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ABSTRACT

Using paleoecological data to inform resource management decisions is challenging without
an understanding of the ages and degrees of time-averaging in molluscan death assemblage
(DA) samples. We illustrate this challenge by documenting the spatial and stratigraphic vari-
ability in age and time-averaging of oyster reef DAs. By radiocarbon dating a total of 630
oyster shells from samples at two burial depths on 31 oyster reefs around Florida, southeastern
United States, we found that (1) spatial and stratigraphic variability in DA sample ages and
time-averaging is of similar magnitude, and (2) the shallow oyster reef DAs are among the
youngest and highest-resolution molluscan DAs documented to date, with most having decadal-
scale time-averaging estimates, and sometimes less. This information increases the potential
utility of the DAs for habitat management because DA data can be placed in a more specific
temporal context relative to real-time monitoring data. More broadly, the results highlight
the potential to obtain decadal-scale resolution from oyster bioherms in the fossil record.

INTRODUCTION

Decades of work on molluscan death assem-
blages (DAs) have successfully documented
temporal changes in community composition
or species attributes from direct assessments
of the remains themselves (e.g., Kowalewski
et al., 2000; Kidwell, 2007; Dietl and Durham,
2016; Albano et al., 2021) or from proxy infor-
mation derived from them (e.g., Gillikin et al.,
2019). Despite the promise of such geohis-
torical records for conservation paleobiology,
examples of their use by resource managers are
still uncommon (Groff et al., 2023). One reason
is the difficulty of putting DA data in tempo-
ral context. Geochronological analyses (e.g.,
radiocarbon dating) are expensive and difficult
to interpret, leading many conservation paleo-
biological studies to work around age-related
uncertainties by citing general assumptions and/
or studies from similar depositional settings
(e.g., Dietl and Durham, 2016).
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However, assemblage- or specimen-level
chronological control is often required to mean-
ingfully compare DA data with the annual or
subannual real-time monitoring data typi-
cally used for resource management. This was
the case for the Historical Oyster Body Size
(HOBS) project in Florida, southeastern United
States—codeveloped by the Florida Department
of Environmental Protection (FDEP) Office of
Resilience and Coastal Protection (ORCP) and
the Paleontological Research Institution (PRI;
Dietl et al., 2023)—which aimed to use oyster
reef DA samples to supplement real-time moni-
toring data on oyster body sizes for ORCP’s
Statewide Ecosystem Assessment of Coastal and
Aquatic Resources (SEACAR) project (www
floridadep.gov/SEACAR).

The aquatic preserves managed by ORCP
were established between 1966 and 2020 to be
maintained “in an essentially natural or exist-
ing condition” (Florida Administrative Code
R.18-20.001[2]; Florida Department of State,
1997). Thus, management of each preserve is
often focused on its relative condition since
establishment, meaning the ultimate utility of
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the DA approach for SEACAR would be influ-
enced by the specific age and time-averaging
properties of the oyster reef DAs. We hypoth-
esized that oyster reef structure might limit
postburial stratigraphic mixing enough such
that samples from the DAs could yield data at
a high enough temporal resolution to be inte-
grated with real-time monitoring data from liv-
ing oyster populations. To test this assumption
and develop an understanding of both oyster
reef taphonomy and the potential utility of DA
data for FDEP, we produced a geochronologi-
cal data set to quantify the absolute ages and
temporal resolutions of oyster reef DAs from
around the state.

Here, we describe this investigation and show
that oyster reef DAs preserve reliably recent and
high-resolution stratigraphic records relative to
most other molluscan DAs documented to date,
suggesting these records are often appropriate
for decadal-scale conservation paleobiological
investigations. We also highlight the geographic
variability in our data set and its implications for
the importance of location-specific geochrono-
logical information for increasing the salience
of paleoecological data for the resource manage-
ment community.

MATERIAL AND METHODS

In order to build a geochronological data set
to evaluate the utility of oyster DA samples for
documenting trends over recent decades, we
randomly selected 630 Crassostrea virginica
left-valve specimens from oyster DA samples
representing two stratigraphic intervals (15—
25 cm and 25-35 cm) collected from up to three
sample holes positioned across the densest living
portion of each of 31 natural, intertidal oyster
reefs in 11 locations around Florida (see the
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Supplemental Material'), i.e., between 2 and 7
specimens from each DA sample (Fig. 1). The
selected specimens were dated by radiocarbon
analysis of powdered carbonate targets (Bush
etal.,2013; Hua et al., 2019)—a less expensive
method with lower precision than the standard
analysis of graphite targets, but one that yields
similar ages (Bright et al., 2021)—to achieve
a higher sample size (see the Supplemental
Material for details on specimen selection for
radiocarbon analysis as well as a sample size
validation using 80 additional randomly selected
specimens from four of the DA samples). Speci-
mens were prepared at Northern Arizona Uni-
versity (NAU; Flagstaff, Arizona, USA) and
analyzed at either the W.M. Keck Carbon Cycle
Accelerator Mass Spectrometry facility at the
University of California, Irvine, or NAU’s own
Arizona Climate and Ecosystems (ACE) Isotope
Laboratory. Local corrections for the hardwater
effect (e.g., Spennemann and Head, 1998) and/
or estuarine influences (e.g., Ulm et al., 2009), in
terms of dead carbon contribution, were devel-
oped using additional radiocarbon analyses of
two live-collected oyster specimens from each
sampling area (see the Supplemental Material).

Age calibration was performed using OxCal
v4.4 software (Bronk Ramsey, 2009) and the
Marine20 calibration curve (Heaton et al., 2020)
with a constant regional marine reservoir correc-
tion, AR = —134 £ 26 yr, which is equivalent
to 5 £ 32 yr (Kowalewski et al., 2018) relative
to Marinel3 (Reimer et al., 2013), extended to
2022 using a regional marine bomb radiocarbon

!Supplemental Material. Additional details about
sampling methodology and environmental context,
radiocarbon result validation and correction for
dead carbon, and an assessment of geographic and
temporal age variability. Please visit https://doi.org/10
.1130/GEOL.S.22120340 to access the supplemental
material, and contact editing@geosociety.org with
any questions.

curve based on our data as well as 665 other
radiocarbon results from the Gulf of Mexico,
western Atlantic Ocean, and Caribbean Sea
from 24 additional studies (see the Supplemental
Material). Following Kowalewski et al. (2018),
we used empirical posterior distributions of age
probabilities for the specimens in each DA sam-
ple to generate estimates of (1) DA sample ages
(we use the terms “specimen age” and “sample
age” to refer to radiocarbon results for an indi-
vidual oyster shell and all oyster shells from a
given DA sample, respectively), and (2) time-
averaging. Due to recently published concerns
about the corrected posterior age estimate (CPE;
sensu Kowalewski et al., 2018; also known as
residual time-averaging in some studies), how-
ever, we used the interquartile range (IQR) of
the average sample age probability distribution,
with the quartiles weighted by the age probabili-
ties—the total age variability (IQR,,)—alone
to estimate time-averaging instead of the IQR,y
and CPE (Ritter et al., 2023; see the Supplemen-
tal Material).

Finally, to compare the contributions of
location and burial depth to overall variation
in DA sample median age and IQR,y, we fit
a hierarchical Bayesian model to the data for
each burial depth as well as the burial depth
difference for each DA sample hole (see the
Supplemental Material). All data analyses were
conducted using R statistical software v4.3.0 (R
Core Team, 2023) and RStudio (RStudio Team,
2023).

RESULTS

The radiocarbon results indicated that oyster
reef DAs are high-resolution archives with abun-
dant shells from the recent past and minimal
time-averaging in comparison to other mollus-
can DAs. Among the 126 dated oyster DA sam-
ples, median calibrated ages ranged from 1567
to 2012 CE, but 91% were post-1950 (Fig. 2),

and 6.4% of the DA samples had subdecadal-
scale IQR,y (0-10 yr), 72.8% had decadal-
scale IQR,y (11-100 yr), and 20.8% had cen-
tennial-scale IQR,, (101-1000 yr) (Fig. 3; see
Appendix S1 in the Supplemental Material for
DA sample-level results). Moreover, collocated
samples from different burial depths showed the
expected temporal order (i.e., deeper = older)
in most cases: Out of the 53 sample holes for
which both depth intervals were processed and
dated, 12 had median DA sample ages for the
15-25 cm burial depth that were older than those
of material from the 25-35 cm burial depth, and
five of those cases were from a single locality
(Lone Cabbage; Fig. 2). The results also showed
that the age and time-averaging of a given burial
depth can vary substantially over small spatial
scales (i.e., both intrareef and interreef assem-
blage variation; Fig. 2). In fact, the modeled
standard deviations (SDs) for spatial variability
in median age and IQRy,, (e.g., DA sample-
hole-level median SDs were 12.8 and 20.9 yr
for median age and IQR,y, respectively, for the
15-25-cm-depth samples) were of similar mag-
nitude to those for the difference between burial
depths (e.g., DA sample-hole-level median
depth difference SDs were 29.7 and 37.0 yr for
median age and IQR,, respectively; Table S5;
Figs. S5-S10).

DISCUSSION

To our knowledge, this is the largest study
of age-depth relationships and the first study
to use radiocarbon to document time-averaging
in oyster reef DAs. We found that, relative to
other molluscan DAs, the oyster DA samples
were younger, were less time-averaged, and had
less spatial variability in both calibrated age and
time-averaging estimates (Flessa et al., 1993;
Meldahl et al., 1997; Kowalewski et al., 1998,
2018; Kosnik et al., 2009, 2015; Krause et al.,
2010; Dexter et al., 2014; Dominguez et al.,
2016; Ritter et al., 2017; TomaSovych et al.,
2019; Albano et al., 2020; see additional stud-
ies summarized by Kidwell [2013, their table
1]; but see also TomaSovych et al. [2018] for an
example of a non-reef DA with decadal-scale
resolution). This result agrees well with that of
a preliminary investigation of time-averaging on
two southwest Florida oyster reefs by Lindland
et al. (2001) that used amino acid racemization
geochronology.

Among the few recent studies that (1)
focused on mollusks, (2) estimated time-averag-
ing and sample ages in similar ways to our study,
and (3) reported their unsummarized, sample-
level results, the C. virginica DA samples typi-
cally had younger median ages by ~100 yr, and
over half of our samples also had lower IQR 4y,
some by an order of magnitude or more (Fig. 3).
For instance, Dominguez et al. (2016) sampled
the upper 20 cm of sediment (medium—fine
sand, <2% mud) at six sites with ~9 m water
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Figure 2. Plot showing median ages of oyster death assemblage (DA) samples by reef and
locality relative to 2022 CE. Note that x axis is on log,, scale. Error bars represent total age
variability estimate for each bulk sample. Localities are listed on y axis in counterclockwise
geographic order around Florida, southeastern United States, starting at Florida Panhan-
dle (northwestern Florida): LSG—Little St. George Island; GI-EC—Goose Island/East Cove;
LC—Lone Cabbage; LB—Lemon Bay; HC-MC—Hendry Creek/Mullock Creek; NP—New Pass;
BH—Big Hickory; JI—Jack Island; PC—Pellicer Creek; MR—Matanzas River; GR—Guana River.
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depth in Sydney Harbor, Australia, and found
time-averaging (IQRy,y) of ~84—>2000 yr in
DA of the bivalve Fulvia tenuicostata, but the
median ages of the samples were ~150 yr. In
contrast, IQR,y across all of the C. virginica
DA samples in our study ranged from 6 to 532 yr
with a median of ~25 yr. The medians of the
median calibrated ages across all of the DA
samples from 15-25 cm and 25-35 cm burial
depths were 23 yr and 29 yr, respectively. The
SDs for both median age and IQR,, among the
locations sampled by Dominguez et al. (2016)
were higher than the respective modeled local-
ity-level SDs for the oyster reefs we sampled,
despite the much greater geographic area cov-
ered by our study (Figs. S5-S10). A similar pat-
tern is evident for DAs from other depositional
settings and locations (e.g., southern Brazilian
shelf—Ritter et al., 2017; subtidal sand flat, Fer-
nandez Bay, San Salvador Island, Bahamas—
Kowalewski et al., 2018; Fig. 3).

One exception to this pattern is the study by
Tomasovych et al. (2018), which found compa-
rable age and time-averaging estimates to ours
in Corbula gibba DAs from cores of the Po and
Isonzo prodeltas, northern Adriatic Sea (Fig. 3).
However, the authors stated that the two deltas
have some of the highest sedimentation rates
in the northern Adriatic Sea, and median ages
and time-averaging estimates for C. gibba DAs
from the eastern Gulf of Trieste—across the
gulf from the Isonzo River and characterized
by low sedimentation rates—were older and
more time-averaged than the prodelta samples
by nearly two orders of magnitude (TomaSovych
et al., 2019). In contrast to these large differ-
ences in age and time-averaging of C. gibba
DAs between depositional settings, decadal-
scale resolution appears to be a common fea-
ture of DAs from intertidal C. virginica reefs in
multiple estuaries across Florida.

Overall, our results suggest that oyster reefs
have a relatively high shell burial rate and less
stratigraphic mixing relative to nonreef mol-
luscan DAs, consistent with the hypothesis that
the physical structure of oyster reefs reduces
the susceptibility of DAs to some taphonomic
processes. Despite their higher temporal resolu-
tion than other types of molluscan DAs in most
cases, there is still considerable variation in
the oyster DA median ages and IQR,, values
(Fig. 2), precluding useful regional or statewide
generalizations of age versus burial depth rela-
tionships or scales of time-averaging (see the
Supplemental Material for an example).

This variability highlights a need for addi-
tional work to further refine the spatial and tem-
poral specificity of dead C reference informa-
tion for calibrating the fraction modern carbon
(F“C) of estuarine carbonates to improve their
accuracy and precision as much as possible (see
Supplemental Material for further discussion
of this point). It also illustrates why specific
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geochronological information will be impor-
tant for many conservation paleobiological
contributions to oyster management. Exactly
how necessary they are for any given project
will depend on the questions investigated, but
trends in many indicators of oyster population
condition, such as live-oyster size-frequency,
are typically tracked at annual or subannual
intervals by oyster monitoring programs. To
integrate measurements from DA samples with
such high-resolution records for trend analy-
ses, it would likely be necessary to know, for
instance, whether the median calibrated age
and IQR,y of a DA sample are 2011 and 53 yr,
respectively, or 1979 and 16.5 yr—as was the
case for two of the DA samples at 15-25 cm
burial depth from our Big Hickory locality.

Once these data are obtained, comparisons
between the DA data and monitoring data that
were impractical without them can become fea-
sible—such as the HOBS project’s focus on inte-
grating DA and real-time oyster size data into a
single trend analysis, accounting for uncertainty
in both oyster size and sample ages—instead of
only focusing on more general “before/after”
comparisons (e.g., Dietl and Durham, 2016).
Further, our study demonstrated that most of
the DA samples from oyster reefs represent a
relevant time period for ORCP management
(i.e., late 1960s to mid-2000s) and can yield
decadal-scale (and sometimes subdecadal-scale)
retrospective information from ORCP-managed
areas where no long-term contemporaneous oys-
ter monitoring took place.

Lastly, the apparently limited stratigraphic
mobility of shells in recent oyster DAs suggests

the intriguing possibility that the degree of time-
averaging in an in situ fossil oyster reef (bio-
herm) is not dramatically greater than that in the
DA of aliving oyster reef. In this case, bioherms
might preserve decadal-scale records from time
periods when information at such a fine temporal
resolution is exceptionally rare, making them
suitable records for otherwise impossible studies
of short-term ecological processes in the deep
past (e.g., Kowalewski et al., 1998; Kidwell and
Tomasovych, 2013).
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