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Abstract—1In this paper, we study the covariance steering
(CS) problem for discrete-time linear systems subject to mul-
tiplicative and additive noise. Specifically, we consider two
variants of the CS problem. The goal of the first problem,
which is called the exact CS problem, is to steer the mean and
covariance of the state process to their desired values in finite
time. In the second problem, which is called the ‘“relaxed” CS
problem, the covariance assignment constraint is relaxed into
a positive semi-definite constraint. We show that the relaxed
CS problem can be cast as an equivalent convex semi-definite
program (SDP) after applying suitable variable transformations
and constraint relaxations. Furthermore, we propose a two-
step solution procedure for the exact CS problem based on the
relaxed problem formulation which returns a feasible solution,
if there exists one. Finally, results from numerical experiments
are provided to show the efficacy of the proposed solution
methods.

I. INTRODUCTION

In this paper, we study the problem of characterizing
causal feedback policies for discrete-time stochastic linear
systems which steer the state mean and the state covariance
to desired values. This class of problems is known as
Covariance Steering (CS) problems in the relevant literature
[1]-[3]. The CS methods can be used for robust trajectory
optimization for uncertain systems [4] and density control of
robotic swarms [5].

Typically, CS problems are addressed only for the case
of additive noise. By contrast, in this work, we consider
discrete-time linear systems which are excited by both ad-
ditive and multiplicative noise. Throughout the paper, we
will study two variations of the CS problem. In the first
problem formulation, the main goal is to find a causal policy
which will steer the mean and the covariance of the state
process to their respective desired values in finite time. In
the second problem formulation, we keep the hard constraint
on the state mean but the constraint on the state covariance
is “relaxed” into a positive semi-definite constraint. We will
refer to the former variation of the CS problem as the “exact”
CS problem and the latter as the “relaxed” CS problem.

Literature Review: Early attempts to address CS problems
were focused on the infinite horizon case for linear time-
invariant systems in which the set of assignable covariance
matrices can be characterized in terms of linear matrix
inequalities (LMI) [6], [7]. More recently, finite horizon CS
problems have gained significant attention. Unconstrained
CS problem formulations with continuous-time linear sys-
tems were first addressed in [2], [8] whereas the constrained
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CS problems for discrete-time linear systems are considered
in [1], [9]. Soft constrained versions of the CS problems
are studied in [10], [11]. Furthermore, CS problems for
partially observable systems are studied in [12]. In all of the
aforementioned papers, the system model is assumed to be
linear and the noise process is assumed to be an additive
white noise process. Besides finite horizon CS problems,
density control problems are studied in [5], [13], [14] under
simplifying assumptions.

The problem of finding stabilizing controllers for linear
systems subject to multiplicative noise using LMIs has been
studied in [15]. Model Predictive Control (MPC) algorithms
for linear systems subject to state and control multiplicative
noise have been developed in [16], [17]. Estimation and
control design problems are studied in [18]. More recently,
sampling-based methods for learning the optimal state feed-
back controllers for linear systems subject to multiplicative
noise have been proposed in [19], [20].

The CS problem with continuous-time dynamics and mul-
tiplicative noise is studied in [21] where a solution based on
coupled Riccati equations is obtained. However, the authors
of [21] consider the case in which the system is only affected
by the state multiplicative noise, and the state mean at the
initial stage and its desired terminal value are both zero. In
our work, we consider a more general problem with system
dynamics having both state and control multiplicative noise,
and nonzero initial and desired mean dynamics. To the best
of our knowledge, this is the first paper that addresses the
finite horizon CS problem for discrete-time linear systems
excited by both state and control multiplicative noise.

Main Contributions: First, we present a formulation of
the CS problem as a nonlinear program (NLP) assuming
an affine state feedback policy parametrization and subse-
quently, we show that this NLP can be transformed into an
equivalent semi-definite program by applying suitable vari-
able transformations and semi-definite relaxations. Second,
we show that SDP relaxations, which are tight in the relaxed
problem, are loose in the exact CS problem. In view of these
results, we propose a two-step procedure to solve the exact
CS problem which is based on the solution to the relaxed
problem. Third, we provide an instance of the exact CS
problem in which the semi-definite relaxations used in the
second step of the solution procedure are loose. Then, we
show that the semi-definite relaxations in the second step
of the solution procedure are tight if there is no control
multiplicative noise acting on the system.

II. PROBLEM FORMULATION

Notation: The space of n-dimensional real vectors and nxm
matrices are denoted as R™ and R™*™, respectively. The



set of positive integers is denoted as Z,. The cone of
n X n positive definite (semi-definite) matrices are denoted
by SFT(S;). 0 denotes the zero matrix (or vector) with
the appropriate dimension. We use I,, to denote the n X n
identity matrix. For A, B € §,,, A = B (A = B) means
A—B e S}t (A—B € S;). We use tr(-) to denote the trace
operator. bdiag(A;,...,Ax) denotes the block diagonal
matrix whose diagonal blocks are the matrices Ay,..., An.
The expectation and the covariance of a random variable x
are denoted as E [z] and Cov (x), respectively.

Problem Setup and Formulation: We consider discrete-
time linear systems of the form:

Tpp1 = Apwy + By ouy +wi + dy (D

where z; € R™, up € R™ are the state and the input
processes, respectively. Ay = Ay + Zé\il 5]§74Ak,[, B, =
By + Z?il’yk,gBk,g. We assume that E[z9] = po € R
and Cov (zg) = Xp € S/T are given. d, € R" is
known for all £k € {0,...,N — 1}. The state and control
multiplicative noise processes are represented by i.i.d. ran-
dom variables dy ¢, vk, where E[dx¢] = E[yx¢ = 0 and
Cov (0k,¢) = Cov (yk,¢) = 1. Note that this representation
of the multiplicative noise process is not restrictive, i.e., any
random matrix S € R™*™ whose entries have finite second
moments can be represented in this form as shown in [22].
The additive noise {wk},i\’:ol is also an i.i.d. random process
with E [wg] = 0 and Cov (wy) = W, € S,/

Remark 1. The only assumption that we make on the
distributions of the initial state zy and the noise processes
Wi, Ok ¢, Yk, 18 that their first two moments are known. Thus,
the distribution of the initial state x, the random variables
Ok,¢Vk,e and wy can have any distribution (not necessarily
Gaussian) with given covariance values.

A state feedback control policy for the system in (1) is
a sequence 7 = {7}~ ' where each 7 : R — R™ is a
function from the state x;, to control u;. We denote the set of
admissible policies by II. Throughout the paper, we consider
a performance measure with a quadratic running cost:

N-1
J(Uo:n—1, Xon) = > uj Rug, + 2f Qprr, ()

k=0
where Up.ny—1 = {ug,...,uy—1} (input process) and
Xo.n = {xo,...,xN} (state process). Next, we provide the
precise formulations of the two main problems of this work.

Problem 1 (Exact Covariance Steering Problem). Let N €
Z, { Ak, Brydy, Wi, { A 320 A Br o 302 30k, pio, fta €
R", 30, %q € S}, and {Rk,Qk}kN:_Ol where Ry,Q €
ST, Wi € S} be given. Then, find an admissible control
policy m* € 11 that solves the following stochastic optimal
control problem:

21611111 E[J(Uo:n—-1, Xo:N)] (Ga)
s.t. (1) (3b)
Elzn] = pa (30)
Cov (zn) = 24 (3d)
uy, = (k) (3e)

Many practical applications of stochastic optimal control
problems require the terminal covariance of the state to be
upper bounded by some acceptable covariance matrix in the
Lowner partial order sense. Thus, we consider the ‘relaxed’
variation of the Problem 1 in which the terminal covariance
constraint in (3d) is relaxed to the constraint in (4c).

Problem 2 (Relaxed Covariance Steering Problem). Let N €
Zy, { Ak, Bie, dio, Wi, { A, 321 A B L 0 Hos pa €
R", %, %4 € S+, and {Ry,Qi}r_, where Ry €
SET Wi, Qr € S} be given. Then, find an admissible
control policy ™ € 1l that solves the following stochastic

optimal control problem:

frnelllll E [J(Up:N-1,Xo:N)] (4a)
s.t. (1),(3¢c),(3e) (4b)
Cov (zn) = 2a (4¢)

Remark 2. The solution to Problem 2, besides its own prac-
tical value, will be used in the proposed solution procedure
for Problem 1 (exact CS), as explained in Section III.

III. MAIN RESULTS

Since the proposed solution method for Problem 1 requires
the solution obtained by solving Problem 2, we first present
our results on the relaxed CS problem. Both Problem 1
and Problem 2 are stochastic optimal control problems over
infinite dimensional policy spaces which make them compu-
tationally intractable for most cases. However, the optimal
policy for the CS problem takes the form of an affine state
feedback control policy [2], [3], [23], [24]. Thus, we restrict
the set of policies that we optimize over to the set of affine
state feedback policies which is denoted as I1%/. In particular,
a policy m = {m, }2 -} € TI*/ is given as

me(or) = U + Ky (zp — pr), (5)

for every m, : R — R™ where p = E[zx]. With this
formulation, the policy space II°/ is parametrized by a finite
number of decision variables which are {ay, K} }_, where
Uy € RJVI7 ch c Rmxn,

Under the policy parameterization defined in (5), the mean
and the covariance dynamics of the state process zj, obey the
following recursive equations:

Mh1 = Agpr + Bryg + dy (6)
Yia1 = ANk AL + Fi(Sk, K, k) + Ge(Zk, ) (7)

where Y, := Cov (l‘k), Wi = ]E({L‘k), Ak = A, + B Ky,
Fie(Sk, Kioy ) = Y omg Bro(KiSe KT + apti}) BY, +
Wi, G(Skomk) = Yoo Aee(Se + mepd )AL, Also,
we used the fact that random variables 6, and ;. are
i.i.d. random processes. Besides the system dynamics, we
need to represent the objective function E [J(Up.n—1, Xo.n)]
in terms of the policy parameters {u, K k}é\:ol where
J(Uo.n—1, Xo.n) is defined in (2) to formulate both Problem
1 and Problem 2 as finite dimensional nonlinear programs.
To this aim, we use the following identities:

E [up Rpug] = tr(Retrty ) + tr(Re K Sp K ),
E [2f Qrar] = tr(Qrprpg ) + tr(QrLy),

(8a)
(8b)



whose derivation is based on the linearity of the expectation
operator [E [-] and the cyclic permutation property of the trace
operator tr(-). By the summation of the equalities in (8) over
all k € {0,...,N — 1}, we observe that

N—-1
E[J(Upn-1, Xo:n)] = D tr(Re(uptty + KpSpK}))
k=0
+ tr(Qr (kg + Sk))
= T ({tn, Kpy s Sk by ) (9)

Now that we have written both the dynamics of the mean
vy, and the covariance X, of the state and the objective func-
tion E [J(Ugp.n—1, Xo:n)] in terms of the policy parameters
{ag, K k}ff:_ol, we are ready to formulate Problem 1 and 2
as finite dimensional optimization problems.

A. Relaxed Covariance Steering

A finite dimensional optimization problem over the vari-
ables {pg, Xk, Uk, K1} can be written as follows:

min I ({@k, Ki, e Sk dnsg)
Uk, Kk
Pk, 2k

s.t. (6),(7), un = pa,Xq = XN

(10a)

The optimization problem in (10) is a general nonlinear
program (NLP) for which there are no algorithms that can
guarantee convergence or global optimality. The difficulty
of the problem in (10) comes from the bilinear terms
K.Y and KX KT that appear in the objective function
J ({aig, K, pi, i} oo’ ) and the state covariance dynamics
given in (7). The mean dynamics in (6) are affine and the
other terms in the objective function in (10a) are either affine
or convex quadratic function of the decision variables.

To isolate the nonlinearities in the optimization problem
in (10), we introduce the following decision variables:

Ly = KySk, My = LS LY, an
Xi = /Lkﬂ;c[‘7 U, = ﬁkﬁg

The objective function [J(-) in (9) can be equivalently
represented in terms of the new decision variables which are
defined in (11) as follows: J({Mjy, Uy, Sk, X }n ') ==

N tr(Ry (Ug + M) + tr(Qr(Sk +X3,)). By using the
new decision variables, we can formulate a new optimization
problem that is equivalent to (10) as follows:

Cmin. J({My, Uk, S, X }2H (12a)
U, Ly, 2k,
My, X, Ug

st ppg1 = Agpp + Brig + di, (12b)

Ek+1 = AkaAE + AkLEBkT + BkLkAE
+ ByM B + W,

+ Fi(Sh, Xi) + Gr(My, Xi), (120
My = LS 'LE, (12d)
Xk = pkliy s (12e)
Uy, = ugay, (12f)
UN = Md, 2d = XN, (12g)

where Fi (3, Xi) = Zﬁl Ay oS + Xk)fl;aé, and
Gr(My,, Uy) := Zéj\il By «(My, + Uk)BE’Z. We replaced
the bilinear terms KX in the recursive equation for the
propagation of the state covariance (7) with L. The term
KkEglKg is rewritten as KkEkE;EkKk then turned into
Lngng which is subsequently replaced with Mj. The
terms pyp; , urty are replaced with Xy, Uy, respectively.
Note that the constraints that include the decision vari-
ables denoted with subscript k are imposed for all £ €
{0,...,N — 1} in the rest of the optimization problems
defined throughout the paper. Finally, to keep the equivalence
of the problems in (10) and (12), we add the nonlinear
equalities in (11) as constraints in (12d), (12e) and (12f).

After introducing the new decision variables, the problem
in (10) takes the form in (12) where the objective func-
tion now is expressed as affine functions of the decision
variables Yy, Xy, Ug, M. Furthermore, the covariance dy-
namics constraint in (12c) is now represented as an affine
constraint. To convefixy the problem, we relax the nonlinear
equality constraints (12d)-(12f) as follows:

My, = Le¥ Ly, Xpo= peye, Uk = g (13)
In light of Schur’s complement lemma [25], the relaxed
nonlinear SDP constraints in (13) can be transformed into
LMI constraints in (14a)-(14d). The resulting optimization

problem after the SDP relaxations is given as follows:

Comin _ J({My, Uk, S, X hng)
U, bk, Lk , 2k,
My, X, Ug
s.t. (12b), (12¢), (12g),
M), L
_Lk E;J =0, (14a)
[ X, Mk}
=0, 14b
e 1 (14
_Uk Uk
i 1= e
DRI (14d)

To be able to recover the optimal state feedback policy
parameters {@y, K }n—, from the solution of the SDP in
(14) which is denoted as ({u}, L}, ¥5, M7, X}, Us ,]:’;01),
we need the optimal parameters to satisfy the relaxed (non-
strict) inequality constraints in (13) with equality. Next, we
show that the optimal parameters of problem in (14) satisfy
the nonlinear equality constraints (12d)-(12f).

Proposition 1. Ler {u}, L}, X5, M5, X5, Ur ! be the
optimal solution of Problem in (14). Then, it satisfies the
equalities in (12d), (12e), (12f). Therefore, it is an optimal
solution to Problem 2.

Proof. Suppose for the sake of contradiction that the param-
eters corresponding to the optimal solution satisfy Mj —
LS 'L = N™ £ 0, Xy — i = N® £ 0,
U, — uxt; = N“ £ 0 for some k € {0,...,N — 1}.
Now, let’s define M, = L;%. 'L}, U, = u,u; and
X/} = pppuy. It follows readily that My = M}, Uy = U,
and X, >~ X?C Since Ry = 0, Qi > 0; tr(Rk(Mk+Uk)) >



tr(Ry (M) +U})). Thus, the value of the objective function
is strictly lower with M, U}, X).. Furthermore, let 3} be
the value of the state covariance under M , U}, X for all
t > k + 1. Then, we have that ¥; = X} for all ¢ > k + 1.
Now, replace L; with L;(X})™%; to ensure feasibility of
constraint (14a) for all t > k4 1. Since M, = L,X; ' LT =
Ly(2) 1,218, (2)~TLIT. Since ¥, > X implies that
(Z) 152! = (571 we have M, = Li(S}) 1 Li;
thus the constraint (14a) is satisfied. Combining both results,
we conclude that if the inequalities in (13) are not strict, one
can pick new values for My, Lj which decrease the value
of the objective function without violating the constraints
which contradicts the optimality assumption of My, L. This
completes the proof. |

B. Exact Covariance Steering

For the upper bound constraint on the covariance given
in (4c), the CS problem 1 can be relaxed into problem in
(14) without changing the nature of the problem according
to Proposition 1. However, the SDP relaxations in (13) for
the constraints in (11) for X, U do not hold with equality
in the exact covariance steering problem (Problem 1).

In our numerical experiments, we observed that the loose
constraints were the ones with X, Uy in the optimal so-
lution. Furthermore, one can show that if the feed-forward
control inputs ({ay}5 ") are fixed, then the state mean pu
is also fixed through (6) thus Xy, Uy can be set to their
respected values for fixed .

Now, suppose that the relaxed CS problem is feasible and
let {af, K; =t {uk, S}V, be the policy parameters and
the state statistics that is found by solving problem in (12),
respectively. Then, we have that uy = pq, and the terminal
covariance constraint Xq = X is also satisfied.

After uy, ug are fixed based on the values obtained from
solving (14), the decision variables {ﬂk,uk,Xk,Uk}kN:_Ol
become problem parameters for the exact CS problem. Thus,
we formulate another optimization problem with Ly, X5, My
as the decision variables as follows:

min T {Me Dbl (152)
st. Spy1 = ARSRAY + AR LEBY + By LAY
+ BpMy By + Hy + Hi (21, M) (15b)
[1}/{5 éﬂ =0 (15¢)
Yy =24 (15d)
where J ({My, 2}V = SN Mtr(ReMy 4+ QuXi),

Hy = Wi + Y00, (A Xi AL, + BioUy BYL,). Uy =
apuy’, Xi = pppys Hi(Sk, My,) = 25{1(1‘11@,@21«4&—1—
BMM;@BE@).

To recover the optimal state feedback control parameters
{Kk}kN:_O1 from the identity K} = Lk.E,;l, we need the
optimal solution of the problem in (15) to satisfy the equality
My, = LkE,;lL;f, otherwise the recovered policy will
not satisfy the terminal covariance constraint. Although we
observed that the LMI constraint in (15¢) holds with equality
in our numerical experiments in Section IV, this may not
always be the case. The next problem instance is one example
of such cases where the LMI constraint in (15¢) is loose.

Example 1. Let parameters of the example problem instance
be given as: NV = 1, Ao = [ g7 1317 s Br = [ ok )
Aox = [Z024 935 ], Boa = [Lff6], dk = 0, Wy = 0,
Mo = Hd = 0, RQ = 100, QQ = 0.1[2, Eo = IQ,
S = [ %% 1°51°]. The terminal mean constraint in (3c)
dictates that Agug + Botg + dy = p1 = pqg = 0. Since
o = pa = do = 0 then it follows that Bytig = 0 which
implies that @y = 0 assuming that By is full-rank. Now
that 4 is fixed to O the optimal solution for Problem 2 for
this given instance can be obtained by solving the SDP in
(15). By solving the aforementioned SDP using MOSEK
[26], we obtain the following optimal values for decision
variables: My = 0.149, Ly = [—0.0181,—0.008], which
yields, My — LoX; 'L = 0.148 # 0 which shows that for
the given problem instance, the constraint in (15c) is loose.

Although the solution of the problem instance in Example
1 does not correspond to an affine state feedback policy
since My = LkZ,ZlLE is not satisfied, the mean and the
covariance of the state and the control processes which can
be found by solving (15) can still be realized by considering
randomized affine state feedback policies as in [11].

The set of randomized affine state feedback policies is
denoted by II"*/. Every 7 € II"*f is a sequence 7 =
{Wk}g:_ol where each 7y, is given by:

(k) = Uk + Ki(zk — pr) + vk a7

where v, € R™ is a random variable with E[vg] =
0, Cov(vy) = Py, € S} and each vy satisfies that

E vkxg =0 for all £ < k, E[vidne] = E[vryne = 0,
E vkw} = 0 for all n,f. Thus, the randomized affine

state feedback policies are parametrized by the decision
variables {uy, K, Pk}kN:_Ol. Now, setting the parameters
of the randomized policy to K = Lklel and P, =
M —LklelLT, the randomized affine state feedback policy
induces a state process and a control process whose first and
second moments are equal to the ones found by solving (15).

Despite the fact that deterministic affine state feedback
policies are sufficient for CS problems for systems excited
by additive noise [2], [3], [11], Example 1 shows that the op-
timal policy for Problem 1 may require randomized policies
for systems excited by multiplicative noise. If we consider
the special case of Problem 1 where the multiplicative noise
only acts through the state, which means that By, = 0 for
all k, ¢, then, we can show that the LMI constraint in (15¢)
holds with equality. Proposition 2 formally states that claim.

Proposition 2. Assuming that the problem in (15) is feasible,
Byy =0 and A,;l exists for all k,{, then the optimal val-
ues of decision variables {L%, Y%, My YN" ! satisfy M =
LS 'Lyt

Proof. Let M} — L;¥7 'L} # 0 for some t € {0,..., N —
1} for the sake of contradiction and consider the SDP:

min  tr(R;M) (18a)
LeR'nLXn
Mes;,
st. 7, =R(L) + BMB} + H, (18b)
M L



where H, = Wy + ASFAT + Y00, Ae(SF + Xo)AJ,,
R(L) := A LT Bf + B, LAT. The SDP in (18) represents the
covariance evolution from time step ¢ to ¢+ 1 but covariances
are fixed. So, the objective is to find policy parameters
M, L to steer the covariance from X} to X}, ;. We establish
the contradiction by showing that the values of M, L that
optimize problem in (18) have to satisfy M — LE;ILT =0.
Multiplying both sides of (18b) by A; ! from left and A; *
from the right, we obtain:

min  tr(R,M) (19a)
LeR™*™
Mes;,
st. Z=LTYT+vyL+yMy?T (19b)
(18b)

where Z = A, ' (S5, —Hy)A; T, Y = A ' By. It is shown
in [11, Theorem 3] that the SDP in (19) admits a solution
that satisfies M — LY, L™ = 0 if R; > 0 which contradicts
with our initial assumption. This completes the proof. W

Remark 3. Note that, the assumption that Ay, is non-singular
is not restrictive. This is because in practice, Ay is computed
as the state transition matrix between discrete time steps of
a continuous-time linear dynamical system [27].

Remark 4. The results that we obtained in Proposition 2
coincide with the result in [21] where the authors show
that the optimal policy corresponds to a deterministic state
feedback policy under the state multiplicative noise for a
continuous-time linear system.

Note that the condition in Proposition 2 is not a necessary
condition for the optimality of deterministic policies. It is a
sufficient condition, thus even if the condition in Proposition
2 is not satisfied i.e. Bk’g # 0 for some k,/, the SDP
constraint My = LpX, 'L} can be tight for all k in our
numerical experiments which is presented in Section IV.
Establishing a necessary condition for the tightness of the
SDP relaxations will be left for future work.

IV. NUMERICAL EXPERIMENTS

All numerical experiments in this section run on a Mac
M1 with 8GB of RAM. We used the CVXPY [28] package
to parse the SDPs and used MOSEK [26] as the SDP solver.
Specifically, we consider a UAV path planning problem. The
UAV is modeled as a point mass with double integrator
dynamics (which is a standard assumption in the relevant
literature [4], [29]). The state and the control input are
defined as zj, = [pf,pY,vf,v}]T € R? and wy, = [af,a¥]”
respectively, where p, v, a denote the position, velocity, and
acceleration of the UAYV, respectively.

The dynamics matrices of the UAV are given as:

A = [BAE] B = [252] W =[S0l

VAt = 0.1. The number of multiplicative noise pro-
cesses is given as M = 2 for all k. Therefore, Ak’l =
bdiag(O,AM), Ak,Q = bdiag(O,AbQ), Bk,l = [OT,BEI]T,
Bras = [OT,BE2]T where Ap; = FiVAL[§2Y],
Arz = BoVAL[§95], Bry = 0iVAL[E80] Bro =
02/ AL[Q%5]. [B1, B2, 01,02] = [0.1,0.3,0.1,0.6] are the
noise intensity parameters.

It is worth mentioning that the assumption of state and
control multiplicative noise for UAV path planning tasks is
more relevant than the assumption of additive noise since it
is harder to follow the reference trajectory that describes an
aggressive, jerky maneuver for the low-level controllers.

Fig. 1: Evolution of the state statistics and sample trajecto-
ries under different noise distributions. The figures on the
left (Figure la, lc le) show the results of the exact CS
problem whereas the ones on the right (Figures 1b, 1d,
1f) correspond to the relaxed CS problem. Cyan, red and
green ellipsoids correspond to the 2-0 confidence ellipsoids
of initial, desired, and terminal covariances, respectively.
The multiplicative noise terms dy, ¢, Vx,¢ have uniform dis-
tribution over [—\/g, \/§] in Figures la, 1b, unit normal
distribution in Figures lc, 1d and uniform distribution over

{—=v/1.5,0,v/1.5} in Figures le, 1f.

The initial state distribution of the UAV is a multivariate
Gaussian with zero mean and covariance matrix Yy =
bdiag(2.013,0.0115) whereas the desired mean and covari-
ance matrix are given as pq = [7.0,5.0,0.0,0.0]T, ¥4 =
bdiag([ %% %] ,0.11,). Finally, the problem horizon is
given as N = 60. It can be seen that the number of decision
variables are linearly proportional with N and the computa-
tional complexity of solving SDPs are O(N?3) therefore the
computational complexity of solving both Problem 1 and
Problem 2 are O(N?).

In Figure 1, the evolution of the state mean and covariance
together with sample trajectories of the UAV dynamics under
the control policies obtained by solving both the exact and
the relaxed CS problems are presented. In Figure 2, we
illustrate the initial and terminal covariance matrices along
with samples from the initial and terminal distributions.
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Fig. 2: Evolution of state statistics along with samples from
initial and terminal distributions. Samples from the initial and
the terminal distributions are illustrated by blue and green
dots, respectively.

Specifically, Figure 2a and Figure 2b illustrate the evolu-
tion of the state covariance for the relaxed and exact CS
problem where the multiplicative noise terms have discrete
distribution. Figure 2c and Figure 2d illustrate the same
for uniformly distributed multiplicative noise terms. Note
that the state of the UAV is modeled as a 2-dimensional
(vector) double integrator (4 states). However, we only show
the distribution of the position in the = — y plane. In both
Figure 1 and 2, we sample 80 trajectories. It can be seen
that terminal covariance constraints are satisfied for different
multiplicative noise distributions.

V. CONCLUSION

In this paper, we have addressed the exact and relaxed
versions of the CS problem for discrete-time linear systems
subject to mixed additive and multiplicative noise. We first
recast the relaxed CS problem as a convex SDP. Then, we
proposed a two-step solution method which leverages the
solution to the relaxed CS problem to solve the exact CS
problem. Finally, we gave an example that shows the neces-
sity of randomized policies for the exact CS problem and
provided a condition that guarantees the set of deterministic
policies is sufficiently rich to address the latter problem. We
also demonstrated in our numerical simulations, however,
that the optimal policy may turn out to be deterministic, even
when the provided condition is violated.
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