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Abstract. The main goal of this article is to connect some recent perspectives in the

study of 4–manifolds from the vantage point of singularity theory. We present explicit al-
gorithms for simplifying the topology of various maps on 4–manifolds, which include broken

Lefschetz fibrations and indefinite Morse 2–functions. The algorithms consist of sequences

of moves, which modify indefinite fibrations in smooth 1–parameter families. These al-
gorithms allow us to give purely topological and constructive proofs of the existence of

simplified broken Lefschetz fibrations and Morse 2–functions on general 4–manifolds, and

a theorem of Auroux–Donaldson–Katzarkov on the existence of certain broken Lefschetz
pencils on near-symplectic 4–manifolds. We moreover establish a correspondence between

broken Lefschetz fibrations and Gay–Kirby trisections of 4–manifolds, and show the exis-
tence and stable uniqueness of simplified trisections on all 4–manifolds. Building on this

correspondence, we also provide several new constructions of trisections, including infi-

nite families of genus–3 trisections with homotopy inequivalent total spaces, and exotic
same genera trisections of 4–manifolds in the homeomorphism classes of complex rational

surfaces.
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1. Introduction

An indefinite fibration is a smooth map from a compact smooth oriented 4–manifold onto
an orientable surface, with simplest types of stable and unstable singularities; its singular
locus consists of indefinite folds and cusps along embedded circles (round locus), and Lefschetz
singularities along a disjoint discrete set. Its fibers are smooth orientable surfaces and singular
surfaces obtained by collapsing embedded loops on them. The class of indefinite fibrations1

naturally includes broken Lefschetz fibrations (when there are no cusps) and indefinite Morse
2– functions (no Lefschetz singularities), both of which received a hefty amount of attention
over the past decade; e.g. [2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 24, 26, 27, 33, 34, 35, 37, 38, 42, 51, 55,
64, 65, 70, 71, 79, 80]. Moreover, a special class of generic maps, which are “almost” indefinite,
except for a single definite fold circle, underline the recently emerging theory of trisections of
4–manifolds; e.g. [1, 12, 16, 17, 23, 28, 36, 43, 44, 49, 52, 53, 54, 58, 59, 60, 61, 67]; also see
[50] and references therein.

The main objective of this paper is to bridge between these recent approaches in the study
of 4–manifolds from the viewpoint of singularity theory. We provide explicit algorithms which
immensely simplify the topology of indefinite fibrations, and employ them to present purely
topological and constructive proofs of the existence of simplified broken Lefschetz fibrations,
pencils, and trisections. As a biproduct, we obtain a rather surprising result: the existence of
simplified Gay–Kirby trisections on all 4–manifolds (which appears for the first time in this
work, with further examples featured in the sequel [12]), for which there is a stable uniqueness
result as well.

Let us first review the technical background. Our algorithms consist of sequences of moves
that modify indefinite fibrations in smooth 1–parameter families. We describe several pro-
cedures of this type, especially for maps onto the 2–sphere, to derive an indefinite fibration
—roughly— with the property that every fiber

• is obtained from a fixed regular fiber, by fiberwise 2–handle attachments (directed),
• contains at most one fold or cusp point (embedded round image),
• is connected (fiber-connected),
• if regular, is either of genus g or g − 1 (simplified),

and we achieve these properties cumulatively. Here, what makes an indefinite fibration “sim-
pler” is in essence quantified by the complexity of the handle decomposition induced by the
fibration; e.g. the second property allows one to describe the 4–manifold by round 2–handle
(circle times a 2–handle) attachments to a simple handlebody for a Lefschetz fibration over
the 2–disk, and the fourth makes it possible to do it with a single round 2–handle [6]; cf. [26].
Simplified fibrations induce decompositions of the 4–manifold into elementary fibered cobor-
disms between surface bundles over circles, suitable for calculating Floer theoretic invariants,
such as Heegaard–Floer [62, 63, 45, 46, 47, 48], Lagrangian matching [64, 65], or quilted Floer
invariants [75, 76].

Each homotopy move we use corresponds to a bifurcation in a smooth 1–parameter family
of indefinite fibrations, which may involve a single point (mono-germ move) or two/three
points (multi-germ move), and locally changes the topology of the fibers. Many of these
moves have already been studied and employed by several authors, most notably, by Levine,
Hatcher–Wagoner, Eliashberg–Mishachev, Lekili, Williams, Gay–Kirby, Behrens–Hayano,
and the authors of this article [5, 6, 14, 27, 32, 55, 56, 70, 71, 79, 80]. As we review mono-germ
and multi-germ moves, we will identify a list of always-realizable base diagram moves; namely,

1The name “indefinite fibrations” is indeed a mutual compromise for “indefinite generic maps” (indefinite

Morse 2–functions) and “broken Lefschetz fibrations”. Other authors used “wrinkled fibrations” [55] and
“broken fibrations” [79] for the same class of maps, among others.
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local modifications of the singular image on the base (largely corresponding to Reidemeister
type moves for fold images), which can be always realized by a homotopy move for indefinite
fibrations.

Our first main result is the following:

Theorem 1.1. Let X be a closed oriented connected 4–manifold. There is an explicit
algorithm consisting of sequences of always-realizable mono-germ and multi-germ moves,
which homotopes any given indefinite fibration f : X → S2 to a simplified indefinite fibration
g : X → S2, which is fiber-connected, directed, has embedded singular image and connected
round locus. It suffices to use mono-germ moves flip, unsink, and cusp merge, and multi-germ
moves push, criss-cross braiding, and Reidemeister type moves R20, R21, R22, R32, R33.

Theorem 1.1 will follow from slightly more general procedures, each to strike one of the
four properties we listed earlier, where it will suffice to use even narrower selection of moves;
see Theorems 4.1 and 4.2, Proposition 4.4.

There is a quantitative and a qualitative advantage to the homotopies we construct. The
list of moves in the second part of the theorem comprises less than a fourth of all the ele-
mentary moves that naturally arise in bifurcations in generic homotopies of indefinite fibra-
tions (and less than a half of those with only indefinite singularities), along with a special
move: the criss-cross braiding move, which is a combination of homotopy moves that are not
always-realizable themselves; see Proposition 3.3. In particular, the process does not involve
introduction/elimination of a 1–dimensional round locus component, known as birth/death.
On the other hand, our exclusive use of only always-realizable moves via base diagrams elim-
inates the need to carry around the very-hard-to-track information for justifying the validity
of certain moves.

A necessary condition for an oriented embedded 1–manifold Z in a closed oriented 4–
manifold X to be the round locus of an indefinite fibration is that Z is null-homologous, i.e.
[Z] = 0 in H1(X;Z); see Proposition 5.1. Our second theorem shows that it is also a sufficient
condition for realizing Z as the round locus of some indefinite fibration, after a homotopy:

Theorem 1.2. Let X be a closed oriented connected 4–manifold and Z be a (non-empty)
null-homologous closed oriented 1–dimensional submanifold of X. There is an explicit algo-
rithm consisting of sequences of always-realizable mono-germ and multi-germ moves, which
homotopes any given indefinite fibration f : X → S2 with non-empty round locus to a fiber-
connected, directed broken Lefschetz fibration g : X → S2 with embedded singular image, whose
round locus Zg coincides with Z as oriented 1–manifolds. It suffices to use mono-germ moves
flip, unsink, cusp merge, and multi-germ moves push, criss-cross braiding, and Reidemeister
type moves R20, R21, R22, R32, R33.

There are two local models around an indefinite fold circle without cusps; yielding them
to be marked as untwisted (even) or twisted (odd). Akin to the zero locus (the singular
locus) of a near-symplectic form [66], the number of untwisted components of an indefinite
fibration on a closed oriented 4–manifold X is congruent modulo 2 to 1 + b1(X) + b+2 (X);
see Proposition 5.2. The full version of the above theorem, Theorem 5.3, will show that this
necessary condition on the number of untwisted components is also sufficient; we can adjust
our algorithm to realize Z as the round locus of an indefinite fibration with prescribed local
models.

Broken Lefschetz fibrations and pencils were introduced by Auroux, Donaldson and Katzarkov
in [4], where they proved that every near-symplectic 4–manifold admits a directed broken Lef-
schetz pencil with embedded round image using approximately holomorphic geometry. In [5],
the first author of this article, using the work of the second author in [70], gave an elementary
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proof of the existence of broken Lefschetz pencils on near-symplectic 4–manifolds via singu-
larity theory, and also established that every closed oriented 4–manifold admits a broken
Lefschetz fibration. A number of alternate proofs of these existence results and their im-
provements quickly followed: Building on Gay and Kirby’s earlier work on achiral Lefschetz
fibrations in [24] (where Lefschetz singularities with opposite orientation are allowed), which
made extensive use of round 2–handles, the existence of broken Lefschetz fibrations with di-
rected, embedded round image on every closed oriented 4–manifold was shown in [55, 7, 2].
An alternate singularity theory proof, backed by Cerf theory, was later given in [27] to obtain
fiber-connected broken Lefschetz fibrations.

Despite this variety however, all the existence proofs so far either made use of geometric
results which did not yield to explicit constructions, or fell short of producing broken Lef-
schetz fibrations/pencils with simplified topologies. Handlebody proofs made essential use of
Eliashberg’s classification of over-twisted contact structures [20] and Giroux’s correspondence
between open books and contact structures [29], making these procedures non-explicit. Sin-
gularity theory proofs came with rather explicit algorithms, but did not succeed in producing
a directed indefinite fibration with embedded round locus. Moreover, none of these works
could reproduce an important aspect of Auroux, Donaldson and Katzarkov’s pencils: in [4],
the authors were able to build their broken Lefschetz pencils so that the 1–dimensional round
locus would coincide with the zero locus (singular locus) of the near-symplectic form.

By incorporating our new algorithms to simplify the topology of indefinite fibrations, we
will improve on the singularity theory approach to derive purely topological and explicit
constructions:

Theorem 1.3. Let X be a closed oriented 4–manifold and Z be a (non-empty) null-homologous
closed oriented 1–dimensional submanifold of X. Then, there exists a fiber-connected, di-
rected broken Lefschetz fibration f : X → S2 with embedded round image, whose round locus
Zf matches Z. Given any generic map from X to S2, such f can be derived from it by an
explicit algorithm. If X admits a near-symplectic form ω with non-empty zero locus Zω, then
there exists a fiber-connected directed broken Lefschetz pencil f on X with embedded round
image, whose round locus Zf matches Zω and ω([F ]) > 0 for any fiber F of f .

We will prove the two parts of this theorem in stronger forms in Theorems 6.1 and 6.5,
and Corollaries 6.2 and 6.6.

In the last section, we turn to trisections of 4–manifolds introduced by Gay and Kirby
in [28], which are 4–dimensional analogues of Heegaard splittings of 3–manifolds. Just like
how one can study Heegaard splittings as certain Morse functions, or as decompositions into
two standard handlebodies along with boundary diffeomorphisms, or as Heegaard diagrams,
trisections can be studied in three different ways: as certain generic maps (trisected Morse
2–functions), decompositions into three standard handlebodies along with pairwise partial
boundary diffeomorphisms, and trisection diagrams [28]. Adopting the first perspective, we
simply refer to a trisected Morse 2–function yielding a trisection decomposition as a trisection.
This allows us to study trisections as “almost” indefinite fibrations, with special topology:
they are generic maps to the disk, where a single definite fold circle along the boundary of
the disk encloses the image of a fiber-connected, outward-directed indefinite generic map,
that can be split into three slices (slicing the disk from a point in the innermost region) so
that each sector contains g′ fold arcs, g′ − k′ of which contain a single cusp; see Figure 1.
The preimages of these three slices are the three solid handlebodies Xi

∼= \k(S1 ×B3) of the
decomposition X = X1 ∪X2 ∪X3.
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We will provide various algorithmic constructions of trisections of 4–manifolds, based on
our simplifications of generic maps through generic homotopy moves. Our main result estab-
lishes a correspondence between simplified broken Lefschetz fibrations and trisections:

Theorem 1.4. Let X be a closed oriented connected 4–manifold. If there is a genus–g
simplified broken Lefschetz fibration f : X → S2 with k ≥ 0 Lefschetz singularities and ` ∈
{0, 1} round locus components, then there is a simplified (g′, k′)–trisection of X, with (g′, k′) =
(2g + k − ` + 2, 2g − `). If X admits a simplified (g′, k′)–trisection, then there is a fiber-
connected, directed broken Lefschetz fibration f : X → S2 with embedded round image, which
has regular fibers of highest genus g and with k Lefschetz singularities, where g = g′ + 2 and
k = 3g′ − 3k′ + 4.

Here the genus of a simplified broken Lefschetz fibration is the genus of the highest genus
regular fiber, and when ` = 0, it is an honest Lefschetz fibration.

We will prove slightly stronger versions of both directions of the above theorem in Theo-
rem 7.1 and Proposition 7.6. A by-product of our construction of trisections from simplified
broken Lefschetz fibrations is the existence of simplified trisections on arbitrary 4–manifolds,
which, combined with our algorithmic constructions of simplified broken Lefschetz fibrations,
can be obtained from any given generic map; see Corollary 7.4. Simplified trisections con-
stitute a subclass of the special Morse 2–functions yielding trisections, where for a simplified
trisection, we in addition have embedded singular image (“no non-trivial Cerf boxes between
sectors”) and cusps only appear in triples on innermost circles; see Figure 42 and cf. [28]. Sim-
ilar to simplified broken Lefschetz fibrations (versus arbitrary broken Lefschetz fibrations),
simplified trisections are amenable to a characterization in terms of Dehn twist factorizations
in mapping class groups of surfaces, and our algorithm can be translated to an algorithm
that turns a handle decomposition for a simplified broken Lefschetz fibration to a simpli-
fied trisection diagram [36]. Importantly, Gay and Kirby’s fundamental result on the stable
uniqueness of trisection decompositions [28] holds within the subclass of simplified trisection
decompositions as well. See Remarks 7.5 and 7.8. Note that the stable uniqueness result is
for the decompositions one obtains from simplified trisection maps.

Finally, building on the above correspondence between simplified broken Lefschetz fibra-
tions and trisections, we construct some interesting families of trisections. In Corollary 7.9,
we show that there are infinitely many homotopy inequivalent 4–manifolds admitting (g′, k′)–
trisections, for each g′ ≥ 3 and g′− 2 ≥ k′ ≥ 1. In contrast, any (g′, k′) trisection with g′ < 3
or g′ ≥ k′ ≥ g′ − 1 is standard [60, 59]. Furthermore, we show that there are trisections on
complex rational surfaces, the three standard sectors of which can be re-glued differently to
produce infinitely many exotic smooth structures on them; see Corollary 7.12. Many more
new constructions of simplified trisections, based on our work here, appear in the sequel [12].
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2. Preliminaries

Here we review the definitions and basic properties of generic maps to surfaces, broken
Lefschetz fibrations and pencils, along with moves which modify them in smooth 1–parameter
families. All the manifolds and maps are assumed to be smooth.

2.1. Fold, cusp and Lefschetz singularities; indefinite fibrations.

Let f : X → Σ be a smooth map between compact connected oriented manifolds of dimen-
sions four and two. In the following, we assume that f−1(∂Σ) = ∂X and f is a submersion
on a neighborhood of ∂X. Let y ∈ IntX be a singular point of f , i.e. rank dfy < 2. The map
f is said to have a fold singularity at y if there are local coordinates around y and f(y) in
which the map is given by

(t, x1, x2, x3) 7→ (t,±x21 ± x22 ± x23),

and a cusp singularity if the map is locally given by

(t, x1, x2, x3) 7→ (t, x31 + tx1 ± x22 ± x23).

A fold or a cusp point y is definite if coefficients of all quadratic terms in the corresponding
local model are of the same sign, indefinite otherwise. Note that an indefinite cusp is always
adjacent to indefinite fold arcs.

A special case of Thom’s transversality implies that any smooth map from an n ≥ 2
dimensional space to a surface can be approximated arbitrarily well by a map with only fold
and cusp singularities [57, 73, 78]. Such f : X → Σ is called a generic map (or an excellent
map, or –more recently– a Morse 2–function). The singular locus Zf of f is assumed to be in
IntX and it is a disjoint union of finitely many circles, which are composed of finitely many
cusp points, and arcs and circles of fold singularities. We call f an indefinite generic map if
all of its fold singularities are indefinite.

On the other hand, the map f is said to have a Lefschetz singularity at a point y ∈ IntX
if there are orientation preserving local coordinates around y and f(y) so that f conforms to
the complex local model

(z1, z2) 7→ z1 z2.

A broken Lefschetz fibration is a surjective map f : X → Σ which is only singular along a
disjoint union of finitely many Lefschetz critical points and indefinite fold circles. A broken
Lefschetz pencil is then defined for Σ = S2, when there is a non-empty, finite set Bf of base
points in X, where f conforms to the complex local model

(z1, z2) 7→ z1/z2,

and f : X \Bf → S2 has only Lefschetz and indefinite fold singularities [4].

Since the set of generic maps is open and dense in an appropriate mapping space endowed
with the Whitney C∞ topology, every broken Lefschetz fibration can be approximated (and
hence homotoped) to a map with only fold and cusp singularities. The works of the authors
in [70] and in [5] showed that when the base Σ = S2, one can effectively eliminate the
definite fold singularities and cusps in order to homotope a generic map to a broken Lefschetz
fibration, implying the abundance of broken Lefschetz fibrations. Moreover, as shown in [55],
one can trade an indefinite cusp point with a Lefschetz singularity, and locally perturb a
Lefschetz singularity into a simple indefinite singular circle with three cusp points, allowing
one to switch between indefinite generic maps and broken Lefschetz fibrations in a rather
standard way.

With these in mind, we call a smooth surjective map f : X → Σ an indefinite fibration if it
is an indefinite generic map outside of a finite collection of Lefschetz singular points Cf . For
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an indefinite fibration f , we will call the 1–dimensional singular locus Zf the round locus, and
its image f(Zf ) the round image of f . Note that the restriction of an indefinite fibration to
its round locus is an immersion except at the cusp points. Its round image is, generically, a
collection of cusped immersed curves on Σ with transverse double points off the cusp points,
which we will assume to be the case hereon. We can moreover assume that there is at most
one Lefschetz singular point on any fiber, and also, Lefschetz critical values and round image
are disjoint.

The base diagram of an indefinite fibration is the pair (Σ, f(Zf ∪Cf )), where the image of
any indefinite fold arc or circle is normally oriented by an arrow, which indicates the direction
in which the topology of a fiber changes by a 2–handle attachment when crossing over the
fold from one side to the other. This means that a generic fiber over the region the arrow
starts, if connected, has one higher genus than the generic fiber over the region the arrow
points into; hence the terminology, higher and lower sides [6].

For an indefinite fibration f : X → Σ, we say that

• f is outward-directed (resp. inward-directed), if the round image of f is contained in
a 2–disk D in Σ such that the complement of a regular value z0 ∈ D can be non-
singularly foliated by arcs oriented from z0 to ∂D, which intersect the image of each
fold arc transversely in its normal direction (resp. the opposite direction),

• f has embedded round image, if f is injective on its round locus,
• f is fiber-connected, if every fiber f−1(z), z ∈ Σ, is connected.

We simply say f is directed if it is either outward or inward-directed; when Σ = S2, one
clearly implies the other.

All these properties are essentially about the round locus and not about Lefschetz critical
points. Importantly, the topology of an indefinite fibration is much simplified when f satisfies
these additional properties. In particular, any fiber-connected f : X → S2 with embedded
round image and connected round locus (which implies directed), with all Lefschetz singu-
larities on the higher side, can be captured by simple combinatorial data: an ordered tuple
of loops on the highest genera generic fiber (say, the one over z0) [6, 79]. Such f : X → S2 is
said to be simplified.

2.2. Near-symplectic structures.

A closed 2–form ω on an oriented 4–manifold X is said to be near-symplectic, if at each
point x ∈ X, either ω2

x > 0 (non-degenerate), or ωx = 0 and the intrinsic gradient∇ω : TxX →
Λ2(T ∗X) as a linear map has rank 3. The zero locus of ω, i.e. the set of points x ∈ X where
ω = 0, is a 1–dimensional embedded submanifold of X denoted by Zω.

Take R4 with coordinates (t, x1, x2, x3) and consider the 2–form

Ω = dt ∧ dQ+ ∗ (dt ∧ dQ),

where Q(x1, x2, x3) = x21+x22−x23 and ∗ is the standard Hodge star operator on Λ2R4. Define
two orientation preserving affine automorphisms σ± of R4 by

σ+(t, x1, x2, x3) = (t+ 2π, x1, x2, x3) and

σ−(t, x1, x2, x3) = (t+ 2π,−x1, x2,−x3).

Restrict Ω to the product of R and the unit 3–ball D3. Each σ± preserves Ω and the
map (t, x1, x2, x3) 7→ (t, Q(x1, x2, x3)), and thus, induces a near-symplectic form ω± and
an indefinite fold map f± on the quotient space N± = (R × D3)/σ±. As shown in [41],
any near-symplectic form ω around any component of Zω is locally (Lipschitz) equivalent
to one of the two local near-symplectic models (N±, ω±). The circles in Zω which admit
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neighborhoods (N+, ω+) are called untwisted or of even type, and the others twisted or of odd
type. Similarly, each component of the round locus of a broken Lefschetz fibration/pencil f is
locally equivalent to (N±, f±), yielding the same terminology [6, 4]. Labeling the untwisted
components with 0 and the twisted ones by 1, we obtain the twisting data for Zω or Zf .

A 4–manifold X admits a near-symplectic structure X if and only if b+(X) > 0 [40, 4].
(So near-symplectic 4–manifolds constitute a much larger class than the symplectic ones.)
In [4], using approximately holomorphic techniques of Donaldson, the authors proved that
for a given near-symplectic form ω on X, there is a directed broken Lefschetz pencil f with
embedded round image, such that Zf coincides with Zω with the same twisting data, and
such that ω(F ) > 0 for any fiber F of f . They moreover proved a converse to this result
by a Thurston–Gompf construction: if f is a broken Lefschetz pencil on X and there is an
h ∈ H2(X;R) that evaluates positively on every component of every fiber of f , then X admits
a near-symplectic form ω, such that Zω coincides with the round locus Zf .

2.3. Trisections of 4–manifolds.

A (g, k)–trisection decomposition, with g ≥ k, of a closed oriented connected 4–manifold X
is a decompositionX = X1∪X2∪X3, such that: (i) there is a diffeomorphism φi : Xi → Zk for
each i = 1, 2, 3, and (ii) φi(Xi ∩Xi+1) = Y −k,g and φi(Xi ∩Xi−1) = Y +

k,g for each i = 1, 2, 3

(mod 3). Here Zk = \k(S1 × B3), Yk = ∂Zk = ]k(S1 × S2), and Yk = Y +
k,g ∪ Y

−
k,g is

the standard genus g Heegaard splitting of Yk obtained by stabilizing the standard genus k
Heegaard splitting g− k times. Note that X1 ∩X2 ∩X3 is a closed genus–g surface, and g is
said to be the genus of the trisection.

a b

Figure 1. (a) Image of a generic map corresponding to a trisection: the
outermost circle is the image of the definite fold circle, and in each box there
is an arbitrary Cerf graphic in the sense of [28, §3]. The three half lines divide
the image into three parts and their inverse images correspond to X1, X2 and
X3. (b) An example of a Cerf graphic.

Trisections of 4–manifolds are introduced by Gay and Kirby in [28]. They are to 4–manifolds,
what Heegaard splittings are to 3–manifolds. Similar to how one can study Heegaard split-
tings in terms of certain Morse functions, trisections can be studied in terms of certain generic
maps, called trisected Morse 2–functions in [28]. In this article, we will adopt this approach,
and simply call any trisected Morse 2–function onX a trisection ofX. This allows us to regard
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trisections as “almost” indefinite directed generic maps. (Bearing in mind that many non-
isotopic trisected Morse 2–functions can yield equivalent trisection decompositions.) Namely,
in our language, a trisection corresponds to a generic map to the disk, with an embedded
definite fold image enclosing the image of an outward-directed indefinite generic map, with a
balanced distribution of cusps to three sectors as in Figure 1. The total numbers of indefinite
fold arcs and indefinite fold arcs without cusps in each sector are g and k, respectively, where
the arcs with cusps contain a single cusp. Note that the number of fold circles for this special
kind of a generic map does not need to be equal to g, since raising/lowering them in the Cerf
boxes, one may have a fold circle image wrapping around multiple times.

Remarkably, Gay and Kirby showed that just like the Reidemeister–Singer theorem for
Heegaard splittings of 3–manifolds, trisections of 4–manifolds are unique up to stabilization,
an operation which can also be described as an introduction of a nested triple of “wrinkles”
[21] (or “eyes”); see [28].

3. Homotopies of indefinite fibrations and base diagram moves

In this section, we will discuss certain smooth 1–parameter families of indefinite fibra-
tions, each of which amounts to a “move” from the initial fibration to the final one in
the family. Many of these homotopy moves have been studied in varying levels of details
by Levine, Hatcher–Wagoner, Eliashberg–Mishachev, Lekili, Williams, Gay–Kirby, Behrens–
Hayano, and the authors of this article in [5, 6, 14, 27, 32, 55, 56, 70, 71, 79, 80]. Our goal here
is to compile a comprehensive list of moves (with standardized terminology and notation) we
can utilize in the rest of the article, for which we will refer to complete arguments in the
existing literature, or provide them if needed. At the end of the section, we will add some
combination moves to this list, which will play a key role in our topological modifications.

As we are largely interested in moves that will change the general topology of the fibration,
we will often capture them by studying their singular image. A base diagram move is a
transition from (Σ, f0(Zf0 ∪ Cf0)) to (Σ, f1(Zf1 ∪ Cf1)) realized by a smooth 1–parameter
family ft : X → Σ, t ∈ [0, 1], such that ft is an indefinite fibration for each t except for
finitely many values in (0, 1). (Recall that we assume indefinite fibrations are also injective
on their singular locus except possibly at fold double points.) Such a transition essentially
happens locally around one point on Σ; however, the modification of the map ft may occur
around one, two, or three points in the domain X. Following singularity theory conventions,
we will call it a mono-germ move if the move concerns a single point in X, and a multi-germ
move otherwise.

We will often focus on only parts of the base diagram. Any Lefschetz critical value will be
marked by a small cross sign in these diagrams. Figure 2 shows two examples. The unsink
move of [55], which trades an indefinite cusp to a Lefschetz critical point, is a mono-germ
move. It clearly changes the singular locus and the base diagram, though the isotopy type
of the round locus stays the same. The push move of [6], which drags the Lefschetz critical
point until its image is on the opposite side of the arrow of the round image, is a multi-germ
move. In this case, the base diagram changes, but the isotopy type of the singular set does
not.

Both of these are examples of base diagram moves that are always-realizable [55, 6]. That
is, given a local configuration of a base diagram as on the left hand side of Figure 2, we can
always find a 1–parameter family of smooth maps that realizes the relevant base diagram
move. On the other hand, the pseudo-inverses of these two moves, sink and pull moves in
Figure 2, are not always-realizable. A necessary and sufficient condition for a sink move is
given in terms of vanishing cycles in [55]. A pull move can be realized if and only if the
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u

s

p

r

Figure 2. Unsink/sink and push/pull moves.

vanishing cycle for the Lefschetz critical point (on a reference fiber on the higher side) and
that for the round locus can be chosen to be disjoint.

When there are additional conditions for a move to be realized, we indicate it by an
exclamation mark; see e.g. the pseudo-inverses in Figure 2. Otherwise, the move is understood
to be always-realizable. Importantly, we will only use always-realizable base diagram moves
(some of which will be a combination of simpler moves) in this paper. Note that using unsink
and push moves, we can always trade an indefinite cusp to a Lefschetz critical point, and we
can push a Lefschetz critical value across any round image whose arrow is pointing towards
it. Thus, we will not bother with cusps or Lefschetz critical points in such local diagrams.
With this in mind, the collection of moves we cover in the next two subsections can be seen
to be sufficient to pass from any given indefinite fibration to another (up to isotopy) by [79],
as we also include Reidemeister type moves that can appear in bifurcations.

Remark 3.1. In fact, unsink and sink moves are closely related to the D5–singularity of planar
caustics, or the so called I2,3–singularity of a map germ (R2, 0)→ (R2, 0). A move similar to
the unsink and sink moves appears as a special 1–dimensional section in a versal deformation
of the D5–singularity, see [74] and [81, Fig. 14].

3.1. Mono-germ moves for indefinite fibrations.

Figure 3 depicts several well-known mono-germ moves, which appear in generic homotopies,
and are studied in detail in [56, 32, 21, 55, 79, 27, 14].

c

fl

e

b

d

f

u

Figure 3. Classical mono-germ moves.

Note that birth, death, flip and unflip moves are always-realizable. For birth and flip
moves, see, e.g. [68, Lemmas 3.1 and 3.3]. For death and unflip moves, [27, Lemmas 4.7
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and 4.8] guarantee that they are realizable under certain conditions. As there are no other
singularities appearing in the local pictures, these conditions are automatically satisfied in our
case. A cusp merge can be performed if and only if there exists a joining curve connecting
the pair of cusps used to eliminate them whose image is depicted by a dotted line in the
diagram; in particular, this move is always-realizable when the fibers over the given local
disk are connected. A necessary and sufficient condition for a fold merge is that the relevant
vanishing cycles intersect transversely at one point on a reference fiber over the middle region
[55, 79, 14]: in other words, if we take a vertical oriented line segment in the base depicted in
the lower right of Figure 3, then its inverse image corresponds to a canceling pair of 1– and
2–handles (see also [27, Lemma 4.6]).

Figure 4 shows another example of a mono-germ move from [55] we denote by W , called
wrinkling, which comes from the local perturbation of a Lefschetz critical point. (Here the
pseudo-inverse W−1 may produce a Lefschetz type critical point with the wrong orientation,
called an “achiral Lefschetz critical point”.)

w

u

Figure 4. Wrinkling move.

Observe that all these moves, except for flip and unflip, change the set of the singular
locus: a birth creates a new circle, a cusp merge corresponds to a “band move” for the set of
singular points, etc. Flip and unflip moves, however, both preserve the isotopy type of the
singular locus.

3.2. Multi-germ moves and isotopies of the round locus.

We now introduce several multi-germ moves, where the round locus simply goes through
an isotopy, while the topology of the indefinite fibration changes, at times drastically. Many
of these moves have already been studied in, e.g., [56, 32, 5, 24, 80, 35, 14]. Almost all of
these multi-germ moves correspond to the well-known Reidemeister moves II and III for link
diagrams in knot theory. However, base diagrams are not simple projections of 1–dimensional
submanifolds, but they are the images of round loci under indefinite fibrations. Furthermore,
each fold image has a normal orientation. Therefore, there are multiple base diagram moves
corresponding to a single Reidemeister type move (even without any need to involve cusps or
Lefschetz critical points in general, as we pointed out earlier) .

To have a uniform notation, Reidemeister II moves will be denoted by R2, decorated by
subindices 0, 1 or 2, which indicate the number of fold arcs with normal arrows pointing into
the bounded region, whereas their pseudo-inverses (which do not have any bounded regions)
will be denoted by the same index in the superscript. Reidemeister III moves will be denoted
by R3, decorated by subindices 0, 1, 2 or 3, which again indicate the number of fold arcs
with normal arrows pointing into the bounded region. Note that the pseudo-inverse of an
R3i move is an R3j move with i+ j = 3; see Figures 5 and 6.

Base diagram moves of Reidemeister II type are depicted in Figure 5, where only one of
each pair is always-realizable. For example, for the R20 move, the diagram on the left hand
side corresponds, in upward vertical direction, to a surface cross interval with a 2–handle
and a 1–handle attached in this order. Horizontally, from left to right, the same diagram
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Figure 5. Reidemeister II type multi-germ moves.

1

2

3

4

Figure 6. Reidemeister III type multi-germ moves.

corresponds to the following: first, the order of the two handle attachments is switched, then
the 2–handle slides over the 1–handle, and finally the order is switched again. So, the R20
move is realized if and only if the handle-slide trace of the attaching circle of the 2–handle
core can be isotoped away from the co-core of the 1–handle. On the other hand, the diagram
on the right corresponds to a handle-slide in which the 1–handle slides over the 2–handle. The
trace of the attaching region of a 1–handle can always be isotoped away from a 2–handle, so
the move R20, the pseudo-inverse of R20, is always-realizable. Similar index arguments show
that the moves R21 and R22 (applied to the middle part in this case) are always-realizable.
For example, for the R22 move, the diagram on the left hand side corresponds to the following:
first, the order of the two handle attachments is switched, then the 1–handle slides over the
2–handle, and finally the order is switched again. As the trace of the isotopy of the attaching
0–sphere of the 1–handle can be isotoped away from the co-core of the 2–handle, we can
arrange it so that the handle slides take place completely away from the 2–handle. Therefore,
the handle switches are not necessary, and consequently the R22 move is realized. On the
other hand, the moves R21 and R22 are not realizable. (For the R21 move, see Remark 3.5.
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The move R22 is not realizable if the attaching circle of the upper 2–handle winds along the
lower 1–handle algebraically non-trivially, for example.)

As to base diagram moves of Reidemeister III type, we have those as depicted in Figure 6.
We can prove that the move R33 is always-realizable by an argument similar to that for the
move R22 above. Then, as shown in Figure 7, the move R32 is realized as a composition of
always-realizable moves R20, R33 and R22. So R32 move is also always-realizable. For R30
and R31 moves, there are necessary conditions; cf. [80].

r2

r3

r4

Figure 7. Realizing the R32 move.

Lastly, as multi-germ moves involving cusps, we have the cusp–fold crossing C–move and its
pseudo-inverse, depicted in Figure 8. The C–move is always-realizable as seen by an argument
in the cusp elimination technique of [56]; see also [80, Proposition 2.7]. The pseudo-inverse
move C−1 is not always-realizable, for reasons similar to the case of R20 or R21.

c

c1

Figure 8. Passing a cusp through the round image and its pseudo-inverse.
The normal orientation for the vertical round image component is irrelevant:
both orientations are allowed.

3.3. Some always-realizable combination moves.

A combination homotopy move for an indefinite fibration consists of a sequence of mono-
germ and multi-germ moves. Our first example is the flip and slip move of [5, Fig. 5], which
can be used to turn an inward-directed circle in D inside out, so it becomes outward-directed.
The flip and slip consists of a sequence of always-realizable mono-germ and multi-germ moves
shown in Figure 9.
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f r s

Figure 9. Flip and slip.

Another combination move we will introduce here consists of a sequence of not necessarily
always-realizable moves, but the combined move itself is always-realizable as a whole, as
follows.

Proposition 3.2. Let D be a local disk containing the base diagram on the left hand side of
Figure 10. Suppose that the fibers over the points in the region marked with (∗) are connected.
Then, the exchange move depicted in Figure 10 is realizable. It is realized by a sequence of
two flips, cusp merge, R31, and unflip moves.

II

a

Figure 10. Exchange move

Proof. Let us identify the disk D with the square I×J , where I = J = [−1, 1], I corresponds
to the vertical direction downward and J to the horizontal direction from right to left (see
Figure 11). We regard f−1(D) = f−1(I×J) as a 1–parameter family of 3–manifolds f−1({t}×
J), t ∈ I, which are obtained from f−1({t} × [−1,−1 + ε]), 0 < ε << 1, by attaching two
1–handles. By isotoping the handle slides that may possibly occur while t ∈ I varies into
intervals outside of I, we may assume that there occurs no handle slide for t ∈ I. Near t = 0,
where the crossing of two fold arc images occurs, the crossing of two 1–handles occurs. Note
that the 3–manifold f−1({t} × J) obtained by attaching the two 1–handles is connected for
each t by our assumption.

J m1

I

m

1

Figure 11. Identifying D with I × J .

The exchange move can be decomposed into the the sequence of base diagram moves as
depicted in Figure 12. The transition from (a) to (b) is realized by two flips. The transition
from (b) to (c) is realized by a cusp merge, which is realizable as the relevant fibers are all
connected by our assumption. The transition from (c) to (d) is realized by R31 move, which
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is not always-realizable. We will explain below why this transition is possible more in detail.
Finally, the transition from (d) to (e) is realized by an unflip.

fIIIfi

1 2 3 4 5

c
m

Figure 12. Base diagram moves for the exchange move.

It might be good to remind that here we are constructing a smooth 1–parameter family
of maps (from a 4–manifold to a surface) which starts from a given indefinite fibration with
a base diagram as in Figure 12 (a), and which ends up with a certain (not given!) indefinite
fibration with a base diagram as in Figure 12 (e). That is, our goal is to show that we can
appropriately choose indefinite fibrations with base diagrams as in Figure 12 (b)–(e); we are
not trying to reconstruct any possible transition for such a sequence of base diagram moves.
In particular, we can choose these maps so that the handle-slides are arranged as argued in
the previous paragraphs.

Let us now show why the transition from (c) to (d) is possible. In order to see this, let us
foliate the local disk in Figure 12 by horizontal sections (oriented from right to left, as {∗}×J)
and consider the change in fiberwise handle attachments as we move from upper sections to
lower ones “as we move the line segment”. We focus on the transition from Figure 12 (c) to
(d). For each local base diagram, a horizontal section corresponds to a surface cross interval
with some handles attached (from right to left, as we find it more convenient to illustrate,
using mostly 1–handles), and the vertical (downward) direction corresponds to a deformation
of the handlebody. See Figure 13. For example, for each of the horizontal sections c1 and d1,
we have two 1–handles h′′1 and h′1 attached in this order. Note that between any consecutive
sections cj , cj+1 or dj , dj+1, a birth–death or a crossing of critical values occurs. Note also that
when we move down the line segment without passing through a birth–death or a crossing,
some handle-slides may occur: more precisely, handles corresponding to critical values to the
left may slide over those to the right.

Figure 14 describes Step (c) as follows. When the line segment passes through the upper
cusp, a canceling pair of 1– and 2–handles (attached to the fiber in this order), say h1 and
h2 (depicted in green in the figure), is created; see the picture for the horizontal section c2.
This canceling pair should be created on a sheet on which both h′1 and h′′1 have at least one
of their attaching 2–disks. Then, we slide this pair of handles over the 1–handle h′1. After
switching the order of h1 and h′1 as we pass the crossing, we slide h′1 and h2 off h1; see the
picture for the horizontal section c3. (Observe that a similar sequence of handle deformations
take place as we move upwards from level c6 to c4.) Then, the 2–handle h2 and the 1–handle
h′′1 become a canceling pair.

Then, this sequence of moves can be deformed to that corresponding to Step (d) as depicted
in Figure 15.

An intermediate step is as depicted in Figure 16, which shows that the transition from (c)
to (d) is always realizable.
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Figure 13. Six horizontal sections for (c) and (d) in Figure 12. Round
image arcs with normal direction towards the right correspond to 1–handles
h1, h′1 and h′′1 .
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h1'
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h1
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h1
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Figure 14. Step (c), where a cancelling pair of 1– and 2–handles appear,
then the handle slides as above occur, and finally a cancelling pair vanishes.

This completes the proof of the proposition.

Let us give another argument based on singularity theory. We can construct a smooth map
F : V → I×J×[0, 1] of a compact 5–dimensional manifold with corners V ∼= f−1(I×J)×[0, 1]
with the following properties.

(1) The map F |F−1(I×J×{0}) : F−1(I × J × {0})→ I × J × {0} coincides with

f |f−1(I×J) : f−1(I × J)→ I × J.

(2) The singular value set is as depicted in Figure 17.
(3) The map F restricted to F−1(∂I × J × [0, 1]) ∼= f−1(∂I × J) × [0, 1] coincides with

the trivial 1–parameter family of maps

(f |f−1(∂I×J))× id[0,1] : f
−1(∂I × J)× [0, 1]→ ∂I × J × [0, 1].
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Figure 15. Step (d).
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Figure 16. Intermediate step between Steps (c) and (d).

Note that F can be regarded as a homotopy of maps f−1(I × J) → I × J parametrized by
[0, 1], starting from f |f−1(I×J) and ending with an indefinite fibration whose base diagram is
as depicted in the right hand side of Figure 10.

Such a smooth map F can be constructed, for example, as follows. As indicated in [32,
Chapter V, §4], to a monkey saddle corresponds a 3–parameter family of functions on a
connected 3–manifold, parametrized by a 3–ball. Then the map F corresponds to the south-
ern hemisphere of the boundary of the parameterizing 3–ball for a monkey saddle on an
appropriate 3–manifold. This argument directly proves that the exchange move is always
realizable. �
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I

J

0

Figure 17. The singular value set of F in I × J × [0, 1].

Our next combination move is an immediate corollary of the above proposition:

Proposition 3.3 (Criss-cross braiding). Let D be a local disk containing the base diagram
on the left hand side of Figure 18. Suppose that the fibers over the points in the region marked
with (∗) are connected. Then, the criss-cross braiding depicted in Figure 18 is realizable. It
is realized by a sequence of R21, two flips, cusp merge, R31, and unflip moves.

cc

a

Figure 18. Criss-cross braiding that can be always-realized.

Proof. We first apply R21 move. Then, by our assumption, we can apply Proposition 3.2 to
one of the crossings to get the desired base diagram. �

Taking a closer look at our proofs of above propositions, we can identify some necessary
conditions for the Reidemeister type moves we have not identified as always-realizable. We
discuss these in the next several remarks.

Remark 3.4. In the proof of Proposition 3.2, we constructed a smooth map

F : V → I × J × [0, 1].

For (s1, s2) ∈ I × [0, 1], set

Fs1,s2 = pJ ◦ F |F−1({s1}×J×{s2}) : F−1({s1} × J × {s2})→ J,

where pJ : I×J×[0, 1]→ J is the projection to the second factor. This is a family of functions
on a 3–manifold parametrized by I × [0, 1]. If (s1, s2) ∈ ∂(I × [0, 1]), then Fs1,s2 has exactly
two critical points of index 1. Observing the monkey saddle point carefully, we see that as
(s1, s2) ∈ ∂(I × [0, 1]) varies, we have the handle slides as depicted in Figure 19.

Let us examine more carefully the handle slides involved in an exchange move. For this, let
us investigate the homological behavior of the handle slides for the base diagrams on both sides
of Figure 10. For t1 = −1 ∈ I, let α (or β) denote the 1st homology class corresponding to
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h

Figure 19. Handle slides for Fs1,s2 , (s1, s2) ∈ ∂(I × [0, 1]). The central
figure corresponds to F0,1/2 which has exactly three critical points of index
1 with the same value, together with a critical point of index 2 over them.

the upper (resp. lower) 1–handle (see Figure 20). (Precisely speaking, we fix an orientation of
each 1–handle, and then it represents an element of H1(f−1({t1}×J), f−1({t1}×{−1});Z) ∼=
Z⊕Z.) Let us first consider the base diagram on the left hand side of Figure 10. We consider
the four parameter values of I indicated in Figure 20. We assume that for t ∈ [t1, t2] (or
t ∈ [t3, t4]), the upper 1–handle slides over the lower 1–handle homologically p times (resp.
q times). We further assume that for t ∈ [t2, t3] no handle slides occur. Then, a simple
calculation shows that for the level t4 = 1 ∈ I, the upper 1–handle represents the homology
class β + q(α+ pβ) = qα+ (pq + 1)β, while the lower one represents α+ pβ.

a b

k

l

m

5

6
7

8
9
10

a b
1

2

3

4

p

q

Figure 20. As t ∈ I varies, the upper 1–handle slides over the lower one,
and the corresponding homological “winding numbers” are denoted by p, q
on the left hand side, while they are denoted by k, `,m on the right hand
side.

Let us play the same game for the base diagram on the right hand side of Figure 10. Then,
using the notations indicated on the right hand side of Figure 20, we see that for the level t10 =
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1 ∈ I, the upper 1-handle represents α+kβ+m(β+`(α+kβ)) = (`m+1)α+(k+m+k`m)β,
while the lower one represents β + `(α+ kβ) = `α+ (k`+ 1)β.

Therefore, if the transition between the both sides of Figure 20 is realized by homotopy,
then we must have

qα+ (pq + 1)β = ε1((`m+ 1)α+ (k +m+ k`m)β),

α+ pβ = ε2(`α+ (k`+ 1)β)

for some ε1, ε2 ∈ {−1,+1}. Here, note that ε1 and/or ε2 might be equal to −1, as the
orientations of the 1–handles may be switched in the course of the handle slides. By a
straightforward calculation, we see that these hold if and only if we have

` = ε2, ε1ε2 = −1, p = k + ε2, q = −m+ ε1.

In particular, we see that for t ∈ [t7, t8] in the figure on the right hand side, the upper
1–handle must slide over the lower one homologically ±1 time.

In the case of the proof of Proposition 3.2, we have p = q = 0, so k = m = ε1 and ` = −ε1.
This conforms to the proof of the lemma and Figure 19.

Remark 3.5. The simple homological calculation in Remark 3.4 also implies the following
observation. Let us assume that the R21 move is realized. Then, the base diagram on the
right hand side of Figure 20 must be homotopic to two parallel strands. Suppose that for
this latter base diagram, the upper 1–handle slides over the lower one homologically r times.
Then, by an argument similar to the above, we must have

α+ rβ = ε1((`m+ 1)α+ (k +m+ k`m)β),

β = ε2(`α+ (k`+ 1)β)

for some ε1, ε2 ∈ {−1,+1}. By a straightforward calculation, we see that these equalities
hold if and only if ` = 0, r = k + m, ε1 = ε2 = 1. This means that the R21 move is not
always-realizable: for the realization, it is necessary that for t ∈ [t7, t8], the upper 1–handle
should not slide over the lower one at least homologically.

Remark 3.6. Let us assume that the base diagram on the left hand side of Figure 20 is
transformed to a pair of vertical strands by homotopy. Then, we see easily that exactly the
same argument as above leads to a contradiction.

4. Simplifying the topology of indefinite fibrations

In this section, we will give explicit algorithms for homotoping an indefinite fibration to
a directed indefinite fibration, and in turn, to a directed indefinite fibration with embedded
round image. Our algorithms will use base diagram moves which are always-realizable. These
will consist of flip, unsink, push, Reidemeister type multi-germ moves gathered in Figure 21,
and the additional criss-cross braiding move given in Proposition 3.3. We will also give similar
algorithms for homotoping a directed indefinite fibration with embedded round image to one
which is also fiber-connected and has connected round locus.

Note that for any one of the multi-germ moves in Figure 21, if the fibers over the given base
diagram are all connected, then so are the fibers over the base diagram we get after applying
the move. The only concern here can be for fibers over bounded regions formed after the
move. However, in each case, one can reach to these regions from a region on the periphery
by “going against the arrows”, i.e. a fiber here is obtained by adding only 1–handles to a
connected fiber on the peripheral region.

Lastly, recall that each time we get cusps during our homotopies, we apply the unsink move
to turn them into Lefschetz singularities and then the push move to drag away the Lefschetz
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r3l3r3l2

r2u0 r2u1

r2l2

Figure 21. Several multi-germ moves that are always-realizable.

singularity to the higher genus side, away from where the rest of the action takes place. This
is what we will be doing repeatedly throughout this section, without further mentioning it to
save space.

4.1. Immersed directed round image.

We will now prove:

Theorem 4.1. There exists a finite algorithm consisting of sequences of flip, unsink, push
and Reidemeister type moves R20, R21, R22, R32, R33, which homotopes any given indefinite
fibration f : X → D2 to an outward-directed indefinite fibration g : X → D2. When f is fiber-
connected, so is the resulting outward-directed indefinite fibration g.

Note that all the moves mentioned in the above theorem are always-realizable. For an
indefinite fibration over S2, one can perform this algorithm over any fixed disk region on the
base 2–sphere.

Proof of Theorem 4.1. Applying unsink moves, we may assume that f has no cusps. Take
an embedded annulus A = [0, 1] × S1 in D2 which contains f(Zf ) in its interior, and let
π : A → S1 be the natural projection to the second factor. (Here {1} × S1 end of A is
towards the interior of D2). We may assume that π ◦ f |Zf

is a Morse function and that the

π–values of the crossings of f(Zf ) are different than the critical values of π ◦ f |Zf
in S1. Let

t1, t2, . . . , ts ∈ S1 be the critical values of π◦f |Zf
, located in this order with respect to a fixed

orientation of S1, where a critical value may correspond to multiple critical points. Consider
the “zones” Ai = [0, 1]× [ti, ti+1] ⊂ A, i = 1, 2, . . . , s, where [ti, ti+1] ⊂ S1 is the directed arc
from ti to ti+1, and ts+1 = t1. Then, f(Zf ) ∩ IntAi consists of a finite number of embedded
and co-oriented vertical open arcs, where “vertical” means that π restricted to each open arc
is a submersion. We say that such an arc is positive (resp. negative) if its co-orientation is
consistent with the positive (resp. negative) direction of the [0, 1]–factor of Ai. If necessary,
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applying local isotopies as in Figure 22 in advance, we may assume that positive arcs do not
intersect each other, in the expense of subdividing S1 further.

Figure 22. Turning an intersection of positive arcs into that of negative arcs.

Next, we will apply base diagram moves to f in such a way that, for the resulting indefinite
fibration, all the arcs in each zone Ai are negative. We will continue to denote the resulting
indefinite fibration by the same letter f , for simplicity. The following conditions will be
preserved after each modification for each i = 1, 2, . . . , s:

(1) Each arc in f(Zf ) ∩Ai is vertical,
(2) Positive arcs in f(Zf ) ∩Ai do not intersect each other.

Fix an index i. If Ai does not contain any crossing of f(Zf ), then we can name the arcs of
f(Zf ) ∩ IntAi as α1, α2, . . . , αr such that α1 is situated in the rightmost position, and then
α2 is next to it on its left hand side, and so on. Suppose that α1, α2, . . . , α`−1 are negative
and α` is positive for some 1 ≤ ` ≤ r. When the end points of α` are not f–images of critical
points of π◦f |Zf

, we apply the always-realizable multi-germ moves in Figure 21 together with
pushes so that the move as depicted in Figure 23 is realized. As a result, the total number of
positive arcs (in any Ai) decreases. During this procedure, the arc in question goes out of the
annulus A temporarily, but in the end it is embedded in A with negative co-orientation. Note

-1 1

ai

al a1a2

ai

Figure 23. Moves that eliminate a positive arc: Part 1.
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Figure 24. Moves that eliminate a positive arc: Part 2.

that the resulting base diagram still satisfies the above conditions (1) and (2); the number of
arcs in Aj , j 6= i, increases, but they are all negative.

When an end point of α` is the f–image of a critical point of π ◦ f |Zf
, we apply the

sequences of moves as depicted in Figure 24 or in Figure 25, which consist of the always-
realizable multi-germ moves in Figure 21 and pushes, as well as a flip and a pair of unsinks in
the latter case. Note that in Figures 24 and 25, only the moves performed around the upper
part of the zone Ai are depicted, and the moves in the hidden lower part are performed as in
Figure 23.

ab

a

a

f

u

Figure 25. Moves that eliminate a positive arc: Part 3.

Now consider the case when Ai contains crossings of f(Zf ). Let α1, α2, . . . , αr be the
(open) vertical arcs of f(Zf ) ∩ IntAi. If they are all negative, then we have nothing to
do. Suppose some are positive. Say α` is the rightmost positive vertical arc; i.e. there are no
positive vertical arc components in the right hand side region of IntAi\α`. (Note that if there
are positive vertical arcs, then such α` exists, since we made sure that positive arcs do not
intersect.) On α`, there may be intersections with negative arcs. If there is no crossing in the
right hand side region, then we can apply moves similar to those used above to decrease the
number of positive arcs. Otherwise, all the crossings in the right hand side region of IntAi\α`
involve only negative arcs. When we move α` to the right using moves as described above, it
may encounter such a crossing of negative arcs. In that case, we get a triangular region such
that one edge is on α` and the other two are on negative arcs. We may assume that the edges
are line segments, which are never horizontal. If the “height” of the vertex of this triangle
that is not on α` is between the heights of the other two vertices, then we have a situation
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al
al

3

Figure 26. Moves that eliminate a positive arc in Ai: Part 4.

al al

3

Figure 27. Moves that eliminate a positive arc in Ai: Part 5.

as described in the left hand side picture of Figure 26. In this case, we can apply the move
R33 to decrease the number of crossings in the right hand side region. If that vertex is lower
(or higher) than the other two vertices, then we get the left hand side picture of Figure 27,
and we can apply the move R32.

Then, by the same argument as above, we can finally eliminate the positive arc α`. Note
that after the moves, both conditions (1) and (2) are maintained.

Applying these procedures to the positive arcs of f(Zf )∩ IntAi from right to left, we can
eliminate all the positive arcs in IntAi, for each i = 1, 2, . . . , s. Finally, we get an indefinite
fibration g where all arcs in g(Zg) ∩ IntAi are negative for all i = 1, 2, . . . , s, which means
that the resulting indefinite fibration g is outward-directed.

Note that our whole algorithm was performed away from the boundary of the base disk
D2, where the resulting round image is directed outwards. So if a regular fiber F of f over
∂D2 was connected, then all fibers of g are connected: they are derived by fiberwise 1–handle
attachments from F . In particular, g is fiber-connected if f is. �

4.2. Embedded directed round image.

In this subsection, we assume that the closed orientable 4–manifold X is connected, and
we prove:

Theorem 4.2. There exists a finite algorithm consisting of sequences of flip, unsink, push,
criss-cross braiding and Reidemeister type moves R20, R21, R22, R32, R33, which homotopes
any given directed indefinite fibration f : X → S2 to a fiber-connected and directed indefinite
fibration g : X → S2 with embedded round image.

Proof. Below, as we modify the map f through homotopies, we will keep denoting the result-
ing map with the same letter.

Since f has immersed directed image, we can view the round image f(Zf ) to be braided
around, say the north pole, directed towards it. That is, we regard f(Zf ) as the closure of
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a virtual braid on m strands. We will call it the base braid for f . For convenience, we will
think of f(Zf ) as the union of a base braid, given by a virtual braid diagram as in Figure 28,
and a trivial braid, where the latter is end summed to the former to recapture the round
image f(Zf ) as the braid closure.

Figure 28. An example of a base braid diagram on 5 strands. The round
image is its closure, which is obtained by end summing the base braid with
a trivial braid on 5 strands.

First, we will show that the fibers over the southernmost region of S2\f(Zf ) are connected.
Let A ∼= S1 × [−1, 1] be an annular neighborhood of f(Zf ), where the interval [−1, 1] points
north. So S2 \ A = NNP t NSP, where NNP and NSP denote open 2–disk neighborhoods of
the north and south poles, respectively. The images of all the Lefschetz critical points are
contained in NSP. We can assume that the map πS1 ◦ f |Zf

: Zf → S1 is a submersion, where,

under the identification A ∼= S1 × [−1, 1], πS1 : S1 × [−1, 1]→ S1 is the projection to the
first factor. Then, X is decomposed into three compact 4–manifolds f−1(NNP), f−1(NSP)
and f−1(A). Note that f−1(NNP) is a trivial surface bundle over NNP, while f−1(A) is a
fiber bundle over S1 with fiber Y = f−1(pt) × [−1, 1]), where Y is a 3–manifold obtained
from f−1(pt × [1 − ε, 1]), 0 < ε << 1, by attaching m 1–handles. Suppose the fibers are
disconnected over NSP. The 3–manifold f−1(∂NSP) is a fiber bundle over S1 with fiber
surface, say S, with monodromy generated by Dehn twists. Therefore, the monodromy
diffeomorphism preserves each connected component of S. Then, for the Y –bundle over
S1, f−1(A), the monodromy also preserves each connected component of Y . Therefore, by
attaching f−1(NNP) and f−1(NSP) to f−1(A), we get a disconnected 4–manifold, which is a
contradiction. Thus, the fibers over NSP are necessarily connected.

We can now give our algorithm to prove the theorem. If m = 0 or 1, then there is nothing
to do, so we assume there are m ≥ 2 strands.

Step 1: As we have shown above, the fibers over the points in the southernmost region of

S2 \ f(Zf ) are connected. Using the R21 moves, we can locally pull down a pair of parallel
strands towards the south pole, so that we get a pair of parallel strands such that the lower
one is adjacent to the southernmost region (see the middle diagram of Figure 29). Then,
by a criss-cross braiding move of Proposition 3.3, we can locally replace the pair of parallel
strands with a pair of strands that have three mutual crossings (see the rightmost diagram of
Figure 29), while modifying the round locus above it. This modification acts as a transposition
on the m points the virtual braid is moving around. Since the symmetric group of m points
is generated by transpositions, by adding enough crossings, the base braid for the new round
image f(Zf ) becomes a pure virtual braid. The new round locus Zf has exactly m connected
components.

Using always-realizable base diagram moves, we will turn this pure virtual base braid on m
strands into a trivial braid on m strands. As we will keep the normal directions on all strands,
the result will also be a directed indefinite fibration, but with embedded round image.

Step 2: Recall that all the Lefschetz singularities are away from the base diagram, contained
in a small open disk neighborhood NSP of the south pole, which we will regard as the point
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Figure 29. R21 moves followed by criss-cross braiding. In the small boxes,
we may have any braid (on the corresponding number of strands).

at infinity. The only time our modifications will involve this neighborhood is when we will
swing a subarc of a round image component over the south pole. In this case we will always
have the normal arrow on the arc pointing towards the south pole when we begin sliding
it. So we can push all the Lefschetz singularities against it to continue the slide. For these
reasons, we will not discuss Lefschetz singularities any further.

Regard the base braid diagram of our pure virtual braid as a simultaneous graph of m
continuous functions [0, 1]→ (0, 1). Take the strand b whose end points are in the top most
position; we will refer to it as the top strand. Each time it has a local minimum (resp. a local
maximum) in the interior, by using R21 move repeatedly, pull it down (resp. raise it up) —
while avoiding braid crossing— until it becomes a global minimum (resp. global maximum);
see Figure 30. Repeat this for every local minimum and maximum of the same strand, until
any local minimum/maximum b has is a global minimum/maximum. The number of crossings
may increase drastically during this procedure!

R2
1
moves

Figure 30. Lowering a local minimum of a strand (shown in blue) to a
global minimum position. Normals to all strands are directed towards the
top. In the two small boxes, we may have any braids (on the corresponding
numbers of strands).
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While the new crossing pattern between the strand b we pulled around and the rest of
the braid is clear, in between every consecutive global maxima (or minima) of b, lies some
possibly highly non-trivial —and not necessarily pure— virtual braid on m−1 strands, which
is split from our strand. We keep each one of these subbraids on m− 1 strands in a box; see
Figure 31. Moreover, we can use the braid closure to bring the boxes on the far left and far
right together, and regard it as a single box. The closure of the resulting braid is shown in
Figure 31, with normals to all strands still directed towards the north pole.

b1

b2

b3 br1

br

b1

b2

b3 br1

brp q

bb

Figure 31. Strand b, depicted by blue, and the other strands made up with
braid boxes B1, B2, . . . , B2r (Top). Then, we slide the sub-strand b′ of b over
the north pole (Bottom).

Observe that the number of boxes we have at the end is even; say 2r. Here r = 0 means

the top strand b, and thus its closure b̂, the innermost component of Zf (with respect to the
north pole), do not intersect the others. In this case, we can isotope it into a small open disk
neighborhood NNP of the north pole. Any arc we swing over the north pole with its normal
arrow directed towards the north pole can go past this component by an R21 move followed
by an R22 move (see Figure 32).

r1 r2

Figure 32. Round image can go through an inward directed embedded
circle by an R21 move followed by an R22 move.

Now, our strategy is the following. If the top strand is embedded (i.e., when r = 0), it
will be pushed into NNP. Otherwise (i.e., when r > 0), we do a bunch of moves to make it
embedded and push it into NSP instead. We then start over with the new top strand and
repeat until all strands are embedded and non-nested.

Let us proceed to the case r > 0. Let p and q be the two global minimum points on b
closest to the ends of the strand b in the diagram. (If there is only one global minimum,
flatten the strand around it, so p and q are distinct points.) During the next modifications,
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we will temporarily ruin the braid picture, and will only consider the base braid as a portion

of the round image f(Zf ). Take the complement b′ of b in its closure b̂. Slide b′ over the
neighborhood NNP of the north pole so it approaches the non-trivial braid from the top; see
Figure 31. The crucial point here is that b′ is directed against all the braid components, so
after several R20, R22, and R33 moves (many of them involving b as well), we can pull b′ all
the way down, below any of the other braid strands (including minima of b), except for two
kinks we unavoidably get around p and q on b. See the top diagram of Figure 33. During
these Reidemeister moves, we fix the base braid, except for the far left and far right m − 1
crossings of b with other strands we eliminated when lowering b (as we pulled b′ down) at the
ends.

b1

b2

b3 br1

br

bb

b1

b2

b3 br1 br

bbb

b2

b3
br3

br2

br2

br3

p q

bb

bb

br2

Figure 33. We lower b′, swing it over the south pole (while pushing the
Lefschetz critical points across it), and rearrange the braid boxes B2r−1, B2r

and B1 into one.

After introducing a flip, and then applying R22 and unsink moves, we can get rid of each
kink as shown in Figure 34. So we can continue pulling b′ and swing it over the south pole in
order to bring it again to the other side of the base diagram. It now completes the missing
strand of the trivial braid portion.

So we have a new base braid on m strands, which represents the new round image f(Zf ).
The bottom strand came from sliding b′, whereas the rest of the braid diagram is the same as
before (see the middle diagram of Figure 33). As we get ready to repeat the whole procedure,
we first observe that the bottom strand already has only global extrema. More importantly,
we now have 2 boxes on one side and 1 box on the other side which do not have the bottom
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r sf

Figure 34. Getting rid of the kinks.

strand going in between. Using the braid closure as before, we can slide them into one box.
We now have 2(r−1) boxes in total (see the bottom diagram of Figure 33, where B2r−1B2rB1

should mean B1B2 when r = 1).

If the new number of boxes is not zero, then it means we still have some global maximum.
Then, isotoping the round image, we can place the same component of f(Zf ) in the braid
diagram so that it is in the top position again. Hence, repeating the procedure r − 1 more
times, we arrive at a base braid with a bottom strand split from the others.

For one last time, we slide the complement b′ of the new top strand b over the north pole
and across the braid diagram. Though this time we bring it below the rest of the braid
diagram but keep it above b (creating no kinks), so the round image component b ∪ b′ is
embedded and encloses a disk region without any singularities (see Figure 35). Its normal
arrow is directed towards the interior of the disk. We can isotope this component of the new
round image f(Zf ) into the small neighborhood NSP of the south pole, next to the Lefschetz
singularities. As it was the case for a component we isotoped into NNP, any arc we swing
over NSP with its normal arrow directed towards the south pole can go past this component
by an R21 move followed by an R22 move (see Figure 32).

bb

b

b1

bb

b

b1

Figure 35. Last time we lower the strand b′.

Step 3: With our remarks on the singular image isotoped into NNP ∪NSP in mind, we can
run Step 2 for the remaining virtual braid on m − 1 strands. Repeating it m − 2 times, we
obtain a new indefinite fibration f with embedded singular image. The singular image of
f is now contained in the two open disks NNP and NSP, with f(Zf ) consisting of m split
components (i.e. no two are nested). We view all in a large disk D as shown on the left hand
side of Figure 36 below. Recall that the fiber over the south pole was connected. So the fiber
over the south pole after Steps 1–2 is still connected: as we swung several indefinite fold arcs
over this point, we only added 1–handles to it. It follows that the regular fibers over the
boundary of the disk D are connected.

Step 4: Here we apply the flip and slip move of [5, Fig. 5], to turn an inward-directed circle
in D inside out, so it becomes outward-directed (see Figure 9 in Subsection 3.3).



30 R. İ. BAYKUR AND O. SAEKI

R21 and R22

m− 1

m components
m− 1

flip and slip

Figure 36. From split round image back to directed.

Apply flip and slip to the far right circle so it is now outward-directed. By exactly m− 1
R21 and m − 1 R22 moves again, we can pull the left half of the circle all the way to the
left, so it now encloses all the other circles; see Figure 36. Repeating this procedure m − 2
times for the split collection of circles contained inside, we arrive at a nested collection of
outward-directed, embedded round image circles. All the Lefschetz singularities we had and
produced during this process can be pushed into the innermost round image circle.

This is the base diagram for the resulting directed indefinite fibration g : X → S2 with
embedded round image. Because the regular fibers over ∂D are connected, and because all
the others are obtained from them by fiberwise 1–handle attachments and Lefschetz handle
attachments, the indefinite fibration g is fiber-connected. �

It can be seen from the proof that the cost of passing from immersed to embedded round
image is the increase in the number of Lefschetz critical points, as well as the fiber genera.

Remark 4.3. Theorems 4.1 and 4.2 together show that given any map from a closed orientable
4–manifold to S2, we can homotope it to a generic map with embedded singular image. The
corresponding statement is not true for an arbitrary map from a 3–manifold to S2 (or to
other surfaces); there are obstructions to getting a generic map with embedded singular
image within the same homotopy class [19, 30, 69]. Similarly, there are obstructions for maps
from 4–manifolds to 3–manifolds [72]. In this regard, maps from n ≥ 4 dimensional manifolds
to S2 seem rather special.

4.3. Connected fibers and connected round locus.

Here we will prove the following proposition, which, together with Theorems 4.1 and 4.2,
provides a sequence of base diagram moves to homotope any given indefinite fibration over
S2 to one that is fiber-connected and has connected round locus –in short, simplified.

Proposition 4.4. Let X be a connected 4–manifold. There exists a finite algorithm con-
sisting of sequences of flip, unsink, push, cusp merge, and Reidemeister type moves R21 and
R22, which homotopes any given inward-directed indefinite fibration f : X → D2 with em-
bedded round image to a fiber-connected outward-directed indefinite fibration g : X → D2 with
embedded round image and connected round locus.

Proof. Observe that since X is connected, even if there are disconnected fibers, the regular
fibers over ∂D2 should be connected.

The first part of the algorithm is the same as in Steps 2–3 of our proof of Theorem 4.2,
carried out in much simpler case of a pure virtual braid. (Note that these homotopies in
these steps can all be performed over D2.) We first push out all the Lefschetz singularities
so they are near the boundary of the disk, and do not interfere with all the other moves we
will perform. Assume that there are m > 1 components. By exactly m − 1 R21 and m − 1
R22 moves, we can pull out the right half of the outermost circle all the way left, so it is now
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m components

R21 and R22

m− 1

m− 2 times

repeat

f lips
2m

cusp merges

m− 1m R22

2m+ 2 unsinks

2m+ 2 new

Lefschetz

singularities

Figure 37. Making fibers and the round locus connected.

disjoint from the rest. Repeating this m− 2 times for the next outermost circle of the nested
circles each time, we arrive at a split collection of m inward-directed embedded circles as in
the top row of Figure 37.

Now flip each circle twice, and then merge all into one immersed circle by m − 1 cusp
merges as shown in Figure 37. (Note that these cusp merges are realizable, since the fibers
over points near the boundary are all connected.) This is followed by m R22 and 2m + 2
unsink moves to arrive at an outward-directed embedded round image, where the resulting
indefinite fibration g : X → D2 has connected round locus. Once again, it is fiber-connected,
since all the fibers are obtained by fiberwise 1–handle attachments and Lefschetz handle
attachments. �

Remark 4.5. The procedures we have given in Theorem 4.1, in Step 1 of Theorem 4.2 and
in Proposition 4.4 can all be applied in a more general setting. Let X be a compact oriented
4–manifold with corners, Σ be a compact oriented surface with boundary, and f : X → Σ be
an indefinite fibration such that

• ∂X = P ∪Q, where P and Q are compact codimension zero submanifolds of ∂X and
are glued along ∂P = ∂Q = P ∩Q,

• X has corners exactly along ∂P = ∂Q,
• f−1(∂Σ) = Q,
• f |Q : Q→ ∂Σ and f |P : P → Σ are submersions.

In particular, when Σ = D2, we have a naturally induced open book structure on ∂X. The
moves we have described can be seen to work for such an indefinite fibration as well. For
birth/death, flip/unflip, fold merge, criss-cross braiding, and Reidemeister type moves, the
handlebody arguments we used are implicitly based on ascending and descending manifolds
for gradient-like vector fields (for example, see [27]). Let us take an embedded arc α in Σ which
is transverse to f . Then, f |f−1(α) : f−1(α)→ α is a Morse function. As f is a submersion on
P , the fibers of f are compact surfaces with boundary and this Morse function is a submersion
on the closure of the boundary of f−1(Intα). So we can choose a gradient-like vector field
that is tangent to the boundary. This means that an integral curve never hits the boundary
(except along f−1(∂α)) as long as we start from an interior point. Therefore, the above
mentioned moves can be realized by exactly the same method as before. Unsink, push, cusp
merge, wrinkle, and C-moves are easily seen to be realizable as well.
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5. Realizing a prescribed 1–manifold as the round locus

The purpose of this section is to show that any null-homologous 1–dimensional embedded
closed oriented submanifold Z of X, with any prescribed twisting data satisfying a certain
necessary condition (for the local models around components) can be realized as the round
locus Zf of a fiber-connected, directed broken Lefschetz fibration f : X → S2 with embedded
round image.

First, we note a couple observations on the round locus of a broken Lefschetz fibra-
tion/pencil, which will naturally appear as necessary conditions for our arguments to follow.
Analogous statements for the zero loci of near-symplectic structures are well-known [66], so
one can also appeal to [4] to build a near-symplectic form whose zero locus is the same as
the round locus, and translate these results. We will instead sketch parallel arguments in the
realm of indefinite fibrations.

Proposition 5.1. Let f : X → Σ be an indefinite fibration, where X and Σ are closed. Then,
Zf is a closed 1–dimensional submanifold of X which is canonically oriented. Furthermore,
Zf is null-homologous, i.e., [Zf ] = 0 in H1(X;Z).

Proof. If there are Lefschetz singular points, then use a wrinkling move to perturb each
Lefschetz singular point into an indefinite singular circle with 3 indefinite cusps. Born in
a 4–ball, each one of these circles is null-homologous. Thus we may as well assume that f
is an indefinite generic map. Then by [3, §4], the singular point set Zf of f is orientable.
Furthermore, the cohomology class dual to [Zf ] ∈ H1(X;Z) is calculated in [3, §5]. Although
it is not explicitly written there, we can show that the Poincaré dual of [Zf ] ∈ H1(X;Z)
coincides with the integral Stiefel–Whitney class W3(X) ∈ H3(X;Z) as follows. First, note
that the relevant cohomology class corresponds to one in H3(BSO;Z), a characteristic class.
As is remarked in [3, Remark 5.5], the Z2–reduction of the dual cohomology class coincides
with the Stiefel–Whitney class w3 in Z2–coefficients. On the other hand, an element of
H3(BSO;Z) is mapped to w3 by the modulo 2 reduction if and only if it is of the form
W3 + 2P , where P is a certain polynomial in Pontrjagin classes (see [15], for example). As
we are in degree 3, P must vanish, and therefore the relevant class must be equal to W3.

Now W3 is the obstruction to admitting a spinc structure, and it vanishes on a closed
oriented 4–manifold X; see [39, §4], [77]. �

Proposition 5.2. Let f : X → Σ be a broken Lefschetz fibration, where X and Σ are closed
and connected. Then, the number of untwisted (even) components of Zf has the same parity
as 1 + b1(X) + b+2 (X).

Proof. Here is a proof similar to the one given in [66] for near-symplectic forms. Given a
Riemannian metric on X, we can naturally construct an almost complex structure on X \Zf .
Off the Lefschetz critical points, we define the almost complex structure as the rotation of
π/2 on the tangent planes to the regular part of fibers and also on the normal planes. Around
Lefschetz critical points, this is modified to match the complex structures coming from the
local models. Then, the obstruction to extending the above almost complex structure to
whole of X coincides with both the number of untwisted circles in Zf and 1 + b1(X) + b+2 (X)
modulo 2 [66]. �

We can now prove the main result of this section:

Theorem 5.3. Let X be a closed connected oriented 4–manifold and Z be a (non-empty)
null-homologous closed oriented 1–dimensional submanifold of X. There exists a finite al-
gorithm consisting of sequences of always-realizable moves flip, cusp merge, unsink, push,
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criss-cross braiding, C-move, R20, R21, R22, R32 and R33, which homotopes any given in-
definite fibration f : X → S2 with non-empty round locus to a fiber-connected, directed broken
Lefschetz fibration g : X → S2 with embedded round image, whose round locus Zg coincides
with Z as oriented 1–manifolds. Moreover, for any prescribed twisting data for Z, with num-
ber of untwisted components congruent modulo 2 to 1 + b1(X) + b+2 (X), g can be chosen so
that Zg and Z have matching twisting data.

Proof. Take the indefinite fibration f on X, and apply the procedures we presented in the
proofs of Theorems 4.1 and 4.2 to get a directed indefinite fibration with embedded round
image. We can also make it fiber-connected and with connected round locus by applying the
procedure given for Proposition 4.4. Note that since the base is S2, each time we have an
inward-directed or an outward-directed image, we also have the other. At the end, we have
a fiber-connected indefinite fibration with embedded and connected round image, which we
will continue to denote by f . We can also assume that f has no cusps by applying unsink
moves. In the following, we will modify f step by step. For simplicity, after each step, we
continue to denote the resulting map by the same symbol f .

Let F denote the highest genus regular fiber. Then, the inclusion i : F → X induces an
epimorphism i∗ : π1(F )→ π1(X), as seen from the handlebody decomposition of X induced
by the broken Lefschetz fibration f [6]. (The kernel is normally generated by the vanishing
cycles of the round 2–handle and Lefschetz 2–handles, together with the attaching circle of
one more 2–handle pulled from the lower side.)

Now, by applying the moves as in Figure 38, we can make prescribed components in Zf in
such a way that all but one component of Zf are isotopic to the corresponding components
of Z. These are mainly base diagram moves, except we pay additional attention to how we
perform cusp merges: we merge them along paths which approximate the components of Z we
would like to realize. Also, we first assume that the component of Z in question is isotoped so
that the restriction of f to it is already an embedding, the image of which is given by a blue
circle in the figure. (This is achieved by representing the homotopy class of the component
by a loop γ in a highest genus fiber F and then by perturbing it to the loop defined by
S1 3 t 7→ (γ(t), t) ∈ F × S1, where S1 is a small embedded circle in the base surface and
F ×S1 = f−1(S1).) Note that the path for each cusp merge move, the projection of which is
depicted by a dotted line, lies in a region corresponding to the highest genus region before the
preceding flip. Therefore, we can adjust the homotopy classes (and hence the isotopy classes)
of the components of Zf corresponding to the blue circles, by the surjectivity of i∗ mentioned
above. The process indicated by the letter “P” in Figure 38 consists of a repetition of the
preceding operations.

By assumption, Z is null-homologous, and so is Zf by Proposition 5.1. Since we already
matched all but one components, the remaining component of Zf is Z–homologous to the
remaining component of Z. Then, the difference of these remaining components, as an element
of the fundamental group π1(X) is a product of finitely many commutators, again surjected
from π1(F ). By applying the base diagram moves as in Figure 39, we can adjust the last
component of Zf by one commutator at a time, say [α, β] = αβα−1β−1. Note that in the blue
box in Figure 39, we have concentric inward-directed circles together with Lefschetz critical
values. Here R̃ in Figure 39 consists of an iteration of pushes, moves R21 and moves R22,
which are always-realizable. At the final stage, we apply the unsinks eight times to get the
image f(Zf ) ∪ f(Cf ) exactly the same as the original one except for the Lefschetz critical
values. However, the position of Zf in X has been changed in such a way that the homotopy
class of the final component has been changed by a commutator.
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Figure 38. Realizing prescribed components, whose images are depicted by
blue circles.

By repeating this procedure, we arrive at a broken Lefschetz fibration g : X → S2 with
directed embedded image and with Zg = Z, which is homotopic to the original f through
always-realizable moves listed in the statement of the theorem. This proves the first part of
our claim.

As for matching the twisting data, we need to slightly modify the above proof. Note that
the condition on the number of untwisted components is necessary by Proposition 5.2.

In order to adjust the homotopy class of a new born component, we used a cusp merge
along a joining curve in the highest genus region. Given such a curve, we have some freedom
for performing the cusp merge [55, 14]. As seen in the proof of (4.8) Lemma (1) or (4.6)
Lemma (2) in [56], an appropriate set of coordinates is chosen in a neighborhood of the
joining curve. The choice is, in a sense, canonical, except that we have some freedom to
choose coordinates along fibers. More precisely, we can change the coordinates z according
to the parameter u, borrowing the notation from [56]. If we choose the coordinates z in such
a way that it is “rotated by π” along the parameter u, then the result of the cusp merge looks
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Figure 39. Adjusting the last prescribed component.

the same; however, the local data changes along the two new born arcs. (In the terminology
of proof of [55, Theorem 6.1] or in the argument in the last part of merging move in Section 3
of [55], we can rotate the 2–disks embedded in the fibers along the horizontal curve connecting
the two Lefschetz critical points.) Using this technique, we can adjust the twisting data of the
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new born component. We continue the same process until we get the final component. The
twisting data of this last component will be the same as the twisting data of the corresponding
component of Z, since the number of untwisted components of both have the same parity,
namely, 1 + b1(X) + b+2 (X) modulo 2. �

Remark 5.4. We can remove the condition Zf 6= ∅ from Theorem 5.3 by allowing an initial
birth move; otherwise, our procedure features no births or death moves. A similar realization
is also possible for generic maps into surfaces; see [68].

6. Constructions of broken Lefschetz fibrations and pencils

We now present purely topological constructions of broken Lefschetz fibrations and pencils
with simplified topologies. These algorithmic constructions improve on the procedures given
by the authors in [70, 5], by incorporating the new procedures we have obtained in the
previous sections.

First is the construction of broken Lefschetz fibrations on arbitrary 4–manifolds:

Theorem 6.1. Let X be a closed connected oriented 4–manifold and Z be a (non-empty)
null-homologous closed oriented 1–dimensional submanifold of X, given with a prescribed
twisting data, in which the number of untwisted (even) components has the same parity as
1 + b1(X) + b+2 (X). Then, there exists a fiber-connected, directed broken Lefschetz fibration
f : X → S2 with embedded round image, whose round locus Zf matches Z with the same local
models. Given any generic map from X to S2, such f can be derived from it by an explicit
algorithm.

Proof. Let h : X → S2 be a generic map, which always exists [57, 73, 77]. It has only fold and
cusp singularities, but the 1–dimensional singular locus might include definite folds. If that
is the case, then we homotope h to an indefinite generic map f : X → S2 using an algorithm
given by the second author in [70] (also see [71]). This procedure is given by moves similar to
the ones we have discussed here, but now they involve definite folds as well: always-realizable
flip, cusp–fold crossing, birth–death, and Reidemeister type moves, together with cusp merge
and fold merge moves that can be realized algorithmically.2 An alternate proof for eliminating
the definite fold, which also goes through a sequence of modifications of a generic map by
homotopy moves, is given in [27].

We can now apply our algorithm for Theorem 5.3 to homotope this indefinite fibration
to a directed broken Lefschetz fibration with connected fibers and embedded round image,
whose round locus realizes Z with its prescribed twisting data (for the local models). This
procedure already includes the algorithms for Theorems 4.1 and 4.2 to obtain a directed
indefinite fibration with embedded round image, and the ones for Proposition 4.4 to make
all the fibers connected. All is achieved by always-realizable moves flip, cusp merge, unsink,
push, criss-cross braiding, C-move, R20, R21, R22, R32 and R33. �

As a corollary, we obtain a purely topological and algorithmic construction —from any
given generic map— of simplified broken Lefschetz fibrations introduced in [6], as well as that
of simplified wrinkled fibrations introduced in [79] on arbitrary closed 4–manifolds. (These
are simplified indefinite fibrations without cusps and without Lefschetz singularities, respec-
tively.)

2In [70], surgery moves were used algorithmically, while in [71], another definite fold elimination technique

is introduced without involving such surgery moves. In the latter, for example, a sequence of moves as depicted
in Figure 43 is used.
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Corollary 6.2. There is an explicit algorithm, consisting of always-realizable base diagram
moves, which turns any generic map from a closed oriented 4–manifold X to S2 to a simpli-
fied broken Lefschetz fibration (or to a simplified wrinkled fibration). Therefore, any closed
oriented connected 4–manifold X admits a simplified broken Lefschetz fibration.

Proof. The algorithm for a simplified broken Lefschetz fibration on X is provided by The-
orem 6.1 by taking Z as any null-homologous circle in X, e.g. a null-homotopic one. Note
that the twisting type of Z, since it has only one component, is already governed by the
topology of X by Proposition 5.2. We can also turn a simplified broken Lefschetz fibration to
a simplified wrinkled fibration [79]: perform flip-and-slips on the round image, but without
unsinking the cusps at the end, perturb each Lefschetz singularity using the wrinkling move,
and cusp merge all the components (using arcs that project to embedded ones under the
fibration map) to one. �

Remark 6.3. The “simplified” term for an indefinite fibration includes all kinds of simplifica-
tions we have considered: directed, embedded round image, fiber-connected, connected round
image (and all Lefschetz singularities on the higher side if it is a broken Lefschetz fibration).
A simplified indefinite fibration yields a beautifully simple presentation of the 4–manifold in
terms of loops on a surface [6, 79]. These presentations are far from being unique, though,
and the reader should be careful when implementing our algorithms. There are choices in
many of the always-realizable base diagram moves we employed, such as the cusp merge or the
Reidemeister II type moves, which will result in different presentations on the same surface.
(See, e.g., [35, 14].)

Remark 6.4. As we discussed in the Introduction, these are the first purely topological and
explicit constructions of broken Lefschetz fibrations on arbitrary 4–manifolds with embedded
round images. Earlier handlebody proofs [24, 55, 5, 2], which start with an arbitrary Morse
function (similar to our initial generic function), would break the 4–manifold X into two
2–handlebodies Xi, i = 1, 2, equip them with broken Lefschetz fibrations with open book
boundaries, and match the latter implicitly by invoking powerful results of Eliashberg and
Giroux from contact geometry [20, 29]. One exception is the particular case of doubles, i.e.
when X2 = −X1, where the open books readily match [24, 42]. These however constitute a
rather small class of 4–manifolds.

Next, we provide a construction of broken Lefschetz pencils on near-symplectic 4–manifolds
[4, 5, 6].

Theorem 6.5. Let ω be a near-symplectic form on a closed oriented 4–manifold X with
non-empty Zω. Then, there exists a fiber-connected directed broken Lefschetz pencil f on X
with embedded round image, whose round locus Zf coincides with Zω with the same twisting
data, and so that ω([F ]) > 0 for any fiber F of f . Given any generic map from X \ B to
S2, which has a regular fiber Poincaré dual to an integral near-symplectic form ω, and is a
projectivization (i.e. conforming to the local model (z1, z2) 7→ z1/z2) around each point in a
discrete set B of cardinality [ω]2 in X, such f can be derived from it by an explicit algorithm.

Generic maps, which satisfy the conditions listed in the last sentence so as to be prototypes
for pencils, are found in abundance, as we will demonstrate below. Our proof is an improved
version of the proof given in [5].

Proof of Theorem 6.5. We can assume that ω is integral: if needed, approximate ω by a
rational near-symplectic form with the same zero locus (and twisting data), and take a positive
multiple of it. Let F be a closed oriented surface representing its Poincaré dual. Since ω2 > 0,
we have [F ]2 = m > 0, for some integer m. Let X̃ be the blow-up of X at m points on F
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and in the complement of Zω, E1, E2, . . . , Em the exceptional spheres, and F̃ the proper
transform of F . So [F̃ ]2 = 0 and each Ej intersects F̃ positively and transversely at one
point.

Let Nj be disjoint tubular neighborhoods of Ej , for j = 1, 2, . . . ,m, and N0 be a tubular

neighborhood of F̃ in X̃. Set h0 : N0 → D2 to be the projection onto the D2–factor of the
trivialization N0

∼= D2 × F̃ , where the target D2 is embedded as the southern hemisphere
of S2, and hj : Nj → S2 to be the radial projection onto Ej ∼= S2. We arrange the latter
so that all the D2–sections of Ej ∩N0 are mapped onto the southern hemisphere of S2 and
that hj coincides with h0 on N0 ∩ Nj , 1 ≤ j ≤ m. We can now define a surjective map hN
from N =

⋃m
j=0Nj onto S2. Here, the preimages of the points of the southern hemisphere

are diffeomorphic to F̃ , and the preimages of the interior points of the northern hemisphere
consist of m copies of 2–disks.

Extend hN to a continuous map h : X̃ → S2, e.g. by first defining the map on a collar of
∂(X\IntN) using h|∂N , and then mapping all remaining points in the interior to the northern
hemisphere of S2, which is possible, since the northern hemisphere is contractible. Then
approximate this h by a generic map relative to N . Note that h was already a submersion
on IntN .

Given such a generic map h, we apply the same algorithm in the proof of Theorem 6.1
to obtain a fiber-connected, directed broken Lefschetz fibration f̃ : X̃ → S2 with embedded
round image, whose round locus Zf̃ realizes the given Z = Zω with prescribed local models.
Here, Zω is identified with its image under the natural inclusion of X minus the blown-
up points into X̃, with the same local data. Performing all the modifications away from
N ′ =

⋃m
j=1Nj , we can guarantee that f̃ |N ′ = h|N ′ . (This is possible, since f̃ is a submersion

on ∂(X \ IntN ′); see Remark 4.5. For the elimination process of definite folds, the procedures
given in [5, 70] work the same in the case of a manifold with boundary.) Moreover, we can still

assume that f̃ is a submersion over the southern hemisphere, but with fibers that possibly have
different genera than the original F̃ . (Because some of our procedures might use base diagram

moves that swing a fold arc over this region.) Every fiber of f̃ , which are all homologous to

the original F̃ even if F̃ is no longer a fiber, intersects each Ej positively and transversely at
one point. So, each exceptional sphere Ej is a section of this broken Lefschetz fibration, and
blowing-down all we obtain the desired pencil. �

This provides an alternate, purely topological and constructive proof of the harder direction
of the main result, Theorem 1, of [4], together with some of its enforcements, such as having
a pencil with directed and embedded round image. The authors’ proof in [4] instead used
approximately holomorphic techniques of Donaldson to establish the existence of these broken
Lefschetz pencils implicitly.

We fall short of capturing another enforcement in [4] that seems out of reach for “softer”
techniques: making the fibers symplectic with respect to the given near-symplectic form away
from its zero locus. Nevertheless, the converse result of [4], which is a Thurston–Gompf type
construction of a near-symplectic form on a given broken Lefschetz pencil (for which the fibers
are symplectic, called a near-symplectic pencil), allows us to reproduce the following result
of [6] without appealing to approximately holomorphic techniques.

Corollary 6.6. Any closed oriented connected 4–manifold X with b+2 (X) > 0 admits a near-
symplectic simplified broken Lefschetz pencil.

Proof. Since b+2 (X) > 0, there is a closed oriented surface F in X with F 2 > 0. We can
run the same procedure in the proof of Theorem 6.5 with this F and any (non-empty) null-
homologous connected 1–manifold Z in X. (Once again, the twisting data is governed by
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the topology of X.) The result is a simplified broken Lefschetz pencil f on X. Fibers are
all homologous to F , which has positive square. Using the cohomology class which is the
Poincaré dual of [F ], we can employ the Thurston–Gompf type construction of [4, Proof of
Theorem 3] to build a near-symplectic form ω on X, with respect to which all fibers of f are
symplectic away from the singular locus. �

7. Constructions of simplified trisections of 4–manifolds

In this last section, we give algorithmic constructions of trisections of 4–manifolds, which
will utilize homotopy modifications of generic maps discussed in earlier sections. Our first
goal is to describe a correspondence between broken Lefschetz fibrations and trisections of 4–
manifolds. Meanwhile, we will prove that one can derive a rather special Gay–Kirby trisection
of any 4–manifold from a given broken Lefschetz fibration on it, which we will call a simplified
trisection. We will then move on to presenting various new constructions of (simplified)
trisections of 4–manifolds using this dictionary.

7.1. Broken Lefschetz fibrations to trisections and back.

We begin with discussing how to derive a trisection from a broken Lefschetz fibration.
Since we already have procedures to homotope any given broken Lefschetz fibration to a
simplified (or a bit more generally, fiber-connected, directed) broken Lefschetz fibration, we
will content ourselves with presenting our arguments for such broken Lefschetz fibrations. As
in the original proof of Gay and Kirby in [28], the trisection we obtain will be induced by a
certain generic map (trisected Morse 2–function) to the 2–sphere. However, the trisections
we get will be rather special: they do not have any non-trivial “Cerf boxes” (where handle
slides occur due to crossings between indefinite fold circles) and cusps only appear in triples
(on the same singular circle). See Figure 42 below. Following our earlier terminology, we call
such a trisection a simplified trisection. From such a generic map, one can obtain a trisection
decomposition by looking at the three sectors shown in Figure 42 (b), in the same way as
argued in [28].

Theorem 7.1 (Broken Lefschetz fibrations to trisections). Let X admit a fiber-connected,
directed broken Lefschetz fibration f : X → S2 with embedded round image. Let f have k ≥ 0
Lefschetz singularities, ` ≥ 0 round locus components, and lowest regular fiber genus g. Then
there exists a simplified (g′, k′)–trisection of X, with (g′, k′) = (2g + k + `+ 2, 2g + `).

Proof. Note that the broken Lefschetz fibration f : X → S2 as in the theorem is of genus
g+ `. The genus of such a broken Lefschetz fibration here is defined as that of a generic fiber
with the highest genus. Consider the decomposition S2 ∼= D2

+∪(S1× [−1, 1])∪D2
−, where D2

+

(resp. D2
−) is contained in the interior of the northern (resp. southern) hemisphere, S1 × {0}

corresponds to the equator, S1×[−1, 1] is a regular neighborhood of the equator, and the three
pieces are glued along their boundaries. We may assume that all the Lefschetz critical values
and the round image are contained in IntD2

+ in such a way that the round image is outward-
directed in D2

+. Then, we have a trivialization ρ : f−1(S1×[−1, 1])→ S1×[−1, 1]×Σg, where
the restriction of f is the composition of ρ with the projection S1×[−1, 1]×Σg → S1×[−1, 1].
We will show how to “fold” the fibration f along this region to get a new generic map with
a definite fold, and then simplify it to obtain the desired generic map yielding a trisection.

Let h : Σg → [1, 2] be a standard Morse function with exactly 2g index–1 critical points,
one index–0 critical point, x1, and one index–2 critical point, x2, for which h(x1) = 1 and
h(x2) = 2. Define the smooth function ϕ : [−1, 1]×Σg → [1, 3] by ϕ(t, x) = h(x) cos(πt/2)+1,
(t, x) ∈ [−1, 1] × Σg (see Figure 40). We can easily check that ϕ is a Morse function with
ϕ−1(1) = {−1, 1}×Σg and that its critical points Crit(ϕ) coincide with those of h on {0}×Σg:
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i.e. we have Crit(ϕ) = {0}×Crit(h). Furthermore, a critical point of index λ for h corresponds
to a critical point of index λ+ 1 for ϕ.
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Figure 40. Morse function ϕ.

Let π± : D2
± → R2 be the standard projections S2 → R2 of the unit 2–sphere restricted to

D2
± composed with an appropriate multiplication by a positive constant so that their image

coincides with the unit disk in R2. Define the smooth map g0 : X → R2 by g0|f−1(D2
±)

=

π± ◦ f and g0|f−1(S1×[−1,1]) = η ◦ (idS1 ×ϕ) ◦ ρ, where η : S1 × [1, 3] ↪→ R2 is an appropriate
embedding.

Then, g0 has folds and Lefschetz singularities and its fold image consists of concentric
circles. The innermost ones correspond to the original round image R0 and are outward-
directed. Then comes an inward-directed circle, and the others are outward-directed except
the outermost one which is a definite fold image (see the top-left of Figure 41). Using R20

and R22 moves we can change the order of R0 and the inward-directed circle, so now only
the innermost circle is inward-directed. This, too can be reverted using flip and slip and
push moves. However, unlike earlier, here we only unsink one of the 4 cusp points on the
reverted circle. Now the round image is directed outwards; the innermost circle has 3 cusps,
and all the Lefschetz critical values (including one new point) are in the central region (see
Figure 41).

We can now wrinkle one of the Lefschetz singularities to get a “triangle”; an indefinite fold
circle with exactly 3 cusps as in Figure 4, whose image is embedded and directed outwards.
Push all the other Lefschetz singularities into this triangle, and repeat the same procedure
until no Lefschetz singularity is left. We finally get a generic map g : X → R2, which has
directed, embedded round image, with an embedded definite fold image as its outermost circle;
see Figure 42 (b). The innermost k + 2 circles all have 3 cusps, where k is the number of
Lefschetz critical points of the original broken Lefschetz fibration f : X → S2. The remaining
2g + ` indefinite circles contain no cusps.

The map g : X → R2 prescribes a (2g + k+ `+ 2, 2g + `)–trisection of X. (As in [28], this
map yields a trisection decomposition of X by looking at the three sectors shown in Figure 42
(b).) �

Remark 7.2 (Trisections from –simplified broken– Lefschetz fibrations). For a genus–(g + 1)
simplified broken Lefschetz fibration f : X → S2 with non-empty round locus and k Lefschetz
singularities, we get a (2g + k + 3, 2g + 1)–trisection on X. For an honest genus–g Lefschetz
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Figure 41. The round image of g0 embedded in D2
+ ∪ (S1 × [−1, 1]) ∼= D2,

where the red circle represents a definite fold image. Then, we arrange it
using R20, R22, push and unsink moves.

fibration, we get a (2g+ k+ 2, 2g)–trisection. One can also allow f to have achiral Lefschetz
singularities, where we also accept local orientation-preserving models (z1, z2) 7→ z1z̄2 around
singular points. The base diagram of the trisection map itself will be insensitive to achirality.

Our construction of trisections from Lefschetz fibrations can be seen to be complementary
to Gay’s work in [23], where he produces trisections from Lefschetz pencils, which always have
base points. That is a very different construction, and the author points out that it does not
work for Lefschetz fibrations [23, Remark 7]. Another construction via trisection diagrams
for Lefschetz pencils with one base point was recently given in [18].

Remark 7.3. It should be clear from our proof that we can also derive a Gay–Kirby trisec-
tion by “folding” any fiber-connected, directed broken Lefschetz fibration, which does not
necessarily have an embedded image. Though in this case, the resulting trisection will not be
simplified either.

Together with Corollary 6.2 from the previous section, the construction in Theorem 7.1
establishes the existence of simplified trisections on arbitrary 4–manifolds.
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a b

Figure 42. (a) Singular image of general Gay–Kirby trisections with Cerf
boxes; (b) simplified Gay–Kirby trisections we produce.

Corollary 7.4 (Existence of simplified trisections). Any closed connected oriented 4–manifold
X admits a simplified trisection, and such a trisection can be constructed algorithmically from
any given generic map from X to S2.

Remark 7.5 (Handle slides in simplified trisections and their diagrams). The main difference
between a general trisection and a simplified one is in the hierarchy of handle slides, which
is imposed by the special structure of the simplified trisections. If we take any radial cut
of the base disk from the center to its boundary, while avoiding the cusp points, the inverse
image of this ray is a genus–g handlebody, given by g disjoint embedded simple closed curves
{α1, α2, . . . , αg} on a central reference fiber F ∼= Σg. Each αi comes from the fiberwise 2–
handle attachment prescribed by the corresponding (g + 1− i)–th indefinite fold arc image
the ray crosses over, for i = 1, 2, . . . , g. In a general trisection, moving across a non-trivial
Cerf box, these 2–handles prescribed by αi can slide over each other in any fashion. In
particular, the roles of any two αi and αj with i 6= j might be interchanged. In a simplified
trisection however, the 2–handle corresponding to an αi slides over that corresponding to αj
only if i < j. That is, these handle slides only occur in an “upper-triangular fashion” in
simplified trisections.

Recall that trisection decompositions of 4–manifolds can also be described by trisection
diagrams: collections of g disjoint curves {αi}, {βi}, {γi} on Σg, which pairwise give Heegaard
diagrams for connected sums of copies of S1 × S2 [28]. In a general trisection, the curves
{αi}, {βi}, {γi} of a corresponding trisection diagram can be pairwise made into a standard
Heegaard diagram for connected sums of copies of S1 × S2 after various handle slides among
the same collection of curves (and a self-diffeomorphism of Σg), whereas in a simplified trisec-
tion, once again, it suffices to perform handle slides in an “upper-triangular fashion”, e.g. only
sliding αi over αj for i < j. Hayano’s recent work on diagrams of simplified trisections [36]
provides yet another characterization akin to the monodromy characterization for simplified
broken Lefschetz fibrations [6, 9] —whereas such a characterization does not exist for general
trisections or broken Lefschetz fibrations.

We also have the converse result:

Proposition 7.6 (Trisections to broken Lefschetz fibrations). Let X admit a (g′, k′)–trisection.
Then there exists a fiber-connected, directed broken Lefschetz fibration f : X → S2, which has
regular fibers of highest genus g and with k Lefschetz singularities, where g = g′ + 2 and
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k = 3g′− 3k′+ 4. If the given trisection is simplified, then f in addition has embedded round
image.

Proof. By embedding R2 into S2 in such a way that the central region contains the north
pole, we consider the generic map given by the trisection as a map into S2. We then use a
version of flip and slip for the definite fold, which first appeared in [79] (where the author
attributes the idea to Gay) and later in [25, Fig 7]. Note that here the arrows on definite folds
indicate the fiberwise index–3 handle attachment direction. This modification is depicted by
a series of base diagram moves in Figure 43. By arguments identical to those we have for
the indefinite case, the versions of flips and unflips involving definite folds here are always-
realizable, and so are the Reidemeister type R22 moves. Now the image of the definite fold
circle turns into that of an indefinite fold circle which is directed towards the image of the
original map.

R22

flips unflipsdefinite R22

Figure 43. Turning a definite fold circle to an indefinite one. Red lines
depict definite fold images, while black lines depict indefinite fold images.

By always-realizable R20, R22, R33 and C–moves, we can move the new indefinite circle to
the north pole. We then apply flip and slip to it around the north pole. Unsink all the cusps
and push them to the innermost region of this fiber-connected, directed broken Lefschetz
fibration. The genus of a regular fiber in the innermost circle is now g = g′ + 2, and we get
exactly k = 3(g′ − k′) + 4 Lefschetz critical points. �

Remark 7.7. The original proof of Gay–Kirby for the existence of trisections on arbitrary
4–manifolds in [28] also goes through –a rather different– explicit sequence of homotopy
modifications of generic maps. Given an arbitrary Gay–Kirby (g′, k′)–trisection, we can apply
Proposition 7.6 and Theorem 4.2 to eliminate the non-trivial Cerf boxes. Then applying
Theorem 7.1, we get back a simplified (g′′, k′′)–trisection —typically with genus g′′ higher
than the original genus g′.

Remark 7.8 (Stable uniqueness for simplified trisection decompositions). Gay and Kirby’s
stable uniqueness of trisection decompositions on a 4–manifold holds within the subclass of
simplified trisection decompositions (i.e. the decompositions induced by simplified trisection
maps we have built) . This follows from the following line of arguments: In the next subsection
we construct a simplified (3, 1)–trisection on S4. By the work of Hayano in [36], this has a
trisection diagram that can be seen to be handle slide equivalent to a trisection diagram for
the standard (3, 1)–trisection used by Gay and Kirby in their stabilization result. One can
thus use our simplified trisection on S4 instead to arrive at the same conclusion. Each time we
stabilize a simplified (g′, k′)–trisection on a 4–manifold using the simplified (3, 1)–trisection,
the connected sum model yields a new (g′+3, k′+1)–trisection, where the 3 innermost circles
consist of an indefinite fold C with no cusps and two other triple-cusped ones enclosed by
it —all coming from the (3, 1)–trisection on S4. Since the attaching circles of the original
(g′, k′)–trisection and the additional (3, 1)–piece are independent, one can not only apply the
always-realizable R21 moves, but in this case R21 moves (compare with Remark 3.5) and their
analogues for crossing over cusps as well so as to “expand” C all the way across the triple-
cusped folds coming from the original (g′, k′)–trisection. This guarantees that the resulting
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trisection has the same nested picture, where the cusps only appear in the inner-most circles.
This argument shows that the stabilization of a simplified trisection decomposition is again
simplified as trisection decomposition.

7.2. Exotic trisections.

The list of 4–manifolds that admit g′ = 0, 1, or 2 trisections is very short: the only
g′ = 0 trisection is for S4 and g′ = 1 examples are for CP2, CP2 and S1 × S3 [28], whereas
a g′ = 2 trisection is either a connected sum of these g′ = 1 examples or is a trisection of
S2×S2 [60]. Thus Meier and Zupan posed the following natural question [60, Question 1.2]:
What is the smallest value of g′ for which there are infinitely many 4–manifolds which admit
(g′, k′)–trisection for some k′?

Theorem 7.1, combined with earlier constructions of simplified broken Lefschetz fibrations,
addresses this question (and provides an alternate to the answer given in [61]):

Corollary 7.9. For every fixed g′ ≥ 3 and g′−2 ≥ k′ ≥ 1, there are infinitely many homotopy
inequivalent 4–manifolds admitting (g′, k′)–trisections.

0

S
3-handle

0

4-handle

`

n strands

(a) (b)

Figure 44. (a) Kirby diagram for genus–1 simplified broken Lefschetz fi-
brations on rational homology 4–spheres Ln and L′n, for ` even and odd,
respectively. The 2–handle and the 3–handle that make up the round 2–
handle are given in blue. For n = 1 we have S4. (b) The base diagram for
a simplified trisection on Ln and L′n we obtain from these simplified broken
Lefschetz fibrations.

Proof. As shown in [10, 33], an infinite family of homotopy inequivalent 4–manifolds, namely
the rational homology 4–spheres Ln and L′n (say for n ≥ 2), admit genus–1 simplified broken
Lefschetz fibrations with no Lefschetz singularities. A handlebody description of these sim-
plified broken Lefschetz fibrations (following [6]) is given in Figure 44 (a). It is easy to see
that H1(Ln;Z) = H1(L′n;Z) = Zn for n ≥ 2.

By Theorem 7.1, these yield simplified (3, 1)–trisections; see Figure 44 (b) for the base
diagram. We can use connected sums with standard trisections [28] (e.g. with standard (1, 0)
and (1, 1) trisections on CP2 and S1 × S3, respectively) to arrive at the other higher (g′, k′)
examples in the statement. �
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Example 7.10. An interesting example is the simplified (3, 1)–trisection we derive from the
genus–1 simplified broken Lefschetz fibration on S4 [4]. The Morse 2–function for this tri-
section we get has 2 indefinite circles with 3 cusps on each, and one outer indefinite circle
with no cusps; see Figure 44 for its base diagram. (The (3, 1)–trisections of infinitely many
rational homology spheres we obtained in the proof of Corollary 7.9 all have the same base
diagram.) On the other hand, the “standard trisection” of S4 [28, Figure 27] used for stabi-
lization comes from a Morse 2–function with 3 indefinite circles with 2 cusps on each. After
three C–moves, one can obtain the same base diagrams outside of the Cerf boxes.

Remark 7.11. Shortly after publicizing our article, Meier gave another nice construction
of (3, 1)–trisections on twist spun 3–manifolds [58], by also employing some allowable base
diagram moves. It would be interesting to compare these examples, since, akin to the clas-
sification of low genera simplified broken Lefschetz fibrations [33, 10], one might expect the
list of (simplified) (3, 1)–trisections to consist of fairly standard ones.

A natural idea for relating newly emerging theory of trisections of 4–manifolds to con-
structions of exotic smooth structures is to find (g′, k′)–trisections, whose three sectors can
be re-glued in a way the diffeomorphism type is changed, but the homeomorphism type re-
mains the same. Perhaps what is more interesting than the above question is to find the
smallest g′ for which there are infinitely many non-diffeomorphic 4–manifolds in the same
homeomorphism class admitting a (g′, k′)–trisection, for some k′ —what one can call (small)
exotic trisections. We finish with presenting some examples:

Corollary 7.12. There is an infinite family of exotic (34, 8)–trisections in the homeomor-
phism class of CP2#9CP2. There is an exotic (20, 4)–trisection in the homeomorphism class
of CP2#7CP2.

Proof. As shown by Fintushel and Stern, a knot surgered elliptic surface E(1)K admits a
genus–2h Lefschetz fibration, for K a genus–h fibered knot [22]. For a family of genus–2
fibered knots Ki with distinct Alexander polynomials, we obtain a family of genus–4 Lef-
schetz fibrations (Xi, fi), where Xi are mutually non-diffeomorphic irreducible symplectic
4–manifolds all in the same homeomorphism class. Per Remark 7.2, we derive an infinite
family of exotic (34, 8)–trisections from these examples. Standard E(1) = CP2#9CP2 also
admits a (34, 8)–trisection: Applying our procedure to the elliptic Lefschetz fibration on
E(1) (where g = 1, k = 12), we obtain a (16, 2)–trisection, which we can then stabilize 6
times (with a (3, 1)–trisection on S4) to get a (34, 8)–trisection on E(1) as well.

For a smaller (but a single) example, we can take the genus–2 Lefschetz fibration on
an exotic, irreducible symplectic CP2#7CP2 constructed in [11], and apply Theorem 7.1 to
produce a (20, 4)–trisection. The standard CP2#7CP2 also admits a (20, 4)–trisection: Take
a rational Lefschetz fibration on it with 6 singular points, apply our procedure, and then
stabilize it 4 times. �

Remark 7.13. Per the very nature of our article, we have only discussed trisections as a
certain class of generic maps in this article. It would be interesting to analyze our examples,
especially the exotic pairs (or other such examples that appeared later in [54]), in terms of
induced trisection diagrams, which can be derived following the explicit procedures given in
[17, 16].
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France, Paris, 1973.



SIMPLIFYING INDEFINITE FIBRATIONS ON 4–MANIFOLDS 47

[33] K. Hayano, ‘ ‘On genus-1 simplified broken Lefschetz fibrations”, Algebr. Geom. Topol. 11 (2011),

1267–1322.
[34] K. Hayano, ‘ ‘A note on sections of broken Lefschetz fibrations”, Bull. London Math. Soc. 44 (2012),

no. 4, 823–836.
[35] K. Hayano, ‘ ‘Modification rule of monodromies in an R2–move”, Algebr. Geom. Topol. 14 (2014),

no. 4, 2181–2222.

[36] K. Hayano, ‘ ‘On diagrams of simplified trisections and mapping class groups”, Osaka J. Math. 57
(2020), 17–37.

[37] K. Hayano and M. Sato, ‘ ‘Four-manifolds admitting hyperelliptic broken Lefschetz fibrations”, Michi-

gan Math. J. 62 (2013), no. 2, 323–351.
[38] K. Hayano and M. Sato, ‘ ‘A signature formula for hyperelliptic broken Lefschetz fibrations”, Topology

Appl. 173 (2014), 157–174.

[39] F. Hirzebruch and H. Hopf, ‘ ‘Felder von Flächenelementen in 4–dimensionalen Mannigfaltigkeiten”,
Math. Ann. 136 (1958), 156–172.

[40] K. Honda, ‘ ‘Transversality theorems for harmonic forms”, Rocky Mountain J. Math. 34 (2004),

629–664.
[41] K. Honda, ‘ ‘Local properties of self-dual harmonic 2–forms on a 4–manifold”, J. Reine Angew. Math.

577 (2004), 105–116.

[42] M.C. Hughes, ‘ ‘Constructing broken Lefschetz fibrations from handle decompositions”, preprint;
arxiv.org/abs/1511.08917.

[43] G. Islambouli, ‘ ‘Comparing 4–manifolds in the pants complex via trisections”, Algebr. Geom. Topol.
18 (2018), 1799–1822.

[44] G. Islambouli, ‘ ‘Nielsen equivalence and trisections of 4–manifolds”, preprint;

https://arxiv.org/abs/1804.06978.
[45] S. Jabuka and T. Mark, ‘ ‘Heegaard Floer homology of certain mapping tori”, Algebr. Geom. Topol.

4 (2004), 685–719.

[46] S. Jabuka and T. Mark, ‘ ‘Heegaard Floer homology of certain mapping tori II”, Geometry and
topology of manifolds, pp. 119–135, Fields Inst. Commun., 47, Amer. Math. Soc., Providence, RI,

2005.

[47] S. Jabuka and T. Mark, ‘ ‘On the Heegaard Floer homology of a surface times a circle”, Adv. Math.
218 (2008), no. 3, 728–761.

[48] S. Jabuka and T. Mark, ‘ ‘Product formulae for Ozsváth-Szabó 4–manifold invariants”, Geom. Topol.
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ematical Physics Monograph Series, W.A. Benjamin, Inc., Reading, Mass., 1972.

[75] K. Wehrheim and C.T. Woodward, ‘ ‘Quilted Floer cohomology”, Geom. Topol. 14 (2010), no. 2,
833–902.

[76] K. Wehrheim and C.T. Woodward, ‘ ‘Functoriality for Lagrangian correspondences in Floer theory”,
Quantum Topol. 1 (2010), no. 2, 129–170.

[77] H. Whitney, ‘ ‘On the topology of differentiable manifolds”, Lectures in Topology, pp. 101–141, Uni-

versity of Michigan Press, Ann Arbor, Mich., 1941.
[78] H. Whitney, ‘ ‘On singularities of mappings of euclidean spaces. I. Mappings of the plane into the

plane”, Ann. of Math. (2) 62 (1955), 374–410.

[79] J. Williams, ‘ ‘The h-principle for broken Lefschetz fibrations”, Geom. Topol. 14 (2010), no. 2, 1015–
1063.

[80] J. Williams, ‘ ‘Existence of two-parameter crossings”, Geom. Dedicata (2019),

https://doi.org/10.1007/s10711-019-00499-1.
[81] T. Yoshida, Y. Kabata and T. Ohmoto, ‘ ‘Bifurcation of plane-to-plane map-germs with corank two

of parabolic type”, Theory of singularities of smooth mappings and around it, pp. 239–258, RIMS
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