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Abstract— Robots are increasingly present in environments
shared with humans. Robots can cooperate with their human
teammates to achieve common goals and complete tasks. This
paper focuses on developing a real-time framework that assesses
the cognitive load of a human while cooperating with a robot
to complete a collaborative assembly task. The framework uses
multi-modal sensory data from Electrocardiography (ECG) and
Electrodermal Activity (EDA) sensors, extracts novel features
from the data, and utilizes machine learning methodologies to
detect high or low cognitive load. The developed framework
was evaluated on a collaborative assembly scenario with a user
study. The results show that the framework is able to reliably
recognize high cognitive load and it is a first step in enabling
robots to understand better about their human teammates.

I. INTRODUCTION

Robots have become part of our everyday lives and have

several roles such as helping workers in their work duties

[1], [2], [3], assisting people with impairment in activities

of daily living [4], [5], entertaining and keeping company to

children and the elderly [6], [7], and assisting rehabilitation

procedures [8], [9]. In industrial environments, such as

assembly lines, a strong level of interaction and cooperation

is reached where humans and robots are required to work

synergistically on a specific task and have different roles and

complementary abilities. Researchers focus on achieving safe

Human-Robot Cooperation (HRC), which will not threaten

or harm the physical health of the human teammate [10],

[11]. However, there is limited research on understanding

the psychological influence on the human who cooperates

with a robot on a daily basis. To ensure the efficiency and

productivity of the overall HRC, the human teammate needs

to feel comfortable while working with a robot. Therefore,

it is essential for robots to understand how their human

teammates feel and adapt accordingly. The difficulty of the

task at hand, time restrictions, and arousal are shown to be

some of the factors that affect cognitive load [12]. Cognitive

load is the amount of energy a person has to spend to achieve

a specific goal. This type of cognitive load is called an

extraneous cognitive load. Prior research [13] indicate that

different types of biosignals from physiological sensors can
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help monitor the human partner while working, for changes

in performance due to stress, lack of sleep, or increase in

cognitive load.

In our previous work [14], we proposed a cognitive

performance assessment framework for HRC based on sleep

data collected from a commercially available wrist band.

Inspired by our previous work, the main focus of this paper

is on the development of a real-time HRC framework, called

RoboAssist, that enables robots to monitor the cognitive load

of their human teammates using multimodal sensor data.The

RoboAssist system consists of commonly used minimal-

invasive sensors, such as Electrocardiography (ECG) and

Electrodermal Activity (EDA) [13], [14]. The main contri-

butions of the presented work are:

• the research and development of a machine learning

based framework that assesses cognitive load during

HRC;

• a comprehensive list of features that are extracted from

physiological sensors, such as ECG and EDA.

To demonstrate the feasibility of RoboAssist, a study was

conducted with 25 participants. The study was performed

in a collaborative assembly scenario using the collaborative

robot Sawyer developed by Rethink Robotics [15] (Fig. 1).

Fig. 1: Setup of the Presented Collaborative Assembly Sce-

nario. Top-left image: Final Assembly Product - A Miniature

Sanding Machine

The paper is organized as follows. In section II, we present

related work, section III describes RoboAssist system for

HRC, and section IV presents the experimental results of

the study and evaluation. In the final section, we discuss our

future research direction and conclude.
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II. RELATED WORK

Nelles et al. [16] summarized the available research work

on evaluation metrics for human well-being in Human-Robot

Interaction (HRI) and highlights that the experimental design,

the questionnaires, and measures used are very heteroge-

neous. Well-being is the state of feeling comfortable, healthy,

happy, and it is connected with the ability of an individual

to manage stress. Most of the research presented by Nelles

et al. focuses on self-reporting surveys and questionnaires

to provide feedback for the design of HRI regarding trust

[17], [18], [19], usability [20], [21], feeling of safety [22],

cognitive and physical workload [23], and well-being [24].

However, self-reporting is a subjective measure of cognitive

workload and it is difficult to quantify for real-time applica-

tions.

Advances in sensor technology in recent years have the

potential to help with the assessment of cognitive load.

Weistroffer et al. [25] used pre-post questionnaires and pre-

post measures of heart rate from a Photoplethysmogram

sensor and skin conductivity from an EDA sensor during

HRC. Their goal was to compare the acceptability of collab-

orative assembly between actual situations and their virtual

reality counterparts combined through questionnaires. How-

ever, the authors were not able to record the physiological

measurements during the actual HRC due to the positioning

of the sensors. Novak et al. [26] identified physical and

cognitive load during haptic interaction with a robot by

using four measurements; heart rate measured by ECG,

skin conductivity by EDA sensor, respiratory rate by the

thermistor flow sensor, and peripheral skin temperature by

a digital temperature sensor. Results from a user study of

30 participants show the combination of respiration and skin

temperature appears to estimate cognitive workload in phys-

ically demanding interaction with haptic robots. However,

the level of discomfort of wearing a thermistor flow sensor

attached to the user’s nose was not considered.

A framework to recognize user’s cognitive load during

HRI was presented by Villani et al. [27]. The framework

analyzes the variability of the user’s heart rate, which is

measured by a smartwatch. The selected scenario was the

interaction with a wheeled robot, and the user was providing

commands to the robot via hand gestures. The authors used

the analysis of 1000 Monte Carlo trials on segments of the

heart rate signal to detect the rest and stress conditions.

Experimental results showed that the algorithm could detect

changes in mental workload. Moreover, The framework was

tested by Landi et al. [28] in a teleoperation robotic task,

where virtual fixtures are used as an assistive technology.

However, in both works, there is no evaluation of the

accuracy of the cognitive load recognition. Moreover, other

characteristics of heart rate could provide valuable insights

into the person’s mental state.

The assessment of cognitive load during HRC is beneficial

for the improvement of working conditions and human well-

being. HRC requires the sharing of objects and/or environ-

ments between the human and the robot that may induce

stress and anxiety, and thereby increasing the cognitive load.

Therefore, our primary focus is on developing a framework

for collaborative robots, which are increasingly used in

industry [29]. This work presents a multi-sensory minimal-

invasive HRC system that analyzes the physiological state

of the user and recognizes changes in mental state, more

specifically, cognitive load. The framework is based on

machine learning techniques, and differs from the previous

presented work. Moreover, for the evaluation of the proposed

framework, a collaborative assembly scenario was proposed,

which is similar to real-world scenarios in the industry.

III. COGNITIVE LOAD ASSESSMENT FOR HRC

An overview of the proposed RoboAssist system is shown

in Fig 2. The system assesses human cognitive load during

HRC. In this section, the selected collaborative assembly

task, the placement of the multi-modal sensory system,

feature extraction, and machine learning approaches are

explained in detail.

HRC Time- Domain Features

Frequency-Domain Features

FeatureExtraction

Statistical Features

Spectral & Energy Features

Multi-sensory
System
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EDA

Input to Classifiers

Dimensionality Reduction

All Extracted Features
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Support Vector Machine

Output on
Cognitive Load
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Fig. 2: Overview of the proposed RoboAssist system for HRC

A. Collaborative Assembly Task

For this assessment, we focused on the task of assembling

a small sanding machine, shown in Fig 1, in an industrial

HRC scenario. We divided the parts required to make the

sanding machine into two sets; a set of components that a

robot can handle and a set of pieces that only a human can

handle.

As shown in Fig 1, the parts to the robot’s right side

are the parts that are handled by the robot. The robot

picks it up and brings it towards the user while the user

assembles the machine. Small pieces, which can only be

handled by the user, such as nuts and bolts, were placed

in separate small boxes called ”bins” to the right side of

the user along with a screwdriver. This setup is shown

in Fig 1. A user interface was created for the assembly

task, which showed the step-by-step instructions required to

assemble the sanding machine. Each step provided the user

with detailed instructions of the parts s/he needed to handle

and information about the parts the robot would handle. The

user interface is integrated with the robot using the Robot

Operating System (ROS) [30] so that the robot provides

the required components automatically to the user. A video
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of the assembly task can be found in the following link:

https://youtu.be/m_dkLHflCUo.

B. Multi-Sensor System and Sensor Placement

The RoboAssist system consists of an ECG and an EDA

sensor developed by BioSignalsplux [31]. The data are

transmitted via Bluetooth at 1000 Hz. ECG data were col-

lected from a standard 3-point bipolar standard limb leads

configuration of the Einthoven’s triangle [32]. We used a

Lead II setup in this configuration, where a positive electrode

is on the left leg, a negative electrode on the right arm, and

a reference electrode on the right leg for recording purposes.

The electrodes were placed on the participant’s right shoulder

and lower torso for this study to make wearing the sensor

and recording easier. The EDA sensor measures the electrical

potential produced on the skin surface due to the activity of

the sweat glands [33]. The best locations to acquire such

signals are spots where sweat glands are most active, like

the palms and the soles [34]. Since our application involves

participants using their arms for the collaborative assembly

task, EDA was collected from the shoulder, which was

proven to be one of the best alternative locations for skin

conductance measurement [35]. The selected placements for

ECG and EDA enable the sensors to be integrated into an

easily wearable smart T-shirt.

C. Feature Extraction

In this section, the data processing and feature extraction

for the ECG and EDA sensor data will be discussed.

1) ECG Signal: Because of the position of the ECG

electrodes on the shoulder and lower torso, the ECG signal

is inverted when compared to the standard Lead II setup.

Hence, the signal is inverted to represent the original wave-

form and then is pre-processed for feature extraction. For

this study, we extracted time and frequency domain features

from the QRS complex as shown in Fig 3 and RR interval

(the time elapsed between two successive R-waves) of the

ECG signal, which are commonly used features in heart rate

variability analysis for mental stress detection [36]. The QRS

complex forms the major component of the ECG signal and

it represents the electrical activation in the sensor due to

the ventricles contracting in the heart. It is the main spike

seen on the ECG waveform and is used for computing the

heart rate and several heart-disease states [37], [38]. We used

the peak detection algorithm developed by Van Gent at al.

[39]. To improve the peak detection, a notch filter is applied

before the peak detection algorithm with a cut-off frequency

of a threshold value, empirically selected as 0.05 Hz to

minimize the T-wave and other unwanted low-frequency

noise. Subsequently, the time and frequency-domain features

are extracted. The time domain features that are proposed

by Boonnithi et al. in [36] are as follows; the mean RR

interval or mean Inter-beat Interval (mRR), the mean heart

rate (mHR), the standard deviation of RR interval (SDRR),

the standard deviation of heart rate (SDHR), the coefficient

of variance of RR intervals (CVRR), the root mean square

successive difference (RMSSD), the proportion of successive

differences above 20 ms in percentage (pRR20), and the pro-

portion of successive differences above 50 ms in percentage

(pRR50). Moreover, additional time domain features were

extracted as follows; the median RR Interval (R̃R), the range

of the RR Interval (rRR), and median absolute deviation of

RR intervals (MAD). Table IV summarizes the formulas of

all the time domain extracted features.

The frequency domain features extracted from ECG are

the low and high frequency, the Symphathetic modulation

index, the Vagal modulation index and the Symphatovagal

balance index and Table I summarizes their formulas.

TABLE I: Frequency Domain Feature Extraction from ECG

Data

Features Computation

Low Frequency (LF) LF = Power spectrum from 0.04 to
0.15 Hz

High Frequency (HF) HF =Power spectrum from 0.15 to
0.5 Hz

Symphathetic modulation index
(SMI)

SMI = LF / (LF+HF)

Vagal modulation index (VMI) VMI = HF / (LF+HF)

Symphatovagal balance index
(SVI)

SVI = LF / HF

2) EDA Signal: The collected EDA data are downsampled

to 200Hz to reduce computation and then filtered using

a Butterworth filter to remove high-frequency noise using

methodology proposed by Bizzego et al. [40]. Research

indicates that EDA signals comprise of two different su-

perimposed components; the phasic or the skin conductance

response (SCR) and the tonic or the skin conductance levels

(SCL) [34], [41]. The phasic component varies based on

the provided stimulus, where changes in the signal imply

activation of the sudomotor nerve due to activity in the sweat

glands. Whereas the tonic component is the baseline level of

skin conductance, which varies from person to person [41].

In this paper, the phasic component is used to extract features

as we were interested in modeling the user’s cognitive load

to the presented task.

The shape of the EDA signal is important in signifying a

change in nervous response. Statistical features related to

the amplitude, the first derivative and the second deriva-

tive of the signal were extracted. Additional spectral and

energy features that are commonly used to describe the

characteristics of one-dimensional (1D) signals were ex-

tracted. The following features were extracted from the SCR

signal; Mean Value, Standard Deviation, Maximum Value,

Minimum Value, Range, Variance, first Derivative Mean,

first Derivative Standard Deviation, second Derivative Mean,

second Derivative Standard Deviation, Zero Crossing Rate

(the rate at which the signal changes sign in a given window),

Spectral Centroid, Spectral Rolloff, Spectral Entropy, Energy,

and Entropy of Energy.

The spectral centroid of the given frame of the spectrum

is computed by the following equation:

C =

N−1∑

i=0

Xip(Xi),
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Fig. 3: Sample ECG signal acquired from the Biosignalsplux sensor. The green dots indicate the peak detected using which

the heart rate of the signal was estimated. Q, R, S indicate the Q-wave, R-wave and S-wave component of the ECG signal.

where N is the size of the spectrum, X is the observed

frequencies and p(X) is the probability to observe a specific

value in X.

Spectral Rolloff corresponds to the frequency below which

90% of the magnitude distribution of the spectrum is con-

centrated. It is given by the equation:

R = 0.9

N−1∑

i=0

|Xi|,

where X is the spectrum of the signal and N is the size of

the positive spectrum.

Spectral Entropy is the entropy of the normalized spectral

energy of the given signal and is computed by the formula:

SE = −

fs/2∑

f=0

P (f) log
2
P (f),

where fs is the sampling frequency and P is the normalized

power spectral density.

Energy is the sum of squares of the signal divided by the

length of the frame and it is calculated by the formula:

E =
1

N

N−1∑

I=0

|Xi|
2,

where N is the length of the signal window and X is the

observed frequencies.

The entrophy of energy of the given signal is given by the

formula

EE = −
∑

E log
2
E,

where E is the energy of the signal given a window. These

spectral and energy features have also been for other signals

like EEG [42], and speech [43]. The total extracted features

from ECG and EDA data are 17 and 16, respectively.

D. Machine Learning Approach

Machine Learning analysis was performed using the fea-

tures extracted from each ECG and EDA data and a combi-

nation of these data. A total of 3 combinations of modalities

were tested for classification performance. Our main goal is

to prove that the data collected from the proposed RoboAssist

framework is enough to detect the cognitive load of the

participant given the HRC task. Three widely used classifiers

were selected; Support Vector Machine (SVM) and Naive

Bayes (NB), the two commonly used algorithms in Human-

Computer Interaction [44]. We also chose the Random Forest

(RF) algorithm to compare the performance using an en-

semble algorithm. These algorithms are then evaluated using

accuracy and F1-scores. Accuracy is defined as a measure

of the total number of correctly identified cases and F1-

score is a measure of the harmonic mean of the precision

and recall [45]. F1-score gives a better understanding of

the misclassified cases as it is critical in the design of the

framework. In the next section, the evaluation results of the

classification models are presented and discussed.

IV. EXPERIMENTAL RESULTS

A. User study

Twenty five participants from The University of Texas at

Arlington (UTA), participated in the user study where fifteen

were male and ten were female participants. Among these

participants, 23 were right-handed participants and two were

left-handed participants. Six of the participants had prior

experience in HRC. Except for one participant, who was

in the 31 to 40 age range, all other participants were in the

19 to 30 age range. Each user study lasted for about 30 to

40 minutes and it was approved by the Institutional Review

Board at UTA.

The participants completed a baseline survey before start-

ing the user study. Subsequently, they performed the first ses-

sion, which is performing the assembly task. On completion,

they were asked to fill the first post-task survey form. Next,
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they performed the second session which is performing the

same assembly task with time constraints to induce stress

and high cognitive load. The participants were required to

complete each step of the assembly task within 30 seconds.

After the second session is completed the participants filled

out the second post-task survey form. In each and every

session, the time taken by the user in each and every step of

the task was recorded along with the sensor data, which is

used for further evaluation along with the survey responses.

To avoid the cumulative effect of stress, there was a short 3

minute break between the two sessions for the participants

to relax.

In real-world assembly and production lines, time is a

very critical parameter as factories are required to increase

productivity and to reduce production time [46], [47]. Tradi-

tionally, human co-workers receive training before they start

working with a robot daily. Hence, practice effect is always

present in the real world and our framework reflects this

design. Since our goal is to simulate a real-world setup, the

participants were required to undergo a training session (first

session) before they were allowed to work on a timed session

(second session).

User Feedback: Fig 4 summarizes the responses of the

participants on some of the survey questions. The participants

were asked to rate their level of sleepiness, stress, and

attention from 0, meaning very low to 10, meaning very high.

Fig 4 shows that the users felt slightly more stressed during

the second session (with timer) in comparison to the first

session (no timer) and the baseline. Similarly, the users felt

less sleepy during the second session in comparison to the

baseline and the first session indicating that the participants

were more attentive as the stress levels increased. However,

the users felt that their attention was almost similar for

both sessions and higher than the baseline. The survey also

shows that continuous work can lead to an increase of mental

exertion, and this may lead to stress and increased cognitive

load. Thus, it is important in an HRC scenario to be able

to monitor the user’s cognitive load and adapt accordingly,

especially in an industry. It is also important to note that the

values obtained from the user surveys were not significantly

different between the two tasks and this can be attributed to

the relatively small number of participants.

Fig. 4: Subjective feedback

B. Evaluation of the Proposed Framework

Data from three participants were rejected due to sensor

malfunction. The data from the remaining 22 participants

were organized into two classes; the first session was the

class of ”low cognitive load” while the second session was

the class ”high cognitive load”. Hence in total, we had 44

data-points with 22 in one class and 22 in the other. Sensors

are inherently noisy. Hence, the collected sensor data were

preprocessed to remove noise. Owing to the small size of the

dataset, the research team manually verified the data to see if

the preprocessing steps discussed in section III-C was able to

reduce noise and did not disturb the important characteristics

of the signal.

As discussed in section III-C, using the proposed RoboAs-

sist framework, a total of 17 ECG and 16 EDA features were

extracted from the data. Three machine learning algorithms

were utilized to classify the participant’s stress state using

both a multimodal and a unimodal approach. The following

data combinations were used for classification; only ECG,

only EDA, and both ECG and EDA data. Since our main

goal is to build a real-time cognitive load assessment system,

it is important to have a lower computational load on the

system. Hence, we first perform preliminary analysis on the

entire dataset after which we performed PCA to reduce the

dimensionality of the dataset to avoid overfitting and thereby

reduce computation.

The data from 16 participants were considered the training

set and data from 6 participants were the testing set. For

modeling the signals, we performed an exhaustive grid search

in order to obtain the best machine learning model for

evaluation. Tables II and III present the accuracy and F1-

scores on the test set of the SVM (linear kernel), RF,and

NB algorithms trained with all the features and with PCA,

respectively. The number of PCA components, denoted by C,

was selected empirically. The C value ranged between 3 and

15 and for each C value, the accuracy and F1-score were

calculated for each ML algorithm. The minimum C value

that provided the best accuracy and F1-score was selected

and presented in Table III. The minimum number of required

PCA components enables the system to work faster, which

is crucial for real-time applications. Moreover, Chabathula

et al. [48] have shown that the number of PCA components

influences the accuracy of ML methods differently. There-

fore, the number of PCA components that provide the best

accuracy and F1-score is different for SVM, RF, and NB

algorithms. The best result for each algorithm is highlighted

in green. As shown in table II, SVM gives the best accuracy

of 92.85 % and F1-Score of 0.941 when all the features of

ECG and EDA are used. Moreover, the SVM gives similar

results (accuracy of 92.85 % and F1-Score of 0.933) with the

PCA applied to ECG and EDA features. The same accuracy

and F1-score can also be achieved by using only the ECG

features with PCA and RF. Hence, the use of only ECG

could provide similar results with the combination of ECG

and EDA. As for NB, the results in Table II show very low

accuracy whereas it is slightly improved on application of
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PCA as show in Table III. These results could be explained

by the fact that our dataset consists only 32 data points in the

training set but contains 33 features. This may have resulted

in overfitting and there by these results.Table III also shows

that ECG performs better when compared to EDA in NB.

We think that this is because of the generic features extracted

for EDA which may have been redundant and thus creating

a highly correlated features. In the future, we plan a larger

data collection, including industrial workers, that could help

to improve the accuracy of the system.

TABLE II: Machine learning evaluation results for all ex-

tracted features.

SVM RF NB
Acc F1 Acc F1 Acc F1

ECG 42.85 0.333 71.42 0.714 57.14 0.667

EDA 71.42 0.714 78.57 0.769 57.14 0.400

ECG+EDA 92.85 0.941 78.57 0.800 57.14 0.400

TABLE III: Machine learning evaluation results with PCA.

C is the number of PCA components.

SVM RF NB
C Acc F1 C Acc F1 C Acc F1

ECG 4 57.14 0.667 10 92.85 0.933 10 78.57 0.800

EDA 10 78.57 0.833 4 64.28 0.667 5 57.14 0.500

ECG+EDA 15 92.85 0.933 5 64.28 0.706 15 78.57 0.823

V. CONCLUSION

In this paper, we presented RoboAssist, an HRC frame-

work that would enable the robot to assess the user’s cogni-

tive load. We believe such a framework is vital to ensure a

robotic system with a heart and soul. The classification re-

sults of the machine learning algorithms indicate that the data

collected using this framework is valid, and the framework

can be applied not only to industrial HRC scenarios but also

to other HRC domains, such as assistive and service robotics,

rehabilitation robotics, and others. The results of the user

survey provided us with a piece of valuable information that

the users felt an increase in cognitive load exertion, which is

indicated by the high values of their response to the attention

level question. The answer to the question of sleepiness

also suggests that as stress increases, they felt less sleepy.

It is important to note that we focused only on cognitive

load detection in this paper. As indicated in our prior work

[14], there are several factors that can affect the user’s

performance. Further research is necessary to expand this

framework to include several other factors that may affect

performance. One of the critical questions we are tackling

right now is that ”Do the extracted features represent the

data properly?” Even though the features extracted for ECG

are specific to ECG signals, the features extracted for the

EDA signal are generic and are used in most cases of 1D

signal, such as speech and EEG. Further research is needed

to identify significant features or create an automated feature

extraction step before classification. Some research in this

domain is already underway but progress needs to be made

for a real-time system to ensure safe HRC and improving

the well-being of the human partner.
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multi-sensory robotic assistant for a drinking task,” in 2019 IEEE 16th

International Conference on Rehabilitation Robotics (ICORR). IEEE,
2019, pp. 210–216.

[5] M. Kyrarini, Q. Zheng, M. A. Haseeb, and A. Gräser, “Robot learning
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TABLE IV: Time Domain Feature Extraction from ECG

Data

Features Computation

mean Heart
Rate

mHR =

∑
N

i=1
60000/RRi

N

where N:number of RR interval terms

mean Inter-
beat Interval

mIBI =

∑
N

i=1
RRi

N

Median RR
Interval

R̃R = median(RR)

Range RR
Interval

rangeRR = max (RR)−min (RR)

Standard
Deviation of
RR intervals

SDRR =

√∑
N

i=1
(RRi −mIBI)2

N − 1

Standard
deviation of
successive
differences SDSD =

√∑
N

i=1
(RRi+1 −RRi)

2

N − 1

Standard
deviation of
heart rate

SDHR =

√∑
N

I=1
((60000/RRi)−mHR)2

N − 1

Coefficient
of variance
of RR
intervals

CV RR =
SDRR× 100

mIBI

Root mean
square of
successive
difference RMSSD =

√
(RRi+1 −RRi)

2

N

Proportion
of successive
differences
above 20
ms in
percentage

pRR20 =
Count (|RRi+1 −RRi|)>20ms

× 100

N − 1

Proportion
of successive
differences
above 50
ms in
percentage

pRR50 =
Count (|RRi+1 −RRi|)>50ms

× 100

N − 1

Median
absolute
deviation of
RR intervals

MAD = median

(
RRi − R̃R

)
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