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Abstract 5 

Efficient separation of C2H4/C2H6 mixtures is of paramount importance in the petrochemical 6 

industry. Nanoporous materials, especially metal-organic frameworks (MOFs), may serve the 7 

purpose owing to their tailorable structure and pore geometry. In this work, we propose a 8 

computational framework for high-throughput screening and inverse design of high-performance 9 

MOFs for adsorption and membrane processes. High-throughput screening of the computational-10 

ready, experimental (CoRE 2019) MOF database leads to materials with exceptionally high 11 

ethane-selective adsorption selectivity (LUDLAZ: 7.68) and ethene-selective membrane 12 

selectivity (EBINUA02: 2167.3). Moreover, the inverse design enables the exploration of a 13 

broader chemical space and identification of MOF structures with even higher membrane 14 

selectivity and permeability. In addition, a relative membrane performance score (rMPS) has been 15 

formulated to evaluate the overall membrane performance relative to the Robeson boundary. The 16 

computational framework offers guidelines for the design of MOFs and is generically applicable 17 

to materials discovery for gas storage and separation. 18 
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1. Introduction 20 

The efficiency of C2H4/C2H6 separation is important for the petrochemical industry because 21 

high-purity C2H4 is used as the primary feedstock for the synthesis of diverse chemical products 22 

including plastics, polyesters and rubber materials.1,2 Conventional processes for C2H4/C2H6 23 

separation are mostly based on high-pressure cryogenic distillation, which requires extensive 24 

energy input while suffers from low separation efficiency. To reduce the energy cost and increase 25 

the selectivity, it is desirable to develop alternative approaches such as adsorption or permeation 26 

processes based on nanoporous materials.3-5 27 

Metal-organic frameworks (MOFs) are ideal candidates for efficient separation of C2H4/C2H6 28 

because they have good mechanic stability, large specific surface area, and tailorable pore structure 29 

and geometry.6-8 In particular, such materials show promising performance for separating 30 

molecules with similar size and interaction energy, such as the mixtures of H2/D2 isotopes, of noble 31 

gases (Ar/Kr/Xe), and of xylene isomers.9-12 For C2H4/C2H6 separation, promising MOF 32 

candidates have been identified by experiments.3,4,13,14 Whereas the possible variations of MOFs 33 

are virtually unlimited and the separation efficiency is sensitive to the atomic details, it is 34 

practically infeasible to explore the design space only through experimentation. Previously, 35 

computational methods have been used to identify best material candidates for separation process 36 

through high-throughput screening.9,15,16 While the adsorption isotherms predicted by the 37 

computational methods are found in good agreement with experimental measurement,17 membrane 38 

processes are often considered more efficient to separate C2H4 from C2H6 leveraging the difference 39 

in both adsorption affinity and gas diffusivity.18 To the best of our knowledge, previous research 40 

on the computational screening of MOF database is mostly concerned with the separation of 41 

C2H4/C2H6 by adsorption.17,19-22 From the computational perspective, the assessment of MOF 42 
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materials for membrane separation is much more demanding because the evaluation of gas 43 

diffusivity in confined geometry is typically more time-consuming than that for gas adsorption. In 44 

particular, the strong confinement makes it computationally prohibitive to predict the diffusion 45 

coefficients of gas molecules in a large library of nanoporous materials using conventional 46 

methods such as molecular simulation (MD) simulation.23,24 47 

Although computational methods (e.g., MD, grand canonical Monte Carlo simulation, and 48 

classical density function theory) have been well established for accurate prediction of gas 49 

adsorption and diffusivity,25-28 the inverse design of nanoporous materials for separation processes 50 

remains a theoretical challenge from both computational and practical perspectives. While 51 

generative adversarial network (GAN) shows early success in the inverse design of zeolites for 52 

methane storage,29 its computational complexity increases significantly with the number of 53 

elements in the crystal structure. Besides, GAN easily breaks down and fails to converge for 54 

complicated crystalline materials such as MOFs because a large number of atomic types need to 55 

be considered. In contrast, variational autoencoder (VAE) can well accommodate the complex 56 

topology and molecular structure of the secondary building blocks (SBUs) by compressing the 57 

MOF structure into a text string and projecting it into the latent space.30 However, VAE requires 58 

accurate projection (viz., encode and decoder) between the crystal structure and a latent space, and 59 

the VAE training would become infeasible when a vast number of SBUs are considered for the 60 

MOF design. Alternatively, evolutionary algorithms, such as the genetic algorithm, are promising 61 

for the inverse design of MOFs because they can accommodate not only a large number of SBUs 62 

for MOF design, but also find the solution in a nonlinear space consisted of the material topology 63 

and SBUs.31,32 64 
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In previous work,25,26 we developed a computational procedure with GPU-acceleration that 65 

offers fast and accurate evaluation of sorption and diffusion properties of gas molecules in 66 

nanoporous materials. Empowered by the developed computational capability, here we perform 67 

high-throughput screening of the computational-ready experimental (CoRE 2019) MOF database 68 

(over 10k MOFs) for the separation of C2H4/C2H6 with adsorption and membrane processes. 69 

Compared with the state-of-art materials from the literature,4,33 the best MOFs identified in this 70 

work have significantly higher separation selectivity. The highest ethane-selective adsorption 71 

selectivity in LUDLAZ is up to 7.68, and the highest ethene-selective membrane selectivity in 72 

EBINUA02 can reach 2167.3. Leveraging on the high-throughput capability, a genetic algorithm 73 

(GA) is incorporated into our computational workflow to achieve the inverse design of MOF 74 

membranes with both high membrane selectivity and permeability. The inverse design allows us 75 

to explore a broader chemical space in comparison with high-throughput screening and identify 76 

MOFs with even higher membrane selectivity and permeability. The structural analyses of MOFs 77 

with best separation performance offer useful guidelines for the experimental design of MOFs for 78 

adsorption and membrane separation.  79 

2. Results and Discussion 80 

2.1 Screening CoRE MOF 2019 Database  81 

We first perform the high-throughput screening of the computational-ready experimental 82 

(CoRE) MOF 2019 database for separation of C2H4/C2H6 through adsorption and membrane 83 

processes. While high-throughput screening has been commonly used to find the best material 84 

candidates for gas adsorption, the procedure is more challenging for membrane separation because 85 

of the steep computational cost in evaluating the diffusion coefficients. Figure 1 shows the 86 

separation selectivity versus capacity for both adsorption and membrane separations. In Figure 1(a) 87 
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and Supplementary Figure 1, MOFs with Henry’s constants smaller than 1×10-5 mol·m-3·Pa-1 and 88 

the largest cavity diameters smaller than the hard-sphere diameter of ethene have been removed. 89 

Those structures can hardly accommodate ethane/ethene molecules thus are not further considered 90 

in this work. The hard-sphere diameters of ethane and ethene are calculated from the Barker-91 

Henderson theory34 based on their Lennard-Jones (LJ) parameters and more details are provided 92 

in Supporting Information. As shown in Figure 1(a), the maximum selectivity is less than 30 for 93 

ethene-selective MOFs suitable for adsorption separation. It decreases exponentially with the 94 

increase of the separation capacity (viz. adsorption amount) because highly confined pores are 95 

needed in order to achieve high ethene-selectivity.  The structural properties of top ethene-selective 96 

and ethane-selective MOFs are shown in Supplementary Table 2 and Supplementary Table 3, 97 

respectively. Such materials offer little pore volume to achieve high adsorption capacity. Table 1 98 

lists the properties of top 5 ethene-selective MOFs for the adsorption separation of C2H4/C2H6 at 99 

room temperature (300 K). 100 

 101 

Figure 1. Selectivity vs. capacity for CoRE MOFs used in C2H4/C2H6 separation. (a) Adsorption 102 
selectivity. The green line is fitted with αIM=0.2516e-0.7411log(K). (b) Membrane selectivity. The red 103 
line denotes the Robeson boundary, and the color stands for the percentile of relative membrane 104 
performance score (rMPS): the red, gray and blue represent the highest, intermediate, and the 105 
lowest rMPS, respectively. The dashed line marks the membrane selectivity of 1. 106 
 107 
Table 1. Henry’s constants (Kh), ideal selectivity (αIM) and self-diffusivity (D0) of top ethene-108 
selective MOFs for adsorption separation of C2H4/C2H6 at 300 K. The diffusion coefficients are 109 
shown only if they are larger than 1×10-20 m2·s-1. 110 
 111 

Although ethene-selective materials yield high selectivity in the separation of C2H4/C2H6 by 112 

gas adsorption, industrial applications desire ethane-selective processes because they can 113 

significantly reduce the energy cost. Supplementary Figure 1 shows that, consistent with the 114 

literature,4,5,20 the highest selectivity of ethane-selective MOFs identified in this work is much 115 
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smaller than that of ethene-selective MOFs because the stronger adsorption of smaller molecules 116 

(e.g., ethene) yields a larger adsorption selectivity of C2H4/C2H6 via the ultra-small pores of 117 

promising MOFs. It is worth noting that, different from ethene-selective MOF for the separation 118 

of C2H4/C2H6 via adsorption, the selectivity of ethane-selective MOFs increases with the capacity 119 

and none of the CoRE MOFs have the ethane-selective adsorption selectivity above 8.  120 

Table 2. Top ethane-selective MOFs for the separation of C2H4/C2H6 at 300 K by gas adsorption. 121 
 122 

Table 2 lists the top 5 ethane-selective MOFs with the highest adsorption selectivity of 123 

C2H6/C2H4 at 300 K. Although MOF candidates with high adsorption selectivity of C2H4/C2H6 124 

have been reported before,17,19-22 the materials identified in this work yield much higher selectivity 125 

for both ethene-selective and ethane-selective separations. Previously, the computational 126 

screening was carried either on a smaller structural database or a subset of large structural library 127 

(e.g., CoRE MOF 2019) that was restricted by certain structural and chemical criteria. While the 128 

application of these criteria would speed up the computation by reducing the number of materials 129 

to be evaluated, they ignore promising candidates due to the complex topology and structure. For 130 

the adsorption separation of C2H4/C2H6, the selectivity declines with the increase of loading 131 

amount. The reduction in adsorption selectivity can be attributed to the smaller difference between 132 

the adsorbate-adsorbate interactions in comparison to that between adsorbate and adsorbent 133 

interactions. 134 

According to the structural analysis of the promising materials (results shown in 135 

Supplementary Figure 2 and Supplementary Figure 3), the ethane-selective MOFs have less 136 

confined geometry in terms of the pore limit diameter (PLD), the largest cavity diameter (LCD) 137 

and pore size distribution in comparison with the ethene-selective MOFs. The increase in pore size 138 

leads to a much higher adsorption capacity for those MOFs with higher ethane-selectivity. It is 139 
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worth mentioning that the highest adsorption selectivity of ethane-selective MOF [LUDLAZ: 140 

αIM(C2H6/C2H4)=7.68] identified in this work is about 60% higher than the best nanoporous 141 

material found by the previous computational screening22, a hypothetical zeolite structure 142 

[αIM(C2H6/C2H4)=4.86]. The adsorption selectivity is more than 70% higher than that of the state-143 

of-art nanoporous material reported in the experimental literature4, Fe2(O2)(dobdc) with 144 

C2H6/C2H4 adsorption selectivity of 4.4. Besides, LUDLAZ has a much larger Henry’s constant 145 

[Kh(C2H6)=4.6056 cm3·g-1·Pa-1] than Fe2(O2)(dobdc) [Kh(C2H6)=0.0147 cm3·g-1·Pa-1], meaning 146 

much higher gravimetric adsorption capacity. We note in passing that LUDLAZ was originally 147 

synthesized by McKellar and coworkers to examine how ligand exchange affects the stability and 148 

compressibility of  MOF materials.35 For the top 5 ethane-selective MOFs, their pore size 149 

distributions characterized by N2 adsorption are shown in Supplementary Figure 3(b). These 150 

materials have similar micropores between 5 Å and 7 Å, rendering higher selectivity of ethane 151 

over ethene in adsorption separation.  152 

Compared with adsorption, gas separation via permeation through MOF membranes may 153 

achieve not only higher selectivity but also larger separation capacity. In addition, a membrane 154 

splits the feed stream into two purified sub-streams (viz., retentate stream and permeate stream) 155 

such that it does not require a recovery process even for ethene-selective operations. Therefore, 156 

the membrane process is often much less energy-intensive in comparison with adsorption. Figure 157 

1(b) shows the membrane selectivity versus membrane permeability in the units of barrer. The red 158 

line in Figure 1(b) denotes the Robeson boundary, a semi-empirical upper limit summarized by 159 

Rungta et al.2 based on the state-of-art polymer membranes for specifically separating ethane and 160 

ethene. We see that many MOFs in CoRE MOF 2019 database surpass the Robeson boundary, 161 

indicating their superior performance compared with the polymer membranes. The highest 162 
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membrane selectivity of C2H4/ C2H6 is 2167.3 in MOF – EBINUA02, which was synthesized by 163 

Tian et al.36 with 1D rhombic channel in the 3D diamond topology network. The selectivity is 164 

several orders of magnitude larger than the state-of-art membrane materials discovered by previous 165 

computational screening and experimental synthesis.19,33 Table 3 lists the top 5 MOFs with the 166 

highest membrane selectivity of C2H4/C2H6. 167 

Table 3. Top MOFs for C2H4/C2H6 separation with the highest membrane selectivity (kIM) at 300 168 
K. 169 
 170 

In our previous work,25,26 we proposed the membrane performance score (MPS) to evaluate 171 

the overall performance of nanoporous materials by combining the membrane selectivity and 172 

permeability. Although MPS offers a direct comparison of nanoporous materials with different 173 

permeability and selectivity, it does not evaluate the membrane performance relative to the upper 174 

limit of the state-of-art polymer membranes (viz., the Robeson boundary). Here, we propose a 175 

modification of MPS, which is originally defined as fast/slow fastMPS k P= × . The relative membrane 176 

performance score (rMPS) is defined as  177 

 ( )fast/slo w
Robeson
fast/w slorMPS fastk k P= − ×  (1) 178 

where k represents the membrane selectivity, P stands for the gas permeability, and the fast 179 

component refers to the one with higher permeability in the binary mixture. Since rMPS evaluates 180 

the overall performance of nanoporous materials relative to the Robeson boundary, MOFs with a 181 

selectivity below the Robeson boundary would have a smaller and negative rMPS compared with 182 

MPS if the membrane selectivity is larger than 1. When the membrane selectivity is smaller than 183 

1, MOFs with membrane selectivity below the Robeson boundary would have a higher rMPS 184 

because the selectivity of fast component over slow component is larger than that on the Robeson 185 

boundary with the same value of permeability. Because in rMPS the membrane selectivity is 186 
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defined in terms of the fast component over the slow component and the identity of the fast 187 

component might change for different materials, rMPS reflects the relative separation efficiency 188 

of the fast component in a MOF membrane compared to that in the state-of-art polymer membrane 189 

at the same permeability. For the separation of C2H4/C2H6, Figure 1(b) shows that a high rMPS 190 

value favors MOFs with high permeability but intermediate selectivity (bottom right) instead of 191 

intermediate permeability and high selectivity (top center). Because ethane and ethene have similar 192 

molecular size and interaction energy, the increase of diffusion selectivity from an intermediate 193 

value requires a larger energy barrier along the minimum energy path (MEP), which leads to a 194 

significant reduction of the diffusion coefficient and rMPS. Conversely, the increase of diffusion 195 

coefficient results in the reduction of diffusion selectivity due to the absence of a large energy 196 

barrier for molecular sieving. As shown in Supplementary Figure 1, only the ideal adsorption 197 

selectivity of C2H6/C2H4 increases with the capacity. Therefore, we conclude that MOFs with high 198 

rMPS are mostly ethane-selective, and that the membrane selectivity is mostly attributed to their 199 

difference in the adsorption amount. Table 4 lists the top 5 MOFs with the highest rMPS. 200 

Table 4. Top MOFs with the highest relative membrane performance score (rMPS) for the 201 
separation of C2H4/C2H6 at 300 K. 202 
 203 

2.2 Structural Features of Promising MOF Membranes 204 

As discussed above, the selectivity of MOF membranes is less compromised (and much higher) 205 

at high separation capacity in comparison with MOF adsorbents. To explore the synergetic effects 206 

between adsorption and diffusion, we have further examined the structural features of top MOFs 207 

with the highest membrane selectivity and rMPS.  208 

 209 
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Figure 2. Distributions of the pore limit diameter (a) and the largest cavity diameter (b) for all 210 
CoRE MOFs and MOFs with top 5% ideal membrane selectivity and relative performance score 211 
(rMPS) for C2H4/C2H6 separation. 212 

 213 
Figure 2 shows the distributions of pore limit diameter (PLD) and the largest cavity diameter 214 

(LCD) for all MOFs in CoRE MOF 2019 database and MOFs with top 5% membrane selectivity 215 

and rMPS. Compared with the distributions of PLD and LCD for all CoRE MOFs, it is clear that 216 

MOFs with top 5% membrane selectivity (and rMPS) have significantly different structural 217 

features. The PLD and LCD distributions suggest that MOFs with top 5% membrane selectivity 218 

have much smaller pores than those with top 5% rMPS. However, their void fractions are rather 219 

similar, both in the range from 0.4 to 0.7 (shown in Supplementary Figure 4). For MOFs with top 220 

5% membrane selectivity, the PLD mostly distributes between 2.75 Å and 3.5 Å, where the narrow 221 

end is even slightly smaller than the LJ diameter of the methylene group in ethene. It is worth 222 

mentioning that nanoporous materials do not prohibit gas adsorption even when the PLD is slightly 223 

smaller than the LJ diameter of the gas molecules.37 As a matter of fact, the selectivity is 224 

maximized for MOFs with the PLD slightly smaller than the LJ diameter because the extremely 225 

narrow pore aperture magnifies the difference in the potential energy between C2H4 and C2H6 at 226 

the transition state. By contrast, MOFs with top 5% rMPS have a PLD distribution spanning from 227 

3.75 Å to 4.75 Å. Compared with MOFs with top 5% membrane selectively, the slightly larger 228 

PLD for MOFs with top 5% rMPS leads to a smaller difference in the potential energy between 229 

ethane and ethene at the transition state, and therefore, much higher permeability with intermediate 230 

membrane selectivity. Similar to the PLD distribution, the LCD distribution for the MOFs with 231 

top 5% membrane selectivity is mostly localized at the smaller pore size than those with top 5% 232 

rMPS. For MOFs with top 5% membrane selectivity, the ultra-narrow pore apertures contribute to 233 

a larger membrane selectivity but a smaller diffusion coefficient and lower permeability. 234 
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 235 

Figure 3. The position and orientation of an ethene molecule along the minimum energy path 236 
(MEP) in EBINUA02 (a) and LUDLAZ (b). Here the detailed molecular structures are only for 237 
illustration. The energy landscape along the MEP for ethane and ethene in EBINUA02 (c) and 238 
LUDLAZ (d) at 300 K. 239 
 240 

Figure 3 shows the minimum energy path (MEP), molecular orientation along the MEP, and 241 

the energy landscape for gas diffusion in MOFs with the highest membrane selectivity 242 

[EBINUA02: kIM(C2H4/C2H6)=2167.3 and rMPS=1012.4 barrer] and the highest rMPS [LUDLAZ: 243 

kIM(C2H6/C2H4)=11.1]. Supplementary Figure 5 presents the energy barrier along the MEP for 244 

EBINUA02 and LUDLAZ. For both EBINUA02 and LUDLAZ, only one direction along the 245 

lattice vector can accommodate the diffusion of ethane or ethene molecule. Figure 3(a) and (b) 246 

show that, despite the significant difference between EBINUA02 and LUDLAZ in the energy 247 

landscape along the MEP, their MEPs inside MOFs are almost identical. Both EBINUA02 and 248 

LUDLAZ yield near straight trajectories for the molecular center of mass on the MEP with a 249 

minimal change of the molecular orientation, suggesting that the high membrane selectivity is 250 

attributed to extremely narrow pores. It is worth noting that the local chemical environments are 251 

very similar along the MEP in EBINUA02 and LUDLAZ, and their different pore structures result 252 

in the distinct energy landscape along the MEP. 253 

Although EBINUA02 and LUDLAZ have a similar void fraction, their pore structures (e.g., 254 

PLD and LCD) are very different thus result in different separation mechanisms. According to the 255 

solution-diffusion theory,18 the membrane selectivity can be improved by increasing the difference 256 

in adsorption, diffusion, or a combination of both quantities. EBINUA02 has a much smaller pore 257 

aperture (PLD: 2.91 Å and LCD: 3.96 Å) than LUDLAZ (PLD: 4.18 Å and LCD: 5.96 Å), which 258 

leads to the preferential diffusion and adsorption (viz. solubility in solution-diffusion theory) of 259 

C2H4 and the extremely high membrane selectivity of C2H4 over C2H6. Whereas in LUDLAZ, its 260 
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interaction with the gas molecules is attractive even at the transition state and the difference in 261 

energy barrier between C2H4 and C2H6 is almost negligible (Fig. 3D). The relatively spacious pore 262 

structure in LUDLAZ results in a slightly faster diffusion of C2H6 than C2H4 because ethane 263 

experiences a stronger van der Waals attraction. As a result, the membrane selectivity of LUDLAZ 264 

is mostly contributed by the difference in adsorption (viz., Henry’s constant) between C2H4 and 265 

C2H6. According to the above analysis of the top MOFs with high membrane selectivity and rMPS, 266 

a large energy barrier (viz., extremely narrow pore aperture) is not preferred for the design of ideal 267 

MOF membrane (with both high selectivity and permeability). The trend is intuitively 268 

understandable because a narrow pore aperture significantly reduces the gas diffusion coefficient 269 

and permeability, For the rational design of ideal MOF membranes for C2H4/C2H6 separation, the 270 

selectivity and permeability need to be harnessed by enhancing the difference in adsorption and 271 

diffusion, respectively.  272 

2.3 Inverse Design of MOF Membranes 273 

In comparison with adsorption, the membrane process has major advantages in terms of both 274 

separation selectivity and capacity (viz. permeability). As a result, our inverse design is concerned 275 

only with MOF membranes. To find nanoporous materials ideal for C2H4/C2H6 separation (viz., 276 

high separation selectivity and capacity), we use a genetic algorithm (GA) with the fitness score 277 

of 278 

 IMtotal 0.5 0.5k PF F F= + . (2) 279 

In Equation (2), the total fitness score, Ftotal, is evenly weighted according to the member 280 

selectivity and permeability. The member selectivity fitness score is formulated as 281 

( )IM
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where IMk  stands for the (ethene-selective) membrane selectivity. Conversely, the permeability 283 

fitness score is defined by 284 

( )
100

log        100

1     100
P

P

P P
F

e P−

 ≥= 
+ <

. 285 

In this work, the membrane selectivity of 5 and permeability of 100 barrers are used as threshold 286 

values because most CoRE MOFs have a permeability larger than 100 barrer but few have a 287 

membrane selectivity larger than 5. For materials with the permeability or selectivity lower than 288 

the corresponding threshold value, the exponential form allows for a smooth variation of the fitness 289 

score. Such a smooth form is important especially for materials with an extremely small value of 290 

permeability. Compared with improving permeability, it is much more difficult to improve the 291 

membrane selectivity. Therefore, for permeability and selectivity larger than the threshold values, 292 

the fitness score of selectivity is constructed in the quadratic form while the natural logarithm is 293 

used for the permeability. According to this formulation of the fitness score, a relatively small 294 

increase in selectivity would lead to a large increase in the fitness thus allow GA to generate MOFs 295 

with both high membrane selectivity and permeability instead of MOFs with solely high 296 

permeability. 297 

  298 

Figure 4. Schematic illustration for chromosome representation of MOF and genetic algorithm 299 
used in this work. (a) Chromosome representation of MOFs investigated in this work where 300 
topology, node and edge are treated as genes in the chromosome. (b) Workflow of the genetic 301 
algorithm (GA) for the inverse MOF design. Here square boxes represent the secondary building 302 
blocks (SBUs) used for MOF construction. In analogy to the genes in the chromosome, the choice 303 
of SBUs directly determines the physiochemical properties and separation performance. Black, 304 
brown and green boxes represent the topology, node and edge, respectively. 305 
 306 

Figure 4 shows how each MOF is represented as a ‘chromosome’, i.e., in terms of the MOF 307 

topology, node and edge. The schematic flowchart elucidates the computational steps in the inverse 308 
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design of MOF membranes. Compared with CoRE MOF database or other existing MOF structural 309 

databases, a much larger chemical space can be explored for the inverse design. In this work, the 310 

secondary building block (SB) database consists of 1,687 topologies, 648 nodes and 219 edges. 311 

As each MOF is defined by a topology, and up to two types of metal nodes and three types edges, 312 

enormous combinations are possible for the MOF construction. Although the number 7.4×1015 313 

does not necessarily reflect the actual size of the design space because many combinations of the 314 

edges, nodes and topology cannot lead to the construction of synthesizable MOFs, it shows the 315 

extensiveness of the design space in enumeration of all possible combinations of the topology and 316 

building blocks. Not all chromosomes would lead to a successful MOF design owing to the 317 

unmatched coordination number and bonding distance in the topologies, nodes and edges. Invalid 318 

chromosomes were identified during the construction of MOF structures with PORMAKE based 319 

on the compatibility criteria for the building blocks and topology.37  The percentage of invalid 320 

chromosomes is about 70% on average among all generations of chromosomes sampled by GA. 321 

In general, the successful rate increases with the GA evolution. For valid chromosomes, we obtain 322 

the MOF structure and cell parameters from PORMAKE that is able to accommodate the nodes 323 

and linkers in arbitrary topologies while avoid clashing atoms and distorting bonds. The structures 324 

generated by PORMAKE were optimized during the MOF construction. No further geometry 325 

optimization was attempted in this work. 326 

 327 

Figure 5. Membrane selectivity vs. capacity for CoRE MOFs and inverse designed MOFs used in 328 
C2H4/C2H6 separation. (a) Membrane separation selectivity vs. permeability for CoRE MOFs 329 
(filled dots) and inverse designed MOFs (open symbols). The distribution of membrane selectivity 330 
(b) and permeability (c) for inversed designed MOFs. The red line denotes the Robeson boundary, 331 
and color spectrum stands for the percentile of relative membrane performance score (rMPS): the 332 
red, white and blue represent the highest, intermediate and the lowest rMPS, respectively. Brown 333 
box, purple circle, green triangle and gold star stand for inverse designed MOFs in generation 0, 334 
1, 2, 3, respectively. 335 
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 336 
Figure 5 shows the membrane selectivity and permeability of the designed MOFs in 337 

comparison with CoRE MOFs. Here, we consider only materials in the region where the scale of 338 

permeability is similar to the experiment results. Supplementary Figure 6 shows the same figure 339 

with the full ranges of permeability and selectivity. Figure 5(a) compares the properties of MOF 340 

structures generated by GA with those from the CoRE MOF library in terms of the membrane 341 

selectivity and permeability. Clearly, GA is able to identify MOF structures with the targeted 342 

properties, i.e., high selectivity and high capacity as shown in the area above the Robeson boundary. 343 

Because no constraint was imposed in sampling the design space, the GA sampling does not always 344 

lead to the successful construction of MOF structures. For those chromosomes not generating valid 345 

MOFs, their fitness scores would be assigned to the lowest value.  346 

Figure 5(b) and (c) present the percentages MOF structures in different generations of GA 347 

sampling. Similar plots are given in Supplementary Figure 6(b) and (c) but for the entire ranges of 348 

membrane selectivity and permeability. As the area under each curve represents the percentage of 349 

valid MOF structures in each generation, the successful evolution of GA is evident not only 350 

because it generates more valid MOF structures after each round of evolution but because the 351 

designed materials show noticeable improvement in both permeability and membrane selectivity. 352 

Although many MOF structures do not surpass the Robeson boundary even in the final generation 353 

(gold stars), GA is able to create successful candidates with high membrane selectivity and 354 

permeability. Importantly, GA is computationally much more efficient than conventional 355 

approaches of material discovery such as high-throughput screening because it avoids enumeration 356 

of the entire design space.  357 

The best MOF identified by the inverse design (yfk-N379) significantly improves the overall 358 

membrane separation performance in terms of both membrane selectivity and permeability. Table 359 
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5 lists the detailed properties of yfk-N379. It should be noted that the best materials identified by 360 

GA may vary with the initial generation. In this work, we tested the efficiency of the inverse design 361 

with a different initial generation (shown in Supplementary Figure 8). Whereas different sets of 362 

materials were sampled during the evolution, it seems that GA sampling is robust to meet the goal 363 

of the inverse design independent of the initial condition. Although the final MOF structures are 364 

not identical, they have similar performance in terms of both membrane selectivity and 365 

permeability. 366 

Table 5. Properties of designed MOFs with both high membrane selectivity and permeability for 367 
the separation of C2H4/C2H6 at 300 K. 368 
 369 

Figure 6 shows molecular orientation and energy landscape for the diffusion of gas molecules 370 

along the MEP. In yfk-N379, the metal node, (CO2-κ2O)TbO2(μ-CO2-κ2O)4TbO2(CO2-κ2O), is 371 

connected with the yfk topology network to form a 1D channel for the diffusion of C2H4 and C2H6 372 

molecules. The energy landscape along the MEP in yfk-N379 is similar to that in LUDLAZ where 373 

the intermolecular interaction along the MPE is all attractive. Also, like that in LUDLAZ, the 374 

difference in the energy barrier between C2H4 and C2H6 is relatively small. As discussed above, in 375 

order to design an ideal MOF membrane with both high membrane selectivity and permeability, 376 

the separation selectivity shall be harnessed by the difference in the adsorption (viz., solubility), 377 

and the high permeability should be obtained by fast diffusion. As shown in Figure 6(b), the 1D 378 

channel in yfk-N379 offers strong attraction and relatively moderate energy barrier along the MEP, 379 

which results in the extremely fast diffusion of gas molecules. The distinct difference of adsorption 380 

properties (viz., Henry’s constant) between C2H4 and C2H6 in yfk-N379 leads to an exceptionally 381 

high membrane selectivity compared to the CoRE MOFs. Although the membrane selectivity yfk-382 

N379 is not much larger than those corresponding to the top 5 CoRE MOFs, its permeability (8420 383 
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barrer) is at least three orders of magnitudes higher. Conversely, the membrane selectivity of yfk-384 

N379 is 30% higher than those of CoRE MOFs with similar permeability. The synergetic effects 385 

from adsorption and diffusion help yfk-N379 achieve both high membrane selectivity and 386 

permeability simultaneously, making it promising for industry applications.  387 

 388 

Figure 6. Minimum energy path (MEP) of C2H6 and C2H4 in yfk-N379. (a) The position and 389 
orientation of an ethene molecule along the MEP (yellow line) in yfk-N379. (b) Energy landscape 390 
along the MEP for ethane and ethene in yfk-N379 at 300 K. 391 

 392 

We have performed molecular dynamics (MD) simulation to further validate the diffusion 393 

coefficients of ethane and ethene in top 5 MOFs with the highest rMPS and in the best MOF 394 

candidate identified from the inverse design (yfk-N379).  As shown in Supplementary Figure 7, 395 

the diffusion coefficients predicted by the transition-state theory agree well with the MD results.  396 

In comparison with MOF-5 tested in our earlier work, these MOFs have more complicated pore 397 

structure and topology, indicating the accuracy of MEPs calculated by the simplified string method. 398 

Compared with high-throughput screening, the inverse design via GA is computationally much 399 

more efficient. For example, the ideal MOF candidate (both high membrane selectivity and 400 

permeability) for the membrane separation of C2H4/C2H6 can be found with only 8,000 attempts 401 

in a much larger chemical space. The computational workflow thus demonstrates that, with the 402 

efficient theoretical tools for high-throughput evaluation of materials performance, how the 403 

inverse design can significantly accelerate the material discovery, especially for the construction 404 

of reticular materials (e.g., MOFs and COFs) for the gas storage and separation. 405 

In this work, we have integrated high-throughput screening and inverse design to find the best 406 

metal-organic frameworks (MOFs) for C2H4/C2H6 separation. Both adsorption and membrane 407 

processes have been considered in the high-throughput screening of computational-ready 408 
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experimental (CoRE 2019) MOF database. For the adsorption separation, the separation selectivity 409 

of ethene-selective MOF decreases with the increase of separation capacity because highly ethene-410 

selective materials have extremely small pores with low adsorption capacity. While the selectivity 411 

of ethane-selective MOF increases with the adsorption capacity, the highest adsorption selectivity 412 

of ethane-selective MOF (LUDLAZ) [αIM(C2H6/C2H4)=7.68] is smaller than that of ethene-413 

selective MOF (PIRYOF) [αIM(C2H4/C2H6)=27.01]. Nevertheless, LUDLAZ is more than 70% 414 

higher than the state-of-art ethane-selective MOF identified by previous work.  415 

Compared with that in the adsorption process, the selectivity of membrane process is less 416 

compromised by the increase of the separation capacity. Through high-throughput screening, we 417 

find that EBINUA02 yields the highest membrane selectivity [kIM(C2H4/C2H6)=2167.3]. To 418 

evaluate the overall membrane performance, we introduced a relative membrane performance 419 

score (rMPS) in terms of the selectivity and permeability with respect to the Robeson boundary. 420 

For the separation of C2H4/C2H6, high rMPS favors MOFs with high permeability and intermediate 421 

membrane selectivity because high membrane selectivity requires large energy barrier along the 422 

minimum energy path (MEP) and leads to the slow diffusion. According to the structural analysis, 423 

MOFs with top 5% membrane selectivity have a much more confined diffusion path in terms of 424 

pore limit diameter (PLD) and largest cavity diameter (LCD) than those with top 5% rMPS, despite 425 

their similarity in the distribution of void fraction. The separation mechanism is quite different 426 

between EBINUA02 and the MOF (LUDLAZ) with the highest rMPS. While a small pore aperture 427 

(PLD: 2.91 Å and LCD: 3.96 Å) in EBINUA02 results in faster diffusion and stronger adsorption 428 

of C2H4 over C2H6, the less confined diffusion path in LUDLAZ (PLD: 4.18 Å and LCD: 5.96 Å) 429 

leads to negligible difference in the diffusion. In that case, the membrane selectivity is mostly 430 

contributed by its ethane-selective solubility.  431 
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The computational efficiency of the theoretical tools for predicting the sorption and diffusion 432 

properties of nanoporous materials enables the design MOF membranes with both high membrane 433 

selectivity and permeability using the genetic algorithm (GA). Compared with high-throughput 434 

screening, not only can GA explore the material design space with targeted properties, but it takes 435 

less attempts to identify the most promising candidates as well. The best MOF discovered by GA 436 

consists metal node - (CO2-κ2O)TbO2(μ-CO2-κ2O)4TbO2(CO2-κ2O) with the yfk topology. The 437 

designed material has both permeability and membrane selectivity significantly larger than the 438 

threshold values set in the fitness function. Besides, its overall membrane separation performance 439 

is better than all existing experimental MOF candidates. The computational workflow used in the 440 

work thus demonstrates the capability of inverse design to accelerate the discovery of nanoporous 441 

materials, especially reticular materials (such as MOFs and COFs) for gas storage and separation. 442 

4. Methods 443 

4.1 Molecular Models 444 

In this work, ethane (C2H6) and ethene (C2H4) molecules are modeled as two united-atom 445 

groups separated by a fixed bond length.38 The detailed force field parameters can be found in 446 

Supplementary Table 1. These force-field parameters are able to reproduce the adsorption 447 

isotherms of ethane and ethene in nanoporous materials.39 They also predict reasonable diffusion 448 

coefficients in comparison with limited experimental data. For example, the diffusivity predicted 449 

in this work agrees well with that from experiment for C2H6 in MOF-5 [2.42×10-8 m2/s vs 1.8~2.1450 

×10-8 m2/s (exp)]. Metal-organic frameworks (MOFs) are considered to be rigid with the universal 451 

force field (UFF) for all nonbonded interactions.40 While the flexibility of MOFs may play an 452 

important role in determining the efficiency of gas separation, a reliable description of such effects 453 

is computationally prohibitive for high-throughput screening because it would require input from 454 
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high-level quantum-mechanical calculations.41 Recently, a systematic examination of the impacts 455 

of MOF flexibility on molecular diffusivities indicates that the rigid-structure assumption yields 456 

reasonable diffusion coefficients for rigid molecules such as ethane and ethene investigated in the 457 

present work.42  As mentioned above, the diffusivity of C2H6 in MOF-5 predicted in this work 458 

agrees well with that from experiment.  459 

The Lennard-Jones (LJ) 12-6 potential is truncated and shifted to zero at 12.9 Å, and the 460 

Lorentz-Berthelot mixing rule is used for the energy and size parameters between different kinds 461 

of atoms. The periodic boundary condition is applied to all cell axes. The unit cell is duplicated 462 

such that the length along each lattice axis is at least two times the cutoff distance. The structural 463 

properties, such as the pore limit diameter, the largest cavity diameter and the void fraction, are 464 

calculated with Zeo++.43 465 

4.2 Adsorption Separation 466 

Nanoporous materials have been widely used as adsorbent in industrial applications. In the low 467 

pressure region, the adsorption selectivity for an equimolar mixture of two gas species can be 468 

measured with the ratio of Henry’s constants34 469 

 h,2IM

h,1

K
K

α =  (3) 470 

where Kh,i represents the Henry’s constant of component i. For a gas molecule with a rigid 471 

conformation, the Henry’s constant can be calculated via the integration of the external potential 472 

due to its interaction with the nanoporous material44 473 
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where β = 1/ (kBT ) , kB stands for the Boltzmann constant, T is the absolute temperature, V 475 

represents the system volume, ϕext is the external potential, i.e., the potential energy due to the 476 
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interaction of a gas molecule with all atoms from the porous material, r represents the cartesian 477 

coordinates for the center of mass of the gas molecule, and ω stands for its Euler angles. For each 478 

MOF, the Henry’s constants for C2H6 and C2H4 are numerically evaluated via midpoint rule with 479 

the step size of 1 Å and 45° for spatial and rotational variables, respectively. 480 

4.3 Membrane Separation 481 

According to the solution-diffusion model, the membrane permeability is defined as the 482 

Henry’s constant multiplied by the gas diffusion coefficient at infinite dilution. The membrane 483 

selectivity can thus be calculated from44 484 

 h,2 0,2IM 2

h,1 0,1 1

K D Pk
K D P

= =  (5) 485 

where D0,i stands for the diffusion coefficient of component i at infinite dilution , and Pi represent 486 

the permeability. In evaluating the membrane selectivity, we use the average of diffusion 487 

coefficients along the three lattice vectors (viz., x-, y-, z-axis in cartesian coordinate if the lattice 488 

vectors are mutually orthogonal) 489 

 0, 0, 0,
0 3

a b cD D D
D

+ +
= . (6) 490 

Along each direction, the diffusivity can be calculated independently according to the transition-491 

state theory (TST) 492 

 2
0,

1
2

D kaα α= . (7) 493 

where α  stands for the direction of lattice vector, k represents the transmission rate (viz., the 494 

hopping rate of the gas molecule), and aα  stands for the hopping distance between neighboring 495 

unit cells along the direction of lattice vectorα . The hopping rate can be obtained from the 496 

minimum energy path (MEP) via the Bennett-Chandler formula45,46 497 
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where s is a normalized dimensionless variable along the MEP, and s* represents the transition 499 

state. The diffusion coefficient predicted by Equation (7) depends heavily on the accuracy of the 500 

MEP.  501 

The mathematical details and the accuracy of MEP calculations for predicting the 502 

diffusivity of rigid molecules, such as C2H4 and C2H6, can be found in our previous work.25  Here, 503 

we recapitulate only the key steps to identify the MEP via the simplified string method. First, we 504 

locate the starting point of the string (i.e., the diffusion path or MEP) by searching the position and 505 

orientation of a gas molecule that minimize the external potential at the entrance plane. Because 506 

of the periodic structure of MOFs, the starting and end points of the string have identical relative 507 

configurations within their own unit cells. Next, we construct an initial string by evenly placing a 508 

certain number of points (viz., images) between the starting and end points. Finally, MEP is 509 

obtained by iterative evolution of the images along the string according to the gradient of the full 510 

external potential.  After each round of iteration, the string is renormalized to avoid images 511 

collectively falling into any local energy minima.  512 

All diffusion coefficients reported in this work are predicted from the MEP obtained from 513 

the GPU-accelerated simplified string method. We have also validated the diffusion coefficients 514 

calculated with our method by carrying out molecular dynamics (MD) simulation for top 5 MOFs 515 

with highest rMPS and for the best inverse designed MOF. For all MD simulations, we used the 516 

LAMMPS package with the Nose-Hoover thermostat for controlling the temperature. The detailed 517 

settings follow the protocol suggested in the literature for infinite dilution.47 518 

4.4 Genetic Algorithm 519 
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For inverse design, we use the genetic algorithm (GA) to construct MOFs with desired 520 

properties. Because MOFs can be decomposed into the secondary building blocks (SBUs), each 521 

material may be considered as a ‘chromosome’ of different topologies, metal nodes and organic 522 

linkers. Because the supermajority of MOF topologies can accommodate no more than two types 523 

of metal nodes and three types of organic linkers, each chromosome consists of 6 genes, and each 524 

gene is represented by an integer which corresponds to a specific topology, node or linker. The 525 

chromosome representation allows for the efficient sampling of all possible combinations of 526 

topology and SBUs with GA. The population is set as 2,000 which makes the initial generation to 527 

have diverse combinations of topologies, nodes and linkers. Three evolutions are carried after the 528 

initial population and a total of 8,000 combinations of topologies, nodes and linkers is explored to 529 

find the optimal MOF structure with desired properties. Compared with the MOF structural 530 

database used in high-throughput screening, less MOF structures are used in the GA to benchmark 531 

its computational performance for the inverse design despite a much larger chemical space is 532 

considered. In the initial population, the 2,000 chromosomes are generated by the random selection 533 

of topologies, nodes and edges in the SBU database.37 In each generation, 10 MOFs are used to 534 

generate the offspring via single point crossover. The next generation of MOFs are selected by 535 

stochastic universal selection to avoid bias towards the SBUs with low fitness values while 30% 536 

MOFs would have a random mutation on their genes. In this work, PyGAD library is used for the 537 

genetic algorithm.48 PORMAKE is used to construct MOFs when the chromosome values are 538 

assigned.37 539 
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Figure captions 687 

Figure 1. Selectivity vs. capacity for CoRE MOFs used in C2H4/C2H6 separation. (a) Adsorption 688 
selectivity. The green line is fitted with αIM=0.2516e-0.7411log(K). (b) Membrane selectivity. The red 689 
line denotes the Robeson boundary, and the color stands for the percentile of relative membrane 690 
performance score (rMPS): the red, gray and blue represent the highest, intermediate, and the 691 
lowest rMPS, respectively. The dashed line marks the membrane selectivity of 1. 692 
 693 

Figure 2. Distributions of the pore limit diameter (a) and the largest cavity diameter (b) for all 694 
CoRE MOFs and MOFs with top 5% ideal membrane selectivity and relative performance score 695 
(rMPS) for C2H4/C2H6 separation. 696 
 697 

Figure 3. The position and orientation of an ethene molecule along the minimum energy path 698 
(MEP) in EBINUA02 (a) and LUDLAZ (b). Here the detailed molecular structures are only for 699 
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illustration. The energy landscape along the MEP for ethane and ethene in EBINUA02 (c) and 700 
LUDLAZ (d) at 300 K. 701 
 702 

Figure 4. Schematic illustration for chromosome representation of MOF and genetic algorithm 703 
used in this work. (a) Chromosome representation of MOFs investigated in this work where 704 
topology, node and edge are treated as genes in the chromosome. (b) Workflow of the genetic 705 
algorithm (GA) for the inverse MOF design. Here square boxes represent the secondary building 706 
blocks (SBUs) used for MOF construction. In analogy to the genes in the chromosome, the choice 707 
of SBUs directly determines the physiochemical properties and separation performance. Black, 708 
brown and green boxes represent the topology, node and edge, respectively. 709 
 710 

Figure 5. Membrane selectivity vs. capacity for CoRE MOFs and inverse designed MOFs used in 711 
C2H4/C2H6 separation. (a) Membrane separation selectivity vs. permeability for CoRE MOFs 712 
(filled dots) and inverse designed MOFs (open symbols). The distribution of membrane selectivity 713 
(b) and permeability (c) for inversed designed MOFs. The red line denotes the Robeson boundary, 714 
and color spectrum stands for the percentile of relative membrane performance score (rMPS): the 715 
red, white and blue represent the highest, intermediate and the lowest rMPS, respectively. Brown 716 
box, purple circle, green triangle and gold star stand for inverse designed MOFs in generation 0, 717 
1, 2, 3, respectively. 718 
 719 

Figure 6. Minimum energy path (MEP) of C2H6 and C2H4 in yfk-N379. (a) The position and 720 
orientation of an ethene molecule along the MEP (yellow line) in yfk-N379. (b) Energy landscape 721 
along the MEP for ethane and ethene in yfk-N379 at 300 K. 722 

 723 



Table 1. Henry’s constants (Kh), ideal selectivity (αIM) and self-diffusivity (D0) of top ethene-

selective MOFs for adsorption separation of C2H4/C2H6 at 300 K (The diffusion coefficients are 

shown only if they are larger than 1×10-20 m2·s-1) 

MOF 
Kh(C2H4) 

(mol·m-3·Pa-1) 

Kh(C2H6) 

(mol·m-3·Pa-1) 
αIM(C2H4/C2H6) 

D0(C2H4) 

(m2·s-1) 

D0(C2H6) 

(m2·s-1) 

PIRYOF 5.474×10-2 2.027×10-3 27.01   

BADHIA 3.454×10-4 1.325×10-5 26.07   

BADHOG 4.205×10-4 1.766×10-5 23.81   

EBINUA02 1.682×10-2 9.829×10-4 17.11 9.342×10-15 7.377×10-17 

FEDKAB 9.997×10-2 6.036×10-3 16.56   

 

 



Table 2. Top ethane-selective MOFs for the separation of C2H4/C2H6 at 300 K by gas adsorption 

MOF 
Kh(C2H4) 

(mol·m-3·Pa-1) 

Kh(C2H6) 

(mol·m-3·Pa-1) 
αIM(C2H6/C2H4) 

D0(C2H4) 

(m2·s-1) 

D0(C2H6) 

(m2·s-1) 

LUDLAZ 4.374×101 3.360×102 7.68 4.350×10-9 6.313×10-9 

EFILUA 1.863×102 1.301×103 6.98 1.956×10-9 1.188×10-9 

XUJSAY 3.360×101 2.107×102 6.27 6.291×10-9 2.145×10-9 

ZAZNUL 2.735×101 1.697×102 6.20 6.604×10-9 2.134×10-9 

KAXQIL 5.689×101 3.479×102 6.12 1.362×10-9 1.088×10-9 

 



Table 3. Top MOFs for C2H4/C2H6 separation with the highest membrane selectivity (kIM) at 300 

K 

MOF 
Kh(C2H4) 

(mol·m-3·Pa-1) 

Kh(C2H6) 

(mol·m-3·Pa-1) 

D0(C2H4) 

(m2·s-1) 

D0(C2H6) 

(m2·s-1) 
kIM(C2H4/C2H6) 

EBINUA02 1.682×10-2 9.828×10-4 9.342×10-15 7.377×10-17 2167.3 

HAZGOF 9.344×10-4 1.939×10-4 1.438×10-12 4.202×10-15 1649.1 

ALOLES 2.770×10-2 6.686×10-2 8.276×10-15 3.271×10-18 1048.2 

EBINUA 1.030×10-2 7.678×10-4 4.007×10-14 5.599×10-16 960.1 

EBINUA01 2.056×10-2 2.320×10-3 3.033×10-13 6.128×10-15 438.2 

 



Table 4. Top MOFs with the highest relative membrane performance score (rMPS) for the 

separation of C2H4/C2H6 at 300 K 

MOF 
Kh(C2H4) 

(mol·m-3·Pa-1) 

Kh(C2H6) 

(mol·m-3·Pa-1)

D0(C2H4) 

(m2·s-1) 

D0(C2H6) 

(m2·s-1) 
kIM(C2H6/C2H4) 

rMPS 

(barrer) 

×1010 

LUDLAZ 4.374×101 3.360×102 4.350×10-9 6.313×10-9 11.1 5.597 

PARMIG 9.666×101 5.599×102 1.404×10-8 1.333×10-8 5.5 5.484 

BEKSAM 4.511×102 1.892×103 9.052×10-9 4.231×10-9 2.0 1.339 

MIMVEJ 2.869×101 1.443×102 1.291×10-8 1.276×10-8 5.0 1.268 

MORZID 1.842×102 8.200×102 7.613×10-9 6.568×10-9 3.8 1.046 

 



Table 5. Properties of designed MOFs with both high membrane selectivity and permeability for 

the separation of C2H4/C2H6 at 300 K 

 

MOF 
Kh(C2H4) 

(mol·m-3·Pa-1)

Kh(C2H6) 

(mol·m-3·Pa-1)

D0(C2H4) 

(m2·s-1) 

D0(C2H6) 

(m2·s-1) 
kIM(C2H4/C2H6) 

yfk-

N379 
1.682×10-2 9.828×10-4 1.677×10-9 1.467×10-9 20.8 

 














	Article File
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

