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Abstract— Robots are increasingly present in environments
shared with humans. Robots can cooperate with their human
teammates to achieve common goals and complete tasks. This
paper focuses on developing a real-time framework that assesses
the cognitive load of a human while cooperating with a robot
to complete a collaborative assembly task. The framework uses
multi-modal sensory data from Electrocardiography (ECG) and
Electrodermal Activity (EDA) sensors, extracts novel features
from the data, and utilizes machine learning methodologies to
detect high or low cognitive load. The developed framework
was evaluated on a collaborative assembly scenario with a user
study. The results show that the framework is able to reliably
recognize high cognitive load and it is a first step in enabling
robots to understand better about their human teammates.

I. INTRODUCTION

Robots have become part of our everyday lives and have
several roles such as helping workers in their work duties
[11, [2], [3], assisting people with impairment in activities
of daily living [4], [5], entertaining and keeping company to
children and the elderly [6], [7], and assisting rehabilitation
procedures [8], [9]. In industrial environments, such as
assembly lines, a strong level of interaction and cooperation
is reached where humans and robots are required to work
synergistically on a specific task and have different roles and
complementary abilities. Researchers focus on achieving safe
Human-Robot Cooperation (HRC), which will not threaten
or harm the physical health of the human teammate [10],
[11]. However, there is limited research on understanding
the psychological influence on the human who cooperates
with a robot on a daily basis. To ensure the efficiency and
productivity of the overall HRC, the human teammate needs
to feel comfortable while working with a robot. Therefore,
it is essential for robots to understand how their human
teammates feel and adapt accordingly. The difficulty of the
task at hand, time restrictions, and arousal are shown to be
some of the factors that affect cognitive load [12]. Cognitive
load is the amount of energy a person has to spend to achieve
a specific goal. This type of cognitive load is called an
extraneous cognitive load. Prior research [13] indicate that
different types of biosignals from physiological sensors can
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help monitor the human partner while working, for changes
in performance due to stress, lack of sleep, or increase in
cognitive load.

In our previous work [14], we proposed a cognitive
performance assessment framework for HRC based on sleep
data collected from a commercially available wrist band.
Inspired by our previous work, the main focus of this paper
is on the development of a real-time HRC framework, called
RoboAssist, that enables robots to monitor the cognitive load
of their human teammates using multimodal sensor data.The
RoboAssist system consists of commonly used minimal-
invasive sensors, such as Electrocardiography (ECG) and
Electrodermal Activity (EDA) [13], [14]. The main contri-
butions of the presented work are:

o the research and development of a machine learning
based framework that assesses cognitive load during
HRC;

« a comprehensive list of features that are extracted from
physiological sensors, such as ECG and EDA.

To demonstrate the feasibility of RoboAssist, a study was
conducted with 25 participants. The study was performed
in a collaborative assembly scenario using the collaborative
robot Sawyer developed by Rethink Robotics [15] (Fig. 1).
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Fig. 1: Setup of the Presented Collaborative Assembly Sce-
nario. Top-left image: Final Assembly Product - A Miniature
Sanding Machine

The paper is organized as follows. In section II, we present
related work, section III describes RoboAssist system for
HRC, and section IV presents the experimental results of
the study and evaluation. In the final section, we discuss our
future research direction and conclude.
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II. RELATED WORK

Nelles et al. [16] summarized the available research work
on evaluation metrics for human well-being in Human-Robot
Interaction (HRI) and highlights that the experimental design,
the questionnaires, and measures used are very heteroge-
neous. Well-being is the state of feeling comfortable, healthy,
happy, and it is connected with the ability of an individual
to manage stress. Most of the research presented by Nelles
et al. focuses on self-reporting surveys and questionnaires
to provide feedback for the design of HRI regarding trust
[17], [18], [19], usability [20], [21], feeling of safety [22],
cognitive and physical workload [23], and well-being [24].
However, self-reporting is a subjective measure of cognitive
workload and it is difficult to quantify for real-time applica-
tions.

Advances in sensor technology in recent years have the
potential to help with the assessment of cognitive load.
Weistroffer et al. [25] used pre-post questionnaires and pre-
post measures of heart rate from a Photoplethysmogram
sensor and skin conductivity from an EDA sensor during
HRC. Their goal was to compare the acceptability of collab-
orative assembly between actual situations and their virtual
reality counterparts combined through questionnaires. How-
ever, the authors were not able to record the physiological
measurements during the actual HRC due to the positioning
of the sensors. Novak et al. [26] identified physical and
cognitive load during haptic interaction with a robot by
using four measurements; heart rate measured by ECG,
skin conductivity by EDA sensor, respiratory rate by the
thermistor flow sensor, and peripheral skin temperature by
a digital temperature sensor. Results from a user study of
30 participants show the combination of respiration and skin
temperature appears to estimate cognitive workload in phys-
ically demanding interaction with haptic robots. However,
the level of discomfort of wearing a thermistor flow sensor
attached to the user’s nose was not considered.

A framework to recognize user’s cognitive load during
HRI was presented by Villani et al. [27]. The framework
analyzes the variability of the user’s heart rate, which is
measured by a smartwatch. The selected scenario was the
interaction with a wheeled robot, and the user was providing
commands to the robot via hand gestures. The authors used
the analysis of 1000 Monte Carlo trials on segments of the
heart rate signal to detect the rest and stress conditions.
Experimental results showed that the algorithm could detect
changes in mental workload. Moreover, The framework was
tested by Landi et al. [28] in a teleoperation robotic task,
where virtual fixtures are used as an assistive technology.
However, in both works, there is no evaluation of the
accuracy of the cognitive load recognition. Moreover, other
characteristics of heart rate could provide valuable insights
into the person’s mental state.

The assessment of cognitive load during HRC is beneficial
for the improvement of working conditions and human well-
being. HRC requires the sharing of objects and/or environ-
ments between the human and the robot that may induce
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stress and anxiety, and thereby increasing the cognitive load.
Therefore, our primary focus is on developing a framework
for collaborative robots, which are increasingly used in
industry [29]. This work presents a multi-sensory minimal-
invasive HRC system that analyzes the physiological state
of the user and recognizes changes in mental state, more
specifically, cognitive load. The framework is based on
machine learning techniques, and differs from the previous
presented work. Moreover, for the evaluation of the proposed
framework, a collaborative assembly scenario was proposed,
which is similar to real-world scenarios in the industry.

III. COGNITIVE LOAD ASSESSMENT FOR HRC

An overview of the proposed RoboAssist system is shown
in Fig 2. The system assesses human cognitive load during
HRC. In this section, the selected collaborative assembly
task, the placement of the multi-modal sensory system,
feature extraction, and machine learning approaches are
explained in detail.
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Fig. 2: Overview of the proposed RoboAssist system for HRC

A. Collaborative Assembly Task

For this assessment, we focused on the task of assembling
a small sanding machine, shown in Fig 1, in an industrial
HRC scenario. We divided the parts required to make the
sanding machine into two sets; a set of components that a
robot can handle and a set of pieces that only a human can
handle.

As shown in Fig 1, the parts to the robot’s right side
are the parts that are handled by the robot. The robot
picks it up and brings it towards the user while the user
assembles the machine. Small pieces, which can only be
handled by the user, such as nuts and bolts, were placed
in separate small boxes called ”bins” to the right side of
the user along with a screwdriver. This setup is shown
in Fig 1. A user interface was created for the assembly
task, which showed the step-by-step instructions required to
assemble the sanding machine. Each step provided the user
with detailed instructions of the parts s/he needed to handle
and information about the parts the robot would handle. The
user interface is integrated with the robot using the Robot
Operating System (ROS) [30] so that the robot provides
the required components automatically to the user. A video
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of the assembly task can be found in the following link:
https://youtu.be/m_dkLHf1CUo.

B. Multi-Sensor System and Sensor Placement

The RoboAssist system consists of an ECG and an EDA
sensor developed by BioSignalsplux [31]. The data are
transmitted via Bluetooth at 1000 Hz. ECG data were col-
lected from a standard 3-point bipolar standard limb leads
configuration of the Einthoven’s triangle [32]. We used a
Lead II setup in this configuration, where a positive electrode
is on the left leg, a negative electrode on the right arm, and
a reference electrode on the right leg for recording purposes.
The electrodes were placed on the participant’s right shoulder
and lower torso for this study to make wearing the sensor
and recording easier. The EDA sensor measures the electrical
potential produced on the skin surface due to the activity of
the sweat glands [33]. The best locations to acquire such
signals are spots where sweat glands are most active, like
the palms and the soles [34]. Since our application involves
participants using their arms for the collaborative assembly
task, EDA was collected from the shoulder, which was
proven to be one of the best alternative locations for skin
conductance measurement [35]. The selected placements for
ECG and EDA enable the sensors to be integrated into an
easily wearable smart T-shirt.

C. Feature Extraction

In this section, the data processing and feature extraction
for the ECG and EDA sensor data will be discussed.

1) ECG Signal: Because of the position of the ECG
electrodes on the shoulder and lower torso, the ECG signal
is inverted when compared to the standard Lead II setup.
Hence, the signal is inverted to represent the original wave-
form and then is pre-processed for feature extraction. For
this study, we extracted time and frequency domain features
from the QRS complex as shown in Fig 3 and RR interval
(the time elapsed between two successive R-waves) of the
ECG signal, which are commonly used features in heart rate
variability analysis for mental stress detection [36]. The QRS
complex forms the major component of the ECG signal and
it represents the electrical activation in the sensor due to
the ventricles contracting in the heart. It is the main spike
seen on the ECG waveform and is used for computing the
heart rate and several heart-disease states [37], [38]. We used
the peak detection algorithm developed by Van Gent at al.
[39]. To improve the peak detection, a notch filter is applied
before the peak detection algorithm with a cut-off frequency
of a threshold value, empirically selected as 0.05 Hz to
minimize the T-wave and other unwanted low-frequency
noise. Subsequently, the time and frequency-domain features
are extracted. The time domain features that are proposed
by Boonnithi et al. in [36] are as follows; the mean RR
interval or mean Inter-beat Interval (mRR), the mean heart
rate (mHR), the standard deviation of RR interval (SDRR),
the standard deviation of heart rate (SDHR), the coefficient
of variance of RR intervals (CVRR), the root mean square
successive difference (RMSSD), the proportion of successive
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differences above 20 ms in percentage (pRR20), and the pro-
portion of successive differences above 50 ms in percentage
(pPRR50). Moreover, additional time domain features were
extracted as follows; the median RR Interval (RR), the range
of the RR Interval (rRR), and median absolute deviation of
RR intervals (MAD). Table IV summarizes the formulas of
all the time domain extracted features.

The frequency domain features extracted from ECG are
the low and high frequency, the Symphathetic modulation
index, the Vagal modulation index and the Symphatovagal
balance index and Table I summarizes their formulas.

TABLE I: Frequency Domain Feature Extraction from ECG
Data

Features Computation

Low Frequency (LF) LF = Power spectrum from 0.04 to
0.15 Hz

High Frequency (HF) HF =Power spectrum from 0.15 to
0.5 Hz

Symphathetic modulation index | SMI = LF / (LF+HF)

(SMI)

Vagal modulation index (VMI) VMI = HF / (LF+HF)

Symphatovagal balance index | SVI = LF / HF

(SVI)

2) EDA Signal: The collected EDA data are downsampled
to 200Hz to reduce computation and then filtered using
a Butterworth filter to remove high-frequency noise using
methodology proposed by Bizzego et al. [40]. Research
indicates that EDA signals comprise of two different su-
perimposed components; the phasic or the skin conductance
response (SCR) and the tonic or the skin conductance levels
(SCL) [34], [41]. The phasic component varies based on
the provided stimulus, where changes in the signal imply
activation of the sudomotor nerve due to activity in the sweat
glands. Whereas the tonic component is the baseline level of
skin conductance, which varies from person to person [41].
In this paper, the phasic component is used to extract features
as we were interested in modeling the user’s cognitive load
to the presented task.

The shape of the EDA signal is important in signifying a
change in nervous response. Statistical features related to
the amplitude, the first derivative and the second deriva-
tive of the signal were extracted. Additional spectral and
energy features that are commonly used to describe the
characteristics of one-dimensional (1D) signals were ex-
tracted. The following features were extracted from the SCR
signal; Mean Value, Standard Deviation, Maximum Value,
Minimum Value, Range, Variance, first Derivative Mean,
first Derivative Standard Deviation, second Derivative Mean,
second Derivative Standard Deviation, Zero Crossing Rate
(the rate at which the signal changes sign in a given window),
Spectral Centroid, Spectral Rolloff, Spectral Entropy, Energy,
and Entropy of Energy.

The spectral centroid of the given frame of the spectrum
is computed by the following equation:

N—-1
=0
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Fig. 3: Sample ECG signal acquired from the Biosignalsplux sensor. The green dots indicate the peak detected using which
the heart rate of the signal was estimated. Q, R, S indicate the Q-wave, R-wave and S-wave component of the ECG signal.

where N is the size of the spectrum, X is the observed
frequencies and p(X) is the probability to observe a specific
value in X.

Spectral Rolloff corresponds to the frequency below which
90% of the magnitude distribution of the spectrum is con-
centrated. It is given by the equation:

N—-1
R=09>|X,,
1=0

where X is the spectrum of the signal and N is the size of
the positive spectrum.

Spectral Entropy is the entropy of the normalized spectral
energy of the given signal and is computed by the formula:

fs/2
Sp ==Y P(f)log; P(f),
=0

where f; is the sampling frequency and P is the normalized
power spectral density.

Energy is the sum of squares of the signal divided by the
length of the frame and it is calculated by the formula:

N-1
> X,
1=0

where N is the length of the signal window and X is the
observed frequencies.

The entrophy of energy of the given signal is given by the
formula

1
E=—
N

Ep=-) Elog,E,

where E is the energy of the signal given a window. These
spectral and energy features have also been for other signals
like EEG [42], and speech [43]. The total extracted features
from ECG and EDA data are 17 and 16, respectively.
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D. Machine Learning Approach

Machine Learning analysis was performed using the fea-
tures extracted from each ECG and EDA data and a combi-
nation of these data. A total of 3 combinations of modalities
were tested for classification performance. Our main goal is
to prove that the data collected from the proposed RoboAssist
framework is enough to detect the cognitive load of the
participant given the HRC task. Three widely used classifiers
were selected; Support Vector Machine (SVM) and Naive
Bayes (NB), the two commonly used algorithms in Human-
Computer Interaction [44]. We also chose the Random Forest
(RF) algorithm to compare the performance using an en-
semble algorithm. These algorithms are then evaluated using
accuracy and Fl-scores. Accuracy is defined as a measure
of the total number of correctly identified cases and FI1-
score is a measure of the harmonic mean of the precision
and recall [45]. Fl-score gives a better understanding of
the misclassified cases as it is critical in the design of the
framework. In the next section, the evaluation results of the
classification models are presented and discussed.

IV. EXPERIMENTAL RESULTS

A. User study

Twenty five participants from The University of Texas at
Arlington (UTA), participated in the user study where fifteen
were male and ten were female participants. Among these
participants, 23 were right-handed participants and two were
left-handed participants. Six of the participants had prior
experience in HRC. Except for one participant, who was
in the 31 to 40 age range, all other participants were in the
19 to 30 age range. Each user study lasted for about 30 to
40 minutes and it was approved by the Institutional Review
Board at UTA.

The participants completed a baseline survey before start-
ing the user study. Subsequently, they performed the first ses-
sion, which is performing the assembly task. On completion,
they were asked to fill the first post-task survey form. Next,
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they performed the second session which is performing the
same assembly task with time constraints to induce stress
and high cognitive load. The participants were required to
complete each step of the assembly task within 30 seconds.
After the second session is completed the participants filled
out the second post-task survey form. In each and every
session, the time taken by the user in each and every step of
the task was recorded along with the sensor data, which is
used for further evaluation along with the survey responses.
To avoid the cumulative effect of stress, there was a short 3
minute break between the two sessions for the participants
to relax.

In real-world assembly and production lines, time is a
very critical parameter as factories are required to increase
productivity and to reduce production time [46], [47]. Tradi-
tionally, human co-workers receive training before they start
working with a robot daily. Hence, practice effect is always
present in the real world and our framework reflects this
design. Since our goal is to simulate a real-world setup, the
participants were required to undergo a training session (first
session) before they were allowed to work on a timed session
(second session).

User Feedback: Fig 4 summarizes the responses of the
participants on some of the survey questions. The participants
were asked to rate their level of sleepiness, stress, and
attention from 0, meaning very low to 10, meaning very high.
Fig 4 shows that the users felt slightly more stressed during
the second session (with timer) in comparison to the first
session (no timer) and the baseline. Similarly, the users felt
less sleepy during the second session in comparison to the
baseline and the first session indicating that the participants
were more attentive as the stress levels increased. However,
the users felt that their attention was almost similar for
both sessions and higher than the baseline. The survey also
shows that continuous work can lead to an increase of mental
exertion, and this may lead to stress and increased cognitive
load. Thus, it is important in an HRC scenario to be able
to monitor the user’s cognitive load and adapt accordingly,
especially in an industry. It is also important to note that the
values obtained from the user surveys were not significantly
different between the two tasks and this can be attributed to
the relatively small number of participants.

= paseline

me pOSt_taskl — === post_task2
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Fig. 4: Subjective feedback
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B. Evaluation of the Proposed Framework

Data from three participants were rejected due to sensor
malfunction. The data from the remaining 22 participants
were organized into two classes; the first session was the
class of ”low cognitive load” while the second session was
the class “high cognitive load”. Hence in total, we had 44
data-points with 22 in one class and 22 in the other. Sensors
are inherently noisy. Hence, the collected sensor data were
preprocessed to remove noise. Owing to the small size of the
dataset, the research team manually verified the data to see if
the preprocessing steps discussed in section III-C was able to
reduce noise and did not disturb the important characteristics
of the signal.

As discussed in section III-C, using the proposed RoboAs-
sist framework, a total of 17 ECG and 16 EDA features were
extracted from the data. Three machine learning algorithms
were utilized to classify the participant’s stress state using
both a multimodal and a unimodal approach. The following
data combinations were used for classification; only ECG,
only EDA, and both ECG and EDA data. Since our main
goal is to build a real-time cognitive load assessment system,
it is important to have a lower computational load on the
system. Hence, we first perform preliminary analysis on the
entire dataset after which we performed PCA to reduce the
dimensionality of the dataset to avoid overfitting and thereby
reduce computation.

The data from 16 participants were considered the training
set and data from 6 participants were the testing set. For
modeling the signals, we performed an exhaustive grid search
in order to obtain the best machine learning model for
evaluation. Tables II and III present the accuracy and F1-
scores on the test set of the SVM (linear kernel), RF,and
NB algorithms trained with all the features and with PCA,
respectively. The number of PCA components, denoted by C,
was selected empirically. The C value ranged between 3 and
15 and for each C value, the accuracy and Fl-score were
calculated for each ML algorithm. The minimum C value
that provided the best accuracy and Fl-score was selected
and presented in Table III. The minimum number of required
PCA components enables the system to work faster, which
is crucial for real-time applications. Moreover, Chabathula
et al. [48] have shown that the number of PCA components
influences the accuracy of ML methods differently. There-
fore, the number of PCA components that provide the best
accuracy and Fl-score is different for SVM, RF, and NB
algorithms. The best result for each algorithm is highlighted
in green. As shown in table II, SVM gives the best accuracy
of 92.85 % and F1-Score of 0.941 when all the features of
ECG and EDA are used. Moreover, the SVM gives similar
results (accuracy of 92.85 % and F1-Score of 0.933) with the
PCA applied to ECG and EDA features. The same accuracy
and Fl-score can also be achieved by using only the ECG
features with PCA and RF. Hence, the use of only ECG
could provide similar results with the combination of ECG
and EDA. As for NB, the results in Table II show very low
accuracy whereas it is slightly improved on application of
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PCA as show in Table III. These results could be explained
by the fact that our dataset consists only 32 data points in the
training set but contains 33 features. This may have resulted
in overfitting and there by these results.Table III also shows
that ECG performs better when compared to EDA in NB.
We think that this is because of the generic features extracted
for EDA which may have been redundant and thus creating
a highly correlated features. In the future, we plan a larger
data collection, including industrial workers, that could help
to improve the accuracy of the system.

TABLE II: Machine learning evaluation results for all ex-
tracted features.

SVM RF NB

Acc F1 Acc F1 Acc F1
ECG 4285 | 0.333 | 7142 | 0.714 | 57.14 | 0.667
EDA 7142 | 0.714 | 78.57 | 0.769 | 57.14 | 0.400
ECG+EDA | 9285 | 0.941 | 78.57 | 0.800 | 57.14 | 0.400

TABLE III: Machine learning evaluation results with PCA.
C is the number of PCA components.

SVM RF NB

C Acc F1 C [ Acc F1 C Acc F1
ECG 4 57.14 | 0.667 | 10 9285 | 0.933 10 | 78.57 | 0.800
EDA 10 | 7857 | 0.833 | 4 ‘ 64.28 | 0.667 | 5 57.14 | 0.500
ECG+EDA | 15 | 92.85 | 0.933 | 5 ‘ 64.28 | 0.706 | 15 78.57 | 0.823

V. CONCLUSION

In this paper, we presented RoboAssist, an HRC frame-
work that would enable the robot to assess the user’s cogni-
tive load. We believe such a framework is vital to ensure a
robotic system with a heart and soul. The classification re-
sults of the machine learning algorithms indicate that the data
collected using this framework is valid, and the framework
can be applied not only to industrial HRC scenarios but also
to other HRC domains, such as assistive and service robotics,
rehabilitation robotics, and others. The results of the user
survey provided us with a piece of valuable information that
the users felt an increase in cognitive load exertion, which is
indicated by the high values of their response to the attention
level question. The answer to the question of sleepiness
also suggests that as stress increases, they felt less sleepy.
It is important to note that we focused only on cognitive
load detection in this paper. As indicated in our prior work
[14], there are several factors that can affect the user’s
performance. Further research is necessary to expand this
framework to include several other factors that may affect
performance. One of the critical questions we are tackling
right now is that "Do the extracted features represent the
data properly?” Even though the features extracted for ECG
are specific to ECG signals, the features extracted for the
EDA signal are generic and are used in most cases of 1D
signal, such as speech and EEG. Further research is needed
to identify significant features or create an automated feature
extraction step before classification. Some research in this
domain is already underway but progress needs to be made
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for a real-time system to ensure safe HRC and improving
the well-being of the human partner.
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TABLE IV: Time Domain Feature Extraction from ECG
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