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Abstract  

Molecular design of redox-active materials with higher solubility and greater redox 

potential windows is instrumental in enhancing the performance of redox flow batteries (RFBs). 

Here we propose a sweeping computational procedure for a systematic evaluation of organic 

redox-active species by combining machine learning, quantum-mechanical and classical-density-

function-theory calculations. 1517 small quinone molecules were generated from the building 

blocks of benzoquinone, naphthoquinone, and anthraquinone with different substituent groups. 

The physics-based methods were used to predict HOMO-LUMO gaps and solvation free energies 

that account for the redox potential differences and aqueous solubility, respectively. The high-

throughput calculations were augmented with the quantitative structure-property relationship 



2 

 

(QSPR) analyses and machine learning/graph network modeling to evaluate the materials overall 

behavior. The computational procedure was able to reproduce high-performance cathode 

electrolyte materials consistent with experimental observations and identify new electrolytes for 

RFBs by screening 100,000 di-substituted quinone molecules, the largest library of redox-active 

molecules ever investigated. The efficient computational platform may facilitate better 

understanding of the structure-function relationship of quinone molecules and advance the design 

and application of all-organic active materials for RFBs. 
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Introduction 

Large-scale, stationary energy-storage techniques are imperative for the widespread 

applicability of green energy such as wind and solar power1. A redox flow battery (RFB) is an 

electrochemical energy storage device2, in which catholytes and anolytes are stored in separate 

external tanks and transported to the battery for energy conversions. The RFB power is determined 

by the capacity of electrodes while its energy density depends on the volume, the composition, and 

the concentration of the redox-active electrolytes3–5. The complete decoupling of the power and 

energy density makes RFBs ideal for high-capacity energy storage with operational flexibility.  

Several types of RFBs have been proposed, such as all-vanadium flow batteries, Fe/Cr flow 

batteries, and zinc bromide flow batteries6. All-vanadium RFBs utilize the same electrolytes for 
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both half-cells and are advantageous in preventing contamination and thereby improving the 

battery life cycle4,7,8. The cost and energy efficiency of all-vanadium RFBs, however, need to be 

improved for industrial applications9,10. Lithium-ion flow batteries11 have the advantage of high 

current density, capacity and flexibility, but their performance is often compromised by the 

availability of the lithium conducting and storage materials. Aqueous organic redox flow batteries 

(AORFBs) may overcome some of the major hurdles of the metal ion-based RFBs by using Earth-

abundant elements as C, H, O, N, S.12–17 The tunability of redox-active molecules offers new 

avenues for engineering design and optimization by selecting materials with wider voltage 

windows, higher aqueous solubility, increased electrochemical stability and faster electrode 

reaction kinetics. For example, quinones have a backbone structure that allows for a two-electron 

redox reaction in an aqueous solution. Their electrochemical properties and solution behavior can 

be tuned by substitutions at the benzene rings. An open circuit voltage of 1.2V was achieved by 

utilizing 2,6-DHAQ14 as the electrolyte an under alkaline conditions, but the replacement of 2,6-

DHAQ with PEGAQs15 reduces the voltage to 1.0V. Given the inexhaustible types of quinone 

organics that can be obtained by varying the substitution positions and substituent groups, a high-

throughput molecular design method is needed for the development of all-quinone RFBs. 

One key objective of molecular quinone design is to identify substitutions leading to a 

higher redox potential difference and higher solubility such that the RFBs can achieve a higher 

energy density. Whereas physics-based models are available to predict such properties, the direct 
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application is often limited by their demanding computational cost in evaluating a large library of 

chemical species under diverse thermodynamic conditions. Exploring the chemical space requires 

new computational strategies to improve the design efficiency. The machine-learning (ML) 

methods provide complementary alternatives with particular strength in high-throughput screening 

and molecular design. To prepare the “big data” required for training ML models, we combine 

quantum-mechanical (QM) and classical density function theory (cDFT) calculations with 

quantitative structure-property relationship (QSPR) analyses such that the physicochemical 

properties of quinones can be systematically evaluated.  

A number of previous studies have been reported on the molecular design of redox-active 

materials for RFBs. For example, Allam et al.16 applied artificial neural networks(ANN), gradient-

boosting regression(GBR), and kernel ridge regression(KRR) to predict the redox potentials of 

quinones based on the electron affinity and the number of bound lithium atoms. Li et al.17 applied 

machine-learning methods to predict the cost and efficiency of all-vanadium flow batteries. Lin et 

al.18 used an extreme learning machine(ELM) model to predict the properties of a novel redox flow 

battery—the single flow Zinc-Nickle battery. However, to our knowledge, there is no proposal for 

seeking high-performance quinone molecules used in RFBs. In this work, we firstly constructed 

1517 small quinone molecules using benzoquinone, naphthoquinone, and anthraquinone as the 

building blocks. QM and cDFT calculations were carried out to evaluate their HOMO-LUMO gaps 

and solvation free energies. The molecular features of promising electrolytes were extracted from 
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the perspectives of molecular descriptors and graph networks for machine-learning models. We 

demonstrated the effectiveness of the proposed method with experimental results for the existing 

quinone electrolytes and its potential use for the computational design of redox-active materials 

by screening 100,000 di-substituted quinone molecules.  

Models and Methods 

The computational scheme for quinone design 

Figure 1 presents the overall computational scheme for the molecular design of quinones 

that may be used as catholytes in RFBs. Following previous work19–22, we chose benzoquinone, 

naphthoquinone, and anthraquinone as the building blocks to construct a library of 1517 mono- or 

fully-substituted quinone molecules by the addition of different substituent groups at different 

substitution positions. For most of the virtual quinone molecules, the experimental data for the 

solvation free energies and the HOMO-LUMO gaps have not been determined. Thus, the accuracy 

of our theoretical methods was calibrated with polycyclic aromatic hydrocarbons that are similar 

quinones. The calculated results agree well with the experimental data20. Specifically, we used a 

quantum-chemistry package (ORCA) and classic density functional theory (cDFT) to calculate the 

HOMO-LUMO gaps and solvation free energies of these substances. The molecular properties 

provide a quantitative measure of the redox potential difference and solubility of the electrolyte in 

AORFBs.  and also determine the capacity and performance of the flow battery. The theoretical 

results are then analyzed with the QSPR method and machine learning/graph network models.  
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Next, surrogate models were constructed to reproduce the HOMO-LUMO gaps and solvation free 

energies of quinone molecules and analyze the dependence of such properties on substituents at 

different backbone positions. Compared with mono- and multi-substituted quinones, di-substituted 

quinones hold advantages in terms of a balance of stability, diversity and synthesizability. Thus, 

our molecular design is focused on the properties of all possible di-substituents with the same 

backbone. Quinone molecules promising for AORFBs have been identified from over 100,000 di-

substituted quinones. 

 

Figure 1. The computational scheme for molecular quinone design  
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Results and discussion 

The choice of ML models  

We firstly constructed 1516 quinone molecules with 17 different substituents using 

benzoquinone, naphthoquinone, and anthraquinone as building blocks (Supplementary Figure S1). 

The theoretical predictions for the solvation free energies and HOMO-LUMO gaps are used as a 

database for training two machine-learning (ML) models, eXtreme Gradient Boosting (Xgboost) 

and Attentive Fingerprints (FP). The molecular properties, along with the predicted values from 

machine learning, are listed in Supplementary Table S2. In texting the ML models, the data are 

divided into a training set, a validation set, and a test set with a ratio of 8:1:1.  
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Figure 2. A comparison of Xgboost and Attentive FP methods to predict the 

solvation-free energies and HOMO-LUMO gaps of 1516 quinone molecules. (a) Xgboost for 

predicting the solvation free energies; (b) Xgboost for predicting the HOMO-LUMO gaps; 

(c) Attentive FP for predicting the solvation free energies; and (d) Attentive FP for predicting 

the HOMO-LUMO gaps. 

 

 

Table 1. Various indicators of data fitting with Xgboost and Attentive FP methods. 

Property Model R2 MAE RMSE 
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Solvation free energy 
Xgboost 0.9777 0.4506 0.2030 
Attentive FP 0.9408 0.8425 0.7098 

HOMO-LUMO gap 
Xgboost 0.9632 0.1034 0.0107 
Attentive FP 0.8596 0.1800 0.0324 

 

As shown in Figure 2, Xgboost is more accurate than Attentive FP for fitting both the 

solvation free energies and the HOMO-LUMO gaps. Table 1 lists various indicators of the data 

correlation. In addition, the two methods have made higher-precision predictions of the solvation 

free energy, and the predicted value has a higher linear correlation with the experimental value 

calculated by the theory. Attentive FP's model gives a poor prediction of the HOMO-LUMO gap, 

in which most of the points formed by the experimental value and the predicted value deviated 

from the diagonal line. It is anticipated that the better prediction by the Xgboost model may 

attribute to feature selection.  

In fitting the solvation free energies and the HOMO-LUMO gaps of quinone moelcules 

with the Xgboost model, we have used 200 molecular descriptors …. .  These descriptors show 

good correlation with both the solubility and orbital properties of the quinone molecule. By 

contrast, the Attentive FP model is based on the molecular characteristics constructed on the basis 

of the graph network. Such characteristics are more derived from the surrounding environment of 

each atom rather than the overall features of the molecule, which explains its relatively poor 

predictive ability in comparison with Xgboost. In general, the performance of the machine learning 

models depends on the choice of hyperparameters (viz.,..), the quality of the data, and the selection 
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of features. As we can see in Figure 2, the selected features better reflect the solvation free energies 

of quinone molecules than their HOMO-LUMO gaps. It appears that the latter requires a larger 

data set or deeper feature engineering to have better correlations. Moreover, it can be seen from 

Table 1 that the prediction errors of the Xgboost model are acceptable for high-throughput 

screening. In the following, our analyses of quinone molecules for RFBs are all based on the 

Xgboost model. 

The effects of substituent position and groups  

We have constructed 17 molecules using benzoquinone, naphthoquinone, and 

anthraquinone as the building blocks. To study the influence of substituent position and substituent 

type on its molecular characteristics, we used the 1,10-anthraquinone (AQ) as a representative 

backbone and compared the difference between theoretical results and ML correlation data 

according to the substituent position and substituent type. Figure 3 shows the results, and Table 2 

presents the corresponding substituent positions.  
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Figure 3. Solvation-free energies and HOMO-LUMO gaps of different quinones. (a) Effect 

of different substituent types on target properties. (b) Effect of different substituent positions on 

target properties.  

Table 2. The positions of substituent for a few representative quinone molecules. 

R1 R2 R3 R4 R5 R6 R7 R8 
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Figure 3a shows the effects of different substituent groups at the same substitution position. 

It can be found that substitution with –PO3H2, –SO3H, –COOCH3, –COOH groups reduces the 

solvation free energy regardless of the substituent positions. The ranking of different substituents 

reproduces that by quantum-chemistry calculations. For the HOMO-LUMO gaps, different 

substituent groups have less influence on the target properties at the substitution positions of R1-

R7, while at the R8 substitution position, the HOMO-LUMO gaps are sensitive to different 

substituent groups. Specifically, all substitutions at the R1 position result in a higher HOMO-

LUMO gap compared to substitution at other positions, while substitution with groups such as –

COOCH3, –COOH, –SO3H, –NO2 at the R8 position can greatly improve the HOMO-LUMO gap.   

Figure 3b shows the molecular properties of quinones with the same substituent group but 

at different substitution positions. The results predicted by the ML model are similar to those from 

the physics-based calculations. Regardless of the substitution positions, substitution with –F, –Cl, 

and –CH3 groups has little impact on the solvation free energies of the quinone molecules. On the 

other hand, substitution with –PO3H2 and –SO3H groups leads to a significant reduction of the 

solvation free energy. In this case, the result is highly dependent on the position of the substituent. 

The lowest solvation free energy can be obtained when the substitution takes place on positions 

R2, R5, and R6. In terms of the HOMO-LUMO gaps, most of the substituents have better 

performance in the substitution positions R1 and R8. For some poorly performing substituent 
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groups, satisfactory target properties cannot be obtained even if they are in the R8 substitution 

position. The above results indicate the substituents at the R1 position can improve the HOMO-

LUMO gap, and the more refined selection of the substituents at the R8 position may achieve more 

extraordinary effects. 

The error graphs in Figure 3 suggest that the machine-learning (ML) model has a fairly 

high level of fidelity in reproducing the theoretical results. In the mono-substituted quinones with 

1,10-AQ as the backbone, the prediction error of the ML model for the solvation free energy is 

between –2 and 3 kcal/mol, and the prediction error of the HOMO-LUMO gap is mostly between 

–0.2 and 0.2 eV. However, the prediction error of the model for the R8 substitute HOMO-LUMO 

gap is more significant, about ??. For a high-throughput screening tool, this relative error is still 

within our acceptable range. 

Screening from over 100,000 candidates 

After establishing the computational method, please describe how it can be used as a design 

tool to identify new quinone molecules. Specify the targets and explain connection between the 

molecular properties (i.e., HOMO-LUMO gaps and solvation free energies) and the performance 

of RFBs.     

To demonstrate the high-through capabilities of our computational framework, we used the 

Xgboost model to predict the solvation free energies and the HOMO-LUMO gaps for over 100,000 

di-substitutions derived from the 17 quinone-based backbones. It took about 10 seconds to 
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complete the predictions and rank all molecules according to …. In contrast, it took over 30 

minutes to complete the calculation of the solvation free energy and the HOMO-LUMO gap of a 

single molecule. We see an increase in calculation speed by 7 orders of magnitude!  

The predicted results are shown in Figure 4. Here the predicted solvation free energies for 

all di-substituted quinone molecules is generally within –25 and –10 kcal/mol, and the predicted 

value of the HOMO-LUMO gap is between 5 and 9 eV. The potential of the molecule as a battery 

active material is scored by 0.5 ´ Solvation Free Energy / –30 + 0.5 ´ HOMO-LUMO gap / 10. 

The detailed calculation results are available in Table S3. 

 

Figure 4. A score of over100000 virtual quinone molecules. 



15 

 

As shown in Figure 4, different quinone-based backbones have a great impact on molecular 

properties. The di-substituents of the 1,2-benzoquinone(BQ) and 1,4-BQ backbones generally 

yield high HOMO-LUMO gaps, but their solvation-free energies are not as low as other 

backbones. The backbones with better overall performance include 1,2-AQ, 1,4-AQ, 1,5-AQ. 

These quinone molecules can attain low solvation-free energy and high HOMO-LUMO gap 

simultaneously, and thus can be used as candidate materials for quinone-based flow batteries for 

experimental verification.  

To further explore the common characteristics of quinone molecules with different scores, 

we selected 10,000 molecules with the highest, lowest, and medium scores from 100,000+ 

molecules, and analyzed the effects of backbones and substituents, as shown in Figure 5. We did 

not perform an in-depth analysis of the relationship between the score and the position of the 

substituents due to the difficulty in unifying the positions of the substituents on different 

backbones.  
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Figure 5. Virtual molecular library scoring and analysis of results. (a) Scoring chart for di-

substituted quinones and reported quinone-based electrode materials; (b) Backbone distribution in 

three types of scoring molecules; (c) Distribution of substituent types in three types of scoring 

molecules. 

Figure 5 shows the statistics of the backbones and substituent types according to three 

different scores of di-substituted molecule populations. As discussed above, most high-scoring 

molecules consist of the di-substitutions of 1,2-AQ and 1,4-AQ backbones. While all 17 backbones 

can get medium and high scores of quinone molecules, no di-substitutions constructed by the five 

backbones of 1,2-AQ, 1,4-AQ, 9,10-AQ, 1,4-BQ and 1,2-BQ appear in the low-scoring group. In 

terms of the choice of substituent types, the large-scale tests can better reflect the influence of 

different substituents on molecular properties. In the high-scoring group, substituents with –SO3H, 

–PO3H and –COOH groups account for nearly half of the molecules, and the molecules obtained 

by their substitution will not be given low scores. The effect of –Cl, –CH3, –CF3, –SH, –F, –C2H3 

is obviously not suitable substituents for quinone-based electrolytes, and the scores of molecules 

generated by their substitution are generally at a low level. 

Combining the above two points, adjusting the –SO3H, –PO3H, and –COOH groups on the 

basis of the 1,2-AQ or 1,4-AQ backbone is expected to obtain battery materials with the best 

properties. From Figure 6a, we can also see that among all the above 100,000 quinone molecules, 

almost none have achieved good results in terms of both solvation-free energy and the HOMO-
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LUMO gap at the same time. In terms of our scoring system for the entire disubstituted quinones, 

for a good battery material alternative molecule, it should have at least a HOMO-LUMO gap of 

more than 7 eV and a solvation free energy of less than –20 kcal/mol, which means it must be in 

the blank region of the current material in the upper left corner of the scoring chart. Unfortunately, 

by now there is no such quinone to achieve these criteria.  In addition, we also used the same 

model to predict the corresponding properties of quinone-based battery materials that have been 

reported in the literature14,15,35,36. The full cell performance data consisting of the above material-

based composition is compiled in Table S4. As shown in Figure 5a, all the materials that have been 

verified by experiments, but not in our data set samples, get high scores under the evaluation of 

this model, which means that our machine learning model has certain accuracy for the screening 

ability of battery materials. For PGEAQ, the modification of the PEG group greatly reduces the 

solvation free energy of the anthraquinone (AQ) molecules, which makes the molecule obtain a 

high evaluation score, but its HOMO-LUMO gap is actually in the lower-middle position in the 

whole evaluation system. For 26DHAQ, although it does not appear to be in a dominant position, 

it actually has the highest predicted voltage, except that the hydroxyl modification cannot bring a 

great improvement in solubility for the backbone molecule. In fact, it is reasonable to consider 

whether the modification of the molecule in the upper right corner of the scoring diagram with 

PEG could result in a new molecule that is good in both target properties. In addition, there are a 

number of molecules in the sample set of di-substituted substances that we have constructed to 
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obtain scores comparable to them, showing that there is still a lot of room to find in the screening 

of battery materials, not to mention that the data set we constructed is only within the limited 

backbone and limited substituent types. 

We also calculated the corresponding properties for the above four molecules reported in 

the literature using quantitative calculations and the results are presented in Table 3. Although the 

property prediction model is generated based on the property data of single substituents, resulting 

in a reasonable error in predicting the properties of these di-substitutes, its prediction is still 

informative in terms of ranking ability compared to quantitative calculations. 

Table 3. Comparison of quantitative calculation results with ML predicted results. 

SPECIES 
QC ML 
SFE HOMO-LUMO gap SFE HOMO-LUMO gap 

26DHAQ -14.2380 8.127 -14.5968 7.094 
PEGAQ -24.8238 7.525 -30.4485 6.456 
26DBEAQ -25.0677 7.463 -24.9827 6.710 
AQDS -34.7494 7.487 -25.4116 6.612 

Conclusion 

 In this work, we constructed a virtual database of quinone small molecules with quinone 

molecular backbones and predefined substituents, and further constructed a database of their 

structural properties by combining theoretical calculations. Then we combined machine learning 

tools to build an artificial intelligence model for fast prediction of target properties from molecular 

structure and verified the accuracy of the machine learning model for predicting the solvation free 

energy and HOMO-LUMO gap of quinone molecules, as well as its ability to reduce quantification 
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and density functional theory calculation results. Through the analysis of the calculation results, 

we discussed the influence of the quinone backbone, the position of the substituent, and the type 

of the substituent on the characteristics of the quinone molecule, which proved that the machine 

learning method can be used as a high-throughput screening method for flow battery active 

materials with much higher efficiency than the theoretical calculation.  Based on a model for 

rapid property prediction, we constructed over 100,000 virtual quinone molecules, evaluated their 

performance as active substances in redox flow batteries, and compared them with some molecules 

reported in the literature. Actually, all molecules, both virtual and real, have not been able to obtain 

sufficient advantages in solubility and open-circuit voltage at the same time, which also indicates 

that there is still much room for research on the development of active materials for redox flow 

batteries. The predictive model of molecular target properties and the effect of substituents and 

substitution positions on the properties of the backbone molecule can quickly help us to find the 

direction of molecular property improvement and assist in the design and development of new 

molecules with better performance. 

Supporting Information 

It provides computational details of the machine learning model building process, 

including the construction of a virtual quinone-like molecular library, quantitative computational 

results of molecular properties, hyperparameter selection for the Xgboost model, and model 

prediction results of molecular properties. 
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Supporting Information 

Calculation of solvation free energy  

Solvation-free energy is the most fundamental property of molecules which can represent 

the actual solubility of the molecule to some extent. It refers to the energy change of the entire 

system during the process of dissolving solute molecules from vacuum to solvent at a fixed 

temperature and pressure. The method for calculating the solvation free energy by a combination 

of quantum mechanical (QM) calculations and classical density functional theory (cDFT) has been 

established in our previous work22–24. Specifically, the SPC/E25 water model is used for calculation, 

and the solute structure is determined using the Hartree−Fock (HF) method by energy 

minimization in a vacuum. The AM1-BCC26 atomic charges are assigned to calculate electrostatic 

interactions and the GAFF27 force-field parameters are chosen to describe the van der Waals 

(VDW) interactions. 

Calculation of HOMO-LUMO gap 

HOMO-LUMO gap refers to the energy difference between HOMO and LUMO in 

molecular orbital theory, which can be used to measure whether a molecule is easily excited. Thus 

HOMO-LUMO gap is used to characterize the open-circuit voltage when the substance molecule 

is used as the active material of the flow battery. All QM calculations are based on the ORCA ab 

initio quantum chemistry package28. 

Machine learning based on Xgboost  
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To express the molecular structure as digital parameters that can be used by the machine 

learning model and unify the input features, we used RDKit (version 2017.09.1) python package 

to calculate 200 two-dimensional molecular descriptors for each molecule, which were used as 

input features of machine learning model. Xgboost29 (version 1.4.1) is a machine learning 

algorithm that has been optimized in algorithm and engineering based on the Gradient Boosting 

Decision Tree (GBDT). By continuously generating new decision trees to fit the residuals of the 

last prediction, Xgboost’s practicality has been verified in many tasks30–32. 

Machine learning based on Attentive FP 

Attentive Fingerprints (FP)33 is a representation method of a molecular graph network 

based on an attention mechanism. Unlike machine learning methods such as Xgboost, it represents 

the entire molecule as a graph. The atoms in the molecule are the nodes of the graph, and the bonds 

between the atoms are the undirected edges between the nodes. Through the calculation of the 

surrounding environment of each node atom in the molecular graph (the number and type of 

neighboring atoms, etc.), the characteristics of each node are obtained, and finally, the 

characteristics of a molecule as a whole are integrated, which is used to train the deep learning 

model based on the PyTorch to predict the molecule’s various properties. Both the calculation of 

molecular descriptors and molecular graph networks are carried out based on the SMILES 

expression of molecules. 

Hyperparameter optimization 
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In this work, we use the Tree Parzen Estimator algorithm in Hyperopt34 to optimize the 

learning rate, dropout rate, the number of trees, and other parameters in the model. The detailed 

hyperparameters for optimization are listed in Supplementary Table S1. 

 


