q, ZengD, Laber EB,KosorokMR (2015)New statistical learningmethods for estimating optimal dynamic
treatment regimes. J Am Stat Assoc 110:583–598

ZhouX,Mayer-Hamblett N,KhanU,KosorokMR (2017)Residualweighted learning for estimating individualized
treatment rules. J Am Stat Assoc 112:169–187

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article
under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of
the accepted manuscript version of this article is solely governed by the terms of such publishing
agreement and applicable law.


	Deep Spatial Q-Learning for Infectious Disease Control
	1. Introduction
	2. Ebola Virus
	3. Model
	4. Spatial Fitted-Q Iteration
	4.1. Fitted Q-Iteration
	4.1.1. Spatial Fitted Q-Iteration with Graph Embeddings

	4.2. Generalized Bootstrap and Thompson Sampling
	4.3. Optimization

	5. Estimating the Optimal Strategy via Policy-Search
	6. Simulation Experiments
	6.1. Experiment Setup
	6.2. Feature Construction for Model-Free Estimation in SIS Environments
	6.3. Experiment Results

	7. Management of the Ebola Virus
	7.1. Feature Construction for Model-Free Estimation in Gravity Environment
	7.2. Results

	8. Conclusion
	References


