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Abstract

Amorphous porous carbons are one of the most popular electrode materials for energy 

storage owing to their high electrical conductivity, large specific surface area and low-production 

cost. Both physics-based models and machine learning (ML) methods have been used to correlate 

the electrochemical behavior of carbon electrodes, including electric-double-layer (EDL) 

capacitance, energy density, charging dynamics, and the Ragone diagram. While ML methods are      

applicable to systems remote from equilibrium, the lack of physical inputs may lead to erroneous 

predictions of in operando capacitance at high charging-discharging rates      for electrodes with 

high mesopore surface areas. In this work, we introduce a physics-informed Gaussian process 

regression (PhysGPR) method to predict the capacitance of pristine carbon electrodes in aqueous 

solutions of 6 M KOH over a broad range of conditions.  We demonstrate that PhysGPR has major 

advantages in comparing with conventional GPR (ConvGPR) and other ML methods such as 

artificial neuron network (ANN) for predicting in operando capacitance as a function of the pore 
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characteristics and the scan rate. By incorporating physical models into a supervised setting, 

PhysGPR provides      better numerical performance in comparison with alternative ML methods     ,           

avoids unphysical predictions  such as negative capacitance or increasing EDL capacitance with 

rising charging-discharging rate, and works well in a wider range of parameter space especially 

for materials with high mesopore surface, thereby offering a      faithful description of the capacitive 

behavior of carbon electrodes     .  
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Introduction

Supercapacitors have attracted great interest over the past few decades for their potential 

use in electrical energy storage. This type of electrochemical devices is particularly useful for rapid 

electricity storage due to the high-power density and cycle efficiency. In comparison with 

alternative energy-storage methods, supercapacitors have the energy and power density in between 

those corresponding to the dielectric capacitors and electrochemical batteries, thereby filling the 

gap in practical applications.[1]

Recent developments of supercapacitors are mostly directed at maximizing the energy and 

power density through enhancing electric double layer (EDL) capacitance and/or electrochemical 

pseudocapacitance.[1, 2] EDL capacitance refers to electrostatic polarization of the electrolyte 

charges due to the uneven distributions of ionic species near the electrode surface. Because the 

electrical energy is accumulated in terms of the ionic charges, the EDL capacitance, thus the energy 

and power density, can be amplified by optimizing the specific surface areas of porous electrodes 

and by matching the geometric characteristics of ionic species and electrode pores.[3] Conversely, 

electrochemical pseudocapacitance arises from charge transfer between the electrolyte and 

electrode or from the intercalation of ionic species in the micropores.[4] In this case, the electrical 

energy is stored through Faradaic reactions and/or electrosorption. While physics-based models 

for describing EDL capacitance have been well advanced, the quantitative description of 

electrochemical pseudocapacitance remains a theoretical challenge owing to the strong coupling 

of electronic and ion charges in EDL.[5]  

Carbon electrodes are commonly used for supercapacitors because of large specific surface 

area, high electrical conductivity, long-term cycle stability and low production cost.[2] Many kinds 

of porous carbons can be adopted to enhance the capacitive performance for energy storage, 
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including carbon nanotubes and fibers, active carbon from coal or biomass, graphene and carbide-

derived carbons.[6] While ultra-high EDL capacitance, up to 250 F/g, has been reported for pristine 

carbon electrodes,[7, 8] further improvements can be achieved by introducing pseudocapacitance, 

e.g., by doping porous carbon with electro-active elements like O, N, S, P or by coating metal or 

metal oxides of Al, Fe, Mn, etc. at carbon surfaces.[9] Whereas a large specific surface area and 

an appropriate pore structure are crucial to achieve high energy density and charge/discharge rates, 

the rational design and optimization of carbon electrodes remain difficult due to many other factors 

influencing the supercapacitor performance. For example, it is often assumed that the EDL 

capacitance would increase with the specific surface area of the electrode material. While 

micropores (pore diameter d<2 nm) would provide higher specific surface area than mesopores (2 

nm<d<50 nm) and macropores (d>50 nm), their contributions to EDL capacitance are often 

considered less significant in comparison to those from mesopores because of the increased 

resistance of ion transport [2, 10] and limited ion accessibility.[11-13] Inconsistent experimental 

results were reported when the pore sizes are comparable to those of the ionic species yet 

theoretical investigations are not conclusive due to the difficulties in the characterization of the 

pore structure and surface composition of electrode materials.[14-17]      While several 

experimental and computational works have been reported suggesting the significant improvement 

of capacitive performance through doping carbon electrodes with heteroatoms, a comprehensive 

description of the doping effects on pseudocapacitive response is yet to be developed.  

The efficiency of electrical energy storage depends not only on the electrode materials but 

also on the properties of the matching electrolyte as well as the operation conditions such as the 

electrochemical potential window and the charging-discharging rates. Typically, the EDL 

capacitance decreases with the operational potential and the charging-discharging rates. Because 
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an increased charging-discharging rate leads to a higher resistance in ion transport, the reduction 

of capacitance is most significant for electrode materials with high micropore surface areas.[8] As 

the supercapacitance performance is often measured at conditions remote from thermodynamic 

equilibrium, the dynamic processes are not well described by conventional EDL models or 

molecular dynamics (MD) simulation. 

In addition to physics-based modeling, machine learning (ML) methods have been used to 

predict the performance of carbon materials for energy storage. For example, an artificial neutron 

network (ANN) was used for quantitative correlations between the EDL capacitance and the 

physicochemical features of carbon materials such as specific surface area, pore volume, the 

defects of the carbon structure, and doping elements under the same charging-discharging rate.[18] 

Similar correlations were established by using regression trees (RT) and multi-layer perception 

(MLP) models.[19]  ANN was also used to describe the synergetic effect of N/O doping on 

supercapacitor performance [20] and the EDL capacitance in terms of the physical features of 

carbon materials and the changing current density.[21] In our previous publications, we tested 

multiple ML methods to predict the EDL capacitance and pseudocapacitance in response to the 

changing scan rate of cyclic voltammetry and identified important pore characteristics of carbon 

materials with high energy-storage efficiency [7, 22].  While the data-driven approach was able to 

make valuable predictions of supercapacitance performance, the pitfalls of conventional ML 

methods have also been well documented, in particular in terms of interpretability, reliability in 

extrapolation, and uncertainty quantification. Ideally, the ML models should be physically 

interpretable and provide adequate uncertainty assessment. In principle, the interpretability of ML 

methods can be greatly enhanced by incorporating the physics-based analysis of the constraints 

and underlying connections between the input and output variables. Meanwhile, the issues with 
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reliability and uncertainty analysis can be addressed with statistical methods such as Gaussian 

process regression (GPR).[23, 24] GPR has been previously used to investigate the degradation of 

electrochemical pseudocapacitors at high temperature and the life span of Li-ion batteries.[25] 

However, we are unaware of its application to describing the in operando behavior of EDL 

capacitors. 

In this work, we propose a physics-informed Gaussian process regression (PhysGPR) 

model to predict the capacitances of carbon electrodes based on the micropore and mesopore 

surface areas. A semi-empirical model for the charging dynamics is incorporated into GPR to avoid 

unphysical predictions. Unlike previous ML methods, PhysGPR provides uncertainty as well as 

the mean values in the prediction of EDL capacitance. To minimize the number of input variables, 

all training data are extracted from the in operando measurements of electrodes made of pristine 

active carbons or carbon nanotubes, with 6 M KOH solution as the working electrolyte. This 

solution condition is commonly adopted in testing the EDL capacitance of carbon electrodes.

Models and Methods

We explain in this section the preparation of dataset and mathematical details in 

constructing our physics-informed Gaussian process regression (PhysGPR) for predicting the EDL 

capacitance and power density of carbon electrodes. Scheme 1 shows schematically the training 

flow chart for PhysGPR in comparison with that for conventional ML methods. While the latter 

utilize the experimental data directly, PhysGPR starts with a physics model analyzing the 

experimental results. In the present work, we adopt a phenomenological model to describe the 

variation of the EDL capacitance with the scan rate. The model parameters are then normalized 

(Eq.S4) and serve as the input for the GPR training. The incorporation of the physical model 

eschews erroneous predictions that may take place in conventional ML methods.
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Scheme 1 Physics-informed Gaussian process regression (PhysGPR) of experimental data 

for the capacitance of carbon electrodes from the cyclic voltammetry measurements. 

 After a brief introduction of data selection, we describe a semi-empirical model for 

representing the dependence of EDL capacitance on the scan rate of cyclic voltammetry (CV). The 

physical model is then incorporated into GPR in the context of a supervised ML algorithm. All 

ML models used in this work are available from Statistics and Machine Learning Toolboxtm in 

MATLAB. For comparison, the conventional GPR method is presented in Support Information 

(SI) [23, 26].

Data collection

As mentioned above, the EDL capacitance depends on the properties of both electrolyte 

and electrode as well as operating conditions such as the applied potential or current density. In 

this work, we consider carbon materials the same as those used in our previous publications.[7, 

22]  The same dataset is used as a benchmark for the calibration of PhysGPR and for comparison 

with conventional ML methods.[7] All data points were collected from the literature [27-33] and 

are reproduced in SI. To minimize the number of input variables, we fix the electrolyte and 

operating conditions, i.e., 6 M KOH aqueous solution with 1 V maximum voltage in the potential 
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window. Most experimental results were obtained with electrodes prepared by loading 5 mg of 

material on a 1cm×1cm plate. All capacitance data were measured in three-electrode-cell settings 

which allow for a more precise potential and current control than two-electrode measurements. 

The charging-discharging rates are determined by the cyclic voltammetry scan rate in the range of 

2 to 500mV/s (most data are in the range of 5 to 200 mV/s).

The electrode materials investigated in this work are activated carbon materials without 

significant heteroatom doping. These materials are close to pristine carbon doped with a little 

hydrogen, sometimes with low-level oxygen. Due to their consistent chemical composition, the 

impact of pseudocapacitance is negligible. In application of different ML methods, we use the scan 

rate, the surface area of micropores (<2 nm), and the surface area of mesopores (2~50 nm) as the 

input variables. Macropores do not make significant contributions to the electrochemical 

properties of carbon electrodes because the macropore surface is negligible in comparison to those 

of micropores and mesopores. Separating micro- and meso-pore contributions enables us to 

illustrate the per surface area capacitance and the pore-size effect independently. The surface areas 

reported by experiment were measured from N2 adsorption at 77 K. Because the diameters of 

hydrated ions and N2 molecules are comparable, the adsorption surface areas are expected to be 

similar, i.e., hydrated ions and N2 molecules have similar accessibility to the interior volumes of 

porous electrodes. While the EDL capacitance increases with the surface area of a carbon electrode, 

it does not vanish at zero micropore/mesopore surface area. For electrodes without micro and 

mesopores, the EDL capacitance would be sensitive to the electrode shape, particle size and 

packing geometry.[34] The limiting case has little practical significance and the experimental data 

are not particularly meaningful from the ML perspective.
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Physics-informed GPR 

The charging dynamics of EDL capacitors can be described in terms of equivalent-circuit 

models or ion-transport equations.[35] As observed in experimental characterization of the 

electrode charging with cyclic voltammetry, the EDL capacitance decreases with the scan rate due 

to the reduction of time available for the accumulation of the electrode charge. Whereas 

sophisticated molecular models have been developed to describe the charging dynamics of carbon 

electrodes,[36] for simplicity here we use a semi-empirical formula to correlate the specific EDL 

capacitance as a function of the scan rate[37, 38] 

(1)𝐶𝑠𝑝 = 𝐶0𝑒 ―𝑘𝜈 

where  is the equilibrium capacitance of the electrode material,  is a characteristic rate constant,  𝐶0 𝑘

 is the charging-discharging rate, i.e., the scan rate of cyclic voltammetry.  As shown in Fig S1, 𝜈

Eq.(1) works well for fitting the experimental data when   and  are treated as adjustable 𝐶0 𝜈

parameters.    

The physics-informed GPR model (PhysGPR) is constructed by using the scan rate, the 

micropore surface area, and the mesopore surface area of the electrode material as input variables. 

In combination of the semi-empirical formula with GPR, we set the artificial zero surface area 

points at  . To best fit the model parameters in Eq.(1), we introduce two innovations 10 ―20 𝑚2/𝑔

different from conventional GPR models in describing one response value  with its corresponding 𝑦

observation . First, in combination of the semi-empirical formula with GPR, 𝑥 = [𝜈,𝑆𝑚𝑖𝑐𝑟𝑜, 𝑆𝑚𝑒𝑠𝑜]

we choose the natural logarithm of the EDL capacitance as the response vector instead of the 

capacitance 

      𝑦 ≡ ln 𝐶𝑠𝑝 = ln 𝐶𝑜 ― 𝑘𝜈 .                                                                (2)
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The second innovation is to include the basis function, H(X), of the mean that consists of two 

components 

(3)𝐻(𝑋) = [𝐻1(𝑋𝑚𝑎𝑡),𝜈𝐻2(𝑋𝑚𝑎𝑡)]

where  is the scan rate,   is defined by the micropore surface area  𝜈 𝑋𝑚𝑎𝑡 = [𝑆𝑚𝑖𝑐𝑟𝑜, 𝑆𝑚𝑒𝑠𝑜] 𝑆𝑚𝑖𝑐𝑟𝑜

and mesopore surface area .  represents the ‘pure Quadratic’ basis 𝑆𝑚𝑒𝑠𝑜 𝐻1(𝑋𝑚𝑎𝑡) = [1,𝑋𝑚𝑎𝑡,𝑋𝑚𝑎𝑡2]

for , which is defined in Eqs.S8 and S9,  is the half-vectorization of the quadratic form 𝑋𝑚𝑎𝑡 𝑋𝑚𝑎𝑡2

of , and  is the linear basis for . Thus, the PhysGPR model is 𝑋𝑚𝑎𝑡  𝐻2(𝑋𝑚𝑎𝑡) = [1,𝑋𝑚𝑎𝑡] 𝑋𝑚𝑎𝑡

expressed as:

𝑦 = [𝐻1(𝑋𝑚𝑎𝑡),𝜈𝐻2(𝑋𝑚𝑎𝑡)][𝛽1 𝛽2 ] + 𝑧(𝑋𝑚𝑎𝑡) + 𝜀 ≡ 𝐻(𝑋)𝛽 + 𝑧(𝑋𝑚𝑎𝑡) + 𝜀                (4)

where  stands for the basis matrix,  is a vector of the basis coefficients, z( ) is a zero-𝐻(𝑋) 𝛽 𝑋𝑚𝑎𝑡

mean Gaussian process,  is an independent zero-mean Gaussian noise with a standard 𝜀~𝑁(0, 𝜎2)

deviation of .  Compared with a conventional GPR model with a zero mean or a constant mean, 𝜎

the mean value in PhysGPR   corresponds to parameters  and k in the semi-𝐶𝑠𝑝 = 𝐻(𝑋) ∗ 𝛽 𝐶0

empirical model for the EDL capacitance (viz., Eq.1) in the following way

ln 𝐶𝑜 →𝐻1(𝑋𝑚𝑎𝑡)𝛽1, ― 𝑘→𝐻2(𝑋𝑚𝑎𝑡).                                    (5)

For any n inputs, the marginal distribution of  follows a multivariate normal ln 𝐶𝑠𝑝 

distribution. Given a vector of observations, the predictive distribution also follows a normal 

distribution, and the predictive distribution of EDL capacitance  follows a log-normal 𝐶𝑠𝑝

distribution. Accordingly, the mean and standard deviation of the response value of any given 

response vector are given by

𝐶𝑠𝑝 = 𝑒
𝑦 +

𝑦2
𝑠𝑑

2 ,

 𝜎(𝐶𝑠𝑝) = (𝑒𝑦2
𝑠𝑑 ― 1)𝑒𝑦 +

𝑦2
𝑠𝑑

2 , 
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(6)𝐶𝑉(𝐶𝑠𝑝) = 𝜎(𝐶𝑠𝑝)
𝐸(𝐶𝑠𝑝) = (𝑒𝑦2

𝑠𝑑 ― 1) 

where  is the mean prediction of the EDL capacitance,  is the standard deviation, CV𝐶𝑠𝑝 𝜎(𝐶𝑠𝑝)

 is the relative standard deviation of the EDL capacitance, and  are the mean and (𝐶𝑠𝑝) 𝑦 𝑦𝑠𝑑

standard deviation of  predicted by the GPR model (given by Eqs.S9 and S10).ln(𝐶𝑠𝑝) 

In this work, we compare the PhysGPR and ConvGPR models for fitting the experimental 

data. The automatic relevance determination (ARD) structure of the kernel is used to decouple 

different length scales underlying the variations in the scan rate and surface areas of micropores 

and mesopores. The ConvGPR models use the pure quadratic basis with   and  as 𝜈, 𝑆𝑚𝑖𝑐𝑟𝑜 𝑆𝑚𝑒𝑠𝑜

input variables. The basis functions in  given by Eq.(3) are used by both PhysGPR and 𝐻(𝑋)

ConvGPR. All input values are standardized before regression (Eq.S4).  The ARD kernels tested 

in this work include the squared exponential kernel (also known as RBF or the radial basis function 

kernel), Matérn 3/2 and 5/2 kernels, and the rational quadratic kernel.[39] The exponential kernel 

was not selected because it yields erratic prediction of the EDL capacitance. In application of the 

ANN model with the Bayesian regularization, the backpropagation training function from our 

previous work is also shown for comparison.

For both GPR models tested in this work, the fitting parameters (including the kernel and 

variance parameter      ) are optimized with the k-fold cross validation method using a k      value 𝜎

of 5 with 10 different repartitions. The training data are randomly divided into 5 subgroups. We      

sequentially take 1      of the subgroups as the test set and the other 4 as the training set to train the 

ML model.      Each of            the 5      different subgroups will be used as a       test set and      this 

process is repeated 10 times with a different division of the data each time to make the model more 

robust.      The EDL capacitance was predicted by the final models using the fitting parameters 

found in cross validation.       To evaluate the numerical performance of different ML models for 
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correlating the experimental data, we use the cross-validation RMSE (CVRMSE) as the loss 

function:

 𝐶𝑉𝑅𝑀𝑆𝐸 = ∑𝑘
𝑗 = 1∑

𝑛
𝑖 = 1(𝐶𝑠𝑝,𝐶𝑉𝑖𝑗 ― 𝑢𝑖)2

𝑛𝑘
(7)

where  and       are the number of data points and the number of repartitions, respectively,       𝑛 𝑢𝑖 𝑢𝑖

is the experimental values of ,   is the test set prediction in j-th repartition of the k-fold 𝐶𝑠𝑝 𝐶𝑠𝑝,𝐶𝑉𝑖𝑗

cross validation.

Results and Discussion

Model evaluation

In the following, we first discuss the out of sample prediction on the experimental data set 

using the PhysGPR with different kernel functions. Next, we compare the results from PhysGPR 

with those from the conventional GPR and those from the ANN used in our previous work[7]. The 

fitting hyperparameters are optimized by 5-fold cross validation (CV) with 10 repartitions (80% 

training, 20% test, trained      5 10=50      times).  Figure 1 and Table 1 summarize the correlations ×

of the experimental data with different ML models. 

Table 1 The cross-validation root mean square error (CVRMSE) of the physics-informed 

(PhysGPR) and conventional Gaussian process regression (GPR) with different kernel 

functions. For comparison, also shown are the results from fitting with artificial neural 

network (ANN), ConvGPR with basis  (viz. Eq.3) on the capacitance instead of the 𝐻(𝑋)

logarithm of the capacitance and the standard deviation of the data. 

ML method Kernel or Training 
Function

CV Root Mean square error 
(CVRMSE)

ARD Matérn 3/2 50.16
ARD Matérn 5/2 38.35PhysGPR
ARD Rational quadratic 31.9511
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ARD RBF 31.9505
ARD Matérn 3/2 21.35
ARD Matérn 5/2 21.59
ARD Rational quadratic 22.08

ConvGPR, 
pure quadratic basis

ARD RBF 22.51
ARD Matérn 3/2 34.89
ARD Matérn 5/2 35.36
ARD Rational quadratic 34.67

ConvGPR
 basis𝐻(𝑋)

ARD RBF 37.34
ANN Bayesian Regularization 36.70
Standard deviation of 
data

/ 68.89

Page 20 of 72Energy Advances



Fig. 1 Correlation of experimental data for the specific capacitance of active carbons with the 

final model (the ML model that applies the CV-optimized fitting parameters and kernels) of 

different machine learning (ML) methods. In each panel, the diagonal line represents the 

perfect correlation. (A) Physics-informed GPR (PhysGPR) with automatic relevance 

determination (ARD) and squared exponential kernel; (B) Conventional GPR (ConvGPR) 

with pure quadratic basis and ARD Matérn 3/2 kernel; (C) Conventional GPR with  𝐻(𝑋)

basis (viz. Eq.3) on capacitance and ARD rational quadratic kernel; and (D) Artificial neural 

network (ANN). 

Both PhysGPR and ConvGPR are able to reproduce the experimental data for the EDL 

capacitance of carbon electrodes but with different accuracies. Among different ML methods 

tested in this work, conventional GPR with the ARD Matérn 3/2 kernel provides the best 

correlation (CVRMSE = 21.35). However, as shown in Fig. 2A and Fig. 3C and 3D, ANN and 

ConvGPR predict that the EDL capacitance may increase with the scan rate, which is not 

physically meaningful. While ConvGPR with  (viz., Eq.3) correctly predicts the decline of 𝐻(𝑋)

the EDL capacitance at small scan rate, the trend is non-monotonic and the predicted EDL 

capacitance may become negative at high scan rate. The result is especially problematic when the 

ML model is applied out of the experimental data range. Besides, the cross-validation root mean 

square error (CVRMSE=34.67) indicates the low accuracy of the -basis ConvGPR.      By 𝐻(𝑋)

contrast, PhysGPR with the ARD squared exponential kernel (CVRMSE=31.95) is able to 

correlate the experimental data better than the ANN model (CVRMSE=36.70). Importantly, 

PhysGPR behaves well at the high scan rate. As shown in Figure 1, none of the ML models catches 

the artificial zero surface area-zero capacitance data points. All ML models predict a small positive 
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value around 50~100 F/g. As mentioned above, for electrodes without micro and mesopores, the 

capacitance will be sensitive to the electrode shape, particle size and packing geometry. While the 

limiting case has little practical significance and the experimental data are not particularly 

meaningful, all ML methods are able to capture the trend. 

Fig. 2 The specific capacitance ( ) versus the scan rate ( ) predicted by different machine-𝐶𝑠𝑝 𝜈

learning methods. (A) ANN (adapted from Fig. 3 of [7]), (B) PhysGPR with the rational 

quadratic kernel; (C) Conventional GRP with pure quadratic basis and ARD Matérn 3/2 kernel; 

(D) Conventional GRP with  basis (viz. Eqs.3) on capacitance and ARD rational 𝐻(𝑋)

quadratic kernel.  The lines show the predicted mean value, and the shadow shows the 

standard deviation predicted by GPR. The specific surface areas of electrode materials are: 
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Data Set I-1: , ; Data Set I-2: , 𝑆𝑚𝑖𝑐𝑟𝑜 = 115 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 1158 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 636 𝑚2/𝑔

; and Data Set I-3: , .[7]𝑆𝑚𝑒𝑠𝑜 = 442 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 735 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 1200 𝑚2/𝑔

Fig. 3 The specific capacitance (  versus the scan rate (  predicted by different machine-𝐶𝑠𝑝) 𝜈)

learning methods. (A) The mean value predicted by PhysGPR with the rational quadratic 

kernel; (B) the same as panel A but with the standard error bar; (C) ANN, and (D) ConvGPR 

with the pure quadratic basis and Matérn 3/2 kernel. The lines show the predicted mean value 

from different ML methods, the shadow shows the standard deviation predicted by GPR. The 

specific surface areas of electrode materials are: Data Set II-1: , 𝑆𝑚𝑖𝑐𝑟𝑜 = 579 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 =
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, Data Set II-2: , , Data Set II-3: 83 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 481 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 193 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 200

, , Data Set II-4: , . [7]𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 900 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 0 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 24 𝑚2/𝑔

We demonstrated in our previous work that ML methods can be used to predict the specific 

capacitance of carbon electrodes as a function of the scan rate.[7] Among different ML models 

tested in that work, it was found ANN provides the best correlation of the EDL capacitance as a 

function of the scan rate for most of the samples (e.g., Fig 2A is directly adapted from Fig. 3 of 

[7]). Without a physical model as the guidance, the ANN prediction is problematic at least for 

certain electrode materials. As shown in Fig. 2A and 2D, and the grey part in Fig. 4A and 4D, both 

ANN and conventional GRP with  basis may yield negative capacitance at high scan rate 𝐻(𝑋)

because of the lack of physical basis. Besides, as shown in Fig 3C, the EDL capacitance may 

increase with the scan rate when it is sufficiently large. The unphysical prediction is especially 

pronounced for those electrodes with high mesopore surface areas but relatively low micropore 

surface areas. Whereas ConvGPR has the same problem at high scan rate (>~350mV/s), as shown 

in Fig 3D, the physics-informed GPR (PhysGPR) avoids the unphysical prediction because the 

scan-rate dependence of the capacitance is explicitly accounted for by using the semi-empirical 

model (Eq.1). As shown in Fig. 2B, 3A and 3B, the predictions by PhysGPR are satisfactory for 

all samples. It should be noted that the uncertainty of the GPR predictions can be quantified by the 

predictive interval (shaded area in Fig. 3B), while the predictive interval by ANN is not easily 

obtained. 
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Fig 4 The relative capacitance predicted by various ML models. (A-C) at the scan rate of 𝐶𝑠𝑝 

200 mV/s compared to that at 100 mV/s; and (D-F) at the scan rate of 400 mV/s compared 𝐶𝑠𝑝 

to that at 300 mV/s. Negative predicted capacitance is shown in grey. The ML methods used 

for comparison are: (A&D) ANN; (B&E) ConvGPR with pure quadratic basis and ARD 

Matérn 3/2 kernel; and (C&F) PhysGPR with ARD squared exponential kernel.

We can identify the parameter space leading to the unphysical behavior by inspecting the 

EDL capacitance at high scan rates. Approximately, the trend can be captured by considering the 

variation of the relative capacitance with the growth of the scan rate as shown in Fig 4.  We see 

that the unphysical prediction of ANN emerges in the regions of low micropore surface area and 

the high mesopore surface area. In conventional GPR, the prediction is problematic at high scan 
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rate regardless of the pore characteristics of the electrode material. By contrast, PhysGPR model 

predicts that, as observed in experiments, the EDL capacitance always decreases with the rising 

scan rate.

While PhysGPR incorporates a linear trend between the logarithm of the capacitance and 

the scan rate, the physics-informed basis functions are oblivious to conventional ML models such 

as ANN and GPR. Apparently, the correlation between the EDL capacitance and the scan rate was 

not learnt by the nonlinear nature of these methods. From the calculated basis coefficients , we 𝛽

find that the coefficient in the mean function of :  for ConvGPR with pure 𝜈2 𝛽𝜈2 = 7.82 > 0

quadratic basis. When the scan rate   is sufficiently large, the conventional ML model would 𝜈

predict an increase of capacitance. Because the  term is necessary for ConvGPR to reproduce 𝜈2

the experimental results, the ‘pure Quadratic’ basis implies that  is positive definite and the  𝐶𝑠𝑝

slope of   increases beyond a certain scan rate. In PhysGPR,  is absent in the basis function. 𝐶𝑠𝑝 ―𝜈 𝜈2

According to Eq.(2),   within the data range. As a result,   𝑘~ ― 𝐻1(𝑋𝑚𝑎𝑡) ∗ 𝛽2 > 0 𝐶𝑠𝑝 = 𝐶0𝑒 ―𝑘𝜈

always decreases with .𝜈

In the PhysGPR model with ARD Matérn 3/2 model, we find that the length scale of scan 

rate (  is much larger than that of surface areas ( , 𝛾𝜈 = 1.4) 𝛾𝑆𝑚𝑖𝑐𝑟𝑜 = 0.27 𝑎𝑛𝑑 𝛾𝑆𝑚𝑒𝑠𝑜 = 0.096)

implying that predictions are smoother in terms      of the scan rate than that of the surface areas. 

Comparing the specific capacitance-scan rate plot with that of non-ARD kernel model (see Fig 

S2), we see that the smoothness of the predicted curve for the capacitance as a function of the scan 

rate is necessary in order to avoid overfitting.
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Optimizing capacitive performance

Fig. 5 Specific capacitance and relative standard deviation (standard deviation divided by the 

mean) versus the surface areas of micropores and mesopores predicted by PhysGPR with the 

rational quadratic kernel. (A~C) The predicted mean of the specific capacitance; (D~F) the 

relative standard deviation of the specific capacitance. The corresponding scan rates are (A 

and D) 5 mV/s, (B,E) 50 mV/s, and (C,F) 200 mV/s.

Figure 5 shows the specific capacitance versus micropore and mesopore surface areas 

predicted by PhysGPR at 3 different scan rates, 5 mV/s, 50 mV/s and 200 mV/s. At the low scan 

rate (5 mV/s), the ML model predicts that high micropore surface area would lead to high 

capacitance. At the high scan rate (200 mV/s), the specific capacitance is drastically reduced for 
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the carbon electrodes with large micropore surface area due to the large resistance on ion transport. 

In this case, the contribution from mesopore surface area is relatively insensitive the scan rate. 

Figure 5d~f indicates that the predictive standard deviation by PhysGPR is about 25%, indicating 

small uncertainty associated with the PhysGPR prediction.

According to Fig. 5A, PhysGPR predicts that the specific capacitance does not increase 

with the surface area when the total surface area exceeds about 1500 m2/g. This prediction is 

consistent with the experimental observations and the ANN model.[40, 41] However, different 

from the ANN model, PhysGPR also predicts that the capacitance would rise with the micropore 

surface area at low scan rate before the total surface area becomes too high. At high scan rate, 

electrode with high mesopore surface area and low micropore surface area would have the highest 

capacitance. From Fig. 5, we can find that the capacitance decreases with the total surface area at 

very high total surface area, regardless of the pore size distribution. Under the extreme conditions, 

the reduction in capacitance may be related to interactions between electrolytes in neighboring 

pores.[40]

Fig 6 (A) The Ragone plot predicted by two ML models for the power density and energy 

density of EDL capacitators made of pristine carbon. The red solid line shows the PhysGPR 
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prediction, while the blue dashed line shows the prediction of ANN as reported in our previous 

work[7]. The maximum energy density and power density are shown as red stars on the plot. 

(B) Specific capacitance (  versus the scan rate (  predicted by PhysGPR with the rational 𝐶𝑠𝑝) 𝜈)

quadratic kernel at the condition corresponding to the maximum energy density and to the 

maximum power density. The maximum energy density and maximum power density occur 

at the largest specific capacitance at the scan rates of 5mV/s and 100 mV/s, respectively. The 

surface areas are: at 5mV/s for the maximum 𝑆𝑚𝑖𝑐𝑟𝑜 = 1500 𝑚2/𝑔, 𝑆𝑚𝑒𝑠𝑜 = 160 𝑚2/𝑔 

energy density, and  at 100mV/s for the maximum 𝑆𝑚𝑖𝑐𝑟𝑜 = 0 𝑚2/𝑔, 𝑆𝑚𝑒𝑠𝑜 = 1060 𝑚2/𝑔

power density.  

Figure 6A shows the Ragone plot for the energy density and power density (calculated by 

Eqs.S1 and S2) of EDL capacitators made of pristine carbon. The lines are constructed with the 

PhysGPR model in the range of 1500 m2/g and 1500 m2/g with the scan rate 5  𝑆𝑚𝑖𝑐𝑟𝑜 < 𝑆𝑚𝑒𝑠𝑜 <

mV/s 100 mV/s. For comparison, the figure also includes the results predicted by the ANN ≤ 𝜈 ≤

model [7] in the range of 250 m2/g 1500 m2/g (in order to avoid the unphysical < 𝑆𝑚𝑒𝑠𝑜 <

predictions). Interestingly, the maximum energy density and the maximum power density 

predicted by PhysGPR and ANN are close to each other. PhysGPR model predicts that the largest 

energy density happens at  with a scan rate of 5mV/s,  𝑆𝑚𝑖𝑐𝑟𝑜 = 1500 𝑚2/𝑔, 𝑆𝑚𝑒𝑠𝑜 = 160 𝑚2/𝑔

and the largest power density happens at  with a scan rate of 𝑆𝑚𝑖𝑐𝑟𝑜 = 0 𝑚2/𝑔, 𝑆𝑚𝑒𝑠𝑜 = 1060 𝑚2/𝑔

100mV/s. Although PhysGPR and ANN predict a similar maximum energy density, the surface 

areas corresponding to the maximum point are quite different. PhysGPR suggests high micropore 

surface area while ANN suggests a mix of both type of pores. More data around  𝑆𝑡𝑜𝑡≅1500 𝑚2/𝑔 

are needed to know which is more accurate.  
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Figure 6B shows the specific capacitance versus the scan rate for these top materials 

predicted by PhysGPR. At low scan rate, a higher energy density can be reached for an electrode 

with a larger micropore surface area. However, at high scan rate, an electrode with a larger 

mesopore surface area shows a higher energy density while its performance at low scan rate is 

comparable to electrodes with high micropore surface areas. PhysGPR predicts that a pristine 

activated carbon with high mesopore surface area and low micropore surface area performs well 

in a large range of scan rate. While a similar conclusion can be reached from the ANN model, its 

prediction in that range is unreliable because of the unphysical behavior. Because active carbons 

with high mesopore and low micropore surface area are hard to be produced, such materials have 

not been systematically studied before but would be a good direction for the electrode material 

design. 

Conclusions

In this work, we developed a physics-informed Gaussian process regression (PhysGPR) 

model and tested its performances for predicting the electric-double layer (EDL) capacitance of 

carbon electrodes. The PhysGPR models the logarithm of the capacitance and incorporates physics 

information into the mean of the GPR, which eliminates unphysical predictions that would 

encounter with conventional GPR. Although transforming the output and modeling the mean 

structure have been considered in prior studies on developing GP emulators,     [43] it was not 

realized that these modeling steps can help eliminate unphysical predictions from conventional 

GPR. Quantitative correlations were established between the surface areas of the carbon materials 

and their capacitive behavior in good agreement with experimental data. 

The results are compared with conventional machine-learning (ML) models such as ANN 

and GPR. Among the different ML models investigated in this work, we found that ConvGPR with 
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the ‘pure quadratic’ basis and the ARD Matérn 3/2 kernel could yield the best performance in 

terms of out-of-sample predictions. However, both ANN and ConvGPR predict unphysical 

capacitance-scan rate relationships at high scan rates, while the predictions by PhysGPR eschew 

such issues because it incorporates a semi-empirical model accounting for the dependence of the 

capacitance on the scan rate. Among various forms of PhysGPR models, ARD Matérn 3/2 kernel 

provides the best correlation of the experimental data. The PhysGPR model captures the impact of 

the micropore and mesopore surface area on the EDL capacitance. The model was used to construct 

the Ragone plot that predicts the largest energy and power density of EDL capacitors made of 

pristine active carbons and the corresponding characteristic parameters. 

Besides introducing the physical basis in a supervised ML method, there are other methods 

to avoid the unphysical behavior in ML, including constructing a shape constrained function 

through imposing constraints on process derivatives in GPR by indicator functions, and computing 

conditional distributions to make predictions.[42] However, applying these methods to a 

multivariate GPR are significantly more computationally demanding than applying a physics-

informed model. Another advantage of GPR is the availability of the uncertainty of the prediction     

. The assessed uncertainty can be used to design the minimum number of experiments to improve 

predictive accuracy of input region without enough data through active learning,     [44] and to 

find the optimal experimental conditions or material to design EDL capacitors through Bayesian 

optimization.[45]

This work introduces the physics basis in a supervised ML method. The ML model 

suggests that active carbon with high mesopore and low micropore surface area can be utilized to 

produce EDL capacitors with the best performance in a large range of scan rates. We note that, in 

addition to optimizing the micropore and mesopore surface areas, the performance of the carbon 
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supercapacitors can be further improved by chemical modifications such as heteroatom doping. 

The physics-informed ML model can be similarly applied to such materials. We hope that this 

work provides fresh insights for the design and synthesis of carbon electrodes for capacitive energy 

storage. 
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In this support information, we provide the formulas for calculating capacitance, the 

input data used for training the machine learning models and the methodology of Gaussian 

Process Regression (GPR). All the data are calculated from the CV curves collected from the 

literature. [1-7]

Capacitive behavior

The specific integral capacitance is given from the CV curves by

 (S1)𝐶𝑠𝑝 =
∫𝑉𝑒𝑛𝑑𝑉𝑠𝑡𝑎𝑟𝑡

𝑖(𝑉)𝑑𝑉

2𝜐𝑚𝛥𝑉 =
𝐼
𝛥𝑉
𝜐

𝑚𝛥𝑉 = 𝐼𝛥𝑡
𝑚𝛥𝑉  

where υ is the scan rate (V/s), i is the electrical current, m is the electrode mass, ΔV is the 

potential window, is the average current, Δt=ΔV/υ is charging/discharging time, and  𝐼 𝐶𝑠𝑝

stands for specific integral capacitance of the electrode.

The energy density is defined as

 (S2)

22

2 8 8
spcell C VC V I t VE

m
  

  

where Ccell is the specific capacitance of a two-electrode symmetrical supercapacitor. The 

power density is calculated from
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Gaussian Process Regression (GPR) models 

GPR is a non-parametric Bayesian method for solving regression problems.[8, 9] The 

supervised ML can capture different kinds of relationships by using an appropriate kernel to 

capture the unknown relations between the independent and dependent variables.[10] By 

introducing a theoretically infinite number of parameters, kernels are widely used in supervised 

ML methods including not only GPR but also support vector machine (SVM), principal 

components analysis (PCA), canonical correlation, and ridge regression. The kernel functions 

empower the ML methods to operate in a high-dimensional, implicit feature space by 

computing the inner products between the images of all pairs of data in the feature space.

In this work, the predictors used in regression are all standardized, so they are unitless 

values in regression. 𝑋 = [𝑧1,𝑧2,…,𝑧𝑛]

(S4)𝑧𝑖 = 𝑥𝑖 ― 𝜇𝑖
𝜎𝑖   

where  are the mean and standard deviation of original input predictor ), so they are 𝜇𝑖, 𝜎𝑖 𝑥𝑖

unitless values in the model.

Specifically, GPR provides the mapping from a predictor matrix  to a 𝑋 = [𝑥1,𝑥2,…,𝑥𝑛]

response vector y.[9, 11, 12]. Consider one input observation  (in this work, 𝑥 = [𝑧1,𝑧2,…,𝑧𝑛]

, the standardized input observation of ), and its 𝑥 = [𝑧𝜈,  𝑧𝑆𝑚𝑖𝑐𝑟𝑜,  𝑧𝑆𝑚𝑒𝑠𝑜
] [𝜈,𝑆𝑚𝑖𝑐𝑟𝑜, 𝑆𝑚𝑒𝑠𝑜]

corresponding  response value y, the mapping is assumed to be an unknown function, 𝑦 = 𝑓(𝑥)

, where  is an independent zero-mean Gaussian noise with a standard deviation +𝜀 𝜀~𝑁(0, 𝜎2)

of . GPR defines a probability distribution with function𝜎

(S5)𝑓(𝑥)~𝑀𝑁(𝑚(𝑥),𝜅(𝑥,𝑥′)) 

where  and   are the mean and covariance functions:𝑚(𝑥) 𝜅(𝑥,𝑥′)
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(S6){𝑚(𝑥) = 𝐸[𝑓(𝑥)] 𝜅(𝑥,𝑥′) = 𝐸[(𝑓(𝑥) ―𝑚(𝑥))(𝑓(𝑥′) ―𝑚(𝑥′))]  

Usually, the mean function is assumed to be a basis function in the form as:

(S7)𝑚(𝑥) = 𝐻(𝑥)𝛽

where  is the basis matrix,  is a vector of basis coefficients. 𝐻(𝑥) 𝛽

Common selections of the basis matrix include the constant basis ( ), the linear 𝐻 = 1

basis ( , and the ‘pure Quadratic’ basis:𝐻 = [1,𝑋])

(S8)𝐻 = [1,𝑋,𝑋2]

where  is half-vectorization of the quadratic form of the predictors.𝑋2

The prediction mean  and variance  of the response value at a given point  are:𝑦 𝑦𝑠𝑑 𝑥 ∗

(S9)𝑦(𝑥 ∗ ) = 𝑚(𝑥 ∗ ) +𝐾(𝑥 ∗ ,𝑋)𝑇[𝐾(𝑋.𝑋) + 𝜎2𝐼𝑛] ―1(𝑦 ― 𝑢) 

(S10)𝑦𝑠𝑑 = 𝐾(𝑥 ∗ ,𝑥 ∗ ) ― 𝐾(𝑥 ∗ ,𝑋)𝑇[𝐾(𝑋.𝑋) + 𝜎2𝐼𝑛] ―1𝐾(𝑋,𝑥 ∗ )

where 

 (S11)𝐾(𝑥 ∗ ,𝑋) = [𝜅(𝑥 ∗ ,𝑥1),𝜅(𝑥 ∗ ,𝑥2),…,𝜅(𝑥 ∗ ,𝑥𝑛)] 

The covariance function (or kernel function) is the major component of a GP model. Under the 

stationary condition, , where  being a variance parameter, which is 𝜅(𝑥,𝑥′) = 𝜎2𝑓𝜅(𝑥 ― 𝑥′) 𝜎2

the signal standard deviation and  is a correlation function, with . The covariance 𝑓𝜅 𝑓𝜅(0) = 1

function is assumed to be isotropic, i.e., , where𝜅(𝑥,𝑥′) = 𝜎2𝑓𝜅(𝑑)  𝑑 = ||𝑥 ― 𝑥′|| =

 being the Euclidean distance between  and . The frequently used ∑𝑛
𝑖 = 1(𝑥𝑖 ― 𝑥′𝑖)2 𝑥 𝑥′

covariance functions include power exponential correlation, Matérn correlation and Rational 

Quadratic correlation.[9] We can see that the correlation function can be normalized by a length 

scale . so  𝛾

(S12)𝜅(𝑥,𝑥′) = 𝜎2𝑓𝜅(𝑥 ― 𝑥′) = 𝜎2𝑓𝜅(𝑑) = 𝜎2𝑓𝜅0(𝑟) 

where  being the related radius.𝑟 = 𝑑
𝛾 = |𝑥 ― 𝑥′|

𝛾

It’s also possible to use a separate length scale  for each predictor m, called automatic 𝛾𝑚
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relevance determination (ARD). This can be done by replacing all the related distance  by 
𝑑
𝛾

related radius r with separate length scale for each predictor:  

(S13)𝑟 = ∑𝐷
𝑚 = 1

(𝑥𝑖𝑚 ― 𝑥𝑗𝑚)2

𝛾2
𝑚

The power exponential correlation kernel is given by:

 (S14)𝜅(𝑥,𝑥′) = 𝜎2𝑒𝑥𝑝𝑒𝑥𝑝 { ― (𝑟)𝛼} 

Where  is the signal standard deviation,  is the roughness parameter of the kernel 𝜎 𝛼 ∈ (0,2]

function. When , the kernel function is called Squared Exponential Kernel or Gaussian 𝛼 = 2

kernel, which is infinitely differentiable.

The Matérn correlation kernel is

(S15)𝜅(𝑥,𝑥′) = 𝜎2 1
2𝛼 ― 1𝛤(𝛼)(𝑟)𝛼𝛫𝛼(𝑟) 

where   are the modified Bessel function of the second kind and the roughness parameter. 𝛫𝛼,𝛼

This kernel is  differentiable, where  means the ceiling integer of .  are ⌈α⌉ ―1 ⌈α⌉ 𝛼 𝛼 = 3
2 𝑜𝑟5

2

most frequently used Matérn kernels. When , it becomes the exponential kernel function.  𝛼 = 1
2

When , it converges to the Gaussian kernel. 𝛼→∞

The Rational Quadratic correlation kernel has the following form

(S16)𝜅(𝑥,𝑥′) = 𝜎2(1 + 𝑟2

2𝛼) ―𝛼
 

where  is a positive-valued scale-mixture parameter. This kernel is infinitely differentiable as 𝛼

the Gaussian kernel. It can be interpreted as an infinite sum of different Gaussian kernels with 

different characteristic length scales. Here,  means the weighting between different length 𝛼

scales. When , it converges to the Gaussian kernel.𝛼→∞

In this work, we have tested all these covariance functions except exponential 

correlation, which is not smooth, and using the ARD kernels since it’s clear that the scan rate 

needs a different scaling length comparing to the surface area.
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Fig S1 Correlation of the specific capacitance-scan rate relationship based on a semi-
empirical physical model (Eqn (1)) for the carbon materials with enough data points.

Fig S2 The specific capacitance versus the scan rate predicted by PhysGPR with non-ARD 
Matérn 3/2 kernel, shows strong overfitting. The specific surface areas of electrode 
materials are: Data Set I-1: , ; Data Set I-2: 𝑆𝑚𝑖𝑐𝑟𝑜 = 115 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 1158 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜

, ; and Data Set I-3: , = 636 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 442 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 735 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 1200 
.  Data Set II-1: , , Data Set II-2: 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 579 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 83 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 481 
, , Data Set II-3: , , Data 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 193 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 200𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 900 𝑚2/𝑔

Set II-4: , ..𝑆𝑚𝑖𝑐𝑟𝑜 = 0 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 24 𝑚2/𝑔

Table S1 Dataset for the capacitive performance of carbon electrodes. Columns: : specific 𝑪𝒔𝒑

capacitance. E: Energy density. P: Power density. : Specific micropore surface area 𝑺𝑨𝒎𝒊𝒄𝒓𝒐

(d<2nm) : specific mesopore surface area (2nm<d<50nm) : cyclic voltammetry scan 𝑺𝑨𝒎𝒆𝒔𝒐 𝝂

rate

# Csp/(F/g) E/(Wh/kg) P/(kW/kg) SAmicro/(m2/g) SAmeso/(m2/g) υ/(mV/s)

1 0 0 0 0 0 0

2 0 0 0 0 0 5
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3 0 0 0 0 0 10

4 188.58 6.548 0.118 1990 879 5

5 232.27 8.065 0.145 636 442 5

6 222.77 7.735 0.278 636 442 10

7 202.29 7.024 0.506 636 442 20

8 185.15 6.429 1.157 636 442 50

9 155.41 5.396 1.943 636 442 100

10 185.11 6.428 0.116 713 290 5

11 170.51 5.921 0.213 457 126 10

12 101.47 3.523 1.268 457 126 100

13 160.84 5.585 0.201 429 188 10

14 115.52 4.011 1.444 429 188 100

15 175.29 6.086 0.219 481 193 10

16 141.55 4.915 1.769 481 193 100

17 253.90 8.816 0.317 1118 504 10

18 203.05 7.050 2.538 1118 504 100

19 224.15 7.783 0.056 735 1200 2

20 202.99 7.048 0.127 735 1200 5

21 189.89 6.593 0.237 735 1200 10

22 176.24 6.119 0.441 735 1200 20

23 144.14 5.005 0.901 735 1200 50

24 113.60 0.394 0.142 735 1200 100

25 241.54 8.387 0.151 1506 269 5

26 212.44 7.376 0.266 1506 269 10

27 207.12 7.192 0.518 1506 269 20

28 197.94 6.873 1.237 1506 269 50

29 198.00 6.875 2.475 1506 269 100
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30 182.58 6.340 0.114 437 10 5

31 161.70 5.615 1.011 437 10 50

32 158.97 5.520 1.987 437 10 100

33 221.86 7.703 0.139 501 25 5

34 191.76 6.658 1.198 501 25 50

35 182.59 6.340 2.282 501 25 100

36 159.09 5.524 0.099 579 83 5

37 139.68 4.850 0.873 579 83 50

38 136.66 4.745 1.708 579 83 100

39 116.85 4.057 0.029 0 24 2

40 79.11 2.747 0.049 0 24 5

41 68.03 2.362 0.085 0 24 10

42 61.20 2.125 0.153 0 24 20

43 53.48 1.857 0.334 0 24 50

44 46.58 1.617 0.582 0 24 100

45 41.30 1.434 1.033 0 24 200

46 31.42 1.091 1.964 0 24 500

47 257.94 8.956 0.064 115 1158 2

48 244.31 8.483 0.153 115 1158 5

49 238.34 8.276 0.298 115 1158 10

50 232.37 8.068 0.581 115 1158 20

51 224.65 7.800 1.404 115 1158 50

52 216.90 7.531 2.711 115 1158 100

53 207.36 7.200 5.184 115 1158 200

54 187.26 6.502 11.704 115 1158 500

55 179.60 6.236 0.022 120 216 1

56 172.40 5.986 0.043 120 216 2
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57 166.30 5.774 0.104 120 216 5

58 155.00 5.382 0.194 120 216 10

59 211.60 7.347 0.026 107 315 1

60 201.60 7.000 0.050 107 315 2

61 184.20 6.396 0.115 107 315 5

62 172.60 5.993 0.216 107 315 10

63 277.00 9.618 0.035 153 553 1

64 259.60 9.014 0.065 153 553 2

65 229.50 7.969 0.143 153 553 5

66 198.10 6.878 0.248 153 553 10

67 280.10 9.726 0.035 200 900 1

68 273.5 9.497 0.068 200 900 2

69 265.2 9.208 0.166 200 900 5

70 250.1 8.684 0.313 200 900 10

Note:1-3: Artificial zero surface area points. 4-10[1]; 11-18[2]; 19-24[3]; 25-29[4]; 30-

38[5]; 39-54[6]; 55-70[7];
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