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Abstract

Amorphous porous carbons are one of the most popular electrode materials for energy
storage owing to their high electrical conductivity, large specific surface area and low-production
cost. Both physics-based models and machine learning (ML) methods have been used to correlate
the electrochemical behavior of carbon electrodes, including electric-double-layer (EDL)
capacitance, energy density, charging dynamics, and the Ragone diagram. While ML methods are
applicable to systems remote from equilibrium, the lack of physical inputs may lead to erroneous
predictions of in operando capacitance at high charging-discharging rates  for electrodes with
high mesopore surface areas. In this work, we introduce a physics-informed Gaussian process
regression (PhysGPR) method to predict the capacitance of pristine carbon electrodes in aqueous
solutions of 6 M KOH over a broad range of conditions. We demonstrate that PhysGPR has major
advantages in comparing with conventional GPR (ConvGPR) and other ML methods such as

artificial neuron network (ANN) for predicting in operando capacitance as a function of the pore
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characteristics and the scan rate. By incorporating physical models into a supervised setting,
PhysGPR provides better numerical performance in comparison with alternative ML methods
avoids unphysical predictions such as negative capacitance or increasing EDL capacitance with
rising charging-discharging rate, and works well in a wider range of parameter space especially
for materials with high mesopore surface, thereby offeringa  faithful description of the capacitive

behavior of carbon electrodes
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Introduction

Supercapacitors have attracted great interest over the past few decades for their potential
use in electrical energy storage. This type of electrochemical devices is particularly useful for rapid
electricity storage due to the high-power density and cycle efficiency. In comparison with
alternative energy-storage methods, supercapacitors have the energy and power density in between
those corresponding to the dielectric capacitors and electrochemical batteries, thereby filling the
gap in practical applications.[1]

Recent developments of supercapacitors are mostly directed at maximizing the energy and
power density through enhancing electric double layer (EDL) capacitance and/or electrochemical
pseudocapacitance.[1, 2] EDL capacitance refers to electrostatic polarization of the electrolyte
charges due to the uneven distributions of ionic species near the electrode surface. Because the
electrical energy is accumulated in terms of the ionic charges, the EDL capacitance, thus the energy
and power density, can be amplified by optimizing the specific surface areas of porous electrodes
and by matching the geometric characteristics of ionic species and electrode pores.[3] Conversely,
electrochemical pseudocapacitance arises from charge transfer between the electrolyte and
electrode or from the intercalation of ionic species in the micropores.[4] In this case, the electrical
energy is stored through Faradaic reactions and/or electrosorption. While physics-based models
for describing EDL capacitance have been well advanced, the quantitative description of
electrochemical pseudocapacitance remains a theoretical challenge owing to the strong coupling
of electronic and ion charges in EDL.[5]

Carbon electrodes are commonly used for supercapacitors because of large specific surface
area, high electrical conductivity, long-term cycle stability and low production cost.[2] Many kinds

of porous carbons can be adopted to enhance the capacitive performance for energy storage,
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including carbon nanotubes and fibers, active carbon from coal or biomass, graphene and carbide-
derived carbons.[6] While ultra-high EDL capacitance, up to 250 F/g, has been reported for pristine
carbon electrodes,[7, 8] further improvements can be achieved by introducing pseudocapacitance,
e.g., by doping porous carbon with electro-active elements like O, N, S, P or by coating metal or
metal oxides of Al, Fe, Mn, etc. at carbon surfaces.[9] Whereas a large specific surface area and
an appropriate pore structure are crucial to achieve high energy density and charge/discharge rates,
the rational design and optimization of carbon electrodes remain difficult due to many other factors
influencing the supercapacitor performance. For example, it is often assumed that the EDL
capacitance would increase with the specific surface area of the electrode material. While
micropores (pore diameter d<2 nm) would provide higher specific surface area than mesopores (2
nm<d<50 nm) and macropores (d>50 nm), their contributions to EDL capacitance are often
considered less significant in comparison to those from mesopores because of the increased
resistance of ion transport [2, 10] and limited ion accessibility.[11-13] Inconsistent experimental
results were reported when the pore sizes are comparable to those of the ionic species yet
theoretical investigations are not conclusive due to the difficulties in the characterization of the
pore structure and surface composition of electrode materials.[14-17] While several
experimental and computational works have been reported suggesting the significant improvement
of capacitive performance through doping carbon electrodes with heteroatoms, a comprehensive
description of the doping effects on pseudocapacitive response is yet to be developed.

The efficiency of electrical energy storage depends not only on the electrode materials but
also on the properties of the matching electrolyte as well as the operation conditions such as the
electrochemical potential window and the charging-discharging rates. Typically, the EDL

capacitance decreases with the operational potential and the charging-discharging rates. Because
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an increased charging-discharging rate leads to a higher resistance in ion transport, the reduction
of capacitance is most significant for electrode materials with high micropore surface areas.[8] As
the supercapacitance performance is often measured at conditions remote from thermodynamic
equilibrium, the dynamic processes are not well described by conventional EDL models or
molecular dynamics (MD) simulation.

In addition to physics-based modeling, machine learning (ML) methods have been used to
predict the performance of carbon materials for energy storage. For example, an artificial neutron
network (ANN) was used for quantitative correlations between the EDL capacitance and the
physicochemical features of carbon materials such as specific surface area, pore volume, the
defects of the carbon structure, and doping elements under the same charging-discharging rate.[18]
Similar correlations were established by using regression trees (RT) and multi-layer perception
(MLP) models.[19] ANN was also used to describe the synergetic effect of N/O doping on
supercapacitor performance [20] and the EDL capacitance in terms of the physical features of
carbon materials and the changing current density.[21] In our previous publications, we tested
multiple ML methods to predict the EDL capacitance and pseudocapacitance in response to the
changing scan rate of cyclic voltammetry and identified important pore characteristics of carbon
materials with high energy-storage efficiency [7, 22]. While the data-driven approach was able to
make valuable predictions of supercapacitance performance, the pitfalls of conventional ML
methods have also been well documented, in particular in terms of interpretability, reliability in
extrapolation, and uncertainty quantification. Ideally, the ML models should be physically
interpretable and provide adequate uncertainty assessment. In principle, the interpretability of ML
methods can be greatly enhanced by incorporating the physics-based analysis of the constraints

and underlying connections between the input and output variables. Meanwhile, the issues with
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reliability and uncertainty analysis can be addressed with statistical methods such as Gaussian
process regression (GPR).[23, 24] GPR has been previously used to investigate the degradation of
electrochemical pseudocapacitors at high temperature and the life span of Li-ion batteries.[25]
However, we are unaware of its application to describing the in operando behavior of EDL
capacitors.

In this work, we propose a physics-informed Gaussian process regression (PhysGPR)
model to predict the capacitances of carbon electrodes based on the micropore and mesopore
surface areas. A semi-empirical model for the charging dynamics is incorporated into GPR to avoid
unphysical predictions. Unlike previous ML methods, PhysGPR provides uncertainty as well as
the mean values in the prediction of EDL capacitance. To minimize the number of input variables,
all training data are extracted from the in operando measurements of electrodes made of pristine
active carbons or carbon nanotubes, with 6 M KOH solution as the working electrolyte. This
solution condition is commonly adopted in testing the EDL capacitance of carbon electrodes.
Models and Methods

We explain in this section the preparation of dataset and mathematical details in
constructing our physics-informed Gaussian process regression (PhysGPR) for predicting the EDL
capacitance and power density of carbon electrodes. Scheme 1 shows schematically the training
flow chart for PhysGPR in comparison with that for conventional ML methods. While the latter
utilize the experimental data directly, PhysGPR starts with a physics model analyzing the
experimental results. In the present work, we adopt a phenomenological model to describe the
variation of the EDL capacitance with the scan rate. The model parameters are then normalized
(Eq.S4) and serve as the input for the GPR training. The incorporation of the physical model

eschews erroneous predictions that may take place in conventional ML methods.
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Scheme 1 Physics-informed Gaussian process regression (PhysGPR) of experimental data

for the capacitance of carbon electrodes from the cyclic voltammetry measurements.

After a brief introduction of data selection, we describe a semi-empirical model for
representing the dependence of EDL capacitance on the scan rate of cyclic voltammetry (CV). The
physical model is then incorporated into GPR in the context of a supervised ML algorithm. All
ML models used in this work are available from Statistics and Machine Learning Toolbox™ in
MATLAB. For comparison, the conventional GPR method is presented in Support Information
(ST) [23, 26].
Data collection

As mentioned above, the EDL capacitance depends on the properties of both electrolyte
and electrode as well as operating conditions such as the applied potential or current density. In
this work, we consider carbon materials the same as those used in our previous publications.[7,
22] The same dataset is used as a benchmark for the calibration of PhysGPR and for comparison
with conventional ML methods.[7] All data points were collected from the literature [27-33] and
are reproduced in SI. To minimize the number of input variables, we fix the electrolyte and

operating conditions, i.e., 6 M KOH aqueous solution with 1 V maximum voltage in the potential
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window. Most experimental results were obtained with electrodes prepared by loading 5 mg of
material on a Ilcmx1cm plate. All capacitance data were measured in three-electrode-cell settings
which allow for a more precise potential and current control than two-electrode measurements.
The charging-discharging rates are determined by the cyclic voltammetry scan rate in the range of
2 to 500mV/s (most data are in the range of 5 to 200 mV/s).

The electrode materials investigated in this work are activated carbon materials without
significant heteroatom doping. These materials are close to pristine carbon doped with a little
hydrogen, sometimes with low-level oxygen. Due to their consistent chemical composition, the
impact of pseudocapacitance is negligible. In application of different ML methods, we use the scan
rate, the surface area of micropores (<2 nm), and the surface area of mesopores (2~50 nm) as the
input variables. Macropores do not make significant contributions to the electrochemical
properties of carbon electrodes because the macropore surface is negligible in comparison to those
of micropores and mesopores. Separating micro- and meso-pore contributions enables us to
illustrate the per surface area capacitance and the pore-size effect independently. The surface areas
reported by experiment were measured from N, adsorption at 77 K. Because the diameters of
hydrated ions and N, molecules are comparable, the adsorption surface areas are expected to be
similar, i.e., hydrated ions and N, molecules have similar accessibility to the interior volumes of
porous electrodes. While the EDL capacitance increases with the surface area of a carbon electrode,
it does not vanish at zero micropore/mesopore surface area. For electrodes without micro and
mesopores, the EDL capacitance would be sensitive to the electrode shape, particle size and
packing geometry.[34] The limiting case has little practical significance and the experimental data

are not particularly meaningful from the ML perspective.
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Physics-informed GPR

The charging dynamics of EDL capacitors can be described in terms of equivalent-circuit
models or ion-transport equations.[35] As observed in experimental characterization of the
electrode charging with cyclic voltammetry, the EDL capacitance decreases with the scan rate due
to the reduction of time available for the accumulation of the electrode charge. Whereas
sophisticated molecular models have been developed to describe the charging dynamics of carbon
electrodes,[36] for simplicity here we use a semi-empirical formula to correlate the specific EDL
capacitance as a function of the scan rate[37, 38]

Csp = Coe ™" (1)
where C is the equilibrium capacitance of the electrode material, k is a characteristic rate constant,
v is the charging-discharging rate, i.e., the scan rate of cyclic voltammetry. As shown in Fig S1,
Eq.(1) works well for fitting the experimental data when Cy and v are treated as adjustable
parameters.

The physics-informed GPR model (PhysGPR) is constructed by using the scan rate, the
micropore surface area, and the mesopore surface area of the electrode material as input variables.
In combination of the semi-empirical formula with GPR, we set the artificial zero surface area

~20.m2/g. To best fit the model parameters in Eq.(1), we introduce two innovations

points at 10
different from conventional GPR models in describing one response value y with its corresponding
observation x = [V,Snicro» Smeso]- First, in combination of the semi-empirical formula with GPR,

we choose the natural logarithm of the EDL capacitance as the response vector instead of the

capacitance

y=InCg=InC, —kv. (2)
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The second innovation is to include the basis function, H(X), of the mean that consists of two
components
H(X) = [H1(Xinae) VH2 KXinao)] 3)
where v is the scan rate, Xmar = [Smicro» Smesol 1 defined by the micropore surface area Spjcro
and mesopore surface area Sy,es0. H1(Xomat) = [l,X maX matz] represents the ‘pure Quadratic’ basis
for Xpnqe, which is defined in Eqs.S8 and S9, X4+, 1s the half-vectorization of the quadratic form
of Xpae» and Hy(Xomar) = [1,Xmae] is the linear basis for X,,q. Thus, the PhysGPR model is
expressed as:
¥ = [H1(KXmae) vH2Ximad) [1B1 B2 1 + 2(Ximae) + e = HOOB + 2(Xmar) + ¢ C)
where H(X) stands for the basis matrix, 8 is a vector of the basis coefficients, z(X,,4;) is a zero-
mean Gaussian process, e~N (0, 02) is an independent zero-mean Gaussian noise with a standard
deviation of . Compared with a conventional GPR model with a zero mean or a constant mean,
the mean value in PhysGPR C,, = H(X) * B corresponds to parameters Co and £ in the semi-
empirical model for the EDL capacitance (viz., Eq.1) in the following way
In Co »H1(Xinae) B1, — k= Hz(Xnar). ()
For any n inputs, the marginal distribution of In Cg, follows a multivariate normal
distribution. Given a vector of observations, the predictive distribution also follows a normal
distribution, and the predictive distribution of EDL capacitance Cg, follows a log-normal

distribution. Accordingly, the mean and standard deviation of the response value of any given

response vector are given by
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G(Csz’) Vi
CV(Cop) =5y = (e —1) (6)

where C:p is the mean prediction of the EDL capacitance, o(C Sp) is the standard deviation, CV
(c Sp) is the relative standard deviation of the EDL capacitance, y and yg4 are the mean and
standard deviation of In(Cyp) predicted by the GPR model (given by Egs.S9 and S10).

In this work, we compare the PhysGPR and ConvGPR models for fitting the experimental
data. The automatic relevance determination (ARD) structure of the kernel is used to decouple
different length scales underlying the variations in the scan rate and surface areas of micropores
and mesopores. The ConvGPR models use the pure quadratic basis with v, Sjuicro and Speso @s
input variables. The basis functions in H(X) given by Eq.(3) are used by both PhysGPR and
ConvGPR. All input values are standardized before regression (Eq.S4). The ARD kernels tested
in this work include the squared exponential kernel (also known as RBF or the radial basis function
kernel), Matérn 3/2 and 5/2 kernels, and the rational quadratic kernel.[39] The exponential kernel
was not selected because it yields erratic prediction of the EDL capacitance. In application of the
ANN model with the Bayesian regularization, the backpropagation training function from our
previous work is also shown for comparison.

For both GPR models tested in this work, the fitting parameters (including the kernel and
variance parameter ¢ ) are optimized with the k-fold cross validation method usingak  value
of 5 with 10 different repartitions. The training data are randomly divided into 5 subgroups. We
sequentially take 1 ~ of the subgroups as the test set and the other 4 as the training set to train the
ML model.  Each of the 5  different subgroups will be used asa  testsetand  this
process is repeated 10 times with a different division of the data each time to make the model more
robust. The EDL capacitance was predicted by the final models using the fitting parameters

found in cross validation. To evaluate the numerical performance of different ML models for
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correlating the experimental data, we use the cross-validation RMSE (CVRMSE) as the loss

function:

k n - 2
Zj = 121' = 1(CSP'CVij - ui)

CVRMSE = \/
nk

(7)

wheren and u;  are the number of data points and the number of repartitions, respectively,  u;

—_—

is the experimental values of Cy,, C PV is the test set prediction in j-th repartition of the k-fold

cross validation.
Results and Discussion
Model evaluation
In the following, we first discuss the out of sample prediction on the experimental data set
using the PhysGPR with different kernel functions. Next, we compare the results from PhysGPR
with those from the conventional GPR and those from the ANN used in our previous work[7]. The
fitting hyperparameters are optimized by 5-fold cross validation (CV) with 10 repartitions (80%
training, 20% test, trained 5 X 10=50 times). Figure 1 and Table 1 summarize the correlations
of the experimental data with different ML models.
Table 1 The cross-validation root mean square error (CVRMSE) of the physics-informed
(PhysGPR) and conventional Gaussian process regression (GPR) with different kernel
functions. For comparison, also shown are the results from fitting with artificial neural
network (ANN), ConvGPR with basis H(X) (viz. Eq.3) on the capacitance instead of the

logarithm of the capacitance and the standard deviation of the data.

ML method Kernel or Training CV  Root Mean square error
Function (CVRMSE)
ARD Matérn 3/2 50.16

PhysGPR ARD Matérn 5/2 38.35

ARD Rational quadratic 31.9511




Energy Advances

ARD RBF 31.9505
ARD Matérn 3/2 21.35
ConvGPR, ARD Matérn 5/2 21.59
pure quadratic basis ARD Rational quadratic 22.08
ARD RBF 22.51
ARD Matérn 3/2 34.89
ConvGPR ARD Matérn 5/2 35.36
H(X) basis ARD Rational quadratic 34.67
ARD RBF 37.34
ANN Bayesian Regularization 36.70
Standard deviation of / 68.89
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Fig. 1 Correlation of experimental data for the specific capacitance of active carbons with the
final model (the ML model that applies the CV-optimized fitting parameters and kernels) of
different machine learning (ML) methods. In each panel, the diagonal line represents the
perfect correlation. (A) Physics-informed GPR (PhysGPR) with automatic relevance
determination (ARD) and squared exponential kernel; (B) Conventional GPR (ConvGPR)
with pure quadratic basis and ARD Matérn 3/2 kernel; (C) Conventional GPR with H(X)
basis (viz. Eq.3) on capacitance and ARD rational quadratic kernel; and (D) Artificial neural

network (ANN).

Both PhysGPR and ConvGPR are able to reproduce the experimental data for the EDL
capacitance of carbon electrodes but with different accuracies. Among different ML methods
tested in this work, conventional GPR with the ARD Matérn 3/2 kernel provides the best
correlation (CVRMSE = 21.35). However, as shown in Fig. 2A and Fig. 3C and 3D, ANN and
ConvGPR predict that the EDL capacitance may increase with the scan rate, which is not
physically meaningful. While ConvGPR with H(X) (viz., Eq.3) correctly predicts the decline of
the EDL capacitance at small scan rate, the trend is non-monotonic and the predicted EDL
capacitance may become negative at high scan rate. The result is especially problematic when the
ML model is applied out of the experimental data range. Besides, the cross-validation root mean
square error (CVRMSE=34.67) indicates the low accuracy of the H(X)-basis ConvGPR. By
contrast, PhysGPR with the ARD squared exponential kernel (CVRMSE=31.95) is able to
correlate the experimental data better than the ANN model (CVRMSE=36.70). Importantly,
PhysGPR behaves well at the high scan rate. As shown in Figure 1, none of the ML models catches

the artificial zero surface area-zero capacitance data points. All ML models predict a small positive
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value around 50~100 F/g. As mentioned above, for electrodes without micro and mesopores, the
capacitance will be sensitive to the electrode shape, particle size and packing geometry. While the
limiting case has little practical significance and the experimental data are not particularly

meaningful, all ML methods are able to capture the trend.
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Fig. 2 The specific capacitance (Csp) versus the scan rate (v) predicted by different machine-
learning methods. (A) ANN (adapted from Fig. 3 of [7]), (B) PhysGPR with the rational
quadratic kernel; (C) Conventional GRP with pure quadratic basis and ARD Matérn 3/2 kernel;
(D) Conventional GRP with H(X) basis (viz. Egs.3) on capacitance and ARD rational
quadratic kernel. The lines show the predicted mean value, and the shadow shows the

standard deviation predicted by GPR. The specific surface areas of electrode materials are:
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Data Set I-1: Spicro = 115 Mm%/ g, Smeso = 1158 m?/g; Data Set 1-2: Spicro = 636 m?/g,

Smeso = 442 m?/g; and Data Set I-3: Spicro = 735 m?/ g, Sineso = 1200 m?/g.[7]
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Fig. 3 The specific capacitance (Csy) versus the scan rate (v) predicted by different machine-
learning methods. (A) The mean value predicted by PhysGPR with the rational quadratic
kernel; (B) the same as panel A but with the standard error bar; (C) ANN, and (D) ConvGPR
with the pure quadratic basis and Matérn 3/2 kernel. The lines show the predicted mean value
from different ML methods, the shadow shows the standard deviation predicted by GPR. The

specific surface areas of electrode materials are: Data Set II-1: Spicro = 579 M2/ g, Sineso =
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83 m?/g, Data Set I1-2: Sppicro = 481 m?/g, Speso = 193 m?/g, Data Set I1-3: Spicro = 200

m?/g, Smeso = 900 m?/g, Data Set II-4: Sypicro = 0 M?/g, Speso = 24 m?/g. [7]

We demonstrated in our previous work that ML methods can be used to predict the specific
capacitance of carbon electrodes as a function of the scan rate.[7] Among different ML models
tested in that work, it was found ANN provides the best correlation of the EDL capacitance as a
function of the scan rate for most of the samples (e.g., Fig 2A is directly adapted from Fig. 3 of
[7]). Without a physical model as the guidance, the ANN prediction is problematic at least for
certain electrode materials. As shown in Fig. 2A and 2D, and the grey part in Fig. 4A and 4D, both
ANN and conventional GRP with H(X) basis may yield negative capacitance at high scan rate
because of the lack of physical basis. Besides, as shown in Fig 3C, the EDL capacitance may
increase with the scan rate when it is sufficiently large. The unphysical prediction is especially
pronounced for those electrodes with high mesopore surface areas but relatively low micropore
surface areas. Whereas ConvGPR has the same problem at high scan rate (>~350mV/s), as shown
in Fig 3D, the physics-informed GPR (PhysGPR) avoids the unphysical prediction because the
scan-rate dependence of the capacitance is explicitly accounted for by using the semi-empirical
model (Eq.1). As shown in Fig. 2B, 3A and 3B, the predictions by PhysGPR are satisfactory for
all samples. It should be noted that the uncertainty of the GPR predictions can be quantified by the
predictive interval (shaded area in Fig. 3B), while the predictive interval by ANN is not easily

obtained.
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Fig 4 The relative capacitance predicted by various ML models. (A-C) Cg, at the scan rate of
200 mV/s compared to that at 100 mV/s; and (D-F) C, at the scan rate of 400 mV/s compared
to that at 300 mV/s. Negative predicted capacitance is shown in grey. The ML methods used
for comparison are: (A&D) ANN; (B&E) ConvGPR with pure quadratic basis and ARD

Matérn 3/2 kernel; and (C&F) PhysGPR with ARD squared exponential kernel.

We can identify the parameter space leading to the unphysical behavior by inspecting the
EDL capacitance at high scan rates. Approximately, the trend can be captured by considering the
variation of the relative capacitance with the growth of the scan rate as shown in Fig 4. We see
that the unphysical prediction of ANN emerges in the regions of low micropore surface area and

the high mesopore surface area. In conventional GPR, the prediction is problematic at high scan
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rate regardless of the pore characteristics of the electrode material. By contrast, PhysGPR model
predicts that, as observed in experiments, the EDL capacitance always decreases with the rising
scan rate.

While PhysGPR incorporates a linear trend between the logarithm of the capacitance and
the scan rate, the physics-informed basis functions are oblivious to conventional ML models such
as ANN and GPR. Apparently, the correlation between the EDL capacitance and the scan rate was
not learnt by the nonlinear nature of these methods. From the calculated basis coefficients 8, we
find that the coefficient in the mean function of v f,2=7.82 >0 for ConvGPR with pure
quadratic basis. When the scan rate v is sufficiently large, the conventional ML model would
predict an increase of capacitance. Because the v? term is necessary for ConvGPR to reproduce

the experimental results, the ‘pure Quadratic’ basis implies that Cg, is positive definite and the

slope of (g, —v increases beyond a certain scan rate. In PhysGPR, v? is absent in the basis function.

According to Eq.(2), k~ — Hi(Xmat) * B2 > 0 within the data range. As a result, C sp = Coe —hv
always decreases with v.
In the PhysGPR model with ARD Matérn 3/2 model, we find that the length scale of scan

rate (y, = 1.4) is much larger than that of surface areas (ys,

cro

=0.27 and ys,,, = 0.096),

implying that predictions are smoother in terms  of the scan rate than that of the surface areas.
Comparing the specific capacitance-scan rate plot with that of non-ARD kernel model (see Fig
S2), we see that the smoothness of the predicted curve for the capacitance as a function of the scan

rate is necessary in order to avoid overfitting.
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Fig. 5 Specific capacitance and relative standard deviation (standard deviation divided by the
mean) versus the surface areas of micropores and mesopores predicted by PhysGPR with the
rational quadratic kernel. (A~C) The predicted mean of the specific capacitance; (D~F) the
relative standard deviation of the specific capacitance. The corresponding scan rates are (A

and D) 5 mV/s, (B,E) 50 mV/s, and (C,F) 200 mV/s.

Figure 5 shows the specific capacitance versus micropore and mesopore surface areas
predicted by PhysGPR at 3 different scan rates, 5 mV/s, 50 mV/s and 200 mV/s. At the low scan
rate (5 mV/s), the ML model predicts that high micropore surface area would lead to high

capacitance. At the high scan rate (200 mV/s), the specific capacitance is drastically reduced for
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the carbon electrodes with large micropore surface area due to the large resistance on ion transport.
In this case, the contribution from mesopore surface area is relatively insensitive the scan rate.
Figure 5d~f indicates that the predictive standard deviation by PhysGPR is about 25%, indicating
small uncertainty associated with the PhysGPR prediction.

According to Fig. 5A, PhysGPR predicts that the specific capacitance does not increase
with the surface area when the total surface area exceeds about 1500 m?/g. This prediction is
consistent with the experimental observations and the ANN model.[40, 41] However, different
from the ANN model, PhysGPR also predicts that the capacitance would rise with the micropore
surface area at low scan rate before the total surface area becomes too high. At high scan rate,
electrode with high mesopore surface area and low micropore surface area would have the highest
capacitance. From Fig. 5, we can find that the capacitance decreases with the total surface area at
very high total surface area, regardless of the pore size distribution. Under the extreme conditions,

the reduction in capacitance may be related to interactions between electrolytes in neighboring

pores.[40]
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Fig 6 (A) The Ragone plot predicted by two ML models for the power density and energy

density of EDL capacitators made of pristine carbon. The red solid line shows the PhysGPR
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prediction, while the blue dashed line shows the prediction of ANN as reported in our previous
work[7]. The maximum energy density and power density are shown as red stars on the plot.
(B) Specific capacitance (Cs,) versus the scan rate (v) predicted by PhysGPR with the rational
quadratic kernel at the condition corresponding to the maximum energy density and to the
maximum power density. The maximum energy density and maximum power density occur
at the largest specific capacitance at the scan rates of SmV/s and 100 mV/s, respectively. The
surface areas are: Spicro = 1500 m?/g, Smeso = 160 m?/g at SmV/s for the maximum
energy density, and Spcro = 0 Mm%/ g, Smeso = 1060 m?/g at 100mV/s for the maximum

power density.

Figure 6A shows the Ragone plot for the energy density and power density (calculated by
Eqgs.S1 and S2) of EDL capacitators made of pristine carbon. The lines are constructed with the
PhysGPR model in the range of S0 < 1500 m?/g and S,es, < 1500 m?/g with the scan rate 5
mV/s < v < 100 mV/s. For comparison, the figure also includes the results predicted by the ANN
model [7] in the range of 250 m?/g < Speso < 1500 m?/g (in order to avoid the unphysical
predictions). Interestingly, the maximum energy density and the maximum power density
predicted by PhysGPR and ANN are close to each other. PhysGPR model predicts that the largest
energy density happens at Spcro = 1500 m?/g, Smeso = 160 m?/g with a scan rate of SmV/s,
and the largest power density happens at Syicro = 0 m?/g, Smeso = 1060 m?/ g with a scan rate of
100mV/s. Although PhysGPR and ANN predict a similar maximum energy density, the surface
areas corresponding to the maximum point are quite different. PhysGPR suggests high micropore
surface area while ANN suggests a mix of both type of pores. More data around S;,,=1500 m?/g

are needed to know which is more accurate.
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Figure 6B shows the specific capacitance versus the scan rate for these top materials
predicted by PhysGPR. At low scan rate, a higher energy density can be reached for an electrode
with a larger micropore surface area. However, at high scan rate, an electrode with a larger
mesopore surface area shows a higher energy density while its performance at low scan rate is
comparable to electrodes with high micropore surface areas. PhysGPR predicts that a pristine
activated carbon with high mesopore surface area and low micropore surface area performs well
in a large range of scan rate. While a similar conclusion can be reached from the ANN model, its
prediction in that range is unreliable because of the unphysical behavior. Because active carbons
with high mesopore and low micropore surface area are hard to be produced, such materials have
not been systematically studied before but would be a good direction for the electrode material
design.

Conclusions

In this work, we developed a physics-informed Gaussian process regression (PhysGPR)
model and tested its performances for predicting the electric-double layer (EDL) capacitance of
carbon electrodes. The PhysGPR models the logarithm of the capacitance and incorporates physics
information into the mean of the GPR, which eliminates unphysical predictions that would
encounter with conventional GPR. Although transforming the output and modeling the mean
structure have been considered in prior studies on developing GP emulators,  [43] it was not
realized that these modeling steps can help eliminate unphysical predictions from conventional
GPR. Quantitative correlations were established between the surface areas of the carbon materials
and their capacitive behavior in good agreement with experimental data.

The results are compared with conventional machine-learning (ML) models such as ANN

and GPR. Among the different ML models investigated in this work, we found that ConvGPR with
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the ‘pure quadratic’ basis and the ARD Matérn 3/2 kernel could yield the best performance in
terms of out-of-sample predictions. However, both ANN and ConvGPR predict unphysical
capacitance-scan rate relationships at high scan rates, while the predictions by PhysGPR eschew
such issues because it incorporates a semi-empirical model accounting for the dependence of the
capacitance on the scan rate. Among various forms of PhysGPR models, ARD Matérn 3/2 kernel
provides the best correlation of the experimental data. The PhysGPR model captures the impact of
the micropore and mesopore surface area on the EDL capacitance. The model was used to construct
the Ragone plot that predicts the largest energy and power density of EDL capacitors made of
pristine active carbons and the corresponding characteristic parameters.

Besides introducing the physical basis in a supervised ML method, there are other methods
to avoid the unphysical behavior in ML, including constructing a shape constrained function
through imposing constraints on process derivatives in GPR by indicator functions, and computing
conditional distributions to make predictions.[42] However, applying these methods to a
multivariate GPR are significantly more computationally demanding than applying a physics-
informed model. Another advantage of GPR is the availability of the uncertainty of the prediction
. The assessed uncertainty can be used to design the minimum number of experiments to improve
predictive accuracy of input region without enough data through active learning,  [44] and to
find the optimal experimental conditions or material to design EDL capacitors through Bayesian
optimization.[45]

This work introduces the physics basis in a supervised ML method. The ML model
suggests that active carbon with high mesopore and low micropore surface area can be utilized to
produce EDL capacitors with the best performance in a large range of scan rates. We note that, in

addition to optimizing the micropore and mesopore surface areas, the performance of the carbon
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supercapacitors can be further improved by chemical modifications such as heteroatom doping.

The physics-informed ML model can be similarly applied to such materials. We hope that this

work provides fresh insights for the design and synthesis of carbon electrodes for capacitive energy

storage.
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Support Information

Physics-informed Gaussian process regression of in-operando capacitance for
carbon supercapacitors
Runtong Pan!, Mengyang Gu? and Jianzhong Wu!
'Department of Chemical and Environmental Engineering, University of California,
Riverside, CA 92521, USA
?Department of Statistics and Applied Probability, University of California, Santa

Barbara, CA 93106, USA

In this support information, we provide the formulas for calculating capacitance, the
input data used for training the machine learning models and the methodology of Gaussian
Process Regression (GPR). All the data are calculated from the CV curves collected from the

literature. [1-7]

Capacitive behavior
The specific integral capacitance is given from the CV curves by

Vend :
A

1At
Cop = "2omav = mav = mav (S1)

where v is the scan rate (V/s), i is the electrical current, m is the electrode mass, AV is the
potential window, I is the average current, At=AV/v is charging/discharging time, and Cg,
stands for specific integral capacitance of the electrode.

The energy density is defined as

_CAVE C AV INAV
2 8 8m (S2)

E

where C,..; is the specific capacitance of a two-electrode symmetrical supercapacitor. The

power density is calculated from
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Gaussian Process Regression (GPR) models

GPR is a non-parametric Bayesian method for solving regression problems.[8, 9] The
supervised ML can capture different kinds of relationships by using an appropriate kernel to
capture the unknown relations between the independent and dependent variables.[10] By
introducing a theoretically infinite number of parameters, kernels are widely used in supervised
ML methods including not only GPR but also support vector machine (SVM), principal
components analysis (PCA), canonical correlation, and ridge regression. The kernel functions
empower the ML methods to operate in a high-dimensional, implicit feature space by
computing the inner products between the images of all pairs of data in the feature space.

In this work, the predictors used in regression are all standardized, so they are unitless

values in regression. X = [21,22,...,Zn)

(54)
where p;, o; are the mean and standard deviation of original input predictor x;), so they are
unitless values in the model.

Specifically, GPR provides the mapping from a predictor matrix X = [x1,x2,..,%,] to a
response vector y.[9, 11, 12]. Consider one input observation x = [z4,2,....2,] (in this work,

the standardized input observation of [V,Smicror Smesol), and its

x= 20 25,00 25,0
corresponding response value y, the mapping is assumed to be an unknown function, y = f(x)
+¢, where e~N(0, 62) is an independent zero-mean Gaussian noise with a standard deviation
of o. GPR defines a probability distribution with function

f)~MN(m(x),k(x,x)) (85)

where m(x) and k(x,x’) are the mean and covariance functions:



Energy Advances

() = E[f (0] k(xx) = E[(f (@) = m) (f&) =m(x))]  (S6)
Usually, the mean function is assumed to be a basis function in the form as:
m(x) = H(x)p (S7)
where H(x) is the basis matrix, £ is a vector of basis coefficients.
Common selections of the basis matrix include the constant basis (H = 1), the linear
basis (H = [1,X]), and the ‘pure Quadratic’ basis:
H=[1XX,] (S8)
where X is half-vectorization of the quadratic form of the predictors.

The prediction mean y and variance y*¢ of the response value at a given point x * are:

() =mle) +K (e X [KEX) +0%] 7 (v —w) (89)
y$d=K(x*x*) — K X) [KXX) + 021, "'K(Xx*) (S10)

where
K(x* X)) = [re(oc™ xq)ic(x* x2),eoic(x* 20| (S11)

The covariance function (or kernel function) is the major component of a GP model. Under the
stationary condition, k(x,x") = o?f,(x — x), where o2 being a variance parameter, which is
the signal standard deviation and f is a correlation function, with f,(0) = 1. The covariance

function is assumed to be isotropic, i.c., Kk(xx)=0?f(d), whered=||x —x|| =

\/m being the Euclidean distance between x and x'. The frequently used

covariance functions include power exponential correlation, Matérn correlation and Rational
Quadratic correlation.[9] We can see that the correlation function can be normalized by a length
scale y. so

k(xx) = o*f (x —x) = 0*f(d) = 0*fro(r) (S12)

|x — x|

d . .
where r = v = being the related radius.

It’s also possible to use a separate length scale y,,, for each predictor m, called automatic
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relevance determination (ARD). This can be done by replacing all the related distance ; by

related radius r with separate length scale for each predictor:

(xim - x'm)z
r=[20_ S (S13)
The power exponential correlation kernel is given by:
k(x,x) = a%expexp { — (%} (S14)

Where o is the signal standard deviation, a € (0,2] is the roughness parameter of the kernel
function. When a = 2, the kernel function is called Squared Exponential Kernel or Gaussian
kernel, which is infinitely differentiable.

The Matérn correlation kernel is
i 1
k(xx') = Uzm(r)“Ka(T) (S15)
where K, are the modified Bessel function of the second kind and the roughness parameter.

5
This kernel is [a] —1 differentiable, where [o] means the ceiling integer of . a = % or; are

1. . .
most frequently used Matérn kernels. When a = 3, it becomes the exponential kernel function.

When a— oo, it converges to the Gaussian kernel.

The Rational Quadratic correlation kernel has the following form

2\ —a

k(xx) = 02(1 + 2%) (S16)

where « is a positive-valued scale-mixture parameter. This kernel is infinitely differentiable as
the Gaussian kernel. It can be interpreted as an infinite sum of different Gaussian kernels with
different characteristic length scales. Here, @ means the weighting between different length
scales. When a—oo, it converges to the Gaussian kernel.

In this work, we have tested all these covariance functions except exponential
correlation, which is not smooth, and using the ARD kernels since it’s clear that the scan rate

needs a different scaling length comparing to the surface area.
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Fig S1 Correlation of the specific capacitance-scan rate relationship based on a semi-
empirical physical model (Eqn (1)) for the carbon materials with enough data points.
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Fig S2 The specific capacitance versus the scan rate predicted by PhysGPR with non-ARD
Matérn 3/2 kernel, shows strong overfitting. The specific surface areas of electrode
materials are: Data Set I-1: Spicro = 115 m?/ g, Smeso = 1158 m?/g; Data Set I-2: Synicro
= 636 M2/, Smeso = 442 m?/g; and Data Set I-3: Spicro = 735 m?/ g, Speso = 1200
m?/g. Data SetII-1: Spicro = 579 M?/ g, Speso = 83 m?/g, Data Set I1-2: S,;cro = 481
m?/g, Smeso = 193 m?/g, Data Set II-3: S,icro = 200m?/g, Sieso = 900 m?/g, Data
Set I1-4: Spicro = 0 M2/ g, Simeso = 24 M2/ g..

Table S1 Dataset for the capacitive performance of carbon electrodes. Columns: Cg): specific
capacitance. E: Energy density. P: Power density. SApicro: Specific micropore surface area

(d<2nm) SAes0: sSpecific mesopore surface area (2nm<d<50nm) v: cyclic voltammetry scan

rate
# Cy/(F/g) E/(Wh/kg) P/(kW/kg)  SAmico/(m¥g) SApneso/(Mm?/g)  v/(mV/s)
1 0 0 0 0 0 0

2 0 0 0 0 0 5
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3 0 0 0 0 0 10
4 188.58 6.548 0.118 1990 879 5

5 232.27 8.065 0.145 636 442 5

6 22277 7.735 0.278 636 442 10
7 202.29 7.024 0.506 636 442 20
8 185.15 6.429 1.157 636 442 50
9 155.41 5.396 1.943 636 442 100
10 185.11 6.428 0.116 713 290 5
11 170.51 5.921 0.213 457 126 10
12 101.47 3.523 1.268 457 126 100
13 160.84 5.585 0.201 429 188 10
14 115.52 4.011 1.444 429 188 100
15 175.29 6.086 0.219 481 193 10
16 141.55 4915 1.769 481 193 100
17 253.90 8.816 0.317 1118 504 10
18 203.05 7.050 2.538 1118 504 100
19 224.15 7.783 0.056 735 1200 2
20 202.99 7.048 0.127 735 1200 5
21  189.89 6.593 0.237 735 1200 10
22 176.24 6.119 0.441 735 1200 20
23 144.14 5.005 0.901 735 1200 50
24 113.60 0.394 0.142 735 1200 100
25  241.54 8.387 0.151 1506 269 5
26 21244 7.376 0.266 1506 269 10
27 207.12 7.192 0.518 1506 269 20
28  197.94 6.873 1.237 1506 269 50
29 198.00 6.875 2.475 1506 269 100




Energy Advances

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

182.58

161.70

158.97

221.86

191.76

182.59

159.09

139.68

136.66

116.85

79.11

68.03

61.20

53.48

46.58

41.30

31.42

257.94

24431

238.34

232.37

224.65

216.90

207.36

187.26

179.60
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6.340

5.615

5.520

7.703

6.658

6.340

5.524

4.850

4.745

4.057

2.747

2.362

2.125

1.857

1.617

1.434

1.091

8.956

8.483

8.276

8.068

7.800

7.531

7.200

6.502

6.236

5.986

0.114

1.011

1.987

0.139

1.198

2.282

0.099

0.873

1.708

0.029

0.049

0.085

0.153

0.334

0.582

1.033

1.964

0.064

0.153

0.298

0.581

1.404

2.711

5.184

11.704

0.022

0.043
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501

579

579
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57  166.30 5.774 0.104 120 216 5
58 155.00 5.382 0.194 120 216 10
59  211.60 7.347 0.026 107 315 1
60 201.60 7.000 0.050 107 315 2
61 184.20 6.396 0.115 107 315 5
62 172.60 5.993 0.216 107 315 10
63  277.00 9.618 0.035 153 553 1
64  259.60 9.014 0.065 153 553 2
65 229.50 7.969 0.143 153 553 5
66 198.10 6.878 0.248 153 553 10
67 280.10 9.726 0.035 200 900 1
68 2735 9.497 0.068 200 900 2
69 2652 9.208 0.166 200 900 5
70 250.1 8.684 0.313 200 900 10

Note:1-3: Artificial zero surface area points. 4-10[1]; 11-18[2]; 19-24[3]; 25-29[4]; 30-
38[5]; 39-54[6]; 55-70[7];
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