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Abstract
The sequential multiple assignment randomized trial (SMART) is the gold stan-
dard trial design to generate data for the evaluation of multistage treatment
regimes. As with conventional (single-stage) randomized clinical trials, interim
monitoring allows early stopping; however, there are few methods for princi-
pled interim analysis in SMARTs. Because SMARTs involve multiple stages of
treatment, a key challenge is that not all enrolled participants will have pro-
gressed through all treatment stages at the time of an interim analysis. Wu
et al. (2021) propose basing interim analyses on an estimator for the mean out-
come under a given regime that uses data only from participants who have
completed all treatment stages. We propose an estimator for the mean outcome
under a given regime that gains efficiency by using partial information from
enrolled participants regardless of their progression through treatment stages.
Using the asymptotic distribution of this estimator, we derive associated Pocock
and O’Brien-Fleming testing procedures for early stopping. In simulation exper-
iments, the estimator controls type I error and achieves nominal power while
reducing expected sample size relative to the method of Wu et al. (2021). We
present an illustrative application of the proposed estimator based on a recent
SMART evaluating behavioral pain interventions for breast cancer patients.
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1 INTRODUCTION

Treatment of chronic diseases and disorders involves a
series of treatment decisions made at critical points in
the progression of a patient’s health status. To optimize
long-term health outcomes, these decisions must adapt
to evolving patient information, including response to
previous treatments. Strategies for adapting treatment
decisions over time are formalized as treatment regimes,

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

which comprise a sequence of decision rules, one per stage
of intervention, that map accrued patient information to
a recommended treatment (Chakraborty & Moodie, 2013;
Tsiatis et al., 2020). The value of a regime is the expected
utility if the regime is used to select treatments in the
population of interest. A regime is optimal if it has maxi-
mal value. Much of the statistical literature on treatment
regimes has focused on estimation and inference for opti-
mal regimes (Kosorok & Laber, 2019). However, scientific
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F IGURE 1 Schema for the sequential multiple assignment randomized trial (SMART) evaluating regimes involving behavioral
interventions for pain management in breast cancer patients embedding eight regimes of the form “Give intervention 𝑎; if nonresponse, give
𝑏; otherwise, if response give 𝑐.” The embedded regime determined by 𝑎 = PCST (pain coping skills training)-Full, 𝑏 = PCST-Plus,
𝑐 =Maintenance is shown with dashed lines around the treatments. Regimes 𝑙 = 1, … , 8 take (𝑎, 𝑏, 𝑐) to be (Full, Plus, Maintenance), (Full,
Plus, No Intervention), (Full, Maintenance, Maintenance), (Full, Maintenance, No Intervention), (Brief, Full, Maintenance), (Brief, Full, No
Intervention), (Brief, Maintenance, Maintenance), and (Brief, Maintenance, No Intervention), respectively. This figure appears in color in the
electronic version of this article.

interest often focuses on comparison of a small number of
prespecified treatment regimes, either with each other or
against a control, on the basis of mean outcome.
The gold standard for data collection for the evaluation

of treatment regimes is the sequential multiple assign-
ment randomized trial (SMART; Lavori & Dawson, 2004;
Murphy, 2005). A SMART contains multiple stages of
randomization, with each stage corresponding to a key
decision point. In a SMART, if, when, and to whom a treat-
ment might be randomly assigned is allowed to depend
on a patient’s treatment and outcome history, leading to
a rich and flexible class of designs. In the past decade,
the use of SMARTs has increased dramatically; SMARTs
have been conducted in a range of disease and disorder
areas, including cancer (Kelleher et al., 2017; Thall, 2015;
Wang et al., 2012), behavioral sciences (Almirall et al., 2014;
Kidwell & Hyde, 2016), and mental health (Manschreck &
Boshes, 2007; Sinyor et al., 2010). For a comprehensive list
of SMARTs, see Bigirumurame et al. (2022).
Every SMART can be equivalently represented as ran-

domizing subjects at baseline among a set of fixed regimes
known as the trial’s “embedded regimes.” Primary anal-
yses in a SMART often focus on comparisons of the
embedded regimes against each other or a control (Lavori
& Dawson, 2004; Murphy, 2005). These comparisons are
often used for sizing a SMART (Artman et al., 2020;
Seewald et al., 2020). For example, Figure 1 shows a
two-stage SMART schema for behavioral interventions for

pain management in cancer patients with eight embed-
ded regimes (Kelleher et al., 2017; ClinicalTrials.gov, 2021).
Each embedded regime takes the form “give intervention
𝑎; if response, give 𝑏; if nonresponse, give 𝑐;” for exam-
ple, give pain coping skills training (PCST) Full initially;
if response, give maintenance; otherwise, give PCST-Plus.
We discuss this study further in Section 7.
Interim monitoring allows early stopping for efficacy

or futility, which can reduce cost and accelerate evalua-
tion of candidate treatments. Group sequential methods
allowing early stopping are well established for conven-
tional clinical trials (Jennison&Turnbull, 2000). However,
analogous methodology for SMARTs is limited. Wu et al.
(2021) propose an interim test for a difference in mean
outcome among embedded regimes in two-stage SMARTs.
However, their approach is based on the inverse probabil-
ityweighted estimator (IPWE),which does not incorporate
baseline and accruing patient information that could be
used to enhance efficiency (Zhang et al., 2013). Chao et al.
(2020) consider interim analysis for a small-𝑛, two-stage
SMART restricted to the specific situation in which the
same treatments are available at each stage and the goal
is to remove futile treatments.
We develop a class of interim analysis methods for

SMARTs based on an augmented inverse probability
weighted estimator (AIPWE) for the value of a regime that
increases statistical efficiency by using partial information
from individuals with incomplete regime trajectories.
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Our method applies to SMARTs with an arbitrary
number of stages and treatments, as well as those in which
the set of allowable treatments depends on a patient’s his-
tory. We present the statistical framework in Section 2. In
Section 3, we review the AIPWE for the value of a regime
when all participants have progressed through all stages.
We introduce the proposed Interim AIPWE in Section 4.
In Section 5, we discuss testing procedures, stopping
boundaries, and sample size formulas for interim analysis.
In Section 6, we evaluate the empirical performance of the
proposed procedure in a series of simulation experiments,
and we present a case study based on the cancer pain
management SMART in Section 7.

2 STATISTICAL FRAMEWORK

Consider a SMART with 𝐾 stages and a planned total
sample size of 𝑁. Each subject completing the trial gener-
ates a trajectory of the form (𝐗1, 𝐴1, 𝐗2, 𝐴2, … ,𝐗𝐾,𝐴𝐾, 𝑌),
where 𝐴𝑘 ∈ 𝑘, 𝑘 = 1,… , 𝐾, is the treatment assigned at
stage 𝑘;𝑘 is a finite set of treatment options at decision 𝑘;
𝐗1 ∈ ℝ𝑝1 comprises baseline subject variables; 𝐗𝑘 ∈ ℝ𝑝𝑘 ,
𝑘 = 2,… , 𝐾, comprises subject variables collected between
stages 𝑘 − 1 and 𝑘; and 𝑌 ∈ ℝ is an outcome measured at
the end of follow-up, coded so that higher values are bet-
ter. Let𝐗𝑘 = (𝐗1, … ,𝐗𝑘) and𝐀𝑘 = (𝐴1, … ,𝐴𝑘), and define
𝐇1 = 𝐗1 and 𝐇𝑘 = (𝐗𝑘,𝐀𝑘−1), 𝑘 ≥ 2, so that 𝐇𝑘 is the
information available at the time 𝐴𝑘 is assigned. Let𝑘 =

dom𝐇𝑘 and let 2𝑘 denote the power set of𝑘.We assume
there exists a set-valued function Ψ𝑘 ∶ 𝑘 → 2𝑘 so that
the set of allowable treatments for a subject with𝐇𝑘 = 𝐡𝑘
at stage 𝑘 isΨ𝑘(𝐡𝑘) ⊆ 𝑘 (Tsiatis et al., 2020; van der Laan
& Petersen, 2007).
In this setting, a treatment regime is a sequence of

decision rules, 𝐝 = (𝑑1, … , 𝑑𝐾), where 𝑑𝑘 ∶ 𝑘 → 𝑘 and
𝑑𝑘(𝐡𝑘) ∈ Ψ𝑘(𝐡𝑘) for all 𝐡𝑘 ∈ 𝑘, 𝑘 = 1,… , 𝐾. Let 𝑌∗(𝐚𝐾)
denote the potential outcome under treatment sequence
𝐚𝐾 = (𝑎1, … , 𝑎𝐾), and let 𝐗∗

𝑘
(𝐚𝑘−1) denote the potential

intermediate variables under sequence 𝐚𝑘−1 at stage 𝑘 ≥ 2.
Define 𝐗

∗

𝑘(𝐚𝑘−1) = {𝐗1, 𝐗
∗
2(𝑎1), … ,𝐗

∗
𝑘
(𝐚𝑘−1)},𝐇∗

𝑘
(𝐚𝑘−1) =

{𝐗
∗

𝑘(𝐚𝑘−1), 𝐚𝑘−1}, and 𝐇∗
1
(𝑎0) = 𝐇1. The potential covari-

ates and outcome for an individual receiving treatment
according to regime 𝐝 are

𝐗∗
𝑘
(𝐝) =

∑
𝐚𝑘−1∈1×⋯×𝑘−1

𝐗∗(𝐚𝑘−1)

𝑘−1∏
𝑘=1

𝐼
[
𝑎𝑘 = 𝑑𝑘

{
𝐇∗

𝑘
(𝐚𝑘−1)

}]
, 𝑘 = 2, … , 𝐾,

𝑌∗(𝐝) =
∑

𝐚𝐾∈1×⋯×𝐾

𝑌∗(𝐚𝐾)

𝐾∏
𝑘=1

𝐼
[
𝑎𝑘 = 𝑑𝑘

{
𝐇∗

𝑘
(𝐚𝑘−1)

}]
.

The mean outcome, or value, for a regime 𝐝 is 𝑉(𝐝) =
𝔼{𝑌∗(𝐝)}.
In a SMART, primary analyses often focus on infer-

ence on 𝑉(𝐝) for regimes 𝐝 that are embedded in
the trial. Let 𝜋𝑘(𝑎𝑘, 𝐡𝑘) = 𝑃(𝐴𝑘 = 𝑎𝑘|𝐇𝑘 = 𝐡𝑘) be the
probability (propensity) of being randomized to treat-
ment 𝑎𝑘 ∈ Ψ𝑘(𝐡𝑘) at stage 𝑘 for a subject with his-
tory 𝐡𝑘. It is well known that 𝑉(𝐝) is identifiable
under the following conditions: positivity (𝜋𝑘(𝑎𝑘, 𝐡𝑘) >
0 for all 𝐡𝑘 ∈ 𝑘 and 𝑎𝑘 ∈ Ψ𝑘(𝐡𝑘)); sequential random-
ization ({𝐗1, 𝐗∗2(𝑎1), … ,𝐗

∗
𝑘
(𝐚𝑘−1), 𝑌

∗(𝐚𝐾)}𝐚𝐾∈1×⋯×𝐾
⟂⟂

𝐴𝑘|𝐇𝑘 at each stage 𝑘 for all 𝐚𝐾 , where⟂⟂ denotes indepen-
dence), which holds by design in a SMART; consistency,
𝑌 = 𝑌∗(𝐀𝐾) and 𝐇𝑘 = 𝐇∗

𝑘
(𝐀𝑘−1); and no interference

among subjects (Tsiatis et al., 2020). Hereafter, we assume
that these conditions hold.
Take 𝐝𝓁, 𝓁 = 1,… , 𝐿, to be the regimes embedded in the

SMART and 𝐝0 a possible control, for example, a treatment
or regime representing the standard of care. For definite-
ness, we consider two null hypotheses that address the
efficacy of the embedded regimes:

Homogeneity 𝐻0𝐻 ∶ 𝑉(𝐝1) = ⋯ = 𝑉(𝐝𝐿), (1)

Superiority 𝐻0𝐷 ∶ 𝑉(𝐝
𝓁) − 𝑉(𝐝0) ≤ 𝛿 for all 𝓁 = 1,… , 𝐿.

(2)

These hypotheses are analogous to those used in multi-
arm, multi-stage and platform trials (Jennison and Turn-
bull, 2000, Chap. 16; Wason, 2019). The control value
𝑉(𝐝0)may be fixed or estimated from an additional control
arm. The methods presented here apply to futility testing
with minor modification. Hypotheses that stop the trial
for either a single regime or all regimes falling below an
efficacy boundary are possible in this construction.

3 AIPWE FOR COMPLETE DATA

We briefly review the AIPWE of the value in
the setting where one observes 𝑁 complete inde-
pendent and identically distributed trajectories
{𝐗1,𝑖, 𝐴1,𝑖 , … , 𝐗𝐾,𝑖, 𝐴𝐾,𝑖, 𝑌𝑖}

𝑁
𝑖=1
. For any regime 𝐝, define

𝐝,𝑘 = ∏𝑘

𝑗=1
𝐼{𝐴𝑗 = 𝑑𝑗(𝐇𝑗)} to be an indicator that treat-

ment is consistent with 𝐝 through the first 𝑘 decisions,
and let 𝐝,0 = 1. For each 𝑘 = 1,… , 𝐾, let 𝜋𝑘(𝑎𝑘, 𝐡𝑘; 𝜽𝑘)
be a posited model for 𝜋𝑘(𝑎𝑘, 𝐡𝑘) indexed by 𝜽𝑘 ∈ ΘΘΘ𝑘.
Although the propensities are known in a SMART,
estimating them based on correctly specified models
can increase efficiency (Tsiatis, 2006b). Let 𝜽𝑘,𝑁 be an
estimator of 𝜽𝑘. The form of the AIPWE for𝑉(𝐝) is (Zhang
et al., 2013; Tsiatis et al., 2020, Section 6.4.4)
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𝑉A(𝐝) = 𝑁−1
𝑁∑
𝑖=1

[
𝑌𝑖 𝐝,𝐾,𝑖∏𝐾

𝑘=1
𝜋𝑘(𝐴𝑘,𝑖,𝐇𝑘,𝑖; 𝜽𝑘,𝑁)

+

𝐾∑
𝑘=1

⎧⎪⎨⎪⎩
𝐝,𝑘−1,𝑖∏𝑘−1

𝑣=1
𝜋𝑣(𝐴𝑣,𝑖,𝐇𝑣,𝑖; 𝜽𝑣,𝑁)

−
𝐝,𝑘,𝑖∏𝑘

𝑣=1
𝜋𝑣(𝐴𝑣,𝑖,𝐇𝑣,𝑖; 𝜽𝑣,𝑁)

⎫⎪⎬⎪⎭ 𝐿𝑘(𝐗𝑘𝑖)
⎤⎥⎥⎥⎦ , (3)

where 𝐿𝑘(𝐱𝑘) is an arbitrary function of 𝐱𝑘 and we define∏0

𝑣=1
𝜋𝑣(𝐴𝑣,𝑖,𝐇𝑣,𝑖; 𝜽𝑣,𝑁) = 1. Setting 𝐿𝑘(𝐱𝑘) ≡ 0 yields

the IPWE that forms the basis for the approach of Wu
et al. (2021); the IPWE uses only the observed outcomes
and no covariate information. It can be an inefficient
estimator for 𝑉(𝐝) when there are covariates that are
correlated with the outcome. The efficient choice for 𝐿𝑘
is 𝐿𝐝

𝑘
(𝐱𝑘) = 𝐸{𝑌∗(𝐝)|𝐗𝑘 = 𝐱𝑘,𝐀𝑘−1 = 𝐝𝑘−1(𝐱𝑘−1)}, where

𝐝𝑘(𝐱𝑘) is defined as follows: 𝑑1(𝐱1) = 𝑑1(𝐱1), 𝐝2(𝐱2) =
[𝑑1(𝐱1), 𝑑2{𝐱2, 𝑑1(𝐱1)}], … , 𝐝𝑘(𝐱𝑘) = [𝑑1(𝐱1), 𝑑2{𝐱2,

𝑑1(𝐱1)}, … , 𝑑𝑘{𝐱𝑘, 𝐝𝑘−1(𝐱𝑘−1)}], 𝑘 = 1,… , 𝐾; and 𝐀𝑘 =

𝐝𝑘(𝐗𝑘) is the event that all treatments received are
consistent with 𝐝 through decision 𝑘.
In practice, the functions 𝐿𝐝

𝑘
(𝐱𝑘), 𝑘 = 1,… , 𝐾 are

unknown, but they can be estimated using 𝑄-learning as
follows (Tsiatis et al., 2020, Section 6.4.2). Posit a model
𝑄𝐾(𝐱𝐾, 𝐚𝐾; 𝜷𝐾) for 𝑄𝐾(𝐱𝐾, 𝐚𝐾) = 𝔼(𝑌|𝐗𝐾 = 𝐱,𝐀𝐾 = 𝐚𝐾)

indexed by 𝜷𝐾 ∈ 𝐾 ⊆ ℝ𝑃𝑄𝐾 . Obtain an estimator 𝜷𝐾,𝑁
for 𝜷𝐾 by an appropriate regression method, for example,
least squares, and take 𝐿̂𝐝𝐾(𝐱𝐾) = 𝑄𝐾{𝐱𝐾, 𝐝𝐾(𝐱𝐾); 𝜷𝐾,𝑁}.
Define the pseudo-outcomes at stage 𝑘 = 𝐾 − 1,… , 1

as 𝑄𝐝
𝑘+1

[𝐗𝑘+1,𝑖, {𝐀𝑘,𝑖, 𝑑𝑘+1(𝐗𝑘+1,𝑖, 𝐀𝑘,𝑖)}; 𝜷𝑘+1,𝑁], the
predicted outcome using the fitted model when individ-
uals receive consistent treatments at stage 𝑘 + 1. Then,
obtain 𝜷𝐝

𝑘,𝑁
by a suitable regression method using the

pseudo-outcomes as the response, for example, for least
squares,

𝜷𝐝
𝑘,𝑁

= argmin
𝜷𝑘

𝑛∑
𝑖=1

{
𝑄𝐝
𝑘+1

[
𝐗𝑘+1,𝑖,

{
𝐀𝑘,𝑖,

𝑑𝑘+1(𝐗𝑘+1,𝑖, 𝐀𝑘,𝑖)
}
; 𝜷𝑘+1,𝑁

]
− 𝑄𝐝

𝑘

(
𝐗𝑘,𝐀𝑘; 𝜷𝑘

)}2

,

and 𝐿̂𝐝
𝑘
(𝐱𝑘) = 𝑄𝐝

𝑘
{𝐱𝑘, 𝐝𝑘(𝐱𝑘); 𝜷𝑘,𝑁}. For individuals

with only one treatment available at stages 𝑘 to 𝑘′,
we use pseudo-outcome 𝑄𝐝

𝑘′+1
[𝐗𝑘′+1,𝑖 , {𝐀𝑘′,𝑖 , 𝑑𝑘′+1

(𝐗𝑘′+1,𝑖 , 𝐀𝑘′,𝑖)}; 𝜷𝑘′+1,𝑁] for 𝑘′ < 𝐾 − 1 and 𝑌 for
𝑘′ = 𝐾 − 1 (Tsiatis et al., 2020, Section 6.4.2).
The estimator (3) is doubly robust, that is, it consistently

estimates𝑉(𝐝) if either of the sets ofmodels𝜋𝑘(𝑎𝑘, 𝐡𝑘; 𝜽𝑘),

𝑘 = 1,… , 𝐾, or𝑄𝐾(𝐱𝐾, 𝐚𝐾; 𝜷𝐾),𝑄𝐝𝑘(𝐱𝑘, 𝐚𝑘; 𝜷𝑘), 𝑘 = 1,… , 𝐾,
is correctly specified (Han, 2014; Luedtke et al., 2018;
Tsiatis et al., 2020; Vermeulen & Vansteelandt, 2015). Con-
sistency is guaranteed in SMARTs because propensities
are known.

4 INTERIM AIPW ESTIMATOR

The interim AIPW estimator (IAIPWE) uses partial infor-
mation from individuals who have yet to complete follow-
up at the times interim analyses are conducted; the
IAIPWE includes the IPWE and AIPWE for complete data
as special cases. Assume that the enrollment process is
independent of all subject information and that the time
between stages is fixed, as is the case for many SMARTs.
Let 𝑆 be the number of planned analyses. Let Γ(𝑡) ∈ {0, 1}

be an indicator that a participant has enrolled in the
SMART at study time 𝑡, where 𝑡 = 0 denotes the start of the
study (in calendar time). In addition, let 𝜅(𝑡) ∈ {0, 1, … , 𝐾}

be the furthest stage reached by a participant at time 𝑡with
Γ(𝑡) = 0 ⇒ 𝜅(𝑡) = 0; and let Δ(𝑡) ∈ {0, 1} be an indicator
that a participant has completed follow-up, that is, they
have completed all 𝐾 stages and have had their outcome
ascertained. Thus, the number of participants enrolled at
time 𝑡 is 𝑛(𝑡) =

∑𝑁

𝑖=1
Γ𝑖(𝑡). We evaluate either the fixed set

of 𝐿 embedded regimes {𝐝𝓁}𝐿
𝓁=1

for null hypothesis (1), or
the embedded regimes along with a control regime, 𝐝0, for
null hypothesis (2). The control regime may be estimated
from a separate trial arm or may have a predetermined
fixed value. We use superscript 𝓁 to indicate that a quan-
tity is being computed for regime 𝐝𝓁, for example, 𝜷𝓁

𝑘,𝑁
is

shorthand for 𝜷𝐝𝓁
𝑘,𝑁

.
We define the “full data” under regime 𝐝𝓁 as 𝑊∗

𝐝𝓁
=

{𝑌∗(𝐝𝓁), 𝐗
∗

𝐾(𝐝
𝓁)}, which comprises the potential outcome

𝑌∗(𝐝𝓁) and associated potential covariates 𝐗
∗

𝐾(𝐝
𝓁) =

{𝐗1, 𝐗
∗
2(𝐝

𝓁), … ,𝐗∗
𝑘
(𝐝𝓁)}. The observed data for an

individual at time 𝑡 are therefore 𝑊(𝑡) = Γ(𝑡)[1,

𝜅(𝑡), 𝐗1, 𝐴1, 𝐼{𝜅(𝑡) > 1}𝐗2, 𝐼{𝜅(𝑡) > 1}𝐴2, … , 𝐼{𝜅(𝑡) >

𝐾 − 1}𝐗𝐾, 𝐼{𝜅(𝑡) > 𝐾 − 1}𝐴𝐾, Δ(𝑡), Δ(𝑡)𝑌]. For a given
time 𝑡 and regime 𝐝𝓁, let 𝓁(𝑡) ∈ {1, … , 2𝐾,∞} be a
discrete coarsening variable, which is defined as follows:

𝓁(𝑡) = 1 if 𝐴1 ≠ 𝑑𝓁
1
(𝐇1)

𝓁(𝑡) = 2 if 𝐝𝓁,1 = 1, 𝜅(𝑡) = 1

𝓁(𝑡) = 3 if 𝐝𝓁,1 = 1, 𝜅(𝑡) = 2,𝐴2 ≠ 𝑑𝓁2 (𝐇2)

𝓁(𝑡) = 4 if 𝐝𝓁,2 = 1, 𝜅(𝑡) = 2

⋮

𝓁(𝑡) = 2𝑘 − 1 if 𝐝𝓁,𝑘−1 = 1, 𝜅(𝑡) = 𝑘,𝐴𝑘 ≠ 𝑑𝓁
𝑘
(𝐇𝑘)

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13854, W
iley O

nline Library on [06/10/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



MANSCHOT et al. 5

𝓁(𝑡) = 2𝑘 if 𝐝𝓁,𝑘 = 1, 𝜅(𝑡) = 𝑘

⋮

𝓁(𝑡) = 2𝐾 if 𝐝𝓁,𝐾 = 1, 𝜅(𝑡) = 𝐾, Δ(𝑡) ≠ 1

𝓁(𝑡) = ∞ if 𝐝𝓁,𝐾 = 1, 𝜅(𝑡) = 𝐾, Δ(𝑡) = 1.

Thus,𝓁(𝑡) = ∞ corresponds to a participant having com-
pleted follow-up and being consistent with 𝐝𝓁 for all
treatment decisions at time 𝑡. For 𝓁(𝑡) < ∞, ⌊𝓁(𝑡)∕2⌋
is the number of stages at which a participant is consis-
tent with 𝐝𝓁 at time 𝑡, and𝓁(𝑡) mod 2 encodes whether
the number of consistent stages is due to time-related cen-
soring, that is, not having yet completed the current stage,
or having been assigned a treatment that is inconsistent
with 𝐝𝓁. SeeWebAppendix A for an example of how𝓁(𝑡)

is determined.
The observed data 𝑊(𝑡) are a coarsened version of the

full data 𝑊∗
𝐝𝓁
. The coarsening is monotone in that the

full data coarsened to level 𝓁(𝑡) = 𝑟 are a many-to-one
function of the full data coarsened to level 𝓁(𝑡) = 𝑟 + 1

at time 𝑡. Moreover, the data are coarsened at random, as
𝑃{𝓁(𝑡) = 𝑟|𝑊∗

𝐝𝓁
} = 𝑃{𝓁(𝑡) = 𝑟|𝑊(𝑡)} (Tsiatis, 2006b,

Chap. 7; Zhang et al., 2013), which follows from the
consistency and sequential randomization assump-
tions in Section 2. Define the coarsening hazard function
𝜆𝓁𝑟 (𝑡) = 𝑃{𝓁(𝑡) = 𝑟|𝓁(𝑡) ≥ 𝑟,𝑊(𝑡)} to be the conditional
probability that an individual is coarsened to level 𝑟 given
that they are at risk of being coarsened. Because the data
are coarsened at random, 𝜆𝓁𝑟 (𝑡) is a function of the observed
data. Let the probability that an individual is coarsened
after 𝑟 be 𝐾𝓁𝑟 (𝑡) = 𝑃{𝓁(𝑡) > 𝑟|𝑊(𝑡)}, which is also a
function of the observed data. Let𝐾𝓁

𝑟,𝑛(𝑡)
(𝑡) be an estimator

of 𝐾𝓁𝑟 (𝑡). Let 𝜈𝑘(𝑡) = 𝑃{𝜅(𝑡) ≥ 𝑘|Γ(𝑡) = 1}, 𝑘 = 1,… , 𝐾;
𝜈𝐾+1(𝑡) = 𝑃{Δ(𝑡) = 1|Γ(𝑡) = 1}; and 𝑘(𝑟) map coarsening
level 𝑟 to corresponding decision 𝑘. We can express both
𝜆𝓁𝑟 (𝑡) and 𝐾𝓁𝑟 (𝑡) in terms of propensities 𝜋𝑘(𝐴𝑘,𝐇𝑘) and
𝜈𝑘(𝑡) for 𝑘 = 1,… , 𝐾 + 1. For 𝓁(𝑡) = 𝑟, 𝑟 odd, 𝜆𝓁𝑟 (𝑡) =
𝜋𝑘(𝑟)(𝐴𝑘(𝑟),𝐇𝑘(𝑟))

1−𝐶𝑑𝓁,𝑘(𝑟) {1 − 𝜋𝑘(𝐴𝑘(𝑟),𝐇𝑘(𝑟))}
𝐶𝑑𝓁,𝑘(𝑟) and

𝐾𝓁𝑟 (𝑡) = 𝜈𝑘(𝑟)(𝑡)𝜋𝑘(𝑟)(𝐴𝑘(𝑟),𝐇𝑘(𝑟))
𝐶𝑑𝓁,𝑘(𝑟) {1 − 𝜋𝑘(𝐴𝑘(𝑟),

𝐇𝑘(𝑟))}
1−𝐶𝑑𝓁,𝑘(𝑟)

∏𝑘(𝑟)−1

𝑣=1
𝜋𝑣(𝐴𝑣,𝐇𝑣). For 𝓁(𝑡) = 𝑟, 𝑟 even,

𝜆𝓁𝑟 (𝑡) = {𝜈𝑘(𝑟)(𝑡) − 𝜈𝑘(𝑟)+1(𝑡)}∕𝜈𝑘(𝑟)(𝑡) and 𝐾𝓁𝑟 (𝑡) = 𝜈𝑘(𝑟)+1

(𝑡)
∏𝑘(𝑟)

𝑣=1
𝜋𝑣(𝐴𝑣,𝐇𝑣). It is straightforward to posit models

for 𝜋𝑘(𝐴𝑘,𝐇𝑘) or 𝜈𝑘(𝑡) using logistic regression or simple
averages and estimate 𝜆𝓁𝑟 (𝑡) and 𝐾𝓁𝑟 (𝑡). The form of the
IAIPWE for regime 𝐝𝓁 at time 𝑡 is

𝑉𝓁
IA
(𝑡) = 𝑛(𝑡)−1

𝑁∑
𝑖=1

Γ𝑖(𝑡)
⎡⎢⎢⎣
𝐼
{𝓁

𝑖
(𝑡) = ∞

}
𝐾𝓁
2𝐾,𝑖,𝑛(𝑡)

(𝑡)
𝑌𝑖

+

2𝐾∑
𝑟=1

𝐼
{𝓁

𝑖
(𝑡) = 𝑟

}
− 𝜆𝓁

𝑟,𝑖
(𝑡)𝐼

{𝓁
𝑖
(𝑡) ≥ 𝑟

}
𝐾𝓁
𝑟,𝑖,𝑛(𝑡)

(𝑡)

𝐿𝓁
𝑘(𝑟)

(
𝐗𝑘(𝑟),𝑖

)]
, (4)

where 𝐿𝓁
𝑘(𝑟)

(𝐱𝑘(𝑟)) is an arbitrary function of 𝐱𝑘(𝑟). The esti-
mator is doubly robust and thus guaranteed to be consis-
tent in a SMART with a specified enrollment process. We
include a proof inWeb Appendix B. Similar to the AIPWE,
we estimate the efficient choice of unknown functions
𝐿𝓁
𝑘(𝑟)

(𝐱𝑘) = 𝔼{𝑌∗(𝐝)|𝐗𝑘 = 𝐱𝑘,𝐀𝑘−1 = 𝐝𝑘−1(𝐱𝑘−1)} using
𝑄-learning; however, because the IAIPWE uses individu-
als with incomplete treatment trajectories, the 𝑄-learning
procedure for 𝐿𝑘(𝑟)(𝐱𝑘(𝑟)) is more complicated. Posit a
model 𝑄𝓁𝐾{𝐱𝐾, 𝐚𝐾; 𝜷𝐾(𝑡)} for 𝑄𝐾(𝐱𝐾, 𝐚𝐾) = 𝔼(𝑌|𝐗𝐾 =
𝐱𝐾,𝐀𝐾 = 𝐚𝐾) indexed by 𝜷𝐾(𝑡) ∈ 𝐾 ⊆ ℝ

𝑃
𝑄𝓁
𝐾 . Construct

an estimator 𝜷𝐾 for 𝜷𝐾 by an appropriate regression
method, for example, least squares, using only individuals
who have completed all treatment stages, that is, Δ(𝑡) = 1,
and subsequently take 𝐿̂𝓁𝐾(𝐱𝐾) = 𝑄𝓁𝐾{𝐱𝐾, 𝐝𝐾(𝐱𝐾); 𝜷𝐾}.
Posit models 𝑄𝓁

𝑘(𝑟)
(𝐱𝑘(𝑟), 𝐚𝑘(𝑟); 𝜷𝑘(𝑟)) for 𝑄𝓁𝑘(𝑟)(𝐱𝑘(𝑟), 𝐚𝑘(𝑟)) =

𝔼
(
𝑄𝓁
𝑘(𝑟)+1

[
𝐗𝑘(𝑟)+1,

{
𝐀𝑘(𝑟), 𝑑𝑘(𝑟)+1(𝐗𝑘(𝑟)+1, 𝐀𝑘(𝑟))

}]|𝐗𝑘(𝑟) =
𝐱𝑘(𝑟), 𝐀𝑘(𝑟) = 𝐚𝑘(𝑟)

)
for 𝑘(𝑟) = 𝐾 − 1,… , 1. Estimating 𝜷𝑘(𝑟)

requires pseudo-outcomes, which may be missing when
using individuals who have been observed through stage
𝑘(𝑟) + 1, that is, 𝜅(𝑡) > 𝑘(𝑟), but have no observed out-
come 𝑌 or estimable pseudo-outcome from stages 𝑘(𝑟) + 2
or later. In such cases, we define the pseudo-outcomes for
estimating 𝜷𝑘(𝑟) as

𝑄̃𝓁
𝑘(𝑟)+1

(𝐱𝑘(𝑟)+1, 𝐚𝑘(𝑟)+1; 𝜷𝑘(𝑟)+1, … , 𝜷𝐾)

=
[
𝐼{|Ψ𝑘(𝑟)+1(𝐡𝑘(𝑟)+1)| ≠ 1}

+ 𝐼{𝜅(𝑡) = 𝑘(𝑟) + 1, Δ(𝑡) = 0, |Ψ𝑘(𝑟)+1(𝐡𝑘(𝑟)+1)| = 1}
]

𝑄𝓁
𝑘(𝑟)+1

(𝐱𝑘(𝑟)+1, 𝐚𝑘(𝑟)+1; 𝜷𝑘(𝑟)+1)

+ 𝐼{𝜅(𝑡) = 𝑘(𝑟) + 2, Δ(𝑡) = 0, |Ψ𝑘(𝑟)+1(𝐡𝑘(𝑟)+1)| = 1}

𝑄𝓁
𝑘(𝑟)+2

(𝐱𝑘(𝑟)+2, 𝐚𝑘(𝑟)+2; 𝜷𝑘(𝑟)+2)

+⋯+ 𝐼{Δ(𝑡) = 1, |Ψ𝑘(𝑟)+1(𝐡𝑘(𝑟)+1)| = 1}𝑌.

This approach uses individuals with incomplete infor-
mation to fit the 𝑄-functions for greater efficiency. When
all observed individuals have completed their regimes,
this strategy is equivalent to the pseudo-outcome method
outlined in Section 3. We obtain 𝜷𝓁

𝑘(𝑟)
by a suitable regres-

sion method, using 𝑄𝓁
𝑘(𝑟)+1

(𝐱𝑘(𝑟)+1, 𝐚𝑘(𝑟)+1; 𝜷𝑘(𝑟)+1) with
𝑄̃𝓁
𝑘(𝑟)+1

(𝐱𝑘(𝑟)+1, 𝐚𝑘(𝑟)+1; 𝜷𝑘(𝑟)+1, … , 𝜷𝐾) when necessary,
and 𝐿𝓁

𝑘(𝑟)
(𝐱𝑘(𝑟)) = 𝑄𝓁

𝑘(𝑟)
(𝐱𝑘(𝑟), 𝐚𝑘(𝑟); 𝜷𝑘(𝑟)).
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6 MANSCHOT et al.

To make clear the connection between the IAIPWE
and the (A)IPWE, we express 𝑉𝓁IA(𝑡) in (4) in an alter-
nate form. For definiteness, consider 𝐾 = 2 decisions
at fixed times, and let 𝜈2(𝑡) and 𝜈3(𝑡) be estimated
by 𝜈2,𝑛(𝑡)(𝑡) =

∑𝑁

𝑖=1
𝐼{𝜅𝑖(𝑡) = 2}∕

∑𝑁

𝑖=1
Γ𝑖(𝑡), and 𝜈3,𝑛(𝑡)(𝑡) =∑𝑁

𝑖=1
Δ𝑖(𝑡)∕

∑𝑁

𝑖=1
Γ𝑖(𝑡). It is shown inWebAppendix A that

in this case (4) is equivalent to

𝑉𝓁
IA
(𝑡) = 𝑛(𝑡)−1

𝑁∑
𝑖=1

Γ𝑖(𝑡)

(
Δ𝑖(𝑡)𝓁2,𝑖𝑌𝑖

𝜋1(𝐴1,𝑖,𝐇1,𝑖; 𝜽1,𝑛(𝑡))𝜋2(𝐴2,𝑖,𝐇2,𝑖; 𝜽2,𝑛(𝑡))𝜈3,𝑛(𝑡)(𝑡)

−

[
𝐼{𝐴1𝑖 = 𝑑𝓁1 (𝐇1𝑖)}𝐼{𝜅𝑖(𝑡) = 2}

𝜋1(𝐴1,𝑖,𝐇1,𝑖; 𝜽1,𝑛(𝑡))𝜈2,𝑛(𝑡)(𝑡)
− 1

]
𝐿𝓁1 (𝐗1𝑖)

−
𝐼{𝐴1𝑖 = 𝑑𝓁1 (𝐇1𝑖)}𝐼{𝜅𝑖(𝑡) = 2}

𝜋1(𝐴1,𝑖,𝐇1,𝑖; 𝜽1,𝑛(𝑡))𝜈2,𝑛(𝑡)(𝑡)[
𝐼{𝐴2𝑖 = 𝑑𝓁2 (𝐇2𝑖)}Δ𝑖(𝑡)𝜈2,𝑛(𝑡)(𝑡)

𝜋2(𝐴2,𝑖,𝐇2,𝑖; 𝜽2,𝑛(𝑡))𝜈3,𝑛(𝑡)(𝑡)
− 1

]
𝐿𝓁
2
(𝐗2𝑖)

)
.

(5)

If Γ𝑖(𝑡) = Δ𝑖(𝑡) = 1 for all 𝑖, so that 𝑛(𝑡) = 𝑁, as at the time
of the final analysis, (5) reduces to the AIPWE (3) with
𝐾 = 2. The augmentation terms in (4) use partial informa-
tion from participants who are enrolled at the time of an
interim analysis but who do not yet have complete follow-
up. In contrast, the IPWE (obtained by setting 𝐿𝓁

𝑘
(𝐗𝑘𝑖) ≡

0, 𝑘 = 1, 2, … , 𝐾) uses data only from those subjects who
are consistent with the regime under consideration at all
stages of the study and who have completed the trial. The
AIPWE (3) also uses information only from subjects who
have completed the trial, but it additionally uses a series
of regression models, one for each stage, to impute infor-
mation for subjects who are not consistent with the regime
under consideration starting from the stage at which their
treatment first deviates from the regime. The IAIPWE
(4) furthermore uses data from all subjects in fitting the
regression models in the AIPWE and thereby uses more
information and further improves efficiency.
As our goal is to use the IAIPWE for interim moni-

toring and analyses, we need to characterize its sampling
distribution. The following result shows that the IAIPWE
for the embedded regimes is asymptotically normal; we
use this result to construct tests and decision bound-
aries in subsequent sections. A proof is given in the Web
Appendix C.

Theorem 1. Let ̂(𝑡) = {𝑉0IA(𝑡), 𝑉
1
IA(𝑡), … , 𝑉

𝐿
IA(𝑡)}

⊤ be the
stacked value estimators at time 𝑡 across all regimes, and

let 𝑛(𝑡)∕𝑁
𝑝
→ 𝑐, a constant. Under standard regularity con-

ditions stated in the Web Appendix C, 𝑁1∕2{̂(𝑡) − (𝑡)} 𝑑
→

 (𝟎, 𝚺) as𝑁 → ∞.

A consistent estimator 𝚺̂ of 𝚺 can be obtained using the
sandwich estimator or the bootstrap. Comparisons among
the 𝐿 + 1 regimes can be constructed using a contrast vec-
tor and are asymptotically normal via a simple Taylor series
argument (seeWeb Appendix C). When there is no control
regime, (𝑡) is indexed only by 𝓁 = 1,… , 𝐿.

5 INTERIM ANALYSIS FOR SMARTS

5.1 Hypothesis testing

For simplicity, consider 𝑆 = 2 planned analyses at study
times 𝑡1 (interim analysis) and 𝑡2 (final analysis). We
present the extension to an arbitrary 𝑆 inWeb Appendix D.
We discuss the interim analysis procedure in the context of
superiority; the procedure for homogeneity follows under
minor modifications.
Define the test statistics at analysis time 𝑡𝑠,

𝑍𝓁(𝑡𝑠) = {𝑉𝓁IA(𝑡𝑠) − 𝑉
0
IA(𝑡𝑠)}∕SE{𝑉

𝓁
IA(𝑡𝑠) − 𝑉

0
IA(𝑡𝑠)},

𝓁 = 1,… , 𝐿,

where 𝑉0
IA(𝑡𝑠) can be estimated as the sample average of

response 𝑌𝑖 for individuals receiving 𝐝0 and the denomi-
nator is obtained from the approximate normal sampling
distribution for ̂(𝑡𝑠) in Theorem 1. If regime means are
compared to a fixed control value 𝑉0, replace 𝑉0IA(𝑡𝑠) by
𝑉0. At each analysis 𝑠, we propose to stop the trial if any
test statistic exceeds a stopping boundary 𝑐𝑠(𝛼), which will
be discussed in the next section. Heuristically, the testing
procedure at significance level𝛼 across all 𝑡𝑠 is as follows:

(1) At time 𝑡1, compute 𝑍𝓁(𝑡1), 𝓁 = 1,… , 𝐿. If 𝑍𝓁(𝑡1) >
𝑐𝛼(1), for any 𝓁, reject𝐻0 and terminate the trial; else,
continue the trial.

(2) At time 𝑡2, compute 𝑍𝓁(𝑡2), 𝓁 = 1,… , 𝐿. If 𝑍𝓁(𝑡2) >
𝑐𝛼(2) for any 𝓁. reject 𝐻0; otherwise, fail to reject 𝐻0.
Terminate the trial.

A trialwithmore than twoplanned analysis repeats step (1)
for all interim analyses, terminating when a test statistic is
greater than the corresponding stopping boundary.
This formulation can be adapted to any set of hypotheses

involving functions of the values of regimes of inter-
est. For example, testing the homogeneity hypothesis (1)
would involve calculation of chi-square test statistics based
on the distributions of ̂(𝑡𝑠), 𝑠 = 1, 2, analogous to Wu
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MANSCHOT et al. 7

et al. (2021), which would be compared to corresponding
stopping boundaries.

5.2 Stopping boundaries

We discuss boundary selection and sample size calcula-
tions for superiority null hypothesis (2), which involves
multiple comparisons of embedded regimes against a con-
trol regime. We seek to determine stopping boundaries
𝑐𝛼(𝑠), 𝑠 = 1, 2, that control the familywise error rate across
all planned analyses at level 𝛼; that is,

𝑃{Reject𝐻0𝐷|𝐻0𝐷 is true} = 𝑃

[
𝐿⋃
𝓁=1

2⋃
𝑠=1

{𝑍𝓁(𝑡𝑠) ≥ 𝑐𝛼(𝑠)}

||||||𝐻0𝐷

]
≤ 𝛼. (6)

Common approaches to calculating boundaries that satisfy
(6) include the Pocock boundary, which takes 𝑐𝛼(𝑠) = 𝑐𝛼
for some 𝑐𝛼 for 𝑠 = 1, 2 (Pocock, 1977); theO’Brien-Fleming
(OBF) boundary {𝑐𝛼(1), 𝑐𝛼(2)} = {𝜄𝑐𝛼, 𝑐𝛼} (O’Brien & Flem-
ing, 1979), where 𝜄 is the reciprocal of the square root of
the statistical information (e.g., inverse of the variance of
the numerator of the associated𝑍-score) available at analy-
sis 𝑠 divided by the statistical information available at final
analysis 𝑆; or the broader 𝛼-spending approach (DeMets
& Lan, 1994). If the information proportion between the
interim and final analysis varies by regimes, practitioners
may elect to use a regime-dependent 𝜄𝓁 in the spirit of OBF.
For a detailed discussion about if and when each bound-
ary type might be preferable, see Jennison and Turnbull
(2000).
Define the stacked vector of sequential test statistics

𝐙 = {𝑍1(𝑡1), … , 𝑍
𝐿(𝑡1), 𝑍

1(𝑡2), … , 𝑍
𝐿(𝑡2)}

⊤. (7)

Boundaries that satisfy (6) can be obtained via the joint
cumulative distribution function of 𝐙 under null hypoth-
esis (2).

Theorem 2. Under the null hypothesis (2) and 𝑛(𝑡)∕𝑁
𝑝
→𝑐,

a constant, the test statistics 𝐙 satisfy 𝐙
𝑑
→ (𝟎, 𝚺𝐻0)

where 𝚺𝐻0 is a block diagonal matrix with diagonal
entries corr{𝑍1(𝑡𝑠), … , 𝑍

𝐿(𝑡𝑠)} and off-diagonal entries
𝜄−1corr{𝑍1(𝑡𝑠), … , 𝑍

𝐿(𝑡𝑠)}, 𝜄 is the reciprocal of the infor-
mation proportion between interim analysis 𝑠 and final
analysis 𝑆.

A proof of Theorem 2 and discussion on calculating 𝜄 and
the correlation between the 𝑍-statistics are provided in the
Web Appendix E. In practice, computation of 𝑐𝛼 can be
done numerically. Either the correlation of the test statis-
tics or the variance of all components of the estimator
must be specified to compute the stopping boundaries. We

approximate 𝑐𝛼 through integration of the corresponding
multivariate normal distribution of 𝐙. Under the informa-
tion monitoring approach (Tsiatis, 2006a), the correlation
between sequential test statistics for the same regime sim-
plifies to the square root of the ratio of the information
available between the two time points. Because of incom-
plete information for participants enrolled but who have
not yet completed the trial, this quantity does not simplify
to the square root of the ratio of the interim sample size to
the final planned sample size. The off-diagonal elements
of the covariance matrix, 𝚺𝐻0 , may be non-zero for over-
lapping embedded regimes. For these reasons, it may be
difficult to specify 𝚺𝐻0 . An alternative is to specify genera-
tive models for the observed data, that is, a mean model
and distributions for associated covariates, propensities,
and enrollment at time of interim analyses, and estimate
the correlation structure empirically via simulation.
The choice of the models and estimators for 𝜆𝓁𝑟 (𝑡),

𝐾𝓁𝑟 (𝑡), and 𝐿𝓁𝑘(𝑟)(𝐱𝑘(𝑟)) impact the correlation structure of
𝚺𝐻0 and can result in correlated value estimators across
nonoverlapping embedded regimes; that is, regimes that
involve different stage 1 treatment options. If cohorts enroll
sequentially and interim analyses are planned such that all
enrollment occurs within each cohort (i.e., Δ𝑖(𝑡𝑠) = Γ𝑖(𝑡𝑠)

for all 𝑖 for 𝑠 = 1, 2), then the test statistics at each analy-
sis use the standard AIPWE (3) computed using data from
all participants who have entered the trial. Therefore, stop-
ping boundaries for trialswith such enrollment procedures
are subsumed by this method.

5.3 Power and sample size

With stopping boundaries 𝐜𝛼 = {𝑐𝛼(1)𝟏𝐿, 𝑐𝛼(2)𝟏𝐿} ∈ ℝ2𝐿

for 𝟏𝐿 an L-vector of ones, and specified alternative 𝐻𝐴,
the power of the testing procedure is

𝑃{Reject𝐻0𝐷|𝐻𝐴 is true} = 𝑃

[
𝐿⋃
𝓁=1

2⋃
𝑠=1

{𝑍𝓁(𝑡𝑠) ≥ 𝑐𝓁𝛼(𝑠)}

||||||𝐻𝐴

]
= 1 − 𝛽.

The power of the test under 𝐻𝐴, where 𝐙 has expected
value 𝝁𝐴 = 𝝁𝐴{𝑛(𝑡1), 𝑛(𝑡2)} and covariance 𝚺𝐻𝐴 , is
approximately

1 − ∫ ⋯∫
𝐷

1

(2𝜋)𝐿det(𝚺𝐻𝐴)
−1∕2

exp{−
1

2
(𝐙 − 𝝁𝐴)

⊤𝚺−1𝐻𝐴
(𝐙 − 𝝁𝐴)}𝑑𝑧

1(1)𝑑𝑧2(1)⋯𝑑𝑧𝐿(2)

(8)

for domain 𝐷 = (−∞, 𝑐𝛼(1)] × (−∞, 𝑐𝛼(1)] ×⋯ ×

(−∞, 𝑐𝛼(2)]. As the mean under the alternative, 𝝁𝐴,
is a function of the sample size, so too is (8). Thus, to
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8 MANSCHOT et al.

achieve nominal power 100(1 − 𝛽)%, one can set (8) equal
to 1 − 𝛽 and solve for the sample size. Although our results
hold for a general alternative hypothesis 𝐻𝐴, we proceed
under the simplifying assumption that 𝚺𝐻0 = 𝚺𝐻𝐴 , that
is, that the covariance is the same under 𝐻0𝐷 and 𝐻𝐴.
In our implementation, we use a grid search for a fixed
enrollment process and ratio between interim sample
sizes to find the total planned sample size 𝑁 that attains
the desired power. When the augmentation terms are zero,
the analyst must specify the correlation among estimators
of the regimes, the information proportion for analyses,
the alternative mean outcomes, and the variance of the
mean outcomes. When augmentation terms are nonzero,
all generative models must be specified to determine the
sample size and corresponding power.
Specification of all generative models required for the

IAIPWE at the design stage may be challenging. Accord-
ingly, a practical strategy would be to power the trial
and thus determine 𝑁 conservatively based on the IPWE
but base interim analyses on the more efficient IAIPWE,
which can lead to increased power and smaller expected
sample size.
As previously stated, the covariance structure, 𝚺𝐻0 ,

depends on the enrollment process through the informa-
tion proportion at the time of analysis. Thus, one can
compute themaximumpower for a fixed sample size under
differing enrollment processes using (8) adjusted for the
differences in the information proportion at the time of
the analysis. One can also consider other objectives such
as minimizing the time to decision or the cost of the trial
using these same procedures.

5.4 Test for homogeneity

Exploiting the previous developments, we formu-
late a sequential testing procedure using 𝐙(𝑡𝑠) =

{𝑍1(𝑡𝑠), … , 𝑍
𝐿(𝑡𝑠)} for the global null hypothesis (1),

that is, that all regimes are equal. We derive a 𝜒2-statistic
using Theorem 2. Let 𝐂 = [𝐈𝐿−1| − 𝟏𝐿−1] where 𝐈𝑞 is the
(𝑞 × 𝑞) identity matrix and 𝟏𝑞 a 𝑞-vector of ones. Let
𝚺𝐻0(𝑡𝑠) be the (𝐿 × 𝐿) submatrix of 𝚺𝐻0 corresponding
to the covariance of 𝐙(𝑡𝑠), and let 𝝁𝐴(𝑡𝑠) be the (𝐿 × 1)
vector corresponding to the alternative mean at time 𝑡𝑠.
The sequential Wald-type test statistic at time 𝑡𝑠 is

𝑇𝜒2,𝜐(𝑡𝑠) = 𝐙⊤(𝑡𝑠)𝐂
⊤{𝐂𝚺𝐻0(𝑡𝑠)𝐂

⊤}−𝐂𝐙(𝑡𝑠), (9)

which follows a 𝜒2 distribution with degrees of freedom
𝜐 = rank{𝐂𝚺𝐻0(𝑡𝑠)𝐂

⊤} and noncentrality parameter 𝜙𝐴 =
𝝁𝐴(𝑡𝑠)

⊤{𝐂𝚺𝐻0(𝑡𝑠)𝐂
⊤}−𝝁𝐴(𝑡𝑠). Following the methods in

previous sections, the stopping boundaries now come
from a 𝜒2 distribution. Using simulation, we estimate the

stopping boundaries using the correlation structure of 𝐙
such that {𝑐𝛼(1), 𝑐𝛼(2)} satisfy the type I error rate. The
Pocock boundaries still satisfy 𝑐𝛼(𝑠) = 𝑐𝛼; however, the
OBF type boundaries satisfy {𝑐𝛼(1), 𝑐𝛼(2)} = {𝜄2𝑐𝛼, 𝑐𝛼}with
𝜄 as defined in Section 5.2.
After calculating the stopping boundaries, we use the

distribution of 𝐙 for relevant power and sample size calcu-
lations.We estimate the total planned sample size required
to attain power 1 − 𝛽 numerically; seeWeb Appendix F for
details on implementation.

6 SIMULATION EXPERIMENTS

We report on extensive simulations to evaluate the perfor-
mance of the IAIPWE. In our simulation settings, IPWE
corresponds to the proposed method of Wu et al. (2021).
We present results here based on 1000 Monte Carlo repli-
cations for the schema shown in Figure 1. We evaluate the
type I error rates, power, and expected sample sizes for
fixed interim analysis times for the null hypothesis𝐻0𝐷 in
(2) and alternative hypothesis 𝐻𝐴𝐷 ∶ 𝑉(𝐝

𝓁) − 𝑉(𝐝0) > 𝛿

for at least one 𝓁. We also investigate the benefit of lever-
aging partial information through the IAIPWE over an
IPWE in trials with sample size determined by the IPWE.
Finally, we consider how the proportion of enrolled indi-
viduals having reached different stages of the trial at an
interim analysis affects performance. We consider both
Pocock and OBF boundaries. We use correctly specified
𝑄-functions for augmented estimators. Web Appendix G
includes results for additional schema and settings; the
results are qualitatively similar.
We generate data with a dependence between his-

tory and outcomes and explore the impact of the
enrollment process on interim analyses. We generate
two baseline covariates 𝑋1,1 ∼ Normal(47.5, 64) and
𝑋1,2 ∼ Bernoulli(0.5) as well as an interim outcome
𝑋2,1 ∼ Normal(1.25𝑋1,1, 9). We simulate the response sta-
tus 𝑅2 ∼ Bernoulli{expit(0.01𝑋1,1 + 0.02𝑋1,2 − 0.008𝑋2,1)}

where expit(𝑢) = 𝑒𝑢∕(1 + 𝑒𝑢). Individuals at stage one and
responders at stage two are randomized with equal prob-
ability to feasible treatments. The outcome is normally
distributed with variance 100 and mean

𝜇𝑆2(𝐗2, 𝐀2) = 𝐼{𝐴1 = 0}
{
𝛽0 + 𝛽1𝑋1,1 + 𝛽2𝑋1,2 + 𝛽3𝑅2𝑋2,1

+ 𝛽4(1 − 𝑅2)𝑋2,1 + 𝑅2𝐴2

(
𝛽5 + 𝛽6𝑋1,1 + 𝛽7𝑋1,2 + 𝛽8𝑋2,1

)
+ (1 − 𝑅2)𝐴2

(
𝛽9 + 𝛽10𝑋1,1 + 𝛽11𝑋1,2 + 𝛽12𝑋2,1

)}
+ 𝐼{𝐴1 = 0}

{
𝛽13 + 𝛽14𝑋1,1 + 𝛽15𝑋1,2 + 𝛽16𝑅2𝑋2,1

+ 𝛽17(1 − 𝑅2)𝑋2,1 + 𝑅2𝐴2

(
𝛽18 + 𝛽19𝑋1,1 + 𝛽20𝑋1,2 + 𝛽21𝑋2,1

)
+ (1 − 𝑅2)𝐴2

(
𝛽22 + 𝛽23𝑋1,1 + 𝛽24𝑋1,2 + 𝛽25𝑋2,1

)}
.
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MANSCHOT et al. 9

In the first scenario, we perform an interim analysis at day
500, and enrollment times are drawn uniformly between
0 and 1000 days with follow-up times every 100 days.
We define three value patterns (VPs): (VP1), all embed-
ded regimes have value 47.5; (VP2), regimes 𝓁 = 1,… , 8

have values (49.5, 49.5, 49.5, 49.5, 47.5, 47.5, 47.5, 47.5);
and (VP3), regimes 𝓁 = 1,… , 8 have values (50.5, 49.0,
49.0, 47.5, 47.5, 47.5, 47.5, 47.5). In each case, 𝜷 is chosen
to achieve these VPs. We use the sample size determined
to achieve power 80% under a specified VP and estimator.
This allows us to investigate the performance of the
estimators for different alternatives. In 𝐻0𝐷 and 𝐻𝐴𝐷 ,
𝑉(𝐝0) is a fixed control value equal to 47.5 and 𝛿 = 0.
Table 1 summarizes the total planned sample size to

achieve power 80% under a specified alternative (VP2 for
VP1 and VP2, and VP3 for VP3), the proportion of early
rejections of null (2), the proportion of total rejections
of null (2), the expected sample size, and the expected
stopping time. Results are given for both the total sam-
ple size to achieve the desired power for each individual
estimator (a) and for the total sample size for the IPWE
to achieve the desired power (b). The slight differences
among the total planned sample size in (a) and (b) are
due to Monte Carlo error. All estimators achieve nominal
power and type I error rate. The IAIPWE requires a smaller
total planned sample size to achieve nominal power. The
IAIPWE also exhibits the highest early rejection rate under
true alternatives demonstrating the efficiency gain from
the augmentation terms and therefore lower expected sam-
ple sizes and earlier expected stopping times. The AIPWE
slightly underperforms relative to the IPWE due to the
overestimation of variance using the sandwich matrix for
small 𝑛(𝑡1). It is well known that the performance of the
sandwich matrix can deteriorate for small samples. As
such, alternative estimation of the covariance matrix, such
as using the empirical bootstrap, can be used. The IAIPWE
is less affected by overestimation of the variance than the
AIPWE. When the total sample size is selected based on
the IPWE and an augmented estimator is used, the type
I error rate is controlled and the study achieves a higher
power.
Table 2 summarizes estimation performance at the

interim and final analyses, where a mean square error
(MSE) greater than one implies that the indicated estima-
tor is more efficient than the IPWE. The estimators are
all consistent as expected. Both the AIPWE and IAIPWE
are more efficient than the IPWE at both analyses, and the
IAIPWE is more efficient than the AIPWE. At the interim
analysis, the standard errors for the IPWE underestimate
the sampling variation inmost cases, whereas the standard
errors for the AIPWE overestimate the sampling variation.
The IAIPWE consistently estimates the sampling variation
with the exception of regime 6 at the interim analysis.

In the second scenario, we investigate how different
enrollment processes affect the proportion of early rejec-
tions for hypothesis (2) with 𝑆 = 2 analyses. To vary the
rate of enrollment, we select in which of four time periods
([0,500], [501,600], [601,700], and [701,1000]) an individ-
ual enrolls using a multinomial distribution. Within each,
individuals enroll uniformly. Results for the Pocock stop-
ping boundaries under (VP2) are given in Table 3. The
sample sizes are determined to achieve 80% power under
(VP2), and the interim analysis is conducted on day 700.
Both the total planned and expected sample sizes are lower
for the IAIPWE than the IPWE or AIPWE. The proportion
of early rejections is higher when more individuals have
progressed further through the study due to the increased
information available at the time of analysis. All methods
attain the desired power, and the IAIPWE achieves earlier
expected stopping times and lower expected sample sizes
than the IPWE and AIPWE.
In Web Appendix G, we present results for two addi-

tional, common designs: the schema in Figure 1 with a
control arm and a schema in which responders are not
rerandomized. The additional simulations demonstrate
that the IAIPWE performs well even under misspecifica-
tion of the 𝑄-functions. In small samples, the IAIPWE
variance may be overestimated, resulting in the esti-
mated proportion of information at interim analyses being
inflated. TheOBF boundariesmay be conservative in these
cases. The IAIPWE performs well with multiple interim
analyses and for the 𝜒2 testing procedure for𝐻0𝐻 .

7 CASE STUDY: CANCER PAIN
MANAGEMENT SMART

Wepresent a case study based on a recently completed trial
evaluating behavioral interventions for pain management
in breast cancer patients (Kelleher et al., 2017; ClinicalTri-
als.gov, 2021). A schematic for the trial is shown in Figure 1.
Initially, patients are randomized with equal probabil-
ity to one of two PCST interventions: five sessions with
a licensed therapist (PCST-Full) or one 60-min session
(PCST-Brief) with a licensed therapist. After 8 weeks (end
of stage one), participants who achieve a 30% reduction in
pain from baseline are deemed responders and random-
ized with equal probability to maintenance therapy or no
further intervention. Nonresponders who received PCST-
Full are randomized with equal probability to either two
full sessions (PCST-Plus) or maintenance. Nonresponders
who received PCST-Brief are randomized with equal prob-
ability to PCST-Full or maintenance. The eight embedded
regimes are given in Figure 1. Follow-up occurs 8 weeks
after administration of stage two intervention and again
6 months later. Here, we take the outcome of interest to
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10 MANSCHOT et al.

TABLE 1 For the schema in Figure 1, interim analysis performance results for testing hypothesis (2) against𝐻𝐴𝐷 with a fixed control
value using Pocock and O’Brien-Fleming (OBF) boundaries. VP indicates the true value pattern. Method indicates the estimator used. The
total planned sample size 𝑁 is determined by either each method (a) or by the inverse probability weighted estimator (IPWE) (b). Total
planned sample sizes are determined to maintain a nominal type I error rate of 𝛼 = 0.05 and achieve a power of 80% under the respective
value patterns, using alternative (VP2) to determine the sample size for the null (VP1). Early reject and Total reject are the rejection rates at
the first analysis and for the overall procedure, respectively. 𝔼(SS) is the expected sample size, that is, the average number of individuals
enrolled in the trial when the trial is completed. 𝔼(Stop) is the expected stopping time, that is, the average number of days that the trial ran.
Monte Carlo standard deviations are given in parentheses.

(a)𝑵 based onMethod (b)𝑵 based on IPWE
VP Method 𝑵 Early reject Total reject 𝔼(SS) 𝔼(Stop) 𝑵 Early reject Total reject 𝔼(SS) 𝔼(Stop)
1 IPWE 1049 0.076 1049 (0) 1199 (1) 1051 0.059 1051 (0) 1199 (1)
1 AIPWE 758 0.042 758 (0) 1199 (1) 1051 0.049 1051 (0) 1199 (1)
2 IPWE 1049 0.795 1049 (0) 1199 (1) 1051 0.781 1051 (0) 1199 (1)
2 AIPWE 758 0.814 758 (0) 1199 (1) 1051 0.908 1051 (0) 1199 (1)
3 IPWE 873 0.833 873 (0) 1199 (1) 873 0.833 873 (0) 1199 (1)
3 AIPWE 586 0.801 586 (0) 1198 (2) 873 0.953 873 (0) 1199 (1)
Pocock
1 IPWE 1212 0.040 0.072 1188 (119) 1171 (137) 1213 0.041 0.071 1188 (120) 1171 (138)
1 AIPWE 872 0.024 0.042 861 (67) 1182 (107) 1213 0.030 0.043 1195 (103) 1178 (119)
1 IAIPWE 869 0.032 0.049 855 (77) 1177 (123) 1213 0.037 0.059 1191 (112) 1174 (130)
2 IPWE 1212 0.321 0.799 1017 (283) 975 (327) 1213 0.299 0.797 1032 (277) 990 (320)
2 AIPWE 872 0.256 0.800 760 (191) 1020 (305) 1213 0.339 0.912 1008 (286) 962 (331)
2 IAIPWE 869 0.322 0.801 729 (203) 974 (327) 1213 0.399 0.915 972 (296) 920 (343)
3 IPWE 987 0.297 0.835 841 (225) 984 (323) 987 0.297 0.835 841 (225) 984 (323)
3 AIPWE 663 0.236 0.825 585 (140) 1034 (297) 987 0.364 0.950 808 (237) 945 (337)
3 IAIPWE 660 0.290 0.822 565 (149) 996 (317) 987 0.434 0.953 774 (244) 896 (347)
O’Brien-Fleming
1 IPWE 1052 0.000 0.071 1052 (0) 1199 (1) 1051 0.000 0.059 1051 (0) 1199 (1)
1 AIPWE 758 0.000 0.042 758 (0) 1199 (1) 1051 0.000 0.050 1051 (0) 1199 (1)
1 IAIPWE 756 0.000 0.043 756 (0) 1199 (1) 1051 0.000 0.050 1051 (0) 1199 (1)
2 IPWE 1052 0.008 0.795 1048 (47) 1194 (62) 1051 0.006 0.781 1048 (40) 1195 (54)
2 AIPWE 758 0.002 0.813 757 (17) 1197 (31) 1051 0.005 0.908 1048 (37) 1196 (49)
2 IAIPWE 756 0.014 0.811 751 (44) 1189 (82) 1051 0.013 0.908 1044 (59) 1190 (79)
3 IPWE 873 0.012 0.833 868 (48) 1191 (76) 873 0.012 0.833 868 (48) 1191 (76)
3 AIPWE 585 0.003 0.801 584 (16) 1196 (38) 873 0.004 0.954 871 (28) 1196 (44)
3 IAIPWE 586 0.013 0.802 582 (34) 1189 (79) 873 0.021 0.954 864 (28) 1184 (100)

Abbreviations: IPWE inverse probability weighted estimator; AIPWE, augmented inverse probability weighted estimator; IAIPWE, interim augmented inverse
probability weighted estimator.

be percent reduction in pain from baseline at the final
6-month assessment and the primary analysis to be the
evaluation of the eight embedded regimes via the null
hypothesis𝐻0𝐷 in (2) as described below.
Because the data from the trial are not yet published,

we simulate the trial based on the protocol. We con-
sider five baseline covariates: height 𝑋1,1, weight 𝑋1,2,
presence/absence of comorbidities 𝑋1,3, use of pain medi-
cation𝑋1,4, and whether or not the participant is receiving
chemotherapy 𝑋1,5. We observe the response status 𝑅2,
percent reduction in pain 𝑋2,0, and degree of adherence
𝑋2,1 at the first follow-up at the end of stage one. Partic-

ipants enroll uniformly over 1000 days, the end of stage
one occurs 8 weeks after enrollment, and the outcome 𝑌
is ascertained 18 weeks after the end of stage one and thus
6 months after enrollment. The distributions of covariates
and outcomes are given in Web Appendix H. We take𝑁 =

284 to match the sample size of Kelleher et al. (2017).
An interim analysis is planned for day 500 and a final

analysis at the trial conclusion, a maximum of 1182 days.
We test the null hypothesis (2) against the alternative that
any regime achieves greater than a 22.5% reduction in pain
(fixed control value); see Web Appendix H. We consider
both Pocock and OBF boundaries, for which, to achieve
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MANSCHOT et al. 11

TABLE 2 For the schema in Figure 1, interim analysis performance results for testing hypothesis (2) against𝐻𝐴𝐷 with a fixed control
value under Pocock Boundaries under (VP2) and sample size 𝑁 based on the method. MC mean is the Monte Carlo mean of the estimates,
MC SD is the Monte Carlo standard deviation of estimates, ASE is the Monte Carlo mean of the standard errors, and MSE ratio is the ratio of
the Monte Carlo mean square error for the inverse probability weighted estimator (IPWE) divided by that of the indicated estimator for the
tree estimates at the interim analysis (a) and final analysis (b) for 𝐵 = 1000 simulations. The true values under (VP2) for regimes (1, … , 8) are
(49.5, 49.5, 49.5, 49.5, 47.5, 47.5, 47.5, 47.5).

(a) Interim analysis (b) Final analysis
Method Regime MCmean MC SD ASE MSE ratio MCmean MC SD ASE MSE ratio
IPWE 1 49.47 1.52 1.44 1.00 49.50 0.80 0.79 1.00
IPWE 2 49.52 1.51 1.44 1.00 49.52 0.84 0.79 1.00
IPWE 3 49.48 1.47 1.44 1.00 49.48 0.78 0.79 1.00
IPWE 4 49.53 1.48 1.44 1.00 49.51 0.82 0.79 1.00
IPWE 5 47.51 1.47 1.43 1.00 47.51 0.82 0.79 1.00
IPWE 6 47.55 1.43 1.44 1.00 47.55 0.78 0.79 1.00
IPWE 7 47.48 1.48 1.44 1.00 47.49 0.80 0.79 1.00
IPWE 8 47.52 1.47 1.44 1.00 47.53 0.76 0.79 1.00
AIPWE 1 49.47 1.43 1.48 1.14 49.48 0.76 0.77 1.11
AIPWE 2 49.50 1.42 1.47 1.13 49.51 0.76 0.76 1.22
AIPWE 3 49.49 1.39 1.46 1.13 49.47 0.75 0.77 1.06
AIPWE 4 49.52 1.40 1.48 1.12 49.50 0.75 0.77 1.21
AIPWE 5 47.50 1.39 1.46 1.12 47.49 0.77 0.76 1.12
AIPWE 6 47.53 1.33 1.45 1.16 47.53 0.75 0.76 1.08
AIPWE 7 47.42 1.45 1.45 1.04 47.46 0.78 0.76 1.05
AIPWE 8 47.44 1.41 1.46 1.07 47.51 0.72 0.77 1.13
IAIPWE 1 49.47 1.37 1.38 1.24 49.48 0.76 0.77 1.10
IAIPWE 2 49.50 1.37 1.37 1.21 49.51 0.76 0.77 1.21
IAIPWE 3 49.50 1.33 1.37 1.23 49.47 0.76 0.77 1.05
IAIPWE 4 49.53 1.35 1.38 1.20 49.50 0.75 0.77 1.21
IAIPWE 5 47.51 1.34 1.37 1.20 47.49 0.77 0.77 1.13
IAIPWE 6 47.54 1.27 1.35 1.26 47.53 0.75 0.76 1.08
IAIPWE 7 47.43 1.40 1.36 1.12 47.46 0.79 0.76 1.05
IAIPWE 8 47.46 1.36 1.37 1.16 47.51 0.72 0.77 1.12

Abbreviations: IPWE inverse probability weighted estimator; AIPWE, augmented inverse probability weighted estimator; IAIPWE, interim augmented inverse
probability weighted estimator.

a type I error of 𝛼 = 0.05 using our IAIPWE procedure,
𝑐𝛼=0.05= (2.66, 2.66) and (4.20, 2.43), respectively. For the
AIPWE and IPWE, the Pocock and OBF boundaries are
= (2.66, 2.66) and (4.30, 2.44), respectively. In this setting,
the correlation structure for 𝐙 is similar for all estimators.
Therefore, the Pocock boundaries are the same even with
the difference of available information at the interimanaly-
sis. As a result, the Pocock boundaries illustrate in partwhy
we expectmore early rejections under a true alternative for
the IAIPWE than the other estimators. By construction,
the different OBF boundaries demonstrate the impact of
the increased information available using the IAIPWE at
the interim analysis.
The interim analysis occurs at 500 days after the trial

enrollment begins, at which point 51.4% of the total
planned sample size 𝑁 has been enrolled, 46.8% of the

𝑁 planned participants have progressed to the second
decision, and 34.9%have completed the trial. Figure 2 sum-
marizes the estimated values for each regime at the time
of analysis, corresponding 𝑍-statistic. Exact numbers are
recorded in a tabular format in Web Appendix I. Regime
1, which starts with PCST-Full, triggers early stopping
based on the test statistic exceeding the OBF boundary.
Regimes 1 and 3 trigger early stopping based on test statis-
tics exceeding the Pocock boundary. The standard errors
are smaller than those obtained using the IPWEorAIPWE,
which are included in the Web Appendix I. The IPWE
and AIPWE trigger early stopping with regimes exceed-
ing the Pocock boundary, but fail to trigger early stopping
under the OBF boundary. The decision to stop the trial
early reduces the sample size from the total possible 284
subjects to 146 and the length of the study by 96 weeks.
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12 MANSCHOT et al.

TABLE 3 For the schema in Figure 1, interim analysis performance results for testing hypothesis (2) against𝐻𝐴𝐷 with a fixed control
value using Pocock boundaries under varying enrollments. The interim analysis is conducted on day 700. The percentages 𝑝1, 𝑝2, and 𝑝3 are
the expected percentage of individuals to have completed the trial, made it to only stage two, and to have made it to only stage one,
respectively. Method indicates the estimator used. The total planned sample size 𝑁 is determined by either each method. Total planned
sample sizes are determined to maintain a nominal type I error rate of 𝛼 = 0.05 and achieve a power of 80% under (VP2). Early reject and
Total reject are the rejection rates at the first analysis and for the overall procedure, respectively. 𝔼(SS) is the expected sample size, that is, the
average number of individuals enrolled in the trial when the trial is completed. 𝔼(Stop) is the expected stopping time, that is, the average
number of days that the trial ran. Monte Carlo standard deviations are given in parentheses.

𝒑𝟏 𝒑𝟐 𝒑𝟑 Method 𝑵 Early reject Final reject 𝔼(SS) 𝔼(Stop)
50 10 10 IPWE 1179 0.472 0.802 1012 (177) 964 (249)
50 10 10 AIPWE 844 0.423 0.787 737 (125) 988 (247)
50 10 10 IAIPWE 839 0.472 0.792 720 (126) 963 (249)
40 20 10 IPWE 1190 0.392 0.826 1050 (174) 1003 (243)
40 20 10 AIPWE 856 0.367 0.811 762 (124) 1016 (241)
40 20 10 IAIPWE 851 0.436 0.814 740 (127) 981 (247)
30 30 10 IPWE 1216 0.312 0.811 1102 (170) 1043 (231)
30 30 10 AIPWE 874 0.247 0.799 809 (113) 1076 (215)
30 30 10 IAIPWE 868 0.353 0.802 776 (125) 1023 (239)
40 10 20 IPWE 1194 0.382 0.800 1057 (174) 1009 (243)
40 10 20 AIPWE 859 0.340 0.782 772 (122) 1029 (236)
40 10 20 IAIPWE 855 0.408 0.793 751 (126) 995 (245)
30 20 20 IPWE 1215 0.329 0.812 1095 (171) 1035 (235)
30 20 20 AIPWE 874 0.257 0.806 807 (115) 1071 (218)
30 20 20 IAIPWE 867 0.340 0.811 779 (123) 1029 (236)
30 10 30 IPWE 1213 0.302 0.798 1103 (167) 1048 (229)
30 10 30 AIPWE 873 0.271 0.800 802 (116) 1064 (222)
30 10 30 IAIPWE 870 0.332 0.812 784 (123) 1033 (235)

Abbreviations: IPWE inverse probability weighted estimator; AIPWE, augmented inverse probability weighted estimator; IAIPWE, interim augmented inverse
probability weighted estimator.

F IGURE 2 For the schema in Figure 1, interim analysis performance results for testing null hypothesis (2) against𝐻𝐴𝐷 with a fixed
control. Results include the Pocock boundaries (dashed), O’Brien-Fleming (OBF) boundaries (dotted), value estimates (circles) and 95%
confidence bounds, and test statistics (rhombus) at the interim (left) and final (right) analysis time for the behavioral pain management case
study data set using the interim augmented inverse probability weighted estimator (IAIPWE).
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MANSCHOT et al. 13

Early stopping means implementation of behavioral inter-
ventions for pain management in breast cancer patients,
potentially helping more individuals and avoiding less
efficacious regimes for those who otherwise would have
enrolled in the trial.

8 DISCUSSION

We proposed interim analysis methods for SMARTs that
gain efficiency by using partial information from partici-
pants who have not yet completed all stages of the study.
The approach yields a smaller expected sample size than
competing methods while preserving type I error and
power. Simulations demonstrate a potential for substantial
resource savings.
We have demonstrated the methodology in the case

of two-stage SMARTs with an interim analysis focused
on evaluation of efficacy. However, the methods extend
readily to studies with 𝐾 ≥ 2 decision points, multiple
interim looks, and general hypotheses including futility.
We have consider Pocock and OBF boundaries, though the
approach can be adapted to any monitoring method, such
as information-based monitoring (Tsiatis, 2006a) and the
use of 𝛼 spending functions (DeMets & Lan, 1994).
We have made the simplifying assumptions throughout

that: (i) the time between stages is fixed, which is the case
for many SMARTs; and (ii) the final outcome is observed
on all individuals by the end of the trial (so excluding the
possibility of drop out). The extension to random times
between stages is nontrivial. Simulations included in Web
Appendix G suggest that the IAIPWE (incorrectly assum-
ing fixed transition times) performs well when time per
stage varies with subject outcomes. Due to variability in
enrollment, an analysis at a predetermined time may have
a realized power slightly different from the nominal power
based on the number of individuals enrolled and their
realized trajectories at the time of analysis. In such cases,
planning the interim analysis based on available sample
size rather than a predetermined time may be preferred.
Extensions for additional levels of coarsening, such as
those due to drop out, attrition, or time-to-event outcomes
requires additional augmentation terms or changes to the
functions 𝜆𝓁𝑟 (𝑡), 𝐾𝓁𝑟 (𝑡), and 𝐿𝓁𝑘(𝑟)(𝐱𝑘(𝑟)). For a comprehen-
sive review of the considerations involved, see Chap. 8 of
Tsiatis et al. (2020). A modified multiple imputation strat-
egy may also be used for missing data following that of
Shortreed et al. (2014).
As demonstrated in our simulation experiments, the

sandwich covariance estimator can overestimate the vari-
ance of the values and lead to conservative stopping
boundaries when the number of parameters is close to
the sample size. Interim analyses typically have larger

sample sizes, so this issue is unlikely to occur in prac-
tice. The information proportion can be checked at each
interim analysis to verify the planned proportions against
the realized values. The IAIPWE stopping boundary and
sample size calculations also require the challenge of posit-
ing models. Although we have studied the performance of
the IAIPWE under these conditions to evaluate fully its
properties, we anticipate the trialists will prefer to power
a SMART based on the IPWE to avoid making the addi-
tional model assumptions. We advocate this approach in
practice as it can assuage concerns about misspecified
models while still benefiting from the efficiency gains of
the IAIPWE. If a trial does reach the final analysis, using
the AIPWE offers efficiency gains by effectively perform-
ing covariate adjustment. Here, the covariates to be used in
the 𝑄-functions should be specified before the trial begins.
The framework presented here forms the basis for addi-

tional methodology for interim monitoring for SMARTs
with random times between stages and specialized end-
points. The IAIPWE has potential use in adaptive tri-
als in which randomization probabilities, or even the
set of treatments, varies with accumulating information
(Jennison and Turnbull, 2000, Chap. 17; Wang & Yee,
2019). We will report on these developments in future
work.
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