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SUMMARY

Malaria is an infectious disease affecting a large population across the world, and interventions need to
be efficiently applied to reduce the burden of malaria. We develop a framework to help policy-makers
decide how to allocate limited resources in realtime for malaria control. We formalize a policy for the
resource allocation as a sequence of decisions, one per intervention decision, that map up-to-date disease
related information to a resource allocation. An optimal policy must control the spread of the disease
while being interpretable and viewed as equitable to stakeholders. We construct an interpretable class of
resource allocation policies that can accommodate allocation of resources residing in a continuous domain
and combine a hierarchical Bayesian spatiotemporal model for disease transmission with a policy-search
algorithm to estimate an optimal policy for resource allocation within the pre-specified class. The estimated
optimal policy under the proposed framework improves the cumulative long-term outcome compared with
naive approaches in both simulation experiments and application to malaria interventions in the Democratic
Republic of the Congo.
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1. INTRODUCTION

Malaria is a vector-borne infectious disease affecting a large population worldwide, especially in tropical
and subtropical regions. It is estimated that there were 216 million cases of malaria resulting in 445 000
deaths globally in 2016 (WHO, 2017), and thus it remains a major public health problem. Effective malaria
interventions have been developed, including insecticide-treated mosquito nets (ITNs) (Lengeler, 1998),
indoor residual spraying (IRS) (Pluess and others, 2010), and Artemisinin-based combination therapy
(ACT) (Eastman and Fidock, 2009). However, these interventions are too costly to be given to everyone
in need. The malaria research community has made great strides in mapping disease prevalence (Hay and
others, 2009; Kang and others, 2018), modeling its transmission (Bhadra and others, 2011; Griffin and
others, 2014, 2016), developing and testing effective interventions (Okell and others, 2014; Stuckey and
others, 2014; Walker and others, 2016), and implementing these interventions in practice. We proposed
to build on this work to develop a real-time recommendation engine (RE) for precision interventions to
help policy-makers decide how to best allocate limited resources.
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1024 Q. GUAN AND OTHERS

Efforts have been made to recommend optimal interventions to different areas to reduce malaria inci-
dence. Okell and others (2014) and Stuckey and others (2014) conducted cost-effectiveness analysis
of different combinations of interventions for malaria control and evaluated how they vary depending
on malaria transmission-related factors. However, they only evaluated the cost-effectiveness of several
pre-designed intervention combinations. Also, they did not provide individualized intervention recom-
mendations that are tailored to small areas or allow these recommendations change over time based on
accumulative information. Walker and others (2016) used a dynamic mathematical model to capture
the effect of interventions under different malaria transmission settings and recommended intervention
choices at national, provincial, and pixel level. They only recommended what interventions should be
implemented but did not specify the optimal amount of each intervention for each pixel. Also, they did
not allow for recommendations to update over time.

Our proposed RE can be formalized as a sequence of decision rules, one per stage of intervention, that
map current information to a resource allocation vector specifying the resources allocated to each unit
(such as a health zone). The optimal RE should optimize the expectation of some long-term cumulative
outcome, e.g., the average malaria prevalence over a given time horizon, and also account for the need
for interpretability and fairness. It is related to the idea of dynamic treatment regimes (DTR), which are
sequential decision rules of giving treatment recommendation to individual patient at each stage based on
up-to-date patient information (Murphy, 2003; Robins, 2004; Chakraborty and Moodie, 2013; Schulte and
others, 2014). However, there are unique challenges in the spatiotemporal resource allocation problem
that distinguish it from typical DTR problems and prevent the direct application of existing DTR methods.
First, methods for DTR typically assume that individuals to receive treatment are independent and a large
number of independent trajectories of the individuals are available in the observed data. In our allocation
problem, the districts or zones to receive resources are spatially dependent so that we have to treat them
as a single allocation objective over the spatial domain at each time point. As a result, there is only single
observation available at each time point without independent replications. Second, most of the existing
methods for DTR can only solve problems with discrete treatment space including only a small number
of treatment options. However, in our problem the allocation to each region is the proportion of residents
to be given a bednet, and there are many regions that we need to determine the allocation, so the action
space is continuous and high dimensional. Chen and others (2016), Laber and Zhao (2015), and Rich
and others (2016) dealt with continuous-valued treatments, but the samples in their methods are assumed
independent.

An optimal policy for spatiotemporal resource allocation (e.g., as found using dynamic programming)
is a massively complex mathematical function of many geographic and epidemiologic inputs, requiring
extensive computation due to the large number of spatial locations under consideration, and is essentially a
black box that generates no new knowledge. In contrast, we propose an approach that estimates the optimal
RE within an interpretable class of regimes and permits straightforward computation and is amenable to
visualization, scrutiny, and stakeholder input. We build a spatiotemporal model for the progression and
transmission of the disease and then draw posterior samples from the fitted system dynamic model to
simulate future prevalence for any RE. The mean outcome for each regime within a pre-specified class
of interpretable policies is estimated, and the optimal RE is maximizer over the class. The idea is related
to the policy-search method for DTR which models the mean outcome as a function of each regime and
chooses the maximizer as the optimal regime (Robins and others, 2008; Orellana and others, 2010; Zhang
and others, 2012; Zhao and others, 2012; Zhang and others, 2013; Zhao and others, 2015; Zhang and
others, 2018).

However, due to the challenges mentioned above, existing methods cannot be implemented directly
to the continuous resource allocation problem. Guan and others (2020) used policy-search with g-
computation to estimate optimal personalized recommendations for recall intervals for patients with
periodontal disease. They built a nonparametric Bayesian model for disease progression process, specified
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Spatiotemporal recommendation engine for malaria control 1025

a class of policies on a clinically interpretable risk score, and estimated the optimal policy within this
class. However, their observed data included a large number of patients with independent longitudinal
profiles, and their decision space was discrete involving only two treatment options. Laber and others
(2018) developed a spatiotemporal treatment allocation strategy to slow the spread of white nose syndrome
in bats. They used a statistical spatial gravity model to forecast the spread of the disease and developed
an algorithm to identify a subset of locations to receive treatment at each time point aiming to optimize
long-run control of the disease. While they solved a similar problem, their settings are simpler than what
we consider here. Their spatial gravity model is only used to predict the locations that might be affected
by the disease at future time points, whereas we need to predict the disease prevalence at each location
in the future. Also, they only decided whether or not to apply treatments at each location at each time
point so that the decision for each location is binary, whereas we aim to decide the amount of resources
to be assigned to each location so that the action space for each location is continuous. Because of these
differences, we build a more comprehensive spatiotemporal model to predict disease prevalence and define
a new class of policies that can accommodate a continuous action space while remaining interpretable.

Even though our proposed resource-allocation framework is sufficiently flexible to handle a continuous
and high-dimensional decision space, the methodology is designed specifically for the setting where the
data and interventions are defined annually at the district level. For applications with individual-level
data or finer-scale interventions, the proposed methodology cannot be applied directly. In these cases, the
spatiotemporal model and the class of policies would need to be redefined.

2. PROBLEM STATEMENT

Assume the spatial domain is divided into n health zones. For health zone l ∈ L = {1, . . . , n}, the
environmental covariates (Xl1, . . . , Xlp)

T are observed at baseline and remain constant over time. At each
time point t = 1, . . . , T , in health zone l, the malaria disease rate, Zlt , is estimated by the sample pro-
portion of individuals with malaria in the malaria field survey conducted at time t. Following Bhatt
and others (2015), we use Ylt = logit(Zlt) as the response. For settings with many health zone disease
rates near zero, a binomial, Poisson, or negative binomial model might be preferable. The intervention
resource allocated to health zone l at time point t is denoted Alt ∈ [0, 1]. In our analysis, Alt is the bed-
net coverage, i.e., the proportion of individuals sleeping under a bednet. The data available after time t
are Ht = {X,Y0,A1,Y1, . . . ,At ,Yt}, where X = (X1, . . . , Xp), Xk = (X1k , . . . , Xnk)

T for k = 1, . . . , p,
Yt = (Y1t , . . . , Ynt)

T and At = (A1t , . . . , Ant)
T represent the collection of covariates, disease rate, and

resource allocation, respectively for all health zones.
Let St = φt(Ht) ∈ R

q0 be a summary of information collected at time t, a resource allocation policy
π be a function from S = supp St to the action space A = [0, 1]n, and � be the class of policies under
consideration which we assume are parameterized by α ∈ R

K . Hence, the policy is determined by the
parameter vector α which maps the currently available information to a resource allocation recommenda-
tion π(St ; α). Define �(st) = �(φt(ht)) to be the set of possible resource allocation actions with realized
history information ht so that π(st ; α) ∈ �(st).

We formalize the optimal resource allocation policy using potential outcomes. Define Z�
t (at) to be the

potential disease rate at time t under the sequence of allocations at = {a1, . . . , at} up to time t. Define Z�
t (π)

to be the potential outcome at time t if the resources were allocated under the resource allocation policy π

up to time t. The loss value associated with a policy is defined as the expectation of a loss function of the
potential outcomes under the policy, such as the mean malaria prevalence over the next 5 years (assuming

resources are allocated once per year), L(π) = E

{( ∑n
l=1

∑T+5
t=T+1 Z�

lt(π)
)
/5n

}
. The optimal policy within

the pre-specified class is then defined as πopt = arg min
π∈�

L(π). In order to estimate the optimal policy

using the observed data, we make the following assumptions (Robins, 2004; Schulte and others, 2014):
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1026 Q. GUAN AND OTHERS

(i) sequential ignorability, {Z�
k(ak) : for all ak ∈ Ak}k≥1 ⊥⊥ At|Ht for t = 1, . . . , where Ak = A k is

the set of all possible resource allocation actions up to time k; (ii) consistency, Zt = Z�(At), where At is
the sequence of observed resource allocation actions up to visit t; (iii) positivity, let g(at|ht) denote the
conditional treatment density given realized history information ht , and then there exists ε > 0 so that
g(at|ht) ≥ ε for all at ∈ �(φt(ht)) and t = 1, 2, . . . . With these assumptions, the loss value function to
be optimized can be expressed using g-computation and the data-generating model, which is the malaria
transmission model given in Section 3.

3. BAYESIAN SPATIOTEMPORAL MODEL

We extend the hierarchical Bayesian spatiotemporal model proposed in Mugglin and others (2002) to
model the spread of the disease. We assume that

Ylt = ηlt + νlt , (3.1)

where νlt
iid∼ Normal(0, σ 2

e ) is measurement error and ηt = (η1t , ..., ηnt)
′ is a spatiotemporal process. Let

ml be the number of neighbors of zone l and Il be the index set of its neighbors. We assume at each time
t and each health zone l that

ηlt − ηlt−1 = c0 + b0Alt + (c1 + b1Alt)ηlt−1 + (c2 + b2Alt)
( 1

ml

∑
j∈Il

ηjt−1

)

+
p∑

k=1

β1kXkl +
p∑

k=1

β2kXklAlt + εlt , (3.2)

so that the progression of the disease rate depends on its previous disease rate, its neighbors’ previous
disease rate, environmental covariates, and the intervention level. The coefficients c0, b0, c1, b1, c2, b2

can be interpreted as the intercept, the main effect of resource allocation, the main effect of the previous
disease status, the interaction effect of resource allocation and the previous disease status, the main
effect of previous neighborhood disease status, the interaction effect of resource allocation, and previous
neighborhood disease status, respectively. The innovation process ε t = (ε1t , . . . , εnt)

T is modeled as a
Gaussian Markov random field that is independent in time and spatially correlated. Specifically,

ε t ∼ MVN {0, σ 2
s (M − ρG)−1}, (3.3)

where M is diagonal with diagonal elements m1, ..., mn; G is the adjacency matrix with gll = 0, glk = 1 if
zone k is a neighbor of zone l, and glk = 0 otherwise; σ 2

s is the variance parameter, and ρ ∈ (0, 1) controls
spatial dependence. An alternative to this model is the intrinsic model with ρ = 1 which would provide
some computational savings at the expense of model flexibility.

Equivalently, the spatiotemporal process model can be written in matrix form as the Gaussian first-order
autoregressive process:

ηt = Wtηt−1 + c0 + b0At +
p∑

k=1

β1kXk +
p∑

k=1

β2k(Xk ◦At) + ε t .
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Spatiotemporal recommendation engine for malaria control 1027

Spatiotemporal dependence is determined by the n × n propagator matrix Wt that depends on At and is
parameterized by c1, b1, c2, and b2 such that its (i, j) element is

wtij =

⎧⎪⎨
⎪⎩

(1 + c1) + b1Ait if j = i;

(c2 + b2Ait)/mi if j ∈ Ii, i.e., zone j is the neighbor of zone i;

0 otherwise.

The term c0 +b0At +∑p
k=1 β1kXk +∑p

k=1 β2k(Xk ◦At) varies depending on the resource allocationAt and
environmental covariates X to control the latent process ηt to switch among growth, recession, or stable
phases. The latent process is able to incorporate the interaction between the spatial and temporal correlation
through the propagator matrix Wt . Different levels of interventions will affect the environmental effects
on the disease rate and also how the disease spreads in space and time.

Here, we assume a first-order autoregressive model in time. For the motivating malaria analysis, this
should be sufficient because the time from exposure to manifestation is much less than the yearly time
step of the data. In other settings, higher-order autoregressive models can be fit to account for incubation
periods or other delayed effects.

4. RECOMMENDATION ENGINE

We use policy search to estimate an optimal resource allocation policy within a class of policies that are
interpretable to domain experts. We use a global utility function to parameterize the class of policies under
consideration. The global utility function UG(at , st ; α) summarizes the current available information st

via the parameter α and is a function of the allocation at . We consider the class of policies of the form
π(st ; α) = arg max

at

UG(at , st ; α) subject to some cost constraints, where U = {UG(at , st ; α)}α∈RK is a

class of global utility functions s.t. UG(at , st ; α) measures the “goodness” of allocation at in state st under
parameter α. The class U is chosen to capture salient features of the decision problem, for example,
cost, fairness, spread dynamics, and logistics. Thus, the resultant class of policies is interpretable and the
estimated optimal policy, say indexed by α̂opt, can be plugged into this utility function to identify features
driving optimal malaria control. In practice, the total available resources are limited by annual logistical
or budgetary constraints. For example, constraints are placed on the bednet distribution in each region,
0 ≤ alt ≤ 1, and on the total number of bednets distributed so that

∑n
l=1 altNlt ≤ C(

∑n
l=1 Nlt), where Nlt

is the population in health zone l at time t.
To construct the global utility function for each health zone l = 1, ..., n, we first define a priority score

that represents its priority level of receiving resources so that the zone with higher priority score should
be allocated more resources. The priority score is constructed based on all available data before resource
allocation at time t and depends on the policy parameter α, that is, plt(st , α). Then, we define a local utility
U (alt , plt(st , α)) as a function of alt that calculates the local utility for health zone l with priority plt(st , α)

can gain if alt resources are allocated to the zone. The utility function should be monotonically increasing
with the resource allocation since additional resources will bring additional benefits. The global utility
function is constructed using the total local utility aggregated over the whole spatial domain.

4.1. Priority score

The priority score for each zone l and time t is defined to depend on q user-specified risk factors {f1lt , . . . , fqlt}
constructed from currently available data St . There is great flexibility in constructing the risk factors. They
can include the standardized environmental covariates fklt = Xjl , such as temperature and precipitation,
or the zone’s current disease status fklt = Ylt , the gradient of disease status Ylt − Ylt−1, or even nonlinear
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1028 Q. GUAN AND OTHERS

Fig. 1. Linear (left) and quadratic (right) utility function U (a, p) as a function of resource allocation a for different
values of the priority scores, p. The linear utility function is U (a, p) = ap and the quadratic utility function is
U (a, p) = −p(a − 1)2 + p for 0 ≤ a ≤ 1.

summaries of the characteristics of the zone. The priority score is then defined as plt(st , α) = 1/{1 +
exp[−(f1ltα1 + ... + fqltαq)]} ∈ [0, 1], where (α1, ..., αq) determine the weights given to each risk factor in
the priority score.

4.2. Local utility function

Intuitively, a reasonable local utility function U (a, p) that depends on both the resource allocation and
the priority score should satisfy the following assumptions: (i) U (0, p) = 0 for all p, that is, the utility
is 0 if no resource is assigned; (ii) U (a, p) is increasing in a for all p, that is, more resources will
bring more benefits; (iii) U (a, p) is increasing in p for 0 ≤ a ≤ 1, that is, the same level of resources
assigned to the health zone with higher priority score will bring more benefits. This property assures the
health zone with higher priority score tend to receive more resources in order to maximize the overall
utility.

A natural and simple utility function satisfying the above properties is the linear utility function
Ulin(a, p) = ap. This utility function assumes that the individual utility increases linearly with resource
allocation, that is, an additional unit of resource will bring constant marginal utility that is set to be the
priority of the individual zone.

Equity or fairness is an important factor to consider when deciding the resource allocation in healthcare
(Daniels and others, 2000; Gibson and others, 2004). Fairness concerns dictate that everyone should have
the same right to the resources and the priority should be given to the zones with more severe situation
(Nord and others, 1999; Nord, 2015). Similar to the idea proposed in Nord and others (1999), a convex
utility function can accommodate some fairness concerns. One additional unit of resources will bring
more utility if the zone has been assigned less resources. In other words, the marginal utility value should
decrease with the resources allocation. So, the utility function that also satisfy the following additional
property can account for fairness: (iv) ∂2

∂a2 U (a, p) ≤ 0 for 0 ≤ a ≤ 1 and all p, that is, the marginal utility
value is decreasing when allocated resource is increasing. An example of the utility function that satisfies
all above properties is the quadratic utility function Uquad(a, p) = −p(a − 1)2 + p. Figure 1 illustrates the
two utility functions with different values of priority scores. Both utility functions increase with a, but
the gradient of the linear function in terms of a is constant while the gradient of the quadratic function is
decreasing.
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Spatiotemporal recommendation engine for malaria control 1029

4.3. Global utility function

The global utility is defined as the summation of all local utilities but also with a penalty on the differences
of resource allocations among neighborhood health zones:

UG(at , st ; α) =
∑

l

U (alt , plt(st , α)) − α0

∑
i∼j

(ait − ajt)
2,

where α0 ≥ 0, α = (α0, . . . , αq), and i ∼ j indicates that zone i and zone j are neighbors. The penalty
term with a positive weight can smooth the resource allocation and account for fairness. A large penalty
α0 encourages spatial clusters of zone to be given intense treatments which could be more effective than
scattered sites with intensive treatments.As the weight of the penalty term is to be optimized, this additional
term allows for a more flexible class of policies to be considered.

The RE suggests allocations that maximize the global utility subject to the resource constraints on the
total number of bednets distributed to the whole region:

π(st ; α) = arg max
at

UG(at , st ; α) such that
∑

l

altNlt/(
∑

l

Nlt) ≤ C and 0 ≤ alt ≤ 1. (4.4)

Other nuances in the resource allocation decision making can be easily taken into consideration by
adding more constraints to (4.4). For example, if it is agreed that allocating bednets to zones with malaria
prevalence < 1% is ill-advised, we can add a constraint that alt = 0 if zlt < 0.01.

5. POLICY SEARCH

The optimal priority score weights α minimizes an optimality criterion L(α), such as the estimated expected
cumulative (over space and time) malaria prevalence over the next 5 years. Therefore, although the policy
only gives the resource allocation of one time point, the policy optimizes long-term outcomes. Given the
posterior samples of the parameters in the Bayesian spatiotemporal model, the future malaria prevalence
can be simulated to construct an estimator of the expected cumulative prevalence over space and time
L̃(α). The plug-in estimator of the optimal weights is α̃opt = arg min

α
L̃(α). For numerical stability, we

replace L̃(α) with L̂(α) = L̃(α) + 0.0001
∑q

i=0 α2
i . Then α̂opt is defined as the minimizer of L̂(α).

Similar to the optimal allocation strategy estimation method in Laber and others (2018), we also draw
samples from the posterior distribution over the postulated system dynamic model and use simulation
to estimate the allocation strategy that optimizes long-term outcome. But different from the setting in
Laber and others (2018) where the decision space is a binary vector, the action space in our setting is a
high dimensional continuous space. We use a Kriging-based optimization method (Picheny and others,
2013), which achieves balance between exploration and exploitation, along with the simulation to estimate
α which minimizes L̂(α). At the first step, we evaluate the value for the initial 100 points of α from a
Latin hypercube design generated using “optimumLHS” function in the R package “LHS.” We do a linear
transformation of the initial design by setting the range of α1, . . . , αq ∈ [−5, 5] and α0 ∈ [0, 1]. The value
L̂k corresponding to each point αk in the design is estimated using Monte Carlo simulation given the
posterior samples of the parameters. By using a different posterior sample of the model parameters for
each simulated trajectory in the Monte Carlo simulation, trajectories are samples from the full posterior
predictive distribution of future prevalence and thus our policy accounts for both parametric and aleatoric
uncertainty. Using the initial training data {αk , L̂k}, a Gaussian process regression model is fit to predict
the value corresponding to a new α using kriging. The algorithm sequentially selects next weight α to
visit that optimizes the expected improvement (EI) defined in Jones and others (1998) and updates the
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1030 Q. GUAN AND OTHERS

Gaussian process model parameters at each iteration. We use the the R package “DiceOptim” (Roustant
and others, 2012) to implement the optimization procedure.

At each of the future years, if new data are available, the Bayesian spatiotemporal model can be refitted
and the posterior distribution of the parameters can be updated. The resource allocation decision for
the future years can be made by reoptimizing the priority score weights based on the updated posterior
samples.

Each posterior sample of the parameters and predicted malaria prevalence in the Markov chain Monte
Carlo (MCMC) procedure corresponds to an optimal α. We can quantify the uncertainty of α̂opt by applying
the optimization procedure for each posterior draw to get the posterior distribution for αopt.

6. SIMULATION

6.1. Generative model

For the simulation, we assume that there are n = 100 health zones that are arranged as a 10 × 10 square
grid with grid spacing 1 between adjacent sites and include only one environmental covariate Xl1 simulated
from the Gaussian process with mean zero and variance one, and correlation Cor(Xl1, Xj1) = exp(−dlj/2),
where dlj is the distance between the centroids of zone l and zone j. We simulate the baseline latent process
for the health zones from a Gaussian process such that η0 = (η10, . . . , ηn0)

T ∼ MVN (0, 0.52(M −0.9G)−1)

and the corresponding logit transformation of the disease rates are simulated from Yl0 ∼ N (ηl0, 0.012) for
l = 1, . . . , n. We simulate the disease spread for T = 5 years following the generative model such that
for l = 1, . . . , 100, t = 1, . . . , 5, ηlt = (0.9 − 0.1Alt)ηlt−1 + (0.1 − 0.1Alt)/ml

∑
j∈Nl

ηjt−1 + 0.2 − 0.7Alt +
0.12X1l − 0.1X1lAlt + εlt , where ε t ∼ MVN (0, 0.12(M − 0.9G)−1), and resource allocation is assumed
increasing over time (to mimic the real malaria data) such that Alt are simulated from N (0.1 ∗ t, 0.052)

and are truncated at 0 and 1. The disease rates for the 5 years are simulated from Zlt ∼ N (Ylt , 0.012) for
l = 1, . . . , n and t = 1, . . . , 5. We simulate 100 data sets using this generative model.

6.2. Policy estimation

We consider three risk factors in the policy: the environmental covariate f1lt = Xl1, logit of disease rate
at previous time point f2lt = Ylt−1, mean logit of disease rates of neighborhood zones at previous time
point f3lt = ∑

j∼l Yjt−1/ml . The priority score of zone l at time t is then 1/{1 + exp[−(α1Xl1 + α2Ylt−1 +
α3

∑
j∼l Yjt−1/ml)]}. We assume that the number of individuals in different health zones are the same

and give the constraint that 1
n

∑
l Alt ≤ C. We consider three scenarios with different values of resource

constraint level C = 0.2, 0.5, and 0.8.
We consider the following resource allocation policies for comparison:

1. Linear utility (Linear): our proposed policy with linear local utility function and a spatial penalty
term to smooth the resource allocation.

2. Quadratic utility (Quad): our proposed policy with quadratic local utility function and a spatial
penalty term to smooth the resource allocation.

3. Highest rate (Highest_rate): assign a bednet to each individual in the nC zones with highest disease
rates and no bednets to the remaining zones.

4. Even: assign the same percentage of bednets C to each healthzone.

For each simulated data set, we use all information simulated up to year T = 5 as the training data
to fit our proposed Bayesian spatiotemporal model using MCMC sampling with 5000 iterations. For the
first two policies, the optimality criterion L(α) for each α is estimated using Monte Carlo simulations
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Fig. 2. The improvement of the proposed policies with linear utility function or quadratic utility function compared
with “Highest_rate” policy (left) and “Even” policy (right) with different resource constraints C = 0.2, 0.5, and 0.8
when the model is correctly specified.

given the posterior samples. Sequential optimization is used to estimate the optimal policy that minimizes
the expected mean malaria prevalence in the future 5 years within the pre-specified class. The loss value
associated with estimated policy are approximated by 1000 Monte Carlo simulations given the true gen-
erative model. For the last two policies, there is no need to fit the model and no parameters to estimate.
We just use 1000 Monte Carlo simulations given the true generative model to approximate the expected
mean malaria prevalence in the future 5 years under the policy. The approximated loss values associated
with the four policies for ith simulated data set are denoted as Li

l , Li
q, Li

hr , Li
ev, respectively.

We use the two naive policies “Highest_rate” and “Even” as two baseline policies and show the
improvement of our proposed policies in terms of loss value compared with the baseline policy. For each
of the simulated data sets, we compute the improvement as (Li

hr −Li
l)/Li

hr , (L
i
ev −Li

l)/Li
ev and (Li

hr −Li
q)/Li

hr ,
(Li

ev − Li
q)/Li

ev. Figure 2 plots the sampling distribution of the improvement of our proposed policies with
different utility functions. Under this simulation setting, “Highest_rate” policy is preferred over “Even”
policy. But we can see our proposed policies have significant improvement compared with either of the
naive policies, especially when there are moderate level of total resources (C = 0.5). The policy with the
linear utility function works slightly better than the policy with quadratic utility function when the total
resource level is low (C = 0.2). This indicates more extreme resource allocation might improve the overall
benefits under this specific simulation setting.

Supplemental materials available at Biostatistics online include an additional simulation study assuming
the disease transmission model is misspecified to check the robustness of our method. From the simulation
results, we can see under different simulation settings, our proposed policies are significantly better than
naive policies and also consider fairness by allocating the resources more smoothly.

7. APPLICATION TO THE DRC DATA

We illustrate our method using data in the Democratic Republic of the Congo (DRC) primarily based
on Demographic Health Surveys (DHS). DHS are cross-sectional, population-based cluster household
surveys. In each survey, clusters are randomly chosen to be representative of the national population.
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Table 1. The posterior mean and 95% credible interval for parameters. The posterior mean
with “�” represents the corresponding 95% credible intervals that excludes zero

Response Mean 95% CI Mean 95% CI

Intercept (c0) −0.131� (−0.192, −0.070) σ 2
e 0.011� (0.010, 0.012)

ITN (b0) −0.302� (−0.366, −0.234) σ 2
2 0.142� (0.139, 0.146)

Temperature (β11) 0.033� (0.020, 0.045) ρ 0.999� (0.998, 0.999)
Precipitation (β12) 0.003 (−0.012, 0.018)
Temperature*ITN (β21) −0.097� (−0.125, −0.069)
Precipitation*ITN(β22) −0.053� (−0.088, −0.019)
Previous (1 + c1) 0.917� (0.902, 0.932)
Previous*ITN (b1) 0.096� (0.062, 0.129)
Prev_neighbor (c2) 0.040� (0.016, 0.065)
Prev_neighbor*ITN (b2) −0.092� (−0.145, −0.039)

Within each cluster, households are randomly selected to participate in the survey. Two DHS program
surveys—one in 2007 and another in 2014—were conducted to study malaria prevalence and treatment
allocations in DRC. In the survey, structured questionnaires are administered to selected households to
collect malaria-related information, such as their treatment status including bednet use. Also, dried blood
spots were collected to test the malaria status.

Bhatt and others (2015) made use of the data from the DHS program surveys and five additional non-
DHS program surveys and built a Bayesian hierarchical model to construct a malaria endemicity map
across Africa from 2000 to 2015 in terms of Plasmodium falciparum parasite rate (PfPR). Interventions
coverage levels from 2000 to 2015, including ITN, IRS, and ACT, are also estimated. We download the
surface data of PfPR and ITN for DRC from https://map.ox.ac.uk/country-profiles/#!/COD. In the surface
data, PfPR and ITN rate are estimated at a 5 km by 5 km resolution. Using the smoothed surfaces as data
may bias our parameter estimates, but they greatly expand the spatiotemporal coverage of our data which
is needed to build a disease progression model.

As malaria intervention resources are allocated in health zone level in DRC, we map the surface data of
PfPR (Ylt) and ITN coverage rate (Alt) to each of the 515 health zones in DRC by taking the average values
of the small cells lying in each health zone as the value of PfPR or ITN coverage rate in the corresponding
health zone. We make the assumption that the populations at each 5 km by 5 km cell within a health zone
are the same so that the mean rate of the cells can be used as the rate of the health zone. As there are
almost no ITN usage before 2007, we only use the mapped data from 2007 to 2015 to train the Bayesian
spatiotemporal model. In the model, we include two environmental covariates (X1 and X2): annual average
temperature and annual average precipitation. As the annual average temperature and annual average
precipitation are relatively stable in a certain area, we assume the annual average temperature and annual
average precipitation are constant over time in each health zone. We download the monthly worldwide
average temperature and precipitation data for 1970–2000 from http://worldclim.org/version2 and map
them to health zone level. We use the standardized mean annual average temperature and precipitation in
1970–2000 as the constant environment covariate values used in the model training and prediction.

The collected and processed data are fitted to the model in (3.1), (3.2), and (3.3). We use 5000 iterations
in Gibbs sampling and discard first burn-in 2000 samples to obtain 3000 posterior samples. Table 1
summarizes the posterior mean and 95% credible interval of the parameters in the model. Temperature,
previous disease status, and previous neighborhood disease status all have significant effects on the disease
spread and the intervention ITN can significantly decrease the disease rate. Environmental covariates and
previous disease status also have interaction effects with ITN on the disease progression.
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Fig. 3. Posterior distribution (5th, 25th, 50th, 75th, and 95th percentiles) of the weights αopt for risk factors and
the spatial penalty term when using linear utility function (left) or quadratic utility function (right). The risk factors
include temperature (standardized), precipitation (standardized), current disease rate (logit), and current neighborhood
disease rate (logit).

We consider four risk factors in the priority score in the policy: the standardized annual average
temperature (f1lt = Xl1) and the standardized annual average precipitation (f2lt = Xl2,), logit of disease
rate at previous time point f3lt = Ylt−1, and mean logit of disease rate of neighborhood zones at previous
time point f4lt = (1/ml)

∑
j∼l Yjt−1. We evaluate the policies with either the linear local utility function or

the quadratic local utility function and use the resource constraint level C = 0.5.
We randomly draw 100 posterior samples of the parameters and estimate the optimal policy in terms of

αopt corresponding to each posterior draw to get the posterior distribution of αopt. Unlike typical MCMC
sampling which suffers from autocorrelation, the samples of αopt should be independent draws from
the posterior and so fewer samples are needed for these parameters than are needed in typical MCMC
sampling. Figure 3 plots the posterior distribution of αopt when using either the linear utility function or the
quadratic utility function. The posterior mean weights for all risk factors are positive, which suggests the
priority of being allocated resources for each health zone tends to be positively correlated with temperature,
precipitation, current disease status, and current neighborhood disease status. For both utility functions,
temperature and current disease rate of the health zone seem to be most important factors in determining
the risk score and priority. The posterior distribution of weight for the spatial penalty term concentrates
more towards zero when using the quadratic utility function compared with using the linear utility function.
This suggests that the spatial penalty term does help to better allocate the resources in terms of smoothness
and efficiency when the linear utility function is used but does little to help when the quadratic utility
function is used as the quadratic utility function is able to smooth the resource allocation inherently.

We also estimate one optimal policy averaging over the uncertainty of the parameters. The estimated
optimal policy with the linear local utility function is with the priority score

Plt = 1/{1 + exp[−(2.1Xl1 + 1.3Xl2 + 3.1Ylt−1 + 0.77
∑
j∼l

Yjt−1/ml)]}

and the weight for the spatial penalty α0 = 0.06. The estimated optimal policy with the quadratic local
utility function is with the priority score

Plt = 1/{1 + exp[−(3.5Xl1 + 1.1Xl2 + 3.3Ylt−1 + 0.23
∑
j∼l

Yjt−1)/ml]}

and the weight for the spatial penalty α0 = 0.03. The estimated optimal weights suggest that health zones
with higher temperature, more precipitation, higher disease rate in the zone, and neighborhood zones tend
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Fig. 4. The resource allocation next year using the estimated optimal policies with either the linear local utility
function (left) or the quadratic local utility function (middle), or using “Highest_rate” policy (right).
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Fig. 5. Posterior distribution (5th, 25th, 50th, 75th, and 95th percentiles) of the weights αopt for risk factors and the
spatial penalty term when using linear utility function and data in year 2007–2012 (left), year 2007–2013 (middle), and
year 2007–2014 (right) as training data, respectively. The risk factors include temperature (standardized), precipitation
(standardized), current disease rate (logit), and current neighborhood disease rate (logit). (a) Training data: year
2007–2012. (b) Training data: year 2007–2013. (c) Training data: year 2007–2014.

to have higher priority to be allocated more resources. The loss value corresponding to the two optimal
polices are 0.135 and 0.136, respectively and the loss values corresponding to “Highest_rate” policy and
“Even” policy are 0.140 and 0.149, all with standard error 0.0005. The proposed policies improve the
value by about 3% and 9% compared to the two naive policies. This is a substantial improvement when
considering the number of disease cases that can be eliminated.

Figure 4 illustrates the resource allocation next year using the two estimated optimal policies or using
“Highest_rate” rate policy. The estimated optimal policy using the quadratic utility function allocates the
resources most smoothly while the “Highest_rate” policy only give extreme resource allocation (0 or 1).

We refit the model using data in years 2007–2012, 2007–2013, and 2007–2014 as training data and
estimate the risk factor weights αopt with linear utility function for resource allocation recommendation
in year 2013, 2014, and 2015, respectively. The posterior distribution of optimal weights are given in
Figure 5. They show that the updated estimated optimal policy is stable across years suggesting that a
dynamic model would not lead to dramatic improvements for this analysis. Of course, for cases where
treatment is applied annually there is ample time to update the policy, and so updating the policy using all
available data would be advisable.

8. DISCUSSION

We develop a recommender system for spatiotemporal resource allocation to maximize the efficacy of
malaria control efforts. Our proposed statistical framework deals with the challenges of spatial dependence
and continuous action space. We used a hierarchical Bayesian spatiotemporal model to approximate
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the system dynamics of the disease transmission involving the effect of environmental covariates and
allocated resources, and construct a flexible and interpretable class of allocation policies that is also
computationally feasible for searching the optimal resource allocation policy with the continuous action
space. The simulation experiments suggest the proposed method performs well, and it is shown to be able
to improve the resource allocation efficacy compared with naive polices in both simulation studies and
the application to DRC data.

There are some limitations in our studies which provide possible directions for the future work. Our
proposed RE relies on the postulated spatiotemporal model for the malaria transmission. A more flexible
semi- or nonparametric model can be constructed to improve the robustness of the method to model mis-
specification. In the current framework, we only consider one intervention (ITN) at a time when optimizing
the resource allocation. Our method can be extended to consider several interventions simultaneously and
recommend the optimum allocation policy for all the related resources. The current framework assumes
the resources are yearly allocated, and we do not consider seasonality in the model. If a monthly or even
more frequent allocation is necessary, the seasonality can be incorporated as a covariate to the model, and
the strategy can be defined for more frequent resource allocation with the constraint that an annual budget
to be allocated across in space and time.As malaria intervention resources are allocated at health zone level
in DRC, we build the spatiotemporal model based on the use of data aggregated at the district level and
define RE to decide how to allocate resources to a finite number of regions. If applying treatment to points
rather than a finite number of regions is more of interest and data are available at point locations, then
a geostatistical model would be preferable to avoid bias in estimating covariate effects and a completely
new framework is required to define the point level treatment allocation policy, and it is a topic for future
work.

When we apply our method to the DRC data, the data we use to fit the model is the generated PfPR
and ITN surface data estimated in Bhatt and others (2015) using the Bayesian hierarchical model based
on very sparse survey data instead of the real yearly collected health zone level data. Also, we make the
assumption that the populations at each 5 km by 5 km cell within a health zone are the same so that the
mean rate of the cells can be used as the rate of the health zone. As a result, we only use the data as the
illustration purpose instead of accurately reflecting the situation in DRC.

SOFTWARE

The R code that implements the proposed method for the simulation study and DRC data analysis is
available at https://github.com/qianguan/SpatiotemporalTreatmentAllocation. All the data used for DRC
data analysis is available at https://figshare.com/account/home#/projects/99599.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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