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ABSTRACT

Objective: In this paper, we present a multimodal robot-based frame-
work to investigate how physical and mental fatigue affect task
performance, and how it relates to subjective self-reports.
Methodology: In this pilot study, seven healthy participants under-
went the robot-based assessment. In each session, the participants
performed a series of reaching tasks, including a task with cognitive
demands, by moving the end effector of the Barrett WAM arm in
the direction of the virtual targets displayed on a computer screen.
Multimodal data, including EEG, EMG and user performance data
like reaction time, number of targets, trajectory of the robot path,
were recorded for further analysis.
Results: Based on the analysis of subjective user self-report and
objective task performance metrics, we observe that the user’s per-
ceived level of task difficulty increased over time while objective
task performance also improved over time. We speculate that this
might be due to the effect of fatigue on the user’s perception of task
difficulty.
Conclusion: Further studies are required, with a more diverse pop-
ulation, to understand the impact of fatigue on the user’s cognitive
and physical ability. We must also evaluate how contextual param-
eters may affect task performance and fatigue.
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1 INTRODUCTION

Efficiency, high productivity and accuracy, and reduction in costs
have made several industries adopt heavy machinery and auto-
mated robots in their workplace which can do repetitive, mundane
and jobs that are dangerous for humans with high accuracy and
efficiency [13]. It is also important to note that these machines and
autonomous robots with high-end sensors and control units require
human-robot collaboration [30]. That is, a human collaborator must
always be present to work with the system either side-by-side or as
a supervisor. Increasing demand for products makes manufactur-
ing industries adapt round-the-clock production, putting further
demands on the human workers who attend these machines for
long hours and in shifts. This practice affects the sleep cycle and
rest time of employees and may in turn result in fatigue which
is a very unsafe workplace condition [22]. Fatigue is defined as a
lack of energy, or a constant feeling of tiredness, and adversely
affects performance [10]. It may be physical or cognitive/mental
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in nature. Physical fatigue can be peripheral, where fatigue mainly
acts on muscles/muscle groups, or central, which manifests as an
overall sense of exhaustion [7, 34]. Whereas, cognitive fatigue may
manifest as a loss in cognitive control, high level information pro-
cessing and attention [6]. It is essential that a human collaborator
is highly attentive and efficient with proper executive function in a
human-robot collaborative environment. Fatigue in the workplace
due to working long hours or in shifts may lead to several health
and safety issues, with economic implications for both employees
and their employers [13].

Fatigue is also a prevalent symptom in several medical conditions
like Multiple Sclerosis (MS) [20], Traumatic Brain Injury [4] and
Parkinson Disease [16], to name a few. It is one of the most disabling
symptoms and often affects the quality of life of the patients and
may also lead to depression [29]. Yet it is poorly understood, prin-
cipally because it is subjective and its etiology varies both across
individuals and across different stages of disease progression. Sur-
veys and clinical tests are most commonly used to assess fatigue and
are based on patient self-report and clinical observation. Because of
the subjective nature of these tests, they are always susceptible to
human error, such as bias, from both the patient and the clinicians
[31]. Hence, there is a need for objective assessment of fatigue.
Similarly, in an industrial environment, being able to detect that a
person’s performance is affected due to fatigue would be a great
asset to an employer in avoiding any workplace-related injuries or
fatalities.

In a previous work, we have proposed a task-driven framework
for multi-modal fatigue analysis [37]. Based on this framework, the
goal is to build an assessment and training system to collect multi-
sensing data during both physical and cognitive tasks, specifically
designed to extract behavioral and physiological patterns related to
fatigue. There is a need to understand the extent to which cognitive
and physical fatigue affects a user’s behavior and task performance.

Game-based experimental paradigms have been used to show
better user engagement, and have aided in user training and assess-
ment [2, 36]. In this work, we propose a multimodal robot-based
framework to simulate and assess the impact of cognitive and phys-
ical fatigue on user performance using serious games. The primary
objective of this study is to make a preliminary evaluation of our
proposed robot-based system, with a longer-term goal of develop-
ing a framework that com- bines physiological, behavioral, and
user self-report data to assess the impact of fatigue on user per-
formance, and to understand how different individuals perceive
fatigue. Serious games usually refer to virtual games used for train-
ing, simulation, or education and can engage users in cognitive and
physical tasks. The design of serious games may offer insights into
the user’s cognitive and physical behaviors while they try to ac-
complish structured tasks. In this study, the participants performed
a reaching task, which we call "The Fruits and Fox Game" (Frox), in
which a user has to perform both physical and cognitive tasks in
a multisensing environment, while the system collects physiolog-
ical and task performance data. In order to gain insight into how
users perceive and experience both physical and mental fatigue, we
developed a questionnaire based on a Visual Analog Scale.

2 BACKGROUND AND RELATEDWORK

Physical activity monitoring systems have been proposed towards
assessing physical fatigue, either based on task-based physical per-
formance using motion and physiological sensors [14] or by eval-
uating user performance in activities of daily living (ADLs) using
both objective and self-reporting methods [28]. There has been an
increasing use of multiple wearable devices for analyzing and quan-
tifying physical performance and fatigue, associated with specific
chronic diseases and their expected behavioral patterns [1, 9, 15, 24].

Towards this end, different sensing modalities have been ex-
plored using various types of sensors such as camera-based ap-
proaches, electromyography (EMG), heart rate and galvanic skin
response (GSR). On the other hand, electroencephalography (EEG)
analysis has been the major instrument of assessing cognitive fa-
tigue and related research has shown that it is highly correlated
with various neurological impairments like MS [5, 12, 23]. Such
approaches have been also exploited to better understand learning
abilities and cognitive workload patterns, towards designing adap-
tive and user-centric assessment tools [8, 25]. Some studies have
also employed multimodal approaches toward assessing cognitive
task performances [3].

Research aimed at associating subjective and objective measures
to analyze both physical and cognitive fatigue to develop reliable
fatigue measurement tools is still in its very early stages [38]. Our
work is motivated by the current need to understand the extent to
which mental and physical fatigue is perceived by different indi-
viduals, as well as the extent to which it affects user performance.
In the next section, we present our robot-based serious game, de-
signed as a reaching task with cognitive demands. The user study
in this paper aims to better understand the relationship between
task performance and both physical and cognitive fatigue through
the analysis of physiological, behavioral and self-reports.

3 METHODS AND MATERIALS USED

3.1 Experimental Setup

Our experimental setup consists of three main devices, a Barrett
WAM arm [35], a Delsys EMG sensor [17], and an OpenBCI EEG
headset [26] as shown in Figure 1. The Barrett WAM arm is a 4-DOF
(degree of freedom) robot with a round handle as an end-effector.
The subjects held this end-effector while playing a cognitive game
(see section 3.2.1). This robot is capable of providing resistive forces
to the subject to induce physical fatigue as explained in section 3.2.3.
The Delsys EMG sensor was used to capture EMG data from the sub-
ject’s muscles while they played the game. We recorded data from
subjects’ deltoids, biceps, and triceps using three sensors, one in
each location, to get a representation of their muscle activity during
the game. OpenBCI EEG headset is a 3D printed headset to record
EEG data using dry electrodes. This setup is highly configurable
and can record data from up to 16 sensors. The system consists of
the main board dubbed the "Cyton board" which interfaces with all
the electrodes and transfers the data over Bluetooth. The system
was configured to record data at 250Hz and store it on a PC paired
with the EEG headset. We recorded data from the prefrontal and
the parietal cortex, using eight dry electrodes mounted on the 3D
headset, to study the effect of fatigue on the brain [11, 27].
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Figure 1: A user playing the Fruits and Fox game.

3.2 Experimental Protocol and Tasks

In this study, subjects worked through six sequential stages. Figure
2 shows a flowchart of the study design. Before and after each stage,
the participants were asked to fill a Visual Analog Scale of Fatigue
(VAS-F) to evaluate fatigue severity (see section 3.2.4), with ques-
tions about their current level of cognitive and mental fatigue and
related symptoms like drowsiness and tiredness. This survey This
survey provided a measure of both physical and cognitive ’state’
fatigue, or the fatigue they experienced ’in the moment’. During
stage one, the participants played the Fruits and Fox game which
provided a measure of user performance in an unfatigued state. Dur-
ing stage two, the participants performed a robot-assisted shoulder
flexion task where the robot applied a resistive force of up to 20
N to induce physical fatigue. During stage three, the participants
played the Fruits and Fox game again. Because this stage followed
the induction of physical fatigue in Stage 2, this allowed us to assess
the effect of physical fatigue on cognitive performance. In Stage 4,
cognitive fatigue was induced using a modified version of the Fruits
and Fox game which employed the Stroop effect to make the game
more cognitively challenging. This was implemented by providing
three possible targets, one of which was presented in an incon-
gruent color. A detailed explanation of this method is provided in
section 3.2.2. Figure 4 shows a screenshot of this game. In stage
five, we induced physical fatigue again (with the robot arm) before
moving on to the final Stage. Finally, in Stage six the participants
played the original Fruits and Fox game again, and performance
was assessed while they were physically and cognitively fatigued.
During all stages, data recorded included physiological data from
EEG, EMG sensors and task performance metrics: completion time,
number of targets captured (score), errors and the trajectories of
the robotic arm.

3.2.1 The Fruits and Fox Game. The Fruits and Fox Game is a
combination of cognitive and physical tasks which the participant
plays through his interaction with the robot. This task simulates a
reaching task, which is commonly used to assess reaching skills both

Figure 2: Flowchart showing the study’s design.

for rehabilitation and assessment in post-stroke patients [32] and
to simulate an industry worker’s day-to-day activity which would
involve reaching and grasping [19]. In this game, the participants
were required to hold the end-effector of the Barrett WAM arm
to control a fox and help it catch berries (targets) displayed to the
participants on a monitor. The game started with the fox at the
start position surrounded by different colored berries, as shown in
Figure 3a.

Figure 3: The Fruits and Fox cognitive game developed for

user performance assessment. The left image (a) shows the

start screen of the game. The right image (b) shows the

screen after a participant catches a target.

The task was to move the fox to capture as many berries (targets)
as possible within five minutes, based on the instruction displayed
at the top-left corner of the computer screen. The possible targets
included three different berries with a font color associated with
them like strawberry (red), blueberry (blue) and blackberry (black).
Figure 3a shows a screenshot of this game. After the user captures
one of the targets, as shown in Figure 3b, the participant had to
return to the home position, and only then will the next round’s
instruction be displayed. In each round, task performance parame-
ters are recorded. These parameters include reaction time, errors,
the trajectory of the robotic arm, and physiological sensor data.
Prior to the beginning of each round, the experimenter was able to
modify task parameters like the number of targets to be displayed
and the distance between the targets and the fox’s start position,
enabling the complexity of the task to be increased or decreased.

3.2.2 Stroop Effect based Game Variation to Induce Cognitive Fa-

tigue. An alternate version of the original game was developed to
induce cognitive fatigue. In this version, the task was made more
difficult by presenting one of the berry names in an incongruent
color (the Stroop effect [33]). Unlike in the baseline version of the
game, in which all of the berry names were presented in congruent
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Figure 4: Variation of the Fruits and Fox game to induce cog-

nitive fatigue through Stroop effect

colors (e.g., strawberry presented in red), in this version the color
of the text of one of the berries was incongruent (e.g., strawberry in
blue; see Figure 4). This modification to the original version of the
game increased the difficulty of the task, thereby inducing cognitive
fatigue. The participants had to identify which of the three words
had the wrong color association and then identify the correct target
according to the font color of the mismatched option (i.e., choose
the blue berry).

3.2.3 Shoulder Flexion to Induce Physical Fatigue. One of our main
goals of this study was to implement a system to investigate the
effect of both cognitive and physical fatigue. This was done to simu-
late a real-world scenario where a task may be both cognitively and
physically challenging. To this end, physical fatigue was induced
by asking the subject to perform an exercise with the robotic arm.
The arm’s capability of providing resistive forces was leveraged
to simulate an exercise with weights. The subjects were asked to
perform shoulder flexion, where they would start the exercise with
their hand in front of them holding the end-effector (Figure 5), ex-
tended at the shoulder level. When instructed they would raise their
arm. To be consistent, they were asked to raise their arm just above
their eye level. This movement utilizes the deltoid and the trapezius
muscle among others [18, 39]. The exercise was designed to induce
isometric contractions in the muscle by asking the subjects to hold
the final position until they started to feel fatigued. During the
exercise, we recorded the EMG data from the deltoid and EEG data.

3.2.4 The Visual Analog Scale to Evaluate Fatigue Severity (VAS-F).

The VAS has been used in several studies to measure the severity
of pain or fatigue [21]. The subject is presented with a 100 mm
horizontal line and is told that one extreme (0 mm) is, for example,
"not fatigued at all" and the another extreme (100 mm) represents
"extremely fatigued." This scale provides a measure of the level of
fatigue a patient is experiencing at a given point in time. A Visual
Analog Scale to Evaluate Fatigue Severity (VAS-F) was developed
to evaluate different types of fatigue experienced during the study.
The VAS-F consisted of 6 questions:

• How tired do you feel?
• Do you feel sleepy or drowsy?

Figure 5: Shows a user performing shoulder flexion. The left

image (a) shows the start position which is at shoulder level.

The right image (b) shows the end position which is slightly

above the eye-level.

• Do you feel mentally fatigued?
• Do you feel physically fatigued?
• Do you feel active and energetic?
• How difficult was the task?

4 DATA COLLECTION AND ANALYSIS

For this study, we recruited seven (sixmale, one female) participants,
with a mean age of 27 ± 1. Each session lasted for 45 minutes to
an hour, during which participants were given an introduction to
the study and its design, completed the consent form, (IRB: 2019-
0224), worked on the six stages of the study and completed the
questionnaires.

We present our preliminary results from the analysis of self-
reports (subjective) and task performance (objective) data. More
specifically, we were interested in how the users perceived task
difficulty, mental and physical fatigue and how these self-reported
measures were related to task performance, e.g., score (number of
targets captured) and delay (completion time). It should be noted
that the analyses were confined to task blocks duringwhich subjects
performed the simple version of the game. Therefore, the difficulty
of tasks was held constant. We present the data in two ways: the
average performance metrics across stages, and also the values
from each individual (Figures 6 and 7).

Figure 6: Average metrics for each task
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Figure 7: User survey and performance results. Visualization of self-report on (a) physical fatigue, (b) cognitive fatigue and (c)

task difficulty, for all users. We also visualize the objective measures of (d) completion time and (e) task performance (number

of targets reached).

In both the figures, it can be seen that most users reported that
task difficulty increased over time (Stage 1, Stage 3 and Stage 6).
However, task performance (targets, delay) nevertheless improved
over time. This discrepancy between subjects’ objective perfor-
mance and subjective assessment of task difficulty could be possi-
bly due to cognitive and physical fatigue. That is, while repeated
performance of the task undoubtedly led to improvements in the
number of targets captured due to practice, the induction of fatigue
may have led subjects to a belief that the task was getting harder.
More participants and analysis of the multimodal data (EEG and
EMG) are required to test this hypothesis.

5 DISCUSSION

In this paper, we employed a multimodal robot-based framework
to assess the impact of physical and cognitive fatigue on user per-
formance. We presented pilot data with a serious game which can
be used for physical and cognitive assessment and training. Pre-
liminary data analysis indicated a difference between subjective
and objective measures: while participants reported task difficulty
to be increasing across successive task blocks, their performance
nevertheless improved. This discrepancy may be due to mental
and/or physical fatigue. Our ongoing work includes data collection
frommore participants. As the population increases, we also plan to
conduct comparative studies under different conditions (e.g., order
of tasks), in order to evaluate how contextual parameters affect task
performance and fatigue.

Our long-term goal is to develop a personalized robot-based as-
sessment and training system. This system will utilize the different
parameters of the Frox game, including task parameters (target
locations), haptic feedback (assistive or resistive forces), cognitive
demands (different variations can assess different skills, e.g., work-
ing memory) and others, in order to collect information about the

Figure 8: Proposed Framework

user’s physical and cognitive skills, identify their weaknesses and
strengths, and provide a personalized and targeted training, through
the analysis of the collected multisensing data. By selectively focus-
ing on different cognitive or physical parameters of the task and by
focusing on either physical or cognitive skills based on the user’s
performance, we will be able to achieve personalization.

An important part of such a framework is to include the human
in the loop, through self-reports and expert recommendations, con-
sidering physical and mental fatigue. Physiological, behavioral and
human feedback can be used for performance and fatigue analysis,
providing an expert user with data s/he can use to make recom-
mendations for training. Graphical User Interfaces can be used to
enable a human expert to monitor the different phases of the sys-
tem (assessment, recommendation, training) and to intervene when
needed. Figure 8 shows the assessment-recommendation-training
architecture.
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