t.)

Check for
Updates

RAIZN: Redundant Array of Independent Zoned Namespaces

Thomas Kim
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Huaicheng Li
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Gregory R. Ganger
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

ABSTRACT

Zoned Namespace (ZNS) SSDs are the latest evolution of host-
managed flash storage, enabling improved performance at a lower
cost-per-byte than traditional block interface (conventional) SSDs.
To date, there is no support for arranging these new devices in
arrays that offer increased throughput and reliability (RAID). We
identify key challenges in designing redundant ZNS SSD arrays,
such as managing metadata updates and persisting partial stripe
writes in the absence of overwrite support from the device.

We present RAIZN, a logical volume manager that exposes a
ZNS interface and stripes data and parity across ZNS SSDs. RAIZN
provides more stable throughput and lower tail latencies than an
mdraid array of conventional SSDs based on the same hardware
platform. RAIZN achieves superior performance because device-
level garbage collection slows down conventional SSDs. We confirm
that the benefits of RAIZN translate to higher layers by adapting the
F2FS file system, RocksDB key-value store, and MySQL database
to work with ZNS and leverage its benefits by closely controlling
garbage collection. Compared to arrays of conventional SSDs expe-
riencing on-device garbage collection, RAIZN leverages the ZNS
interface to maintain consistent performance with up to 14x higher
throughput and lower tail latency.

CCS CONCEPTS

« Computer systems organization — Reliability; Availability.

KEYWORDS
Zoned namespaces, storage, RAID, reliability

ACM Reference Format:

Thomas Kim, Jekyeom Jeon, Nikhil Arora, Huaicheng Li, Michael Kaminsky,
David G. Andersen, Gregory R. Ganger, George Amvrosiadis, Matias Bjor-
ling. 2023. RAIZN: Redundant Array of Independent Zoned Namespaces. In

*Also with Enriched Ag.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3575746

Jekyeom Jeon
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Michael Kaminsky*
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

George Amvrosiadis
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

660

Nikhil Arora

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

David G. Andersen®
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Matias Bjerling
Western Digital Corporation
Copenhagen, Denmark

Proceedings of the 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 2 (ASPLOS
’23), March 25-29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3575693.3575746

1 INTRODUCTION

The NVMe Zoned Namespace (ZNS) standard [2, 6] is a new al-
ternative to the block interface that has been the de-facto storage
device interface for decades. ZNS shifts responsibilities such as
flash page-level logical block address (LBA) mapping and garbage
collection from the SSD’s flash translation layer (FTL) to the host,
providing an interface that is better matched to the characteris-
tics of the underlying flash media. ZNS allows host and device to
collaborate on data placement, so applications can improve perfor-
mance through tighter control of device-level garbage collection
while avoiding the performance fluctuations triggered by on-device
garbage collection-related performance fluctuations experienced
by conventional FTL-based SSDs [33].

The benefits of ZNS are not free, as the ZNS interface enforces
stricter write semantics. ZNS devices divide their address space
into large contiguous zones, each of which must be written sequen-
tially and reset as a single unit [10]. Prior work compares ZNS to
conventional SSDs, showing that in single-device applications [6],
applications specialized to run on ZNS SSDs can achieve a 90%
reduction in 99.99th—percentﬂe tail latency and 2Xx higher write
throughput compared to the equivalent workload on conventional
SSDs. ZNS SSDs also require less on-device DRAM and overprovi-
sioned flash blocks than conventional SSDs. In datacenters, devices
are deployed in arrays, thus calling for software support for data
striping and redundancy over ZNS device arrays. A standard so-
lution for managing disk arrays is RAID [28], which aggregates
devices to deliver higher performance and reliability.

We present RAIZN (Redundant Array of Independent Zoned
Namespaces), which adapts RAID-like mechanisms for use with
ZNS SSDs. We implement RAIZN as a Linux device mapper (dm [1])
logical volume that configures ZNS devices in an array and exposes
a single ZNS device to the host, transparently providing redundancy
and striping. RAID functionality has been extended to emerging
storage technologies such as KVSSDs [29], but this is the first work
targeting ZNS SSDs. RAIZN behaves like software RAID—the logi-
cal volume accepts IO from the host application, arranges data into

https://doi.org/10.1145/3575693.3575746
https://doi.org/10.1145/3575693.3575746
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575746&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

parity coded stripes, and distributes it across the underlying de-
vices. RAIZN’s novelty stems from exposing a logical ZNS volume
operating atop physical ZNS devices that do not support overwrites.

There are two key challenges in designing RAIZN: the immutabil-
ity of data written to zones, and the lack of atomicity when writing
to multiple physical devices. The former is a problem introduced
by the zoned interface on the SSDs, while the latter is a problem
that exists in any system that persists data on an array of devices.
Immutability poses a challenge in handling small writes, as parity
cannot be updated after it is written. The lack of atomicity results
in subtle problems when combined with the zoned interface. A
side effect of append-only zones is that data is guaranteed to be
persisted in sequential order; data at a particular LBA cannot be
reported as persisted until data at the preceding LBAs is persisted.
Conforming to this guarantee in RAIZN without hurting perfor-
mance is complicated by the immutability of data once it has been
written to the underlying devices. For example, if a stripe of data
is only persisted to a subset of the devices before the system loses
power, RAIZN cannot naively allow reading of the data, nor can
it overwrite the data that has already been written. This paper
describes how RAIZN solves these challenges and achieves high
performance while tolerating power and device failures.

We compare the performance of RAIZN on ZNS devices to that of
conventional software RAID (mdraid [4]) on near-identical conven-
tional SSDs. RAIZN provides RAID-like reliability on ZNS devices
while achieving maximum read and write throughput within 2%
of the aggregate raw device throughput. RAIZN achieves similar
throughput, median, tail latency, degraded throughput, degraded
latency, and device rebuild throughput to mdraid when the con-
ventional devices are not suffering from garbage collection. In ad-
dition, RAIZN leverages the ZNS interface to minimize time spent
rebuilding a failed and replaced device, achieving shorter time to
repair compared to mdraid when the array is not 100% filled. In
our evaluation, we found that on-device garbage collection can
reduce throughput by up to 93% and increase tail latency by 14X in
mdraid, while RAIZN is not affected due to the absence of on-device
garbage collection (Section 6.1). The evaluation demonstrates that
RAIZN provides comparable performance to mdraid on synthetic
microbenchmarks and for applications like RocksDB and MySQL.

RAIZN is open-sourced and can be accessed at https://github.c
om/ZonedStorage/RAIZN-release.

2 BACKGROUND

This section describes the ZNS interface and ZNS SSDs, highlighting
features that create challenges or opportunities for RAIZN’s design.

2.1 The ZNS Interface

The traditional block interface allows for atomic reads, writes, and
overwrites of regions in a storage device’s address space. There are
several differences between this block interface and ZNS:

Sequential write-only zones. Under ZNS, blocks in the device’s
address space space are grouped into zones that must be written
sequentially, and sectors cannot be overwritten unless the entire
zone is erased by a zone reset operation. The address space of zoned
devices is exposed using these zones, and applications are expected
to structure their IO in a way that conforms with the sequential

661

T. Kim, J. Jeon, N. Arora, H. Li, M. Kaminsky, D. G. Andersen, G. Ganger, G. Amvrosiadis, M. Bjerling

write constraint. Each zone maintains a write pointer which can be
queried by an application to identify the next writable block address
in that zone. Multiple writes can be submitted concurrently to the
same zone provided the host submits them in sequential order.

Zone append. In addition to typical write commands, the ZNS
standard defines the zone append command, where the host specifies
the zone to write data to, and upon IO completion receives the block
address at which the data was written. Zone append allows the host
to submit multiple writes to a single zone without constraints on
the write order, but they are not guaranteed to be laid out in the
address space in the order they were submitted.

ZNS state machine. Each zone has an associated status describing
the current state of the zone [2]. We briefly outline the states that
are important to our system. A zone starts in the empty state, and
returns to it after a reset. When a zone is written to, it transitions
into the open state. Each device has a model-specific limit on the
number of simultaneous open zones, which for our devices is 14. An
open zone becomes full when the last writable block in that zone is
written. Finally, read-only and offline are failure states, transitioned
to when enough erase blocks fail that a zone cannot be fully used
anymore. Typically, zones will only fail after the device has reached
the end of its life, as the firmware handles media wear-leveling.

Many applications that rely on the regular block interface and ran-
dom writes cannot run atop ZNS devices without modification.
Existing solutions to allow compatibility with the ZNS interface in-
clude host-side FTLs or file system support; F2FS [18] and btrfs [32]
currently support zoned devices. However, end-to-end integration
into applications is shown to provide the best performance [6].

2.2 RAID

RAID refers to a family of redundant data distribution techniques
that enhance performance and reliability by leveraging multiple
independent physical storage devices [28]. Modern RAID is often
implemented as a logical volume that can be treated as a normal
block device (e.g., mdraid [4]), or is sometimes integrated into the
filesystem [31]. RAIZN implements distributed parity, akin to RAID-
5, to tolerate failures in an array of ZNS devices. Several aspects of
RAID are incompatible with ZNS devices, which we elaborate on in
Section 3, including the simple stripe to device address translation.

mdraid supports write journaling to close the RAID-5 write
hole and provide atomicity and durability for writes [8]-the write
journal is fully compatible with RAIZN, and as such we consider it
orthogonal to our contribution. As we discuss in Section 5.1, RAIZN
must implement atomicity of coupled data and parity updates to
conform to the ZNS specification, a consequence of which is the
elimination of the write hole problem. As we describe in Section 5.2,
RAIZN provides atomicity for writes within a single stripe, but
using a dedicated journal volume with RAIZN would protect from
torn writes spanning multiple stripes.

3 CHALLENGES OF ZONED DEVICE ARRAYS

In this section, we describe how the zoned interface is problematic
for a conventional RAID-like setup. RAID organizes data into stripes
consisting of stripe units and parity distributed across all devices,

https://github.com/ZonedStorage/RAIZN-release
https://github.com/ZonedStorage/RAIZN-release

RAIZN: Redundant Array of Independent Zoned Namespaces

Stripe
hole

S

Stripe]

RAIZN cannot overwrite the the partially written stripe

©
-

©
o

—

Metadata

RAIZN relocates the new stripe
unit to a metadata zone

Figure 1: Only a subset of the stripe units are persisted before
power is lost, resulting in a hole in the logical address space.
The next stripe cannot be written at the correct address due
to the persisted stripe unit.

with stripe units mapped arithmetically to specific addresses on
particular devices based on array initialization parameters.

Metadata management. Unlike conventional RAID where essen-
tial metadata consists of a superblock that is only written once,
RAIZN requires additional metadata to handle cases where the lack
of overwrite semantics necessitates indirection or logging, such as
partial stripe writes or partial zone resets. Metadata cannot be over-
written and must be log structured when stored in a ZNS device,
adding further complexity and necessitating garbage collection.

Parity updates. Writes that are not aligned to a stripe boundary,
especially those that are smaller than a stripe, reduce performance
in conventional RAID due to parity updates [16], but with ZNS
devices this becomes a correctness issue. In ZNS devices, LBAs
that are written cannot be changed until the entire zone is reset,
meaning that it is impossible to update parity after a non-aligned
write. However, partially calculated parity must be written before
notifying the host of IO completion, otherwise data loss can occur.

Stripe write atomicity. Figure 1 illustrates a pessimistic scenario
when working with ZNS devices. Specifically, a subset of stripe
units in a stripe are persisted before power loss, but this subset is
insufficient to recover the stripe after reboot. Conventional RAID
allows the user to overwrite this stripe without issue, but ZNS
stripe units that have been persisted cannot be overwritten without
resetting the entire zone. As a result, the traditional arithmetic
mapping of RAID addresses to device addresses cannot support
ZNS, and an additional layer of indirection is required. This layer
of indirection poses a challenge in designing RAIZN to handle such
edge cases without harming performance.

The problem extends to torn writes on a single physical device,
where only part of a stripe unit is written before power is lost.
Torn writes can be handled similar to partial stripe writes but many
devices, including those in our evaluation, support atomic writes,
so torn writes are handled by the device when writes are smaller
than the device-defined atomic granularity and alignment.

Zone reset atomicity. It is necessary to take care when resetting
a RAIZN zone, as it spans multiple physical zones. Such a request

662

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

would be translated into a reset for all physical zones involved, but
those operations are not atomic, meaning the system could lose
power after resetting only a subset of the zones. In most cases, it
is possible to detect that this scenario occurred by examining the
write pointer of each physical zone, detailed in Section 5.2.

Write persistence. Forced unit access (FUA [3]) writes bypass
write caches and instruct the device to write the data immediately,
before the write is acknowledged to the application. FUA writes are
used in cases where data persistence is important (e.g., database
journaling), and pose a challenge as simply propagating the FUA
flag to the IO sent to the underlying device is insufficient due to the
stripe write atomicity problem described above. If a FUA write at a
given LBA is persisted, but the data at previous LBAs in the same
(logical) zone are not persisted, sections of the logical address space
of a zone are rendered unreadable, violating the ZNS specification.
As such, FUA writes must be handled with extra care to ensure the
data can be read after power or device failure. We describe how
RAIZN handles flushed writes in Section 5.3.

4 ARCHITECTURE OF RAIZN

RAIZN appears as a single, virtual, host managed zoned device;
that it is a device array is transparent to applications, and any ZNS-
compatible application performing IO through the kernel block
layer can run, unmodified, on a RAIZN volume. We leverage the
device mapper (dm) framework to set up the logical block device
and handle routing of logical requests to the RAIZN driver.

A core design question for RAIZN is address space management:
how the physical addresses on the physical devices are organized
into logical block addresses that are exposed to the host. We define
two address spaces, the logical address space corresponding to the
RAIZN logical device, and a physical address space for each of the
underlying devices. We refer to the block addresses in the logical
device’s address space as logical block addresses (LBAs) and block
addresses on the physical device as physical block addresses (PBAs).
Host applications (e.g., filesystem) submit IOs to RAIZN, which
translates the requested LBA into a set of PBAs before submission
to the physical devices.

This section describes the basic details of how RAIZN organizes
data and metadata, and provides an overview of the types of meta-
data used in RAIZN. In Section 5 we go into detail about how
different metadata are used, persisted, and kept crash consistent.

4.1 Data Placement and Processing

RAIZN uses a data placement scheme similar to that of conventional
RAID-5, but extended to support ZNS-specific edge cases. Each
LBA is statically mapped to a particular device and PBA using
a simple arithmetic translation, and user data is organized into
stripes, which are divided into stripe units (referred to as “chunks”
in mdraid), parity coded, then distributed across the devices in the
array. For example, data written to LBA 0x00 is striped and each
stripe unit is written to PBA 0x@0 on the corresponding physical
device. This allows RAIZN to translate reads without additional
memory lookups, minimizing impact on IO latency.

Each logical 10 request received by RAIZN is processed by com-
puting parity, caching partial stripe data, and dividing the data
into smaller IOs to be submitted to the physical devices. We term

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Data zones Metadata zones
Zone 0 Zone 1 Zone N-k
DeviceZ%’ ’ ‘ ‘ ‘ o |:| oo
Device 1 ’ ‘ ‘ ‘ ces |:| oo
Device (% ‘ ‘ o |:| oo
T

Stripe Unit Stripe Logical Zone

Figure 2: RAIZN data layout for three devices. Data is striped
into two data stripe units with one parity stripe unit; the
device holding the parity is rotated every stripe. Logical zones
consist of one physical zone per array device.

these additional generated physical IOs sub-IOs, which include data,
parity, and metadata.

Figure 2 illustrates how the address space of the physical devices
is organized in RAIZN. Physical zones are grouped into data and
metadata zones; the number of metadata zones is configurable, with
a minimum of 3 per device (Section 4.3). Data zones are organized
into logical zones, each of which corresponds to one physical zone
per device. RAIZN presents each logical zone to the host application
as a sequential-write only zone. For example, if RAIZN is configured
to have D data stripe units and P parity stripe units per stripe (for
a total of D + P devices), each logical zone appears to the user as a
single ZNS zone with the same capacity as D physical zones. For
simplicity, we map physical zone N of each device into logical zone
N, and assume all devices have the same zone size and capacity.

This simple LBA to PBA mapping in RAIZN allows logical zones
to behave similarly to physical ZNS zones; if multiple objects with
similar lifespan are written to the same logical zone in RAIZN, no
additional internal garbage collection or indirection is occurs on
those objects, and data is laid out on the physical media in a manner
similar to if it were written directly to a physical ZNS device.

4.2 Fault Tolerance

Fault tolerance in RAIZN operates with minor deviations from
the behavior of conventional RAID. Degraded reads and writes are
handled in the same way as conventional RAID; missing stripe units
are reconstructed from parity for reads, and omitted on writes.

However, RAIZN rebuilds devices differently from conventional
RAID; when a failed device is replaced, RAIZN rebuilds the new
device zone by zone. RAIZN prioritizes rebuilding active (open or
closed) zones first, before continuing to rebuild finished zones. Dur-
ing rebuild, writes to non-rebuilt open zones are served in degraded
mode. Prioritizing active zones minimizes the read overhead of
rebuilding, minimizing the delay before all further writes can be
served in a non-degraded manner.

One advantage the ZNS interface confers to RAIZN is the abil-
ity to easily determine which block addresses contain valid data.
RAIZN rebuilds only the subset of LBA ranges that contain user-
written data—this results in performance advantages described in
Section 6.2. While the non-ZNS NVMe devices are technically capa-
ble of determining which LBA ranges are unwritten or deallocated,

663

T. Kim, J. Jeon, N. Arora, H. Li, M. Kaminsky, D. G. Andersen, G. Ganger, G. Amvrosiadis, M. Bjerling

0 4 8
MD
type

16 24 31

Generation

Magic
counter

Start LBA End LBA

Inline metadata (up to 4064 bytes)

Figure 3: RAIZN metadata header layout when using 4 KiB
sectors. Offsets are shown in bytes.

gathering this information is impractical as it would require check-
ing for errors on every block address on the device.

4.3 Metadata Management

In this subsection, we detail how metadata is stored in memory and
on-disk in RAIZN, along with an overview of all types of metadata
in RAIZN. Later sections will elaborate on each of these metadata.

Unlike RAID, RAIZN cannot store and update metadata in a
fixed location, because ZNS disallows overwrites. Furthermore,
reserving an entire zone, which for our SSDs is 1077 MiB, for a
1 MiB metadata structure is wasteful. RAIZN has several types of
metadata, a subset of which are persisted as log-structured updates;
persisting metadata updates in log format allows RAIZN to conform
with the sequential write constraint, and by storing multiple types of
metadata updates within a single metadata zone RAIZN minimizes
the number of reserved metadata zones. RAIZN reserves one zone
for partial parity (Section 5.1), one zone for all other metadata, and at
least one zone (termed the swap zone) to facilitate garbage collection
of metadata zones. This subsection describes, how metadata is used,
organized, persisted, and kept consistent after power loss.

The total size of metadata in RAIZN is relatively small (<100 MiB),
allowing RAIZN to cache it in memory. A subset of metadata must
be persisted on all devices in the array, including RAID parameters,
device ID assignments, generation hashes, and zone reset write-
ahead logs. The remaining metadata, including parity log entries,
remapped stripe units, and relocation map entries, is written only to
its corresponding device. If a device fails, non-replicated metadata
on that device is no longer of any use and its loss is inconsequential.
The persistent location, storage overhead, and memory footprint
of each type of metadata are described in Table 1.

All metadata in RAIZN is cached in memory, and the persistent
copy is read when the volume is remounted. In our experiments,
valid persistent metadata is typically 192 KiB-4096 KiB, primarily
consisting of cached partial parity. Metadata is written using zone
appends, ensuring high throughput even in the presence of many
concurrent metadata log writes.

A single metadata zone could hold log structured updates for
every type of metadata, but most metadata in RAIZN is updated
infrequently; the exception is parity logs (Section 5.1), which are
generated on every non stripe-aligned write and invalidated when
the full stripe is written. This can be quite frequent for many work-
loads, so RAIZN writes parity logs to a separate metadata zone,
isolating the rest of the system from the effects of parity logging.

Metadata headers. Every persisted metadata log in RAIZN con-
tains a metadata header consisting of (1) the metadata type, (2)
the LBA range described by this metadata, and (3) the generation
counter of the logical zone containing the aforementioned LBA.

RAIZN: Redundant Array of Independent Zoned Namespaces

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Table 1: Location and size of RAIZN metadata for a 5-device array with 64 KiB stripe units and 1077 MiB physical zone capacity

Metadata type Persistent location

Storage per update

Memory footprint

Remapped stripe unit Affected device only

4KiB (header) + 64 KiB (stripe unit)

4KiB + 64 KiB (stripe unit)

Zone reset log All devices

4KiB -

Generation counters All devices

4KiB 8.05 bytes per logical zone

Partial parity device with parity | 4KiB (header) + <64 KiB (stripe unit) -
Superblock All devices 4KiB 4KiB
Stripe buffers - - 320 KiB (5 stripe units) X 8

per open logical zone

Persistence bitmaps -

- 2 KiB per logical zone

Physical zone descriptors -

- 64 bytes per zone per device

Logical zone descriptors -

The precise layout is shown in Figure 3: the first 4 bytes hold a
fixed “magic” value to identify the beginning of a metadata entry,
followed by 4 bytes describing the type of metadata associated with
this header (Table 1). This is followed by 16 bytes to store the start
and end LBA, and finally 8 bytes containing the generation count of
the logical zone containing the LBA. The remaining 4064 bytes of
the metadata header is used for inline metadata to minimize storage
overhead. The superblock, zone reset logs, and generation counters
are persisted in the inline metadata section of the metadata header.

Generation counters. Generation counters are RAIZN’s way of
uniquely identifying the contents of a given LBA over the lifetime
of the volume—every time a (logical) zone is reset, its generation
counter is incremented by one, and every time the RAIZN volume
is mounted, the generation counter for every empty zone is incre-
mented. This monotonically increasing counter, when paired with
an LBA, is used to track validity of metadata logs. This property
is key to RAIZN’s metadata management: If a metadata header
includes an outdated generation counter, the metadata associated
with that header is invalid due to the logical zone being reset.

We implement generation counters as one 64-bit counter per
logical zone, essentially eliminating overflows. In the event any
counter does reach its maximum value, the RAIZN volume goes
into read-only mode and requires the user to run maintenance on
the volume. During maintenance, RAIZN garbage collects and re-
sets all of the metadata zones, then resets all generation counters
to zero. To ensure the atomicity of maintenance operations, RAIZN
uses write-ahead logging for each operation and resumes any inter-
rupted operations after reboot. The atomicity of this maintenance
operation, coupled with the guarantee that all stale metadata entries
will be deleted before the system completes maintenance, allows
generation counters to be reset without impacting data consistency.

Generation counters are laid out in memory in the same format
in which they are persisted-32 bytes of metadata header followed
by 508 8-byte generation counters. When a generation counter is
updated, the entire 4 KiB is persisted.

If a logical zone is reset, but the system loses power before the
generation counters can be persisted, RAIZN maintains consistency
by handling the following two cases. If only a subset of the physical
zones have been reset, this is handled as a partial zone reset as
described in Section 5.2. If all physical zones were reset, the logical

664

- 64 bytes per logical zone

zone would be detected as being empty and as a result the genera-
tion counter would be incremented on initialization, invalidating
any existing metadata entries for the logical zone.

Zone descriptors. RAIZN stores the write pointer and zone status
for each physical and logical zone in memory. Before determining
logical zone status, RAIZN computes the write pointer for each
logical zone, by extension detecting any consistency errors from
power loss. On mount, RAIZN checks the write pointer for each
physical zone in the array. The highest physical zone write pointer
per logical zone determines the logical zone write pointer, and
RAIZN checks whether the stripe ending at the logical zone write
pointer is readable. If any physical zones are missing stripe units
in this stripe, a “stripe hole” is detected (illustrated in Figure 1). If
a zone reset was logged, RAIZN resets all of the physical zones
in the logical zone before resetting the logical zone write pointer.
In all other cases, the stripe hole indicates a partial stripe write,
which RAIZN first attempts to correct by rebuilding the missing
stripe units using parity. If this is impossible, the zone is marked as
“remapped”, the logical zone write pointer is changed to hide the
corrupted stripe unit(s) from the user, and future conflicting stripe
unit writes are redirected to the metadata zone.

Note that FUA or flushed writes (Section 5.3) cannot run into
this scenario where data is rendered unreadable, as the user is not
notified of IO completion until all LBAs in the logical zone, up to
and including the data associated with the FUA or flushed write, is
persisted, precluding any possibility of a stripe hole.

Metadata garbage collection. RAIZN must periodically garbage
collect metadata to free up space in the metadata zones. The RAIZN
garbage collector uses swap zones to facilitate garbage collection
without interrupting operation, as illustrated in Figure 4. RAIZN
first designates a swap zone to replace the full metadata zone, im-
mediately writing any new log entries there. The garbage collector
checkpoints any valid in-memory metadata to the swap zone, and
does not read any logs from SSD. The metadata type in the metadata
header for each of these checkpointed entries is flagged to distin-
guish them from normal metadata updates. Once the checkpoint is
complete, the old metadata zone is reset to serve as a swap zone.
Generation counters, the superblock, and relocated stripe units
are serialized as-is from memory to stable storage. Zone reset logs
and partial parity are calculated and written, the latter of which

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

: : C
o SopY | Garbage
© v collector
oS v Swap zone
SRS X
+ O &
% N | N | < Cached
| Header metadata
Superblock
53 : :
o C
oR

Figure 4: The garbage collector checkpoints metadata before
resetting the old metadata zone. Each metadata entry has
a header that includes (1) the type, (2) the applicable LBA
range, and (3) the generation count of the logical zone.

is calculated by XOR’ing the contents of the stripe buffer of each
open logical zone—this is elaborated on in Section 5.1.

If garbage collection is interrupted by power loss, logs from both
the old metadata zone and swap zone are ingested and processed—
logs may be duplicated but it is impossible for conflicting log entries
to exist due to the lack of stripe update semantics and the generation
count stored in the metadata headers. Each combination of LBA and
generation count is unique over the lifetime of the array, and logs
other than the one with the highest generation count are discarded,
eliminating ambiguity. The exception to this is partial parity, so
for simplicity if there is a checkpointed partial parity that overlaps
with a normal partial parity, we discard the checkpointed entry.

Multithreaded write processing. RAIZN uses multiple worker
threads to achieve high throughput when serving small writes, with
the primary challenge being that zone writes must be submitted
sequentially to the kernel block layer. To achieve this, RAIZN tracks
the write pointer for each zone on each device in the corresponding
physical zone descriptor, waiting to submit sub-IOs until the write
pointer matches the PBA of the sub-IO.

RAIZN updates the logical zone write pointer based on the logical
IO address, pushes each logical IO onto a single shared queue, then
schedules a worker thread to serve IO from the head of the queue.
Read and metadata sub-IOs are submitted immediately, but writes
and flushes must be submitted in the correct order. For writes, the
worker thread waits until the physical zone write pointer matches
the sub-IO address, locks the physical zone descriptor, submits the
sub-IO, then updates the physical zone descriptor before unlocking
it. Flush sub-IOs are submitted last.

Zone resets are ordered with respect to writes by tracking the
last written LBA at the time the reset request is received - this LBA
is termed the reset pointer. Zone reset sub-IOs are submitted to each
array device when the corresponding physical zone write pointer
matches the reset pointer - this is immediate in practice, as typical
workloads do not reset a zone before all in-flight writes complete.

5 SOLVING ZNS CHALLENGES

In this section, we describe the solutions to the problems presented
in Section 3, and present a brief explanation of how each of our
solutions achieves crash consistency and fault tolerance.

665

T. Kim, J. Jeon, N. Arora, H. Li, M. Kaminsky, D. G. Andersen, G. Ganger, G. Amvrosiadis, M. Bjerling

Device 0 Device 1 Device N

Metadata

Data

No-overwrite constraint disallows parity
updates on partial stripe writes

Metadata

Data

| —
Log partial parity toa
dedicated metadata zone

Figure 5: RAIZN writes parity for partially filled stripes to a
dedicated metadata zone.

5.1 Parity Updates

Non stripe-aligned writes pose a problem when calculating and
writing parity, due to zones being append-only. RAIZN cannot
inform the user of write completion until enough data and parity
is written to recover following the failure of a device. All data
is immediately written to the corresponding device regardless of
stripe alignment, but the corresponding parity is unknown until
the entire stripe is written. One solution to this problem is to use a
separate randomly-writable storage device (e.g., persistent memory,
conventional namespace on a ZNS SSD) to buffer parity updates
or stripe writes (e.g., the mdraid journal). However, our design
prioritizes wide compatibility, avoiding the requirement for any
additional hardware or non-universal ZNS features.

RAIZN handles partially-written stripes by first caching the
written data in a stripe buffer, then persisting the partial parity to
the partial parity metadata zone. Figure 5 illustrates this mechanism.

The immutability of data in ZNS allows RAIZN to log only the
partial parity, rather than both the data and parity. RAIZN only
logs the subset of parity that is affected by the write in question,
minimizing write amplification; the only additional write amplifi-
cation (compared to conventional RAID) caused by partial parity
logging is the metadata header.

The stripe buffer in RAIZN is similar in function to the stripe
cache inmdraid, as it enables parity recalculation without incurring
disk reads. The key difference is that the ZNS interface prevents
written stripes from being updated, and the open zone limit sets
an upper bound on the number of “incomplete” stripes, and by
extension the number of stripe buffers. Once a stripe buffer is filled,
the full stripe parity is calculated, then the stripe buffer is reused
for the next partial stripe. A logical zone often has multiple active
stripe buffers, for example if a new stripe write is processed before
the previous stripe write is persisted to the physical devices. To
provide predictable memory use without sacrificing performance,

RAIZN: Redundant Array of Independent Zoned Namespaces

RAIZN pre-allocates a fixed number of stripe buffers per open zone
(8 in our experiments), and blocks write processing if all stripe
buffers are occupied-this does not occur in our experiments.

During initialization, if a device is missing, up to one stripe
buffer is reconstructed per open logical zone by combining all
logged partial parity. The data from the missing device can be
reconstructed by taking all of the partial parity for the stripe in order
(according to the LBA ranges included in the header), then XOR’ing
it with the data from the non-failed devices. When performing this
XOR, data from the non-failed devices up to the end LBA in the
metadata header is included, and data after this address is treated as
zeroes (recreating the conditions under which the partial parity was
originally calculated). Once the full LBA range from the beginning
of the stripe to the last written LBA is XOR’ed in this manner, the
missing data is fully reconstructed. If some portion of the data is
missing due to non-persisted partial parity, data at any LBAs at or
higher than this missing data is discarded.

5.2 Write and Reset Atomicity

Atomicity for stripe writes. The independence of the devices
in both RAID and RAIZN presents a challenge in atomically writ-
ing LBA ranges that span multiple physical devices. Two specific
problems arise due to the lack of atomicity when writing multiple
physical devices: first, the write hole problem[35], where the parity
and data can become de-synchronized, and second, torn writes.
These problems are optionally solved in mdraid if a journal volume
is used; Due to the requirements of the ZNS interface, RAIZN is
required to close the write hole, but does not suffer to the same
degree as mdraid with regards to torn writes.

RAIZN must solve the write hole problem due to a ZNS-specific
edge case with regards to write atomicity, partial stripe writes (Sec-
tion 3). Figure 1 illustrates how partial stripe writes break RAIZN’s
simple data placement scheme. A stripe is written to the RAID
device, but the system loses power before all of the stripe units are
persisted. There is insufficient data to repair the missing stripe unit,
so in this example RAIZN must behave as if the entire stripe was
not written. In a normal RAID, the presence of the single persisted
stripe unit is not a problem, as an additional write at the same
LBA can simply overwrite the corresponding PBAs; ZNS disallows
overwrites, so RAIZN must place the new data elsewhere.

RAIZN relocates the new stripe unit to a metadata zone on the
affected device (bottom of Figure 1), generating a relocated stripe
unit metadata entry. The modified LBA to PBA mapping for this
stripe unit is stored in a hashmap, which is checked on reads if the
logical zone being read is flagged as containing a relocated stripe
unit. Relocations are uncommon, so RAIZN caches relocated stripe
units in memory in addition to persisting them in a metadata zone.

It is possible for the metadata zone to run out of space due to
too many remapped stripe units, so if the number of remappings
passes a user-modifiable threshold, RAIZN rebuilds the affected
physical zones during initialization. All data is copied from the
affected physical zone into a swap zone, the zone is reset, and then
the data is copied back with the remapped stripe unit written to
the correct address. All operations are logged to ensure they can
be resumed in case of power loss.

666

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

A side effect of this stripe unit relocation mechanism and the
ZNS interface is the reduction of severity of torn writes. mdraid
suffers from a potential problem where experiencing failure while
overwriting an LBA range can result in part of the data correspond-
ing to the overwrite with the remainder unmodified-this is a torn
write, and is solved by the mdraid write journal. While this is still
a problem in RAIZN, it is less severe for the following reasons: first,
the immutability of written data in ZNS ensures any data returned
will represent the contents of a single write request, and second,
torn writes will always result in the lower order LBAs being read-
able with the higher order LBAs returning IO errors. While RAIZN
is not able to provide true torn write protection without using a
journal volume, this behavior makes it less likely for insidious data
corruption to affect applications running on top of RAIZN.

Solving partial zone resets with zone reset logs. Partial zone
resets occur when a subset of the physical zones in a logical zone are
not reset before power is lost. In many cases, this can be detected
and handled during initialization by detecting holes in the logical
address space. However, it is impossible to distinguish between a
partial stripe write and a partial zone reset if the first stripe unit
in a zone is present. To solve this ambiguity we use write-ahead
logging for zone resets, logging the intent to reset a zone to the
physical device holding the first stripe unit in the logical zone and
the physical device holding the parity for the first stripe in the
zone. This introduces additional latency to zone resets, but we do
not expect this to be a problem because typical workloads do not
immediately write to zones after resetting them.

In practice, zone resets are blocking operations, so I0s will typi-
cally not be submitted to a zone before the completion of the reset
command, but because it is technically possible to issue an asyn-
chronous zone reset through the kernel block layer, as a precaution
we block all IOs to a logical zone after receipt of a reset request and
unblock it after all of the physical zones are reset.

Zone reset logs are persisted to the general metadata zone on two
physical devices: the device holding the first stripe unit in the zone,
and the device holding the associated parity. To avoid non-uniform
write amplification, the device order is rotated for each zone, so
that the physical device holding the first stripe unit is different for
successive logical zones. During system initialization, if a logical
zone is not empty despite a valid zone reset log indicating that it
should be, it is reset. By persisting zone reset logs on two physical
devices, RAIZN is tolerant against a single device failure. RAIZN
does not reset zones until the zone reset logs are persisted, so if
zone reset logs fail to persist before power loss the zone is not reset
and contains all the original data.

5.3 Write Persistence

Persisting data written to RAIZN can be done in three different
ways: a flush, an IO with the preflush flag set, or a forced unit access
(FUA [3]) write. Flush requests are duplicated submitted to each of
the array devices (REQ_OP_FLUSH).

In contrast, FUA writes and preflushed IOs require special han-
dling; if the host is notified of FUA or preflushed IO completion,
the data persisted by that IO must be readable after power loss. In
conventional RAID, the RAID-5 write hole is the primary challenge

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Persistence
Bitmap

)X
HmmHMq-

See Lt

Device 0

Logical zone

FUA write —

Dependency

Must flush Device 0 before reporting
FUA write completion

Figure 6: A FUA write in RAIZN must check that all LBAs
preceding itself in the same logical zone are persisted be-
fore reporting completion. In this example, the FUA write
must explicitly flush device 0 before reporting I0 comple-
tion, because the persistence bitmap shows the stripe unit
on physical Device 0 is not persisted.

in providing this guarantee, for example if the data is updated but
the corresponding parity update is not persisted before power loss.
In RAIZN, there is an additional constraint introduced by the ZNS
interface: data at a given LBA should not be readable unless all
preceding LBAs in the same zone are also readable.

RAIZN solves this additional constraint by notifying the host
of FUA write completion only after all previous write requests
within the same logical zone have been persisted; note that in ZNS,
writes cannot span multiple zones. This dependency is illustrated in
Figure 6. This requires setting the REQ_PREFLUSH flag on the FUA
write, and submitting a flush sub-IO to each device that contains a
non-persisted stripe unit in the same logical zone. To track the per-
sistence of data in a logical zone, RAIZN maintains an in-memory
bitmap, called the persistence bitmap, to track which LBAs have
been persisted. The persistence bitmap has one bit per stripe unit,
and every time a flush, preflush, or FUA write completes, the per-
sistence bitmap is updated for each active logical zone, setting the
corresponding bits in the persistence bitmap up to the write pointer.
If a write starting in the middle of a stripe unit is persisted, it is
implied that the beginning of the stripe unit was persisted, as all
sectors in a stripe unit are written to the same physical device. This
allows RAIZN to track the persistence of writes smaller than a stripe
unit while only using 1bit per stripe unit. RAIZN leverages the
ZNS sequential write constraint by only checking the persistence
bitmap from the beginning of the stripe immediately preceding
the current write. If all the stripe units in the previous stripe are
persisted, it implies that all PBAs on all array devices up to and
including the stripe units in the previous stripe are also persisted.

RAIZN submits a flush sub-IO to every device containing non-
persisted stripe units within the logical zone, and after the comple-
tion of all flushes RAIZN notifies the host of write completion.

On remount, the persistence bitmap is reconstructed from the
write pointers of the physical zones in the array devices. A FUA
write that was reported as complete cannot be “lost” after power
failure; the data itself is persisted on the array, and all LBAs from
the beginning of the logical zone until the contents of the FUA
write must also have been persisted on the array before completion
is reported—-this precludes any possibility of a “stripe hole” from
the beginning of the zone until the end of the FUA-written data.

667

T. Kim, J. Jeon, N. Arora, H. Li, M. Kaminsky, D. G. Andersen, G. Ganger, G. Amvrosiadis, M. Bjerling

5.4 Discussion

In this section, we briefly discuss aspects of the ZNS interface,
NVMe, and RAID that are not addressed in RAIZN’s design.

Zone appends. The intended approach to achieving high through-
put on small writes is to use zone appends, as strict sequential
submission is not required for zone appends like it is for writes—
however, supporting concurrent zone appends to a single logical
zone in RAIZN is difficult due to the partial stripe write problem.
As of the time of writing, the precise characteristics of zone
append-based workloads is still unclear, as the command only re-
cently became available as a storage construct in the ZNS standard.
We look forward to seeing how future append-based workloads
behave and how RAIZN can be designed to serve those workloads.
Notably, btrfs [32] uses zone appends for the write path, so future
work will involve profiling different applications running on btrfs.

Logical block metadata. The NVMe standard supports attaching
metadata descriptors to each logical block; these descriptors are
typically used for protection information (PI [34]), but can also
store user-defined data. There are opportunities for optimizations
in RAIZN if the underlying SSDs are formatted with logical block
metadata enabled and made available to RAIZN.

First, metadata logs would shrink-RAIZN attaches a 4 KiB header
to each metadata log, but most of the 4KiB is used for inline meta-
data. The actual header information could be written into the meta-
data descriptor instead, reducing write amplification and increasing
the performance of small writes.

Second, zone appends could be supported without requiring
serialized completion. The problem with zone appends in RAIZN is
that on-device reordering of appends can result in stripe units being
written in an arbitrary order. In the event of power loss before the
zone append completion is reported to RAIZN, it is impossible to
determine which stripe unit corresponds to which stripe. However,
if each append is tagged with a stripe ID in the metadata descriptor,
RAIZN could locate stripe units after unexpected shutdown.

Zone Random Write Area (ZRWA). The ZNS standard defines
ZRWA, which is a window of randomly-writable blocks that moves
together with the write pointer of a zone. ZRWA allows blocks
to be overwritten within a sequential write required zone, albeit
only within that specific window. Depending on the availability
and performance characteristics of ZRWA, it could potentially be
used to allow some parity updates to take place in-place and avoid
the overhead of the parity logs.

Consequences of large zones. Currently, the capacity of each
logical zone in RAIZN scales with the width of the array, resulting in
large zones. Larger zones result in coarser erase granularity, which
in turn makes it more difficult for host applications to efficiently
garbage collect objects, potentially increasing write amplification.
Recent work in SmartFTL [13] has shown that for certain workloads,
such as cluster filesystems, it is advantageous to sacrifice per-object
I0 throughput in exchange for finer granularity media-level control
over data placement. While the problem of large zones exists for all
zoned devices, it is exacerbated in RAIZN, and part of our ongoing
work is to solve this problem. One potential solution to co-locate

RAIZN: Redundant Array of Independent Zoned Namespaces

multiple logical zones in the same set of physical zones, with a table
to map logical zones to physical zones.

Atomicity/Durability mechanisms. mdraid allows users to op-
tionally use a dedicated journal volume to close the RAID-5 write
hole [8] and provide atomicity for writes spanning multiple mdraid
chunks. The journal achieves this by first buffering stripes on a
dedicated journal device before flushing them to the array. As we
describe in Section 5.2, RAIZN closes the write hole and the ZNS in-
terface reduces the benefit of atomic writes across multiple chunks.

RAIZN closes the write hole through a combination of the parity
log, immutability of data, and immutability of final parity. The
parity log prevents the case where the parity (or partial parity) of
a stripe does not match its data-if a stripe is appended to, then
a new parity log is generated and written to describe the latest
contents of the stripe, and if a device containing a data stripe unit
fails, the parity log is used to reconstruct the contents of the stripe.
If the parity log is also lost (i.e., if a power failure and device failure
simultaneously occur before the parity log is persisted), RAIZN
behaves as if the data in that failed stripe unit never existed and
relocates the replacement stripe unit as described in Section 5.2. As
a result, writes within a single stripe are atomic, but cross-stripe
atomic writes require a journal or similar mechanism.

6 EVALUATION

We evaluate the performance of RAIZN using microbenchmarks
and application benchmarks, demonstrating that RAIZN is able to
achieve comparable performance to mdraid level 5.

All experiments were run on a Dell R7515 server with a 16-
core AMD EPYC 7131P CPU, 128 GiB of DRAM, and Ubuntu 20.04
running on a 512 GB conventional SSD. We modified the Linux
kernel 5.15 and mkfs.f2fs to remove hard-coded constraints that
prevent the creation of (logical) devices with zone sizes larger than
2 GB, but these changes do not affect performance.

For RAIZN experiments, we use 5 Western Digital Ultrastar DC
ZN540 2 TB ZNS SSDs, and for the experiments on mdraid we use 5
conventional SSDs with the same capacity and hardware platform.
Each ZNS SSD zone has a capacity of 1077 MiB. Both RAIZN and
mdraid are configured to run with 8 worker threads, the latter
configured with the maximum possible stripe cache size of 128 MiB.
In all experiments, mdraid was configured to run without a journal
volume, ensuring maximum performance.

6.1 Raw Device Microbenchmarks

We begin by evaluating the basic read and write performance of
the ZNS and conventional SSDs using fio 3.28 [5], with libaio [26].

First, we write 1TiB to the devices, followed by a sequential
read of the written data; this was repeated over a variety of block
sizes and queue depths to measure the maximum throughput of
the ZNS and conventional SSDs. We omit a detailed performance
analysis of the devices and point the reader to prior work for more
information [6]. The ZNS SSD’s throughput is 1052 MiB/s for writes
and 3265 MiB/s for reads, 2% and 4% lower respectively than the
conventional SSD. We attribute this gap to a difference in firmware
maturity between the two devices, and expect it to close over time.

668

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

16000
14000 A
12000 A
g 10000 - //, —— randread (16k stripe unit)
s // —-M- randread (64k stripe unit)
5 2000 - , seqread (16k stripe unit)
s / seqread (64k stripe unit)
) / —4— sequrite (16K stripe unit)
"_E' 6000 ! seqwrite (64k stripe unit)
4000 A
2000 A
0 T T

T T
256 1024

Block size (KiB)

Figure 7: mdraid random read throughput is higher with
64 KiB stripe units, but sequential read and write throughput
is lower compared to using 16 KiB stripe units.

16000

14000 1 2%

120001

g 10000 4 —#— randread (16k stripe unit)
s —-M- randread (64k stripe unit)
5 seqread (16k stripe unit
S 50001 q (P i)
< seqread (64k stripe unit)
g —4— seqwrite (16k stripe unit)
"_E 6000 -$- seqwrite (64k stripe unit)

4000 A

2000 1

T T
256 1024

Block size (KiB)

Figure 8: Other than 4KiB sequential reads, RAIZN performs
better with 64 KiB stripe units than 16 KiB stripe units. 4 KiB
sequential read performance is less important than larger
granularity sequential read performance.

We run several experiments to measure the performance of con-
ventional mdraid and RAIZN. We start by running write, sequential
read, and random read benchmarks, varying the stripe unit size
from 8 KiB to 128 KiB. The optimal stripe size is dependent on work-
load, so we present throughput graphs (Figures 7 and 8), selecting
a stripe size that performs reasonably well across benchmarks. For
brevity, we only include graphs of a representative subset of the
workload configurations we ran.

Observation 1: 64 KiB stripe units perform optimally for RAIZN,
and maximize random read performance in mdraid without signifi-
cantly hurting sequential read or write throughput.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

The points in Figures 7 and 8 are the median of three trials; error
bars denote the minimum and maximum, and each series represents
mdraid/RAIZN configured with a different stripe unit size.

The sequential read workload is driven by 8 jobs, each with
a queue depth of 64. Each job performs direct IO reads on the
mdraid/RAIZN volume starting at different offsets. The volume is
primed by writing 1024 GiB of data sequentially from the begin-
ning of the address space, after which the read and random read
benchmarks are run in succession.

The sequential write workload is also driven by 8 jobs each with
a queue depth of 64, with fio directly writing to the mdraid/RAIZN
volume starting at different offsets. The volume is unmounted, all
devices formatted, and the mdraid/RAIZN volume is re-initialized
before each trial of the write workload to avoid on-device garbage
collection affecting the results.

The random read workload is driven by 1 job with a queue depth
of 256, randomly reading addresses within the 1024 GiB of data that
was written to the volume during the priming phase. Random reads
perform best when the block size is smaller than the stripe unit
size, as the number of sub-IOs increases dramatically if many stripe
units are involved in the logical IO.

Figure 7 shows that while using 16 KiB stripe units results in
higher throughput for large block size reads, this is offset by the
large reduction in random read throughput compared to 64 KiB
stripe units. In Figure 8, RAIZN performs better with 64 KiB stripe
units than 16 KiB stripe units on all workloads other than 4KiB
sequential reads; however, it is unlikely that real applications will
perform such small block size sequential reads, so we focused on
the performance of the other workloads when determining the
optimal stripe unit size for RAIZN. Based on the results of these
three workload benchmarks, we determine that a stripe unit size of
64 KiB provides reasonable performance for both systems, and use
this stripe unit size for the remainder of the experiments.

Observation 2: RAIZN achieves similar throughput and latency
tomdraid, but is outperformed on small (4-64 KiB) reads and writes.

Figure 9 shows the difference in performance between mdraid
and RAIZN for the three workloads described above, with the top
subgraph showing throughput followed by the median latency
and 99.9"M-percentile tail latency. The performance of RAIZN on
small (4 KiB-64 KiB)) sequential reads and writes lags behind that
of mdraid; the low 4KiB sequential write performance is due to
the relative overhead of the parity log header, which results in a
proportionally large overhead when writing smaller blocks. The
difference in sequential read performance at low block sizes is likely
caused by two factors: first, the ZNS SSDs inherently have 4% lower
read performance than the FTL SSDs. Second, RAIZN’s read path
prioritizes low latency at the expense of lower IOPS for small block
size reads. However, small sequential reads is likely an impractical
workload, as it provides little benefit over large sequential reads for
most applications. Instead, we draw focus to the strong performance
of RAIZN when serving large (256 KiB-1 MiB) sequential reads.

For both median latency and 99.9th-percentile tail latency, RAIZN
achieves similar results to mdraid, with mdraid typically perform-
ing slightly better at smaller block sizes and RAIZN performing
slightly better at larger block sizes. The reasons for this performance
difference are the same as with throughput.

669

T. Kim, J. Jeon, N. Arora, H. Li, M. Kaminsky, D. G. Andersen, G. Ganger, G. Amvrosiadis, M. Bjerling

=
w
!

=
o
1

(6]
!

Throughput (GiB/s)

150 A

randread (RAID)

- randread (RAIZN)
seqread (RAID)
seqread (RAIZN)
seqwrite (RAID)

- segwrite (RAIZN)

100 A

P50 (ms)

50 1

250 A

200 A

150 A

100 A

P999 (ms)

50 1

O T T
64

Block size (KiB)

Figure 9: RAIZN achieves comparable throughput and tail
latency to mdraid

Observation 3: mdraid can experience unpredictable and severe
performance degradation from on-device garbage collection. RAIZN is
unaffected as ZNS SSDs do not perform on-device garbage collection.

To illustrate the effects of garbage collection on conventional
SSDs, we run a full device overwrite benchmark on mdraid and
RAIZN. This benchmark is composed of two workloads-first, 5
threads concurrently write the entire capacity of the array, with
each thread writing 20% of the address space (the first thread se-
quentially writes from 0% — 20%, the second thread writes 20%
— 40% etc.). After the first workload completes, one thread se-
quentially overwrites the entire address space of the array. During
both workloads, we sample throughput and latency every second,
and graph a timeseries of the results in Figure 10. The red vertical
dashed line represents the point in time where the second work-
load starts, and is marked by a slight reduction in throughput and
a dramatic reduction in latency—-this change is due to the reduction
from five threads to one thread between workloads 1 and 2. mdraid
experiences a sharp drop in throughput after the conventional SSDs
exhaust their overprovisioned blocks and begin performing garbage

RAIZN: Redundant Array of Independent Zoned Namespaces

v 4 i D
o B

O 34 C X
- A

>

221

g

o 11

=

0 RAID
80 — RAIZN
A Start overwrite

() 4 :
§, 60 5 C 5
3 40

e H
- |

Ll
o T T T T T T
0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 10: mdraid suffers when the SSDs run out of spare
blocks and start performing garbage collection. RAIZN is
able to maintain high throughput and low latency because
ZNS SSDs do not perform on-device garbage collection.

collection, whereas the RAIZN array maintains constant through-
put through the entire benchmark. Points @ , © and @ mark
the points where 20%, 40%, 60%, and 80% of the array capacity has
been overwritten. During the first workload, data from five different
LBA offsets are mixed and written into the same erase block, so
from the red line to point (&), roughly 80% of each erase block is
still populated with valid data that must be copied during garbage
collection. As more LBAs are overwritten, this ratio of valid data
per erase block gradually decreases, and throughput eventually
returns to steady-state shortly after point (D).

6.2 Performance During Failure

To illustrate the performance of RAIZN in the event of a (single)
device failure, we present two benchmarks: First, we compare the
sequential and random read throughput and latency of RAIZN com-
pared to mdraid during failure. Second, we measure how long it
takes to rebuild a replaced device in RAIZN in isolation, demonstrat-
ing the TTR before RAIZN can begin to serve (degraded) writes, and
how long it takes to restore full performance and fault tolerance
for a given amount of data stored on the volume.

Due to the nature of degraded writes, there is no performance
penalty associated with serving writes on a degraded array—-as such,
we omit writes in the following benchmarks and only show the
performance of sequential and random reads. The results are shown
in Figure 11. All trials were performed with the same parameters
as those in Figure 9, with the exception that after pre-filling the
RAID/mdraid volume with data, the first device in the array was
disabled and removed without replacement.

In both degraded workloads, RAIZN performed slightly worse
on small (4KiB) IOs and outperformed on larger IO sizes. This

670

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

8 -
w
o
ChY
o
=]
Q 4
<
[=)
>
22
c
|_
T T T T
4 64 256 1024
—e— randread (mdraid)
80 seqread (mdraid)
—_ -®- randread (RAIZN)
1 seqrea
g 60 d (RAIZN)
S 40)
b ..
20 Pt
/ — - .»”
0l &EEETE——-- -
T T T T
4 64 256 1024

10 size (KiB)

Figure 11: Degraded performance of mdraid and RAIZN is
comparable.

1000 +§
a
© 100 A
5
Qo
e 10.
S
[}
€ 14
= —e— RAIZN
mdraid
0.1 -+ T T T T T T T T T —
“HoN N Eo) © N Y D o N Lo
S S I

Data rebuilt (GiB)

Figure 12: Time to repair (TTR) a replaced device in RAIZN
and mdraid varying the amount of valid data rebuilt from
64GiB to approx 946 GiB. RAIZN’s TTR scales with the
amount of data rebuild, and is bottlenecked by the SSD write
throughput. mdraid always rebuilds the entire address space,
resulting in the same TTR regardless of the amount of valid
data present on the array.

experiment shows that RAIZN can achieve roughly equivalent or
better performance to mdraid in the event of single device failure.

Observation 4: RAIZN uses the ZNS interface to minimize rebuild
time after a failed device is replaced.

Next, we present the time to repair when replacing a failed
device in RAIZN compared to mdraid. We ran these experiments
on a modified setup, with 960 GiB SSDs of the same make and
model instead of 2 TB SSDs. The 960 GiB devices perform similarly
to the 2 TB devices. To ensure a fair comparison, the conventional
SSDs are formatted with 969.300 MiB (approx. 946 GiB) capacity to
match the usable capacity of the RAIZN volume, and the mdraid
resync rate limit was set sufficiently high to not affect mdraid’s
resync rate. During rebuild, no IOs are sent to the logical volume,

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

ensuring both RAIZN and mdraid can use the full bandwidth of the
underlying devices. RAIZN leverages the ZNS interface to easily
identify which stripes must be rebuilt and which can be ignored-
any stripes from the beginning of the logical zone up to the write
pointer must be reconstructed, while stripes between the write
pointer and the end of the logical zone can be ignored. This allows
RAIZN to rebuild only valid user data, contrasting with mdraid
which rebuilds the entire contents of the array regardless of how
much data was written to the array.

Figure 12 illustrates the time necessary to restore the volume to
full performance and fault tolerance; all data from the non-failed
devices in the array is read, then the contents of the failed device are
reconstructed and persisted to the replacement device. The X axis
is not relevant for mdraid, as it always resyncs the entire capacity
of the replacement drive-however, for RAIZN the X axis describes
the amount of user data written to the replacement device (not the
amount of user data present on the volume when the rebuild starts).

Both mdraid and RAIZN are bottlenecked on the write through-
put of the replacement device, and thus require the same amount
of time to rebuild a failed device for a completely full volume. How-
ever, mdraid requires a fixed amount of time to rebuild the array,
as it rebuilds the entire address space regardless of how much valid
data is present on the volume. In contrast, RAIZN leverages the
ZNS interface to rebuild only the fraction of the address space that
contains valid data, resulting in rebuild times that scale linearly
with the amount of valid data present on the volume.

6.3 Application Benchmarks

Observation 5: RAIZN achieves similar steady-state throughput and
tail latency tomdraid on RocksDB and MySQL benchmarks.

We run a suite of RocksDB [11] benchmarks to compare the
performance of RAIZN and mdraid on real applications, using
the optimal array configurations derived from Section 6.1, and
formatting each logical volume with the F2FS filesystem. F2FS
supports both ZNS and conventional SSDs, with certain optimiza-
tions such as threaded logging disabled for ZNS devices [14]. We
ran the fillseq, fillrandom, overwrite, and readwhilewriting work-
loads using db_bench [12]. All benchmarks perform 100 million
operations, with fillseq writing values in sequential key order, fill-
random and overwrite writing values in random key order, and
readwhilewriting performing single-threaded random writes con-
currently with random reads on 8 threads. After the fillseq bench-
mark, the array is reset and remounted, then the remaining three
benchmarks are run in succession without resetting. In all trials,
we pass the —use_direct_io_for_flush_and_compaction and
-use_direct_reads flags to bypass the page cache. For brevity, we
show results when running with value sizes of 4000 and 8000 bytes
in Figure 13; the overall trend holds for other value sizes.

We also run sysbench [19] on MyRocks [21] using the RocksDB
storage engine with MySQL [27] running on top of F2FS formatted
mdraid/RAIZN. We ran the oltp_read_only, oltp_write_only, and
oltp_read_write workloads on a database with 8 tables with 10 mil-
lion rows each, varying the number of sysbench threads between
64 and 128. Before each trial, the mdraid/RAIZN volume is un-
mounted, all devices are formatted, and mySQL is completely reset.
For oltp_read_only, sysbench first prepopulates the database with 8

671

T. Kim, J. Jeon, N. Arora, H. Li, M. Kaminsky, D. G. Andersen, G. Ganger, G. Amvrosiadis, M. Bjerling

14

12 i

5 10 | |

e 1imfa el Ml MR

c 4

el N NN |

g °° Ml P MR RR

-

el e s e

0.2 fEx

0.0- N raid 8000B
I raizn 4000B

14 EXE raizn 8000B

> 12

c I - | I " |

S 10

el B EER

2T W A A

[4

s N A A

T 04

IR TR TR TIH

T M N R

0.0

1.4

>

0121

C

= |/ W e

— 081

=. M PESE AN NER

= 0.6

o |FECH NHCR AR RN

= 04

= |MCH NHCR MR PE<E

Q) 0.2 A

o | MISH BHAH BNCGE BHXE |

0.0

fillseq fillrandom overwrite readwhilewriting

Figure 13: RocksDB performance, normalized. RAIZN
achieves throughput and 9gth percentile tail latency within
10% of mdraid.

tables and 10 million rows, after which it runs SELECT queries for
the benchmark duration. oltp_write_only is similar, but does a mix
of DELETE, INSERT, and UPDATE queries, and oltp_read_write
performs a mix of all four query types. All experiments were run
for 600 seconds, and each configuration was run 3 times. Figure 14
shows the results, with the data bar showing the median of these
3 trials and error bars marking the minimum and maximum trial.
In almost all experiments, RAIZN performed within error or better
than mdraid in all three presented metrics (transactions per second,
average latency, and 95th percentile tail latency), with the excep-
tion of 95t percentile tail latency for the 64-thread oltp_read_write
experiment, which was 9.5% higher for RAIZN.

7 RELATED WORK

ZNS is the latest device interface developed to combat the perfor-
mance and cost penalties of accommodating the block interface on
flash-based storage. Other approaches are described here.

Multi-Stream SSDs organize erase blocks into streams, in which
the host groups writes with similar lifetime [17]. Multi-Stream SSDs

RAIZN: Redundant Array of Independent Zoned Namespaces

= = N N
o (S, o 9]
~ ~ ~ ~
! ! ! !

Transactions per second
w
~

o
~
I

RAID 64threads
RAIZN 64threads
RAID 128threads
RAIZN 128threads

= R R
Nor
(6, o
L L

E..L

Average latency (ms)

w o N U N o
<) o U»n o U o
| ! PR !

= N N
(6] o w
! ! !

fay
o
!

w
!

95%ile tail latency (ms)

o
I

read_only write_only read_write

Figure 14: RAIZN achieves similar performance to mdraid in
sysbench

can significantly reduce the frequency of garbage collection, but
cannot eliminate it entirely like ZNS; this is because streams are
unbounded in size, so eventually old pages must be cleaned to accept
new writes. To accommodate on-device garbage collection, multi-
stream SSDs overprovision flash and do not provide cost-per-byte
savings over block interface SSDs.

Open-Channel SSDs (OCSSDs) divide flash into fixed-size chunks
(bounded streams), corresponding to erase blocks which can be
written or erased by the host [7]. OCSSDs do not perform garbage
collection on-device, obviating the need for overprovisioned flash
blocks. A key difference with ZNS is that media-level management
such as wear-leveling and media reliability are be handled by the
host, necessitating specialized host software for each different SSD
model. ZNS SSDs handle media management in firmware.

Application-Managed Flash allows users to directly access seg-
ments of flash composed of a fixed set of erase blocks [20]. Each
segment is written sequentially and reset as a single unit, behaving

672

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

somewhat similar to a zone in ZNS. Unlike zones, segment map-
pings are fixed, and an application-managed flash device cannot
remap erase blocks to replace failed ones.

Key-Value SSDs (KVSSDs) forego the traditional block-based ad-
dressing scheme, opting instead to associate flash blocks with
application-defined keys. Prior work offers RAID-like reliability for
KVSSDs [30], but achieving space-efficient parity coding for small
objects over an array of KVSSDs has proven difficult [23].

SmartFTL[13] minimizes write amplification when using SSDs as
backing storage for cluster filesystems. SmartFTL relies on a host-
side library that handles die-level data placement and LBA-to-PBA
translation, allowing the host to co-locate data based on expected
object lifetime so they are cleaned together.

Shingled Magnetic Recording (SMR) hard disks are similar in
many ways to ZNS SSDs, and benefit from a zoned interface due to
similarities in the underlying physical media. Overlapping tracks in
SMR disks necessitate that large groups of tracks (i.e. zones) must
be grouped together and written sequentially.

SMORE [22] is an object store for cold data stored on a SMR
disk array. Like RAIZN, SMORE stores important metadata in log
structured format on a set of dedicated zones. SMORE is designed
for cold objects ranging from a few megabytes to multiple gigabytes
in size, whereas RAIZN is designed to work on a wider range of
workloads, including small writes and read-heavy workloads.

HiSMR(s [15] is a filesystem designed to achieve high perfor-
mance on SMR drives. It uses a log structured filesystem for data
while storing metadata in random write storage, e.g., SSD. RAIZN
exposes a logical device without requiring a separate device for
metadata, relying entirely on zoned devices to achieve high perfor-
mance. As a filesystem, HiSMRfs could be run on a RAIZN volume.

Host-side FTLs. To support unmodified applications atop ZNS
SSDs, host-side FTLs such as dm-zap [9] expose a regular block
interface using ZNS SSDs. Logical-to-physical block remapping
and garbage collection is handled in software. Similar approaches
include dm-zoned [25], pblk [7], and SPDK’s FTL [24].

8 CONCLUSION

RAIZN provides RAID 5-like performance and reliability for ZNS
devices. Several ZNS-specific edge cases, such as partial writes and
partial zone resets, make designing ZNS-compatible RAID diffi-
cult. RAIZN solves these challenges, ensuring correctness during
rare edge cases without sacrificing performance during normal
and degraded operation. In contrast to mdraid, RAIZN leverages
the ZNS interface to rebuild only valid data when a device in the
array is replaced, minimizing the time to repair and by extension
the performance impact of rebuilding. RAIZN is able to achieve
latency characteristics similar to mdraid for conventional SSDs,
even when the conventional SSDs are not impacted by garbage
collection overheads, and throughput within 2% of using the un-
derlying SSDs directly. More importantly, RAIZN preserves the
benefits of ZNS, allowing uninterrupted steady performance up to
14X higher for an extended read/write workload when compared
to RAID-for-conventional-SSDs suffering from on-device garbage
collection. Finally, RAIZN achieves similar performance to industry
standard mdraid on real applications such as RocksDB and MySQL.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

ACKNOWLEDGMENTS

We thank our shepherd and five anonymous reviewers for their
invaluable feedback and guidance through the revision process. We
also thank Western Digital for providing resources and technical
expertise; we especially thank Damien Le Moal, Hans Holmberg,
Niklas Cassel, Dmitry Fomichev, Andreas Hindborg, and Dennis
Maisenbacher for their technical help with the ZNS SSDs and as-
sociated kernel software stack. We thank Jason Boles from PDL
for setting up and maintaining our hardware deployment. We also
thank the members and companies of the PDL Consortium (Ama-
zon, Google, HPE, Hitachi, IBM, Intel, Meta, Microsoft, NetApp,
Oracle, Pure Storage, Salesforce, Samsung, Two Sigma, Western Dig-
ital) and VMware for their interest, insights, feedback, and support.
This work was sponsored by Western Digital, and was supported
in part by NSF grant CNS1956271, and gifts from the NetApp Uni-
versity Research Fund, a corporate advised fund of Silicon Valley
Community Foundation, and Meta Platforms, Inc.

REFERENCES

[1] 2020. Device Mapper. https://docs.kernel.org/admin-guide/device-mapper/index
html.

[2] 2021. NVM Express® Base Specification Revision 2.0 May 13th, 2021. https:
//mvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-
2021.06.02-Ratified-4.pdf.

[3] 2022. Explicit volatile write back cache control. https://www.kernel.org/doc/Doc
umentation/block/writeback_cache_control.txt.

[4] 2022. mdadm(8) - Linux man page. https://linux.die.net/man/8/mdadm.

[5] Jens Axboe. 2017. fio - Flexible I/O tester rev. 3.27. https://fio.readthedocs.io/en/1

atest/fio_doc.html.

Matias Bjerling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh, DL Moal,

G Ganger, and George Amvrosiadis. 2021. ZNS: Avoiding the Block Interface

Tax for Flash-based SSDs. In Proceedings of the 2021 USENIX Annual Technical

Conference (USENIX ATC’21).

Matias Bjerling, Javier Gonzalez, and Philippe Bonnet. 2017. Lightnvm: The

linux open-channel {SSD} subsystem. In 15th {USENIX} Conference on File and

Storage Technologies ({FAST} 17). 359-374.

Neil Brown. 2015. A journal for MD/RAID5. https://lwn.net/Articles/665299/.

Western Digital Corporation. 2021. dm-zap: Host-Side Zoned Host Translation

Mapper. https://github.com/westerndigitalcorporation/dm-zap.

Western Digital Corporation. 2022. Zoned Storage. https://zonedstorage.io/.

Facebook. 2015. RocksDB. http://rocksdb.org/.

Facebook. 2021. Performance Benchmarks. https://github.com/facebook/rocksd

b/wiki/Benchmarking-tools.

Google. 2021. SmartFTL Architecture for SSDs. https://www.youtube.com/watc

h?v=303zDrpt3uM.

Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Joo-Young Hwang. 2021. ZNS+:

Advanced Zoned Namespace Interface for Supporting In-Storage Zone Com-

paction. In 15th {USENIX} Symposium on Operating Systems Design and Imple-

mentation ({OSDI} 21). 147-162.

(6]

673

(15]

[16]

&
=)

[30

[31

[32

[33

[34

[35

T. Kim, J. Jeon, N. Arora, H. Li, M. Kaminsky, D. G. Andersen, G. Ganger, G. Amvrosiadis, M. Bjerling

Chao Jin, Wei-Ya Xi, Zhi-Yong Ching, Feng Huo, and Chun-Teck Lim. 2014.
HiSMRfs: A high performance file system for shingled storage array. In 2014 30th
Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 1-6.

Hai Jin, Xinrong Zhou, Dan Feng, and Jiangling Zhang. 1998. Improving partial
stripe write performance in RAID level 5. In Proceedings of the 1998 Second IEEE
International Caracas Conference on Devices, Circuits and Systems. ICCDCS 98.
On the 70th Anniversary of the MOSFET and 50th of the BJT. (Cat. No.98TH8350).
396-400. https://doi.org/10.1109/ICCDCS.1998.705871

Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014. The
multi-streamed solid-state drive. In 6th {USENIX} Workshop on Hot Topics in
Storage and File Systems (HotStorage 14).

Jaeguk Kim. 2020.

Alexey Kopytov. 2012. Sysbench manual. MySQL AB (2012), 2-3.

Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim, et al. 2016.
Application-managed flash. In 14th {USENIX} Conference on File and Storage
Technologies ({FAST} 16). 339-353.

Percona LLC. 2021. Percona MyRocks Introduction. https://www.percona.com/
doc/percona-server/8.0/myrocks/index.html.

Peter Macko, Xiongzi Ge, J Kelley, D Slik, et al. 2017. SMORE: A cold data object

store for SMR drives. In Proc. 34th Symp. Mass Storage Syst. Technol.(MSST).
Umesh Maheshwari. 2020. StripeFinder: Erasure Coding of Small Objects Over

Key-Value Storage Devices (An Uphill Battle). In 12th {USENIX} Workshop on
Hot Topics in Storage and File Systems (HotStorage 20).

Wojciech Malikowski. 2018. SPDK Open-Channel SSD FTL. https://spdk.io/doc/
ftl.html.

Damien Le Moal. 2017. dm-zoned: Zoned Block Device device mapper. https:
//lwn.net/Articles/714387/.

Jeff Moyer. 2017. libaio. https://pagure.io/libaio.

Oracle. 2022. MySQL. https://www.mysql.com/.

David A Patterson, Garth Gibson, and Randy H Katz. 1988. A case for redundant
arrays of inexpensive disks (RAID). In Proceedings of the 1988 ACM SIGMOD
international conference on Management of data. 109-116.

Rekha Pitchumani and Yang-suk Kee. 2020. Hybrid data reliability for emerging
key-value storage devices. In 18th {USENIX} Conference on File and Storage
Technologies ({FAST} 20). 309-322.

Rekha Pitchumani and Yang-Suk Kee. 2020. Hybrid Data Reliability for Emerg-
ing Key-Value Storage Devices. In 18th USENIX Conference on File and Stor-
age Technologies (FAST 20). USENIX Association, Santa Clara, CA, 309-322.
https://www.usenix.org/conference/fast20/presentation/pitchumani

Ohad Rodeh and Avi Teperman. 2003. zFS-a scalable distributed file system using
object disks. In 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems
and Technologies, 2003.(MSST 2003). Proceedings. IEEE, 207-218.

Marta Rybczynska. 2021. Btrfs on zoned block devices. https://lwn.net/Articles
/853308/. (2021).

Kent Smith. 2011. Garbage collection. SandForce, Flash Memory Summit, Santa
Clara, CA (2011), 1-9.

Hermann Strass. 2016. An Introduction to NVMe. https://www.seagate.co
m/files/www-content/product-content/ssd-fam/nvme-ssd/nytro-xf1440-
ssd/_shared/docs/an-introduction-to-nvme- tp690-1-1605us.pdf.

Saifeng Zeng, Ligu Zhu, and Lei Zhang. 2013. A High Reliable and Performance
Data Distribution Strategy: A RAID-5 Case Study. In 2013 Ninth International
Conference on Computational Intelligence and Security. 318-322. https://doi.org/
10.1109/CIS.2013.74

Received 2022-07-07; accepted 2022-09-22

https://docs.kernel.org/admin-guide/device-mapper/index.html
https://docs.kernel.org/admin-guide/device-mapper/index.html
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-4.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-4.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-4.pdf
https://www.kernel.org/doc/Documentation/block/writeback_cache_control.txt
https://www.kernel.org/doc/Documentation/block/writeback_cache_control.txt
https://linux.die.net/man/8/mdadm
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://lwn.net/Articles/665299/
https://github.com/westerndigitalcorporation/dm-zap
https://zonedstorage.io/
http://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://www.youtube.com/watch?v=3O3zDrpt3uM
https://www.youtube.com/watch?v=3O3zDrpt3uM
https://doi.org/10.1109/ICCDCS.1998.705871
https://www.percona.com/doc/percona-server/8.0/myrocks/index.html
https://www.percona.com/doc/percona-server/8.0/myrocks/index.html
https://spdk.io/doc/ftl.html
https://spdk.io/doc/ftl.html
https://lwn.net/Articles/714387/
https://lwn.net/Articles/714387/
https://pagure.io/libaio
https://www.mysql.com/
https://www.usenix.org/conference/fast20/presentation/pitchumani
https://lwn.net/Articles/853308/
https://lwn.net/Articles/853308/
https://www.seagate.com/files/www-content/product-content/ssd-fam/nvme-ssd/nytro-xf1440-ssd/_shared/docs/an-introduction-to-nvme-tp690-1-1605us.pdf
https://www.seagate.com/files/www-content/product-content/ssd-fam/nvme-ssd/nytro-xf1440-ssd/_shared/docs/an-introduction-to-nvme-tp690-1-1605us.pdf
https://www.seagate.com/files/www-content/product-content/ssd-fam/nvme-ssd/nytro-xf1440-ssd/_shared/docs/an-introduction-to-nvme-tp690-1-1605us.pdf
https://doi.org/10.1109/CIS.2013.74
https://doi.org/10.1109/CIS.2013.74

	Abstract
	1 Introduction
	2 Background
	2.1 The ZNS Interface
	2.2 RAID

	3 Challenges of Zoned Device Arrays
	4 Architecture of RAIZN
	4.1 Data Placement and Processing
	4.2 Fault Tolerance
	4.3 Metadata Management

	5 Solving ZNS challenges
	5.1 Parity Updates
	5.2 Write and Reset Atomicity
	5.3 Write Persistence
	5.4 Discussion

	6 Evaluation
	6.1 Raw Device Microbenchmarks
	6.2 Performance During Failure
	6.3 Application Benchmarks

	7 Related work
	8 Conclusion
	Acknowledgments
	References

