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Abstract

As excellent two-dimensional (2D) materials, MXenes have shown great potential in various
fields. However, the degradation of MXenes in humid environments has become a massive
obstacle to the further development of MXenes. Among the factors affecting MXenes degradation,
water is ubiquitous in preparation and application. However, the oxidation mechanism of MXenes
in aqueous environments has not been thoroughly studied. Here we combine the deep neural
networks and the iterative concurrent active learning scheme to develop the deep neural network
potential of the aqueous MXene system with ab initio precision at the low cost as same as that of
the empirical force field. The oxidation behaviors of the super large aqueous MXene system are
investigated systematically at nanosecond timescales for the first time. We demonstrate that the
degradation of MXenes in aqueous systems, a spontaneous energy minimization process, is indeed
caused by water. The proposed proton motion and vanadium oxide protection mechanism
effectively explain that the oxidation of MXenes in aqueous solutions is a self-decay process and
why MXenes can exist for a relatively long time in aqueous solutions instead of rapid hydrolysis.
And the oxidation protection layer, like that of 3D structures, has been seen for the first time from
molecular simulations, which may be of guiding significance for studying MXenes protection

strategies.
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Introduction

In the past decade, 2D transition metal carbides, nitrides, and carbonitrides, known as MXenes
[1, 2], have the general formula of My,+1 X, Tx, where M stands for early transition metals, X stands
for C/N, and T« stands for -F, -O, -OH or other surface groups, and n=1,2,3,4, have great potential
in energy storage, [3-6] catalysts, [7-9] sensors, [10-12] electronics [13-15] and other fields [16]
due to their excellent properties including hydrophilic surfaces and metallic conductivity.

As typical 2D materials with a high surface area to body mass ratio, MXenes are extremely
sensitive to the environment. They often degrade into the corresponding transition metal oxides
caused by collective effects from the air, moisture, and light. [17-19] Among these factors, water
plays a crucial role in the oxidation process of MXenes, especially for aqueous systems. Early
studies have shown that dissolved oxygen in the water caused rapid oxidation of MXene
dispersions. [17] However, MXenes also oxidized in water after removing dissolved oxygen, even
more, affected by moisture than dissolved oxygen. [20-22] Water is ubiquitous as the most
common solvent, [23, 24] and the degradation of MXenes in aqueous solutions destroys the whole
structure, which may appear to have unwanted properties, thus seriously damaging the application
of MXenes in aqueous systems. The degradation of MXenes in humid environments has become
a massive obstacle to the further development of MXenes in various fields. Preventing degradation
requires a comprehensive understanding of the oxidation process. However, the oxidation
mechanism of MXenes in aqueous environments has not been thoroughly studied. Therefore, to
improve the storage and application stability of MXenes, it is urgent to investigate the oxidation

mechanism of MXenes meticulously in aqueous solutions at the atomic level.



Molecular dynamics (MD) simulation can restore details of the reactions at the atomic level,
which provides a feasible scheme for exploring the oxidation mechanism of MXenes. [25, 26]
Owing to the dependence on empirical force fields, the accuracy of classical MD simulation often
could not meet the research needs. As a more accurate simulation method based on quantum
mechanics, ab initio molecular dynamics (AIMD) simulation has been used to study the MXene-
water interface. [27, 28] For example, Jiang et al. studied the proton redox and the hydrolysis of
Ti3C20; in confined water by AIMD simulation. [27, 28] Although AIMD provides accurate
insights at the atomic level, there are still a large number of reaction properties and laws ignored
due to the limitation on the scale of the materials systems (generally less than 1000 atoms) and the
length of the simulation time (usually less than 100 ps), which is hardly sufficient for in-depth
exploration of the oxidation process.

Machine learning (ML) methods have made MD with ab initio precision possible at the same
low cost as empirical force fields, paving the way for in-depth simulation in large material systems
at long-time scales. As the primary ML method, theoretically speaking, deep neural network
potential (NNP) based ab initio data could be infinitely close to the precision of the data. [29, 30]
NNP has been successfully used in multi/single-element bulk, aqueous, and other complex
systems.[31-33] NNP could solve the above problems caused by the low accuracy of the empirical
force field and the high cost of AIMD, thus making it possible to study the oxidation process of
MXenes in aqueous systems accurately.

Here, we combine deep neural networks and the iterative concurrent active learning scheme [31,

34] to develop the NNP of the Vo2CO»-H,O system. And then, the oxidation reaction process on the



V2CO»2-H>0 interface is investigated comprehensively by deep potential molecular dynamics
(DPMD). Surprisingly, the oxidation rate of V>CO; in water decays rapidly in nanosecond MD
simulations and decreases with the increase of water layer thickness. And then, we propose proton
motion and vanadium oxide protection mechanisms to explain these fascinating phenomena. Our
study provides theoretical guidance for illustrating the hydrolysis mechanism of MXenes and
enhancing the storage and application stability of MXenes.

Results

The NNP training process. Considering the interaction between V2CO- and different water layer
thicknesses, the initial NNPs are built from all configurations of V24C12024-10/20/30/40H-0,
which are equal time interval structures by AIMD with canonical (NVT) ensemble. And then, the
NNPs are used by the Deep Potential Generator (DP-GEN) to explore the broader region of the
phase space with isothermal-isobaric (NPT) DPMD trajectories. Temperatures are analyzed from
250 K to 350 K, and pressures are from 0.5 bar to 1.5 bar. The exploration begins with V2CO»-
H>O structures relaxed by DFT, as shown in Figure S1. To include the oxidation state
configurations in the NNPs, the exploration time for each model ranges from 500 fs to 100000 fs.
This ensures that the NNPs could accurately describe the oxidation process. The iterative
concurrent learning scheme executed by DP-GEN consists of three stages, training, exploration,
and labeling. In the training stage, four NNPs are constructed based on the same training dataset
but with random initialization parameters. During the exploration process, several DPMD
simulations are performed with a set of thermodynamic conditions on different V>.CO>-H2O

structures by four NNPs. For each V>CO;-H>O configuration, the difference is estimated by the



maximal deviation of the forces (o7"**) predicted by four NNPs. In the labeling process, the
configuration will be labeled to get the relative energy and force through DFT calculations when
0o <07 < op;, where gy, and oy; are respectively lower and upper trust levels adjusted by
users. In this work, o;, and ay,; are set to 0.12 eV/A and 0.36 eV/A, which is accurate enough
for the aqueous systems. [32, 35] The new data will be added to the original dataset for subsequent
exploration learning. The whole process of developing NNPs is shown in Figure 1. After 38
iterative concurrent learning, the exploration of V2CO2-H20 systems is considered converged
when the percentage of accurate configurations is larger than 99%. The final dataset includes
11921 structures, a tiny fraction (0.017%) of the configurations explored by DPMD. Finally, we
have acquired an NNP of V>,CO,-H;O systems through 8 million training steps by DeePMD-kit.

[36]
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Figurel. The whole process of developing NNPs for V.CO,-H>O systems.



The accuracy of the NNP for V,CO:-Hz0 systems. The errors of the NNP relative to DFT are
quantified by energy and force independence tests based on a series of V2CO2-H20 MD trajectories
(1579 configurations) that are different from the training dataset. The root mean square errors
(RMSE) of energy and force are 2.35 meV/atom and 0.083 eV/A, respectively. The diagnostic
plots between DFT and NNPs and energy RMSE distribution are shown in Figure S2. To verify
the accuracy of the NNP in simulating the properties of V2CO»-H>O systems, we compare the pair
correlation function and vibrational density of states for different water layer thicknesses by AIMD
and DPMD. As shown in Figure S3, it can be seen that the NNP shows surprising consistency with
AIMD in the treatment of V2CO»-H>O systems.

The vanadium oxide formed on the surface of V2CO,. Experimentally, the interlayer distance
of MXenes could change with water intercalated between layers. As shown in Figure S4, the
optimal interlayer spacing is determined for V2CO,-H>O systems, including different water layer
thicknesses (10 H.O, 20 H>O, and 30 H>O). And then, we performed 10ns DPMD with NVT
ensemble using the trained NNP to observe the long-term oxidation behaviors of V2CO2-H2O
systems at room temperature (300 K). The final snapshots are shown in Figure 2. There are
vanadium oxides on the surface of V2CO> for different V2CO2-H2O systems. As shown in Figure
2 (d), a vanadium oxide consists of a V atom, three surface O groups, and an O atom from water,
which exhibits the tetrahedral configuration. And Table S1 shows that the V-O bond strength of
the vanadium oxides on the surface is stronger than that of most common vanadium oxides, which

proves the relative stability of the surface vanadium oxides. To observe the formation time of the



vanadium oxides and the effect on the stability of the systems, energy-time plots and the minimum
distance between V atoms and O atoms in water are shown in Figure S5. V.CO»-H>O systems
become more stable with the decrease (about 2-3 eV) in energy when the formation of vanadium
oxides, which indicates the degradation of MXenes is an energy minimization process. More
surprisingly, the formation time of the vanadium oxides will push backward with the increase of
the water layer thickness, and two vanadium oxides form on the surface of the 10 H>O system for
which the first vanadium oxide appears earliest. In the early MD simulation, the minimum distance
between the V atom and the O atom in water is about 3.55 A, which gets close to the sum (3.60 A)
of van der Waals radii of V and O shows the water molecules physically adsorb on the V atoms.
[37] After oxide formation, the minimum distance is 1.61 A, standing for the strong covalent
interaction [38], and remains stable during 10 ns MD simulation. The appearance of vanadium
oxide is a spontaneous transition from physical to chemical adsorption. The formation of surface
vanadium oxides, a spontaneous process, could improve the stability of the MXenes in aqueous

systems. This explains why MXenes are easy to degrade in the aqueous environment.




Figure 2. The final snapshots for V.CO,-H>O systems with (a) 10H20, (b) 20H>0O, and (c) 30H-0.

(d) The local magnification of the vanadium oxides.

The oxidation process at the atomic level. Understanding the oxidation mechanism is the most
critical strategy for studying the degradation of MXenes. As shown in Figure 3, the whole process
could be roughly divided into two stages, water molecule adsorption on the V atom and the protons
released. In the first stage, the O atom in the H>O is oriented toward the V>CO> surface, and the V
atom is pulled out of the equilibrium position, forming a V-O bond at the end of the first stage.
And then, with the aid of the two nearest H>O, the two O-H bonds break one by one along with
the decrease of the V-O bond distance, resulting in the formation of the stable vanadium oxide on
the surface. The changes in bond lengths among related atoms are shown in Figure 3 (c¢) during
the oxidation process, showing the precise surface oxidation mechanism. To make sure the
accuracy of the NNP in simulating the oxidation states, the energy of the oxidation intermediate
state is calculated by DFT and compared with the potential energy predicted by DPMD. As shown
in Figure 3 (d), the energy prediction of the NNP is almost the same as that of DFT for the oxidation
states, which proves the effectiveness of the NNP for oxidation process simulation. Therefore, we

then extended the NNP to study the super large V.CO»-H>O systems.
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Figure 3. (a) The oxidation process in V2CO2-H2O systems. (b) Oxidation transition state structure.

(c) The changes of bond lengths among related atoms. (d) The energy of the oxidation transition

states is calculated by DFT and DPMD.



Oxidation behaviors for super large V>CO2-H>O systems. In the past, the super large aqueous
MXene systems (more than thousands of atoms) that could provide more oxidation reaction
information, such as oxidation rate, have never been explored due to the limitation of the
simulation method. Here, we have performed the MD simulation of the super large V.CO»-H>O
systems, including different water layer thicknesses (1000 H.O, 2000 H,O, 3000 H>O) by using
10x10x1 supercell structures that contain 2400 V atoms at room temperature (300 K) with NVT
ensemble, and the final snapshots are shown in Figure S6. The relationship between the amount of
vanadium oxide formation and the simulation time is shown in Figure 4 (a). The simulation process
is divided into two stages, the speediness stage (0 ps ~ 200 ps) and the saturation stage (200 ps ~
1000 ps).

The effect of water layer thickness on oxidation rate. During the speediness stage, the vanadium
oxide formation rate decreases significantly with the increase of water layer thickness, which is an
interesting phenomenon to explore further. As shown in Figure 4 (b), the average minimum
distance between the stable V atoms (defined as V atoms that have not formed vanadium oxides)
and the O atoms in water ((V-O) average distance) increases as the increase of water layer thickness
due to the hydrogen bond network formed among the water molecules. Figure 4 (c) shows the
distribution of hydrogen bonds for different water layer thicknesses. There are no hydrogen bonds
in the vertical direction for one water layer, which causes the water molecules to move freely in
the vertical direction, leading to the smallest (V-O) average distance. And then, more and more

vertical hydrogen bonds limited the vertical movement of the water molecules, thus making the



(V-0) average distance longer with the increase of water layer thickness. The shorter (V-O) average
distance promoted the formation of vanadium oxide. Therefore, the vanadium oxide formation rate

increased significantly with the decrease of water layer thickness during the speediness stage.
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Figure 4. (a) The relationship between the number of vanadium oxides and the simulation time.
(b) The average minimum distance between the stable V atoms and the O atoms in water. (c) Local
hydrogen bond networks for Vo.CO,-H>O systems, including 1000 H>O, 2000 H>O, and 3000 H>O.

(d) The typical coordination environment for a hydronium ion in water. (¢) O0 and Ox identity



change among Oa, Og, Oc, and Op.

During the saturation stage, the vanadium oxide amount of the 2000 H>O system exceeded that
of the 1000 H>O system at about 400 ps, which is attributed to the binding effect between protons
and water molecules. It can be seen that the formation of vanadium oxides relies on the oxygen
atoms from water molecule cleavage, leading to two free protons that exist as hydronium ions in
water. Figure 4 (d) shows the typical coordination environment for hydronium ions in water. We
define the O atom in the hydronium ion as Op and its nearest O atom as Ox. The change of O¢ and
Ox identity represents the motion of the proton in water. The change of O and Ox identity is shown
in Figure 4 (e). The proton motion process can be divided into two states: the Eigen state and the
Zundel state. [27, 39] For the Zundel state, the proton is shared by Oa and Og. That is, Og and Ox
identities only switch between Oa and Og. During the Eigen state, the proton is captured by Oa
and Oy switches among three adjacent oxygen atoms, Og, Oc, and Op. The motion of protons in
V2CO0O»-H0 systems follows the Eigen-Zundel-Eigen mechanism as in bulk water. The four water
molecules used for proton transport could not participate in the oxidation reaction. The formation
of a vanadium oxide results in two free protons that restrict the movement of eight water molecules.
The 1000 H2O system gradually reached the saturation state (nearly 100 vanadium oxides at 400
ps) with the increase of the restricted water molecules (theoretically restricted 800 water molecules
at 400 ps), which slowed the oxidation reaction rate. Therefore, it is normal that the vanadium
oxides amount of the 2000 H>O system exceed that of the 1000 H>O system at about 400 ps.

The vanadium oxide protection mechanism. Based on the above analysis, the 2000 H>O and



3000 H2O systems should have enough water molecules to continue the oxidation reaction. That
is not the case. The vanadium oxide formation rate decreased significantly with the increase of
simulation time for all V2,CO»-H>O systems, behind which there must be a deeper reason. We have
extracted the local model from the super large 3000 H>O system and considered the distribution
position of vanadium oxides. As shown in Figure 5 (a), it can be seen that the distribution of
vanadium oxides is very scattered, and the adjacent V atoms do not become vanadium oxides at
the same time. Besides, as shown in Figure 5 (b), the outermost O atom of vanadium oxides can
form hydrogen bonds with two water molecules. And there is a vacuum area underneath the two
water molecules. Therefore, we assume that the presence of the vanadium oxides could create
protective layers with the surrounding water molecules, thus protecting the nearest vanadium
atoms from the attack of other water molecules, namely the vanadium oxide protection mechanism.
The six closest V atoms around each vanadium oxide are defined as the protected V atoms. The
average minimum distance between V atoms and O atoms in water and the probability of H.O
physical adsorption (the V-O distance is less than 3.60 A) on V atoms for the protected and the
stable V atoms are shown in Figures 5 (c) and (d). The (V-O) average distance of the protected
vanadium atoms is larger than that of the stable vanadium atoms, and the probability of H>O
physical adsorption of the protected vanadium atoms is less than that of the stable vanadium atoms,
which together support the hypothesis of the vanadium oxide protection mechanism. As shown in
Figure S7, the (V-O) average distance and the probability of H,O physical adsorption also offer the

same pattern for the 1000 H,O system and the 2000 H>O system.
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Discussion
Taking V>CO» as an example, the detailed oxidation process of MXenes has been presented in
aqueous systems. When MXenes encounter the aqueous solutions, the oxidation reaction will

spontaneously take place with the aid of water, which reduces the energy of the whole system and



produces stable transition metal oxides. During the speediness stage, the oxidation rate decreases
significantly with the increase of water layer thickness owing to the restricted motion of water
molecules by hydrogen bond networks in the vertical direction. And then, as the oxidation process
develops, the movement of the free protons from water cleavage restricts more and more water
molecules not to participate in the oxidation reaction. Therefore, the system, including fewer water
molecules, saturates first. Besides, during the oxidation process, the oxides could form protective
layers with the adjacent water molecules, thus preventing other water from attacking the adjacent
transition metal atoms, further inhibiting the oxidation rate. MXenes will be converted entirely to
the relative transition metal oxides in a short time if the initial oxidation rate is maintained. The
proposed proton motion and oxide protection mechanism explains why MXenes could be
preserved in water for a relatively long time. [17] Besides, to some extent, the discovery of the
oxide protection mechanism also explains the decay of the oxidation rate of MXenes with time in
humid environments. [21, 40, 41]

Though we have studied the long-term oxidation behaviors of the super large MXenes aqueous
systems based on NNP, many factors still affect the oxidation process of MXenes to be explored.
Recently, inorganic salts can improve the stability of MXenes in aqueous solutions. [42] And the
natural MXenes systems often contain vacancies and mixed functional groups such as -F, -OH,
and -O. [16] Besides, oxygen also plays a vital role in the oxidation process. [19] In the past, it has
been challenging to account for these complex factors in computational simulations fully.
Nowadays, the perfect NNP containing more complete data could get more rules of the oxidation

behaviors, which opens a promising way to investigate MXenes degradation.



In this work, we develop the NNP of V2CO>-H>O systems in this work using deep neural
networks and the iterative concurrent active learning scheme. The oxidation behaviors of the super
large MXenes aqueous system are investigated systematically. A detailed and clear picture of the
oxidation process between water and MXenes has been shown for the first time. We demonstrate
that the degradation of MXenes in aqueous systems, a spontaneous energy minimization process,
is indeed caused by water. For the first time at the atomic level, the proton motion and vanadium
oxide protection mechanism explain that the oxidation of MXenes in aqueous solutions is a self-
decay process and why MXenes could exist for a relatively long time in aqueous solutions instead
of rapid hydrolysis. And the oxidation protection layer, like that of 3D structures, has been seen
for the first time from molecular simulations, which may be of guiding significance for studying
the MXenes degradation mechanism. With the aid of machine learning, the revelation of the
MXenes degradation behaviors promotes the development of synthesis strategies for high chemical

stable MXenes, thus driving the booming development of MXenes in all fields.

DFT setup

DFT calculations were performed using the projector augmented wave (PAW) [43] method
applied in the Vienna Ab Initio Simulation Package (VASP). [44] The exchange-correlation effect
was expressed through the generalized gradient approximation (GGA) of the Perdew—Burke—
Emzerhof (PBE) method. [45] Grimme's D3 method was employed to make vdW corrections for
V2CO0O»2-H>0 systems. [46, 47] The cut-off energy was set to 450 eV for the plane-wave basis set.

The energy convergence criterion was 10 eV. The k-points grid of 2 x 2 x 2 and 2 x 2 x 1 with a



Monkhorst-Pack scheme was adopted for V24C12024-10/20H20 (90 and 120 atoms) and V24C12024-

30/40H,0 (150 and 180 atoms).

DeePMD-Kit setup

The NNPs were trained and connected with LAMMPS [48] by the DeePMD-kit. [36] The size
of the embedding net was (25, 50, 100), and the size of the fitting net was (240, 240, 240). The
cut-off radius was 6 A. The smoothing parameter rcut_smth was set to 0.5 A. The prefactors of the
energy, the force, and the virial terms in the loss functions changed from 0.02 to 2, from 1000 to
1, and from 0.01 to 0.1 during the optimization process. The starting learning rate was 0.001 and

exponentially decayed to 10-® at the end of the training.
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