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AbstractÐ In this paper, we study the covariance steering
(CS) problem for discrete-time linear systems subject to mul-
tiplicative and additive noise. Specifically, we consider two
variants of the CS problem. The goal of the first problem,
which is called the exact CS problem, is to steer the mean and
covariance of the state process to their desired values in finite
time. In the second problem, which is called the ªrelaxedº CS
problem, the covariance assignment constraint is relaxed into
a positive semi-definite constraint. We show that the relaxed
CS problem can be cast as an equivalent convex semi-definite
program (SDP) after applying suitable variable transformations
and constraint relaxations. Furthermore, we propose a two-
step solution procedure for the exact CS problem based on the
relaxed problem formulation which returns a feasible solution,
if there exists one. Finally, results from numerical experiments
are provided to show the efficacy of the proposed solution
methods.

I. INTRODUCTION

In this paper, we study the problem of characterizing

causal feedback policies for discrete-time stochastic linear

systems which steer the state mean and the state covariance

to desired values. This class of problems is known as

Covariance Steering (CS) problems in the relevant literature

[1]±[3]. The CS methods can be used for robust trajectory

optimization for uncertain systems [4] and density control of

robotic swarms [5].

Typically, CS problems are addressed only for the case

of additive noise. By contrast, in this work, we consider

discrete-time linear systems which are excited by both ad-

ditive and multiplicative noise. Throughout the paper, we

will study two variations of the CS problem. In the first

problem formulation, the main goal is to find a causal policy

which will steer the mean and the covariance of the state

process to their respective desired values in finite time. In

the second problem formulation, we keep the hard constraint

on the state mean but the constraint on the state covariance

is ªrelaxedº into a positive semi-definite constraint. We will

refer to the former variation of the CS problem as the ªexactº

CS problem and the latter as the ªrelaxedº CS problem.

Literature Review: Early attempts to address CS problems

were focused on the infinite horizon case for linear time-

invariant systems in which the set of assignable covariance

matrices can be characterized in terms of linear matrix

inequalities (LMI) [6], [7]. More recently, finite horizon CS

problems have gained significant attention. Unconstrained

CS problem formulations with continuous-time linear sys-

tems were first addressed in [2], [8] whereas the constrained
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CS problems for discrete-time linear systems are considered

in [1], [9]. Soft constrained versions of the CS problems

are studied in [10], [11]. Furthermore, CS problems for

partially observable systems are studied in [12]. In all of the

aforementioned papers, the system model is assumed to be

linear and the noise process is assumed to be an additive

white noise process. Besides finite horizon CS problems,

density control problems are studied in [5], [13], [14] under

simplifying assumptions.

The problem of finding stabilizing controllers for linear

systems subject to multiplicative noise using LMIs has been

studied in [15]. Model Predictive Control (MPC) algorithms

for linear systems subject to state and control multiplicative

noise have been developed in [16], [17]. Estimation and

control design problems are studied in [18]. More recently,

sampling-based methods for learning the optimal state feed-

back controllers for linear systems subject to multiplicative

noise have been proposed in [19], [20].

The CS problem with continuous-time dynamics and mul-

tiplicative noise is studied in [21] where a solution based on

coupled Riccati equations is obtained. However, the authors

of [21] consider the case in which the system is only affected

by the state multiplicative noise, and the state mean at the

initial stage and its desired terminal value are both zero. In

our work, we consider a more general problem with system

dynamics having both state and control multiplicative noise,

and nonzero initial and desired mean dynamics. To the best

of our knowledge, this is the first paper that addresses the

finite horizon CS problem for discrete-time linear systems

excited by both state and control multiplicative noise.

Main Contributions: First, we present a formulation of

the CS problem as a nonlinear program (NLP) assuming

an affine state feedback policy parametrization and subse-

quently, we show that this NLP can be transformed into an

equivalent semi-definite program by applying suitable vari-

able transformations and semi-definite relaxations. Second,

we show that SDP relaxations, which are tight in the relaxed

problem, are loose in the exact CS problem. In view of these

results, we propose a two-step procedure to solve the exact

CS problem which is based on the solution to the relaxed

problem. Third, we provide an instance of the exact CS

problem in which the semi-definite relaxations used in the

second step of the solution procedure are loose. Then, we

show that the semi-definite relaxations in the second step

of the solution procedure are tight if there is no control

multiplicative noise acting on the system.

II. PROBLEM FORMULATION

Notation: The space of n-dimensional real vectors and n×m
matrices are denoted as R

n and R
n×m, respectively. The



set of positive integers is denoted as Z+. The cone of

n × n positive definite (semi-definite) matrices are denoted

by S
++
n (S+n ). 0 denotes the zero matrix (or vector) with

the appropriate dimension. We use In to denote the n × n
identity matrix. For A,B ∈ Sn, A ≻ B (A ⪰ B) means

A−B ∈ S
++
n (A−B ∈ S

+
n ). We use tr(·) to denote the trace

operator. bdiag(A1, . . . , AN ) denotes the block diagonal

matrix whose diagonal blocks are the matrices A1, . . . , AN .

The expectation and the covariance of a random variable x
are denoted as E [x] and Cov (x), respectively.

Problem Setup and Formulation: We consider discrete-

time linear systems of the form:

xk+1 = Ãkxk + B̃k,ℓuk + wk + dk (1)

where xk ∈ R
n, uk ∈ R

m are the state and the input

processes, respectively. Ãk := Ak +
∑M

ℓ=1
δk,ℓĀk,ℓ, B̃k :=

Bk +
∑M

ℓ=1
γk,ℓB̄k,ℓ. We assume that E [x0] = µ0 ∈ R

n

and Cov (x0) = Σ0 ∈ S
++
n are given. dk ∈ R

n is

known for all k ∈ {0, . . . , N − 1}. The state and control

multiplicative noise processes are represented by i.i.d. ran-

dom variables δk,ℓ, γk,ℓ where E [δk,ℓ] = E [γk,ℓ] = 0 and

Cov (δk,ℓ) = Cov (γk,ℓ) = 1. Note that this representation

of the multiplicative noise process is not restrictive, i.e., any

random matrix S ∈ R
n×m whose entries have finite second

moments can be represented in this form as shown in [22].

The additive noise {wk}
N−1

k=0
is also an i.i.d. random process

with E [wk] = 0 and Cov (wk) = Wk ∈ S
+
n .

Remark 1. The only assumption that we make on the

distributions of the initial state x0 and the noise processes

wk, δk,ℓ, γk,ℓ is that their first two moments are known. Thus,

the distribution of the initial state x0, the random variables

δk,ℓ, γk,ℓ and wk can have any distribution (not necessarily

Gaussian) with given covariance values.

A state feedback control policy for the system in (1) is

a sequence π = {πk}
N−1

k=0
where each πk : Rn → R

m is a

function from the state xk to control uk. We denote the set of

admissible policies by Π. Throughout the paper, we consider

a performance measure with a quadratic running cost:

J(U0:N−1, X0:N ) :=

N−1
∑

k=0

uT
kRkuk + xT

kQkxk (2)

where U0:N−1 = {u0, . . . , uN−1} (input process) and

X0:N = {x0, . . . , xN} (state process). Next, we provide the

precise formulations of the two main problems of this work.

Problem 1 (Exact Covariance Steering Problem). Let N ∈
Z+, {Ak, Bk, dk,Wk, {Āk,ℓ}

M
ℓ=1, {B̄k,ℓ}

M
ℓ=1}

N−1

k=0
, µ0, µd ∈

R
n,Σ0,Σd ∈ S

++
n , and {Rk, Qk}

N−1

k=0
where Rk, Qk ∈

S
++
m ,Wk ∈ S

+
n be given. Then, find an admissible control

policy π⋆ ∈ Π that solves the following stochastic optimal

control problem:

min
π∈Π

E [J(U0:N−1, X0:N )] (3a)

s.t. (1) (3b)

E [xN ] = µd (3c)

Cov (xN ) = Σd (3d)

uk = πk(xk) (3e)

Many practical applications of stochastic optimal control

problems require the terminal covariance of the state to be

upper bounded by some acceptable covariance matrix in the

LÈowner partial order sense. Thus, we consider the ‘relaxed’

variation of the Problem 1 in which the terminal covariance

constraint in (3d) is relaxed to the constraint in (4c).

Problem 2 (Relaxed Covariance Steering Problem). Let N ∈
Z+, {Ak, Bk, dk,Wk, {Āk,ℓ}

M
ℓ=1, {B̄k,ℓ}

M
ℓ=1}

N−1

k=0
, µ0, µd ∈

R
n,Σ0,Σd ∈ S

++
n , and {Rk, Qk}

N−1

k=0
where Rk ∈

S
++
m ,Wk, Qk ∈ S

+
n be given. Then, find an admissible

control policy π⋆ ∈ Π that solves the following stochastic

optimal control problem:

min
π∈Π

E [J(U0:N−1, X0:N )] (4a)

s.t. (1), (3c), (3e) (4b)

Cov (xN ) ⪯ Σd (4c)

Remark 2. The solution to Problem 2, besides its own prac-

tical value, will be used in the proposed solution procedure

for Problem 1 (exact CS), as explained in Section III.

III. MAIN RESULTS

Since the proposed solution method for Problem 1 requires

the solution obtained by solving Problem 2, we first present

our results on the relaxed CS problem. Both Problem 1

and Problem 2 are stochastic optimal control problems over

infinite dimensional policy spaces which make them compu-

tationally intractable for most cases. However, the optimal

policy for the CS problem takes the form of an affine state

feedback control policy [2], [3], [23], [24]. Thus, we restrict

the set of policies that we optimize over to the set of affine

state feedback policies which is denoted as Πsf . In particular,

a policy π = {πk}
N−1

k=0
∈ Πsf is given as

πk(xk) = ūk +Kk(xk − µk), (5)

for every πk : R
n → R

m where µk = E [xk]. With this

formulation, the policy space Πsf is parametrized by a finite

number of decision variables which are {ūk,Kk}
N−1

k=0
where

ūk ∈ R
M ,Kk ∈ R

m×n.

Under the policy parameterization defined in (5), the mean

and the covariance dynamics of the state process xk obey the

following recursive equations:

µk+1 = Akµk +Bkūk + dk (6)

Σk+1 = ÃkΣkÃ
T
k + Fk(Σk,Kk, ūk) + Gk(Σk, µk) (7)

where Σk := Cov (xk), µk := E(xk), Ãk := Ak + BkKk,

Fk(Σk,Kk, ūk) :=
∑M

ℓ=0
B̄k,ℓ(KkΣkK

T
k + ūkū

T
k )B̄

T
k,ℓ +

Wk, G(Σk, µk) :=
∑M

ℓ=0
Āk,ℓ(Σk + µkµ

T
k )Ā

T
k,ℓ. Also,

we used the fact that random variables δk,ℓ and γk,ℓ are

i.i.d. random processes. Besides the system dynamics, we

need to represent the objective function E [J(U0:N−1, X0:N )]
in terms of the policy parameters {ūk,Kk}

N−1

k=0
where

J(U0:N−1, X0:N ) is defined in (2) to formulate both Problem

1 and Problem 2 as finite dimensional nonlinear programs.

To this aim, we use the following identities:

E
[

uT
kRkuk

]

= tr(Rkūkū
T
k ) + tr(RkKkΣkK

T
k ), (8a)

E
[

xT
kQkxk

]

= tr(Qkµkµ
T
k ) + tr(QkΣk), (8b)



whose derivation is based on the linearity of the expectation

operator E [·] and the cyclic permutation property of the trace

operator tr(·). By the summation of the equalities in (8) over

all k ∈ {0, . . . , N − 1}, we observe that

E [J(U0:N−1, X0:N )] =
N−1
∑

k=0

tr(Rk(ūkū
T
k +KkΣkK

T
k ))

+ tr(Qk(µkµ
T
k +Σk))

=: J ({ūk,Kk, µk,Σk}
N−1

k=0
). (9)

Now that we have written both the dynamics of the mean

µk and the covariance Σk of the state and the objective func-

tion E [J(U0:N−1, X0:N )] in terms of the policy parameters

{ūk,Kk}
N−1

k=0
, we are ready to formulate Problem 1 and 2

as finite dimensional optimization problems.

A. Relaxed Covariance Steering

A finite dimensional optimization problem over the vari-

ables {µk,Σk, ūk,Kk} can be written as follows:

min
ūk,Kk

µk,Σk

J ({ūk,Kk, µk,Σk}
N−1

k=0
) (10a)

s.t. (6), (7), µN = µd,Σd ⪰ ΣN .

The optimization problem in (10) is a general nonlinear

program (NLP) for which there are no algorithms that can

guarantee convergence or global optimality. The difficulty

of the problem in (10) comes from the bilinear terms

KkΣk and KkΣkK
T
k that appear in the objective function

J ({ūk,Kk, µk,Σk}
N−1

k=0
) and the state covariance dynamics

given in (7). The mean dynamics in (6) are affine and the

other terms in the objective function in (10a) are either affine

or convex quadratic function of the decision variables.

To isolate the nonlinearities in the optimization problem

in (10), we introduce the following decision variables:

Lk = KkΣk, Mk = LkΣ
−1

k LT
k ,

Xk = µkµ
T
k , Uk = ūkū

T
k .

(11)

The objective function J (·) in (9) can be equivalently

represented in terms of the new decision variables which are

defined in (11) as follows: Ĵ ({Mk,Uk,Σk,Xk}
N−1

k=0
) :=

∑N−1

k=0
tr(Rk(Uk+Mk))+tr(Qk(Σk+Xk)). By using the

new decision variables, we can formulate a new optimization

problem that is equivalent to (10) as follows:

min
ūk,Lk,Σk,
Mk,Xk,Uk

Ĵ ({Mk,Uk,Σk,Xk}
N−1

k=0
) (12a)

s.t. µk+1 = Akµk +Bkūk + dk, (12b)

Σk+1 = AkΣkA
T
k +AkL

T
kB

T
k +BkLkA

T
k

+BkMkB
T
k +Wk

+ F̃k(Σk,Xk) + G̃k(Mk,Xk), (12c)

Mk = LkΣ
−1

k LT
k , (12d)

Xk = µkµ
T
k , (12e)

Uk = ūkū
T
k , (12f)

µN = µd, Σd ⪰ ΣN , (12g)

where F̃k(Σk,Xk) :=
∑M

ℓ=1
Āk,ℓ(Σk + Xk)Ā

T
k,ℓ, and

G̃k(Mk,Uk) :=
∑M

ℓ=1
B̄k,ℓ(Mk + Uk)B̄

T
k,ℓ. We replaced

the bilinear terms KkΣk in the recursive equation for the

propagation of the state covariance (7) with Lk. The term

KkΣ
−1

k KT
k is rewritten as KkΣkΣ

−1

k ΣkKk then turned into

LkΣ
−1

k LT
k which is subsequently replaced with Mk. The

terms µkµ
T
k , ūkū

T
k are replaced with Xk, Uk, respectively.

Note that the constraints that include the decision vari-

ables denoted with subscript k are imposed for all k ∈
{0, . . . , N − 1} in the rest of the optimization problems

defined throughout the paper. Finally, to keep the equivalence

of the problems in (10) and (12), we add the nonlinear

equalities in (11) as constraints in (12d), (12e) and (12f).

After introducing the new decision variables, the problem

in (10) takes the form in (12) where the objective func-

tion now is expressed as affine functions of the decision

variables Σk,Xk,Uk,Mk. Furthermore, the covariance dy-

namics constraint in (12c) is now represented as an affine

constraint. To convefixy the problem, we relax the nonlinear

equality constraints (12d)-(12f) as follows:

Mk ⪰ LkΣ
−1

k LT
k , Xk ⪰ µkµ

T
k , Uk ⪰ ūkū

T
k . (13)

In light of Schur’s complement lemma [25], the relaxed

nonlinear SDP constraints in (13) can be transformed into

LMI constraints in (14a)-(14d). The resulting optimization

problem after the SDP relaxations is given as follows:

min
ūk,µk,Lk,Σk,
Mk,Xk,Uk

Ĵ ({Mk,Uk,Σk,Xk}
N−1

k=0
)

s.t. (12b), (12c), (12g),
[

Mk Lk

Lk Σk

]

⪰ 0, (14a)

[

Xk µk

µT
k 1

]

⪰ 0, (14b)

[

Uk ūk

ūT
k 1

]

⪰ 0, (14c)

Σd ⪰ ΣN . (14d)

To be able to recover the optimal state feedback policy

parameters {ūk,Kk}
N−1

k=0
from the solution of the SDP in

(14) which is denoted as ({ū⋆
k, L

⋆
k,Σ

⋆
k,M

⋆
k,X

⋆
k,U

⋆
k}

N−1

k=0
),

we need the optimal parameters to satisfy the relaxed (non-

strict) inequality constraints in (13) with equality. Next, we

show that the optimal parameters of problem in (14) satisfy

the nonlinear equality constraints (12d)-(12f).

Proposition 1. Let {ū⋆
k, L

⋆
k,Σ

⋆
k,M

⋆
k,X

⋆
k,U

⋆
k}

N−1

k=0
be the

optimal solution of Problem in (14). Then, it satisfies the

equalities in (12d), (12e), (12f). Therefore, it is an optimal

solution to Problem 2.

Proof. Suppose for the sake of contradiction that the param-

eters corresponding to the optimal solution satisfy Mk −
LkΣ

−1

k LT
k = N

m ̸= 0, Xk − µkµ
T
k = N

x ̸= 0,

Uk − ūkū
T
k = N

u ̸= 0 for some k ∈ {0, . . . , N − 1}.

Now, let’s define M
′

k = LkΣ
−1

k LT
k , U

′

k = ūkūk and

X
′

k = µkµ
T
k . It follows readily that Mk ⪰ M

′

k, Uk ⪰ U
′

k

and Xk ⪰ X
′

k. Since Rk ≻ 0, Qk ≻ 0; tr(Rk(Mk+Uk)) >



tr(Rk(M
′

k+U
′

k)). Thus, the value of the objective function

is strictly lower with M
′

k,U
′

k,X
′

k. Furthermore, let Σ′

t be

the value of the state covariance under M
′

k,U
′

k,X
′

k for all

t ≥ k + 1. Then, we have that Σt ⪰ Σ′

t for all t ≥ k + 1.

Now, replace Lt with Lt(Σ
′

t)
−1Σt to ensure feasibility of

constraint (14a) for all t ≥ k+ 1. Since Mt ⪰ LtΣ
−1
t LT

t =
L′

t(Σ
′

t)
−1ΣtΣ

−1
t Σt(Σ

′

t)
−1L′T

t . Since Σt ⪰ Σ′

t implies that

(Σ′

t)
−1Σt(Σ

′

t)
−1 ⪰ (Σ′

t)
−1; we have Mt ⪰ L′

t(Σ
′

t)
−1L′

t;

thus the constraint (14a) is satisfied. Combining both results,

we conclude that if the inequalities in (13) are not strict, one

can pick new values for Mk, Lk which decrease the value

of the objective function without violating the constraints

which contradicts the optimality assumption of Mk, Lk. This

completes the proof. ■

B. Exact Covariance Steering

For the upper bound constraint on the covariance given

in (4c), the CS problem 1 can be relaxed into problem in

(14) without changing the nature of the problem according

to Proposition 1. However, the SDP relaxations in (13) for

the constraints in (11) for Xk,Uk do not hold with equality

in the exact covariance steering problem (Problem 1).
In our numerical experiments, we observed that the loose

constraints were the ones with Xk,Uk in the optimal so-

lution. Furthermore, one can show that if the feed-forward

control inputs ({ūk}
N−1

k=0
) are fixed, then the state mean µk

is also fixed through (6) thus Xk,Uk can be set to their

respected values for fixed ūk.
Now, suppose that the relaxed CS problem is feasible and

let {ū⋆
k,K

⋆
k}

N−1

k=0
, {µ⋆

k,Σ
⋆
k}

N
k=0 be the policy parameters and

the state statistics that is found by solving problem in (12),

respectively. Then, we have that µN = µd, and the terminal

covariance constraint Σd ⪰ ΣN is also satisfied.
After ūk, µk are fixed based on the values obtained from

solving (14), the decision variables {ūk, µk,Xk,Uk}
N−1

k=0

become problem parameters for the exact CS problem. Thus,

we formulate another optimization problem with Lk,Σk,Mk

as the decision variables as follows:

min
Lk,Σk,Mk

J̃ ({Mk,Σk}
N−1

k=0
) (15a)

s.t. Σk+1 = AkΣkA
T
k +AkL

T
kB

T
k +BkLkA

T
k

+BkMkB
T
k +Hk +Hk(Σk,Mk) (15b)

[

Mk Lk

LT
k Σk

]

⪰ 0 (15c)

ΣN = Σd (15d)

where J̃ ({Mk,Σk}
N−1

k=0
) :=

∑N−1

k=0
tr(RkMk + QkΣk),

Hk = Wk +
∑M

ℓ=1
(Āk,ℓX

⋆
kĀ

T
k,ℓ + B̄k,ℓU

⋆
k,ℓB̄

T
k,ℓ), U

⋆
k =

ū⋆
kū

⋆T
k , X⋆

k = µ⋆
kµ

⋆T
k , Hk(Σk,Mk) :=

∑M
ℓ=1

(Āk,ℓΣkĀ
T
k,ℓ+

Bk,ℓMkB
T
k,ℓ).

To recover the optimal state feedback control parameters

{Kk}
N−1

k=0
from the identity Kk = LkΣ

−1

k , we need the

optimal solution of the problem in (15) to satisfy the equality

Mk = LkΣ
−1

k LT
k , otherwise the recovered policy will

not satisfy the terminal covariance constraint. Although we

observed that the LMI constraint in (15c) holds with equality

in our numerical experiments in Section IV, this may not

always be the case. The next problem instance is one example

of such cases where the LMI constraint in (15c) is loose.

Example 1. Let parameters of the example problem instance

be given as: N = 1, A0 =
[

1.04 −0.22
−0.07 1.341

]

, Bk =
[

−0.5
−0.38

]

,

A0,1 =
[

−0.16 −0.2
−0.14 0.24

]

, B̄0,1 =
[

0.26
−0.16

]

, dk = 0, W0 = 0,

µ0 = µd = 0, R0 = 10.0, Q0 = 0.1I2, Σ0 = I2,

Σd =
[

1.26 −0.36
−0.36 1.91

]

. The terminal mean constraint in (3c)

dictates that A0µ0 + B0ū0 + d0 = µ1 = µd = 0. Since

µ0 = µd = d0 = 0 then it follows that B0ū0 = 0 which

implies that ū0 = 0 assuming that B0 is full-rank. Now

that ū is fixed to 0 the optimal solution for Problem 2 for

this given instance can be obtained by solving the SDP in

(15). By solving the aforementioned SDP using MOSEK

[26], we obtain the following optimal values for decision

variables: M0 = 0.149, L0 = [−0.0181,−0.008], which

yields, M0 − L0Σ
−1
0 LT

0 = 0.148 ̸= 0 which shows that for

the given problem instance, the constraint in (15c) is loose.

Although the solution of the problem instance in Example

1 does not correspond to an affine state feedback policy

since Mk = LkΣ
−1

k LT
k is not satisfied, the mean and the

covariance of the state and the control processes which can

be found by solving (15) can still be realized by considering

randomized affine state feedback policies as in [11].

The set of randomized affine state feedback policies is

denoted by Πrsf . Every π ∈ Πrsf is a sequence π =
{πk}

N−1

k=0
where each πk is given by:

πk(xk) = ūk +Kk(xk − µk) + vk (17)

where vk ∈ R
m is a random variable with E [vk] =

0, Cov (vk) = Pk ∈ S
+
n and each vk satisfies that

E
[

vkx
T
ℓ

]

= 0 for all ℓ ≤ k, E [vkδn,ℓ] = E [vkγn,ℓ] = 0,

E
[

vkw
T
ℓ

]

= 0 for all n, ℓ. Thus, the randomized affine

state feedback policies are parametrized by the decision

variables {ūk,Kk, Pk}
N−1

k=0
. Now, setting the parameters

of the randomized policy to Kk = LkΣ
−1

k and Pk =
Mk−LkΣ

−1

k LT
k , the randomized affine state feedback policy

induces a state process and a control process whose first and

second moments are equal to the ones found by solving (15).

Despite the fact that deterministic affine state feedback

policies are sufficient for CS problems for systems excited

by additive noise [2], [3], [11], Example 1 shows that the op-

timal policy for Problem 1 may require randomized policies

for systems excited by multiplicative noise. If we consider

the special case of Problem 1 where the multiplicative noise

only acts through the state, which means that B̄k,ℓ = 0 for

all k, ℓ, then, we can show that the LMI constraint in (15c)

holds with equality. Proposition 2 formally states that claim.

Proposition 2. Assuming that the problem in (15) is feasible,

B̄k,ℓ = 0 and A−1

k exists for all k, ℓ, then the optimal val-

ues of decision variables {L⋆
k,Σ

⋆
k,M

⋆
k}

N−1

k=0
satisfy M

⋆
k =

L⋆
kΣ

⋆−1

k L⋆T
k .

Proof. Let M⋆
t −L⋆

tΣ
⋆−1
t LT

t ̸= 0 for some t ∈ {0, . . . , N −
1} for the sake of contradiction and consider the SDP:

min
L∈R

m×n

M∈S
+
m

tr(RtM) (18a)

s.t. Σ⋆
t+1 = R(L) +BtMBT

t +Ht (18b)
[

M L

LT Σ⋆
t

]

⪰ 0 (18c)






