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ABSTRACT

Human-Robot Interaction often involves a robot assisting or pro-
viding feedback to a human partner’s performance or cooperating
to complete a task. In such an interaction scenario, the robotic
system requires to perceive the human teammate’s cognitive state
that might affect task performance. In this pilot study, the focus
is on developing a framework that assesses the human’s cognitive
performance for human-robot synergetic task, such as an assembly
task. Specifically, we explore the correlation between a person’s
quality of sleep and performance metric through a standard task
for cognitive assessment, the N-back task. To validate our hypoth-
esis, we conducted a study with 25 participants, and our results
indicate that there is a moderate correlation between some stages
of sleep cycle and performance. Additionally, we present a possible
Human-Robot Interaction setup that could benefit from our results.
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1 INTRODUCTION

In recent years, humans and robots have started interacting with
each other in different fields, such as manufacturing [4], industry
[12], surgery [7], assistive care [8], education [2], and others. The
primary concern in the design of Human-Robot Interaction (HRI)
is the human’s safety and health. Typically, the HRI-design covers
issues related to collision avoidance and to ensure that the robot
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should not cause an immediate injury or harm the human user [13].
However, there is less emphasis on considering the influence of
long-term HRI on human health and well-being.

Researchers [3, 13] have focused on Ergonomic HRI in industry,
by developing frameworks to improve the human posture and to
minimize the risk of developing work-related musculoskeletal dis-
eases and disorders. Moreover, socially assistive robots (SAR) are
used as companions or therapists to improve mental health and
well-being [5]. It is evident that robots are required to understand
human behavior, health, and well-being.

In this work, the focus is on the human’s cognitive state assess-
ment for HRI using data from Fitbit, a non-obtrusive light-weight
everyday wrist-worn wearable fitness band, and task performance
metrics. Fitness bands provide information about sleep quality, an
essential parameter of cognitive state assessment [9]. Prior research
has indicated that lack of sleep has a negative impact on cognitive
tasks that require working memory [14]. In this study, we present a
preliminary analysis of sleep quality data from Fitbit and cognitive
performance.

2 EXPERIMENTAL STUDY

We conducted a user study with 30 participants to test our hypoth-
esis, which was approved by the Institutional Review Board at The
University of Texas at Arlington. The participant pool consisted of
23 male and 7 female participants with an age range of 19 - 38. Five
participants’ data were removed during analysis due to missing
sleep data from the sensor. The participants were provided with
a Fitbit smartwatch, which was recording the user’s sleep pattern
over five days. During two of these five days, the participants were
asked to participate in a cognitive assessment task, the N-back task,
which is commonly used in cognitive neuroscience to measure
working memory and attention, two essential skills in an assembly
task [10] . The N-back task is a sequential cognitive task where
we present stimuli sequentially one-by-one. For each stimulus, the
participant needs to decide if it is the same as the one presented N
stimuli back.

Several versions of the N-back task exist, such as the N-back
task with alphabets for sequences, visual N-back task where stimuli
appear on different positions of the screen. In our version, we
present the user with a sequence of shapes one at a time, as shown
in Figure 1, from a pool of eight shapes with eight different colors.
Figure 1 depicts a 2-back task where, based only on the shape, the
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Figure 1: The N-back Task. In this example, a 2-back task, we
use a sequence of shapes.

user responds by pressing the space-bar on the keyboard when
they see the second circle, which repeats after exactly two stimuli.
During the assessment, we record the score, which is measured as
the difference between the percent of total correct responses and
the percent of total wrong responses.

For this study, we used an easy 0-back task and the 2-back task,
which places a higher cognitive load. In the 0-back task, we present
the participant with a target shape beforehand. The user presses the
space-bar when they identify this shape in the sequence displayed.
In each task, we present a total of 64 stimuli, of which 12 were
targets. Each stimulus lasted for 2500 ms. The order of each type of
task was counterbalanced among participants, whereas each task
was presented twice. The study lasted for approximately 45 minutes
for all participants.

3 PRELIMINARY RESULTS AND DISCUSSION

In our analysis, we try to find a relationship between data from
the cognitive task (the N-back task) and sleep quality data from
Fitbit. Sleep quality features extracted from the Fitbit sensor are
total duration of sleep, percent of deep, light, Rapid Eye Movement
(REM) sleep, and awake time.

Table 1: Summary of correlation analysis between stages of
sleep and task performance. (z/p) denotes the degree of cor-
relation while P denotes if the correlation is significant.

Kendall Spearman
Variable T P p P
total -0.0483 | 0.760 | -0.0261 | 0.901
%deep 0.0933 | 0.541 0.1169 | 0.578
%light -0.3519 | 0.018 | -0.4593 | 0.021
%rem 0.3409 | 0.021 | 0.4689 | 0.018
%awake | 0.0104 | 0.962 0.0033 | 0.988

We performed D’Agostino’s K test [6] to determine the normal-
ity of the data. The test indicated that the task performance metric
does not follow a normal distribution. Hence, we performed the
Kendall and Spearman correlation between each of these features
and performance metric, which is the average score in each assess-
ment. As shown in Table 1, the light sleep cycle has a moderate
negative correlation with task performance, while the REM sleep
cycle has a moderate positive correlation with high confidence. The
results are in line with related research in sleep and its effect on
cognition. According to the description given by Fitbit [11], the
light sleep cycle is responsible for processing memory, emotions,
and metabolism regulation. The REM sleep cycle, on the other hand,
is responsible for emotion regulation, memory, and protein synthe-
sis. Based on this description and the results we present, it gives
us a positive indication that sleep affects memory and thereby task
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performance. Further research may prove worthwhile to learn the
appropriate features that help in understanding human cognition
in an HRI setup. This could help to create a smartwatch application
that provides input to the HRI system based on the sleep quality
for personalized robot behavior in application areas like manufac-
turing, rehabilitation, social interaction or education. Moreover,
additional physiological measures, such as daily heart rate and
physical activity, could be considered as inputs to the HRI system.

4 HRI, HUMAN COGNITION AND SLEEP

In most cases of HRI, a human user interacts with a robot to achieve
a common goal, such as product assembly, rehabilitation therapy,
or others. Depending on the task performed, the level of assistance
offered by the robot varies from providing hints in a task [1] to
providing personalized feedback [15] while a user performs the
task. In this section, we propose an HRI framework for cooperative
assembly using a lathe assembly set available off the shelf, as shown
in Figure 2. In this task, the robot provides a user (human team-
mate) with parts to assemble while the user assembles it with small
nuts, bolts, and screwdriver, which are typically hard for a robot
to handle. We propose this task to emulate a real-world assembly

. h =
=y $ T

Figure 2: HRI Setup with Baxter Robot: [left] User performs
an assembly task. [Right] Robot provides parts for assembly.

environment where the user needs to perform specific sequential
tasks, which requires working memory and attention skills simi-
lar to the N-back task in our user study. These cognitive abilities
are affected positively or negatively based on sleep quality. As a
future work, we propose a personalized HRI system by assessing
the individual’s cognitive state based on their sleep quality along
with task performance. To enable personalization, the robot will
adapt its speed or provide recommendations based on the human
teammate’s cognitive assessment.
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