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Abstract

Efficient separation of C2H4/C2He mixtures is of paramount importance in the petrochemical
industry. Nanoporous materials, especially metal-organic frameworks (MOFs), may serve the
purpose owing to their tailorable structure and pore geometry. In this work, we propose a
computational framework for high-throughput screening and inverse design of high-performance
MOFs for adsorption and membrane processes. High-throughput screening of the computational-
ready, experimental (CoRE 2019) MOF database leads to materials with exceptionally high
ethane-selective adsorption selectivity (LUDLAZ: 7.68) and ethene-selective membrane
selectivity (EBINUAO2: 2167.3). Moreover, the inverse design enables the exploration of a
broader chemical space and identification of MOF structures with even higher membrane
selectivity and permeability. In addition, a relative membrane performance score (rMPS) has been
formulated to evaluate the overall membrane performance relative to the Robeson boundary. The
computational framework offers guidelines for the design of MOFs and is generically applicable

to materials discovery for gas storage and separation.
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1. Introduction

The efficiency of C2H4/C2Hs separation is important for the petrochemical industry because
high-purity C2Ha is used as the primary feedstock for the synthesis of diverse chemical products
including plastics, polyesters and rubber materials.!”> Conventional processes for C2Ha/C2He
separation are mostly based on high-pressure cryogenic distillation, which requires extensive
energy input while suffers from low separation efficiency. To reduce the energy cost and increase
the selectivity, it is desirable to develop alternative approaches such as adsorption or permeation
processes based on nanoporous materials.>

Metal-organic frameworks (MOFs) are ideal candidates for efficient separation of C2H4/C2He
because they have good mechanic stability, large specific surface area, and tailorable pore structure
and geometry.®® In particular, such materials show promising performance for separating
molecules with similar size and interaction energy, such as the mixtures of H2/D2 isotopes, of noble
gases (Ar/Kr/Xe), and of xylene isomers.”!? For C2Ha/C2Hs separation, promising MOF
candidates have been identified by experiments.>*!>!# Whereas the possible variations of MOFs
are virtually unlimited and the separation efficiency is sensitive to the atomic details, it is
practically infeasible to explore the design space only through experimentation. Previously,
computational methods have been used to identify best material candidates for separation process
through high-throughput screening.”!>! While the adsorption isotherms predicted by the
computational methods are found in good agreement with experimental measurement,'!” membrane
processes are often considered more efficient to separate C2Ha4 from C2He leveraging the difference
in both adsorption affinity and gas diffusivity.'® To the best of our knowledge, previous research
on the computational screening of MOF database is mostly concerned with the separation of

C2H4/C2Hs by adsorption.!”!%?? From the computational perspective, the assessment of MOF
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materials for membrane separation is much more demanding because the evaluation of gas
diffusivity in confined geometry is typically more time-consuming than that for gas adsorption. In
particular, the strong confinement makes it computationally prohibitive to predict the diffusion
coefficients of gas molecules in a large library of nanoporous materials using conventional
methods such as molecular simulation (MD) simulation.?>?*

Although computational methods (e.g., MD, grand canonical Monte Carlo simulation, and
classical density function theory) have been well established for accurate prediction of gas
adsorption and diffusivity,??® the inverse design of nanoporous materials for separation processes
remains a theoretical challenge from both computational and practical perspectives. While
generative adversarial network (GAN) shows early success in the inverse design of zeolites for
methane storage,” its computational complexity increases significantly with the number of
elements in the crystal structure. Besides, GAN easily breaks down and fails to converge for
complicated crystalline materials such as MOFs because a large number of atomic types need to
be considered. In contrast, variational autoencoder (VAE) can well accommodate the complex
topology and molecular structure of the secondary building blocks (SBUs) by compressing the
MOF structure into a text string and projecting it into the latent space.’® However, VAE requires
accurate projection (viz., encode and decoder) between the crystal structure and a latent space, and
the VAE training would become infeasible when a vast number of SBUs are considered for the
MOF design. Alternatively, evolutionary algorithms, such as the genetic algorithm, are promising
for the inverse design of MOFs because they can accommodate not only a large number of SBUs

for MOF design, but also find the solution in a nonlinear space consisted of the material topology

and SBUs.3132
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In previous work,?>?® we developed a computational procedure with GPU-acceleration that
offers fast and accurate evaluation of sorption and diffusion properties of gas molecules in
nanoporous materials. Empowered by the developed computational capability, here we perform
high-throughput screening of the computational-ready experimental (CoRE 2019) MOF database
(over 10k MOFs) for the separation of C2H4/C2He with adsorption and membrane processes.
Compared with the state-of-art materials from the literature,** the best MOFs identified in this
work have significantly higher separation selectivity. The highest ethane-selective adsorption
selectivity in LUDLAZ is up to 7.68, and the highest ethene-selective membrane selectivity in
EBINUAO2 can reach 2167.3. Leveraging on the high-throughput capability, a genetic algorithm
(GA) is incorporated into our computational workflow to achieve the inverse design of MOF
membranes with both high membrane selectivity and permeability. The inverse design allows us
to explore a broader chemical space in comparison with high-throughput screening and identify
MOFs with even higher membrane selectivity and permeability. The structural analyses of MOFs
with best separation performance offer useful guidelines for the experimental design of MOFs for
adsorption and membrane separation.

2. Results and Discussion
2.1 Screening CoRE MOF 2019 Database

We first perform the high-throughput screening of the computational-ready experimental
(CoRE) MOF 2019 database for separation of C2H4/C:He through adsorption and membrane
processes. While high-throughput screening has been commonly used to find the best material
candidates for gas adsorption, the procedure is more challenging for membrane separation because
of the steep computational cost in evaluating the diffusion coefficients. Figure 1 shows the

separation selectivity versus capacity for both adsorption and membrane separations. In Figure 1(a)
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and Supplementary Figure 1, MOFs with Henry’s constants smaller than 1 X 10 mol-m=-Pa™' and

the largest cavity diameters smaller than the hard-sphere diameter of ethene have been removed.
Those structures can hardly accommodate ethane/ethene molecules thus are not further considered
in this work. The hard-sphere diameters of ethane and ethene are calculated from the Barker-
Henderson theory** based on their Lennard-Jones (LJ) parameters and more details are provided
in Supporting Information. As shown in Figure 1(a), the maximum selectivity is less than 30 for
ethene-selective MOFs suitable for adsorption separation. It decreases exponentially with the
increase of the separation capacity (viz. adsorption amount) because highly confined pores are
needed in order to achieve high ethene-selectivity. The structural properties of top ethene-selective
and ethane-selective MOFs are shown in Supplementary Table 2 and Supplementary Table 3,
respectively. Such materials offer little pore volume to achieve high adsorption capacity. Table 1
lists the properties of top 5 ethene-selective MOFs for the adsorption separation of C2Ha/C2Hs at

room temperature (300 K).

Figure 1. Selectivity vs. capacity for CoORE MOFs used in C2H4/C2Hg separation. (a) Adsorption
selectivity. The green line is fitted with a™=0.2516¢7#!11°2®)_(b) Membrane selectivity. The red
line denotes the Robeson boundary, and the color stands for the percentile of relative membrane
performance score (rMPS): the red, gray and blue represent the highest, intermediate, and the
lowest MPS, respectively. The dashed line marks the membrane selectivity of 1.

Table 1. Henry’s constants (Kn), ideal selectivity (a™) and self-diffusivity (Do) of top ethene-
selective MOFs for adsorption separation of C2H4/C2He at 300 K. The diffusion coefficients are
shown only if they are larger than 1 X102 m?-s7!.

Although ethene-selective materials yield high selectivity in the separation of C2H4/C2He by
gas adsorption, industrial applications desire ethane-selective processes because they can
significantly reduce the energy cost. Supplementary Figure 1 shows that, consistent with the

literature,*>2° the highest selectivity of ethane-selective MOFs identified in this work is much

5
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smaller than that of ethene-selective MOFs because the stronger adsorption of smaller molecules
(e.g., ethene) yields a larger adsorption selectivity of C2H4/C2He via the ultra-small pores of
promising MOFs. It is worth noting that, different from ethene-selective MOF for the separation
of C2H4/C2Hs via adsorption, the selectivity of ethane-selective MOFs increases with the capacity
and none of the CoORE MOFs have the ethane-selective adsorption selectivity above 8.

Table 2. Top ethane-selective MOFs for the separation of C2H4/C2Hs at 300 K by gas adsorption.

Table 2 lists the top 5 ethane-selective MOFs with the highest adsorption selectivity of
C2He¢/C2Ha at 300 K. Although MOF candidates with high adsorption selectivity of C2H4/C2Hs
have been reported before,!”!°-2? the materials identified in this work yield much higher selectivity
for both ethene-selective and ethane-selective separations. Previously, the computational
screening was carried either on a smaller structural database or a subset of large structural library
(e.g., CoORE MOF 2019) that was restricted by certain structural and chemical criteria. While the
application of these criteria would speed up the computation by reducing the number of materials
to be evaluated, they ignore promising candidates due to the complex topology and structure. For
the adsorption separation of C2H4/C2Hs, the selectivity declines with the increase of loading
amount. The reduction in adsorption selectivity can be attributed to the smaller difference between
the adsorbate-adsorbate interactions in comparison to that between adsorbate and adsorbent
interactions.

According to the structural analysis of the promising materials (results shown in
Supplementary Figure 2 and Supplementary Figure 3), the ethane-selective MOFs have less
confined geometry in terms of the pore limit diameter (PLD), the largest cavity diameter (LCD)
and pore size distribution in comparison with the ethene-selective MOFs. The increase in pore size

leads to a much higher adsorption capacity for those MOFs with higher ethane-selectivity. It is
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worth mentioning that the highest adsorption selectivity of ethane-selective MOF [LUDLAZ:
a™(C2He¢/C2H4)=7.68] identified in this work is about 60% higher than the best nanoporous
material found by the previous computational screening??, a hypothetical zeolite structure
[a™(C2He/C2H4)=4.86]. The adsorption selectivity is more than 70% higher than that of the state-
of-art nanoporous material reported in the experimental literature*, Fex(O2)(dobdc) with
C2He/C2Ha adsorption selectivity of 4.4. Besides, LUDLAZ has a much larger Henry’s constant
[Kn(C2He)=4.6056 cm?-g!'-Pa’!'] than Fe2(O2)(dobdc) [Kn(C2Hs)=0.0147 cm?®-g™!-Pa!], meaning
much higher gravimetric adsorption capacity. We note in passing that LUDLAZ was originally
synthesized by McKellar and coworkers to examine how ligand exchange affects the stability and
compressibility of MOF materials.>> For the top 5 ethane-selective MOFs, their pore size
distributions characterized by N2 adsorption are shown in Supplementary Figure 3(b). These
materials have similar micropores between 5 A and 7 A, rendering higher selectivity of ethane
over ethene in adsorption separation.

Compared with adsorption, gas separation via permeation through MOF membranes may
achieve not only higher selectivity but also larger separation capacity. In addition, a membrane
splits the feed stream into two purified sub-streams (viz., retentate stream and permeate stream)
such that it does not require a recovery process even for ethene-selective operations. Therefore,
the membrane process is often much less energy-intensive in comparison with adsorption. Figure
1(b) shows the membrane selectivity versus membrane permeability in the units of barrer. The red
line in Figure 1(b) denotes the Robeson boundary, a semi-empirical upper limit summarized by
Rungta et al. based on the state-of-art polymer membranes for specifically separating ethane and
ethene. We see that many MOFs in CoRE MOF 2019 database surpass the Robeson boundary,

indicating their superior performance compared with the polymer membranes. The highest
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membrane selectivity of C2H4/ C2He is 2167.3 in MOF — EBINUAO2, which was synthesized by

Tian et al.’°

with 1D rhombic channel in the 3D diamond topology network. The selectivity is
several orders of magnitude larger than the state-of-art membrane materials discovered by previous
computational screening and experimental synthesis.!*** Table 3 lists the top 5 MOFs with the

highest membrane selectivity of C2H4/C2Hes.

Table 3. Top MOFs for C2H4/C2Hs separation with the highest membrane selectivity (&™) at 300
K.

In our previous work,?>%6

we proposed the membrane performance score (MPS) to evaluate
the overall performance of nanoporous materials by combining the membrane selectivity and
permeability. Although MPS offers a direct comparison of nanoporous materials with different
permeability and selectivity, it does not evaluate the membrane performance relative to the upper

limit of the state-of-art polymer membranes (viz., the Robeson boundary). Here, we propose a

modification of MPS, which is originally defined as MPS =k

fast/slow

X B, . The relative membrane
performance score (rMPS) is defined as
I'MPS = (kfasl/slow - ktz:ll/);i)(z: )X a&st (1)

where k represents the membrane selectivity, P stands for the gas permeability, and the fast
component refers to the one with higher permeability in the binary mixture. Since rMPS evaluates
the overall performance of nanoporous materials relative to the Robeson boundary, MOFs with a
selectivity below the Robeson boundary would have a smaller and negative rtMPS compared with
MPS if the membrane selectivity is larger than 1. When the membrane selectivity is smaller than
1, MOFs with membrane selectivity below the Robeson boundary would have a higher rtMPS
because the selectivity of fast component over slow component is larger than that on the Robeson

boundary with the same value of permeability. Because in rtMPS the membrane selectivity is
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defined in terms of the fast component over the slow component and the identity of the fast
component might change for different materials, rMPS reflects the relative separation efficiency
of the fast component in a MOF membrane compared to that in the state-of-art polymer membrane
at the same permeability. For the separation of C2H4/C2Hs, Figure 1(b) shows that a high rMPS
value favors MOFs with high permeability but intermediate selectivity (bottom right) instead of
intermediate permeability and high selectivity (top center). Because ethane and ethene have similar
molecular size and interaction energy, the increase of diffusion selectivity from an intermediate
value requires a larger energy barrier along the minimum energy path (MEP), which leads to a
significant reduction of the diffusion coefficient and rMPS. Conversely, the increase of diffusion
coefficient results in the reduction of diffusion selectivity due to the absence of a large energy
barrier for molecular sieving. As shown in Supplementary Figure 1, only the ideal adsorption
selectivity of C2He/C2H4 increases with the capacity. Therefore, we conclude that MOFs with high
rMPS are mostly ethane-selective, and that the membrane selectivity is mostly attributed to their
difference in the adsorption amount. Table 4 lists the top 5 MOFs with the highest rMPS.

Table 4. Top MOFs with the highest relative membrane performance score (rMPS) for the
separation of C2H4/C2Hs at 300 K.

2.2 Structural Features of Promising MOF Membranes

As discussed above, the selectivity of MOF membranes is less compromised (and much higher)
at high separation capacity in comparison with MOF adsorbents. To explore the synergetic effects
between adsorption and diffusion, we have further examined the structural features of top MOFs

with the highest membrane selectivity and rMPS.
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Figure 2. Distributions of the pore limit diameter (a) and the largest cavity diameter (b) for all
CoRE MOFs and MOFs with top 5% ideal membrane selectivity and relative performance score
(rtMPS) for C2H4/C2Hs separation.

Figure 2 shows the distributions of pore limit diameter (PLD) and the largest cavity diameter
(LCD) for all MOFs in CoRE MOF 2019 database and MOFs with top 5% membrane selectivity
and rMPS. Compared with the distributions of PLD and LCD for all CORE MOFs, it is clear that
MOFs with top 5% membrane selectivity (and rMPS) have significantly different structural
features. The PLD and LCD distributions suggest that MOFs with top 5% membrane selectivity
have much smaller pores than those with top 5% rMPS. However, their void fractions are rather
similar, both in the range from 0.4 to 0.7 (shown in Supplementary Figure 4). For MOFs with top
5% membrane selectivity, the PLD mostly distributes between 2.75 A and 3.5 A, where the narrow
end is even slightly smaller than the LJ diameter of the methylene group in ethene. It is worth
mentioning that nanoporous materials do not prohibit gas adsorption even when the PLD is slightly
smaller than the LJ diameter of the gas molecules.’” As a matter of fact, the selectivity is
maximized for MOFs with the PLD slightly smaller than the LJ diameter because the extremely
narrow pore aperture magnifies the difference in the potential energy between C2H4 and C2Hs at
the transition state. By contrast, MOFs with top 5% rMPS have a PLD distribution spanning from
3.75 A to 4.75 A. Compared with MOFs with top 5% membrane selectively, the slightly larger
PLD for MOFs with top 5% rMPS leads to a smaller difference in the potential energy between
ethane and ethene at the transition state, and therefore, much higher permeability with intermediate
membrane selectivity. Similar to the PLD distribution, the LCD distribution for the MOFs with
top 5% membrane selectivity is mostly localized at the smaller pore size than those with top 5%
rMPS. For MOFs with top 5% membrane selectivity, the ultra-narrow pore apertures contribute to

a larger membrane selectivity but a smaller diffusion coefficient and lower permeability.

10
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Figure 3. The position and orientation of an ethene molecule along the minimum energy path
(MEP) in EBINUAO2 (a) and LUDLAZ (b). Here the detailed molecular structures are only for
illustration. The energy landscape along the MEP for ethane and ethene in EBINUAO2 (c) and
LUDLAZ (d) at 300 K.

Figure 3 shows the minimum energy path (MEP), molecular orientation along the MEP, and
the energy landscape for gas diffusion in MOFs with the highest membrane selectivity
[EBINUAO2: A™(C2H4/C2He)=2167.3 and rMPS=1012.4 barrer] and the highest tMPS [LUDLAZ:
k™(C2He/C2H4)=11.1]. Supplementary Figure 5 presents the energy barrier along the MEP for
EBINUAO2 and LUDLAZ. For both EBINUAO2 and LUDLAZ, only one direction along the
lattice vector can accommodate the diffusion of ethane or ethene molecule. Figure 3(a) and (b)
show that, despite the significant difference between EBINUAO2 and LUDLAZ in the energy
landscape along the MEP, their MEPs inside MOFs are almost identical. Both EBINUAO2 and
LUDLAZ yield near straight trajectories for the molecular center of mass on the MEP with a
minimal change of the molecular orientation, suggesting that the high membrane selectivity is
attributed to extremely narrow pores. It is worth noting that the local chemical environments are
very similar along the MEP in EBINUAO2 and LUDLAZ, and their different pore structures result
in the distinct energy landscape along the MEP.

Although EBINUAO2 and LUDLAZ have a similar void fraction, their pore structures (e.g.,
PLD and LCD) are very different thus result in different separation mechanisms. According to the
solution-diffusion theory,'® the membrane selectivity can be improved by increasing the difference
in adsorption, diffusion, or a combination of both quantities. EBINUAO02 has a much smaller pore
aperture (PLD: 2.91 A and LCD: 3.96 A) than LUDLAZ (PLD: 4.18 A and LCD: 5.96 A), which

leads to the preferential diffusion and adsorption (viz. solubility in solution-diffusion theory) of

C2H4 and the extremely high membrane selectivity of C2H4 over C2He. Whereas in LUDLAZ, its

11
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interaction with the gas molecules is attractive even at the transition state and the difference in
energy barrier between C2H4 and C2He is almost negligible (Fig. 3D). The relatively spacious pore
structure in LUDLAZ results in a slightly faster diffusion of C2He than C2Ha because ethane
experiences a stronger van der Waals attraction. As a result, the membrane selectivity of LUDLAZ
is mostly contributed by the difference in adsorption (viz., Henry’s constant) between C2H4 and
C2Hs. According to the above analysis of the top MOFs with high membrane selectivity and rtMPS,
a large energy barrier (viz., extremely narrow pore aperture) is not preferred for the design of ideal
MOF membrane (with both high selectivity and permeability). The trend is intuitively
understandable because a narrow pore aperture significantly reduces the gas diffusion coefficient
and permeability, For the rational design of ideal MOF membranes for C2H4/C2Hg separation, the
selectivity and permeability need to be harnessed by enhancing the difference in adsorption and
diffusion, respectively.
2.3 Inverse Design of MOF Membranes

In comparison with adsorption, the membrane process has major advantages in terms of both
separation selectivity and capacity (viz. permeability). As a result, our inverse design is concerned
only with MOF membranes. To find nanoporous materials ideal for C2H4/C2Hs separation (viz.,
high separation selectivity and capacity), we use a genetic algorithm (GA) with the fitness score

of

F“=05F" +0.5F". ()
In Equation (2), the total fitness score, F™* is evenly weighted according to the member

selectivity and permeability. The member selectivity fitness score is formulated as

et (k™ =5)+2 KM>5

™M
AR | ™ <5
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where k™ stands for the (ethene-selective) membrane selectivity. Conversely, the permeability

fitness score is defined by

o log(P)  P=100
41 P<100

In this work, the membrane selectivity of 5 and permeability of 100 barrers are used as threshold
values because most CORE MOFs have a permeability larger than 100 barrer but few have a
membrane selectivity larger than 5. For materials with the permeability or selectivity lower than
the corresponding threshold value, the exponential form allows for a smooth variation of the fitness
score. Such a smooth form is important especially for materials with an extremely small value of
permeability. Compared with improving permeability, it is much more difficult to improve the
membrane selectivity. Therefore, for permeability and selectivity larger than the threshold values,
the fitness score of selectivity is constructed in the quadratic form while the natural logarithm is
used for the permeability. According to this formulation of the fitness score, a relatively small
increase in selectivity would lead to a large increase in the fitness thus allow GA to generate MOFs
with both high membrane selectivity and permeability instead of MOFs with solely high

permeability.

Figure 4. Schematic illustration for chromosome representation of MOF and genetic algorithm
used in this work. (a) Chromosome representation of MOFs investigated in this work where
topology, node and edge are treated as genes in the chromosome. (b) Workflow of the genetic
algorithm (GA) for the inverse MOF design. Here square boxes represent the secondary building
blocks (SBUs) used for MOF construction. In analogy to the genes in the chromosome, the choice
of SBUs directly determines the physiochemical properties and separation performance. Black,
brown and green boxes represent the topology, node and edge, respectively.

Figure 4 shows how each MOF is represented as a ‘chromosome’, i.e., in terms of the MOF

topology, node and edge. The schematic flowchart elucidates the computational steps in the inverse
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design of MOF membranes. Compared with CORE MOF database or other existing MOF structural
databases, a much larger chemical space can be explored for the inverse design. In this work, the
secondary building block (SB) database consists of 1,687 topologies, 648 nodes and 219 edges.
As each MOF is defined by a topology, and up to two types of metal nodes and three types edges,
enormous combinations are possible for the MOF construction. Although the number 7.4x10'
does not necessarily reflect the actual size of the design space because many combinations of the
edges, nodes and topology cannot lead to the construction of synthesizable MOFs, it shows the
extensiveness of the design space in enumeration of all possible combinations of the topology and
building blocks. Not all chromosomes would lead to a successful MOF design owing to the
unmatched coordination number and bonding distance in the topologies, nodes and edges. Invalid
chromosomes were identified during the construction of MOF structures with PORMAKE based
on the compatibility criteria for the building blocks and topology.’” The percentage of invalid
chromosomes is about 70% on average among all generations of chromosomes sampled by GA.
In general, the successful rate increases with the GA evolution. For valid chromosomes, we obtain
the MOF structure and cell parameters from PORMAKE that is able to accommodate the nodes
and linkers in arbitrary topologies while avoid clashing atoms and distorting bonds. The structures
generated by PORMAKE were optimized during the MOF construction. No further geometry

optimization was attempted in this work.

Figure 5. Membrane selectivity vs. capacity for CORE MOFs and inverse designed MOFs used in
C2H4/C2He separation. (a) Membrane separation selectivity vs. permeability for CoRE MOFs
(filled dots) and inverse designed MOFs (open symbols). The distribution of membrane selectivity
(b) and permeability (c¢) for inversed designed MOFs. The red line denotes the Robeson boundary,
and color spectrum stands for the percentile of relative membrane performance score (rMPS): the
red, white and blue represent the highest, intermediate and the lowest rMPS, respectively. Brown
box, purple circle, green triangle and gold star stand for inverse designed MOFs in generation 0,
1, 2, 3, respectively.
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Figure 5 shows the membrane selectivity and permeability of the designed MOFs in
comparison with CoORE MOFs. Here, we consider only materials in the region where the scale of
permeability is similar to the experiment results. Supplementary Figure 6 shows the same figure
with the full ranges of permeability and selectivity. Figure 5(a) compares the properties of MOF
structures generated by GA with those from the CoRE MOF library in terms of the membrane
selectivity and permeability. Clearly, GA is able to identify MOF structures with the targeted
properties, i.€., high selectivity and high capacity as shown in the area above the Robeson boundary.
Because no constraint was imposed in sampling the design space, the GA sampling does not always
lead to the successful construction of MOF structures. For those chromosomes not generating valid
MOFs, their fitness scores would be assigned to the lowest value.

Figure 5(b) and (c) present the percentages MOF structures in different generations of GA
sampling. Similar plots are given in Supplementary Figure 6(b) and (c) but for the entire ranges of
membrane selectivity and permeability. As the area under each curve represents the percentage of
valid MOF structures in each generation, the successful evolution of GA is evident not only
because it generates more valid MOF structures after each round of evolution but because the
designed materials show noticeable improvement in both permeability and membrane selectivity.
Although many MOF structures do not surpass the Robeson boundary even in the final generation
(gold stars), GA is able to create successful candidates with high membrane selectivity and
permeability. Importantly, GA is computationally much more efficient than conventional
approaches of material discovery such as high-throughput screening because it avoids enumeration
of the entire design space.

The best MOF identified by the inverse design (yfk-N379) significantly improves the overall

membrane separation performance in terms of both membrane selectivity and permeability. Table
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5 lists the detailed properties of yfk-N379. It should be noted that the best materials identified by
GA may vary with the initial generation. In this work, we tested the efficiency of the inverse design
with a different initial generation (shown in Supplementary Figure 8). Whereas different sets of
materials were sampled during the evolution, it seems that GA sampling is robust to meet the goal
of the inverse design independent of the initial condition. Although the final MOF structures are
not identical, they have similar performance in terms of both membrane selectivity and
permeability.

Table 5. Properties of designed MOFs with both high membrane selectivity and permeability for
the separation of C2H4/C2Hs at 300 K.

Figure 6 shows molecular orientation and energy landscape for the diffusion of gas molecules
along the MEP. In yfk-N379, the metal node, (CO2-k>0)TbO2(u-CO2-k*0)4TbO2(CO2-k>0), is
connected with the yfk topology network to form a 1D channel for the diffusion of C2H4 and C2Hs
molecules. The energy landscape along the MEP in yfk-N379 is similar to that in LUDLAZ where
the intermolecular interaction along the MPE is all attractive. Also, like that in LUDLAZ, the
difference in the energy barrier between C2H4 and C2He is relatively small. As discussed above, in
order to design an ideal MOF membrane with both high membrane selectivity and permeability,
the separation selectivity shall be harnessed by the difference in the adsorption (viz., solubility),
and the high permeability should be obtained by fast diffusion. As shown in Figure 6(b), the 1D
channel in yfk-N379 offers strong attraction and relatively moderate energy barrier along the MEP,
which results in the extremely fast diffusion of gas molecules. The distinct difference of adsorption
properties (viz., Henry’s constant) between C2H4 and C2Hse in yfk-N379 leads to an exceptionally
high membrane selectivity compared to the CoORE MOFs. Although the membrane selectivity yfk-

N379 is not much larger than those corresponding to the top 5 CoORE MOFs, its permeability (8420
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barrer) is at least three orders of magnitudes higher. Conversely, the membrane selectivity of yfk-
N379 is 30% higher than those of CoORE MOFs with similar permeability. The synergetic effects
from adsorption and diffusion help yfk-N379 achieve both high membrane selectivity and

permeability simultaneously, making it promising for industry applications.

Figure 6. Minimum energy path (MEP) of C2Hs and C:H4 in yfk-N379. (a) The position and
orientation of an ethene molecule along the MEP (yellow line) in ytk-N379. (b) Energy landscape
along the MEP for ethane and ethene in yfk-N379 at 300 K.

We have performed molecular dynamics (MD) simulation to further validate the diffusion
coefficients of ethane and ethene in top 5 MOFs with the highest rMPS and in the best MOF
candidate identified from the inverse design (ytk-N379). As shown in Supplementary Figure 7,
the diffusion coefficients predicted by the transition-state theory agree well with the MD results.
In comparison with MOF-5 tested in our earlier work, these MOFs have more complicated pore
structure and topology, indicating the accuracy of MEPs calculated by the simplified string method.

Compared with high-throughput screening, the inverse design via GA is computationally much
more efficient. For example, the ideal MOF candidate (both high membrane selectivity and
permeability) for the membrane separation of C2H4/C2He can be found with only 8,000 attempts
in a much larger chemical space. The computational workflow thus demonstrates that, with the
efficient theoretical tools for high-throughput evaluation of materials performance, how the
inverse design can significantly accelerate the material discovery, especially for the construction
of reticular materials (e.g., MOFs and COFs) for the gas storage and separation.

In this work, we have integrated high-throughput screening and inverse design to find the best
metal-organic frameworks (MOFs) for C2H4/C2He separation. Both adsorption and membrane

processes have been considered in the high-throughput screening of computational-ready
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experimental (CoRE 2019) MOF database. For the adsorption separation, the separation selectivity
of ethene-selective MOF decreases with the increase of separation capacity because highly ethene-
selective materials have extremely small pores with low adsorption capacity. While the selectivity
of ethane-selective MOF increases with the adsorption capacity, the highest adsorption selectivity
of ethane-selective MOF (LUDLAZ) [a™(C2Hs/C2H4)=7.68] is smaller than that of ethene-
selective MOF (PIRYOF) [a™(C2H4/C2He)=27.01]. Nevertheless, LUDLAZ is more than 70%
higher than the state-of-art ethane-selective MOF identified by previous work.

Compared with that in the adsorption process, the selectivity of membrane process is less
compromised by the increase of the separation capacity. Through high-throughput screening, we
find that EBINUAO2 vyields the highest membrane selectivity [k™(C2H4/C2He)=2167.3]. To
evaluate the overall membrane performance, we introduced a relative membrane performance
score (rMPS) in terms of the selectivity and permeability with respect to the Robeson boundary.
For the separation of C2H4/C2Hs, high rMPS favors MOFs with high permeability and intermediate
membrane selectivity because high membrane selectivity requires large energy barrier along the
minimum energy path (MEP) and leads to the slow diffusion. According to the structural analysis,
MOFs with top 5% membrane selectivity have a much more confined diffusion path in terms of
pore limit diameter (PLD) and largest cavity diameter (LCD) than those with top 5% rMPS, despite
their similarity in the distribution of void fraction. The separation mechanism is quite different
between EBINUAO02 and the MOF (LUDLAZ) with the highest rMPS. While a small pore aperture
(PLD: 2.91 A and LCD: 3.96 A) in EBINUAO2 results in faster diffusion and stronger adsorption
of C2Ha over C2Hg, the less confined diffusion path in LUDLAZ (PLD: 4.18 A and LCD: 5.96 A)
leads to negligible difference in the diffusion. In that case, the membrane selectivity is mostly

contributed by its ethane-selective solubility.
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The computational efficiency of the theoretical tools for predicting the sorption and diffusion
properties of nanoporous materials enables the design MOF membranes with both high membrane
selectivity and permeability using the genetic algorithm (GA). Compared with high-throughput
screening, not only can GA explore the material design space with targeted properties, but it takes
less attempts to identify the most promising candidates as well. The best MOF discovered by GA
consists metal node - (CO2-k>0)TbO2(pu-CO2-k*0)4TbO2(CO2-k*0) with the yfk topology. The
designed material has both permeability and membrane selectivity significantly larger than the
threshold values set in the fitness function. Besides, its overall membrane separation performance
is better than all existing experimental MOF candidates. The computational workflow used in the
work thus demonstrates the capability of inverse design to accelerate the discovery of nanoporous
materials, especially reticular materials (such as MOFs and COFs) for gas storage and separation.
4. Methods
4.1 Molecular Models

In this work, ethane (C2Hs) and ethene (C:H4) molecules are modeled as two united-atom
groups separated by a fixed bond length.*® The detailed force field parameters can be found in
Supplementary Table 1. These force-field parameters are able to reproduce the adsorption
isotherms of ethane and ethene in nanoporous materials.’® They also predict reasonable diffusion
coefficients in comparison with limited experimental data. For example, the diffusivity predicted

in this work agrees well with that from experiment for C2Hs in MOF-5 [2.42 X 10 m?/s vs 1.8~2.1
X 108 m?/s (exp)]. Metal-organic frameworks (MOFs) are considered to be rigid with the universal

force field (UFF) for all nonbonded interactions.*® While the flexibility of MOFs may play an
important role in determining the efficiency of gas separation, a reliable description of such effects

is computationally prohibitive for high-throughput screening because it would require input from
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high-level quantum-mechanical calculations.*' Recently, a systematic examination of the impacts
of MOF flexibility on molecular diffusivities indicates that the rigid-structure assumption yields
reasonable diffusion coefficients for rigid molecules such as ethane and ethene investigated in the
present work.*> As mentioned above, the diffusivity of C2Hs in MOF-5 predicted in this work
agrees well with that from experiment.

The Lennard-Jones (LJ) 12-6 potential is truncated and shifted to zero at 12.9 A, and the
Lorentz-Berthelot mixing rule is used for the energy and size parameters between different kinds
of atoms. The periodic boundary condition is applied to all cell axes. The unit cell is duplicated
such that the length along each lattice axis is at least two times the cutoff distance. The structural
properties, such as the pore limit diameter, the largest cavity diameter and the void fraction, are
calculated with Zeo++.%

4.2 Adsorption Separation

Nanoporous materials have been widely used as adsorbent in industrial applications. In the low

pressure region, the adsorption selectivity for an equimolar mixture of two gas species can be

measured with the ratio of Henry’s constants

o™ =— 3)

where Kn; represents the Henry’s constant of component i. For a gas molecule with a rigid
conformation, the Henry’s constant can be calculated via the integration of the external potential
144

due to its interaction with the nanoporous materia

= mj dofdrexp[~59™ (r.0)] “

where f=1/(k,T), ks stands for the Boltzmann constant, 7" is the absolute temperature, V'

represents the system volume, ¢°*' is the external potential, i.e., the potential energy due to the
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interaction of a gas molecule with all atoms from the porous material, r represents the cartesian
coordinates for the center of mass of the gas molecule, and w stands for its Euler angles. For each
MOF, the Henry’s constants for C2He and C2H4 are numerically evaluated via midpoint rule with
the step size of 1 A and 45° for spatial and rotational variables, respectively.
4.3 Membrane Separation

According to the solution-diffusion model, the membrane permeability is defined as the
Henry’s constant multiplied by the gas diffusion coefficient at infinite dilution. The membrane

selectivity can thus be calculated from**

kIM — h,2 0,2 :% (5)
1

where Do, stands for the diffusion coefficient of component i at infinite dilution , and P; represent
the permeability. In evaluating the membrane selectivity, we use the average of diffusion
coefficients along the three lattice vectors (viz., x-, y-, z-axis in cartesian coordinate if the lattice
vectors are mutually orthogonal)

D :DO,a+DO,b+DO,c .

b 3 (6)

Along each direction, the diffusivity can be calculated independently according to the transition-
state theory (TST)

1
DO,(Z = Ekai . (7)

where o stands for the direction of lattice vector, £ represents the transmission rate (viz., the

hopping rate of the gas molecule), and a, stands for the hopping distance between neighboring

unit cells along the direction of lattice vector v . The hopping rate can be obtained from the

minimum energy path (MEP) via the Bennett-Chandler formula®>4¢
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where s is a normalized dimensionless variable along the MEP, and s* represents the transition
state. The diffusion coefficient predicted by Equation (7) depends heavily on the accuracy of the
MEP.

The mathematical details and the accuracy of MEP calculations for predicting the
diffusivity of rigid molecules, such as C2Ha and C2Hs, can be found in our previous work.”> Here,
we recapitulate only the key steps to identify the MEP via the simplified string method. First, we
locate the starting point of the string (i.e., the diffusion path or MEP) by searching the position and
orientation of a gas molecule that minimize the external potential at the entrance plane. Because
of the periodic structure of MOFs, the starting and end points of the string have identical relative
configurations within their own unit cells. Next, we construct an initial string by evenly placing a
certain number of points (viz., images) between the starting and end points. Finally, MEP is
obtained by iterative evolution of the images along the string according to the gradient of the full
external potential. After each round of iteration, the string is renormalized to avoid images
collectively falling into any local energy minima.

All diffusion coefficients reported in this work are predicted from the MEP obtained from
the GPU-accelerated simplified string method. We have also validated the diffusion coefficients
calculated with our method by carrying out molecular dynamics (MD) simulation for top 5 MOFs
with highest rMPS and for the best inverse designed MOF. For all MD simulations, we used the
LAMMPS package with the Nose-Hoover thermostat for controlling the temperature. The detailed
settings follow the protocol suggested in the literature for infinite dilution.*’

4.4 Genetic Algorithm
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For inverse design, we use the genetic algorithm (GA) to construct MOFs with desired
properties. Because MOFs can be decomposed into the secondary building blocks (SBUs), each
material may be considered as a ‘chromosome’ of different topologies, metal nodes and organic
linkers. Because the supermajority of MOF topologies can accommodate no more than two types
of metal nodes and three types of organic linkers, each chromosome consists of 6 genes, and each
gene is represented by an integer which corresponds to a specific topology, node or linker. The
chromosome representation allows for the efficient sampling of all possible combinations of
topology and SBUs with GA. The population is set as 2,000 which makes the initial generation to
have diverse combinations of topologies, nodes and linkers. Three evolutions are carried after the
initial population and a total of 8,000 combinations of topologies, nodes and linkers is explored to
find the optimal MOF structure with desired properties. Compared with the MOF structural
database used in high-throughput screening, less MOF structures are used in the GA to benchmark
its computational performance for the inverse design despite a much larger chemical space is
considered. In the initial population, the 2,000 chromosomes are generated by the random selection
of topologies, nodes and edges in the SBU database.’” In each generation, 10 MOFs are used to
generate the offspring via single point crossover. The next generation of MOFs are selected by
stochastic universal selection to avoid bias towards the SBUs with low fitness values while 30%
MOFs would have a random mutation on their genes. In this work, PyGAD library is used for the
genetic algorithm.*® PORMAKE is used to construct MOFs when the chromosome values are
assigned.’’
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Figure captions

Figure 1. Selectivity vs. capacity for CORE MOFs used in C2H4/C2He separation. (a) Adsorption
selectivity. The green line is fitted with a™=0.2516¢74!1°¢®)(b) Membrane selectivity. The red
line denotes the Robeson boundary, and the color stands for the percentile of relative membrane
performance score (rMPS): the red, gray and blue represent the highest, intermediate, and the
lowest rMPS, respectively. The dashed line marks the membrane selectivity of 1.

Figure 2. Distributions of the pore limit diameter (a) and the largest cavity diameter (b) for all
CoRE MOFs and MOFs with top 5% ideal membrane selectivity and relative performance score
(rMPS) for C2H4/C2He separation.

Figure 3. The position and orientation of an ethene molecule along the minimum energy path
(MEP) in EBINUAO2 (a) and LUDLAZ (b). Here the detailed molecular structures are only for
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illustration. The energy landscape along the MEP for ethane and ethene in EBINUAO2 (c) and
LUDLAZ (d) at 300 K.

Figure 4. Schematic illustration for chromosome representation of MOF and genetic algorithm
used in this work. (a) Chromosome representation of MOFs investigated in this work where
topology, node and edge are treated as genes in the chromosome. (b) Workflow of the genetic
algorithm (GA) for the inverse MOF design. Here square boxes represent the secondary building
blocks (SBUs) used for MOF construction. In analogy to the genes in the chromosome, the choice
of SBUs directly determines the physiochemical properties and separation performance. Black,
brown and green boxes represent the topology, node and edge, respectively.

Figure 5. Membrane selectivity vs. capacity for CoORE MOFs and inverse designed MOFs used in
C2H4/C2He separation. (a) Membrane separation selectivity vs. permeability for CoRE MOFs
(filled dots) and inverse designed MOFs (open symbols). The distribution of membrane selectivity
(b) and permeability (c) for inversed designed MOFs. The red line denotes the Robeson boundary,
and color spectrum stands for the percentile of relative membrane performance score (rMPS): the
red, white and blue represent the highest, intermediate and the lowest rMPS, respectively. Brown
box, purple circle, green triangle and gold star stand for inverse designed MOFs in generation 0,
1, 2, 3, respectively.

Figure 6. Minimum energy path (MEP) of C2Hs and C2H4 in yfk-N379. (a) The position and
orientation of an ethene molecule along the MEP (yellow line) in yfk-N379. (b) Energy landscape
along the MEP for ethane and ethene in ytk-N379 at 300 K.
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Table 1. Henry’s constants (Kn), ideal selectivity (a™) and self-diffusivity (Do) of top ethene-
selective MOFs for adsorption separation of C2H4/C2Hs at 300 K (The diffusion coefficients are
shown only if they are larger than 1X102° m?s™)

Kn(C2H4 Ku(C2Hs Do(C2H4 Do(C2He
MOF (mol-r(n‘3'Pa)'1) (mol‘(m‘3-P21‘1) @ (CaH/CoH) (n(12.s-1)) (n(12.s-1))
PIRYOF 5.474X 107 2.027 X103 27.01
BADHIA 3.454%10* 1.325%X 107 26.07
BADHOG 4.205X10* 1.766 X107 23.81
EBINUAO2 1.682X 1072 9.829 X 10* 17.11 0.342X10"%  7.377X10"

FEDKAB 9.997 X107 6.036 X107 16.56




Table 2. Top ethane-selective MOFs for the separation of C2H4/C2He at 300 K by gas adsorption

Kn(C2H4 Kn(C2Hs¢ Do(C2H4 Do(C2Hs

MOF (mol-r(n‘3'Pa)'1) (mol‘(m‘3-P21‘1) a(CoHo/C2Ha) (n(12.s-1)) (n(12.s-1))
LUDLAZ 4.374% 10" 3.360 X 10? 7.68 4350X10°  6.313X107°
EFILUA 1.863 X107 1.301 X 103 6.98 1.956X10°  1.188X107
XUJSAY 3.360X 10! 2.107 X 102 6.27 6.291X10°  2.145X107
ZAZNUL  2.735X10 1.697 X 102 6.20 6.604X10°  2.134X 107
KAXQIL 5.689x10! 3.479 X 10? 6.12 1.362X10°  1.088X107




Table 3. Top MOFs for C2H4/C2Hs separation with the highest membrane selectivity (k™) at 300

K
Kn(C2H4 Kn(C2Hs Do(C2H4 Do(C2Hs
MOF (mol- r(n'3- Pa)-l) (mol-(m‘3- pl-l) (H(lz- s-l)) (n’(lz- s‘l)) KM(C2Ha/CoHo)

EBINUAO2  1.682X102  9.828X10* 9342X10 7.377X10"7 2167.3

HAZGOF  9.344X10* 1.939X10%  1.438X107"2  4.202X 10" 1649.1

ALOLES 2.770%X 102 6.686 X102  8276X10%  3.271X10"8 1048.2

EBINUA 1.030 X 102 7.678X10*  4.007X 10"  5.599X10'° 960.1
EBINUAOI  2.056X102  2320X10%  3.033X10"%  6.128X 1013 438.2




Table 4. Top MOFs with the highest relative membrane performance score (rMPS) for the
separation of C2H4/C2Hs at 300 K

tMPS
MR SO S DS PO ey o
LUDLAZ  4.374X10"  3.360X10> 4.350X10° 6.313X10” 11.1 5.597
PARMIG  9.666X10'  5.599X 10> 1.404X10% 1.333X10% 5.5 5.484
BEKSAM  4.511X10? 1.892X10° 9.052X10° 4.231X10° 2.0 1.339
MIMVE]  2.869X 10! 1.443X 10> 1.291X10% 1.276X10% 5.0 1.268
MORZID  1.842X10> 8.200X10> 7.613X10° 6.568X10” 3.8 1.046




Table 5. Properties of designed MOFs with both high membrane selectivity and permeability for
the separation of C2H4/C2He at 300 K

Kn(C2Ha4) Kn(C2Hs) Do(C2Ha4) Do(C2Hs)

MOF (mol-m>-Pa!) (mol'm3Pal) (m*sh) (m?s™)

k™(C2H4/C2Hs)

ytk-

2 -4 -9 -9
N379 1.682X10 9.828 X'10 1.677X10 1.467 X10 20.8
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