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ABSTRACT

Cognitive assessments are a crucial part of rehabilitation in persons
with a neurological disorder and vocational rehabilitation, where
people need to be trained to improve their cognitive abilities. While
human action involves using several cognitive skills and physical
skills, most assessment systems focus on detecting or assessing
either the cognitive ability or just physical ability. There is a need
for a system that bridges the gap between real-world activity, which
involves physical activity and cognition, and clinical tests that
are tailored for a specific use. To address this need, we propose
a novel interactive 9-Hole Pegboard called the 9-Peg Move (9PM)
capable of performing both cognitive and physical assessments
in the same system. The system incorporates wearable sensors to
collect data for objective evaluation. Preliminary machine learning
results indicate that the data collected using our system can reliably
recognize cognitive factors like perceived mental effort, perceived
task difficulty, and perceived interest in a task. These results are
the first step toward building an automated immersive assessment
system.
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1 INTRODUCTION

Advancements in wearable sensor technology in recent years have
paved the way to several body-wearable sensors like the Electrocar-
diogram (ECG), Electroencephalogram (EEG), Inertial Measurement
Units (IMU), and electrodermal activity (EDA) for use in clinical
research activities [14, 27]. We have also seen the incorporation of
some of these sensors into low-cost, power-efficient devices such
as activity trackers and smartwatches, making them available for a
larger population of developers, researchers, and users. Data from
such devices can help track movement, sleep pattern and quality,
heart-rate data, and many others. Leveraging this vast amount of
data can help us understand more about our bodies and capabilities.
We can use it to advance healthcare and educational applications
by personalizing them based on our needs.

In recent times, researchers are using sensors to help them build
sensor-based smart assessment systems in healthcare [13, 18, 25].
Recent research also suggests the development of a personalized
vocational, cognitive skill assessment and training system to as-
sess human worker’s cognitive skills required for assembly and
manufacturing tasks [3, 35]. However, assessing the skills of an in-
dividual is not straightforward. Human experts have the ability to
evaluate a person’s ability intuitively using specific tests and years
of experience; however, developing smart systems and algorithms
can be a daunting task.

While there are specific tests to assess specific cognitive or phys-
ical abilities, real-world tasks involve working on a physical task
while using their cognition. For example, an assembly line worker
may need to assemble parts of a product using proper hand dexter-
ity while requiring to remember the assembly’s steps using working
memory. In this paper, we discuss our effort to build a novel as-
sessment system that makes it possible to combine physical and
cognitive assessment. Our system, the 9-Peg Move (9PM), shown in
Figure 1, can be used to build assessments that require a physical
action of moving pegs from a source location (red/blue areas) to a
destination (white area) based on an underlying cognitive test. We
hypothesize that using such a system, researchers can build tasks
that simulate the real-world and also incorporate sensors that mon-
itor the participants for an objective measurement of the required
cognitive and physical skills. To illustrate our hypothesis, we use
commonly used sensors that can be used to monitor a person while
working, for changes in performance due to stress, lack of sleep,
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or increase in cognitive load [15]. The main contributions of the
presented work are:

e The novel design of the 9PM Board incorporating digitized
versions of physical and cognitive assessments.

e A public dataset! for behavioral, performance, and physio-
logical data of participants performing modified versions of
standard physical and cognitive assessments.

The paper is organized as follows. In section 2, we present related
work, section 3 describes the 9PM system for Cognitive Assessment
using a physical task, and in section 4 we present the experimental
results and evaluation of the study. In the final section, we discuss
our future research direction and conclude.

2 RELATED WORKS

After accidents or due to disorders, a person may lose their upper
limb function or dexterity. To rehabilitate the loss of function and
mobility, physical tests to assess dexterity are used. The “gold stan-
dard” to evaluate manual dexterity in many disorders is the Nine
Hole Peg Test (NHPT) [11, 12, 24]. A traditional NHPT consists of
a board with nine holes and a receptacle. This receptacle consists
of nine pegs designed to fit into the holes. When instructed, the
person would move the pegs one at a time from the receptacle to
the hole and back multiple times. An expert monitors the user’s
performance who can then assess their dexterity. Other tests like
the Box and Blocks test also assess the manual dexterity of the
upper arm [20]. In this test, a box that is divided in the middle by a
partition is used. One part of the box contains a few blocks of equal
sizes. When instructed, the person has to pick the blocks from one
side of the box and place it on the other side. The user performs
this action multiple times while moving above the partition. An
expert monitors the user’s performance to assess their dexterity.

A battery of tests is available to assess human cognition. These
tests assess one or more aspects of cognition. One of the most com-
mon cognitive tests is the Stroop test, which evaluates inhibition,
attention, and executive function [29]. Here, the person needs to
identify an incongruent stimulus in a series of stimuli. Another
aspect of cognition is episodic memory. The Picture Sequence Mem-
ory Test (PSMT) evaluates this aspect of cognition [5]. This test
will show the person a series of pictures that they must arrange
in a specific order. List Sorting Test assesses working memory as
an aspect of cognition [36]. In this test, the person has to sort a se-
quence based on the stimuli given. Pattern Comparison Processing
Speed Test assesses processing speed [8]. This test will show the
person two pictures, and they must recognize if the pictures are
the same.

The above tests are used for assessing the cognitive state of
both a neurotypical person or a person suffering from neurological
disorders. Administering these tests under neurological disorders
gives an indication of the current cognitive state of the person and
indicates the progression of the disorder. While several attempts
have been made to combine cognitive assessments in a physical
task [19, 26], these works focus on assessing a specific cognitive
ability. Research also exists to assess multiple cognitive abilities
using a single system for screening [37], but this system does not
incorporate a physical task. Our 9PM system allows the researcher
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to create several combinations of cognitive assessments with the
NHPT (physical task) that assesses a variety of cognitive skills,
as explained in section 3. To the best of our knowledge, no such
system exists.
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Figure 1: The 9PM Board, a Novel Modified Version of the
NHPT.

3 9PM: AN INTERACTIVE TOOL FOR
COGNITIVE ASSESSMENT USING
PHYSICAL TASK

As discussed before, traditional NHPT consists of a board with
nine holes and a receptacle with nine pegs. Our 9PM system uses
a novel test board, called 9PM board, that is designed to allow the
participant to perform a modified version of the NHPT with other
cognitive assessments. This setup consists of three areas, red, blue,
and white, each containing nine holes. While the red and the blue
are dubbed as the source areas, the white area is also known as
the destination area and does not have any pegs. According to the
instruction provided, the cognitive tests require the user to move
the pegs from the source to the destination area.

9PM incorporates the following cognitive tests; Stroop Test [32],
the Wisconsin Card Sorting Test (WCST) [17] and the NIH Tool-
box Picture Sequence Memory Test (PSMT) [10]. The Stroop Test
assesses inhibition, attention, and executive function, and PSMT
evaluates episodic memory. On the other hand, the WCST evaluates
abstract reasoning and task-shifting ability [4]. It requires partici-
pants to match cards based on count, color, or shape. The matching
rule changes randomly after a few rounds and the users need to
figure out the rule based on trial and error. The cognitive tasks
we chose not only cover a broad variety of cognitive assessments
but also cover some of the most frequently used assessments in
research and clinical practice [33].
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Figure 2: Experiment Setup (Left) and Sensors Placement (Right).

3.1 9PM Tasks

Using the 9PM setup, the participants are asked to perform five
tasks. This is accomplished by moving the pegs from one area of
the board to another, thus exerting both physically and cognitively.
They will move the pegs one at a time using their dominant hand.
The system recognizes when a peg is picked up and when it is
placed in a hole. If the participant makes a wrong move, a buzzer
will sound, providing audio feedback.

In Task 1 (T1), the participant is asked to move all nine pegs to
and from the white area four times in a single round, totalling 72
moves. They are asked to start from the area closest to their domi-
nant arm. This task provided information about the participant’s
state when little to no cognitive effort was needed.

In Task 2 (T2), the participants are provided instructions on
a screen (i.e., a smartphone). They are asked to pick a peg from
either the red or the blue area and move it to the white area. The
instructions are provided for each of the nine pegs.

Task 3 (T3) incorporates the Stroop test into the 9PM setup. Here
the instruction displayed on the screen will be either the word
‘Red’ or ‘Blue.’ The font color of the word may be red or blue. The
participant must pick a peg from the area indicated by the font
color. For example, if the instruction provided is ‘Red’ with blue
font color, the participant must pick the peg from the blue area. By
comparing T2 and T3, we can understand the cognitive effect of
the Stroop Test on the participant.

Task 4 (T4) incorporates the WCST into the 9PM setup. Here,
there are two rules; follow the text or follow the color of the text.
For example, if the instruction provided is ‘Red’ with blue font color,
the participant must figure out if they need to follow the text and
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pick from the red area or need to follow the text color and pick
from the blue area.

Finally, Task 5 (T5) incorporates the PSMT into the 9PM setup.
Here the participants are shown the order of the pegs in sequence.
They are then supposed to memorize this sequence and move the
pegs accordingly. They will move the pegs once all nine steps are
shown. The participants are asked to do a single round of T1, and
4-rounds of T2, T3, T4, and T5. For more details about the 9PM
tasks and setup, please refer to [1].

3.2 User Study and Data Collection

The user study, which is approved by the Institution’s Review Board
at the University of Texas at Arlington, has 63 healthy participants.
The participants are mostly right-handed (96.82%), male (88.89%)
participants, with an average age of 25.11 (+ 4.39) years old. Each
participant produced 17 datasets (one per round), in addition to the
baseline. In T2, T3, T4, and T5, we averaged the rounds of each task
after extracting the features to produced another 4 datasets. The
data is available at: https : //github.com/abujelala/9PM.

The participant starts the study by sitting on a chair and watches
a video demo? which explains the study protocol and how to wear
the sensors. At the end of the video demo, the participant reviews
and signs the consent form. The study personnel is available in the
room to answer any questions the participant might have. After
that, the participant wears the sensors. Figure 2 illustrates the
experiment setup and the placement of sensors on the participant.
The experiment workflow is explained in Figure 3. The sensors
record ECG, EDA, EEG, and IMU data. ECG and EDA data are
recorded using a Biosignalsplux Explorer unit [6], EEG data is

2 https: [/youtu.be/105pmqFOFFQ



PETRA 2021, June 29-July 2, 2021, Corfu, Greece

: Informed
Video D
HR-Eene Consent
L =
Sensors
- Placement
Post-Baseline Baseline Data
Survey Collection

]

5 Tasks, each task is preceded by trial and followed with
a post-task survey and a 3-minutes break.
Task 1 is performed first, and other tasks are performed
in a random order

Sensors Experiment
Feedback
Removal
Survey

Figure 3: Experiment Workflow.

recorded using an OpenBCI ULTRACORTEX MARK IV sensor [22],
and IMU data is recorded using a MetaMotionR sensor [21]. Once
the participant wears the sensors and the study personnel checks
that the data is reliably streaming, the baseline recording starts.
The baseline session is three-minutes long, and it is recorded while
the participant is sitting with their eyes closed.

After the baseline, the participant fills out a user questionnaire
to collect their baseline subjective data, and then starts performing
the study’s five tasks. The participants always start with T1 and
then perform the other four tasks in random order. Each task is
preceded by a trial. The trial of T1 is a shortened version of the
task with just 18-moves. However, the trial of T2, T3, T4, and T5
is the same as one round of the task. T1 and the 4'" round of T2,
T3, T4, and T5 are followed with a lengthy post-task survey while
the other rounds are followed with a short post-round survey. The
objective of doing T2, T3, T4, and T5 in random order is to focus
on the cognitive effect of the tasks and avoid the practice effect
and the cascading effect of fatigue. The practice effect is when the
participants get very familiar with the setup and perform very well
in the last tasks compared to the first tasks. On the other hand, the
cascading effect of fatigue is when the performance decreases in
the last tasks because the participant is fatigued.

3.3 Machine Learning Approach

3.3.1 Data types and Feature Extraction. In this study, we collected
three types of data: behavioral, performance, and physiological data.
Behavioral data include the user’s dominant-hand movement data
and user surveys. The hand movement data is recorded from an
IMU sensor attached to the wrist. From the IMU data, we extracted
280 time-domain features based on [2]. These features include the
mean, standard deviation, median absolute value, maximum, mini-
mum, signal magnitude area, energy, interquartile range, entropy,
autoregression coefficients, and correlation coefficient. The surveys
collected the user’s subjective responses on mental effort, physical
effort, task difficulty, interest in the task, and difficulty concentrat-
ing.
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The performance metrics in this study are task score, reaction
time, and completion time. Task score is the percentage of the
correct moves a participant completes. The reaction time is the
time the participant needs to decide on which source area they
should pick up a peg from. In T2, T3, and T4, the reaction time is
calculated from the appearance of a stimulus on the screen to the
time a peg is picked up from the source area. In T1 and T5, the
reaction time is the time from placing a peg in the destination area
to the time a peg is picked up from the source area. In contrast, the
completion time is the time the participant needs to complete the
physical movement, which is the time needed to place a peg in the
destination area after picking it up from the source area.

The physiological data collected are EEG, EDA and ECG. The
EEG sensor has 8-channels recording data from the FP1, FP2, P3,
P4, C3, C4, O1, and O2 locations on the international 10-20 system
for EEG. This was done to monitor the prefrontal and the parietal
regions of the brain. These areas have shown to have a relationship
with cognitive load and fatigue [9, 38]. Specifically, the parietal
cortex has shown a relationship with cognitive fatigue in people
suffering from multiple sclerosis. Moreover, EEG was also set up
to capture data from the occipital lobe to examine data from the
visual cortex. We extract time domain features like mean, standard
deviation, minimum, maximum, kurtosis and skew from the EEG
data. We also extract spectral and energy based features which
have proven to have successful results on such signals [16, 23]. The
spectral and energy features are spectral centeroid, spectral spread,
spectral entropy, spectral rolloff, zero crossing rate, energy, and
entropy of energy. Since these features were extracted for every
power band (alpha, beta, gamma, theta and delta) and the raw sig-
nal of each EEG channel, the total number of EEG features is 624.
From the EDA data, we extract 40 features based on [34]. These
features are based on filtered skin conductance signal and its first
and second derivatives (e.g. maximum, minimum, maximum of
absolute value, and mean absolute value), and wavelet coefficients
(maximum, mean, standard deviation, median, and number above
zero). For ECG, we extracted 17 time and frequency domain features
[7, 31]. These ECG features are mean , median, range, standard de-
viation, coefficient of variance of NN interval, average heart rate,
standard deviation of successive NN interval differences (SDSD),
root mean square successive difference (RMSSD), number of pairs
of adjacent NN intervals differing by more than 20 ms to all NN
intervals and by more than 50 ms (pNN20, pNN50), pNN50/pNN20,
power spectrum of low frequency (LF), power spectrum of high
frequency (HF), symphathetic modulation index (SMI), vagal mod-
ulation index (VMI), and symphatovagal balance index (SVI). The
multimodal data used to train the Machine Learning algorithms
explained in section 3.3.2 are a combination of these 6 modalities:
ECG, EDA, EEG, IMU, performance metrics, and the task number.
This leads to 63 possible modality combinations (26 — 1) for analysis.

3.3.2  Machine Learning Algorithms. We used Machine Learning
(ML) to utilize the users’ multimodal data to predict their physical
and cognitive states. Our goal is to show that data collected from
this system can be reliably used to predict cognitive and physical
conditions. This paper focuses on predicting 5 states: mental effort,
physical effort, task difficulty, task interesting, and difficulty con-
centrating. The user survey answers were used as the ground truth
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of the user’s state. Most of the survey questions use a Likert scale
from 1 to 10. However, we want to solve the prediction problem as a
classification problem, rather than a regression problem. Therefore,
we converted the survey answers into a binary scale. For mental
effort, physical effort, task difficulty, and task interesting, we try to
predict if the user’s response is above his/her personal average re-
sponse (e.g., exerted more than his/her average mental effort). Since
we want the prediction to be personalized per participant, each
participant’s data were normalized separately. For example, if 3
and 9 were the participant’s lowest and highest scores, respectively,
his/her normalized average score would be 6. Difficulty concentrat-
ing was not task-specific, like task difficulty, hence we use ML to
predict if the participant is having difficulty concentrating more
than in his/her baseline.

As mentioned in section 3.2 and 3.3.1, we have 21 datasets per
participant, and every dataset has data from 6 modalities. The 63
possible combinations of the modalities are used to train, validate
and test the ML algorithms. The datasets were divided into two parts.
The first part has data from 55 participants and it is used for training
and validation using 5-fold cross-validation. The second part has 8
participants’ data and it is used for testing. The ML algorithms used
are Logistic Regression (LR), K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), Gradient Boosting (GB), Extra Trees (ET),
Decision Tree (DT), Random Forest (RF), Neural Networks (NN),
Naive Bayes (NB), AdaBoost (AB), Quadratic Discriminant Analysis
(QDA), and Gaussian Process (GP). Randomized Grid-Search from
Scikit-Learn Library [30] was used to fine-tune these algorithms.

After the ML features were extracted, we run the ML algorithms
multiple times, once with features normalized with Min-Max Scal-
ing, once with features standardized with Standard Scaling, and
with and without features selection process. The feature selection
process used is Principal Component Analysis (PCA). For every
run, we recorded the test F1 score, the test accuracy, and the cross-
validation average validation-accuracy. The labels we have are not
equally distributed, which makes the accuracy score less reliable.
Therefore, the best classifier was determined based on the test F1
score, rather than the test accuracy score. F1 score is a measure of
the harmonic mean of the precision and recall [28].1t also gives a
better understanding of the misclassified cases as it is critical in the
design of the framework. We found that the Min-Max normalization
with PCA provides the best results for most of the cases. Therefore,
section 4 presents the best classifier’s test F1 score results when
using Min-Max normalization with PCA.

Table 1: ML Results

l Test F1 Score [ ML Algorithm ‘

Mental Effort 75.86 QDA
Physical Effort 43.84 NB
Task Difficulty 86.67 AB

Task Interesting 76.92 NB
Difficulty Concentration 55.00 QDA
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4 EXPERIMENTAL RESULTS

In this section we focus on the ML algorithms results and the survey
results. Table 1 summaries the results of the ML algorithms. From
the table, we can see that the ML algorithms result in a high F1
score (> 70%) when predicting mental effort (75.86%), task diffi-
culty (86.67%) and interest in a task (76.92%) but produces a low
F1 score when predicting physical effort (43.84%) and difficulty in
concentration (55.0%). We believe the reason for the low F1 scores
in predicting physical effort and difficulty in concentration is the
fact that the participants’ responses were not equally distributed.
We performed a One-Way Analysis Of Variance (ANOVA) test to
analyze user’s responses between tasks. We found for most of the
tasks there was no significant difference between users’ answers
on physical effort and difficulty in concentration. Also, when the
users’ responses were converted to binary scores, the labels were
not balanced. The binary labels were 75.28% vs. 24.72 and 72.79%
vs. 27.21% for the physical effort and difficulty concentrating, re-
spectively. Since the physical aspect of the tasks is the same, it is
expected that the participants might not report changes in their
physical effort which justifies the results for the ANOVA test and
the low prediction capability for these labels.

3 “ h
z l

MENTAL PHYSICAL TASK TASK
EFFORT EFFORT DIFFICULTY INTERESTING

AVERAGE SURVEY SCORE + SD

Figure 4: Survey Answers - Average Responses on Mental Ef-
fort, Physical Effort, Task Difficulty and Task Interesting,.

From the user surveys, we focus on 5 survey questions which
we used to produce the ML labels. Figure 4 shows the average
survey responses per task with the standard deviation (SD) for
mental effort, physical effort, task difficulty and interest in a task.
The figure shows noticeable differences in the mean of the mental
effort and the task difficulty responses while it shows small mean
differences in responses of the other two questions. The figure also
shows that T4 and T5 required the most mental effort and were
the most difficult. It also shows that T1 required the most physical
effort. The average interest in a task was also very similar across the
tasks, with T4 being the most interesting task. In addition, Figure
5 illustrates the average responses for difficulty concentrating. It
shows that the most common response was ‘No More than Usual’.
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Figure 5: Survey Answers - Average Responses on Difficulty
Concentrating.

5 CONCLUSION

In this study, we developed the 9PM system, a novel system to
bridge the gap between real-world activity and clinical tests. 9PM
was designed to utilize on the standardized physical and cognitive
assessment and to collect multimodal data for analysis and assess-
ment. We were able to analyze these multimodal data and use them
to predict user’s state. In this paper, our analysis mainly focuses on
ML and survey responses. Results indicate that the data collected
using the system can be used to reliably predict cognitive state. The
survey responses also indicate that the 9PM system can be used
to build cognitive tests of varying difficulty and a physical task
using the same system. The future goal of our research is to build
an adaptive intelligent system that could track user’s state and pro-
vide personalized recommendations. To do that, we need to detect
the user’s current state, and we believe our results in this paper
provide the necessary motivation to use the 9PM system towards
our goal. While our work in this paper provides a successful proof
of concept. The data in this paper was collected in a controlled
lab environment, with healthy participants in the same age range.
Therefore, our system still needs to be tested and validated with
more diverse participants, in a real-life scenario.
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