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Abstract

A dual variational principle is defined for the nonlinear system of PDE describing the dy-
namics of dislocations in elastic solids. The dual variational principle accounting for a spec-
ified set of initial and boundary conditions for a general class of PDE is also developed.
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1 Introduction

Unlike the physics of the microscopic structure of sub-atomic particles (e.g. ‘core’ of an
electron), much more is physically known about the microscopic structure of dislocations
and their mutual interactions, as well as their interactions with applied loads, within a (non-
linearly) elastic crystal, both through direct experimental observation and through lattice
statics/molecular dynamics/density functional theory calculations. Due to this knowledge,
physically well-justified and transparent mathematical models can be posited for the phe-
nomena, with the possibility of systematic refinement to include more detail when deemed
necessary after mathematical study and comparison with experiment. There is a long and
distinguished history of the study of dislocations in elasticity in the classical setting, see,
e.g., [1-5], the continuously distributed setting, e.g., [6-8], [9, including second-order ef-
fects] and [10], and the connections of some of the kinematic aspects of dislocations to
non-Riemannian Geometry [7, 11, 12]. As well, techniques for developing well-set, classi-
cal thermomechanical theories of the mechanics of continuous media comprising different
types of materials exhibiting strongly nonlinear behavior and satisfying the relevant invari-
ances and material symmetries are available [13—16] and [10]. These ideas and techniques
have been synthesized and extended to produce the theory/model of dislocation mechanics
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stated in [17], as reviewed in [18]. The theory admits the minimal specification of an en-
ergy density function ¢ (W), where W is the inverse elastic distortion field (not necessarily
a gradient), and that of a dislocation velocity field, the function V;(c«, W, p) in (3), which,
when guided by the requirements of being proportional to its derived thermodynamic driving
force, is a specified function of the thermodynamically derived Cauchy stress tensor

Tij = —p Wy,

and the dislocation density tensor ¢;;, admitting a scalar or matrix of material constants
representing dislocation mobility. Here,

Wl,] = 8W,‘j1//7

and it suffices to use a rectangular Cartesian coordinate system and tensor components w.r.t
its basis in this Section. The time variable is represented by the symbol ¢ and not used as an
index.

For prescribed static dislocation fields the framework is shown to be able to compute the
stress and energy fields of such distributions in bodies of arbitrary geometry and general
elastic symmetries [19, 20]. Similarly for prescribed dislocation velocity field, the setup is
shown to be able to compute the evolution of the dislocation field [20]. And the evolution in
the fully coupled case also has been shown to work well to predict nonsingular dislocation
cores, dislocation annihilation, dissociation and stress-mediated interaction when restricted
to dislocation motion within a planar layer in a 3—d body [21] within a ‘small deformation’
ansatz.

The phenomenon of macroscopic plasticity of crystalline materials corresponds to the
collective dynamical behavior of a very large number of dislocation curves in an elastic
body under generally time-dependent loads. While experimental observations and real prac-
tical applications of plasticity abound, it is fair to say that there does not exist a fundamental
theory that arises as a coarse-graining of nonlinear dislocation dynamics as described above
(or by any other model). The phenomenon of plasticity shows fascinating dynamical changes
as a function of initial conditions and tamely evolving driving loads - e.g., yielding, Stage I,
IL, III, IV behaviors as a function of applied load temperature and initial crystal orientation,
intricate patterned dislocation microstructure formation such as cells and sub-grain bound-
aries to name only a few - with no established fundamental theory for understanding them
(the phenomenon is even richer, with rapidly driven situations also being of theoretical and
practical interest). It is in this context that we would like to use a path integral implementa-
tion of the dynamics represented by (3) to evaluate how much of the reality of macroscopic
plasticity can be understood by the combination of the model and the technique. The rough
expectation is to be able to interpret drastic changes of overall behavior observed in reality
as statistical phase transitions as understood in Effective/Statistical Field Theory.

A first step in this program is to define an action functional for the system (3) which,
in the first instance, does not emanate from a variational principle; it is this objective that
is tackled in Sects. 2, 3, and 4, refining the work in [18] following the ideas in [22]. Sec-
tion 5 develops the variational principle accounting for a specified set of initial and boundary
conditions for a nonlinear system of second-order PDE expressed as a first-order system.

Variational principles for ‘small deformation,” static dislocation mechanics and inter-
nal stress problems by the method of ‘eigenstrains’ is presented in [23, 24], and there is a
modern literature involving rigorous analysis reviewed, in detail in [19]. Our work involves
finite-deformation, nonlinear dislocation dynamics including inertia.
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2 The Essential Idea: An Optimization Problem for an Algebraic System
of Equations!

Consider a generally nonlinear system of algebraic equations in the variables x € R” given
by

Au(x) =0, ey

where A : R” — R" is a given function (a simple example would be A, (x) = Agi X' = by,
a=1...N,i=1...n, where A is a constant matrix, not necessarily symmetric (when
n = N), and b is a constant vector). We allow for all possibilities 0 < n § N > 0.

The goal is to construct an objective function whose critical points solve the system (1)
(when a solution exists) by defining an appropriate x* € R” satisfying A, (x*) =0.

For this, consider first the auxiliary function

Su(x,2) =" Ag(x) + H(x)
(where H belongs to a class of scalar-valued function to be defined shortly) and define
Su(z2) =z%Aa(xn(2)) + H(xp(2)

with the requirement that the system of equations

8Aa( " oH
—(x -
ax! ax!

% (x)=0 2
be solvable for the function x = x5 (z) through the choice of H, and any function H that
facilitates such a solution qualifies for the proposed scheme.

In other words, given a specific H, it should be possible to define a function xp (z) that
satisfies

20,0 Ag(xp(2)) + 0, H(xp(2)) =0 VzeRY

(the domain of the function x5 may accommodate more intricacies, but for now we stick to
the simplest possibility). Note that (2) is a set of n equations in n unknowns regardless of N
(z for this argument is a parameter).

Assuming this is possible, we have

Sy
az#

A, oH dx!
(2) =Ap(xp(2)) + (z“ ~(xy(2)) + Py (XH(Z))) '} (2) = Ap(xpy(2)),
x! 7P

axt
using (2). Thus,

e if 7j is a critical point of the objective function Sy satisfying 0.5 Sy (z0) = 0, then the
system A, (x) = 0 has a solution defined by xy(z0);

e if the system A, (x) = 0 has a unique solution, say y, and if z{){ is any critical point of Sy,
then xy (z{') = y, for all admissible H.

1T thank Vladimir Sverak for insisting on the ‘simplest,” transparent explanation of the ideas in [18, 22]. This
brief Section is a result of that effort.
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e If A, (x) = 0 has non-unique solutions, but 9_s S(z) = 0 (N equations in N unknowns) has
a unique solution for a specific choice of the function z — xy (z) related to a choice of H,
then such a choice of H may be considered a selection criterion for imparting uniqueness
to the problem A, (x) =0.

e Finally, to see the difference of this approach with the Least-Squares (LS) Method, we
note that the optimality condition for the objective A, (x)Ay(x) is Ay (x)0,i Ag(x) =0,
and this does not imply A, (x) =0.

For a linear system Ax = b, the LS governing equations are given by

ATAz=A"b,

with LS solution defined as z even when the original problem Ax = b does not have
a solution (i.e., when b is not in the column space of A). The LS problem always has
a solution, of course. In contrast, in the present duality-based approach with quadratic
Hx) = %xTx the governing equation is

AATz=b

with solution to Ax = b given by x = A"z, and the problem has a solution only when
Ax = b has a solution, since the column spaces of the matrices A and AAT are identical.
As a practical matter, the latter approach appears to have, at least in principle, ad-
vantages for solving large, consistent, underdetermined systems as the size of the matrix
AAT is much smaller than that of AT A in this situation, with due consideration paid to
conditioning-related robustness issues (cf. [30, 32], [31, pp. 299-300]).

3 A Class of Variational Principles for Nonlinear Dislocation Mechanics

We implement the idea of Sect. 2 to define an action(s) for the nonlinear partial differential
equations of dislocation mechanics given by

0= e,0, Wiy + atij,
0= 29, Wij +3;(Wixvi) — veeij@ir — ejrsir Vs(a, W, p)
=0, Wi + 00k Wi + Wird0, — ey, Vi (a, W, p), (3)
0=d,0+ d(pvy),
0=2,(pvi) +3;(pviv;) + 3; (P Wiiy,).-

The physical basis of this system of equations is explained in [18]. Briefly, the first equation
is the equation of elastic incompatibility. The second reflects the compatibility between the
velocity gradient, the rate of the change of the elastic distortion and the rate of permanent
deformation produced by the motion of dislocations. The third equation is balance of mass,
and the fourth, the balance of linear momentum. Setting @ = 0 in the system above gives the
equations of nonlinear elasticity written in an Eulerian setting.

First define the functional

SulA, W,0,p,4,v, B,a]

=/ dtd®x — W;;8,Aij — Wivrdj Aij — Aijveeijtiy — Aijejrsctin Vi(at, W, p)
[0,71xQ
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— P30 — pvdk® — pvidhi — pviv;d;hi — pWyiy;8h;
— e sWis0,Bij + Bija;; + HW, p,v, @),

which is obtained by converting (3) to scalar form by taking inner products with the ‘dual’
fields

D=(A,0,x,B),

integrating by parts on the space-time domain assuming the dual fields vanish on the bound-
ary of the domain, and adding the potential H. Now define

U=W,p,v,a) and D:=(d;A,VA,A,6090,V0,0,\A, VA, VB, B)
(note ‘D # D’) and require that there exists a function
U (D) = (Wu(D), pu(D), vu (D), an (D)) “
such that for the functional Sy[A, 6, A, B] of the dual fields defined as

f dtd’x Ly(D,Uy (D)) = SylA, 6,1, B
[0, T]1xQ2

= SulA, Wi (D), 0, pyy (D), &, vy (D), B, oy (D)1, (5)
the first variation is given by (we suppress the subscript 5 on the elements of Uy for nota-
tional simplicity)

Sy Z/ dtd’x — W;;(D)3,8A;j — Wi (D)vg(D)3;8A;j — SA;;vi(D)ryxjetiy (D)
[0.7]x 2

— 8Aijejrsir (D)Vs (@(D), W(D), p(D))

— p(D)0,66 — p(D)vi (D) 0,66 ©)
— p(D)vi (D)3 8h; — p(D)vi(D)v; (D)3 8% = p(D) Wi (D) (W (D))3;6 4,
—ejrsWis(D)0,6B;j + 6Bjja;j (D),

a condition that is satisfied if the system

BEH BVS
8W1P = —8[A[p — UpajAzj — A,vjejrsa,-,m(a, W, p) e]rpa B[j
/ " dH
—p (WIj(W)aj)\.p + Wkilﬁkﬂpaj)\ ) 8W1p (W P, V,x) =
31:11 oV, /
ap Azjejrsalr (Ol W, p) — 9,0 — 00,0 — v; 0, A; — vivjaj)bi — Wkid/kjaj}‘i
dH
+ ——W,p,v,a)=0, )
ap
aL
avH = —vvipainj — Aijeypjair — pape — ,oa,kp — ijaj)»p — pviap)\i
p

oH
+5—W.p,v,0) =0,
v,
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Ly vy
o = _Alj Vk€pkj — A[jejps Vi(a, W, /0) - Aijejrsaira—(a7 w, ,0) + Blp
Ip Ay

oH
+—W,p,v,a)=0,
30([17

can be solved in the form of
(Wv P, V, 0[) = UH(D)

This is so, since solving (7) defines Uy (D) that ensures ?T”(D, Uy (D)) = 0 which then
implies
oL

H oUy
—— D, Uy(D))- —— (D) - 6§D =0 forall D.
8U( u(D)) aD( ) ora

Note that (6) then is simply

AL
5Sy = / dtd’x —2 s,
[0, T]xQ2 aD

and requiring
88y =0 for all variations é D that vanish on the boundary of 2 x [0, T']

shows that the Euler-Lagrange equations of the functional Sy defined in (5) are the equations
of (3) with the substitution

(W,p,v,a) =Ugx(D).

This is so because Ly is necessarily linear in its first argument, see (5).

To summarize, the primal equations (3) of dislocation mechanics are the Euler-Lagrange
equations of any of the dual functionals, written in terms of particular specific combinations
(mappings) of the dual fields for each choice of the function H, each specific mapping defin-
ing the primal fields. Thus one may think of the primal fields as “gauge invariant” observ-
able combinations of the dual fields (“gauge fields”) satisfying one specific set of equations
(the primal system). While this is not how gauge fields appear in traditional gauge theo-
ries of physics, it is interesting that a completely different starting point and approach raise
somewhat similar invariance structures that may be interpreted as symmetries.

As for the plausibility of being able to solve the algebraic system (7) given a specific
D, consider H to be separately quadratic in each of its arguments, say Uy, with large in
magnitude coefficient, so, e.g., H = %aw Wi;jWij + ---, with 1 < |aw|. Then, assuming
the solution of the Euler-Lagrange equations are bounded in some appropriate sense, (7)
can indeed be solved to define Uy (D), and it has to be made sure that the solutions of
the Euler-Lagrange equations (using this function) indeed satisfy the assumed bounds. To
ensure that this latter condition is satisfied one has a large class of H functions to operate
with but, at any rate, this is a delicate question of analysis, including how the requirement
can be relaxed if required, in the context of solving the dual variational problem (and not
necessarily its Euler-Lagrange equations).

We end this section with the following remarks:

e Our system (3) does not involve multi-valued fields or non-simply connected domains for
defining dislocation dynamics, but is fully capable of representing the topological charge
of dislocation lines with its ingredients.
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e Based on the explorations of stress-coupled dislocation motion presented in [21, 25], the
‘primal’ system requires a ‘core-energy’ in the form of the dependence of the energy
function i on the dislocation density « as well. This results in the dislocation veloc-
ity depending on the curla. Such a dependence is accommodated within our ‘action-
generating” scheme by adding an extra variable and equation to the system (3) of the
form ej,;0,a;; = B;; and writing the dislocation velocity as V; = V(a, W, p, 8). This
would have the effect of increasing the number of fields in the dual problem as well.

It is an interesting question whether the precise definition of a formally ‘small’ core en-
ergy contribution with a small parameter representing microscopic physics can make a
difference in the development of an accurate model for the prediction of macroscopic
behavior, and whether such a device should be allowed in the class of models admitted.
Physically, in the context of the physics of dislocation dynamics, there appears to be no
reason to exclude the possibility of the importance of such effects and, in fact, allows
more precise physics to be incorporated in the description of gross macroscopic behav-
ior (which is, admittedly, a double-edged sword in the context of coarse-graining). Some
evidence to support such an expectation is also provided by the mathematically rigorous
study of the inviscid Burgers equation, ‘regularized’ by a small viscous effect in one case
and by dispersion in another [26-28].

Based on the above observation, one advantage of the ‘dual’ formalism proposed herein
may be that when the microscopic physics to be added is not even qualitatively understood
with certainty, working with a regularization on the dual side, may be guided solely by the
aim of producing a ‘good’ dual extremal, i.e., with guaranteed existence in an appropriate
function space. Doing so appears to require no modification to the physics of the primal
problem, and then the limit of dual solutions, as the regularization parameter vanishes,
may be studied.

e In the context of an action functional that simply has as its Euler-Lagrange equation the
given system of PDEs, the proposed scheme delivers, at least formally and under the stated
requirements, what is needed. However, if the action functional is to be used in a path
integral, dual fields D other than extremals matter as well. In this sense it is reasonable to
demand that the added potential H in £y be subject to further requirements of invariance
that may obstruct the inversion process required to define the function Uy (D). In case
such a restriction is so severe as not to allow the definition of even a single ‘change of
variables’ (Uy (D)), through the choice of some H ), one can retain both the fields W, A
and still obtain a relevant action functional, as shown in [18].

4 Linear Dislocation Mechanics

We illustrate the proposed technique with a very closely related one (using a Legendre trans-
form, cf. [22, 29]) in the simplified setting of linear dislocation mechanics with a prescribed
dislocation velocity field V in space-time along with the ansatz

U,'j = 5ij — Wi‘
T;j :=CijuUn,
ignoring all nonlinearities in (3) and assuming the mass density field p to a be specified field.

The ansatz is justified for small elastic distortions (U) about the ground state (cf., [18]). We
note that Cjj is necessarily symmetric in (k, /) and (i, j) so that it is not invertible on the
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space of all second order tensors (and hence the stress only depends on the elastic strain, the
symmetric part of U). With these assumptions, the system (3) may be expressed as

0=20,(pv;) — 3,;(CijuUn),
0= 3_;‘”;‘ — atUij — e_,-”oz,-,.Vs, (8)
0=ejrs8rUis - Qjj.

Taking inner products of these equations with the dual fields D = (A, A, B) that vanish
on the boundary and utilizing an arbitrary function M convex in the list of arguments
M (v, U, @) we define the functional

S[A, U, B,a, ,v] :/ dtd®x v;(—=3;A;j — pd ;)
[0,T1xQ C

+ Uij(0;Ajj — e5jr 0, Bis + Cijr0Ar)
+ o (—Ajjejrs Vs — Biy) — MU, a, v).

Defining
p:=(—0;A;j — po;Ai, 0;Ajj — €5y 0, Bis + Cijudihp, —Ajjejrs Vs — Bir);  Q:=(, U, ),
and M*(p) the Legendre transform of M (Q) given by

u(p), Un(p), am(p)) =: Qu(p) = (M)~ (p)

M*(p)=Qu(p)-p—M(Qu(p)) )
,M*(p) = Qu(p)

(well-defined because of the convexity of M (Q)), we define the dual action, Sy,[D],

SIA, Un(p), B, ay(p), », vy (p)] =: Su[D] 2/ dtd’x M*(p)
[0,T]xQ2

whose first variation is given by (after an integration by parts)
8Su = / dtd’x Qu(p)ép
[0,T1xQ

:/ dtd’x 82; (3, (pvi(p)) — 3;(CijuUu(p)))
(0,71xQ

+ 845 (3;(vi(p)) — 3, (Ui (p)) — €jrsctiv (P) V)
+ 8Bis(esj0,(Uij (p)) — ais(p)),

(where we have dropped the subscript j; on the dual-to-primal mapping fields for notational
convenience). Thus, the dual Euler-Lagrange equations are the system (8) expressed in terms
of the dual fields through the mapping codified in (9),, regardless of the convex potential M
chosen to define the dual functional Sy .

This exercise exposes an interesting fact in a simple setting. Clearly, for M to be convex
in U it cannot be invariant as it has to depend on the skew-symmetric part of the latter - and
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rotational invariance/invariance under superposed rigid deformations in the linear setting
precludes such a dependence. However, the use of such a potential in the dual theory does
not in any way obstruct the definition of correct physics as embodied in the Euler-Lagrange
equations solved.

5 Dual Variational Principle for a Primal Problem with Initial and
Boundary Conditions

Consider the system of PDE:

ur =Aryuy + By dguy +Cryyy By +fr(u, B, C) + 0 (A (u, B, C)),
diuy = By, (10)
0;B;i = Cyij,

where A, B, C are arrays of real constants, §; and 2;; are, for each 1, j, given, real-valued,
smooth functions of the arguments shown, uppercase Latin indices span 1 to n, and lower-
case Latin indices representing space-dimensions span 1 to 1 <d <3, and ¢ is time.

The functions §, 2 do not contain any terms linear in the array (u, B, C).

Let the initial and boundary conditions for (10) be

ur(x,0)=a"(x), xeQ,
App(u(x,t), B(x,t), C(x,t))ng(x)

+ Bryruy(x, 1) + CryaByi(x, ) ng(x) =7;(x, 1), (x,1) €93 (x) x (0,T], (11)
ure, ) =P (x, 1), (x,1) € 9, (x) x (0, T,

dup(x,t)=Bp(x,t)=Bp(x,1), (x,1)€3Qv,(x)x (0, T],

where n represents the outward unit normal to the boundary of the domain 9€2, the functions
with overhead bars are prescribed, and the subsets 9$2,, 92, dQ2y, of the spatial boundary
02 can very well be empty for a specific problem.

The initial and boundary conditions (11) for the primal system (10) is simply a set of
conditions that encompass the commonly encountered ones for up to second-order systems
of partial differential equations; the present work does not deal with the question of well-
posedness of the system (10) with this specified set of initial and boundary conditions. For
instance, it may very well be that in a specific problem, well-posedness requires d;u; = By;
not to be specified on any part of the boundary of 2. In that case dQ2yu can be chosen to be
the empty set, and then, as suggested by (12) below, the dual field p needs to be prescribed
on the entirety of dS2 for all times.

Our scheme [22] then suggests defining

Slu, B,C, A, v, p] =/ d’xdt — dhqup — Afi(u, B, C) + A (u, B, C)dhs
Qx(0,7)
—urAjhy +ur By okry + Bri Crrig Ay —u 0y

—v1iBii — B1i9jp1ij — p1:jCrij + H(u, B, C, x, 1).
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where we have allowed for H to depend on (x,t) as well. This generality is practically
useful, especially when H plays the role of a selection criterion for non-unique solutions of
the primal problem.

Next define the arrays U, P, L, F and the function M:

U:=u;, By, Crij), L:=(@;, —0kAp)
P = (A + 0iyri +Asrhy — Bk,

vii +90jp1ij — Crrin Ay, prij),  Fi= (1, 2A55),
MU,L)=HU,x,t)—L-F(U)

(noting that F is indeed a function of only U).
Following [22], we now ask that M be such that 3 Uy (P, L, x, t) satisfying oy M (Uy (P,
L,x,t),L,x,t)= P,VP and in terms of this define

M*(Pva-xat) ::UH(Pvaxvt)'P_M(UH(Pva-X:?t)aLs-xvt)'

We then replace U in gby Uy (P, L) to define the dual functional

SOA, v, ol :=/ d*xdt — P -Uy(P,L,x,t) + M(Uy(P,L,x,1), L,x,1),
Qx(0,7)

= —/ d’xdt M*(P, L, x,1)
Qx(0,T)
whose first variation is given by
58=f d*xdt —9pM*- 8P — 9, M* - SL.
Qx(0.T)

Now, a calculation detailed in [22, Sect. 6], shows that
opM*(P,L,x,t)=Un(P,L,x,t), 8, M*(P,L,x,t)=FUn(P,L,x,1)).

Then, using the notation Uy (P, L, x,1) = (u}' (P, L, x,1), Bff{ (P, L, x,1),C{,(P, L, x,1)),
I=1ton;i,j=1tod,

55:/ d*xdt —Uy(P,L,x,t)-8P — F(Uy(P,L),x,t)-8L
Qx(0,7T)

=/ d3xdt — Mfl(P, L,x,1)(0;6A; + 8[8)/1,' +A”8AJ — By k0kSAy)
Qx(0,T)

— BJ(P,L,x,t)(Sy1i +3;8p1; — Cy1i1 8hy) — ng(P’ L,x,t)8p1i;
—§F1Uu (P, L,x,1)8A; +2Ap(Up (P, L, x,1))00A s,

and collecting terms,

85:/d3x8)\1(x,0)u§1(P(x,0),L(x,O),x,O)
Q
—fd3xaxz(x,T)uf’(P(x,T),L(x,T>,x,T)
Q
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+/ d’xdt 81y (du) (P, L,x,t) —f,(Upy(P,L,x,1))

Qx(0,7T)

— 0 AUy (P, L, x,1)))

+/ d*xdt 83y (— Apyuf (P, L x,t) =By de (uf (P, L, x,1))
Qx(0,T)

— Cryud (BJE(P,L,x,1)))
T

+/ d:/ da 8x; (M (Un (P, L, x, 1)) +ul (P, L,x,0)B;
0 aQ

+ Cryiu By (P, L, x, 1)) ng

T
—/ dt/ da 8)/1iu7(P,L,x,t)ni
0 a0

+/ dxdt 8yy; (du (P, L,x,t) — Bff(P,L,x,1))
Qx(0,T)

T

_/ dt/ da SPlijBﬁ(P,L,x,[)nj
0 aQ

+/ d3xdt6p1,~j (BjBﬁ(P,L,XJ)—Cﬁj(P, L,X,t)).
Qx(0,7T)

From the above calculation we read off the modification required to S to account for the
specified initial and boundary conditions:

SiboplA, v, p] 1=—/ d’xdt M*(P(x,1), L(x,1), x,1)
Qx(0.7)

T
—/d3xk1(x,0)ﬁ(1’)(x)—/ dt/ dar;(x,0)T;(x,1)
Q 0 Q7
T
-l—/ dtf dayli(x,t)ﬁ(,b)(x,t)n,-(x)
0 a2y,

T
+/ df/ da pyi;(x,1)Bpi(x, )n;j(x)
0 0Qyy

with  A;(x, T) = ‘arbitrarily’ prescribed and §A;(x,T) =0, x € 2,
Ay (x,t) = ‘arbitrarily’ prescribed and A, (x, 1) =0, (x, 1) € 9Q\dR2; x (0, T],
yri (x, t) = ‘arbitrarily’ prescribed and §y;; (x,1) =0, (x,t) € 9Q\0R, x (0, T],
p1ij(x, t) = ‘arbitrarily’ prescribed and 8p;;; (x,1) =0, (x,1) € 9Q\0Rvy, x (0, T,
12)

(with prescriptions chosen to avoid discontinuities at ‘space-time corners’ of boundary of
the space-time domain 2 x (0, 7)).

We end by noting that in ongoing work these ideas have been used to successfully for-
mulate and compute approximate solutions (with minimal error) of the heat equation and
the first-order wave equation in bounded domains, in one space dimension and time. These
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parabolic and hyperbolic equations are solved by a common methodology based on comput-
ing weak solutions to degenerate elliptic boundary value problems in a space-time domain,
involving oblique natural boundary conditions. Uniqueness of solutions to the correspond-
ing dual problems with the initial-boundary conditions developed following the above ideas
is also shown.

As already noted in the Introduction, the primary application envisioned for this varia-
tional principle is in enabling a Feynman Path Integral based statistical analysis of disloca-
tion dynamics. A second major application is in designing an efficient and robust numerical
scheme for the system (3), which is a system of Hamilton-Jacobi equations. It also has the
potential of providing a pathway to the rigorous analysis of the system in the hands of bona-
fide experts in PDE and variational calculus.
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