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ABSTRACT: Machine learning potentials (MLPs) are poised to combine the accuracy of ab initio
predictions with the computational efficiency of the classical molecular dynamics (MD)
simulation. Whereas great progress has been made over the last two decades in developing MLPs,
many challenges remain in their widespread applications due to the limitations of atom-based
descriptors for representing long-range interactions and correlation effects. In this work, we
evaluate two deep potential (DP) models for liquid water near graphene surfaces, Model S and
Model F, with the latter having more training data. A concurrent learning algorithm (DP-GEN) is
adopted to explore the configurational space beyond the scope of conventional ab initio MD
simulation. The accuracy and reliability of the DP models have been examined in terms of their

applicability to systems larger than those considered in the training dataset. We find that an
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accurate prediction of atomic forces does not imply an accurate prediction of the system energy.
The deviation from the relative atomic forces alone is insufficient to assess the transferability of
the DP models. An alternative criterion is proposed by including both the energy and force
deviations as measured by the root-mean-square error (RMSE) relative to the original test dataset.
By evaluating the variation of potential energy with time and contrasting the relevant statistical
features of diverse systems in both DPMD and classical MD simulations, we further elucidate the

robust transferability of Model F, thus validating the above criterion.

Introduction

Interfacial water exhibits structural and dynamical properties distinctively different from
those in the bulk phase.'”?' Many computational studies have been carried out to study the
properties of inhomogeneous water using classical molecular dynamics (MD) simulation.>*7:12:16-
21 The conventional models such as SPC/E and TIPnP/X can describe the bulk properties but their
performance for nanoscale systems is often problematic due to the non-classical behavior of
intermolecular interactions.?? In principle, ab initio MD (AIMD) is applicable to liquid water at
both bulk and inhomogeneous conditions. However, the computational cost of AIMD is
prohibitive for large systems that entail long-time dynamic behavior. Over the past two decades,
machine-learning potentials (MLPs) have been introduced to fill the gap between ab initio and
classical MD simulations.?*° On the one hand, MLPs can capture the complex features of the
potential energy surface (PES) obtained from accurate electronic structure calculations. On the
other hand, the well-trained MLPs predict the potential energy and atomic force at a high level of

accuracy with a computational cost negligible in comparison to the density functional theory

(DFT) calculations.



Many MLPs are available from the literature, ranging from different forms of neural
network potentials (NNPs)*!37 to kernel-based potentials such as gradient-domain machine
learning (GDML)*, Gaussian approximation potentials (GAPs)*, spectral neighbor analysis
potentials (SNAPs)*°, among other methods*'. Existing MLPs are mostly based on atom-based
descriptors and the locality approximation originally proposed by Behler and Parrinello®. It is
often assumed that atomic interactions can be described by the local chemical environments of
individual atoms. The intermolecular potential is specified by a cutoff radius for each type of atom,

allowing for the transferability and scalability of NNPs. In particular, the introduction of the
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“active learning”** or “query by committee”* scheme facilitates the efficient sampling of PES and

enhances the effectiveness and transferability of NNPs. Active learning has been an indispensable

component in the recent development of NNPs.?!44

Whereas MLPs empower rapid advances in MD simulation, significant challenges exist in

their widespread use due to the limitations in describing long-range interactions with atom-based
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descriptors®. Previous studies of NNPs are mostly focused on bulk systems*®*’_ including liquid
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water and dilute solutions of small molecules’®. Much less attention was given to

inhomogeneous systems such as water near an interface or in confined geometry. In comparison
with bulk systems, liquid water at inhomogeneous conditions has more complicated atomic
configurations and PES, rendering a greater challenge for training MLPs. Currently, there are only
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several studies applying NNPs to water at solid-liquid interfaces’ 7, such as liquid water at the

O°*% or alloys®® and nanoconfined water’’*8. These studies provide valuable

surfaces of Zn
insights into unique challenges in using NNPs for inhomogeneous molecular systems.

In this work, we explored the transferability of NNPs for predicting the interfacial

properties of liquid water near graphene surfaces. Two deep potential (DP) models, Model S and



Model F, were constructed using the DP-GEN (Deep Potential Generator) scheme*? to represent
the PES and label the reference data. DP-GEN is a concurrent machine learning method similar to
active learning*? except that it requires sampling unlabeled data®®. The DP descriptors are obtained
from the embedding neural network of the DP models and compared with those commonly used
in the works of literature including SOAP?® and ACSF®’. We find that the trained DP descriptors
have excellent representational power in characterizing the chemical environment of the atoms.
They could conceivably be acted as general molecular representations for a variety range of
downstream tasks or be in combination with other MLPs as their input, not just for constructing
DP models. Subsequently, the transferability of the two DP models were tested with systems of
different sizes by comparing their predictions for energy and atomic forces with the DFT
calculations. We then compared in detail the relevant statistical results of DPMD and classical MD
simulations for systems at different temperatures, including O atoms density distribution and radial

distribution, to better complement the assessment of the DP model transferability.

Models and Methods
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Figure 1. Schematic flow chart for training a DP model with AIMD and DP-GEN for DPMD
simulation. The procedure includes three parts: AIMD for generating the initial trajectories, DP-
GEN for enriching the dataset, and DPMD for large-scale simulation. The DP model extends short-

time AIMD for small systems to long-time DPMD for large systems.

Computational scheme. Figure 1 outlines a three-step workflow implemented in our deep
potential (DP) molecular dynamics (DPMD) simulation. The DP training starts with a dynamic
trajectory generated by AIMD with the initial data for atomic positions, configurational energies,
and atomic forces. Next, we adopt the DP-GEN scheme to enrich the dataset by generating
additional configurations*’. Finally, all data are collected to train the DP model, including the
initial data provided by AIMD and the data obtained by sampling, before it is used to simulate
large systems. In the DP-GEN step, MD and DFT calculations are carried out iteratively through
structural exploration, labeling, and training. In the exploration stage, we conducted DPMD
simulations to sample new configurations (viz. atomic structures) or to select certain simulation
frames for labeling with atomic forces and system energy. According to the simulation protocol of
DP-GEN, we performed parallel MD simulations with four DPs that are trained with the same
dataset and optimization methods but with different random seeds in initializing the network
parameters*?. We used the standard deviation computed from the ensemble averages of the above
four DPs as the criteria to select the structures of interest. Specifically, the standard deviation €

refers to the maximum of that corresponding to the atomic forces F; predicted by the four DPs

e = max/([[F; = (F))II?) (1
where the subscript i denotes the atomic index, and (... ) represents the ensemble average over the
four DPs. The parallel DPMD simulations would yield consistent results if the dataset is

sufficiently large for training the DP models. Otherwise, the non-convex nature of the neural



network implies that the four DP models would predict different results owing to the different
random seeds. Therefore, the parallel DPMD simulations allow us to retain the atomic structures
with proper standard deviations and discarded structures that are too similar or differ too
significantly from the structures in the previous round training dataset. In labeling the selected
structures, we carried out DFT calculations to evaluate the total energy of the system and atomic
forces for each frame. Next, we performed the DP training based on the enriched dataset that
includes both the DP-GEN data and the original dataset. Parallel DPMD simulations are then
carried out to generate new trajectories for the next iteration until the convergence. After the
iterative cycles in training the DPs, the DPMD simulation reflects atomic interactions underlying
both the initial dataset from AIMD and the sampling datasets from DP-GEN. More information
about DP-GEN, including sampling criteria and iteration details, can be found in Section 1.C of
Supplemental Material.

AIMD simulations. AIMD simulations were applied to two systems: system | consists of
liquid water and a graphene sheet, and system II is pure liquid water. For both systems, the results
from AIMD provide the initial dataset for implementing the DP-GEN scheme. Figure 2 presents
snapshots of these systems for AIMD or DPMD simulations. The simulation box for system I
contains 57 water molecules and has the dimensions of 12.28x12.76x15.00 A in x, y, and z
directions, respectively, with a graphene sheet consisting of 60 carbon atoms positioned at the z=0.
In system II, the simulation box contains 64 water molecules and has the dimensions of
12.42x12.42x12.42 A, which mimics liquid water with a bulk density of 998.8 kg/m>. All AIMD
simulations were conducted by using the Quickstep program from the cp2k package®':®2. The
periodic boundary conditions (PBC) were imposed in the x, y, and z directions. Accordingly,

system I is equivalent to a thin film of liquid water confined between two parallel graphene sheets



that are infinite in the x-y plane. For both systems, AIMD simulations were carried out at a series
of temperatures in order to explore the PES with a short duration of the simulation time®’. More
details about AIMD simulations are available in Section S1.B of Supplemental Material. The
AIMD dataset consists of 9003 frames of configurations for system I and 9002 frames for system
I, from which we chose a certain number of frames to build the initial training dataset for the DP-
GEN iteration. The performance of the DP model is relatively insensitive to the initial dataset from
AIMD and it is much smaller than the enriched dataset established by the subsequent DP-GEN

exploration.®

Original Systems

System [ System II

New Systems

System 111 System IV

Figure 2. Four systems investigated in this work with AIMD and DPMD simulations. System [
and II refer to original systems simulated with AIMD for generating the initial training dataset;
System III and IV refer to larger systems that are used to evaluate the transferability of the DP
models. Two types of DP models, Model S and Model F, are distinguished by the training dataset

for system I and for systems I and II, respectively.



Construction of the DP models. Like other neural network potentials (NNPs), locality
approximation is used in constructed the DP models®. The total energy of the system is expressed

as the sum of neighboring atomic energies

E=ZEi @)

where E; is the energy of atom i. In evaluating the neighboring atomic energies, a cutoff distance
of 6 A is adopted with a smooth function applied at 5.5 A. Consequently, the chemical environment
for each atom is defined by atoms within the cut-off distance.

In the smooth version of the DP model®*

, the neural network contains two components: the
embedding neural network and the fitting neural network. The former is designed to preserve the
translational, rotational, and permutation symmetries of the system under investigation; it maps
the chemical environment of each atom, i.e., the identity and coordinates of the neighboring atoms,
to self-adapted descriptors. The fitting neural network establishes correlations for the energies and
atomic forces of the system in terms of the self-adapted descriptors. It’s worth mentioning that the
energy and atomic force used as initial input for the fitting neural network are calculated from the
first principles methods such as electronic DFT. Both embedding and fitting networks are

optimized with the Adam method by minimizing the loss function®”-%*

_Pe, pro Pr 2
Loss = N AE“ + IN |AF;| 3)
i
where AE and AF; denote the root mean square (RMS) errors in energy and force, respectively.
The factors p, and py are tunable during the training process. More details about the

configurations of the DP model can be found in Section S1.A of Supplemental Material. As shown
in Figure 2, we constructed two types of DP models, Model S and Model F, based on whether to

incorporate the data from the bulk system (System II).



Assessment the DP Transferability. The enriched dataset, i.e., the data from DP-GEN
sampling plus the original dataset from AIMD, are used to train an ensemble of four DPs that differ
only in the initialization parameters. These DPs are then applied to the larger systems by DPMD
simulations. The performance of different DPs can be measured with the relative force model

deviation defined as

|6f-|
= 1/ 4
VA )

where f; represents the force on atom i, ¢, stands for the corresponding standard model deviation,

and /=1 eV/A is a constant introduced to ensure that an atom with a small absolute model deviation
will also have a small relative model deviation®’.

To test the transferability of the DPs, we constructed two new systems, systems III and IV
as shown in Figure 2, which are larger than those used for training the DP models. System III
contains 96 carbon atoms and 141 water molecules, and the simulation box has the dimensions of
14.74x17.02x20.66 A in x, y, and z directions. System IV consists of 180 carbon atoms and 276
water molecules in the simulation box of size 22.11x21.27x20.00 A. We evaluated the
transferability of two DP models, Model S and Model F, as explained in Figure 2, by analyzing
the atomic forces and energies predicted by DPMD for systems III and IV at different temperatures
(300K, 400K, and 500K). Sections S1.C and S1.D of Supplemental Material detail the simulation

setup and the DP-GEN iteration process for training the DP models used in Model S and Model F.
Results and Discussion

In this section, we first discuss DP descriptors for the characterization of the atomic
chemical environments with Model S and Model F and analyze the two models’ performance in

reproducing the first-principles results. Next, we evaluate the accuracy and transferability of



different DP models by examining their applicability to systems larger than those considered in
the training dataset.
DP descriptor vs. SOAP and ACSF

As mentioned above, the training of DP models has two components, the embedding neural
network, and the fitting neural network. The embedding network is designed to construct the
descriptors to represent the chemical environment of individual atoms based on the spatial
coordinates of the neighboring atoms. Many descriptor construction methods have been proposed
for the development of atomistic machine learning force fields, including the Coulomb matrices®,
Many-Body Tensor Representation (MBTR)®’, Atom-Centered Symmetry Functions (ACSF)®,
Smooth Overlap of Atomic Positions (SOAP)?. In this work, we compare the ACSF and SOAP
descriptors with the DP descriptors used in the construction of Model S and Model F. The analysis
is based on one specific structure randomly selected from system I. As shown in Figure S5, this
structure has 231 atoms, including 60 C atoms, 57 O atoms, and 114 H atoms. The descriptors
used here are two-dimensional arrays, whose row denotes the number of atoms in the system and
col denotes the number of features of the method. And therefore, the size of the descriptors from
different methods can all be expressed as 231*col, where the col varies greatly between these
methods. The configurations of embedding network in Model S and Model F are the same and the
descriptors have the same shape. The shapes of DP Model, SOAP and ACSF descriptors are
(231,1600), (231,2100) and (231,36). There are some custom settings affecting the dimension of

the feature in SOAP and ACSF, which can be found in S1.E part of Supplemental Material.
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Figure 3. (a) The graphical representation of the descriptors after the dimension reduction. From
left to right, they correspond to Model S, Model F, SOAP, and ACSF. In this diagram, the blue
points are affiliated with the coordinates of C atoms, the red points for O atoms, and the purple
points for H atoms. (b) The corresponding correlation matrix of the descriptors. Light color
represents a high correlation coefficient, and dark color represents a low correlation coefficient.

The first diagram on the left, for example, shows the positions of C, O, and H atom:s.

Figure 3a compares different descriptors based on the principal component analysis (PCA).
Each point in this diagram represents the coordinates for one type of atoms (viz., blue for C atoms,
red for O atoms and purple for H atoms). The graph can be analyzed in terms of the inter-class and
intra-class distances at two levels, i.e., the way how the same atoms are aggregated and the
differences between the presentation of different atoms. The descriptors given by Model S and
Model F perform better than SOAP and ACSF as evidenced by the clustering of the same atoms
and the separation of different atoms. The SOAP and ACSF descriptors distinguish only C atoms

from other atoms while the O and H atoms are mixed together. Besides, the distribution of atomic
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characteristics shows no regularity as far as the same types of atoms are concerned. Because the C
atoms are all located on the graphene sheet, the differences in the local chemical environments of
water molecules are mainly reflected in the distance from the graphene surface as represented by
the DP descriptors. To show these differences graphically, we present the corresponding
correlation matrices of the DP descriptors in Figure 3b. Each matrix element manifests the
correlation coefficient of two atomic descriptors. For example, the ij element in the correlation
matrix denotes the correlation coefficient of the atomic descriptor with index i to that with index
Jj. Figure 3b indicates that there is no correlation between different atom species for the DP models.
However, the SOAP and ACSF descriptors are partially correlated between different atomic
species, especially between O atoms and H atoms. Therefore, the DP descriptors are more likely
to give a good representation of the chemical environments of individual atoms. As noted in
Section S1.E of Supplemental Material, SOAP and ASCF descriptors are constructed directly from
the coordinates of the atoms and are readily available from standard software packages. By
contrast, the DP descriptors are extracted from the embedding net and must be trained using known
labels. So just from the standpoint of characterizing the chemical environment, it’s not surprising
that DP descriptor works better than the other two, as it is trained and costs more. Even though,
the great performance of the DP descriptors demonstrates their feasibility and potential
applications in atomic-scale modeling®® not just for constructing deep potential or conducting
DPMD simulations.
Accuracy of the DP models

In this subsection, we compare the energies and atomic forces predicted by the DP models
with the DFT results that are not included in the training dataset. Figure 4 presents the predictions

of Model S and Model F for the system energy and the atomic force, that is, the force on each
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atom, in the x-direction (force x) in systems I and II. Similar results can be obtained for the atomic

forces in the y and z directions, as shown in Figure S6.
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Figure 4. The comparison of the energy and x-direction atomic forces (force x) predicted by the

DP models and DFT calculations. The first and second rows correspond to the energy and force x

for each atom respectively; a, b, e, and f are the results from Model S; ¢, d, g, and h are the results

from Model F.

Table 1. The RMSE of energy per atom and force x of individual atom between DFT calculations

and the DP models.
Sys I-RMSE Sys I[I-RMSE
Model
Energy/atom(meV) Force (eV/A) Energy/atom (meV) Force (eV/A)
S 0.698 0.0798 17494 0.1005
F 1.547 0.0794 2.458 0.0995

As mentioned above, the training datasets for Model S and Model F are different. The

former contains only the atomic structures from system I (viz., graphene in water), while the latter

contains the atomic structures from both systems I and II (viz., graphene in water and pure liquid
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water). In terms of chemical environment, the training datasets for Model S are more uniform than
Model F, and the similarity in the atomic characteristics of the training data explains why Model
S is superior to Model F for reproducing the atomic energies and forces for system I. As shown in
Figure 4a and 4c, Model S predicts the energy per atom in system I more accurate than Model F.
Table 1 shows that the RMSE predicted by Model S is 0.698 meV, much less than 1.547 meV
predicted by Model F. As for the atomic force predictions, we observe only small differences
between the two models as shown in Figure 4e, 4f, and Table 1. It is probably worth mentioning
that 1 eV equals 23.06 kcal/mol and that the above energy errors are much less than the chemical
accuracy, 1 kcal/mol.

For system II, the relative performance of the two DP models is reversed, that is, Model F
predicts the atomic energies and atomic forces more accurate than Model S. Especially, Table 1
indicates that Model S predicts the RMSE of atomic energies up to 17.49 eV, higher than 2.458
meV predicted by Model F by almost 4 orders of magnitude, which looks more like a systematic
bias. However, the RMSE for force x predicted by Model S is very close to that by Model F. The
disparities in Model S and Model F can be attributed to their different training datasets. The atomic
structures of water molecules in system I and system II are different, representing the confined
water and bulk water respectively. Unlike Model F, Model S does not include any atomic structure
from system II in the training dataset. As a result, it may not fully capture the local chemical
environment of the bulk system. For example, system I contains only a portion of “bulk” water
molecules with no C atoms within their truncated radius, meaning that the chemical environment
of these water molecules is similar to that of the bulk water. We may identify those O atoms with
no C atoms in their chemical environment in the training dataset for system I and compare the O-

O and O-H radial distribution functions (RDFs) with those from system II as illustrated in Figure
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S7a and S7b. While the RDFs of O-O and O-H pairs have a similar shape in system I and system
II, the numbers of neighboring O and H atoms within the O-atom truncation radius are noticeably
different (Figure S7c¢ and S7d). Compared with the O atoms farthest away from the graphene
carbons in system I, those O atoms in the bulk (system II) have more H atoms within their cutoff
radius. In other words, the chemical environments for the O atoms in system I are significantly
different from those in the bulk water even when they are in the middle of the graphene layers. In
this work, the size of the simulation box is 15 A in the z-direction. Because the cutoff radius for
the chemical environment of O atoms is set to 6 A and the van der Waals radius of C atom is
approximately equal to 1.7 A, the O atoms in the confined system are distinctively different from
those in the bulk even when they are located in the middle plane between graphene sheets, which
contradicts the locality assumption. The above analysis indicates that the local environment of
water molecules in system I is quite different from that of bulk water (system II). Unlike atomic
forces, there is only one energy label for each frame (viz., atomic configuration). While the former
has three components of force labeled for each atom (in x, y and z directions). In addition, the total
energy depends on the positions or the local environments of all atoms. In other words, each
component of the atomic force is a local property but the energy is a global property®®. Although
the DP model adopts the locality approximation with the total energy of the system expressed as
the sum of atomic energies, there is no so-called atomic energy label and the model cannot
decompose the energy properly. It only ensures that the overall energy is accurate. Because the
total energy contains contributions from both graphene and water molecules in the training data,
Model S predicts the atomic forces accurately but is not able to predict the total energies of
different systems. Conversely, the training dataset of Model F contains the atomic structures of

both systems I and II thus can predict both the energy and force of similar systems. Owing to these
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two systems having different atomic structures, the data consistency of Model F is not as good as
that of Model S, that is, the former training data contain richer features. As a result, Model F does
not converge as efficiently as Model S in training the DP models. The differences in convergence
are also reflected in the RMSE values of the energy and atomic forces for system I predicted by
Model S and Model F (Table 1).

DP Models Transferability

Transferability is an important measure of the usefulness of the neural network potentials
(NNPs). Ideally, the NNP model trained with the first-principles calculations for small systems
should be applicable to larger systems. To test the transferability of our DP models, we consider
liquid water-graphene interface systems with the larger size than system I (viz., system III and IV
shown in Figure 2). Then Model S and Model F were tested with 5 ns DPMD simulations in the
NVT ensemble for system I, III and IV at 300K, 400K and 500K. A total of eighteen DPMD
simulation runs, using the two types of DPs models (S and F) for the three systems at three
temperatures (2x3x3), were used to evaluate the transferability of the DP model in terms of the
relative deviations of atomic forces and system energy.

The relative deviation of atomic forces. As explained in the Method, this metric is
calculated from the force predictions for the same atomic structure but with an ensemble of 4 DPs
that differ only by the initial parameters. Different structures were generated with the DPMD
simulations with one of the four DPs while other three DP potentials from the ensemble are
included to evaluate the model deviations. For simplicity, we first analyze the DPMD simulations

for systems I and III.
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Figure 5. The histogram of the relative model deviation of the atomic forces of system I predicted
by an ensemble of four DPs for Model S (a) and Model F (b). The histogram of the relative model
deviation of the atomic forces of system III predicted by an ensemble of four DPs for Model S (c)
and by an ensemble of four DPs for Model F (d). The inset subplots give the mean value and

standard deviation at different temperatures.

Figure 5a and 5b show the relative model deviations of the atomic forces for systems I and
IIT predicted by Model S and Model F, respectively. The insets present the mean values and
standard deviations at different temperatures. Figure S8 shows the variation of the relative
deviations of atomic forces over the duration of simulation. In all cases, both the mean value and
standard deviation of the atomic forces grow with temperature because of the enhanced thermal
fluctuation. As aforementioned, system I corresponds to the initial system that generates the

training data. System III has more water molecules and larger spacing in the z direction thus with
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a different degree of confinement and chemical environments. At a given temperature, the relative
deviation of atomic forces in system I is smaller than that of system III. However, the differences
are relatively small (no more than 10%). Based on the force criterion alone, it seems that Model S
is transferable to larger systems.

To study whether a small relative model deviation in atomic forces is enough to justify the
transferability of the DP model, we selected 50 atomic structures of system III at equal intervals
from the DPMD simulation at 300K and calculated the potential energy and atomic forces with
DFT for each structure. The results were compared with those predicted by Model S. Figure 6a
and 6b present the corresponding comparisons for the potential energy and atomic force x,
respectively. And the comparisons for atomic force y and z can be found in Figure S9. It can be
found that the error of total energy per atom is up to 5.2 eV/atom, much larger than the prediction
error of Model S for the test dataset shown in Figure 4a. In contrast, the atomic forces predicted
by the DP model are in excellent agreement with the DFT results. In fact, it can be found the case
is consistent with the performance of Model S for system II in the test dataset, that is, bad energy
prediction but good force prediction by the DP model. As a control, we also analyzed the DPMD
simulation results for systems I and III with Model F. Figure 5c and 5d present the relative force
model deviations, and Figure 6¢c and 6d compare the DFT calculations and the corresponding
results predicted by Model F for the total energy per atom and atomic force x. As can be seen from
Figure 5, the model deviations of Model S and Model F are comparable, seeming to imply the
similar accuracy for the prediction of the DP models for system I1I. However, Figure 6 shows that
Model S is subject to a larger deviation in predicting the potential energy of system III than Model
F. For both models, we also compute their model deviation of energy per atom and atomic forces

of the above 50 structures from system III. As shown in Figure 7a, Model F yields small model
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deviations of both energy and force. Conversely, Model S shows a larger deviation of the total

energy per atom while a smaller deviation for the atomic forces. In other words, Model S can

accurately predict the atomic forces but not the system energy. Therefore, combining the model

deviation of energy per atom and atomic force is more indicative of how well the model predicts

one structure.
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Figure 6. The comparison of the potential energy and atomic force x predicted by DFT and the

DP models, i.e., Model S (a,b) and Model F (c,d) for system III.

The above analysis indicates that using the model deviation or relative model deviation of

the atomic forces alone is not necessarily an indicator of whether the model can predict the energy

accurately. There is little correlation between the predictions of energy and atomic forces
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especially when we consider the transferability of the DP models for systems with different local
chemical environments. Perhaps a more suitable criterion is to introduce model deviations of both
energy and atomic forces into the evaluation steps. Specifically, this can be done by comparing
the model deviation with the RMSE of the model on test dataset. If the model deviations are
significantly less than the corresponding RMSE for both total energy and atomic forces, the DP
model would have good transferability. This can be seen by comparing the data in Table 1 and
Figure 7. For example, the model deviation of energy per atom of Model S is 186.2 meV, much
greater than the corresponding RMSE of Model S on the test dataset of system I, i.e., 0.698 meV,
implying that the model S cannot yield an accurate energy. Similarly, the model deviation of
atomic forces of Model S is 0.0443 eV/A, less than the corresponding RMSE, i.e., 0.0798 eV/A,
showing that the model S can predict the atomic forces well. For Model F, the model deviation of
energy per atom and atomic forces are 0.3 meV and 0.0465 eV/A, less than their corresponding

RMSE on the test dataset, 1.547 meV and 0.0794 eV/A.
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Figure 7. The model deviation of energy per atom and atomic force of the selected structures from
system III (a) and IV (b) for Model S and Model F.
To validate the above criterion, we selected 50 atomic structures at equal intervals from

DPMD simulations of system I'V at 300K and compared the DFT calculations and DP predictions.
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Since there are more atoms in system IV, DFT calculations could not achieve convergence for 15
structures so that they were discarded and the remaining 35 structures were used in our analysis.
It can be seen from Figure 7b and Figure S10 that the situation is similar to that of system III
discussed above, i.e., the model deviations of energy per atom and atomic forces predicted by
Model F are less than the corresponding RMSEs. Therefore, we assert that Model F can give the
accurate predictions of the system energy and atomic forces, while Model S does not. From these
analyses, we conclude that the transferability of Model S is inferior to that of Model F.

Based on the combined criterion of energy and force evaluations, we selected 200
structures at equal intervals from the DPMD simulations of model F at different temperatures for
three different systems, i.e., system I, III and IV. Figure S11 shows the corresponding model
deviations for the energy per atom and atomic forces. Both the model deviation of energy per atom
and atomic forces are less than the corresponding RMSE shown in Table 1. It seems that we can
therefore conclude that Model F is able to achieve good transferability at different temperatures
for different systems.

Further Illustration of Model F Transferability. The previous parts have evaluated
energy and atomic forces for randomly selected structures from system III and IV, showing that
Model F can achieve accurate predictions of energy and atomic forces for the new systems. As far
as transferability evaluation is concerned, although it’s essential and adequate to pay attention to
the energy and atomic forces of the system, it’s specific to a certain configuration or individual,
without considering the statistical related properties. As mentioned at the very beginning, the
advantage of MLP is its ability to perform long time molecular dynamics simulations with the

first-principle accuracy at a lower cost. Therefore, we analyzed the relevant statistical properties
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of the DPMD simulations to provide a complementary account on the transferable ability of the

DP models.
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Figure 8. The density distribution of O atoms along the z-axis of different systems at 300K, 400K

and 500K in DPMD simulations (a) and classical MD simulations (b).

As mentioned above, we carried out eighteen DPMD simulation runs, using Model S and
F for the system I, III and IV at 300K, 400K and 500K. First, we investigated the change in the
potential energy (PE) of systems with time. As shown in Figure S12, after a relatively short period
of time, almost all the systems’ potential energy tends to fluctuate at a constant value, except the
simulation of system IV at 500K conducted by Model S. This is in line with the conclusion that
has been reached that Model S doesn’t transfer well. In general, much richer exploration for
potential energy surface can be achieved in the longer time simulations of larger system at higher
temperature. And such exploration tests the transferability of MLP models. For example, the
simulation of system I'V at 500K conducted by Model S didn’t remain stable. This also shows that
the stability of some simulations does not indicate that the model has reliable transferability, for

example, although Model S gave stable simulations of system III at different temperature, its
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predictions of the energy were inaccurate, as shown in Figure 6a. In contrast, Model F could make
accurate energy and atomic forces predictions and possesses good transferability. Accordingly, the
simulations based on Model F all maintain a steady state of potential energy.

Next, we only focused on simulations conducted by Model F and omitted Model S-based
simulations. Specifically, we analyzed the density distribution of O atoms in the z-axis direction,
as well as the RDFs of O-O and O-H. To better illustrate these DPMD simulation results, we also
have preceded 5 ns NVT ensemble classical MD simulations of the above systems using
GROMACS program’’. The simulation procedures and force filed parameters used are consistent
with this work®? and will not be described in detail here. It should be added that we fixed graphene
in the classical MD simulations because the force field parameters of C atom used here are not
accurate enough to model the flexibility of graphene well.

Figure 8a and 8b present the density distribution of O atoms along the z-axis for the
different systems in the DPMD simulations and classical MD simulations, respectively. Due to
confinement effect, the density distributions of O atoms show symmetrical layer structure along
the z-axis. And in DPMD simulations that is more clearly stratified at 300K compared to the
distributions at 400K and 500K. In contrast, the results at different temperatures in classical MD
simulations differ insignificantly. We think that this is related to portrayal of the interactions by
the two types of simulations. The water molecule in classical MD simulations is TIP3P’! model
with fixed conformation, and the graphene is also fixed. Furthermore, the force field description
is not accurate as in DPMD simulations, so the interactions described by classical MD are not as
complex and fine as in DPMD. And this is more pronounced at lower temperature due to the
random perturbation of the kinetic energy. Notice that the density distribution of O atoms for

system IV in DPMD simulation at 300K shows an asymmetric structure. We suggest that this
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related to the flexibility of graphene. Specifically, we examined the density distribution of C atoms
along the z-axis as shown in Figure S13 and here we placed the graphene in the middle. It can be
found that the graphene is not always in a fixed plane, but fluctuates back and forth in the z-axis
direction; on average, the graphene tends to be on the left side. And the layered structure of O
atoms closer to that side is more pronounced, which is also related to the confinement effect.

(a) Model F-DPMD
‘ System |

System Il — 300K System IV

roo (A)
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1 System | = 300K System Il — 300K System IV — 300K

Figure 9. The RDF of O-O for different systems in DPMD simulations (a) and classical MD

simulations (b) at 300K, 400K, and 500K. And from left to right are system I, IIl and I'V.

Then we calculated the radial distribution functions (RDF) of O-O and O-H, that is ggg
and gy, for different systems in DPMD and classical MD simulations as shown in Figure 9 and
Figure S14 respectively. For g in Figure 9, the first peak represents the length of the hydrogen
bond formed between the central O atom and the O atom of adjacent water molecule, which is
close in both DPMD and classical MD simulations. At higher temperatures, gqo only exhibits a
structure feature in the region closer to the central atom, and the further away from it, goq 1s closer

to 1. This is due to the kinetic energy randomly perturbing the intermolecular interactions and thus

24



showing a more homogenous feature. Overall, the structured character of ggo in the DPMD
simulations is more pronounced, especially at 300K. This is still in that DPMD could portray
intermolecular interactions more precisely with the precision of the first principle calculation,
unlike the conformation of fixed water model in classical MD simulations. In the same way, we
analyzed the RDF of O-H, ggy, as shown in Figure S14. It differs form gog and exhibits multiple
peaks. The first peak means the O-H bond of the water molecule, the second peak represents the
distance between the H atom in donor hydroxyl group and the acceptor O atom, and the third peak
is the distance between the acceptor O atom and another H atom in the donor water molecule.
Overall, goy shows a similar pattern to goo at different temperatures and in two types of
simulations and this will not be developed in detail here.

In summary, the above further illustrates the good transferability of Model F through
change in potential energy of the systems and some statistical properties. This suggests that we
can show whether the model is able to transfer well by comparing the model deviation in energy
and atomic forces with the model’s RMSE on the test set, thus not relying on costly DFT
computational validation. This is particularly true for large systems, because DFT calculations can

no longer be effectively performed here.
Conclusion

In this study, we have constructed DP models based on the high precision data generated
from AIMD and the DP-GEN scheme for liquid water near a graphene surface and in the bulk. We
tested the transferability of these models through the static structure calculations of the total energy
and atomic forces in systems larger than those used for training the DP models. We compared the
DP descriptor with the classical descriptors such as ACSF and SOAP. We find that the DP

descriptor obtained from training is superior to classical descriptors in characterizing the chemical
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environment. In addition, the relative force model deviation alone offered by deepmd-kit package®’
is not a good indicator of whether the DP model can predict both energy and atomic forces
accurately. A feasible alternative is to incorporate both the model deviations of energy and atomic
forces into the evaluation step. Furthermore, when evaluating the transferability of a DP model,
we should compare both the model deviations for the system energy and atomic forces with the
RMSE:s of the model on the test dataset. And we further validate this criterion through evaluating
the transferability of Model F on different systems at different temperatures by comparing the
results given by DPMD and classical MD simulations.

Finally, it’s worth saying that this study was unable to examine the impact of long-range
interactions on the transferability of the DP models because such effects were completely
neglected®. It is conceivable that incorporating long-range interactions and other non-local effects
could result in improvements in transferability. For example, the fourth-generation MLPs represent
a promising approach**’2, It is worth noting that these models require information on atomic
charges, which was not available in our dataset. Considering the differences in transfer effects
between Model S and Model F, our findings emphasize the influential role of building a strong
training dataset in achieving a successful DP model. Especially the chemical environment of atoms
should be adequately represented in training the DP model.
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