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ABSTRACT

Cognitive assessments are a crucial part of rehabilitation in persons

with a neurological disorder and vocational rehabilitation, where

people need to be trained to improve their cognitive abilities. While

human action involves using several cognitive skills and physical

skills, most assessment systems focus on detecting or assessing

either the cognitive ability or just physical ability. There is a need

for a system that bridges the gap between real-world activity, which

involves physical activity and cognition, and clinical tests that

are tailored for a specific use. To address this need, we propose

a novel interactive 9-Hole Pegboard called the 9-Peg Move (9PM)

capable of performing both cognitive and physical assessments

in the same system. The system incorporates wearable sensors to

collect data for objective evaluation. Preliminary machine learning

results indicate that the data collected using our system can reliably

recognize cognitive factors like perceived mental effort, perceived

task difficulty, and perceived interest in a task. These results are

the first step toward building an automated immersive assessment

system.
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1 INTRODUCTION

Advancements in wearable sensor technology in recent years have

paved the way to several body-wearable sensors like the Electrocar-

diogram (ECG), Electroencephalogram (EEG), Inertial Measurement

Units (IMU), and electrodermal activity (EDA) for use in clinical

research activities [14, 27]. We have also seen the incorporation of

some of these sensors into low-cost, power-efficient devices such

as activity trackers and smartwatches, making them available for a

larger population of developers, researchers, and users. Data from

such devices can help track movement, sleep pattern and quality,

heart-rate data, and many others. Leveraging this vast amount of

data can help us understand more about our bodies and capabilities.

We can use it to advance healthcare and educational applications

by personalizing them based on our needs.

In recent times, researchers are using sensors to help them build

sensor-based smart assessment systems in healthcare [13, 18, 25].

Recent research also suggests the development of a personalized

vocational, cognitive skill assessment and training system to as-

sess human worker’s cognitive skills required for assembly and

manufacturing tasks [3, 35]. However, assessing the skills of an in-

dividual is not straightforward. Human experts have the ability to

evaluate a person’s ability intuitively using specific tests and years

of experience; however, developing smart systems and algorithms

can be a daunting task.

While there are specific tests to assess specific cognitive or phys-

ical abilities, real-world tasks involve working on a physical task

while using their cognition. For example, an assembly line worker

may need to assemble parts of a product using proper hand dexter-

ity while requiring to remember the assembly’s steps using working

memory. In this paper, we discuss our effort to build a novel as-

sessment system that makes it possible to combine physical and

cognitive assessment. Our system, the 9-Peg Move (9PM), shown in

Figure 1, can be used to build assessments that require a physical

action of moving pegs from a source location (red/blue areas) to a

destination (white area) based on an underlying cognitive test. We

hypothesize that using such a system, researchers can build tasks

that simulate the real-world and also incorporate sensors that mon-

itor the participants for an objective measurement of the required

cognitive and physical skills. To illustrate our hypothesis, we use

commonly used sensors that can be used to monitor a person while

working, for changes in performance due to stress, lack of sleep,
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or increase in cognitive load [15]. The main contributions of the

presented work are:

• The novel design of the 9PM Board incorporating digitized

versions of physical and cognitive assessments.

• A public dataset1 for behavioral, performance, and physio-

logical data of participants performing modified versions of

standard physical and cognitive assessments.

The paper is organized as follows. In section 2, we present related

work, section 3 describes the 9PM system for Cognitive Assessment

using a physical task, and in section 4 we present the experimental

results and evaluation of the study. In the final section, we discuss

our future research direction and conclude.

2 RELATED WORKS

After accidents or due to disorders, a person may lose their upper

limb function or dexterity. To rehabilitate the loss of function and

mobility, physical tests to assess dexterity are used. The łgold stan-

dardž to evaluate manual dexterity in many disorders is the Nine

Hole Peg Test (NHPT) [11, 12, 24]. A traditional NHPT consists of

a board with nine holes and a receptacle. This receptacle consists

of nine pegs designed to fit into the holes. When instructed, the

person would move the pegs one at a time from the receptacle to

the hole and back multiple times. An expert monitors the user’s

performance who can then assess their dexterity. Other tests like

the Box and Blocks test also assess the manual dexterity of the

upper arm [20]. In this test, a box that is divided in the middle by a

partition is used. One part of the box contains a few blocks of equal

sizes. When instructed, the person has to pick the blocks from one

side of the box and place it on the other side. The user performs

this action multiple times while moving above the partition. An

expert monitors the user’s performance to assess their dexterity.

A battery of tests is available to assess human cognition. These

tests assess one or more aspects of cognition. One of the most com-

mon cognitive tests is the Stroop test, which evaluates inhibition,

attention, and executive function [29]. Here, the person needs to

identify an incongruent stimulus in a series of stimuli. Another

aspect of cognition is episodic memory. The Picture Sequence Mem-

ory Test (PSMT) evaluates this aspect of cognition [5]. This test

will show the person a series of pictures that they must arrange

in a specific order. List Sorting Test assesses working memory as

an aspect of cognition [36]. In this test, the person has to sort a se-

quence based on the stimuli given. Pattern Comparison Processing

Speed Test assesses processing speed [8]. This test will show the

person two pictures, and they must recognize if the pictures are

the same.

The above tests are used for assessing the cognitive state of

both a neurotypical person or a person suffering from neurological

disorders. Administering these tests under neurological disorders

gives an indication of the current cognitive state of the person and

indicates the progression of the disorder. While several attempts

have been made to combine cognitive assessments in a physical

task [19, 26], these works focus on assessing a specific cognitive

ability. Research also exists to assess multiple cognitive abilities

using a single system for screening [37], but this system does not

incorporate a physical task. Our 9PM system allows the researcher

1https : //дithub .com/abujelala/9PM

to create several combinations of cognitive assessments with the

NHPT (physical task) that assesses a variety of cognitive skills,

as explained in section 3. To the best of our knowledge, no such

system exists.

Figure 1: The 9PM Board, a Novel Modified Version of the

NHPT.

3 9PM: AN INTERACTIVE TOOL FOR
COGNITIVE ASSESSMENT USING
PHYSICAL TASK

As discussed before, traditional NHPT consists of a board with

nine holes and a receptacle with nine pegs. Our 9PM system uses

a novel test board, called 9PM board, that is designed to allow the

participant to perform a modified version of the NHPT with other

cognitive assessments. This setup consists of three areas, red, blue,

and white, each containing nine holes. While the red and the blue

are dubbed as the source areas, the white area is also known as

the destination area and does not have any pegs. According to the

instruction provided, the cognitive tests require the user to move

the pegs from the source to the destination area.

9PM incorporates the following cognitive tests; Stroop Test [32],

the Wisconsin Card Sorting Test (WCST) [17] and the NIH Tool-

box Picture Sequence Memory Test (PSMT) [10]. The Stroop Test

assesses inhibition, attention, and executive function, and PSMT

evaluates episodic memory. On the other hand, theWCST evaluates

abstract reasoning and task-shifting ability [4]. It requires partici-

pants to match cards based on count, color, or shape. The matching

rule changes randomly after a few rounds and the users need to

figure out the rule based on trial and error. The cognitive tasks

we chose not only cover a broad variety of cognitive assessments

but also cover some of the most frequently used assessments in

research and clinical practice [33].
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Figure 2: Experiment Setup (Left) and Sensors Placement (Right).

3.1 9PM Tasks

Using the 9PM setup, the participants are asked to perform five

tasks. This is accomplished by moving the pegs from one area of

the board to another, thus exerting both physically and cognitively.

They will move the pegs one at a time using their dominant hand.

The system recognizes when a peg is picked up and when it is

placed in a hole. If the participant makes a wrong move, a buzzer

will sound, providing audio feedback.

In Task 1 (T1), the participant is asked to move all nine pegs to

and from the white area four times in a single round, totalling 72

moves. They are asked to start from the area closest to their domi-

nant arm. This task provided information about the participant’s

state when little to no cognitive effort was needed.

In Task 2 (T2), the participants are provided instructions on

a screen (i.e., a smartphone). They are asked to pick a peg from

either the red or the blue area and move it to the white area. The

instructions are provided for each of the nine pegs.

Task 3 (T3) incorporates the Stroop test into the 9PM setup. Here

the instruction displayed on the screen will be either the word

‘Red’ or ‘Blue.’ The font color of the word may be red or blue. The

participant must pick a peg from the area indicated by the font

color. For example, if the instruction provided is ‘Red’ with blue

font color, the participant must pick the peg from the blue area. By

comparing T2 and T3, we can understand the cognitive effect of

the Stroop Test on the participant.

Task 4 (T4) incorporates the WCST into the 9PM setup. Here,

there are two rules; follow the text or follow the color of the text.

For example, if the instruction provided is ‘Red’ with blue font color,

the participant must figure out if they need to follow the text and

pick from the red area or need to follow the text color and pick

from the blue area.

Finally, Task 5 (T5) incorporates the PSMT into the 9PM setup.

Here the participants are shown the order of the pegs in sequence.

They are then supposed to memorize this sequence and move the

pegs accordingly. They will move the pegs once all nine steps are

shown. The participants are asked to do a single round of T1, and

4-rounds of T2, T3, T4, and T5. For more details about the 9PM

tasks and setup, please refer to [1].

3.2 User Study and Data Collection

The user study, which is approved by the Institution’s Review Board

at the University of Texas at Arlington, has 63 healthy participants.

The participants are mostly right-handed (96.82%), male (88.89%)

participants, with an average age of 25.11 (± 4.39) years old. Each

participant produced 17 datasets (one per round), in addition to the

baseline. In T2, T3, T4, and T5, we averaged the rounds of each task

after extracting the features to produced another 4 datasets. The

data is available at: https : //дithub .com/abujelala/9PM .

The participant starts the study by sitting on a chair and watches

a video demo2 which explains the study protocol and how to wear

the sensors. At the end of the video demo, the participant reviews

and signs the consent form. The study personnel is available in the

room to answer any questions the participant might have. After

that, the participant wears the sensors. Figure 2 illustrates the

experiment setup and the placement of sensors on the participant.

The experiment workflow is explained in Figure 3. The sensors

record ECG, EDA, EEG, and IMU data. ECG and EDA data are

recorded using a Biosignalsplux Explorer unit [6], EEG data is

2 https : //youtu .be/1O5pmqFOF FQ
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Figure 3: Experiment Workflow.

recorded using an OpenBCI ULTRACORTEX MARK IV sensor [22],

and IMU data is recorded using a MetaMotionR sensor [21]. Once

the participant wears the sensors and the study personnel checks

that the data is reliably streaming, the baseline recording starts.

The baseline session is three-minutes long, and it is recorded while

the participant is sitting with their eyes closed.

After the baseline, the participant fills out a user questionnaire

to collect their baseline subjective data, and then starts performing

the study’s five tasks. The participants always start with T1 and

then perform the other four tasks in random order. Each task is

preceded by a trial. The trial of T1 is a shortened version of the

task with just 18-moves. However, the trial of T2, T3, T4, and T5

is the same as one round of the task. T1 and the 4th round of T2,

T3, T4, and T5 are followed with a lengthy post-task survey while

the other rounds are followed with a short post-round survey. The

objective of doing T2, T3, T4, and T5 in random order is to focus

on the cognitive effect of the tasks and avoid the practice effect

and the cascading effect of fatigue. The practice effect is when the

participants get very familiar with the setup and perform very well

in the last tasks compared to the first tasks. On the other hand, the

cascading effect of fatigue is when the performance decreases in

the last tasks because the participant is fatigued.

3.3 Machine Learning Approach

3.3.1 Data types and Feature Extraction. In this study, we collected

three types of data: behavioral, performance, and physiological data.

Behavioral data include the user’s dominant-hand movement data

and user surveys. The hand movement data is recorded from an

IMU sensor attached to the wrist. From the IMU data, we extracted

280 time-domain features based on [2]. These features include the

mean, standard deviation, median absolute value, maximum, mini-

mum, signal magnitude area, energy, interquartile range, entropy,

autoregression coefficients, and correlation coefficient. The surveys

collected the user’s subjective responses on mental effort, physical

effort, task difficulty, interest in the task, and difficulty concentrat-

ing.

The performance metrics in this study are task score, reaction

time, and completion time. Task score is the percentage of the

correct moves a participant completes. The reaction time is the

time the participant needs to decide on which source area they

should pick up a peg from. In T2, T3, and T4, the reaction time is

calculated from the appearance of a stimulus on the screen to the

time a peg is picked up from the source area. In T1 and T5, the

reaction time is the time from placing a peg in the destination area

to the time a peg is picked up from the source area. In contrast, the

completion time is the time the participant needs to complete the

physical movement, which is the time needed to place a peg in the

destination area after picking it up from the source area.

The physiological data collected are EEG, EDA and ECG. The

EEG sensor has 8-channels recording data from the FP1, FP2, P3,

P4, C3, C4, O1, and O2 locations on the international 10ś20 system

for EEG. This was done to monitor the prefrontal and the parietal

regions of the brain. These areas have shown to have a relationship

with cognitive load and fatigue [9, 38]. Specifically, the parietal

cortex has shown a relationship with cognitive fatigue in people

suffering from multiple sclerosis. Moreover, EEG was also set up

to capture data from the occipital lobe to examine data from the

visual cortex. We extract time domain features like mean, standard

deviation, minimum, maximum, kurtosis and skew from the EEG

data. We also extract spectral and energy based features which

have proven to have successful results on such signals [16, 23]. The

spectral and energy features are spectral centeroid, spectral spread,

spectral entropy, spectral rolloff, zero crossing rate, energy, and

entropy of energy. Since these features were extracted for every

power band (alpha, beta, gamma, theta and delta) and the raw sig-

nal of each EEG channel, the total number of EEG features is 624.

From the EDA data, we extract 40 features based on [34]. These

features are based on filtered skin conductance signal and its first

and second derivatives (e.g. maximum, minimum, maximum of

absolute value, and mean absolute value), and wavelet coefficients

(maximum, mean, standard deviation, median, and number above

zero). For ECG, we extracted 17 time and frequency domain features

[7, 31]. These ECG features are mean , median, range, standard de-

viation, coefficient of variance of NN interval, average heart rate,

standard deviation of successive NN interval differences (SDSD),

root mean square successive difference (RMSSD), number of pairs

of adjacent NN intervals differing by more than 20 ms to all NN

intervals and by more than 50 ms (pNN20, pNN50), pNN50/pNN20,

power spectrum of low frequency (LF), power spectrum of high

frequency (HF), symphathetic modulation index (SMI), vagal mod-

ulation index (VMI), and symphatovagal balance index (SVI). The

multimodal data used to train the Machine Learning algorithms

explained in section 3.3.2 are a combination of these 6 modalities:

ECG, EDA, EEG, IMU, performance metrics, and the task number.

This leads to 63 possible modality combinations (26−1) for analysis.

3.3.2 Machine Learning Algorithms. We used Machine Learning

(ML) to utilize the users’ multimodal data to predict their physical

and cognitive states. Our goal is to show that data collected from

this system can be reliably used to predict cognitive and physical

conditions. This paper focuses on predicting 5 states: mental effort,

physical effort, task difficulty, task interesting, and difficulty con-

centrating. The user survey answers were used as the ground truth
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of the user’s state. Most of the survey questions use a Likert scale

from 1 to 10. However, we want to solve the prediction problem as a

classification problem, rather than a regression problem. Therefore,

we converted the survey answers into a binary scale. For mental

effort, physical effort, task difficulty, and task interesting, we try to

predict if the user’s response is above his/her personal average re-

sponse (e.g., exerted more than his/her average mental effort). Since

we want the prediction to be personalized per participant, each

participant’s data were normalized separately. For example, if 3

and 9 were the participant’s lowest and highest scores, respectively,

his/her normalized average score would be 6. Difficulty concentrat-

ing was not task-specific, like task difficulty, hence we use ML to

predict if the participant is having difficulty concentrating more

than in his/her baseline.

As mentioned in section 3.2 and 3.3.1, we have 21 datasets per

participant, and every dataset has data from 6 modalities. The 63

possible combinations of the modalities are used to train, validate

and test theML algorithms. The datasets were divided into two parts.

The first part has data from 55 participants and it is used for training

and validation using 5-fold cross-validation. The second part has 8

participants’ data and it is used for testing. The ML algorithms used

are Logistic Regression (LR), K-Nearest Neighbors (KNN), Support

Vector Machine (SVM), Gradient Boosting (GB), Extra Trees (ET),

Decision Tree (DT), Random Forest (RF), Neural Networks (NN),

Naive Bayes (NB), AdaBoost (AB), Quadratic Discriminant Analysis

(QDA), and Gaussian Process (GP). Randomized Grid-Search from

Scikit-Learn Library [30] was used to fine-tune these algorithms.

After the ML features were extracted, we run the ML algorithms

multiple times, once with features normalized with Min-Max Scal-

ing, once with features standardized with Standard Scaling, and

with and without features selection process. The feature selection

process used is Principal Component Analysis (PCA). For every

run, we recorded the test F1 score, the test accuracy, and the cross-

validation average validation-accuracy. The labels we have are not

equally distributed, which makes the accuracy score less reliable.

Therefore, the best classifier was determined based on the test F1

score, rather than the test accuracy score. F1 score is a measure of

the harmonic mean of the precision and recall [28].It also gives a

better understanding of the misclassified cases as it is critical in the

design of the framework.We found that theMin-Max normalization

with PCA provides the best results for most of the cases. Therefore,

section 4 presents the best classifier’s test F1 score results when

using Min-Max normalization with PCA.

Table 1: ML Results

Test F1 Score ML Algorithm

Mental Effort 75.86 QDA

Physical Effort 43.84 NB

Task Difficulty 86.67 AB

Task Interesting 76.92 NB

Difficulty Concentration 55.00 QDA

4 EXPERIMENTAL RESULTS

In this section we focus on the ML algorithms results and the survey

results. Table 1 summaries the results of the ML algorithms. From

the table, we can see that the ML algorithms result in a high F1

score (> 70%) when predicting mental effort (75.86%), task diffi-

culty (86.67%) and interest in a task (76.92%) but produces a low

F1 score when predicting physical effort (43.84%) and difficulty in

concentration (55.0%). We believe the reason for the low F1 scores

in predicting physical effort and difficulty in concentration is the

fact that the participants’ responses were not equally distributed.

We performed a One-Way Analysis Of Variance (ANOVA) test to

analyze user’s responses between tasks. We found for most of the

tasks there was no significant difference between users’ answers

on physical effort and difficulty in concentration. Also, when the

users’ responses were converted to binary scores, the labels were

not balanced. The binary labels were 75.28% vs. 24.72 and 72.79%

vs. 27.21% for the physical effort and difficulty concentrating, re-

spectively. Since the physical aspect of the tasks is the same, it is

expected that the participants might not report changes in their

physical effort which justifies the results for the ANOVA test and

the low prediction capability for these labels.

Figure 4: Survey Answers - Average Responses onMental Ef-

fort, Physical Effort, Task Difficulty and Task Interesting.

From the user surveys, we focus on 5 survey questions which

we used to produce the ML labels. Figure 4 shows the average

survey responses per task with the standard deviation (SD) for

mental effort, physical effort, task difficulty and interest in a task.

The figure shows noticeable differences in the mean of the mental

effort and the task difficulty responses while it shows small mean

differences in responses of the other two questions. The figure also

shows that T4 and T5 required the most mental effort and were

the most difficult. It also shows that T1 required the most physical

effort. The average interest in a task was also very similar across the

tasks, with T4 being the most interesting task. In addition, Figure

5 illustrates the average responses for difficulty concentrating. It

shows that the most common response was ‘No More than Usual’.
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Figure 5: Survey Answers - Average Responses on Difficulty

Concentrating.

5 CONCLUSION

In this study, we developed the 9PM system, a novel system to

bridge the gap between real-world activity and clinical tests. 9PM

was designed to utilize on the standardized physical and cognitive

assessment and to collect multimodal data for analysis and assess-

ment. We were able to analyze these multimodal data and use them

to predict user’s state. In this paper, our analysis mainly focuses on

ML and survey responses. Results indicate that the data collected

using the system can be used to reliably predict cognitive state. The

survey responses also indicate that the 9PM system can be used

to build cognitive tests of varying difficulty and a physical task

using the same system. The future goal of our research is to build

an adaptive intelligent system that could track user’s state and pro-

vide personalized recommendations. To do that, we need to detect

the user’s current state, and we believe our results in this paper

provide the necessary motivation to use the 9PM system towards

our goal. While our work in this paper provides a successful proof

of concept. The data in this paper was collected in a controlled

lab environment, with healthy participants in the same age range.

Therefore, our system still needs to be tested and validated with

more diverse participants, in a real-life scenario.
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