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Abstract 

As excellent two-dimensional (2D) materials, MXenes have shown great potential in various 

fields. However, the degradation of MXenes in humid environments has become a massive 

obstacle to the further development of MXenes. Among the factors affecting MXenes degradation, 

water is ubiquitous in preparation and application. However, the oxidation mechanism of MXenes 

in aqueous environments has not been thoroughly studied. Here we combine the deep neural 

networks and the iterative concurrent active learning scheme to develop the deep neural network 

potential of the aqueous MXene system with ab initio precision at the low cost as same as that of 

the empirical force field. The oxidation behaviors of the super large aqueous MXene system are 

investigated systematically at nanosecond timescales for the first time. We demonstrate that the 

degradation of MXenes in aqueous systems, a spontaneous energy minimization process, is indeed 

caused by water. The proposed proton motion and vanadium oxide protection mechanism 

effectively explain that the oxidation of MXenes in aqueous solutions is a self-decay process and 

why MXenes can exist for a relatively long time in aqueous solutions instead of rapid hydrolysis. 

And the oxidation protection layer, like that of 3D structures, has been seen for the first time from 

molecular simulations, which may be of guiding significance for studying MXenes protection 

strategies.  
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Introduction 

In the past decade, 2D transition metal carbides, nitrides, and carbonitrides, known as MXenes 

[1, 2], have the general formula of Mn+1XnTx, where M stands for early transition metals, X stands 

for C/N, and Tx stands for -F, -O, -OH or other surface groups, and n=1,2,3,4, have great potential 

in energy storage, [3-6] catalysts, [7-9] sensors, [10-12] electronics [13-15] and other fields [16] 

due to their excellent properties including hydrophilic surfaces and metallic conductivity. 

As typical 2D materials with a high surface area to body mass ratio, MXenes are extremely 

sensitive to the environment. They often degrade into the corresponding transition metal oxides 

caused by collective effects from the air, moisture, and light. [17-19] Among these factors, water 

plays a crucial role in the oxidation process of MXenes, especially for aqueous systems. Early 

studies have shown that dissolved oxygen in the water caused rapid oxidation of MXene 

dispersions. [17] However, MXenes also oxidized in water after removing dissolved oxygen, even 

more, affected by moisture than dissolved oxygen. [20-22] Water is ubiquitous as the most 

common solvent, [23, 24] and the degradation of MXenes in aqueous solutions destroys the whole 

structure, which may appear to have unwanted properties, thus seriously damaging the application 

of MXenes in aqueous systems. The degradation of MXenes in humid environments has become 

a massive obstacle to the further development of MXenes in various fields. Preventing degradation 

requires a comprehensive understanding of the oxidation process. However, the oxidation 

mechanism of MXenes in aqueous environments has not been thoroughly studied. Therefore, to 

improve the storage and application stability of MXenes, it is urgent to investigate the oxidation 

mechanism of MXenes meticulously in aqueous solutions at the atomic level.  



Molecular dynamics (MD) simulation can restore details of the reactions at the atomic level, 

which provides a feasible scheme for exploring the oxidation mechanism of MXenes. [25, 26] 

Owing to the dependence on empirical force fields, the accuracy of classical MD simulation often 

could not meet the research needs. As a more accurate simulation method based on quantum 

mechanics, ab initio molecular dynamics (AIMD) simulation has been used to study the MXene-

water interface. [27, 28] For example, Jiang et al. studied the proton redox and the hydrolysis of 

Ti3C2O2 in confined water by AIMD simulation. [27, 28] Although AIMD provides accurate 

insights at the atomic level, there are still a large number of reaction properties and laws ignored 

due to the limitation on the scale of the materials systems (generally less than 1000 atoms) and the 

length of the simulation time (usually less than 100 ps), which is hardly sufficient for in-depth 

exploration of the oxidation process.  

Machine learning (ML) methods have made MD with ab initio precision possible at the same 

low cost as empirical force fields, paving the way for in-depth simulation in large material systems 

at long-time scales. As the primary ML method, theoretically speaking, deep neural network 

potential (NNP) based ab initio data could be infinitely close to the precision of the data. [29, 30] 

NNP has been successfully used in multi/single-element bulk, aqueous, and other complex 

systems.[31-33] NNP could solve the above problems caused by the low accuracy of the empirical 

force field and the high cost of AIMD, thus making it possible to study the oxidation process of 

MXenes in aqueous systems accurately. 

Here, we combine deep neural networks and the iterative concurrent active learning scheme [31, 

34] to develop the NNP of the V2CO2-H2O system. And then, the oxidation reaction process on the 



V2CO2-H2O interface is investigated comprehensively by deep potential molecular dynamics 

(DPMD). Surprisingly, the oxidation rate of V2CO2 in water decays rapidly in nanosecond MD 

simulations and decreases with the increase of water layer thickness. And then, we propose proton 

motion and vanadium oxide protection mechanisms to explain these fascinating phenomena. Our 

study provides theoretical guidance for illustrating the hydrolysis mechanism of MXenes and 

enhancing the storage and application stability of MXenes. 

Results 

The NNP training process. Considering the interaction between V2CO2 and different water layer 

thicknesses, the initial NNPs are built from all configurations of V24C12O24-10/20/30/40H2O, 

which are equal time interval structures by AIMD with canonical (NVT) ensemble. And then, the 

NNPs are used by the Deep Potential Generator (DP-GEN) to explore the broader region of the 

phase space with isothermal-isobaric (NPT) DPMD trajectories. Temperatures are analyzed from 

250 K to 350 K, and pressures are from 0.5 bar to 1.5 bar. The exploration begins with V2CO2-

H2O structures relaxed by DFT, as shown in Figure S1. To include the oxidation state 

configurations in the NNPs, the exploration time for each model ranges from 500 fs to 100000 fs. 

This ensures that the NNPs could accurately describe the oxidation process. The iterative 

concurrent learning scheme executed by DP-GEN consists of three stages, training, exploration, 

and labeling. In the training stage, four NNPs are constructed based on the same training dataset 

but with random initialization parameters. During the exploration process, several DPMD 

simulations are performed with a set of thermodynamic conditions on different V2CO2-H2O 

structures by four NNPs. For each V2CO2-H2O configuration, the difference is estimated by the 



maximal deviation of the forces (!!"#$ ) predicted by four NNPs. In the labeling process, the 

configuration will be labeled to get the relative energy and force through DFT calculations when 

!%& ≤!!"#$ < !'(, where !%& and !'( are respectively lower and upper trust levels adjusted by 

users. In this work, !%& and !'( are set to 0.12 eV/Å and 0.36 eV/Å, which is accurate enough 

for the aqueous systems. [32, 35] The new data will be added to the original dataset for subsequent 

exploration learning. The whole process of developing NNPs is shown in Figure 1. After 38 

iterative concurrent learning, the exploration of V2CO2-H2O systems is considered converged 

when the percentage of accurate configurations is larger than 99%. The final dataset includes 

11921 structures, a tiny fraction (0.017%) of the configurations explored by DPMD. Finally, we 

have acquired an NNP of V2CO2-H2O systems through 8 million training steps by DeePMD-kit. 

[36]  

 

Figure1. The whole process of developing NNPs for V2CO2-H2O systems. 



 

The accuracy of the NNP for V2CO2-H2O systems. The errors of the NNP relative to DFT are 

quantified by energy and force independence tests based on a series of V2CO2-H2O MD trajectories 

(1579 configurations) that are different from the training dataset. The root mean square errors 

(RMSE) of energy and force are 2.35 meV/atom and 0.083 eV/Å, respectively. The diagnostic 

plots between DFT and NNPs and energy RMSE distribution are shown in Figure S2. To verify 

the accuracy of the NNP in simulating the properties of V2CO2-H2O systems, we compare the pair 

correlation function and vibrational density of states for different water layer thicknesses by AIMD 

and DPMD. As shown in Figure S3, it can be seen that the NNP shows surprising consistency with 

AIMD in the treatment of V2CO2-H2O systems. 

The vanadium oxide formed on the surface of V2CO2. Experimentally, the interlayer distance 

of MXenes could change with water intercalated between layers. As shown in Figure S4, the 

optimal interlayer spacing is determined for V2CO2-H2O systems, including different water layer 

thicknesses (10 H2O, 20 H2O, and 30 H2O). And then, we performed 10ns DPMD with NVT 

ensemble using the trained NNP to observe the long-term oxidation behaviors of V2CO2-H2O 

systems at room temperature (300 K). The final snapshots are shown in Figure 2. There are 

vanadium oxides on the surface of V2CO2 for different V2CO2-H2O systems. As shown in Figure 

2 (d), a vanadium oxide consists of a V atom, three surface O groups, and an O atom from water, 

which exhibits the tetrahedral configuration. And Table S1 shows that the V-O bond strength of 

the vanadium oxides on the surface is stronger than that of most common vanadium oxides, which 

proves the relative stability of the surface vanadium oxides. To observe the formation time of the 



vanadium oxides and the effect on the stability of the systems, energy-time plots and the minimum 

distance between V atoms and O atoms in water are shown in Figure S5. V2CO2-H2O systems 

become more stable with the decrease (about 2-3 eV) in energy when the formation of vanadium 

oxides, which indicates the degradation of MXenes is an energy minimization process. More 

surprisingly, the formation time of the vanadium oxides will push backward with the increase of 

the water layer thickness, and two vanadium oxides form on the surface of the 10 H2O system for 

which the first vanadium oxide appears earliest. In the early MD simulation, the minimum distance 

between the V atom and the O atom in water is about 3.55 Å, which gets close to the sum (3.60 Å) 

of van der Waals radii of V and O shows the water molecules physically adsorb on the V atoms. 

[37] After oxide formation, the minimum distance is 1.61 Å, standing for the strong covalent 

interaction [38], and remains stable during 10 ns MD simulation. The appearance of vanadium 

oxide is a spontaneous transition from physical to chemical adsorption. The formation of surface 

vanadium oxides, a spontaneous process, could improve the stability of the MXenes in aqueous 

systems. This explains why MXenes are easy to degrade in the aqueous environment.  

 

 



Figure 2. The final snapshots for V2CO2-H2O systems with (a) 10H2O, (b) 20H2O, and (c) 30H2O. 

(d) The local magnification of the vanadium oxides. 

 

The oxidation process at the atomic level. Understanding the oxidation mechanism is the most 

critical strategy for studying the degradation of MXenes. As shown in Figure 3, the whole process 

could be roughly divided into two stages, water molecule adsorption on the V atom and the protons 

released. In the first stage, the O atom in the H2O is oriented toward the V2CO2 surface, and the V 

atom is pulled out of the equilibrium position, forming a V-O bond at the end of the first stage. 

And then, with the aid of the two nearest H2O, the two O-H bonds break one by one along with 

the decrease of the V-O bond distance, resulting in the formation of the stable vanadium oxide on 

the surface. The changes in bond lengths among related atoms are shown in Figure 3 (c) during 

the oxidation process, showing the precise surface oxidation mechanism. To make sure the 

accuracy of the NNP in simulating the oxidation states, the energy of the oxidation intermediate 

state is calculated by DFT and compared with the potential energy predicted by DPMD. As shown 

in Figure 3 (d), the energy prediction of the NNP is almost the same as that of DFT for the oxidation 

states, which proves the effectiveness of the NNP for oxidation process simulation. Therefore, we 

then extended the NNP to study the super large V2CO2-H2O systems. 



 

Figure 3. (a) The oxidation process in V2CO2-H2O systems. (b) Oxidation transition state structure. 

(c) The changes of bond lengths among related atoms. (d) The energy of the oxidation transition 

states is calculated by DFT and DPMD. 



 

Oxidation behaviors for super large V2CO2-H2O systems. In the past, the super large aqueous 

MXene systems (more than thousands of atoms) that could provide more oxidation reaction 

information, such as oxidation rate, have never been explored due to the limitation of the 

simulation method. Here, we have performed the MD simulation of the super large V2CO2-H2O 

systems, including different water layer thicknesses (1000 H2O, 2000 H2O, 3000 H2O) by using 

10×10×1 supercell structures that contain 2400 V atoms at room temperature (300 K) with NVT 

ensemble, and the final snapshots are shown in Figure S6. The relationship between the amount of 

vanadium oxide formation and the simulation time is shown in Figure 4 (a). The simulation process 

is divided into two stages, the speediness stage (0 ps ~ 200 ps) and the saturation stage (200 ps ~ 

1000 ps).  

The effect of water layer thickness on oxidation rate. During the speediness stage, the vanadium 

oxide formation rate decreases significantly with the increase of water layer thickness, which is an 

interesting phenomenon to explore further. As shown in Figure 4 (b), the average minimum 

distance between the stable V atoms (defined as V atoms that have not formed vanadium oxides) 

and the O atoms in water ((V-O) average distance) increases as the increase of water layer thickness 

due to the hydrogen bond network formed among the water molecules. Figure 4 (c) shows the 

distribution of hydrogen bonds for different water layer thicknesses. There are no hydrogen bonds 

in the vertical direction for one water layer, which causes the water molecules to move freely in 

the vertical direction, leading to the smallest (V-O) average distance. And then, more and more 

vertical hydrogen bonds limited the vertical movement of the water molecules, thus making the 



(V-O) average distance longer with the increase of water layer thickness. The shorter (V-O) average 

distance promoted the formation of vanadium oxide. Therefore, the vanadium oxide formation rate 

increased significantly with the decrease of water layer thickness during the speediness stage.  

 

 

Figure 4. (a) The relationship between the number of vanadium oxides and the simulation time. 

(b) The average minimum distance between the stable V atoms and the O atoms in water. (c) Local 

hydrogen bond networks for V2CO2-H2O systems, including 1000 H2O, 2000 H2O, and 3000 H2O. 

(d) The typical coordination environment for a hydronium ion in water. (e) O0 and Ox identity 



change among OA, OB, OC, and OD. 

 

During the saturation stage, the vanadium oxide amount of the 2000 H2O system exceeded that 

of the 1000 H2O system at about 400 ps, which is attributed to the binding effect between protons 

and water molecules. It can be seen that the formation of vanadium oxides relies on the oxygen 

atoms from water molecule cleavage, leading to two free protons that exist as hydronium ions in 

water. Figure 4 (d) shows the typical coordination environment for hydronium ions in water. We 

define the O atom in the hydronium ion as O0 and its nearest O atom as Ox. The change of O0 and 

Ox identity represents the motion of the proton in water. The change of O0 and Ox identity is shown 

in Figure 4 (e). The proton motion process can be divided into two states: the Eigen state and the 

Zundel state. [27, 39] For the Zundel state, the proton is shared by OA and OB. That is, O0 and Ox 

identities only switch between OA and OB. During the Eigen state, the proton is captured by OA 

and Ox switches among three adjacent oxygen atoms, OB, OC, and OD. The motion of protons in 

V2CO2-H2O systems follows the Eigen-Zundel-Eigen mechanism as in bulk water. The four water 

molecules used for proton transport could not participate in the oxidation reaction. The formation 

of a vanadium oxide results in two free protons that restrict the movement of eight water molecules. 

The 1000 H2O system gradually reached the saturation state (nearly 100 vanadium oxides at 400 

ps) with the increase of the restricted water molecules (theoretically restricted 800 water molecules 

at 400 ps), which slowed the oxidation reaction rate. Therefore, it is normal that the vanadium 

oxides amount of the 2000 H2O system exceed that of the 1000 H2O system at about 400 ps. 

The vanadium oxide protection mechanism. Based on the above analysis, the 2000 H2O and 



3000 H2O systems should have enough water molecules to continue the oxidation reaction. That 

is not the case. The vanadium oxide formation rate decreased significantly with the increase of 

simulation time for all V2CO2-H2O systems, behind which there must be a deeper reason. We have 

extracted the local model from the super large 3000 H2O system and considered the distribution 

position of vanadium oxides. As shown in Figure 5 (a), it can be seen that the distribution of 

vanadium oxides is very scattered, and the adjacent V atoms do not become vanadium oxides at 

the same time. Besides, as shown in Figure 5 (b), the outermost O atom of vanadium oxides can 

form hydrogen bonds with two water molecules. And there is a vacuum area underneath the two 

water molecules. Therefore, we assume that the presence of the vanadium oxides could create 

protective layers with the surrounding water molecules, thus protecting the nearest vanadium 

atoms from the attack of other water molecules, namely the vanadium oxide protection mechanism. 

The six closest V atoms around each vanadium oxide are defined as the protected V atoms. The 

average minimum distance between V atoms and O atoms in water and the probability of H2O 

physical adsorption (the V-O distance is less than 3.60 Å) on V atoms for the protected and the 

stable V atoms are shown in Figures 5 (c) and (d). The (V-O) average distance of the protected 

vanadium atoms is larger than that of the stable vanadium atoms, and the probability of H2O 

physical adsorption of the protected vanadium atoms is less than that of the stable vanadium atoms, 

which together support the hypothesis of the vanadium oxide protection mechanism. As shown in 

Figure S7, the (V-O) average distance and the probability of H2O physical adsorption also offer the 

same pattern for the 1000 H2O system and the 2000 H2O system.  



 

Figure 5. (a) The distribution position of vanadium oxides (blue atoms). (b) The vanadium oxides 

with water molecules. (c) The average minimum bond lengths between vanadium and oxygen 

atoms in water, and (d) the probability of H2O physical adsorption for the protected and stable 

vanadium atoms.  

 

Discussion 

Taking V2CO2 as an example, the detailed oxidation process of MXenes has been presented in 

aqueous systems. When MXenes encounter the aqueous solutions, the oxidation reaction will 

spontaneously take place with the aid of water, which reduces the energy of the whole system and 



produces stable transition metal oxides. During the speediness stage, the oxidation rate decreases 

significantly with the increase of water layer thickness owing to the restricted motion of water 

molecules by hydrogen bond networks in the vertical direction. And then, as the oxidation process 

develops, the movement of the free protons from water cleavage restricts more and more water 

molecules not to participate in the oxidation reaction. Therefore, the system, including fewer water 

molecules, saturates first. Besides, during the oxidation process, the oxides could form protective 

layers with the adjacent water molecules, thus preventing other water from attacking the adjacent 

transition metal atoms, further inhibiting the oxidation rate. MXenes will be converted entirely to 

the relative transition metal oxides in a short time if the initial oxidation rate is maintained. The 

proposed proton motion and oxide protection mechanism explains why MXenes could be 

preserved in water for a relatively long time. [17] Besides, to some extent, the discovery of the 

oxide protection mechanism also explains the decay of the oxidation rate of MXenes with time in 

humid environments. [21, 40, 41]  

Though we have studied the long-term oxidation behaviors of the super large MXenes aqueous 

systems based on NNP, many factors still affect the oxidation process of MXenes to be explored. 

Recently, inorganic salts can improve the stability of MXenes in aqueous solutions. [42] And the 

natural MXenes systems often contain vacancies and mixed functional groups such as -F, -OH, 

and -O. [16] Besides, oxygen also plays a vital role in the oxidation process. [19] In the past, it has 

been challenging to account for these complex factors in computational simulations fully. 

Nowadays, the perfect NNP containing more complete data could get more rules of the oxidation 

behaviors, which opens a promising way to investigate MXenes degradation. 



In this work, we develop the NNP of V2CO2-H2O systems in this work using deep neural 

networks and the iterative concurrent active learning scheme. The oxidation behaviors of the super 

large MXenes aqueous system are investigated systematically. A detailed and clear picture of the 

oxidation process between water and MXenes has been shown for the first time. We demonstrate 

that the degradation of MXenes in aqueous systems, a spontaneous energy minimization process, 

is indeed caused by water. For the first time at the atomic level, the proton motion and vanadium 

oxide protection mechanism explain that the oxidation of MXenes in aqueous solutions is a self-

decay process and why MXenes could exist for a relatively long time in aqueous solutions instead 

of rapid hydrolysis. And the oxidation protection layer, like that of 3D structures, has been seen 

for the first time from molecular simulations, which may be of guiding significance for studying 

the MXenes degradation mechanism. With the aid of machine learning, the revelation of the 

MXenes degradation behaviors promotes the development of synthesis strategies for high chemical 

stable MXenes, thus driving the booming development of MXenes in all fields.  

 

DFT setup 

DFT calculations were performed using the projector augmented wave (PAW) [43] method 

applied in the Vienna Ab Initio Simulation Package (VASP). [44] The exchange-correlation effect 

was expressed through the generalized gradient approximation (GGA) of the Perdew–Burke–

Emzerhof (PBE) method. [45] Grimme's D3 method was employed to make vdW corrections for 

V2CO2-H2O systems. [46, 47] The cut-off energy was set to 450 eV for the plane-wave basis set. 

The energy convergence criterion was 10-6 eV. The k-points grid of 2 × 2 × 2 and 2 × 2 × 1 with a 



Monkhorst-Pack scheme was adopted for V24C12O24-10/20H2O (90 and 120 atoms) and V24C12O24-

30/40H2O (150 and 180 atoms). 

 

DeePMD-kit setup 

The NNPs were trained and connected with LAMMPS [48] by the DeePMD-kit. [36] The size 

of the embedding net was (25, 50, 100), and the size of the fitting net was (240, 240, 240). The 

cut-off radius was 6 Å. The smoothing parameter rcut_smth was set to 0.5 Å. The prefactors of the 

energy, the force, and the virial terms in the loss functions changed from 0.02 to 2, from 1000 to 

1, and from 0.01 to 0.1 during the optimization process. The starting learning rate was 0.001 and 

exponentially decayed to 10-8 at the end of the training.  
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