

Inverse Design of Metal-Organic Frameworks for C₂H₄/C₂H₆ Separation

Musen Zhou and Jianzhong Wu*

Department of Chemical and Environmental Engineering, University of California, Riverside,
CA, 92521, United States

Abstract

Efficient separation of C₂H₄/C₂H₆ mixtures is of paramount importance in the petrochemical industry. Nanoporous materials, especially metal-organic frameworks (MOFs), may serve the purpose owing to their tailorabile structure and pore geometry. In this work, we propose a computational framework for high-throughput screening and inverse design of high-performance MOFs for adsorption and membrane processes. High-throughput screening of the computational-ready, experimental (CoRE 2019) MOF database leads to materials with exceptionally high ethane-selective adsorption selectivity (LUDLAZ: 7.68) and ethene-selective membrane selectivity (EBINUA02: 2167.3). Moreover, the inverse design enables the exploration of a broader chemical space and identification of MOF structures with even higher membrane selectivity and permeability. In addition, a relative membrane performance score (rMPS) has been formulated to evaluate the overall membrane performance relative to the Robeson boundary. The computational framework offers guidelines for the design of MOFs and is generically applicable to materials discovery for gas storage and separation.

* To whom correspondence should be addressed. Email: jwu@engr.ucr.edu

20 **1. Introduction**

21 The efficiency of C₂H₄/C₂H₆ separation is important for the petrochemical industry because
22 high-purity C₂H₄ is used as the primary feedstock for the synthesis of diverse chemical products
23 including plastics, polyesters and rubber materials.^{1,2} Conventional processes for C₂H₄/C₂H₆
24 separation are mostly based on high-pressure cryogenic distillation, which requires extensive
25 energy input while suffers from low separation efficiency. To reduce the energy cost and increase
26 the selectivity, it is desirable to develop alternative approaches such as adsorption or permeation
27 processes based on nanoporous materials.³⁻⁵

28 Metal-organic frameworks (MOFs) are ideal candidates for efficient separation of C₂H₄/C₂H₆
29 because they have good mechanic stability, large specific surface area, and tailorble pore structure
30 and geometry.⁶⁻⁸ In particular, such materials show promising performance for separating
31 molecules with similar size and interaction energy, such as the mixtures of H₂/D₂ isotopes, of noble
32 gases (Ar/Kr/Xe), and of xylene isomers.⁹⁻¹² For C₂H₄/C₂H₆ separation, promising MOF
33 candidates have been identified by experiments.^{3,4,13,14} Whereas the possible variations of MOFs
34 are virtually unlimited and the separation efficiency is sensitive to the atomic details, it is
35 practically infeasible to explore the design space only through experimentation. Previously,
36 computational methods have been used to identify best material candidates for separation process
37 through high-throughput screening.^{9,15,16} While the adsorption isotherms predicted by the
38 computational methods are found in good agreement with experimental measurement,¹⁷ membrane
39 processes are often considered more efficient to separate C₂H₄ from C₂H₆ leveraging the difference
40 in both adsorption affinity and gas diffusivity.¹⁸ To the best of our knowledge, previous research
41 on the computational screening of MOF database is mostly concerned with the separation of
42 C₂H₄/C₂H₆ by adsorption.^{17,19-22} From the computational perspective, the assessment of MOF

43 materials for membrane separation is much more demanding because the evaluation of gas
44 diffusivity in confined geometry is typically more time-consuming than that for gas adsorption. In
45 particular, the strong confinement makes it computationally prohibitive to predict the diffusion
46 coefficients of gas molecules in a large library of nanoporous materials using conventional
47 methods such as molecular simulation (MD) simulation.^{23,24}

48 Although computational methods (*e.g.*, MD, grand canonical Monte Carlo simulation, and
49 classical density function theory) have been well established for accurate prediction of gas
50 adsorption and diffusivity,²⁵⁻²⁸ the inverse design of nanoporous materials for separation processes
51 remains a theoretical challenge from both computational and practical perspectives. While
52 generative adversarial network (GAN) shows early success in the inverse design of zeolites for
53 methane storage,²⁹ its computational complexity increases significantly with the number of
54 elements in the crystal structure. Besides, GAN easily breaks down and fails to converge for
55 complicated crystalline materials such as MOFs because a large number of atomic types need to
56 be considered. In contrast, variational autoencoder (VAE) can well accommodate the complex
57 topology and molecular structure of the secondary building blocks (SBUs) by compressing the
58 MOF structure into a text string and projecting it into the latent space.³⁰ However, VAE requires
59 accurate projection (*viz.*, encode and decoder) between the crystal structure and a latent space, and
60 the VAE training would become infeasible when a vast number of SBUs are considered for the
61 MOF design. Alternatively, evolutionary algorithms, such as the genetic algorithm, are promising
62 for the inverse design of MOFs because they can accommodate not only a large number of SBUs
63 for MOF design, but also find the solution in a nonlinear space consisted of the material topology
64 and SBUs.^{31,32}

65 In previous work,^{25,26} we developed a computational procedure with GPU-acceleration that
66 offers fast and accurate evaluation of sorption and diffusion properties of gas molecules in
67 nanoporous materials. Empowered by the developed computational capability, here we perform
68 high-throughput screening of the computational-ready experimental (CoRE 2019) MOF database
69 (over 10k MOFs) for the separation of C₂H₄/C₂H₆ with adsorption and membrane processes.
70 Compared with the state-of-art materials from the literature,^{4,33} the best MOFs identified in this
71 work have significantly higher separation selectivity. The highest ethane-selective adsorption
72 selectivity in LUDLAZ is up to 7.68, and the highest ethene-selective membrane selectivity in
73 EBINUA02 can reach 2167.3. Leveraging on the high-throughput capability, a genetic algorithm
74 (GA) is incorporated into our computational workflow to achieve the inverse design of MOF
75 membranes with both high membrane selectivity and permeability. The inverse design allows us
76 to explore a broader chemical space in comparison with high-throughput screening and identify
77 MOFs with even higher membrane selectivity and permeability. The structural analyses of MOFs
78 with best separation performance offer useful guidelines for the experimental design of MOFs for
79 adsorption and membrane separation.

80 **2. Results and Discussion**

81 **2.1 Screening CoRE MOF 2019 Database**

82 We first perform the high-throughput screening of the computational-ready experimental
83 (CoRE) MOF 2019 database for separation of C₂H₄/C₂H₆ through adsorption and membrane
84 processes. While high-throughput screening has been commonly used to find the best material
85 candidates for gas adsorption, the procedure is more challenging for membrane separation because
86 of the steep computational cost in evaluating the diffusion coefficients. Figure 1 shows the
87 separation selectivity versus capacity for both adsorption and membrane separations. In Figure 1(a)

88 and Supplementary Figure 1, MOFs with Henry's constants smaller than $1 \times 10^{-5} \text{ mol} \cdot \text{m}^{-3} \cdot \text{Pa}^{-1}$ and
89 the largest cavity diameters smaller than the hard-sphere diameter of ethene have been removed.
90 Those structures can hardly accommodate ethane/ethene molecules thus are not further considered
91 in this work. The hard-sphere diameters of ethane and ethene are calculated from the Barker-
92 Henderson theory³⁴ based on their Lennard-Jones (LJ) parameters and more details are provided
93 in Supporting Information. As shown in Figure 1(a), the maximum selectivity is less than 30 for
94 ethene-selective MOFs suitable for adsorption separation. It decreases exponentially with the
95 increase of the separation capacity (*viz.* adsorption amount) because highly confined pores are
96 needed in order to achieve high ethene-selectivity. The structural properties of top ethene-selective
97 and ethane-selective MOFs are shown in Supplementary Table 2 and Supplementary Table 3,
98 respectively. Such materials offer little pore volume to achieve high adsorption capacity. Table 1
99 lists the properties of top 5 ethene-selective MOFs for the adsorption separation of C₂H₄/C₂H₆ at
100 room temperature (300 K).

101

102 **Figure 1.** Selectivity vs. capacity for CoRE MOFs used in C₂H₄/C₂H₆ separation. (a) Adsorption
103 selectivity. The green line is fitted with $\alpha^{\text{IM}}=0.2516e^{-0.7411\log(K)}$. (b) Membrane selectivity. The red
104 line denotes the Robeson boundary, and the color stands for the percentile of relative membrane
105 performance score (rMPS): the red, gray and blue represent the highest, intermediate, and the
106 lowest rMPS, respectively. The dashed line marks the membrane selectivity of 1.

107

108 **Table 1.** Henry's constants (K_h), ideal selectivity (α^{IM}) and self-diffusivity (D₀) of top ethene-
109 selective MOFs for adsorption separation of C₂H₄/C₂H₆ at 300 K. The diffusion coefficients are
110 shown only if they are larger than $1 \times 10^{-20} \text{ m}^2 \cdot \text{s}^{-1}$.

111

112 Although ethene-selective materials yield high selectivity in the separation of C₂H₄/C₂H₆ by
113 gas adsorption, industrial applications desire ethane-selective processes because they can
114 significantly reduce the energy cost. Supplementary Figure 1 shows that, consistent with the
115 literature,^{4,5,20} the highest selectivity of ethane-selective MOFs identified in this work is much

116 smaller than that of ethene-selective MOFs because the stronger adsorption of smaller molecules
117 (e.g., ethene) yields a larger adsorption selectivity of C₂H₄/C₂H₆ via the ultra-small pores of
118 promising MOFs. It is worth noting that, different from ethene-selective MOF for the separation
119 of C₂H₄/C₂H₆ via adsorption, the selectivity of ethane-selective MOFs increases with the capacity
120 and none of the CoRE MOFs have the ethane-selective adsorption selectivity above 8.

121 **Table 2.** Top ethane-selective MOFs for the separation of C₂H₄/C₂H₆ at 300 K by gas adsorption.
122

123 Table 2 lists the top 5 ethane-selective MOFs with the highest adsorption selectivity of
124 C₂H₆/C₂H₄ at 300 K. Although MOF candidates with high adsorption selectivity of C₂H₄/C₂H₆
125 have been reported before,^{17,19-22} the materials identified in this work yield much higher selectivity
126 for both ethene-selective and ethane-selective separations. Previously, the computational
127 screening was carried either on a smaller structural database or a subset of large structural library
128 (e.g., CoRE MOF 2019) that was restricted by certain structural and chemical criteria. While the
129 application of these criteria would speed up the computation by reducing the number of materials
130 to be evaluated, they ignore promising candidates due to the complex topology and structure. For
131 the adsorption separation of C₂H₄/C₂H₆, the selectivity declines with the increase of loading
132 amount. The reduction in adsorption selectivity can be attributed to the smaller difference between
133 the adsorbate-adsorbate interactions in comparison to that between adsorbate and adsorbent
134 interactions.

135 According to the structural analysis of the promising materials (results shown in
136 Supplementary Figure 2 and Supplementary Figure 3), the ethane-selective MOFs have less
137 confined geometry in terms of the pore limit diameter (PLD), the largest cavity diameter (LCD)
138 and pore size distribution in comparison with the ethene-selective MOFs. The increase in pore size
139 leads to a much higher adsorption capacity for those MOFs with higher ethane-selectivity. It is

140 worth mentioning that the highest adsorption selectivity of ethane-selective MOF [LUDLAZ:
141 $\alpha^{\text{IM}}(\text{C}_2\text{H}_6/\text{C}_2\text{H}_4)=7.68$] identified in this work is about 60% higher than the best nanoporous
142 material found by the previous computational screening²², a hypothetical zeolite structure
143 [$\alpha^{\text{IM}}(\text{C}_2\text{H}_6/\text{C}_2\text{H}_4)=4.86$]. The adsorption selectivity is more than 70% higher than that of the state-
144 of-art nanoporous material reported in the experimental literature⁴, $\text{Fe}_2(\text{O}_2)(\text{dobdc})$ with
145 $\text{C}_2\text{H}_6/\text{C}_2\text{H}_4$ adsorption selectivity of 4.4. Besides, LUDLAZ has a much larger Henry's constant
146 [$K_h(\text{C}_2\text{H}_6)=4.6056 \text{ cm}^3 \cdot \text{g}^{-1} \cdot \text{Pa}^{-1}$] than $\text{Fe}_2(\text{O}_2)(\text{dobdc})$ [$K_h(\text{C}_2\text{H}_6)=0.0147 \text{ cm}^3 \cdot \text{g}^{-1} \cdot \text{Pa}^{-1}$], meaning
147 much higher gravimetric adsorption capacity. We note in passing that LUDLAZ was originally
148 synthesized by McKellar and coworkers to examine how ligand exchange affects the stability and
149 compressibility of MOF materials.³⁵ For the top 5 ethane-selective MOFs, their pore size
150 distributions characterized by N_2 adsorption are shown in Supplementary Figure 3(b). These
151 materials have similar micropores between 5 Å and 7 Å, rendering higher selectivity of ethane
152 over ethene in adsorption separation.

153 Compared with adsorption, gas separation *via* permeation through MOF membranes may
154 achieve not only higher selectivity but also larger separation capacity. In addition, a membrane
155 splits the feed stream into two purified sub-streams (*viz.*, retentate stream and permeate stream)
156 such that it does not require a recovery process even for ethene-selective operations. Therefore,
157 the membrane process is often much less energy-intensive in comparison with adsorption. Figure
158 1(b) shows the membrane selectivity versus membrane permeability in the units of barrer. The red
159 line in Figure 1(b) denotes the Robeson boundary, a semi-empirical upper limit summarized by
160 Rungta et al.² based on the state-of-art polymer membranes for specifically separating ethane and
161 ethene. We see that many MOFs in CoRE MOF 2019 database surpass the Robeson boundary,
162 indicating their superior performance compared with the polymer membranes. The highest

163 membrane selectivity of C_2H_4/C_2H_6 is 2167.3 in MOF – EBINUA02, which was synthesized by
164 Tian et al.³⁶ with 1D rhombic channel in the 3D diamond topology network. The selectivity is
165 several orders of magnitude larger than the state-of-art membrane materials discovered by previous
166 computational screening and experimental synthesis.^{19,33} Table 3 lists the top 5 MOFs with the
167 highest membrane selectivity of C_2H_4/C_2H_6 .

168 **Table 3.** Top MOFs for C_2H_4/C_2H_6 separation with the highest membrane selectivity (k^{IM}) at 300
169 K.

170

171 In our previous work,^{25,26} we proposed the membrane performance score (MPS) to evaluate
172 the overall performance of nanoporous materials by combining the membrane selectivity and
173 permeability. Although MPS offers a direct comparison of nanoporous materials with different
174 permeability and selectivity, it does not evaluate the membrane performance relative to the upper
175 limit of the state-of-art polymer membranes (*viz.*, the Robeson boundary). Here, we propose a
176 modification of MPS, which is originally defined as $MPS = k_{fast/slow} \times P_{fast}$. The relative membrane
177 performance score (rMPS) is defined as

178
$$rMPS = (k_{fast/slow} - k_{fast/slow}^{\text{Robeson}}) \times P_{fast} \quad (1)$$

179 where k represents the membrane selectivity, P stands for the gas permeability, and the fast
180 component refers to the one with higher permeability in the binary mixture. Since rMPS evaluates
181 the overall performance of nanoporous materials relative to the Robeson boundary, MOFs with a
182 selectivity below the Robeson boundary would have a smaller and negative rMPS compared with
183 MPS if the membrane selectivity is larger than 1. When the membrane selectivity is smaller than
184 1, MOFs with membrane selectivity below the Robeson boundary would have a higher rMPS
185 because the selectivity of fast component over slow component is larger than that on the Robeson
186 boundary with the same value of permeability. Because in rMPS the membrane selectivity is

187 defined in terms of the fast component over the slow component and the identity of the fast
188 component might change for different materials, rMPS reflects the relative separation efficiency
189 of the fast component in a MOF membrane compared to that in the state-of-art polymer membrane
190 at the same permeability. For the separation of C₂H₄/C₂H₆, Figure 1(b) shows that a high rMPS
191 value favors MOFs with high permeability but intermediate selectivity (bottom right) instead of
192 intermediate permeability and high selectivity (top center). Because ethane and ethene have similar
193 molecular size and interaction energy, the increase of diffusion selectivity from an intermediate
194 value requires a larger energy barrier along the minimum energy path (MEP), which leads to a
195 significant reduction of the diffusion coefficient and rMPS. Conversely, the increase of diffusion
196 coefficient results in the reduction of diffusion selectivity due to the absence of a large energy
197 barrier for molecular sieving. As shown in Supplementary Figure 1, only the ideal adsorption
198 selectivity of C₂H₆/C₂H₄ increases with the capacity. Therefore, we conclude that MOFs with high
199 rMPS are mostly ethane-selective, and that the membrane selectivity is mostly attributed to their
200 difference in the adsorption amount. Table 4 lists the top 5 MOFs with the highest rMPS.

201 **Table 4.** Top MOFs with the highest relative membrane performance score (rMPS) for the
202 separation of C₂H₄/C₂H₆ at 300 K.

203

204 **2.2 Structural Features of Promising MOF Membranes**

205 As discussed above, the selectivity of MOF membranes is less compromised (and much higher)
206 at high separation capacity in comparison with MOF adsorbents. To explore the synergistic effects
207 between adsorption and diffusion, we have further examined the structural features of top MOFs
208 with the highest membrane selectivity and rMPS.

209

210 **Figure 2.** Distributions of the pore limit diameter (a) and the largest cavity diameter (b) for all
211 CoRE MOFs and MOFs with top 5% ideal membrane selectivity and relative performance score
212 (rMPS) for C₂H₄/C₂H₆ separation.

213
214 Figure 2 shows the distributions of pore limit diameter (PLD) and the largest cavity diameter
215 (LCD) for all MOFs in CoRE MOF 2019 database and MOFs with top 5% membrane selectivity
216 and rMPS. Compared with the distributions of PLD and LCD for all CoRE MOFs, it is clear that
217 MOFs with top 5% membrane selectivity (and rMPS) have significantly different structural
218 features. The PLD and LCD distributions suggest that MOFs with top 5% membrane selectivity
219 have much smaller pores than those with top 5% rMPS. However, their void fractions are rather
220 similar, both in the range from 0.4 to 0.7 (shown in Supplementary Figure 4). For MOFs with top
221 5% membrane selectivity, the PLD mostly distributes between 2.75 Å and 3.5 Å, where the narrow
222 end is even slightly smaller than the LJ diameter of the methylene group in ethene. It is worth
223 mentioning that nanoporous materials do not prohibit gas adsorption even when the PLD is slightly
224 smaller than the LJ diameter of the gas molecules.³⁷ As a matter of fact, the selectivity is
225 maximized for MOFs with the PLD slightly smaller than the LJ diameter because the extremely
226 narrow pore aperture magnifies the difference in the potential energy between C₂H₄ and C₂H₆ at
227 the transition state. By contrast, MOFs with top 5% rMPS have a PLD distribution spanning from
228 3.75 Å to 4.75 Å. Compared with MOFs with top 5% membrane selectivity, the slightly larger
229 PLD for MOFs with top 5% rMPS leads to a smaller difference in the potential energy between
230 ethane and ethene at the transition state, and therefore, much higher permeability with intermediate
231 membrane selectivity. Similar to the PLD distribution, the LCD distribution for the MOFs with
232 top 5% membrane selectivity is mostly localized at the smaller pore size than those with top 5%
233 rMPS. For MOFs with top 5% membrane selectivity, the ultra-narrow pore apertures contribute to
234 a larger membrane selectivity but a smaller diffusion coefficient and lower permeability.

235

236 **Figure 3.** The position and orientation of an ethene molecule along the minimum energy path
237 (MEP) in EBINUA02 (a) and LUDLAZ (b). Here the detailed molecular structures are only for
238 illustration. The energy landscape along the MEP for ethane and ethene in EBINUA02 (c) and
239 LUDLAZ (d) at 300 K.

240

241 Figure 3 shows the minimum energy path (MEP), molecular orientation along the MEP, and
242 the energy landscape for gas diffusion in MOFs with the highest membrane selectivity
243 [EBINUA02: $k^M(C_2H_4/C_2H_6)=2167.3$ and rMPS=1012.4 barrer] and the highest rMPS [LUDLAZ:
244 $k^M(C_2H_6/C_2H_4)=11.1$]. Supplementary Figure 5 presents the energy barrier along the MEP for
245 EBINUA02 and LUDLAZ. For both EBINUA02 and LUDLAZ, only one direction along the
246 lattice vector can accommodate the diffusion of ethane or ethene molecule. Figure 3(a) and (b)
247 show that, despite the significant difference between EBINUA02 and LUDLAZ in the energy
248 landscape along the MEP, their MEPs inside MOFs are almost identical. Both EBINUA02 and
249 LUDLAZ yield near straight trajectories for the molecular center of mass on the MEP with a
250 minimal change of the molecular orientation, suggesting that the high membrane selectivity is
251 attributed to extremely narrow pores. It is worth noting that the local chemical environments are
252 very similar along the MEP in EBINUA02 and LUDLAZ, and their different pore structures result
253 in the distinct energy landscape along the MEP.

254

255 Although EBINUA02 and LUDLAZ have a similar void fraction, their pore structures (*e.g.*,
256 PLD and LCD) are very different thus result in different separation mechanisms. According to the
257 solution-diffusion theory,¹⁸ the membrane selectivity can be improved by increasing the difference
258 in adsorption, diffusion, or a combination of both quantities. EBINUA02 has a much smaller pore
259 aperture (PLD: 2.91 Å and LCD: 3.96 Å) than LUDLAZ (PLD: 4.18 Å and LCD: 5.96 Å), which
260 leads to the preferential diffusion and adsorption (*viz.* solubility in solution-diffusion theory) of
C₂H₄ and the extremely high membrane selectivity of C₂H₄ over C₂H₆. Whereas in LUDLAZ, its

261 interaction with the gas molecules is attractive even at the transition state and the difference in
262 energy barrier between C₂H₄ and C₂H₆ is almost negligible (Fig. 3D). The relatively spacious pore
263 structure in LUDLAZ results in a slightly faster diffusion of C₂H₆ than C₂H₄ because ethane
264 experiences a stronger van der Waals attraction. As a result, the membrane selectivity of LUDLAZ
265 is mostly contributed by the difference in adsorption (*viz.*, Henry's constant) between C₂H₄ and
266 C₂H₆. According to the above analysis of the top MOFs with high membrane selectivity and rMPS,
267 a large energy barrier (*viz.*, extremely narrow pore aperture) is not preferred for the design of ideal
268 MOF membrane (with both high selectivity and permeability). The trend is intuitively
269 understandable because a narrow pore aperture significantly reduces the gas diffusion coefficient
270 and permeability. For the rational design of ideal MOF membranes for C₂H₄/C₂H₆ separation, the
271 selectivity and permeability need to be harnessed by enhancing the difference in adsorption and
272 diffusion, respectively.

273 **2.3 Inverse Design of MOF Membranes**

274 In comparison with adsorption, the membrane process has major advantages in terms of both
275 separation selectivity and capacity (*viz.* permeability). As a result, our inverse design is concerned
276 only with MOF membranes. To find nanoporous materials ideal for C₂H₄/C₂H₆ separation (*viz.*,
277 high separation selectivity and capacity), we use a genetic algorithm (GA) with the fitness score
278 of

$$279 \quad F^{\text{total}} = 0.5F^{k^{\text{IM}}} + 0.5F^P. \quad (2)$$

280 In Equation (2), the total fitness score, F^{total} , is evenly weighted according to the member
281 selectivity and permeability. The member selectivity fitness score is formulated as

$$282 \quad F^{k^{\text{IM}}} = \begin{cases} (k^{\text{IM}} - 5)^2 + 2 & k^{\text{IM}} \geq 5 \\ e^{k^{\text{IM}} - 5} + 1 & k^{\text{IM}} < 5 \end{cases}$$

283 where k^{IM} stands for the (ethene-selective) membrane selectivity. Conversely, the permeability
284 fitness score is defined by

285

$$F^P = \begin{cases} \log(P) & P \geq 100 \\ e^{P-100} + 1 & P < 100 \end{cases}.$$

286 In this work, the membrane selectivity of 5 and permeability of 100 barrers are used as threshold
287 values because most CoRE MOFs have a permeability larger than 100 barrer but few have a
288 membrane selectivity larger than 5. For materials with the permeability or selectivity lower than
289 the corresponding threshold value, the exponential form allows for a smooth variation of the fitness
290 score. Such a smooth form is important especially for materials with an extremely small value of
291 permeability. Compared with improving permeability, it is much more difficult to improve the
292 membrane selectivity. Therefore, for permeability and selectivity larger than the threshold values,
293 the fitness score of selectivity is constructed in the quadratic form while the natural logarithm is
294 used for the permeability. According to this formulation of the fitness score, a relatively small
295 increase in selectivity would lead to a large increase in the fitness thus allow GA to generate MOFs
296 with both high membrane selectivity and permeability instead of MOFs with solely high
297 permeability.

298

299 **Figure 4.** Schematic illustration for chromosome representation of MOF and genetic algorithm
300 used in this work. (a) Chromosome representation of MOFs investigated in this work where
301 topology, node and edge are treated as genes in the chromosome. (b) Workflow of the genetic
302 algorithm (GA) for the inverse MOF design. Here square boxes represent the secondary building
303 blocks (SBUs) used for MOF construction. In analogy to the genes in the chromosome, the choice
304 of SBUs directly determines the physiochemical properties and separation performance. Black,
305 brown and green boxes represent the topology, node and edge, respectively.

306

307 Figure 4 shows how each MOF is represented as a ‘chromosome’, i.e., in terms of the MOF
308 topology, node and edge. The schematic flowchart elucidates the computational steps in the inverse

309 design of MOF membranes. Compared with CoRE MOF database or other existing MOF structural
310 databases, a much larger chemical space can be explored for the inverse design. In this work, the
311 secondary building block (SB) database consists of 1,687 topologies, 648 nodes and 219 edges.
312 As each MOF is defined by a topology, and up to two types of metal nodes and three types edges,
313 enormous combinations are possible for the MOF construction. Although the number 7.4×10^{15}
314 does not necessarily reflect the actual size of the design space because many combinations of the
315 edges, nodes and topology cannot lead to the construction of synthesizable MOFs, it shows the
316 extensiveness of the design space in enumeration of all possible combinations of the topology and
317 building blocks. Not all chromosomes would lead to a successful MOF design owing to the
318 unmatched coordination number and bonding distance in the topologies, nodes and edges. Invalid
319 chromosomes were identified during the construction of MOF structures with PORMAKE based
320 on the compatibility criteria for the building blocks and topology.³⁷ The percentage of invalid
321 chromosomes is about 70% on average among all generations of chromosomes sampled by GA.
322 In general, the successful rate increases with the GA evolution. For valid chromosomes, we obtain
323 the MOF structure and cell parameters from PORMAKE that is able to accommodate the nodes
324 and linkers in arbitrary topologies while avoid clashing atoms and distorting bonds. The structures
325 generated by PORMAKE were optimized during the MOF construction. No further geometry
326 optimization was attempted in this work.

327

328 **Figure 5.** Membrane selectivity vs. capacity for CoRE MOFs and inverse designed MOFs used in
329 $\text{C}_2\text{H}_4/\text{C}_2\text{H}_6$ separation. (a) Membrane separation selectivity vs. permeability for CoRE MOFs
330 (filled dots) and inverse designed MOFs (open symbols). The distribution of membrane selectivity
331 (b) and permeability (c) for inverse designed MOFs. The red line denotes the Robeson boundary,
332 and color spectrum stands for the percentile of relative membrane performance score (rMPS): the
333 red, white and blue represent the highest, intermediate and the lowest rMPS, respectively. Brown
334 box, purple circle, green triangle and gold star stand for inverse designed MOFs in generation 0,
335 1, 2, 3, respectively.

336
337 Figure 5 shows the membrane selectivity and permeability of the designed MOFs in
338 comparison with CoRE MOFs. Here, we consider only materials in the region where the scale of
339 permeability is similar to the experiment results. Supplementary Figure 6 shows the same figure
340 with the full ranges of permeability and selectivity. Figure 5(a) compares the properties of MOF
341 structures generated by GA with those from the CoRE MOF library in terms of the membrane
342 selectivity and permeability. Clearly, GA is able to identify MOF structures with the targeted
343 properties, i.e., high selectivity and high capacity as shown in the area above the Robeson boundary.
344 Because no constraint was imposed in sampling the design space, the GA sampling does not always
345 lead to the successful construction of MOF structures. For those chromosomes not generating valid
346 MOFs, their fitness scores would be assigned to the lowest value.

347 Figure 5(b) and (c) present the percentages MOF structures in different generations of GA
348 sampling. Similar plots are given in Supplementary Figure 6(b) and (c) but for the entire ranges of
349 membrane selectivity and permeability. As the area under each curve represents the percentage of
350 valid MOF structures in each generation, the successful evolution of GA is evident not only
351 because it generates more valid MOF structures after each round of evolution but because the
352 designed materials show noticeable improvement in both permeability and membrane selectivity.
353 Although many MOF structures do not surpass the Robeson boundary even in the final generation
354 (gold stars), GA is able to create successful candidates with high membrane selectivity and
355 permeability. Importantly, GA is computationally much more efficient than conventional
356 approaches of material discovery such as high-throughput screening because it avoids enumeration
357 of the entire design space.

358 The best MOF identified by the inverse design (yfk-N379) significantly improves the overall
359 membrane separation performance in terms of both membrane selectivity and permeability. Table

360 5 lists the detailed properties of yfk-N379. It should be noted that the best materials identified by
361 GA may vary with the initial generation. In this work, we tested the efficiency of the inverse design
362 with a different initial generation (shown in Supplementary Figure 8). Whereas different sets of
363 materials were sampled during the evolution, it seems that GA sampling is robust to meet the goal
364 of the inverse design independent of the initial condition. Although the final MOF structures are
365 not identical, they have similar performance in terms of both membrane selectivity and
366 permeability.

367 **Table 5.** Properties of designed MOFs with both high membrane selectivity and permeability for
368 the separation of C₂H₄/C₂H₆ at 300 K.

369

370 Figure 6 shows molecular orientation and energy landscape for the diffusion of gas molecules
371 along the MEP. In yfk-N379, the metal node, (CO₂-κ²O)TbO₂(μ-CO₂-κ²O)₄TbO₂(CO₂-κ²O), is
372 connected with the yfk topology network to form a 1D channel for the diffusion of C₂H₄ and C₂H₆
373 molecules. The energy landscape along the MEP in yfk-N379 is similar to that in LUDLAZ where
374 the intermolecular interaction along the MPE is all attractive. Also, like that in LUDLAZ, the
375 difference in the energy barrier between C₂H₄ and C₂H₆ is relatively small. As discussed above, in
376 order to design an ideal MOF membrane with both high membrane selectivity and permeability,
377 the separation selectivity shall be harnessed by the difference in the adsorption (*viz.*, solubility),
378 and the high permeability should be obtained by fast diffusion. As shown in Figure 6(b), the 1D
379 channel in yfk-N379 offers strong attraction and relatively moderate energy barrier along the MEP,
380 which results in the extremely fast diffusion of gas molecules. The distinct difference of adsorption
381 properties (*viz.*, Henry's constant) between C₂H₄ and C₂H₆ in yfk-N379 leads to an exceptionally
382 high membrane selectivity compared to the CoRE MOFs. Although the membrane selectivity yfk-
383 N379 is not much larger than those corresponding to the top 5 CoRE MOFs, its permeability (8420

384 barrer) is at least three orders of magnitudes higher. Conversely, the membrane selectivity of yfk-
385 N379 is 30% higher than those of CoRE MOFs with similar permeability. The synergetic effects
386 from adsorption and diffusion help yfk-N379 achieve both high membrane selectivity and
387 permeability simultaneously, making it promising for industry applications.

388

389 **Figure 6.** Minimum energy path (MEP) of C₂H₆ and C₂H₄ in yfk-N379. (a) The position and
390 orientation of an ethene molecule along the MEP (yellow line) in yfk-N379. (b) Energy landscape
391 along the MEP for ethane and ethene in yfk-N379 at 300 K.

392

393 We have performed molecular dynamics (MD) simulation to further validate the diffusion
394 coefficients of ethane and ethene in top 5 MOFs with the highest rMPS and in the best MOF
395 candidate identified from the inverse design (yfk-N379). As shown in Supplementary Figure 7,
396 the diffusion coefficients predicted by the transition-state theory agree well with the MD results.
397 In comparison with MOF-5 tested in our earlier work, these MOFs have more complicated pore
398 structure and topology, indicating the accuracy of MEPs calculated by the simplified string method.

399 Compared with high-throughput screening, the inverse design via GA is computationally much
400 more efficient. For example, the ideal MOF candidate (both high membrane selectivity and
401 permeability) for the membrane separation of C₂H₄/C₂H₆ can be found with only 8,000 attempts
402 in a much larger chemical space. The computational workflow thus demonstrates that, with the
403 efficient theoretical tools for high-throughput evaluation of materials performance, how the
404 inverse design can significantly accelerate the material discovery, especially for the construction
405 of reticular materials (*e.g.*, MOFs and COFs) for the gas storage and separation.

406 In this work, we have integrated high-throughput screening and inverse design to find the best
407 metal-organic frameworks (MOFs) for C₂H₄/C₂H₆ separation. Both adsorption and membrane
408 processes have been considered in the high-throughput screening of computational-ready

409 experimental (CoRE 2019) MOF database. For the adsorption separation, the separation selectivity
410 of ethene-selective MOF decreases with the increase of separation capacity because highly ethene-
411 selective materials have extremely small pores with low adsorption capacity. While the selectivity
412 of ethane-selective MOF increases with the adsorption capacity, the highest adsorption selectivity
413 of ethane-selective MOF (LUDLAZ) [$\alpha^{\text{IM}}(\text{C}_2\text{H}_6/\text{C}_2\text{H}_4)=7.68$] is smaller than that of ethene-
414 selective MOF (PIRYOF) [$\alpha^{\text{IM}}(\text{C}_2\text{H}_4/\text{C}_2\text{H}_6)=27.01$]. Nevertheless, LUDLAZ is more than 70%
415 higher than the state-of-art ethane-selective MOF identified by previous work.

416 Compared with that in the adsorption process, the selectivity of membrane process is less
417 compromised by the increase of the separation capacity. Through high-throughput screening, we
418 find that EBINUA02 yields the highest membrane selectivity [$k^{\text{IM}}(\text{C}_2\text{H}_4/\text{C}_2\text{H}_6)=2167.3$]. To
419 evaluate the overall membrane performance, we introduced a relative membrane performance
420 score (rMPS) in terms of the selectivity and permeability with respect to the Robeson boundary.
421 For the separation of $\text{C}_2\text{H}_4/\text{C}_2\text{H}_6$, high rMPS favors MOFs with high permeability and intermediate
422 membrane selectivity because high membrane selectivity requires large energy barrier along the
423 minimum energy path (MEP) and leads to the slow diffusion. According to the structural analysis,
424 MOFs with top 5% membrane selectivity have a much more confined diffusion path in terms of
425 pore limit diameter (PLD) and largest cavity diameter (LCD) than those with top 5% rMPS, despite
426 their similarity in the distribution of void fraction. The separation mechanism is quite different
427 between EBINUA02 and the MOF (LUDLAZ) with the highest rMPS. While a small pore aperture
428 (PLD: 2.91 Å and LCD: 3.96 Å) in EBINUA02 results in faster diffusion and stronger adsorption
429 of C_2H_4 over C_2H_6 , the less confined diffusion path in LUDLAZ (PLD: 4.18 Å and LCD: 5.96 Å)
430 leads to negligible difference in the diffusion. In that case, the membrane selectivity is mostly
431 contributed by its ethane-selective solubility.

432 The computational efficiency of the theoretical tools for predicting the sorption and diffusion
433 properties of nanoporous materials enables the design MOF membranes with both high membrane
434 selectivity and permeability using the genetic algorithm (GA). Compared with high-throughput
435 screening, not only can GA explore the material design space with targeted properties, but it takes
436 less attempts to identify the most promising candidates as well. The best MOF discovered by GA
437 consists metal node - $(CO_2-\kappa^2O)TbO_2(\mu-CO_2-\kappa^2O)_4TbO_2(CO_2-\kappa^2O)$ with the yfk topology. The
438 designed material has both permeability and membrane selectivity significantly larger than the
439 threshold values set in the fitness function. Besides, its overall membrane separation performance
440 is better than all existing experimental MOF candidates. The computational workflow used in the
441 work thus demonstrates the capability of inverse design to accelerate the discovery of nanoporous
442 materials, especially reticular materials (such as MOFs and COFs) for gas storage and separation.

443 **4. Methods**

444 ***4.1 Molecular Models***

445 In this work, ethane (C_2H_6) and ethene (C_2H_4) molecules are modeled as two united-atom
446 groups separated by a fixed bond length.³⁸ The detailed force field parameters can be found in
447 Supplementary Table 1. These force-field parameters are able to reproduce the adsorption
448 isotherms of ethane and ethene in nanoporous materials.³⁹ They also predict reasonable diffusion
449 coefficients in comparison with limited experimental data. For example, the diffusivity predicted
450 in this work agrees well with that from experiment for C_2H_6 in MOF-5 [$2.42 \times 10^{-8} \text{ m}^2/\text{s}$ vs $1.8\sim2.1$
451 $\times 10^{-8} \text{ m}^2/\text{s}$ (exp)]. Metal-organic frameworks (MOFs) are considered to be rigid with the universal
452 force field (UFF) for all nonbonded interactions.⁴⁰ While the flexibility of MOFs may play an
453 important role in determining the efficiency of gas separation, a reliable description of such effects
454 is computationally prohibitive for high-throughput screening because it would require input from

455 high-level quantum-mechanical calculations.⁴¹ Recently, a systematic examination of the impacts
456 of MOF flexibility on molecular diffusivities indicates that the rigid-structure assumption yields
457 reasonable diffusion coefficients for rigid molecules such as ethane and ethene investigated in the
458 present work.⁴² As mentioned above, the diffusivity of C₂H₆ in MOF-5 predicted in this work
459 agrees well with that from experiment.

460 The Lennard-Jones (LJ) 12-6 potential is truncated and shifted to zero at 12.9 Å, and the
461 Lorentz-Berthelot mixing rule is used for the energy and size parameters between different kinds
462 of atoms. The periodic boundary condition is applied to all cell axes. The unit cell is duplicated
463 such that the length along each lattice axis is at least two times the cutoff distance. The structural
464 properties, such as the pore limit diameter, the largest cavity diameter and the void fraction, are
465 calculated with Zeo++.⁴³

466 **4.2 Adsorption Separation**

467 Nanoporous materials have been widely used as adsorbent in industrial applications. In the low
468 pressure region, the adsorption selectivity for an equimolar mixture of two gas species can be
469 measured with the ratio of Henry's constants³⁴

$$470 \quad \alpha^{\text{IM}} = \frac{K_{\text{h},2}}{K_{\text{h},1}} \quad (3)$$

471 where $K_{\text{h},i}$ represents the Henry's constant of component i . For a gas molecule with a rigid
472 conformation, the Henry's constant can be calculated via the integration of the external potential
473 due to its interaction with the nanoporous material¹⁴⁴

$$474 \quad K_{\text{h}} = \frac{1}{8\pi^2 k_B T V} \int d\omega \int d\mathbf{r} \exp \left[-\beta \phi^{\text{ext}}(\mathbf{r}, \omega) \right] \quad (4)$$

475 where $\beta = 1/(k_B T)$, k_B stands for the Boltzmann constant, T is the absolute temperature, V
476 represents the system volume, ϕ^{ext} is the external potential, *i.e.*, the potential energy due to the

477 interaction of a gas molecule with all atoms from the porous material, \mathbf{r} represents the cartesian
478 coordinates for the center of mass of the gas molecule, and ω stands for its Euler angles. For each
479 MOF, the Henry's constants for C₂H₆ and C₂H₄ are numerically evaluated via midpoint rule with
480 the step size of 1 Å and 45° for spatial and rotational variables, respectively.

481 **4.3 Membrane Separation**

482 According to the solution-diffusion model, the membrane permeability is defined as the
483 Henry's constant multiplied by the gas diffusion coefficient at infinite dilution. The membrane
484 selectivity can thus be calculated from⁴⁴

485
$$k^{\text{IM}} = \frac{K_{\text{h},2}}{K_{\text{h},1}} \frac{D_{0,2}}{D_{0,1}} = \frac{P_2}{P_1} \quad (5)$$

486 where $D_{0,i}$ stands for the diffusion coefficient of component i at infinite dilution, and P_i represent
487 the permeability. In evaluating the membrane selectivity, we use the average of diffusion
488 coefficients along the three lattice vectors (viz., x -, y -, z -axis in cartesian coordinate if the lattice
489 vectors are mutually orthogonal)

490
$$D_0 = \frac{D_{0,a} + D_{0,b} + D_{0,c}}{3}. \quad (6)$$

491 Along each direction, the diffusivity can be calculated independently according to the transition-
492 state theory (TST)

493
$$D_{0,\alpha} = \frac{1}{2} k a_\alpha^2. \quad (7)$$

494 where α stands for the direction of lattice vector, k represents the transmission rate (viz., the
495 hopping rate of the gas molecule), and a_α stands for the hopping distance between neighboring
496 unit cells along the direction of lattice vector α . The hopping rate can be obtained from the
497 minimum energy path (MEP) via the Bennett-Chandler formula^{45,46}

498

$$k = \sqrt{\frac{k_B T}{2\pi m}} \frac{\exp[-\beta\phi^{\text{ext}}(s^*)]}{\int_0^1 \exp[-\beta\phi^{\text{ext}}(s)] ds}. \quad (8)$$

499 where s is a normalized dimensionless variable along the MEP, and s^* represents the transition
 500 state. The diffusion coefficient predicted by Equation (7) depends heavily on the accuracy of the
 501 MEP.

502 The mathematical details and the accuracy of MEP calculations for predicting the
 503 diffusivity of rigid molecules, such as C₂H₄ and C₂H₆, can be found in our previous work.²⁵ Here,
 504 we recapitulate only the key steps to identify the MEP via the simplified string method. First, we
 505 locate the starting point of the string (i.e., the diffusion path or MEP) by searching the position and
 506 orientation of a gas molecule that minimize the external potential at the entrance plane. Because
 507 of the periodic structure of MOFs, the starting and end points of the string have identical relative
 508 configurations within their own unit cells. Next, we construct an initial string by evenly placing a
 509 certain number of points (viz., images) between the starting and end points. Finally, MEP is
 510 obtained by iterative evolution of the images along the string according to the gradient of the full
 511 external potential. After each round of iteration, the string is renormalized to avoid images
 512 collectively falling into any local energy minima.

513 All diffusion coefficients reported in this work are predicted from the MEP obtained from
 514 the GPU-accelerated simplified string method. We have also validated the diffusion coefficients
 515 calculated with our method by carrying out molecular dynamics (MD) simulation for top 5 MOFs
 516 with highest rMPS and for the best inverse designed MOF. For all MD simulations, we used the
 517 LAMMPS package with the Nose-Hoover thermostat for controlling the temperature. The detailed
 518 settings follow the protocol suggested in the literature for infinite dilution.⁴⁷

519 **4.4 Genetic Algorithm**

520 For inverse design, we use the genetic algorithm (GA) to construct MOFs with desired
521 properties. Because MOFs can be decomposed into the secondary building blocks (SBUs), each
522 material may be considered as a ‘chromosome’ of different topologies, metal nodes and organic
523 linkers. Because the supermajority of MOF topologies can accommodate no more than two types
524 of metal nodes and three types of organic linkers, each chromosome consists of 6 genes, and each
525 gene is represented by an integer which corresponds to a specific topology, node or linker. The
526 chromosome representation allows for the efficient sampling of all possible combinations of
527 topology and SBUs with GA. The population is set as 2,000 which makes the initial generation to
528 have diverse combinations of topologies, nodes and linkers. Three evolutions are carried after the
529 initial population and a total of 8,000 combinations of topologies, nodes and linkers is explored to
530 find the optimal MOF structure with desired properties. Compared with the MOF structural
531 database used in high-throughput screening, less MOF structures are used in the GA to benchmark
532 its computational performance for the inverse design despite a much larger chemical space is
533 considered. In the initial population, the 2,000 chromosomes are generated by the random selection
534 of topologies, nodes and edges in the SBU database.³⁷ In each generation, 10 MOFs are used to
535 generate the offspring via single point crossover. The next generation of MOFs are selected by
536 stochastic universal selection to avoid bias towards the SBUs with low fitness values while 30%
537 MOFs would have a random mutation on their genes. In this work, PyGAD library is used for the
538 genetic algorithm.⁴⁸ PORMAKE is used to construct MOFs when the chromosome values are
539 assigned.³⁷

540 **Data availability**

541 The authors declare that the data supporting this study are available within the paper and its
542 Supplementary Information files. Additional data that support the findings of this study are
543 available from the corresponding author upon reasonable request.

544 **Code availability**

545 The code used in this work can be accessed from the associated GitHub repository
546 (<https://github.com/MusenZhou/inverse-design-MOF-membrane>).

547 **Acknowledgement**

548 This work is financially supported by the National Science Foundation's Harnessing the Data
549 Revolution (HDR) Big Ideas Program under Grant No. NSF 1940118. We acknowledge the
550 NVIDIA corporation for donation of NVIDIA A100 GPU through NVIDIA Academic Hardware
551 Grant Program.

552 **Author Contributions**

553 M. Z. and J. W. conceptualized the project and designed the methodology. M. Z. wrote the
554 code and performed the computation including collection of literature data. J.W. procured funding
555 and supervised the project. Both authors were involved with the writing of the paper.

556 **Competing Interests**

557 The Authors declare no Competing Financial or Non-Financial Interests.

558 **Reference**

- 559 1 Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. *Nature* **532**,
560 435-437 (2016). <https://doi.org/10.1038/532435a>
- 561 2 Rungta, M., Zhang, C., Koros, W. J. & Xu, L. Membrane - based ethylene/ethane
562 separation: The upper bound and beyond. *AIChE J.* **59**, 3475-3489 (2013).
- 563 3 Ding, Q. *et al.* Exploiting equilibrium-kinetic synergistic effect for separation of ethylene
564 and ethane in a microporous metal-organic framework. *Sci. Adv.* **6**, eaaz4322 (2020).
565 <https://doi.org/10.1126/sciadv.aaz4322>
- 566 4 Li, L. *et al.* Ethane/ethylene separation in a metal-organic framework with iron-peroxo
567 sites. *Science* **362**, 443-446 (2018). <https://doi.org/10.1126/science.aat0586>

568 5 Lv, D. *et al.* Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents. *Chem. Eng. J.*, 133208 (2021).

569 6 Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes - a review and comparison with MOFs. *Chem. Soc. Rev.* **44**, 7128-7154 (2015). <https://doi.org:10.1039/c5cs00292c>

570 7 Li, J. R., Sculley, J. & Zhou, H. C. Metal-organic frameworks for separations. *Chem. Rev.* **112**, 869-932 (2012). <https://doi.org:10.1021/cr200190s>

571 8 Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. *Chem. Soc. Rev.* **38**, 1257-1283 (2009). <https://doi.org:10.1039/b81773j>

572 9 Zhou, M., Vassallo, A. & Wu, J. Toward the inverse design of MOF membranes for efficient D2/H2 separation by combination of physics-based and data-driven modeling. *J. Membr. Sci.* **598** (2020). <https://doi.org:10.1016/j.memsci.2019.117675>

573 10 Wang, J., Zhou, M., Lu, D., Fei, W. & Wu, J. Virtual Screening of Nanoporous Materials for Noble Gas Separation. *ACS Appl. Nano Mater.* **5**, 3701-3711 (2022). <https://doi.org:10.1021/acsanm.1c03907>

574 11 Bárcia, P. S. *et al.* Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. *Microporous Mesoporous Mater.* **139**, 67-73 (2011).

575 12 Oh, H. *et al.* A cryogenically flexible covalent organic framework for efficient hydrogen isotope separation by quantum sieving. *Angew. Chem. Int. Ed.* **52**, 13219-13222 (2013). <https://doi.org:10.1002/anie.201307443>

576 13 Chen, G. *et al.* M-gallate MOF/6FDA-polyimide mixed-matrix membranes for C2H4/C2H6 separation. *J. Membr. Sci.* **620**, 118852 (2021).

577 14 Bao, Z. *et al.* Molecular Sieving of Ethane from Ethylene through the Molecular Cross - Section Size Differentiation in Gallate - based Metal - Organic Frameworks. *Angew. Chem. Int. Ed.* **57**, 16020-16025 (2018).

578 15 Zhou, M., Tian, Y., Fei, W. & Wu, J. Fractionation of Isotopic Methanes with Metal-Organic Frameworks. *J. Phys. Chem. C* **123**, 7397-7407 (2019). <https://doi.org:10.1021/acs.jpcc.8b11393>

579 16 Wang, J., Zhou, M., Lu, D., Fei, W. & Wu, J. Computational screening and design of nanoporous membranes for efficient carbon isotope separation. *Green Energy Environ.* **5**, 364-373 (2020). <https://doi.org:10.1016/j.gee.2020.07.025>

580 17 Kang, M. *et al.* High-Throughput Discovery of Ni(II) for Ethane/Ethylene Separation. *Adv. Sci.* **8**, e2004940 (2021). <https://doi.org:10.1002/advs.202004940>

581 18 Wijmans, J. G. & Baker, R. W. The solution-diffusion model: a review. *J. Membr. Sci.* **107**, 1-21 (1995).

582 19 Altintas, C. & Keskin, S. Computational screening of MOFs for C2H6/C2H4 and C2H6/CH4 separations. *Chem. Eng. Sci.* **139**, 49-60 (2016).

583 20 Tang, H. & Jiang, J. In silico screening and design strategies of ethane - selective metal - organic frameworks for ethane/ethylene separation. *AICHE J.* **67**, e17025 (2021).

584 21 Halder, P. & Singh, J. K. High-throughput screening of metal-organic frameworks for ethane-ethylene separation using the machine learning technique. *Energy Fuels* **34**, 14591-14597 (2020).

585 22 Kim, J. *et al.* Large-scale computational screening of zeolites for ethane/ethene separation. *Langmuir* **28**, 11914-11919 (2012). <https://doi.org:10.1021/la302230z>

613 23 Kärger, J., Ruthven, D. M. & Theodorou, D. N. *Diffusion in Nanoporous Materials*.
614 (WILEY-VCH, 2012).

615 24 Verploegh, R. J., Nair, S. & Sholl, D. S. Temperature and loading-dependent diffusion of
616 light hydrocarbons in ZIF-8 as predicted through fully flexible molecular simulations. *J.
617 Am. Chem. Soc.* **137**, 15760-15771 (2015).

618 25 Zhou, M. & Wu, J. Massively Parallel GPU-Accelerated String Method for Fast and
619 Accurate Prediction of Molecular Diffusivity in Nanoporous Materials. *ACS Appl. Nano
620 Mater.* **4**, 5394-5403 (2021). <https://doi.org:10.1021/acsanm.1c00727>

621 26 Zhou, M. & Wu, J. A GPU implementation of classical density functional theory for rapid
622 prediction of gas adsorption in nanoporous materials. *J. Chem. Phys.* **153**, 074101 (2020).
623 <https://doi.org:10.1063/5.0020797>

624 27 Glaser, J. *et al.* Strong scaling of general-purpose molecular dynamics simulations on
625 GPUs. *Comput. Phys. Commun.* **192**, 97-107 (2015).

626 28 Kutzner, C. *et al.* More bang for your buck: Improved use of GPU nodes for GROMACS
627 2018. *J. Comput. Chem.* **40**, 2418-2431 (2019). <https://doi.org:10.1002/jcc.26011>

628 29 Kim, B., Lee, S. & Kim, J. Inverse design of porous materials using artificial neural
629 networks. *Sci. Adv.* **6**, eaax9324 (2020). <https://doi.org:10.1126/sciadv.aax9324>

630 30 Yao, Z. *et al.* Inverse design of nanoporous crystalline reticular materials with deep
631 generative models. *Nat. Mach. Intell.* **3**, 76-86 (2021). [https://doi.org:10.1038/s42256-020-00271-1](https://doi.org:10.1038/s42256-020-
632 00271-1)

633 31 Gustafson, J. A. & Wilmer, C. E. Intelligent Selection of Metal-Organic Framework Arrays
634 for Methane Sensing via Genetic Algorithms. *ACS Sens.* **4**, 1586-1593 (2019).
635 <https://doi.org:10.1021/acssensors.9b00268>

636 32 Chung, Y. G. *et al.* In silico discovery of metal-organic frameworks for precombustion
637 CO(2) capture using a genetic algorithm. *Sci. Adv.* **2**, e1600909 (2016).
638 <https://doi.org:10.1126/sciadv.1600909>

639 33 Dou, H. *et al.* Boron Nitride Membranes with a Distinct Nanoconfinement Effect for
640 Efficient Ethylene/Ethane Separation. *Angew. Chem. Int. Ed.* **58**, 13969-13975 (2019).
641 <https://doi.org:10.1002/anie.201907773>

642 34 Cotterman, R. L., Schwarz, B. J. & Prausnitz, J. M. Molecular thermodynamics for fluids
643 at low and high densities. Part I: Pure fluids containing small or large molecules. *AIChE J.*
644 **32**, 1787-1798 (1986). <https://doi.org:10.1002/aic.690321104>

645 35 McKellar, S. C. *et al.* The effect of pressure on the post-synthetic modification of a
646 nanoporous metal-organic framework. *Nanoscale* **6**, 4163-4173 (2014).
647 <https://doi.org:10.1039/c3nr04161a>

648 36 Tian, L., Chen, Z., Yu, A., Song, H.-B. & Cheng, P. Novel flexible bis-triazole bridged
649 copper (II) coordination polymers varying from one-to three-dimensionality.
650 *CrystEngComm* **14**, 2032-2039 (2012).

651 37 Lee, S. *et al.* Computational Screening of Trillions of Metal-Organic Frameworks for High-
652 Performance Methane Storage. *ACS Appl. Mater. Interfaces* **13**, 23647-23654 (2021).
653 <https://doi.org:10.1021/acsami.1c02471>

654 38 Wu, Y., Chen, H., Liu, D., Qian, Y. & Xi, H. Adsorption and separation of ethane/ethylene
655 on ZIFs with various topologies: Combining GCMC simulation with the ideal adsorbed
656 solution theory (IAST). *Chem. Eng. Sci.* **124**, 144-153 (2015).
657 <https://doi.org:10.1016/j.ces.2014.07.019>

658 39 Bux, H., Chmelik, C., Krishna, R. & Caro, J. Ethene/ethane separation by the MOF
659 membrane ZIF-8: molecular correlation of permeation, adsorption, diffusion. *J. Membr.*
660 *Sci.* **369**, 284-289 (2011).

661 40 Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full
662 periodic table force field for molecular mechanics and molecular dynamics simulations. *J.*
663 *Am. Chem. Soc.* **114**, 10024-10035 (2002). <https://doi.org:10.1021/ja00051a040>

664 41 Heinen, J. & Dubbeldam, D. On flexible force fields for metal-organic frameworks: Recent
665 developments and future prospects. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **8**, e1363
666 (2018). <https://doi.org:10.1002/wcms.1363>

667 42 Yang, Y. & Sholl, D. S. A systematic examination of the impacts of MOF flexibility on
668 intracrystalline molecular diffusivities. *J. Mater. Chem. A* **10**, 4242-4253 (2022).

669 43 Willem, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and
670 tools for high-throughput geometry-based analysis of crystalline porous materials.
671 *Microporous Mesoporous Mater.* **149**, 134-141 (2012).
672 <https://doi.org:10.1016/j.micromeso.2011.08.020>

673 44 Haldoupis, E., Nair, S. & Sholl, D. S. Efficient calculation of diffusion limitations in metal
674 organic framework materials: a tool for identifying materials for kinetic separations. *J. Am.*
675 *Chem. Soc.* **132**, 7528-7539 (2010). <https://doi.org:10.1021/ja1023699>

676 45 Bennett, C. Molecular Dynamics and Transition State Theory: The Simulation of
677 Infrequent Events in Algorithms for Chemical Computations *ACS Symposium Series* Vol.
678 46 Ch. 4, 63-97 (American Chemical Society, 1977).

679 46 Chandler, D. Statistical mechanics of isomerization dynamics in liquids and the transition
680 state approximation. *J. Chem. Phys.* **68**, 2959-2970 (1978).

681 47 Xu, H., Cabriolu, R. & Smit, B. Effects of Degrees of Freedom on Calculating Diffusion
682 Properties in Nanoporous Materials. *J. Chem. Theory Comput.* **18**, 2826-2835 (2022).
683 <https://doi.org:10.1021/acs.jctc.2c00094>

684 48 Gad, A. F. Pygad: An intuitive genetic algorithm python library. Preprint at
685 <https://arxiv.org/abs/2106.06158> (2021).

686

687 **Figure captions**

688 **Figure 1.** Selectivity vs. capacity for CoRE MOFs used in C₂H₄/C₂H₆ separation. (a) Adsorption
689 selectivity. The green line is fitted with $\alpha^{\text{IM}}=0.2516e^{-0.7411\log(K)}$. (b) Membrane selectivity. The red
690 line denotes the Robeson boundary, and the color stands for the percentile of relative membrane
691 performance score (rMPS): the red, gray and blue represent the highest, intermediate, and the
692 lowest rMPS, respectively. The dashed line marks the membrane selectivity of 1.

693

694 **Figure 2.** Distributions of the pore limit diameter (a) and the largest cavity diameter (b) for all
695 CoRE MOFs and MOFs with top 5% ideal membrane selectivity and relative performance score
696 (rMPS) for C₂H₄/C₂H₆ separation.

697

698 **Figure 3.** The position and orientation of an ethene molecule along the minimum energy path
699 (MEP) in EBINUA02 (a) and LUDLAZ (b). Here the detailed molecular structures are only for

700 illustration. The energy landscape along the MEP for ethane and ethene in EBINUA02 (c) and
701 LUDLAZ (d) at 300 K.
702

703 **Figure 4.** Schematic illustration for chromosome representation of MOF and genetic algorithm
704 used in this work. (a) Chromosome representation of MOFs investigated in this work where
705 topology, node and edge are treated as genes in the chromosome. (b) Workflow of the genetic
706 algorithm (GA) for the inverse MOF design. Here square boxes represent the secondary building
707 blocks (SBUs) used for MOF construction. In analogy to the genes in the chromosome, the choice
708 of SBUs directly determines the physiochemical properties and separation performance. Black,
709 brown and green boxes represent the topology, node and edge, respectively.
710

711 **Figure 5.** Membrane selectivity vs. capacity for CoRE MOFs and inverse designed MOFs used in
712 C_2H_4/C_2H_6 separation. (a) Membrane separation selectivity vs. permeability for CoRE MOFs
713 (filled dots) and inverse designed MOFs (open symbols). The distribution of membrane selectivity
714 (b) and permeability (c) for inverse designed MOFs. The red line denotes the Robeson boundary,
715 and color spectrum stands for the percentile of relative membrane performance score (rMPS): the
716 red, white and blue represent the highest, intermediate and the lowest rMPS, respectively. Brown
717 box, purple circle, green triangle and gold star stand for inverse designed MOFs in generation 0,
718 1, 2, 3, respectively.
719

720 **Figure 6.** Minimum energy path (MEP) of C_2H_6 and C_2H_4 in yfk-N379. (a) The position and
721 orientation of an ethene molecule along the MEP (yellow line) in yfk-N379. (b) Energy landscape
722 along the MEP for ethane and ethene in yfk-N379 at 300 K.
723

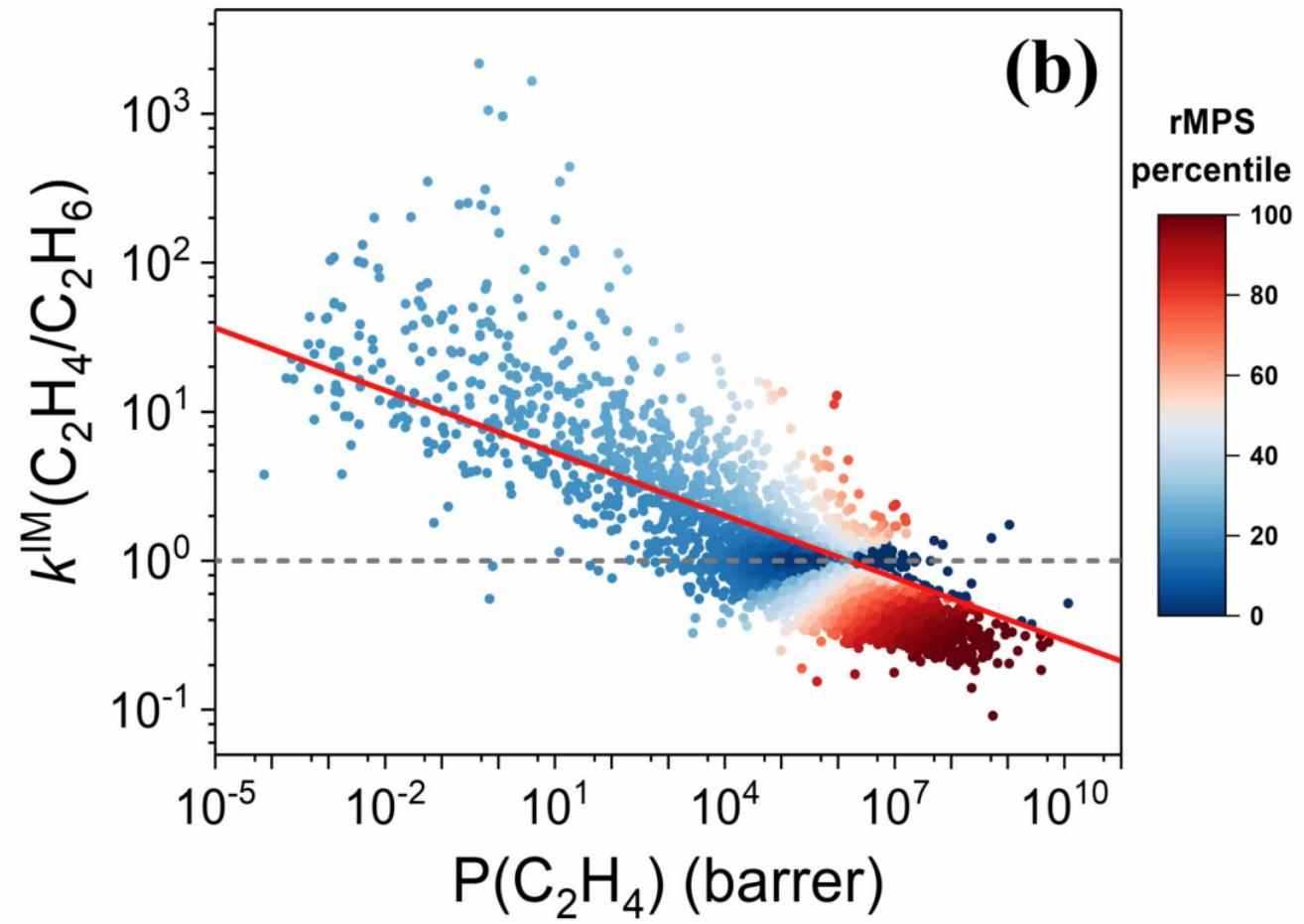
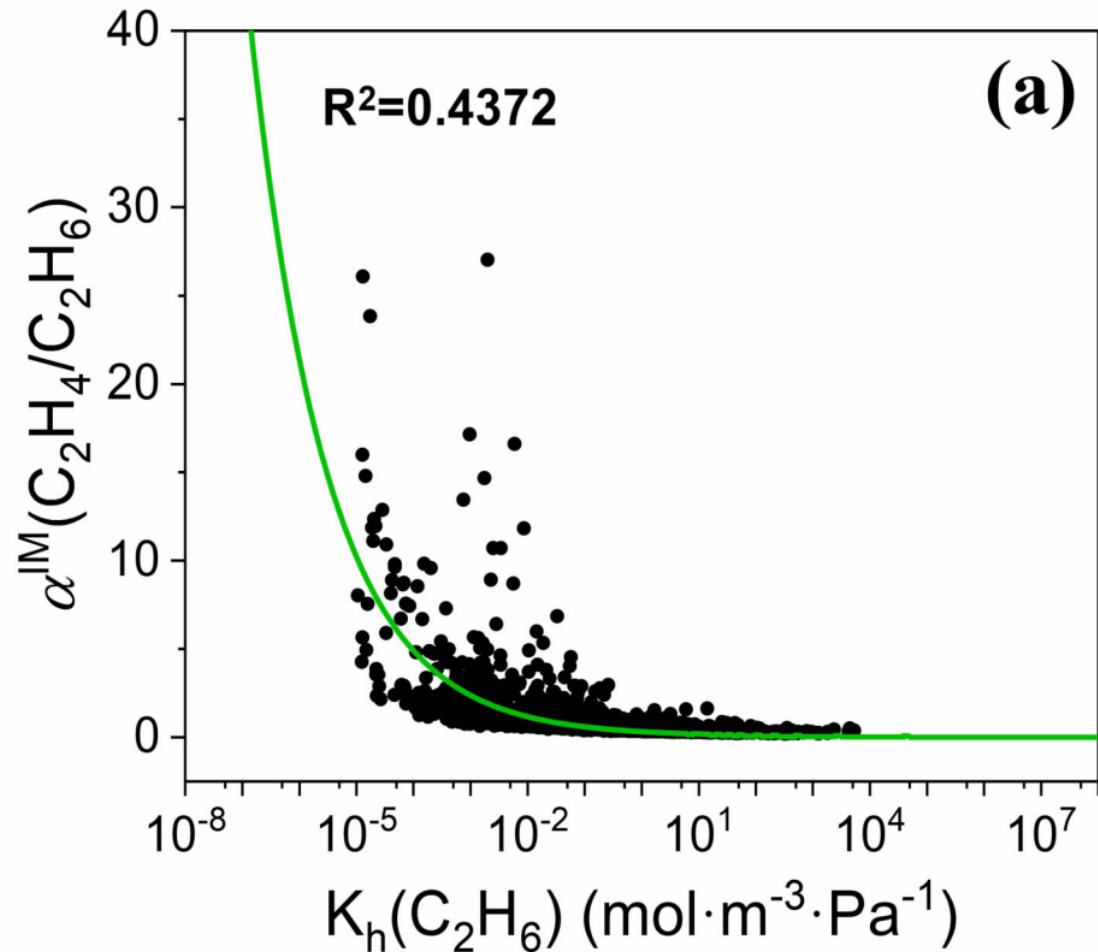
Table 1. Henry's constants (K_h), ideal selectivity (α^{IM}) and self-diffusivity (D_0) of top ethene-selective MOFs for adsorption separation of C_2H_4/C_2H_6 at 300 K (The diffusion coefficients are shown only if they are larger than $1 \times 10^{-20} \text{ m}^2 \cdot \text{s}^{-1}$)

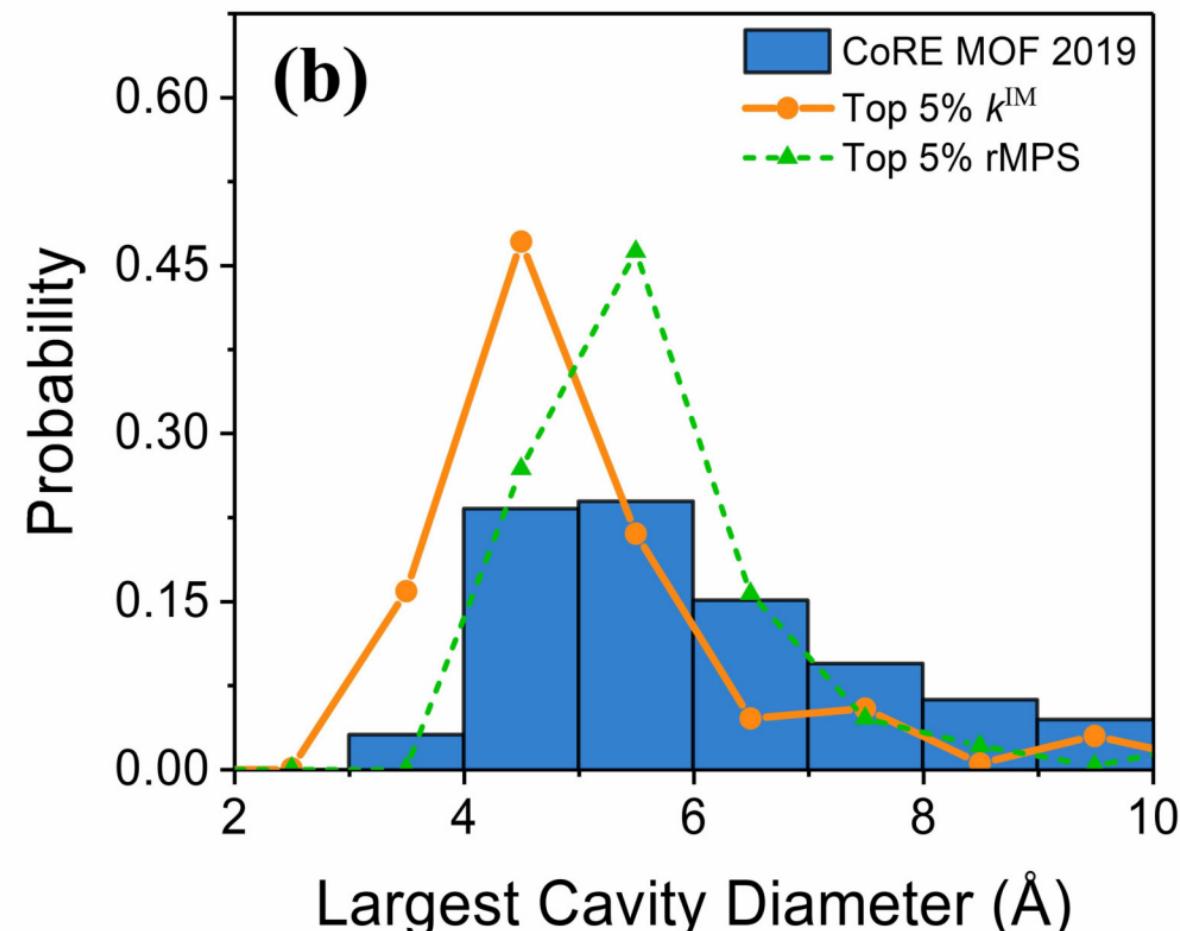
MOF	$K_h(C_2H_4)$ ($\text{mol} \cdot \text{m}^{-3} \cdot \text{Pa}^{-1}$)	$K_h(C_2H_6)$ ($\text{mol} \cdot \text{m}^{-3} \cdot \text{Pa}^{-1}$)	$\alpha^{IM}(C_2H_4/C_2H_6)$	$D_0(C_2H_4)$ ($\text{m}^2 \cdot \text{s}^{-1}$)	$D_0(C_2H_6)$ ($\text{m}^2 \cdot \text{s}^{-1}$)
PIRYOF	5.474×10^{-2}	2.027×10^{-3}	27.01		
BADHIA	3.454×10^{-4}	1.325×10^{-5}	26.07		
BADHOG	4.205×10^{-4}	1.766×10^{-5}	23.81		
EBINUA02	1.682×10^{-2}	9.829×10^{-4}	17.11	9.342×10^{-15}	7.377×10^{-17}
FEDKAB	9.997×10^{-2}	6.036×10^{-3}	16.56		

Table 2. Top ethane-selective MOFs for the separation of C₂H₄/C₂H₆ at 300 K by gas adsorption

MOF	K _h (C ₂ H ₄) (mol·m ⁻³ ·Pa ⁻¹)	K _h (C ₂ H ₆) (mol·m ⁻³ ·Pa ⁻¹)	α^{IM} (C ₂ H ₆ /C ₂ H ₄)	D ₀ (C ₂ H ₄) (m ² ·s ⁻¹)	D ₀ (C ₂ H ₆) (m ² ·s ⁻¹)
LUDLAZ	4.374×10^1	3.360×10^2	7.68	4.350×10^{-9}	6.313×10^{-9}
EFILUA	1.863×10^2	1.301×10^3	6.98	1.956×10^{-9}	1.188×10^{-9}
XUJSAY	3.360×10^1	2.107×10^2	6.27	6.291×10^{-9}	2.145×10^{-9}
ZAZNUL	2.735×10^1	1.697×10^2	6.20	6.604×10^{-9}	2.134×10^{-9}
KAXQIL	5.689×10^1	3.479×10^2	6.12	1.362×10^{-9}	1.088×10^{-9}

Table 3. Top MOFs for C₂H₄/C₂H₆ separation with the highest membrane selectivity (k^{IM}) at 300 K



MOF	K _h (C ₂ H ₄) (mol·m ⁻³ ·Pa ⁻¹)	K _h (C ₂ H ₆) (mol·m ⁻³ ·Pa ⁻¹)	D ₀ (C ₂ H ₄) (m ² ·s ⁻¹)	D ₀ (C ₂ H ₆) (m ² ·s ⁻¹)	k^{IM} (C ₂ H ₄ /C ₂ H ₆)
EBINUA02	1.682×10^{-2}	9.828×10^{-4}	9.342×10^{-15}	7.377×10^{-17}	2167.3
HAZGOF	9.344×10^{-4}	1.939×10^{-4}	1.438×10^{-12}	4.202×10^{-15}	1649.1
ALOLES	2.770×10^{-2}	6.686×10^{-2}	8.276×10^{-15}	3.271×10^{-18}	1048.2
EBINUA	1.030×10^{-2}	7.678×10^{-4}	4.007×10^{-14}	5.599×10^{-16}	960.1
EBINUA01	2.056×10^{-2}	2.320×10^{-3}	3.033×10^{-13}	6.128×10^{-15}	438.2


Table 4. Top MOFs with the highest relative membrane performance score (rMPS) for the separation of C₂H₄/C₂H₆ at 300 K

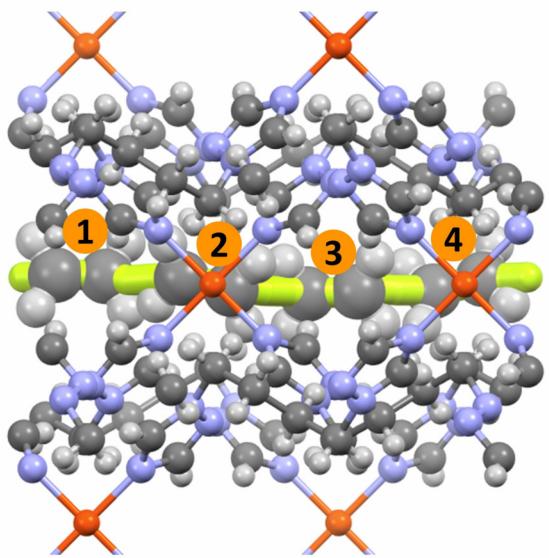
MOF	K _h (C ₂ H ₄) (mol·m ⁻³ ·Pa ⁻¹)	K _h (C ₂ H ₆) (mol·m ⁻³ ·Pa ⁻¹)	D ₀ (C ₂ H ₄) (m ² ·s ⁻¹)	D ₀ (C ₂ H ₆) (m ² ·s ⁻¹)	k ^{IM} (C ₂ H ₆ /C ₂ H ₄)	rMPS (barrer) × 10 ¹⁰
LUDLAZ	4.374 × 10 ¹	3.360 × 10 ²	4.350 × 10 ⁻⁹	6.313 × 10 ⁻⁹	11.1	5.597
PARMIG	9.666 × 10 ¹	5.599 × 10 ²	1.404 × 10 ⁻⁸	1.333 × 10 ⁻⁸	5.5	5.484
BEKSAM	4.511 × 10 ²	1.892 × 10 ³	9.052 × 10 ⁻⁹	4.231 × 10 ⁻⁹	2.0	1.339
MIMVEJ	2.869 × 10 ¹	1.443 × 10 ²	1.291 × 10 ⁻⁸	1.276 × 10 ⁻⁸	5.0	1.268
MORZID	1.842 × 10 ²	8.200 × 10 ²	7.613 × 10 ⁻⁹	6.568 × 10 ⁻⁹	3.8	1.046

Table 5. Properties of designed MOFs with both high membrane selectivity and permeability for the separation of C₂H₄/C₂H₆ at 300 K

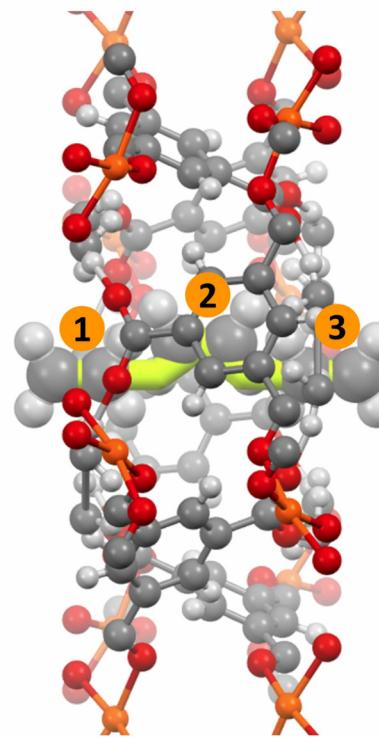
MOF	K _h (C ₂ H ₄) (mol·m ⁻³ ·Pa ⁻¹)	K _h (C ₂ H ₆) (mol·m ⁻³ ·Pa ⁻¹)	D ₀ (C ₂ H ₄) (m ² ·s ⁻¹)	D ₀ (C ₂ H ₆) (m ² ·s ⁻¹)	<i>k</i> ^{IM} (C ₂ H ₄ /C ₂ H ₆)
yfk-N379	1.682×10 ⁻²	9.828×10 ⁻⁴	1.677×10 ⁻⁹	1.467×10 ⁻⁹	20.8

C

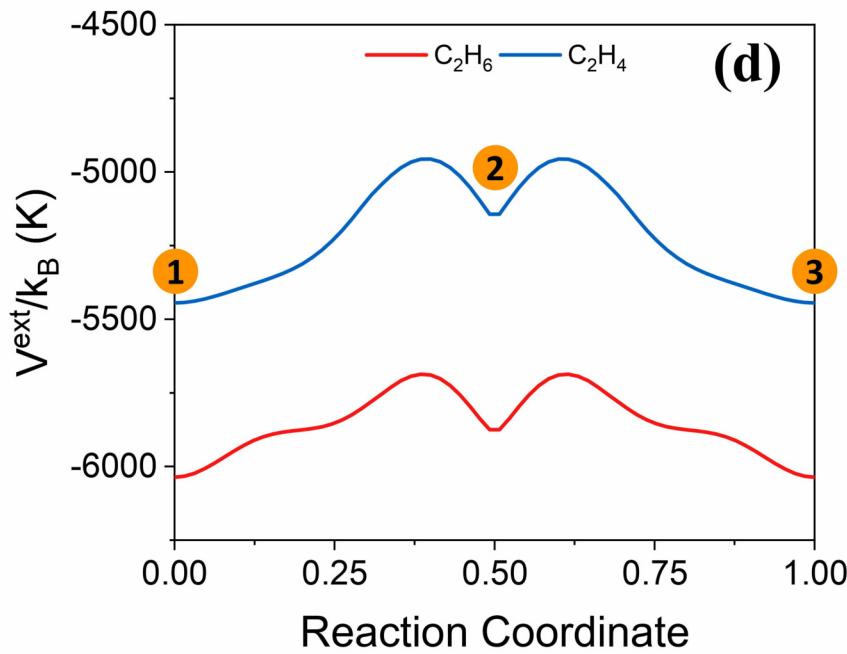
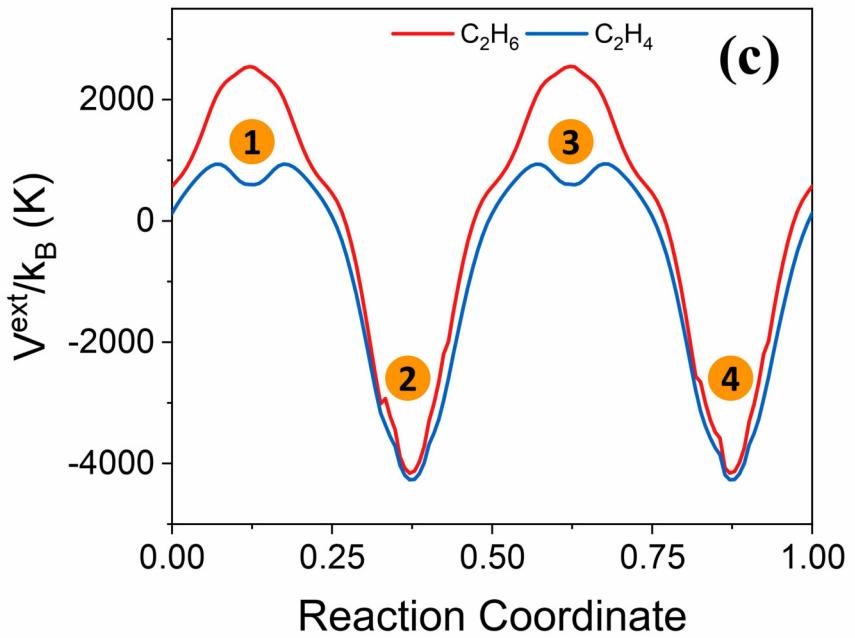
H


N

O


Cu

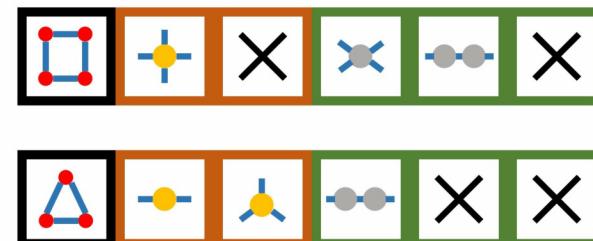
0 2 Å



(a)

(b)

(c)

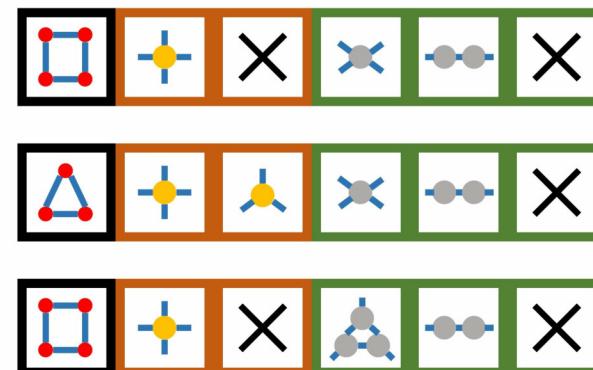
(a)


chromosome representation of MOF

(b)

genetic algorithm

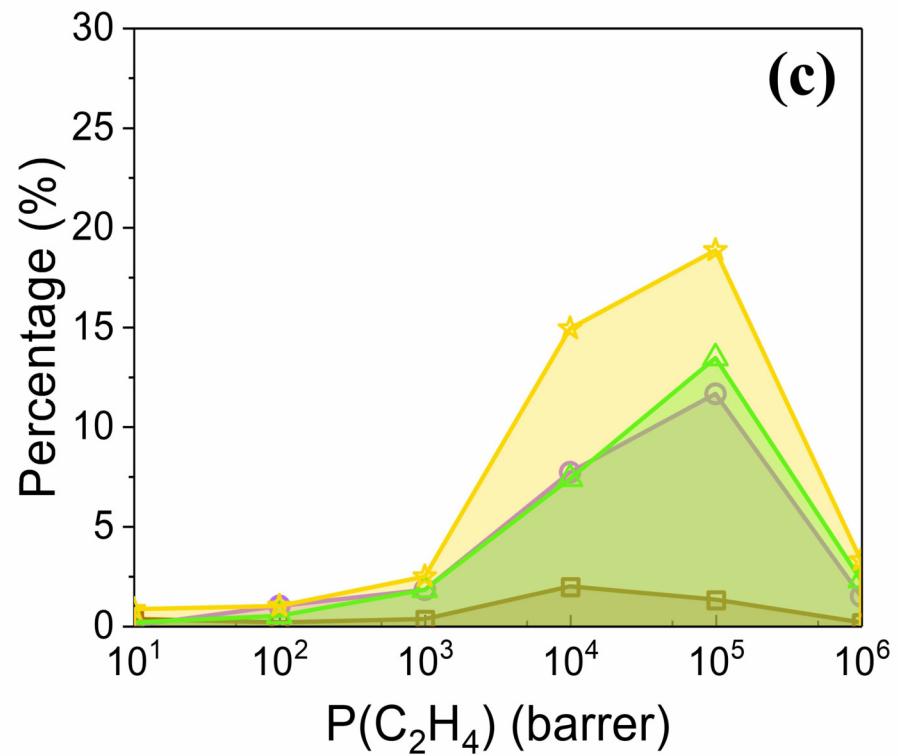
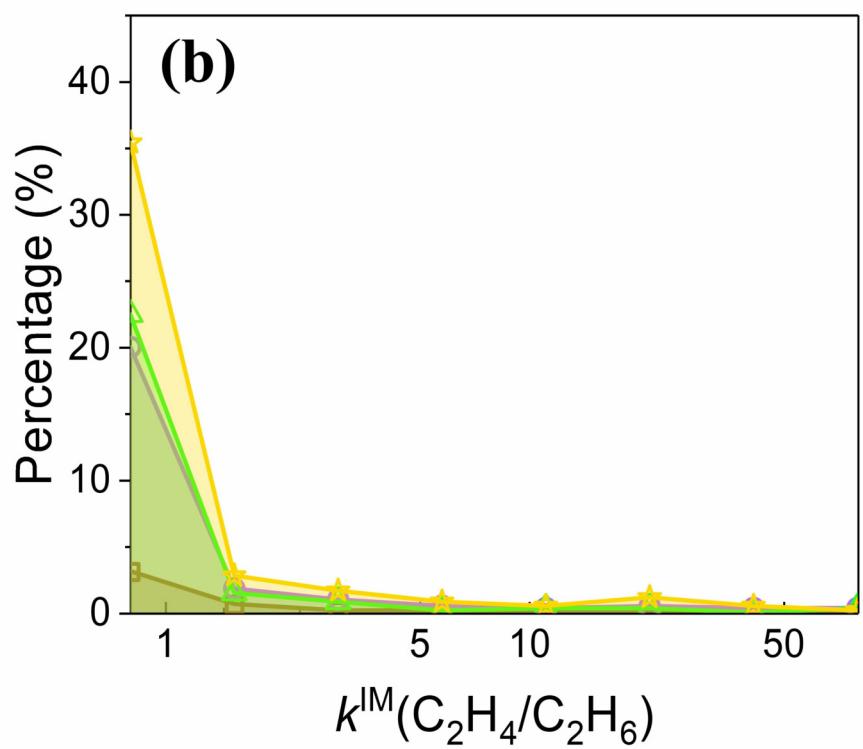
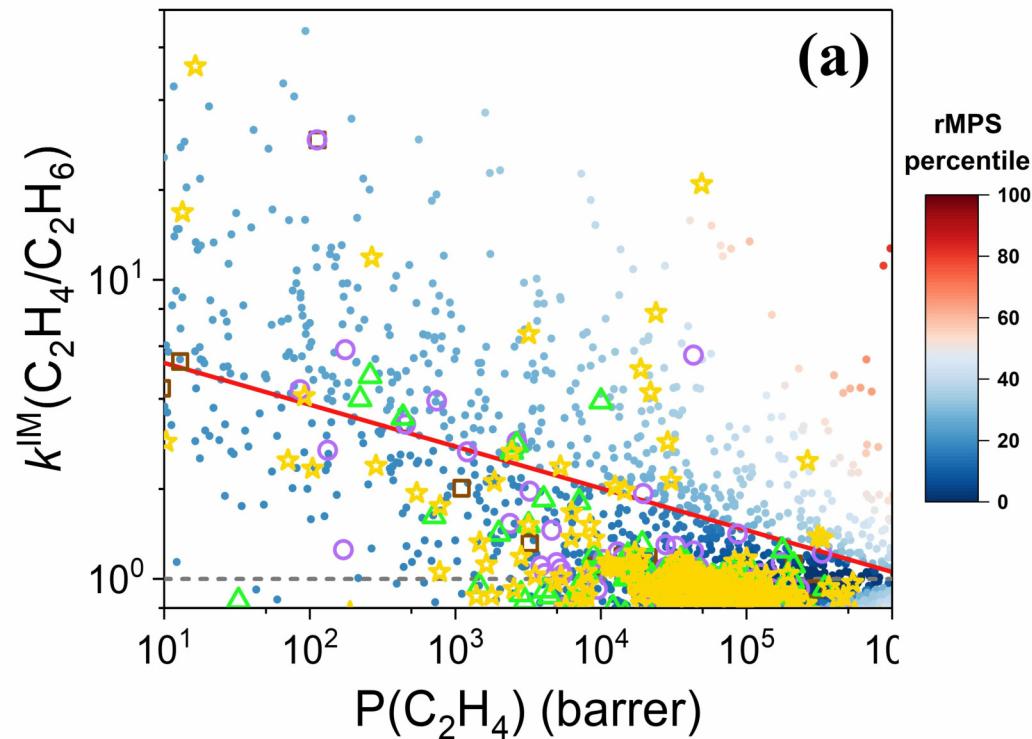
generation i

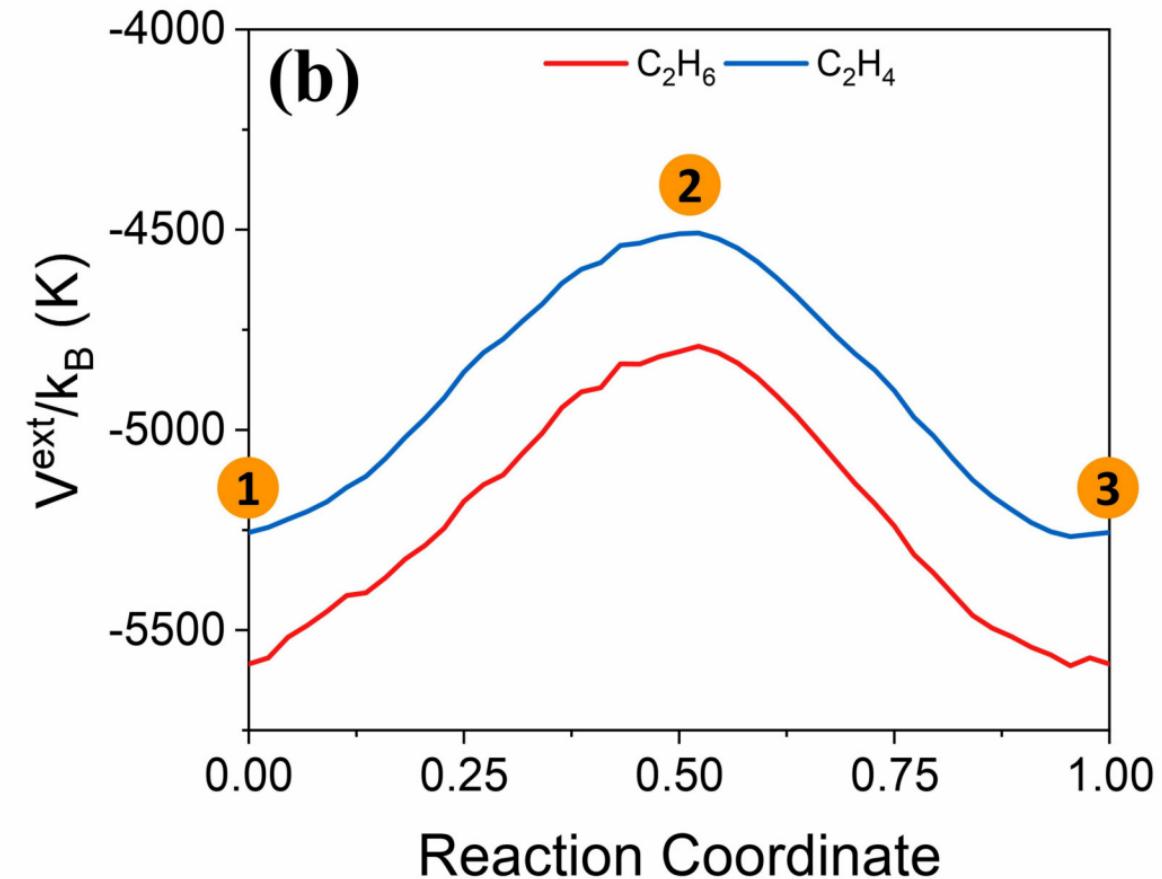
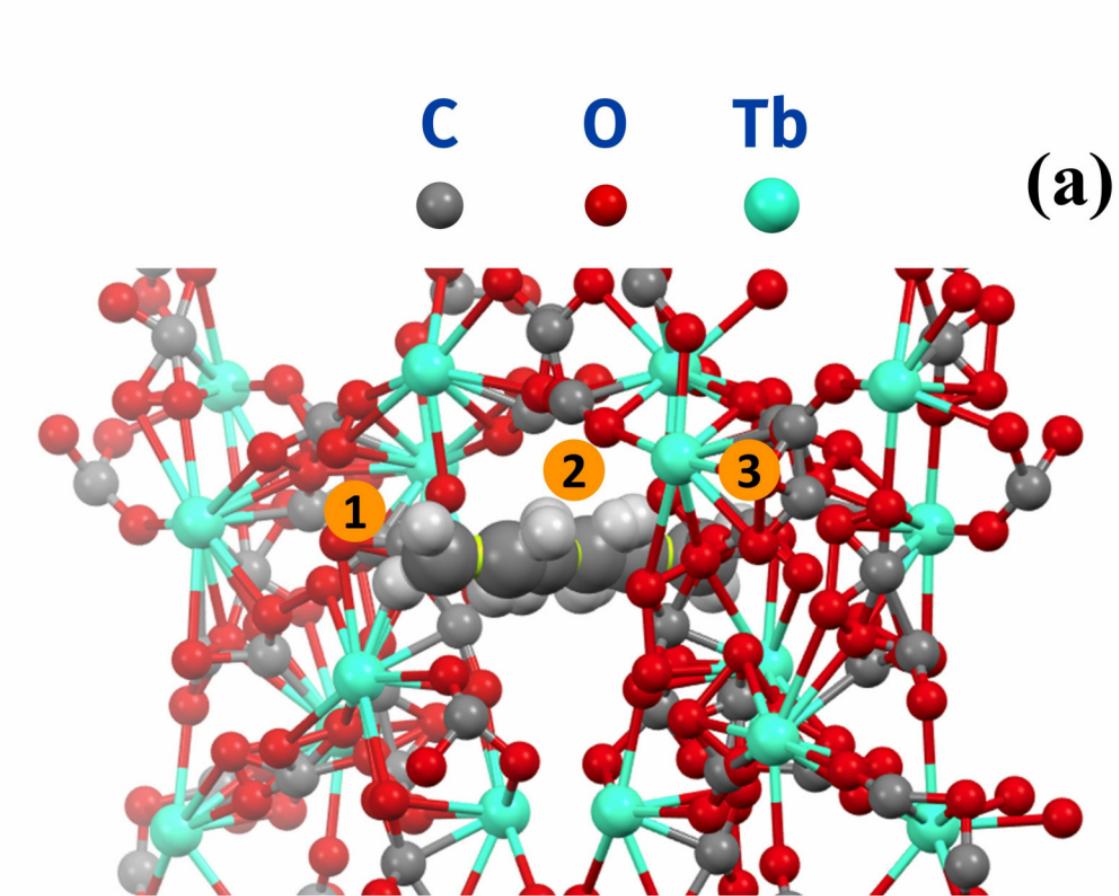

.....

evolution

maximize fitness function

generation $i+1$




elite



crossover

mutation

.....

- generation 0
- generation 1
- △ generation 2
- ★ generation 3

