Soft deployable structures via core-shell inflatables
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Deployable structures capable of significant geometric reconfigurations are ubiquitous in nature. While
engineering contraptions typically comprise articulated rigid elements, soft structures that experience material
growth for deployment mostly remain the handiwork of biology, e.g., when winged insects deploy their wings
during metamorphosis. Here we perform experiments and develop formal models to rationalize the previously
unexplored physics of soft deployable structures using core-shell inflatables. We first derive a Maxwell con-
struction to model the expansion of a hyperelastic cylindrical core constrained by a rigid shell. Based on these
results, we identify a strategy to obtain synchronized deployment in soft networks. We then show that a single
actuated element behaves as an elastic beam with a pressure-dependent bending stiffness which allows us to
model complex deployed networks and demonstrate the ability to reconfigure their final shape. Finally, we
generalize our results to obtain three-dimensional elastic gridshells, demonstrating our approach’s applicability
to assemble complex structures using core-shell inflatables as building blocks. Our results leverage material
and geometric non-linearities to create a low-energy pathway to growth and reconfiguration for soft deployable

structures.

Decades of engineering research have led to the development of a broad range of deployable structures whose
shapes vary from compact, folded configurations to expanded and operational configurations. Examples range
from mundane umbrellas to ultralight spacecraft and antennas [1]. The field remains very active, with recent de-
velopments leveraging the newest insights from physics and mathematics, as well as the advanced computational
power and manufacturing techniques available today to create mechanical metamaterials, architected structures,
origami and kirigami systems [2-8]. Yet, most man-made deployable structures differ from those found in na-
ture’s long-evolving fauna, which not only use joints [9—11] but frequently comprise materials that grow, stretch,
and bend to transform [12—-14]. However, biology’s simple strategy, which inherently uses lightweight and soft
materials, is much more challenging to engineer. The rigid elements connected by a finite number of moving
joints are replaced by continuously deformable soft materials undergoing large deformations in potentially all di-

rections. In the thrust for biomimicry, there has been a push to develop, design, and manufacture shape-morphing
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Figure 1: Vein-like deployable structure. (a) Images of a cicada deploying its wings following molting its ex-
oskeleton. (b) Sequence of images showing a wing-like structure that expands synchronously in a plane as pres-

sure increases (scale bar, 15 cm). The prediction of the shape by elastic beams is drawn in red.

matter that can robustly and predictably change shape (e.g., mechanical metamaterials [15], 4D printed materi-
als [16-19], and soft robotics [20-22]). A key challenge and opportunity for these systems made of soft solids is
the susceptibility to mechanical instabilities such as bulging, buckling, or wrinkling [23-27].

Here we take inspiration from the expansion of wings during metamorphosis (see Fig.1a) in holometabolous
insects to design soft structures whose expanded shapes can be programmed by the arrangement of vein struc-
tures. When insects (e.g., dragonflies, butterflies, cicadas) emerge, their wings are a compact, crumpled network
of interconnected fluidic segments (veins) connected by a wrinkled membrane. Hemolypmh, a blood-like fluid, is
injected into the wing [28,29], which first unfurls in a couple of minutes and then stiffens into its robust, flight-
worthy, expanded form. The cross-section of dragonfly wing veins shows a composite ultrastructure composed of
a core-shell structure with an endocuticle rich in rubber-like protein (resilin [30]) surrounded by a rigid, thin ex-
ocuticle [31]. Motivated by this structure, we build a core-shell inflatable consisting of a soft hyperelastic rubber
tube enclosed in inextensible sleeves whose length exceeds that of the tubes. We take advantage of the material
nonlinearities of the hyperelastic elastomer which can undergo large deformation at constant pressure through a
propagative instability [32-34]. While not detrimental to the inflation of a single tube, this instability hampers
the smooth inflation of a network of hyperelastic tubes since when the instability occurs in one tube, all the in-
jected gas in the network diverts to a single bulge (see movie S1). By limiting the core radial expansion, we alter
the bulging instability to allow multiple elements to inflate at once (see movie S1). As detailed next, we show
that a network of artificial veins connected by an inextensible and pleated membrane can be inflated to achieve a

target shape (Fig.1b and movie S2) and is a low-energy pathway strategy for growth and reconfiguration of soft



deployable structures.

We first investigate how an inextensible shell impacts the bulging instability of hyperelastic balloons. In our
core-shell system, a shell of radius R, and shear modulus x5 constrains a softer hyperelastic core of initial radius
R < R, and modulus p < ps. Fig. 2a shows the pressure recorded during the inflation of a latex tube constrained
by polytubing shells of various radii R, and pre-wrinkling conditions. In all cases, we observe a monotonic
increase in pressure up to a maximum £, followed by a pressure drop and a quasi-constant plateaued propagating
pressure P,. In effect, our constructs undergo a bulging instability at P, (see inset in Fig. 2a and movie S1),
but the pressure drop after the instability FP,, — P, appears to be reduced as R, decreases. Experiments with
straight, thick acrylic shells and finite element simulations with undeformable, straight, frictionless shells and a
Gent hyperelastic core show very similar behavior (see SI section ’FEM simulations for a constrained balloon’
and the dashed lines in Fig. 2a).

To model the bulging instability of core-shell systems, we use the classical Maxwell construction (described
in detail in SI section "Maxwell construction’). The Maxwell construction for phase coexistence at a pressure P,
in cylindrical balloons requires the work done by the change in volume (V}, — V,,) between the bulged volume V},

and quasi-unstretched volume V,, to equal the work done by the membrane stretching.
1
R(Vi-Vi) = [PV, 1)

Equation (1) has the geometric solution of equal areas between the isobar I, and the membrane pressure-volume
relationship P(V) as illustrated in Fig. 2b. In our system, the shell has the primary function of altering the
pressure-volume relationship and thus the solution to equation (1).

We consider the shell to be inextensible PR, /ushs < 1 and to freely wrinkle under compression PR3 /uh? >>
1 (see SI section ’Core-shell inflatable assumptions’). In practice, as the core is inflated to the shell radius, the
shell maintains the excess stress as pressure keeps increasing. Therefore the shell provides a geometric constraint
that prevents the radial expansion of the core above the shell radius R, as pressure increases. As illustrated in
Fig. 2b, this geometric constraint causes the pressure P(V) to diverge at the volume V,* where the core fills the
shell. Applying Maxwell’s construction, we find that core-shell structures have a higher propagating pressure P,
as the shell determines the maximum volume V;* of the core’s bulged region during inflation.

In Fig. 2c we report the rescaled pressure drop (P, — P,) /P, plotted against the core-shell radius ratio
R,/ R for experiments and simulations. All the data collapse on a master curve, confirming that the system is
scale-invariant and that both pre-wrinkling and the shell material have no measurable effect. The pressure drop
decreases monotonically from the unconstrained value (for Rs/R 2 5.8 the bulged radius is less than the shell
radius) to approximately zero for R,/R =~ 2 (which is the core circumferential stretch at the onset of bulging).
Our Maxwell construction implemented using a hyperelastic Gent model for the core (details in Method section
"’Relaxed Maxwell construction’) compares favorably with experiments (see the line in Fig. 2c¢).

We leverage this predictive knowledge to help smoothly expand an interconnected network of inflatables. To
nucleate and propagate bulges in all inflatable concomitantly, we minimize the pressure drop (P,, — P,) using
shells of radius Ry ~ 2R. In Fig. 2d we report the cumulative change in length of four of our interconnected
inflatables (R = 3.7 mm, L = 10 cm and R, = 9.1 mm, L, = 17.5 cm), with (red) or without (blue) shells. As
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Figure 2: Inflation of core-shell balloons. (a) Representative pressure curves of the tubes during inflation. The
solid lines represent wrinkled shells, the dashed lines represent straight shells, and the dotted line is no shell.
Color represents the core-shell radius ratio (see the color bar in (c)). The inset shows typical images of core-shell
inflation (scale bar, 30 cm). (b) Schematic for the Maxwell construction for the bulging of a cylindrical balloon
and a core-shell balloon. (c) Plot of the pressure drop against the core-shell radius ratio. Markers represent exper-
iments (circles: R = 3.7 mm, squares: R = 7.3 mm) and finite element simulations (diamonds). The line is the
Maxwell construction model (see SI section ’Relaxed Maxwell construction’). The error bars represent the range
of the pressure measurements in plateaued region following the bulging instability. (d) Plot of the accumulated

length for a balloon system and core-shell system during inflation. Inset shows schematic of experiment.



evident from the figure, we observe the nearly simultaneous expansion of all core-shell inflatables, while in the
same system without the shell, only one core expands.

Now that we understand how our core-shell system expands, we investigate the shape and mechanics of a
deployed core-shell inflatable. Once inflated, the core-shell system becomes noticeably more rigid for example,
it is able to sustain its own weight. We perform three-point bending mechanical tests on a single inflatable to
quantify this effect while varying the pressure. The force versus deflection curves are shown in Fig. 3a for a latex
core and a pre-wrinkled polyester fabric shell for pressures ranging from F, ~ 100 kPa to roughly 5F,. For a
given pressure, the force initially increases linearly with the deflection before eventually softening akin to the
bending of hollow tubes [35]. Within the experimental pressure range, the force required to bend the core-shell
inflatable increases with the pressure. We extract an effective bending stiffness B,, from the data to quantify this
stiffening. This equivalent stiffness increases linearly with the pressure as reported in Fig. 3b.

Knowing the rigidity of our core-shell structures, we leverage their slenderness (Ls; > R,) to model the
non-linear mechanics of our inflatables as Kirchhoff rods, i.e., a one-dimensional model for inextensible and
unshearable elastic rods (see SI Section 3). For a network, each element thus has its own system of equations,
with the key parameters being the deployed length, which is the length of the unwrinkled shell L, and the stiffness
of the element B.,. These equations are then coupled with the appropriate boundary and jump conditions at the
connecting points, which depend on the type of connection and are derived on a case-by-case basis (see SI section
’Boundary and jump conditions’). We find a favorable agreement between the model and experiment, e.g., in the
case of the wing-like network of Fig. 1 and for the three-point bending experiments (Fig. 3b inset). Furthermore,
the fact that B., o< P greatly broadens the range of accessible shapes since it is possible to control the stiffness
of individual elements by connecting them to different pressure sources. We leverage this effect to dynamically
reconfigure the network once deployed by varying the pressure inside a few key elements, all of which can be
modeled by our reduced Kirchhoff model.

In Fig. 3¢ an outer element of length /, encloses an inner one of length ¢; attached to a separate pressure
source. By manipulating the relative pressures of the two elements, we control the inner and outer rod bending
stiffness B; and B, independently. As illustrated in Fig. 3c, the inner rod buckles when we decrease its stiffness
(comparatively to the outer one) by decreasing the pressure, which changes the global shape of this simple 2-rod
network from a wide to a narrow loop. To quantify this reconfiguration, we measure the buckling amplitude a of
the inner beam and plot it in dimensionless form as a function of the stiffness ratio in Fig. 3d for a variety of rod
length ratios ¢;//,. As one could intuitively expect, the longer the inner element, the larger the shape change upon
reconfiguration. As shown in Fig. 3¢ and d, our reduced rod network model is fully capable or predicting these
shape changes and thus can be used to design complex reconfigurable and deployable structures.

Because the core-shell network can be captured by elastic rods, we adapt the geometric approach developed
for elastic gridshells [36] to design three-dimensional deployable structures. As an example, we build a flat
network that deploys into a hemisphere (Fig. 4a). Specifically, we create an elastic gridshell from a square lattice
of core-shell inflatables with joints that can freely shear by using the geometry of Chebyshev nets [36]. Our square
network is chosen so that each element’s shell length L, matches the target hemisphere section length. Last, we

attach rigidly the boundary of our grid to the required flat contour. Fig. 4b and movie S3 show the inflation of
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Figure 3: Mechanics of inflated core-shell structures. (a) Force displacement curves of core-shell inflatables
undergoing three point bending tests at different pressures. Color represents pressure (see color bar (b)). (b)
The effective bending stiffness B,, plotted against the pressure difference P. Error bars show the local stiffness’s
standard deviation for the deflection range measured. (c¢) Images of an inflatable network where the pressures P of
the inner and outer beams are controlled independently (scale bar, 30 cm) compared to our model. (d) Amplitude
of the inner beam deflection from (c) plotted against the outer beam stiffness:inner beam stiffness ratio. Markers
are experimental data (triangle markers represent images in (¢)). The lines are the predicted amplitudes from our

model. Error bars are smaller than the markers.



such a network using latex tubing in pre-wrinkled polyester fabric. The deployed form is well captured by the

proposed Chebyshev net and is amenable to different geometries [36].

Stretch to boundary

Inflate

Figure 4: Deployable elastic gridshells. (a) Design process for a deployable elastic gridshell from core-shell
inflatables. (b) Inflation of a deployable elastic gridshell (scale bar, 25 cm).

In closing, we note that our model is scale-invariant. As such our theoretical framework and its ensuing
conclusions are potentially relevant to biological systems, e.g. for the healthy deployment of insect wings during
metamorphosis, and could be leveraged to design the future generation of robotic insects [37]. In effect, the
inherently soft materials we used can undergo large deformations in both the deployed and undeployed states,
thereby making these systems robust and suitable for miniaturization. Furthermore, we have demonstrated that

our inflatables are reconfigurable via the modulation of their effective bending stiffness, which is achieved by
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controlling their internal pressure. Similar effects on controllable bending stiffness have been seen in pressurized
hyperelastic tubes [38] and layered systems with internal friction [39] and have been theorized to play a role in
cell stability [38]. Finally, we note that the inflation progression from undeployed to local bulges to fully deployed
shows intermediate higher order modes (see Fig. 4b and movie S3), indicating the potential to build multi-stable

networks with configurations that could be accessed via sequential deployment [8, 19].
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