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First paleoproteome study of fossil
fish otoliths and the pristine
preservation of the biomineral
crystal host

Jarostaw Stolarski'*?, Jeana Drake?, Ismael Coronado?, Ana R. Vieira“?, Urszula Radwanska¥,
Elizabeth A. C. Heath-Heckman’, Maciej Mazur8, Jinming Guo® & Anders Meibom1%1!

Otoliths are calcium carbonate components of the stato-acoustical organ responsible for hearing

and maintenance of the body balance in teleost fish. During their formation, control over, e.g.,
morphology and carbonate polymorph is influenced by complex insoluble collagen-like protein and
soluble non-collagenous protein assemblages; many of these proteins are incorporated into their
aragonite crystal structure. However, in the fossil record these proteins are considered lost through
diagenetic processes, hampering studies of past biomineralization mechanisms. Here we report the
presence of 11 fish-specific proteins (and several isoforms) in Miocene (ca. 14.8-14.6 Ma) phycid hake
otoliths. These fossil otoliths were preserved in water-impermeable clays and exhibit microscopic

and crystallographic features indistinguishable from modern representatives, consistent with an
exceptionally pristine state of preservation. Indeed, these fossil otoliths retain ca. 10% of the proteins
sequenced from modern counterparts, including proteins specific to inner ear development, such as
otolin-1-like proteins involved in the arrangement of the otoliths into the sensory epithelium and
otogelin/otogelin-like proteins that are located in the acellular membranes of the inner ear in modern
fish. The specificity of these proteins excludes the possibility of external contamination. Identification
of a fraction of identical proteins in modern and fossil phycid hake otoliths implies a highly conserved
inner ear biomineralization process through time.

Paleoproteomics is an accelerating research field providing new perspectives on, e.g., the evolution of biominer-
alization processes through time and refining our understanding of fossil remains’. While studies of ancient DNA
are limited to few million years because DNA degrades relatively fast after cell death?, the study of more stable
protein remains in the fossil record offers an opportunity to explore protein function and their evolution over geo-
logical time scales; several to hundreds millions of years®. Paleoproteomic studies of biominerals such as bones,
teeth, and shells are particularly promising because such structures have high potential of preserving protein
residues embedded within well-preserved fossil specimens. Here, we explore this potential in fossilized calcium
carbonate structures of the inner ear of teleost fish (otoliths). Fish otoliths are, in contrast to osteological fish
remains, frequently found in the fossil record during the Mesozoic, and with increasing abundance in Cenozoic
strata®. Due to their taxon-specific morphology, these fossils are key to the interpretation of palaeobiodiversity
of fish and to palaeoenvironmental reconstructions based on their isotope- and trace element compositions®.
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Although otolith calcium carbonate mineral structures can resemble inorganically precipitated aggregates of crys-
tals, they are in fact complex organic-mineral composites, akin to many other biogenic carbonates®. Studies of the
modern otolith biomineralization process have shown that the organic macromolecules, proteins in particular,
control key aspects of otolith formation’, including regulation of calcium transport, nucleation, and saturation
state at the crystallization site, thus actively modulating aragonite crystal growth®. Indeed, the strict selection of
a specific calcium carbonate polymorph (aragonite as opposed to, e.g., calcite or vaterite) has also been shown
to be controlled by proteins, such as aspartic acid and serine residues, that attract calcium cations to the growing
crystal surface and favor denser (i.e., aragonitic) packing of ions’. To date, several hundred proteins have been
identified in modern fish otoliths, many of which are thought to be directly involved in biomineralization'.
Proteins known to be involved in otolith biomineralization can be divided into two main groups: (1) complexes
of structural, insoluble collagen-like proteins and (2) soluble, non-collagenous proteins (NCPs). The collagen-like
proteins, such as otolin-1, create a scaffold for the growing biomineral; otolin-1 has homology of sequences to
collagen X, a protein also involved in endochondral ossification and bone fracture repair''. The soluble NCPs are
usually highly acidic and intrinsically disordered proteins (IDPs) that directly regulate nucleation, orientation,
and crystal growth. Such IDPs were identified in several fish taxa, e.g., Starmaker (Stm) in zebrafish’, Starmaker-
like (Stm-1) in medaka'?, and Otolith Matrix Macromolecule-64 (OMM-64) in rainbow trout'?, and their role in
the biomineralization has been thoroughly characterized'*"".

Finding evidence of proteins embedded into fossil otoliths would enhance our understanding of the evolu-
tion of an important aquatic biomineralization process, but such residues have not yet been identified and it is
generally thought that these organic components are broken down and lost due to diagenetic alteration of the
aragonite polymorph, which is metastable and normally transforms into a more stable calcite, e.g., via dissolu-
tion-precipitation processes in the presence of active solutions'®. Such diagenetic processes also strongly affect
the preservation of many inter/intra-crystalline proteins—in particular the highly labile NCPs". In order to suc-
ceed in the detection and identification of remains of such proteins in fossil otoliths, we hypothesized that only
specimens preserved in water-impermeable deposits and still composed entirely of aragonite with ultrastructural
features similar to modern counterparts, have the potential to preserve organic components, most likely as inclu-
sions embedded inside the aragonite crystals. Some easy-to-find sagittal Miocene otolith fossils from teleost fish
fulfil these criteria. Here we report the results of a search for proteins embedded in fossil otoliths from phycid
hake fish found in Miocene (about 14 million years old) water-impermeable clays exposed in Korytnica (Holy
Cross Mountains, Central Poland; see Material)?.

Results

Mineral phase characteristics. Modern (white) and fossil (brownish color) saggital otoliths of Phycis spp.
are slim and elongated calcium carbonate biomineral structures; wider at the anterior and gradually narrow-
ing towards the posterior parts (Fig. 1a,h). The inner face (proximal surface) is convex without distinct sulcus
acusticus (the area where the sensory tissue comes into contact with the otolith). The outer face (distal sur-
face) is most commonly composed of irregular thickenings/protuberances and grooves (Fig. 1a,h). Longitudinal
thin-sections (i.e., in the sagittal plane) observed with both polarized and normal transmitted light exhibit ca.
500 pm thick columnar units that correspond in size to protuberances on the surface (Fig. 1c,j). Occasionally,
spindle-shaped voids occur between columnar units that may correspond to the grooves between neighboring
surface protuberances (white arrows in Fig. 1c,j). The columnar units and other parts (proximal) of modern and
fossil otoliths in longitudinal sections show numerous layers (alternating dark-brown and colorless zones, ca.
5-7 um thick; Fig. 1c,d,j,k. Layers are composed of crystals that in crystallographic orientation images (EBSD)
are present with similar size in modern and fossil samples (Fig. 1e,l). Phase maps have confirmed the strictly
aragonitic mineralogy of both modern and fossil samples (Fig. 1f,m) and the resulting pole figures are fully
comparable between modern (Fig. 1g) and fossil specimens (Fig. In). A high degree of similarity between mod-
ern and fossil specimens was also observed for crystal size, inclination, azimuthal dispersion, and turbostratic
distribution in the plane (222) (Fig. 1g,n). The aragonite fibres of modern and fossil otoliths consist of slender
units ca. 200-300 nm wide that show nanogranular organization (Fig. 2a,b,g,h), with nanograins ca. 50-100 nm
in diameter clearly visible in AFM height- and peak force error-mode images (Fig. 2¢,d,i,j). TEM observations of
skeletal lamellae (extracted by focused ion beam) show aragonite, fine-scale fibres comparable in size with those
observed in FESEM cut either obliquely (Fig. 2e) or longitudinally (Fig. 2k) to the growth direction. The fibres
include numerous intracrystalline low density defects (inclusions) ranging in size between 2 and 25 nm, which
are clearly seen as bright spots in TEM images (white arrows in Fig. 2f]). These inclusions are aligned perpen-
dicularly with the crystal growth direction as seen in longitudinal cuts (Fig. 2f,1). Material of similar low density
is also located at the grain boundaries (Fig. 2e,k). The modern and fossil samples show overall similar weight
loss profiles, but the derivative curves suggest differences in decomposition. Modern otoliths decompose over
broader temperature range in comparison to modern ones (ca. 200-430 °C vs. 250-400 °C) and show several
weight-loss steps (at ca. 210 °C, 360 °C, and 410 °C) in comparison to the one relatively large weight-loss (at ca.
340 °C) in fossil otoliths (Supplementary Fig. S1).

Protein preservation: amino acid racemization test. The amino acid racemization and their relative
content in fossil otolith samples was used as a proxy of protein degradation. The analyses were performed using
fossil P. tenuis otoliths compared directly with modern P. phycis. The measurements included free amino acids
originally present within biomineral (FAAs) as well as those formed during hydrolysis of complete peptides into
individual amino acids (so called total hydrolyzable amino acids, THAA). FAAs tend to result from the hydroly-
sis of highly-racemized N-terminal amino acids, so that the D/L ratio of FAA should be higher than that of the
THAA for a given amino acid. As expected, the distribution of amino acids between pools of free amino acids
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Figure 1. Morphological, microstructural and crystallographic similarity of modern Phycis phycis (a-g)

and fossil Phycis tenuis (h-n) saggital otoliths. Modern (a) and fossil (h) sagittas are slim and elongated; the
outer face (distal surface) most commonly is composed of irregular thickenings/protuberances and grooves.
Thin-sections in polarized (b,c,i,j) and normal transmitted light (d,k) show numerous growth rings and point
to ontogenetic continuity of protuberances (columns in longitudinal cut; occasionally separated by spindle-
shaped voids, white arrows). Crystallographic orientation images (EBSD) show aragonite crystals of similar
size in modern (e) and fossil (I) samples (phase maps (f,m) confirm aragonite mineralogy of both samples);
pole figures are fully comparable between modern (g) and fossil samples (n): same crystal size, distribution,
inclination, azimuthal dispersion and turbostratic distribution in the plane (222). ZPAL P.21/R-OTH-242/001
(a-g); ZPAL P21/ C-OTH-07/006 (h-n). The BungeColorKey palette (more accessible for color-blind users)
from MTEX was used to create orientation images and the pole figures.
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Figure 2. Composite, organic-mineral structure of Phycis phycis (a-f) and fossil Phycis tenuis (g-1) saggital
otoliths. In FESEM the aragonite fibers of modern and fossil otoliths consist of slender units ca. 200-300 nm
wide (a,g) that in higher magnification (b,h) show nanogranular organization; nanograins ca. 50-100 nm in
diameter are visible in AFM height-mode (c,i) and peak force error-mode (d,j) images. TEM observations of
skeletal lamellae (extracted by focused ion beam) show aragonite, fine-scale fibers (comparable in size with
those observed in FESEM) that include numerous organic inclusions (arrows in f1). Fibers in (e) cut obliquely
or longitudinally (k) to the growth direction. ZPAL P.21/R-OTH-187/002 (a-f); ZPAL P.21/C-OTH-07/007

(g-D.

(FAA) versus polymerized amino acids (THAA-FAA; as pmol amino acids per mg of starting otolith) shows that
most amino acids in modern specimens are part of intact peptides whereas the majority of fossil peptides have
broken down to individual amino acids. A dramatic loss of both Asx and Glx—which include the acidic amino
acids aspartic and glutamic acid—as well as of Ser was observed in fossil specimens (Table 1).

Proteome analysis. In total, peptides for 132 fish-specific proteins and several isoforms were detected
in modern P. phycis otoliths (Supplementary Table S2), while peptides for 11 fish-specific proteins were found
in fossil P. tenuis otoliths (Table 2, Supplementary Tables S3-S5), which is a return ratio comparable to that of

Moders | FAA_|0252 (0.083) | 0.167 (0.042) | 90.7 (22.4) 20.4(2.9 |18.0(2.0) |18.4(3.8) |148(2.1) |63(22) |6.6(1.8) |11.0(3.7) |4.6(1.8)
THAA | 0.070 (0.001) | 0.026 (0.001) | 6518.32 (1696.3) | 23.7(0.3) |21.5(0.5) |13.4(0.2) |14.4(0.2) |11.2(0.6) |3.4(0.2) |3.1(0.1) |9.2(0.2)

Fosi] FAA | 0.843(0.062) | 1.006 (0.003) | 1489 (430.7) 2.2(0) 10.8(0.6) | 0.1(0) 483(02) |194(01) |20(02) |52(04) |120(0.2)
THAA | 0.808 (0.052) | 1.034(0.006) | 1117.9 (285.1) 16(0.1) |285(04) |04(0.1) |[376(03) |155(03) |14(0.1) |4.0(0) 11.0 (0.1)

Table 1. Amino acid racemization and relative abundance in modern Phycis phycis (bold fields) and fossil

P, tenuis (italic fields) otoliths. Note the decrease in % Asx and pmol THAA/mg starting otolith powder and
increase in % Ala of fossil relative to modern otoliths. Average of replicates are shown with standard deviations
in parentheses; technical duplicates of each from three modern and one fossil specimen were analyzed.
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Protein

Gene ID Solubility fraction | Function

Alpha-tectorin

Noncollagenous components of the tectorial

g13180.t3 SOM, IOM membrane (extracellular matrix) in the inner ear

Beta-tectorin

The protein specifically expressed in the mam-
malian and avian inner ear; one of the major
non-collagenous components of the tectorial
membrane (extracellular matrix of the inner ear)

g51752.t1 IOM

Otogelin/otogelin-like

The protein encoded by gene that is expressed
10M in the inner ear of vertebrates (essential for its
normal function)

g19658.t1, g45878.11, g59712.t1, g40098.t2,
g40101.t1

Otogelin-like (low quality protein)

g45228.t1, g67087.t1 IOM As otogelin-like (above)

Otolin-1-like

A short chain collagen-like protein providing a
scaffold for otolith biomineralization and regula-
tory function by interacting with other matrix
proteins

824402.t1 SOM, IOM

72 kDa type IV collagenase

The protein from the group of matrix metalloprotein-
ases (MMPs) with ability to remodel the extracellular
matrix, a function necessary for proper cellular
migration and tissue morphogenesis.

§30843.t1 oM

The protein belonging to serine arginine-rich protein

Splicing factor, arginine/serine-rich 19-like g31972.t1 IoM family, involved in the splicing process of precursor

RNA.

Protocadherin fat 4-like

The protein from a large family of proteins often

84570311 oM involved in calcium-dependent cellular adhesion.

ig-h3 isoform X2

Transforming growth factor-beta-induced protein

The extracellular matrix protein functionally associ-
g54590.t1 IOM ated with the adhesion, migration, proliferation, and
differentiation of various cells.

Neuroserpin

The protein from a large familiy of serine protease
g59144.11 SOM, IOM inhibitors that may regulate local protease activity
during framework assembly.

Thrombospondin-1 precursor

The protein is an adhesive glycoprotein that mediates

86096.1 oM cell-to-cell and cell-to-matrix interactions.

Table 2. Proteins sequenced from a fossil Phycis tenuis otolith by LC-MS/MS. All proteins were also identified
in modern otoliths of Phycis phycis (Supplementary Table S4). The bolded text highlights proteins specific to
otolith/inner ear development; italicized text highlights proteins expressed in various tissues, including the
inner ear.

modern vs. fossil coral (aragonite) skeletons 2?2, Proteins were observed across both acid solubility fractions in
all specimens and GluC improved protein detection in modern samples, but only tryptic digest peptides were
detected in fossil samples (Supplementary Table S6). Additionally, deamidation of asparagine and glutamine and
oxidation of methionine were detected (Supplementary Table S6)*. Five of 11 proteins sequenced from fossil
otoliths represent proteins encoded by genes expressed in the inner ear (i.e., alpha-tectorin, beta-tectorin, otolin-
1-like, otogelin/otogelin-like and otogelin-like). The other six proteins occur in modern fish otoliths, but are not
specific to inner ear function. Proteins found in modern otoliths but not fossils include, e.g., usherin, a protein
important to the development and homeostasis of the inner ear. Other modern otolith proteins include several
types of collagens, contactin, low-density receptor-related lipoprotein, carbonic anhydrase that interconverts
CO, and bicarbonate (Supplementary Table S2).

Discussion

One of the most distinct features of biominerals, carbonates included, is that they are invariably organic-mineral
composites in which the organic components, such as polysaccharides, lipids, and proteins are incorporated/
embedded into the inorganic mineral phase, forming meso- to nanoscale intra- and intercrystalline inclusions
and networks ?#?*. These organic components participate in the physiologically mediated process of biomineral
formation. Because the proteomic profiles can be linked with transcriptomic resources/expression, studies of the
proteome of modern biomineral structures provide insights into molecular mechanisms of biomineralization.
Identification of proteins in fossil biomineral structures therefore raises hope to gain indirect access to genome-
related information in the absence of preserved DNA in fossils much older than ca. 2 My, the age beyond which
DNA is generally no longer surviving in the fossil record 2?7,

Increasingly, paleoproteomic data have been extracted from various fossil biomineral structures 2!, How-
ever, to date no paleoproteomic information exists from fossil otoliths that represent the most abundant fish
remains in Mesozoic and Cenozoic deposits. This study is the first report on protein identification in fossil otoliths
conducted in direct comparison with proteome of congeneric modern otoliths (phycid hakes). The following
discussion focuses on two key aspects: structural criteria of fossil biominerals that preserve pristine paleopro-
teomic information and comparative analysis of protein content in modern and fossil phycid hakes otoliths.

Mineral phase vs. paleoproteome information preservation. The fossil material selected for this
study came from Korytnica, a locality well known for exceptional preservation of aragonitic biominerals (see
also “Material” section)*>*. Indeed, in all fossil otolith samples studied here, only the aragonite carbonate
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polymorph was detected; i.e., we observed no evidence of the presence of secondary calcite or other second-
ary phases. The exceptional preservation of these fossil otoliths is further supported by their crystallographic
and ultrastructural features, which are indistinguishable from those characterizing the modern counterparts
in terms of their distribution of crystal sizes, orientation/inclination, azimuthal dispersion, and turbostratic
distribution (plane (222) (Figs. 1, 2). Further evidence of the extremely pristine preservation state of these fossil
otoliths is provided by the occurrence of their nanogranular texture, typical of otoliths and most other biogenic
minerals®***. The nodular nanograins (ca. 100 nm in diameter), which are typically visualized with atomic force
microscopy (Fig. 2¢,d,i,j) are considered the product of a biomineralization process that involved amorphous
precursors®®. In this process, the organic molecules become incorporated into the crystallizing biomineral,
e.g., as inclusions, and as organic-rich ‘envelopes’ around the resulting nanograins (Fig. 2e,£k,1)*. Individual
proteins involved in the carbonate biomineralization process have masses up to hundreds kDa and sizes from
few to several nanometers in diameter/radius of random coil (structured/IDPs proteins). Their embedment into
the crystal structure was interpreted as occurrence of intra- and intercrystalline inclusions®**. Such inclusions
are consistently present in modern and fossil otolith samples analysed herein, and we assume that they are the
primary source of the proteinaceous material in this study. Prior (paleo)proteomic analyses examined amino
acid racemization and their relative content measurements to assess the preservation potential of the samples*.
Protein degradation is clearly suggested by the distribution of amino acids between pools of free amino acids
(FAAs) versus polymerized amino acids (THAA-FAA, as pmol amino acids per mg of starting otolith material);
most fossil peptides have broken down to individual amino acids. The observed bias toward acidic amino acids
in fossil specimens suggests that highly acidic proteins (common to biominerals in general) are part of more
soluble portions of the biomineral, which were preferentially degraded; this is reflected in the types of proteins
that were sequenced by LC-MS/MS (Table 2). Protein degradation is also supported by the thermogravimetric
data. The thermograms of Recent samples exhibit broader thermal decomposition range and a higher number
of weight-loss steps in comparison to fossil ones. The Recent samples contain organic compounds that differ in
their susceptibility to thermal decomposition, thus it is not surprising that the temperature range of their decay
is relatively wide. It appears therefore that modern otoliths contain a greater diversity of organic (proteinaceous)
components, which is manifested by higher thermal decomposition range (number of weight-loss steps) in com-
parison to fossil otoliths, for which the organic diversity is smaller.

Comparative (paleo)proteome analysis of modern and fossil phycid hake otoliths. More than
130 proteins were identified in otoliths from modern adult Phycis phycis. These include otolins, otogelins, usher-
ins, and a cochlin, which have been previously identified in otoliths**%. Of the detected modern otolith proteins,
11 were also observed in the fossil P. tenuis otoliths. These include alpha and a beta tectorin, two otogelin-like
proteins, otolin-1-like, and a neuroserpin, all of which have been suggested to be directly involved in calcium
carbonate biomineralization. We also identified in the fossil otoliths additional proteins not previously detailed
from fish otoliths, such as collagenase; transforming growth factor b-inducing protein, splicing factor; arginine/
serine-rich 19-like protein; protocadherin FAT 4-like proteins; and thrombospondin. All of these additional
proteins except the splicing factor have GO terms designating them as extracellular or associated with a mem-
brane. Several are calcium binding and at least one, protocadherin, has been detected in biogenic carbonates
from other organisms*.

There are several possible reasons why this particular suite of proteins previously established as otolith matrix
proteins were preserved in the fossil otoliths studied here. Co-preservation of some proteins may result from their
intimate interactions during biomineralization. Both otogelin and alpha tectorins are necessary for tethering
of the otolith membrane to sensory structures in the ear*, and otogelin is crucial in early larval development
of the initial seeding of the otolith'’. Beta tectorins likely sequester calcium as biomineralization proceeds®,
and may polymerize with otolin®, possibly enhancing their co-preservation. Similarly, alpha tectorins possess
an N-terminal Nidogen domain that has been proposed to allow it to also interact with otolin*. The proteins
detected in fossil otoliths are some of the highest scoring proteins in modern otoliths (higher scores indicate a
more confident match between combined scores of all observed mass spectra and amino acid sequences within
examined protein), which has been shown to be linearly related to relative protein abundance*’. Lastly, some
proteins with acidic residues that provide an organic scaffold for biomineral formation (e.g., otolin-1 like*)
are strongly stabilized by calcium ions; such proteins may firmly adhere to the biomineral surface, which may
enhance their preservation potential in fossil record?®.

Our observations refine the structural criteria for exceptional preservation of carbonate biominerals in the
fossil record, and the paleoprotein sequences indicate highly conserved inner ear biomineralization processes
in fish through geological time.

Material

Modern samples. Forkbeard (Phycis phycis, Phycidae family) modern otoliths were collected from fish
caught off by fishermen along the mainland Portuguese west coast between 2011 and 2012. Sagittal otoliths
were removed with ventral cranium section through gills, rinsed with water, air dried and stored in labelled
plastic tubes at Lisbon Sciences Faculty (Portugal) until analyses*°. Two large specimens of Phycis phycis were
selected for biomineral structure analyses (ZPAL P.21/R-OTH-242/001, ZPAL P.21/R-OTH-187/002) and three
specimens (ca. 2.5 g in weight) were selected for proteome analysis (ZPAL P.21/R-OTH-196/003, ZPAL P.21/R-
OTH-197/004, ZPAL P.21/R-OTH-198/005).

Fossil samples. The fossil sagittal otolith samples of P. tenuis were collected from the Korytnica Clays [GPS
position: 50°39'50" to 50°40'50" N and 20°31'20" to 20°33'00" E; three sites: Korytnica-Plebania, Korytnica-
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Forest, and Mt. Lysa*], a unique facies deposited in the terminal part of the bay (Korytnica Basin) developed in
the Miocene along the rocky shore on the southern slopes of the Holy Cross Mountains, Central Poland®. The
Korytnica Basin is filled by a shallowing-up sedimentary sequence composed of ca. 30-60 m thick sequence of
clays, locally interfingering with oyster shellbeds. The absolute age of the Korytnica sequence is estimated as
14.8-14.6 Ma>"** Korytnica Clays are renown from pristine preservation of Miocene fossils. Such exceptional
preservation is supported by aragonite mineralogy (a metastable CaCO; polymorph in normal conditions)
of skeletons of e.g., scleractinian corals, gastropods, and fish otoliths and their distinct and fully comparable
to modern counterparts micro- and nanostructural features®. The unusually favorable conditions of fossiliza-
tion are further supported by exceptional, residual color patterns of some gastropod and barnacle shells?*>>*4,
Such preservation implies that fossils embedded in impermeable clays were virtually sealed off from extremal
environment. After withdrawal of the Paratethys seas from the southern outskirts of the Holy Cross Moun-
tains, these sediments were not covered by additional thick sedimentary cover that could cause any geothermal
gradient heat effect on fossil material. The preset-day annual mean-temperature for Swictokrzyskie region in
Poland ranges from 5.61 °C (in 1940) to 10.10 °C (in 2019); observations from 1901 till 2021%°. Considering the
very fine grained nature of Korytnica-clays and consequently, typical to such sediments, extremely low thermal
conductivity®® it can be reliable suggested that the examined otolith samples (retrieved from sediments found
today at 1-2 m depth) have not experienced any significant temperature fluctuations during their burial history.

The clay samples were washed and sieved through standard sieves (500/250/125 um) and dried at 40 °C. Of
ca. 300 otolith specimens of P. tenuis, 2 specimens were selected for biomineral structure analyses (ZPAL P.21/C-
OTH-07/006, and ZPAL P.21/C-OTH-07/006); 20 specimens (ca. 1.6 g in weight) were selected for proteome
analysis (collective number ZPAL P.21/C-OTH-07/008-027). Specimens selected for (paleo)proteome analyses
were soaked in sodium hypochlorite (5%) for 3 h, rinsed and ultrasonicated with deionized water and dried at
40 °C overnight.

Material of modern and fossil otoliths is housed at the Institute of Paleobiology, Polish Academy of Sciences,
Warsaw (abbreviation ZPAL). Detailed sample identification information is provided in Supplementary Table S1.

Experimental

Otolith biomineral structure. Structural features of the otolith were studied and photographed using a
transmitted light microscope Nikon Eclipse 80i at Institute of Paleobiology, Polish Academy of Sciences, Field—
Emission Scanning Electron Microscopy (FESEM, Zeiss Merlin) at the Department of Chemistry, University
of Warsaw, Thermo Fisher Tecnai Osiris microscope at Central facility in electron microscopy (CIME) of Swiss
Federal Institute of Technology in Lausanne (EPFL), and Atomic Force Microscopy (AFM) using Multimode 5
instrument (Veeco) upgraded to Multimode 8 version (Bruker), at the Department of Chemistry, University of
Warsaw. Light microscope images (in polarized light) were taken from ultra-thin (2-12 pm thick) sections made
in sagittal plane of the otolith. FE-SEM images were taken of transverse broken sections of otoliths mounted on
stubs with double-sided adhesive tape and sputter coated with a conductive platinum film; the accelerating volt-
age was of 5 kV, working distance 4-6 mm. Atomic Force Microscopy imaging was acquired in ScanAsyst mode
using dedicated silicone cantilevers. Two signals (height and peak force error) were simultaneously collected
during each scan. Otolith polished sagittal sections (Buehler Topol 3 final polishing suspension with particle size
0.25 um) were rinsed in Milli-Q water, washed in an ultrasonic cleaner for 10 s, and then etched with a Milli-Q
water solution for 7 h. The images were processed with WSxM v5.0 Develop 10.2 software from Nanotec®. Sam-
ples for Transmitted Electron Microscopy (TEM) were prepared as cross-sectional TEM lamellae extracted and
then milled using a dual-beam Gemini NVision 40 Focused Ion Beam machine. The initial chunks are milled
with gallium ions at 30 kV, 6.5 nA and then thinned down with lower currents step by step until using 80 pA,
and finally smoothed at 5 kV, 80 pA. TEM analyses were performed at 200 kV accelerating voltage. High angle
annular dark field (HAADF) images in scanning transmission electron microscopy (STEM) mode were recorded
with a spot size of 0.5 nm and camera length of 115 mm.

Electron backscatter diffraction (EBSD). The surface sample (of thick slides) was polished with alu-
mina of 1 pm, 0.3 pm, and 0.05 um and finally polished with colloidal silica (0.05 pm). Before analysis, samples
were coated with a thin layer (ca. 2 nm) of carbon using a high vacuum coater. The EBSD study was carried
out with Oxford NordlysMax detector mounted on a scanning electron microscope JEOL JSM-6610LV at the
Institute of Materials Engineering, £6dz University of Technology. EBSD data were collected with AztecHKL
software at high vacuum, 20 kV, large probe current, and 20 mm of working distance. EBSD patterns were col-
lected at a resolution of 0.22 pm step size for crystallographic maps using the unit cell settings characteristic of
aragonite and calcite as follows’®*: “Pmcn” symmetry and a=4.96 A, b=7.97 A, and c=5.75 A estimated for
Favia coral using X-ray powder diffraction with synchrotron radiation (43) and a=b=4.99 A, and ¢=17.06 A,
respectively. The EBSD data are represented in this study by crystallographic maps, phase images, and the pole
figures, which represent the stereographic projection of crystallographic planes in reference to the (100), (010),
(001) and (222) aragonite planes. Orientation images and the pole figures were created using MTEX open source
plugin for Matlab program (https://mtex-toolbox.github.io/). To eliminate combination of red and green colors
and create images more accessible for color-blind users we selected BungeColorKey palette from MTEX (the
outcome was tested using Coblis, the Color Blindness Simulator at https://www.color-blindness.com/coblis-
color-blindness-simulator/).

Thermogravimetry. Thermogravimetric analysis was performed with a TGA Q50 apparatus (TA Instru-
ments) at the Department of Chemistry, University of Warsaw. Otolith samples (37.48 and 37.16 mg for fossil
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and Recent samples, respectively) were heated in nitrogen environment under linear gradient (10 °C min™)
from ambient 20 °C to 550 °C.

Amino acid racemization analysis. The first test of the assumption that original organic material remains
in the otolith included amino acid racemization analysis (AAR)®*¢". The AAR analysis provided information that
the samples have been appropriately cleaned (D/L of fossil specimens approaching (1), that original protein
material was still embedded (D/L of fossil specimens approaching (1), and gave an idea of the state of degrada-
tion (i.e., amino acid relative concentrations and abundance similar to those in modern otolith samples should
suggest minimal degradation).

Amino acids for racemization analysis, both free and total hydrolysable amino acids, were extracted, hydro-
lyzed, and evaporated to dryness from cleaned skeleton powders (described below) by standard methods®!. All
samples were prepared in duplicate and analyzed at the Northern Arizona University Amino Acid Geochronology
Laboratory using standard methods with modifications for microfossils®®2. Rehydrated samples were spiked with
L-homo-arginine as an internal standard and then injected into an HPLC fitted with a reverse-phase C18-packed
column. ‘Blank’ samples were included. We have previously shown that our ‘clean space’ set up and handling
protocol are sufficient to prevent exogenous protein contamination in the laboratory?!.

Proteome analysis. The fossil and modern otoliths were powdered by mortar and pestle to 125 pm, oxi-
dized in 50:50 concentrated bleach/H,0, for 1 h while sonicating following modified methods of Stoll et al.®%,
rinsed five times with MilliQ, and dried. Oxidation and rinses were repeated two more times. Cleaned powders
of approximately 0.5 g per sample were decalcified in 0.5 M acetic acid with all handling occurring in a laminar
flow hood to minimize contamination. Soluble organic matrix (SOM) was concentrated by centrifugal filtration
(Amicon, 3 kDa cutoff) and rinsed with filtered phosphate buffered saline. Insoluble organic matrix (IOM; mate-
rial that pelleted at 43,000xg for 5 min) was three times washed washed with 80% acetone. Fossil proteins were
prepared as single samples for each solubility fraction (sample 07); modern samples were extracted as biological
triplicates (samples 196-198). Samples were solubilized in SDS buffer and then digested using the MED-FASP
protocol on a 30 kDa Microcon Centrifugal Unit (Sigma Aldrich) after rinsing out the SDS buffer with 8 M urea
% by sequential applications of trypsin and then Glu-C enzymes. Samples were sequenced by liquid chroma-
tography tandem mass spectrometry (LC-MS/MS) at the UCLA Semel Institute Proteomics Facility. Each frac-
tion was analyzed separately on a nano-liquid-chromatography system coupled to a benchtop high-resolution
orbitrap mass spectrometer (QE-Plus; Thermo Fisher) and operated in positive ion mode with data-dependent
acquisition. MS1 was performed at resolution of 70,000 (at 400 m/z) and MS2 at 17,500. Instrumental blanks
were run between all samples to minimize carryover. Transformed mass spectra were analyzed in Mascot against
the UniProt-Human database, a common contaminants database, and the Phycis phycis genome’s * predicted
protein database. The P. phycis protein database (Supplementary Table S5) was generated using the BRAKER
pipeline, which includes the use of the GeneMark-ES/ET and Augustus programs®-®, to predict protein-cod-
ing regions of the unannotated P. phycis genome. The Atlantic cod (Gadus morhua) predicted protein database
(NCBI assembly GCA_902167405.1 gadMor3.0) (predicted protein file available) was used to input “hints” to
guide CDS prediction. All samples allowed a fixed modification of carbamidomethylation on C and variable oxi-
dation on MW, deamidation on NQ and protein N-terminal acetylation; fossil samples also allowed Phospho K
& T and MOD. For each sample, a first decoy search was carried out to determine p-values for a 1% false discov-
ery rate. Then an error tolerant search was conducted, with the p-value adjusted if necessary. Cutoff scores were
applied at the value recommended by the Mascot algorithm. Returned sequences were annotated in Blast2GO
software and further run in Blast2GO against the NCBI nr primates database to test for potential human con-
taminants not picked up by the UniProt-Human database in Mascot; likely human contaminant proteins were
excluded from the final list if they were > 90% similar to primates with an e-value within 20 units of the original
annotation, within 10 e-value units and 10% similarity for e-50 and lower, or within 5 e-value units and 10%
similarity for e-50 and higher®”. Duplicate sequences were checked in CD-HIT with >90% similarity; duplicates
are noted separately but counted together in total protein counts. Several proteins were predicted as separate
peptides; those peptides were BLASTed against the Atlantic cod (Gadus morhua) predicted proteome (NCBI
assembly GCA_902167405.1 gadMor3.0) and concatenated, with strings of XXs denoting regions of unknown
sequence between known peptides.

Data availability

All data generated or analyzed during this study are included in this published article (and its Supplemen-
tary Information). The mass spectrometry proteomics data have been deposited to the Proteomic Xchange
Consortium via the Pride partner repository”® (https://www.ebi.ac.uk/pride/login) under the dataset identifier
PXD036742 and https://doi.org/10.6019/PXD036742. No ethical approval or guidance was required because this
study only analyzed specimens were collected from commercial landings of fishing vessels and fossil material
in museum collections.
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