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Abstract

We study a symplectic surgery operation we call unchaining, which effectively reduces the
second Betti number and the symplectic Kodaira dimension at the same time. Using unchain-
ing, we give novel constructions of symplectic Calabi—Yau surfaces from complex surfaces
of general type and completely resolve a conjecture of Stipsicz on the existence of excep-
tional sections in Lefschetz fibrations. Combining the unchaining surgery with others, which
all correspond to certain monodromy substitutions for Lefschetz pencils, we provide further
applications, such as new constructions of exotic symplectic 4-manifolds, and inequivalent
pencils of the same genera and the same number of base points on families of symplectic
4-manifolds. Meanwhile, we present a handy criterion for determining from the monodromy
of a pencil whether its total space is spin or not.
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1 Introduction

Over the past couple of decades, many new surgeries, such as rational blowdown, generalized
fiber sum, knot surgery, and Luttinger surgery, have been introduced to and successfully
employed in the study of symplectic 4-manifolds. These symplectic surgeries have typically
emerged as more flexible versions of complex algebraic operations or more rigid versions of
topological ones. A diverse family of symplectic surgeries, many of which seem to have very
little history in the complex algebraic or topological worlds, come from excising a compact
Stein subdomain and replacing it with a new one, which too induces the same contact structure
on its convex boundary. In this article we undertake an extensive study of a symplectic surgery
of this kind, which we call unchaining surgery, and demonstrate several interesting features
and applications of this surgery.

Since Lefschetz pencils and allowable Lefschetz fibrations are topological counterparts of
closed symplectic 4-manifolds and compact Stein domains [1, 15, 28, 40], these operations
have natural interpretations in the framework of positive factorizations of Dehn twists in the
mapping class group of fibers. Swapping Stein subdomains locally correspond to swapping
positive factorizations of the monodromy of a supporting open book of the boundary contact
3-manifold. Moreover, whenever the Stein subdomain, as a positive allowable Lefschetz
fibration, embeds into a Lefschetz pencil on the closed symplectic 4-manifold, swapping the
Stein subdomains has a global interpretation: it corresponds to a monodromy substitution in
the global monodromy of the pencil. The unchaining surgery takes its name in this context
from an important relation in the mapping class group of a surface: the chain relation, which
exchanges a product of Dehn twists along a chain of an odd number of curves on a compact
(sub)surface, with a pair of Dehn twists along the two boundary components of the tubular
neighborhood of this chain; see Lemma 2.2. (And the analogous surgery corresponding to
the chain relation for an even number of chains shares very similar features; see Remark 3.6.)

In all the examples we produce in this article, we will perform unchaining from the vantage
point of substitutions in positive factorizations, and aim to preserve the global Lefschetz
fibration structures, so we can determine the Kodaira dimension of the resulting symplectic
4-manifolds—which is a notion that measures the positivity of the symplectic canonical class,
extended from the case of compact complex surfaces, and is a diffeomorphism invariant [37].
We will read off the symplectic Kodaira dimension using the additional data we derive on their
exceptional multisections (symplectic (—1)-spheres which intersect all the fibers positively);
see Theorem 2.3 and [11, 49]. Precise definitions and background results for all of the above
are given in Sects.2 and 3.

Our first application concerns the topology of symplectic Calabi—Yau surfaces, which
constitute symplectic 4-manifolds of Kodaira dimension zero, up to finite covers. Recall that
a symplectic Calabi—Yau surface (SCY) is a symplectic 4-manifold with a trivial canonical
class, similar to a complex Calabi—Yau surface. Up to date, the only known examples of
symplectic Calabi—Yau surfaces are torus bundles over tori and complex K3 surfaces [41],
and any symplectic Calabi—Yau surface is known to necessarily have the rational homology
type of these manifolds [6, 38]. While Simon Donaldson proposes in [16] that an analysis
of monodromies of pencils on SCYs may shed light on their geometry and topology, much
less is known about Lefschetz pencils on SCYs. In Sect.4 we construct, for each g > 3,
a variety of new positive factorizations yielding genus-g Lefschetz pencils on symplectic
4-manifolds with any Kodaira dimension, via careful applications of unchaining, starting
with holomorphic pencils on complex surfaces of general type; see Theorems 4.6 and 4.8. In
particular we obtain:
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Theorem 1.1 For each g > 3, there is a symplectic genus-g Lefschetz pencil (K, kg),
where K is a symplectic Calabi-Yau homotopy K3 surface, and k, has the monodromy
factorization:

lsg_y = Isylsils, | - Isy T
te, bty by (e teote)Stay -ty Tergy * * Tey (g : odd)
— 8 g 1 8 8
- 6 2 .
Ixg = txltxé e 'txi (Teyteyles) (Teylteyle) ) Hdy -+ - ldygirlergr " " ley (g : even)

. 2g-2 Y ) ) ) ) / . .
inT'g® =, where the curves 5],8j,cj,d],ej,x],xj are as in Figs.4, 5, and 6.

These complement the explicit monodromies of pencils on symplectic Calabi—Yau surfaces
with b1 > 0 given in the works of Ivan Smith, the first author, and Noriyuki Hamada and the
second author in [10, 30, 50].

It is an alluring open question whether this fairly short list of symplectic Calabi—Yau
surfaces is complete up to diffeomorphisms, and in particular if there is no symplectic Calabi—
Yau surfaces with b; = 0, that is not diffeomorphic to a K3 surface [17, 25, 37]. As Tian-Jun
Li points out in [39], the poor state of this problem seems to also stem from the lack of
any new constructions of symplectic Calabi—Yau surfaces; many widely used symplectic
surgeries mentioned in the beginning of our article are seen not to yield any new SCYs,
except for trivial cases [14, 32, 39, 55]. These constructions demonstrate how unchaining
surgery can produce symplectic Calabi—Yau surfaces (Corollary 4.10) from complex surfaces
of general type, or from rational or ruled surfaces via the natural inverse of the operation. The
symplectic 4-manifolds K, have the same fundamental group and Seiberg-Witten invariants
as complex K3 surfaces, and we do not know at this point whether they are all diffeomorphic
to them.

Our second application concerns a riveting conjecture of Andras Stipsicz on the existence
of exceptional sections in fiber-sum indecomposable Lefschetz fibrations. In [51], having
proved the converse, Stipsicz conjectured that any Lefschetz fibration, which cannot be
expressed as a fiber-sum of any two non-trivial fibrations, always admits an exceptional
section—an affirmative answer to which would mean that any Lefschetz fibration is a fiber-
sum of blown-up pencils. This conjecture was shown to fail in genus-2 by just a handful
of examples: a holomorphic fibration on a blown-up K3 surface by Auroux (which was
the first counter-example, as observed by Yoshihisa Sato in [48]), a symplectic fibration on a
homotopy Enriques surface by the first two authors of this article [11], aholomorphic fibration
with 6 irreducible and 7 reducible fibers by Xiao [57] (as observed to be a counter-example
by the first author), and one more (if different than Xiao’s), by an implicit argument in [3].
Only two more counter-examples, a pair of genus-3 fibrations on symplectic Calabi—Yau
homotopy K3 surfaces were provided again in [11], and there has been no known examples
for any g > 4, up to date.

In Sect. 5, we prove that there is in fact no stable range for g, where this conjecture may
hold:

Theorem 1.2 For any g > 2, there exists a genus-g fiber-sum indecomposable Lefschetz
fibration without any exceptional sections.

The most challenging part of constructing such examples is to locate all the exceptional
spheres in the symplectic 4-manifold so as to know for sure that there is none that can be
a section. We will produce all our genus g > 4 examples by applying the braiding lantern
substitution of [11] to the explicit positive factorizations of a family of pencils with Kodaira
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dimension one we obtain via unchaining (Theorem 5.4). Along with the already existing
examples of g = 2, 3, this then completely resolves Stipsicz’s conjecture (noting that by the
well-known classification of genus-1 fibrations, the conjecture does hold in the remaining
case).

In the course of the proof of the above theorem, we establish another result, which would
be of independent interest: a complete characterization of when the total space of a Lefschetz
pencil is spin, in terms of its monodromy factorization (Theorem 5.1). This extends Stipsicz’s
earlier work in [52] for Lefschetz fibrations (no base points), and this generalization is
applicable to any symplectic 4-manifold, since a given symplectic 4-manifold may not admit
a Lefschetz fibration, but it always admits a pencil (with base points) by Donaldson.

Theorem 1.3 Let (X, f) be a genus-g Lefschetz pencil with a monodromy factorization
fey - le, =15, -+ - 15,. Then X admits a spin structure if and only if there exists a quadratic
formq : H (25; Zo) — Zy with respect to the intersection pairing of Hy (20: Zy) such that
q(ci) = 1foranyiand q(§;) = 1 for some j.

In the final section, Sect.6, we will present two more applications, one regarding the
topology of symplectic 4-manifolds (Theorem 6.1, and one regarding that of pencils (The-
orem 6.4). All the examples we construct therein come from combining unchaining and
rational blowdown surgeries that respect the fibration structures.

Constructions of small simply-connected symplectic 4-manifolds with b;r < 3viarational
blowdowns has a fairly long and rich history, pioneered by the works of Fintushel-Stern and
Jongil Park [23, 24, 44, 45]. Similar constructions via monodromy substitutions in positive
factorizations of Lefschetz pencils was first given by Endo and Gurtas [18], who observed that
lantern substitutions (see Lemma 2.1) amount to a rational blowdown of a symplectic (—4)-
sphere—which since then, has been extended to many other substitutions corresponding to
blowdowns of more general configurations of spheres [19, 26, 34]. The hardship of the latter
approach is to have explicit positive factorizations of pencils that contain a sufficient number
of lantern configurations for rational blowdowns, and was so far successfully applied to genus-
2 Lefschetz pencils in [4, 18]. We demonstrate that, through unchaining, we do get such useful
monodromy factorizations, from which, we can for example obtain new symplectic genus-3
Lefschetz fibrations with exotic total spaces:

Theorem 1.4 There are genus-3 Lefschetz fibrations (X j, f}), for j =0, 1,2, 3, where each
X j is a minimal symplectic 4-manifold homeomorphic but not diffeomorphic to 3CP25(19 —
J)CP?, and each f i+1 has a monodromy factorization obtained from that of f; by a lantern
substitution.

Moreover, by the techniques of [11], one can explicitly describe the symplectic canonical
class of each X ; as a multisection of f;; see Remark 6.3.

Our final application is on the diversity of Lefschetz pencils and fibrations of the same
genera on a given symplectic 4-manifold (up to equivalence of pencils/fibrations through
self-diffeomorphisms of the 4-manifold and the base, commuting the maps). Examples of
inequivalent Lefschetz fibrations on a blow-up of T 2 x %,, whose fibers have different
divisibility in homology were discussed by Ivan Smith in his thesis, and several inequivalent
fibrations on homotopy elliptic surfaces, distinguished by their monodromy groups, were
produced by Jongil Park and Ki-Heon Yun in [46, 47]. In [8, 9], building on Donaldson’s
existence result and the doubling construction for pencils, the first author established that
in fact any symplectic 4-manifold, possibly after blow-ups, admits inequivalent Lefschetz
pencils and fibrations of arbitrarily high genera. Also see [11, 29] for inequivalent pencils
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on homotopy K3 surfaces and on ruled surfaces, respectively. Here we produce many more
examples of inequivalent Lefschetz pencils and fibrations, notably with explicit positive
factorizations:

Theorem 1.5 Forany ¢ > 3 andi = 0,1,2,...,¢ - 1, there are pairs of inequivalent
relatively minimal genus-g Lefschetz pencils (Y (i), hg,(i ), j = 1,2 with the same number
of base points, and inequivalent Lefschetz fibrations on their blow-ups. For any g > 3, there

are pairs of inequivalent relatively minimal genus-g Lefschetz pencils on once blown-up
elliptic surface E(1) t CP? = CP? # 10 CP?, with different number of reducible fibers.

The examples of inequivalent pencils we obtain here are on a family of symplectic 4-
manifolds, whose symplectic Kodaira dimensions run through —oo, 0 and 1.

2 Preliminaries

Here we review the main notions and background results used throughout the paper. Manifolds
in this paper are assumed to be smooth, connected and oriented, unless otherwise stated.

2.1 Lefschetz fibrations and pencils

Let X and ¥ be compact manifolds of dimension 4 and 2, respectively. A smooth map
f: X — X iscalled a Lefschetz fibration if the critical locus C = Crit(f) is a discrete set
such that

e forany x € Crit(f) there are complex charts (U, ¢) at x and (V, ) at f(x), compatible
with the orientation of X and X, so that

Yo fop Nz, w) = zw,

e the restriction f | FFC)) is a surface bundle, and
e the restriction f |cri¢(s) 1S injective.

For B C X a non-empty finite set of points, a smooth map f : X \ B — CP! is called a
Lefschetz pencil if f |x\,p is a Lefschetz fibration, where v B is the union of balls centered
at points in B, and for any b € B there exist a complex chart (U, ¢) compatible with the
orientation of X, and an orientation-preserving self-diffeomorphism ® : CP! — CP! so
that:

Do fop l(z,w) =[z:wl.

Each point in B is called a base point of f.
We will denote a Lefschetz fibration or a pencil simply as the pair (X, f). For a Lefschetz
fibration or pencil (X, f), the set of critical values f(C) C X is discrete. So the genus of

the closure of a regular fiber f~1(g) does not depend on the regular value ¢, and is called
the genus of (X, f). In this paper, we will always assume that (X, f) is relatively minimal,
that is, for any point ¢ € f(X), the closure f~1(g) does not contain any (—1)-spheres.

Lastly, an allowable Lefschetz fibration is a Lefschetz fibration with base & = D?, where
the fibers have non-empty boundaries, and for any point ¢ € f(X), f~!(g) does not contain
any closed surfaces.
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2.2 Positive factorizations

Let Eg be a compact genus-g surface with n boundary components. We denote by Fg the
mapping class group of ¢:

I =7 ({w € Diff () | ¥ loxy = id}) .

Let (X, f) be a Lefschetz fibration or pencil over ¥ = CP! with [ critical points and n
base points (where n = 0 if it is a fibration). Take a regular value pg € CP' and simple
paths yi, ..., y; from py to critical values which are mutually disjoint except at pg. Suppose
that y1, ...,y appear in this order when we go around pg counterclockwise. We denote
by «; a loop with base point pg which first goes along y;, then goes around a critical value
counterclockwise and goes back to pg along y;. Kas [35] showed that a monodromy of f along
o, which can be regarded as an element of F;’ under an identification E;,’ = Y po)\vB,
is a positive Dehn twist 1., (aright-handed Dehn twist) along a simple closed curve ¢; C ¥ Z’
called the vanishing cycle of f associated to ¢; by y;.

We can deduce from the local description of f around the base points that the monodromy
of f along a concatenated loop oy - - - oy isequal to ts, - - - 15, € Fg, where §1,...,68, C ng
are simple closed curves parallel to respective boundary components. We therefore obtain
the following positive factorization of the boundary multi-twist zs, - - - 5, in I'g:

fep oo tey =15, - 15,

which is called the monodromy factorization of the Lefschetz pencil f. When there are no
base points, i.e. when n = 0, this is a factorization of identity in I'y. Note that relative
minimality of a Lefschetz fibration or pencil implies that no ¢; is null-homotopic. In the
case of an allowable Lefschetz fibration, where the base is D? instead of CP', one derives
a positive factorization of an element in I'?, n > 0, which does not need to be a boundary
multi-twist, and no ¢; is null-homologous.

Conversely, given such a positive factorization as above, one can build a genus-g Lefschetz
pencil (X, f) with [ critical points and n base points, where X is a symplectic 4-manifold
[28]. Similarly, a positive factorization of any mapping class u in Fg with n > 0, where no
Dehn twist curve ¢; is null-homologous, one can build a genus-g allowable Lefschetz fibration
(X, f), where X is a Stein domain [1, 40]. On the boundary of X, this fibration induces an
open book with monodromy w, which supports the natural contact structure induced by the
Stein structure on X (either as the maximal distribution of the complex structure restricted
to the boundary, or as the kernel of contact 1-form which is the primitive of the symplectic
structure around the boundary). Moreover, from a given positive factorization for a Lefschetz
fibration or pencil, we can obtain another one by substituting a subword of the factorization
with another product of positive Dehn twists. In the following sections we will construct
several Lefschetz fibrations and pencils by this procedure, sometimes called as monodromy
substitution. In these constructions, we will repeatedly use the following well-known relations
(see e.g. [22]):

Lemma 2.1 (Lantern relation) Let §1, 87, 83 and 84 be the four boundary curves of Eg and
let x, y and z be the interior curves as shown in Fig. 1. Then, we have the lantern relation in

4,
ry:

Isylsyls,ls) = tz0ylx.
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Fig.1 The curves x, y, z on 23

Lemma 2.2 (Odd chain relation) Let ¢y, ¢3, . .., can+1 be simple closed curves on 2§ such
that c¢; and c; are disjoint if |i — j| > 2 and that ¢; and c; intersect transversely at one
point. Then, a regular neighborhood of cy Ucy U - --Uc 41 is a subsurface of genus h with
two boundary components, 81 and 8]. We then have the odd chain relation in F; :

2042
(teytey -+ ey, )2 = I5 gy -

Lastly, we have the conjugation relation ¢t,¢~! = t¢(a)» Which implies the equalities
Ipla = taly—1(p) = By, (a)tp fOr any 14, 1, and ¢ € I'y. Applying these equalities to change any
subfactors in a positive factorization is known as a Hurwitz move, which yields equivalent
Lefschetz fibrations or pencils. Whenever we have a Hurwitz equivalence of two positive
factorizations, we will use the notation ~ to emphasize that the underlying fibration has not
changed.

2.3 Symplectic Kodaira dimension and Calabi-Yau surfaces

A symplectic 4-manifold is said to be minimal if it contains no symplectic sphere with self-
intersection — 1. Let (Xmin, ®min) be a minimal symplectic 4-manifold obtained from a given
closed symplectic manifold (X, w) by blowing-down all the symplectic spheres. For K,
the canonical class of (Xmin, @min), the symplectic Kodaira dimension k(X) of (X, w) is
defined as follows:

—00 if Kmin - [omin] <0or K2, <0

ey =1 0 Knin-[onin] = K2y =0
1 Kmin * [0min] > 0and K2, =0
2 Knin - [@min] > 0 and Kr%“»n > 0.

It turns out that x (X) is not only independent of the associated minimal symplectic manifold
(Xmin» @min), but also the symplectic structure w on X—so it is a diffeomorphism invariant.
Moreover, when « (X) = —oo, the manifold X is known to be symplectomorphic to a rational
or ruled surface, so its diffeomorphism type is a blow-up of either CP? or an S2-bundle over
a Riemann surface. In particular, 57 (X) = 1. When «(X) = 0, X is known have the same
rational homology as the blow-up of either a 72-bundle over T2, the Enrique surface or the
K3 surface. In particular, 5™ (X) < 3. (See e.g. [37, 38].)

We will make use of the following criterion for a symplectic 4-manifold to have a specific
Kodaira dimension:

Theorem 2.3 (Kodaira dimension from monodromy factorizations, [10, 11, 49]) Let X be
a symplectic 4-manifold which is the total space of a genus g > 3 Lefschetz fibration with

@ Springer



77 Page8of32 R. 1. Baykur et al.

a monodromy factorization which lifts to Fg as a factorization of the boundary multi-twist,
that is

fepovvnrley =1s, - o 15
Then the symplectic Kodaira dimension of X is equal to

i kK(X)=—o0ifn >2g—2,
ii. k(X)=0ifn=2g—2and b (X) # 1,
iii. k(X)=1ifn=2g—3andb™(X) > 3.

Here the boundary multi-twist corresponds to n disjoint sections that are all exceptional
spheres, which is a particular case of [49, Theorem 5-12] and [11, Theorem 4.1], where
the positive factorizations are given for multisections (intersecting the fiber at n points) that
are exceptional spheres. For part (i), observe that if the number of exceptional sections is
n > 2g — 2, blowing them down, we get a fiber class which violates the Seiberg-Witten
adjunction inequality, which is only possible in a rational or ruled surface. All parts but part
(iii) also hold for g = 2.

Note that the topological invariant b*(X) in the theorem can be read off from the positive
factorization. Since 771(X) is isomorphic to the quotient of 71 (Xg) by N(cy, ..., c), the
subgroup normally generated by c¢;s, we can calculate b1 (X) as the rank of the abelianization
of 1(X). Then calculating e(X) = 4 — 4 g 4+ [ and o (X) algorithmically (e.g. by [20]), we
can obtain b+ (X) through the equality b+ (X) = (e(X) — 2 + 2b| + o (X))/2.

3 Unchaining operation

In this section we will discuss the unchaining operation, which is a symplectic surgery that
can be interpreted (at least locally) as a monodromy substitution in a Lefschetz fibration.
This surgery will play a key role in all our constructions throughout the paper.

Letcy, ..., cog41, 61, 8’1 C Eg be simple closed curves shown in Fig.4. By Lemma 2.2,

the following relation holds in I‘g:
2842
(tcl to tC2g+|) 8 = t51t61~

Denote the total space of the allowable Lefschetz fibration corresponding to the left and right
hand sides of the relation above by V, and Vé, respectively. One can describe the compact
manifolds V, and Vé by handlebody diagrams in Fig. 2.

Taking the Stein structures associated to their allowable Lefschetz fibrations above, we
regard V, and Vé as Stein domains. (Itis a straightforward exercise to turn the handle diagrams
in Fig. 2 into diagrams of Stein handle decompositions following [1].) Since these fibrations
induce the same open book monodromy on their boundaries, the contact structures induced
on 0V, and 0 Véf by the underlying symplectic structures on V, and Véf are contactomorphic.
Thus, if V, is a Stein subdomain of a symplectic 4-manifold (X, wx), we can excise V, and
glue in Vg’ symplectically via any contactomorphism ¢ : 9V, — 0 Vé, perhaps after scaling
the symplectic form on it (see e.g. [21]). We will call this particular symplectic cut-and-paste
operation unchaining:

Definition 3.1 Let (X, wx) be asymplectic 4-manifold, containing V, as a Stein submanifold.
The symplectic 4-manifold (Y, wy), where ¥ = (X\V,) U, Vg’, with wx |x\v,= oy |Y\Vg’
and containing Vé as a Stein subdomain is then said to be obtained by unchaining (X, wx)
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e

(a) Vg

(b) V.

Fig.2 Handlebody diagrams of V, and Vg/. All the 2-handles in both figures have (—1)-framing

along Vy C X (or by (2g + 1)-unchaining, whenever we would like to be specific about the
size).

This local surgery realizes a monodromy substitution when (X, wy) is the total space
of a symplectic Lefschetz fibration or pencil f, whose monodromy factorization contains
(tey -+ teypi )2h+2 as asubword, where cy, . .., c2 541 are simple closed curves in a reference
fiber of f satisfying the condition in Lemma 2.2. We can then apply a Cyj,41-substitution to
the monodromy factorization of f, that is, we can substitute a subword (Z¢, - - - fc, ., )21+2in
the factorization with 5, 5, where 81, 8 ’1 are curves given in Lemma 2.2. Since the substitution
does not change the right-hand side of the factorization, we obtain another symplectic Lef-
schetz fibration or pencil &, whose total space is a symplectic 4-manifold (¥, wy) obtained
by unchaining (X, wy) along V. (In this case we choose ¢ : 9V, — BVé to be a fiber-
preserving contactomorphism between the boundary open books, which is identity along the
fibers.) We will build all our examples in this paper from this perspective.

In the remainder of this section, we will explain how the Euler characteristic, the signature
and the fundamental group of X and Y are related by the unchaining operation along V, C X.

Let us start with the invariants for the subdomains V, and Véf. From the handle decom-
positions given above, it is easy to see that the Euler characteristics e(V,) and e(ng) are
respectively equal to 2(2 g2 + 2 ¢ + 1) and —2 g + 2. The manifold V, is the complement
of the union U of neighborhoods of a regular fiber and two (—1)-sections in a hyperelliptic
Lefschetz fibration over % with (2g 4 1)(2g +2) irreducible singular fibers and no reducible
ones. Therefore, we can deduce from [20] that the signature of the hyperelliptic fibration over
§%is —2(g + 1)%. Since the signature of U is —1, by the Novikov additivity, the signature
of V, is equal to —2(g + 1)? + 1. On the other hand, since Vé is a disk bundle over a
genus-g surface with Euler number —2, the signature o(V&f) = —1. Now by the additivity
of Euler characteristic and signature for gluing compact 4-manifolds along 3-manifolds, we
can conclude that:

Proposition 3.2 Let Y be obtained by unchaining X along Vo C X. Then,

e(Y) =e(X) —2g(2g +3),
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Fig.3 A generating set of a fiber
of the open book of 9V,

oY) =0(X)+2g(g+2).

The relation between the fundamental groups of X and Y is more involved, since in
general it non-trivially depends on the fundamental group of the complement of V, in X.
The manifold 8V, (and thus X) contains a surface ¥ = Z; which is a fiber of the boundary
open book. We take a generating set {ay, by, ..., ag, bg, d} of w1 (X) as shown in Fig. 3.

We also denote the elements in 71 (X \ V;) represented by loops in Fig. 3 by a;, b;, and so
on. Recall that V&f admits a handle decomposition with one 0-handle, 2g + 1 1-handles, and

two 2-handles as in Figure 2. Now, Y is obtained from X \ V, by attaching this handlebody
upside down to it. Then, the cellular decomposition induced by this handle decomposition
implies that Y is obtained from X \ V, by attaching two 2-cells to an open book fiber X of
0(X\Vg) =20 Vg’ along loops freely homotopic tod andd ! - le [ai, bi], and then attaching
2g + 1 3-cells and a 4-cell. By a standard consequence of Seifert Van-Kampen, the 2-cells
yield further relations via their attaching maps, while the higher dimensional cells have no
effect on ;. We therefore get:

Proposition 3.3 The fundamental group of Y is isomorphic to

8
w1 (X\ Vg) /N (d, [ T1a, b,-])
i=1

where N(d, ]_[igzl[ai, b;]) is the subgroup of m(X \ Vg) normally generated by d,and
g

i=1

lai, bi). In particular, if X\Vy is simply-connected, so is Y.

Remark 3.4 Propositions 3.2 and 3.3 show that in general unchaining operation is not equiv-
alent to a sequence of rational blow-downs and blow-ups. For instance, if a simply-connected
manifold Y can be obtained by applying (2g + 1)-unchaining to another simply-connected
manifold X (and we will see many instances in this paper), we deduce that 5 (X) — b*(Y)
is equal to g(g + 1). However, rational blow-downs and blow-ups do not change b*.

By Propositions 3.2 and 3.3, the unchaining operation decreases the second Betti number
of a 4-manifold, so it is a handy operation for deriving a smaller symplectic 4-manifold. In
addition, the unchaining might give rise to new (—1)-spheres in Y, as we will see in our
examples in this paper, which we can further blow-down to obtain an even smaller manifold.
The same examples will demonstrate that the symplectic Kodaira dimension is also non-
increasing under the unchaining operation, i.e. « (¥Y) < k(X), which we conjecture to be true
in general:

Conjecture 3.5 If (Y, wy) is obtained from the symplectic 4-manifold (X, wy) by unchaining,
then their symplectic Kodaira dimensions satisfy k(Y) < k(X).

Remark 3.6 (Surgery along even chains) Almost every aspect of the unchaining surgery we
discuss here applies likewise to surgeries along even number of chains, which correspond to

@ Springer



Unchaining surgery and topology of symplectic 4-manifolds Page 110f32 77

a similar relation in the mapping class group, where one replaces a product of Dehn twists
along an even number of chains with a single Dehn twist along the boundary of their tubular
neighborhood [22]. Although in this article we only discuss the odd case for brevity, the even
case similarly has many interesting applications, readily available in the existing literature:
For instance, even chain monodromy substitution was conclusively employed in Mustafa
Korkmaz and the first author’s reverse engineering of small positive factorizations in [12],
and the examples of genus-2 Lefschetz fibrations in [12] readily demonstrate that the analogue
of the unchaining surgery on even chains, too, can decrease the Kodaira dimension. The exotic
rational surfaces constructed in [12] and several symplectic Calabi—Yau homotopy K3 and
homotopy Enriques surfaces in [11] can all be seen to be obtained by such a surgery from a
symplectic surfaces of Kodaira dimension two. (By the inverse of the operation, one replaces
a reducible fiber component with a Stein subdomain corresponding to the even chain). See
also [2].

We note that one difference in the case of a surgery along an even chain is that the operation
now swaps a Stein subdomain with a symplectic filling given by the neighborhood of a (—1)-
curve, which is not a Stein filling of the contact structure on the boundary supported by the
obvious open book.

4 New symplectic pencils via unchaining

Here we will produce new symplectic Lefschetz pencils from a family of pencils on complex
surfaces of general type, by carefully applying the unchaining operation. As we keep track of
the associated monodromies, we will then look at their lifts to detect a sufficient number of
(—1)-sections to determine the Kodaira dimension of the new symplectic 4-manifolds, using
Theorem 2.3.

In this and the following sections, Figs.4—6 will be used repeatedly.

4.1 Positive factorizations for a family of holomorphic pencils

Letcy, ..., 041,61, 81 C EZ, be simple closed curves shown in Fig.4. We can obtain the

closed surface X, by capping BEf, by two disks. In this way we regard Eg as a subsurface
of X,. By Lemma 2.2 we have:

2g+2 .
(tC|tC2 e t02g+1) 812 = 1in Fg, and
2g+2 _ . 2
(fqtcz te tczg+1) 8 = Z(S]ttgi m Fg' (1)

These positive factorizations prescribe a Lefschetz fibration (Z,, f) and a pencil (Z,, f'),
respectively, where (Z,, f) is obtained from (Z;,, f') by blowing-up the two base points.

We easily calculate the Euler characteristic as e(Z;,) = 4g2% 4+ 2g + 4, and thus

e(Zy) =48> +2g +6.

Here the left-hand side of the relation (1) is obtained by lifting a braid monodromy of a
non-singular projective curve of degree 2(g + 1) in CPP? under the double branched covering
branched at 2g + 2 points (see [42, Corollary VIII.2.3]), so f” is a holomorphic map, which
is the composition of the double branched covering p : Z ;, — CP? of CP? branched along a
degree 2(g + 1) non-singular curve, and the linear projection from CP? to CPP!. It is easy to
see that Zé is simply-connected. Moreover, as shown in [31], the canonical bundle K x of the
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q C2g+1

Fig.4 Thecurvesa,a’,b,b' andc; (i =1,...,2g + 1) on =2

covering complex surface Z; is isomorphic to p* (H®©€=2)) and p*(ci(H)) € HZ(Z;) is
primitive, where H is the holomorphic line bundle over CP? defined by a hyperplane section.
In particular the signature a(Z;,) =—2(g+ 1)2 + 2, and thus

0(Zy) = —2(g +1)2,

and Zé, is spin if and only if g is even. Furthermore, ng (and its blow-up Z,) is a complex
surfaces of general type since H is very ample.

Itis decidedly easier to identify the Stein subdomains we would like to perform unchaining
surgeries along as subfactorizations in positive factorizations of Lefschetz pencils. Nonethe-
less, it is still often the case that the desired subfactorization (just like the desired handle
decomposition) only emerges after deliberate manipulations of the original monodromy. The
rest of this subsection is devoted precisely to this cause, with the sole aim of deriving a
suitable positive factorization of the boundary multi-twist in I'2, for each g > 3, which is
Hurwitz equivalent the factorization (1):

Proposition 4.1 For g > 3, lerd; = 1! 1! 12! (cj) and ej = 1e; tc; y1c; (c), for all

j=4,5...,2¢ + 1, where the curves cj, d;, ej are shown in Figs.4 and 5. Also set, for a
shorthand notation,
Dy = taytas -~ gy and Eg = tleygyy v lesley-

Then, the following equations hold in Fg:

4 2g-2
tsllag = (Ic,1cytcy) ngEg(ZC5tc6 e ‘tczgﬂ) § (g : odd)

4(g—1)+2 2 2g—2 .
tsltai = (teterley) (e=D+ (testester) DgEg(tC5l06 : "tczg+1) 8 (g : even)

which are Hurwitz equivalent to the positive factorizations in (1).

The proof of this proposition will require some preparation, through a sequence of technical
lemmas, Lemma 4.2, 4.3, and 4.4 we prove below.

Form =1,2,...,2¢—2,andl = m, m+ 1, m+2, the braid relators amount to following
Hurwitz equivalences:

lCl ' tCm+3 ZCm+2 tCerl tCm ~ tcm+3 tcm+2 tCm+I tCm : tClJrl ’ (2)
tL'm tCrrH»l [CerZ tcm+3 ! [CI ~ ZL'lJrl : tL'm tCm+1 [L'm+2 [Cm+3 . (3)

where, and hereon, ~ denotes Hurwitz equivalence of positive factorizations.
In all of the following lemmas, g > 3, and the curves cj, d; and e; are the ones in Figs. 4
and 5.

Lemmad.2 (fe,le, «ley,, ) ~ (e teyte) (testeyte) ) 8 2 taytas -+ tay pyy iN I‘g.
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Fig. 6 The curves xi, x;, zk. 2}, and yg, y;, which are contained in pairs of pants bounded by a, b, §; and
a', b, 8’1 on E’g in Fig. 4, respectively

Proof 1t is easy to check using the braid relators that

4
4 4
(Teytey +  Tegg )™ ™~ (e Teyles)” 1_[ les_ileg_i " leagin i 4)
i=1
4 2g-2
1_[%54 legi = leygqni ™ 1_[ leiyaleiyalep e (6))

i=1 i=1
Here, fork =1,2,...,2g — 2, we claim the following holds in FZ’:
2g—2
1_[ lejsslejpnleiile; ™ (tCk+2 tCk+1tCk)zgiliktdk+3 ldiys * " ldygy -
=k

The proof of the claim will be by induction on 2g — 1 — k. For k = 2g — 2, the conclusion
holds, since we have the equivalence

leggir “Teaglery 1 lergn ™ legglegg_1lerg—n * ldagyy -
Assume that the relation holds for k + 1 < 2g — 2. By (2), we have

2g-2

l_[ lepialeiyolei le;
ik
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2g—2

= loggsloalen lo l—[ leiyaleialeig le;
i=k+1

2g—1—

~ (k+1)
lepsalepsntor o - (epaslepiaterr) ldigldyys = ldogy

2g—1—(k+1)

~ (Tepyalepsr tey) legalopaleppi Loy Udgaldiys *  Tdygi

2g—1—(k+1
tck)g (k+1)

~ (feppales oo log Tex * dgys * IdigaTdiys *  Tdog gy »

which completes the proof of the claim.

The proof of the lemma then follows from k = 1 case of the claim, and the relations (4)
and (5).
Lemma 4.3 The following holds in F;:

2g-2 2g—2 2¢—2
(tcl tcz e t02g+1) 8 ~ t62g+1 e tes te4 (tcl tczlc‘3) 8 (tcs tC(, tee tC2g+1) 8 .

Proof Once again, it easily follows from the braid relators that

282
(teytey - '[62g+1)2g_2 ~ 1_[ lezgi-ilerg—ilergpimilergsoi (testeg - '[L‘2g+1)2g_2' (6)
i=1
Here, in F;, we claim that
2g—-2
l_[ lergaekcileremronmi leagrimilergrisni ™ Tergrn **lepraless (il o) 67175,
i=k

fork=1,2,...,2g —2. Once again we inducton 2g — 1 — k. For k = 2g — 2 we have

leggnlegg_rlerg “lengyn ™ leggir ~leggnlegg—leng-

Assume that the relation holds for k + 1 < 2g — 2. By (3), we have

2g-2
1_[ tCZg—2+k—i tCZg—lJrk—i t02g+k—i t02g+l+k—i
i=k
2g-2
= 1—[ Terg—gii—ilerg—ith—ilergin—ilesgrisn—i | * Terlersr TenaTenss
i=k+1
N 22—k
t62g+| o legysleta (tc'k+1 tCk+2[Ck+3) oo Lol
- 2¢-2—k
leygrr ***legyslerss * Tepleppr Lo lerss * (eplepgn Terga)
~ 2¢g—2—k
t52g+l w o lepysleris Terrs " Teplogpr fopyn (tCk Tepq tCk+2) .

Hence, the claim is proved.
The proof of the lemma then follows from the kX = 1 case of the claim, and the relation

(6).

Lemma 4.4 (foite,te)* ~ (tetestey)* in T2
' c3berbe crteales g

Proof Since t., ¢, ~ tcstc,, We have

testeytertesterter testerte testertey ™ Testertester Testestey teytestey teste, -
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Here, we have the following relations, again by the braid relators:
leyloyley “Bep ™ ey~ Teyleyless
eiteiter ™ tepy teitey, fori =1,2.
Using these relations, we have
(tesTertey)ley Ty Tey ey TeyTes (Tey Tey ey ) ™ TeyTeyles (Tey ey Tey) (Tey Les ey Ve Ly e
~leyleyle ([L'l leyle )(IC3 leyles )tc'l leyley
~ loyleyles (Teyteyles e Ty ey e TeyBes -
Therefore, we obtain (¢, tc, )4 ~ (tey e tc3)4.
We can now give our proof of the main result of this subsection:
Proof of Proposition 4.1 Applying Lemmas 4.2 and 4.3 to the odd chain relation (Lemma 2.2)
we get:

2g+2
[51[8/1 = (tC]tcz .. .tc2g+l) g+

~ (tcl Zcztc3)4(t63 tcztcl )zg_zDgEg (tcl tcztcg)zg_z(tqt% o 'lczg+1 )Zg—Z.
Here, note that2g —2 = 4k if g = 2k+1and2 g—2 = 4k+2if g = 2k+2. Since cy, 2, ¢3

are disjoint from cs, cg, . . ., C2¢+1, 01, 8; , by Hurwitz moves (including cyclic permutation)
and Lemma 4.4, we obtain the claim.

4.2 Families of new symplectic pencils via unchaining

The new positive factorizations for Lefschetz pencils on Zg we obtained in Proposition 4.1
allows us to apply unchaining as a monodromy substitution, in fact, multiple times. In this

way, we will derive new positive factorizations of the boundary multi-twist in Fé, which

can be further lifted to I'y' for varying m > 2 as we move forward. The main outcomes of
this subsection will be our construction of family of symplectic fibrations (X, (i), f¢(i)) and
pencils (Xé @), fé (1)) in Theorem 4.6.

Lemma4.5 Let a,a’ and b, b’ be the boundary components of regular neighborhoods of
citUcyUczand cs Ucg U ---Ucagy as in Fig. 4, respectively. For g > 3, the following
relations hold in F;:

tptitytl (teyteyte) 8T D E (g : odd)
15,1y = 7

thtitb/té/(tcltcztc3)4(3’1’i)+2(tc3t62tcl)zDgEg (g : even),
where 0 <i < gifgisoddand0 <i < g — 1if g iseven.
Proof Take the following chain relators:
C3 = (te, feytey) 1, 1!
Cag—3 o= (festeg -+ ley )4 21 1
Suppose g is even. By applying C5 ! substitutions i times and Cz_gt3 substitution once to

(te te, 153)4(3 =D and (Testeg "+ Ty g )23 =2 on the right-hand side of our relation in Proposi-
tion 4.1, respectively, we obtain

i i A(g—1-i)+2 2
toy1s) =1yl (e, Tey e ) @1=DF2 (1 1y 1) Dy Eg ity

@ Springer



77 Page 16 of 32 R. 1. Baykur et al.

Since a, a’, b, b’ are disjoint from each other, the elements t,, t,/, #, and #;y all commute.
Moreover, t5,ty is central in I'2, so we can get the claimed relation after conjugating both
sides with the inverse of 7,1;.

The proof for the case of odd g is very similar.

We will now show that there is a lift of the relations in Lemma 4.5 from "2 to FE(H']) as
a factorization of the boundary multi-twist. These lifts play a crucial role in our calculation
of the symplectic Kodaira dimension of the underlying manifolds.

Theorem 4.6 There are symplectic genus-g Lefschetz pencils (X;, (i), fé (@)), for each 0 <
i <gifgisodd and for 0 <i < g — 11if g is even, with monodromy factorizations in

Fﬁ(iﬂ) as follows:

lsp1 1oy 1oy tlefH Iyl

Lxpgr * txztxltxi’Jrl tr txétx; (tcltcztc3)4(g_l)DgEg (g : odd)
v wbola b L I (tey 1oy 1) 81 0Tty 1y 10 ) Dg Eg - (g - even)
where the curves xy, x,’{ (fork =1,2,...,n)on the surface Eg", n=1i+1,areasin Fig.6.

Blowing up all the base points of each (ng @@, fg’ (1)) yields symplectic Lefschetz fibrations
(Xg (@), f4(i)), whose monodromy factorizations in Iy are obtained from the above after
capping off all the boundary components.

Proof Let yy, y, (fork =1,2,...,n)and z, z; (fork = 1,2,...,n — 1) be the auxiliary
curves in Fig. 6, where n = i + 1. Note that y,_ = x,,, y, | = x,, and z, = 8,,2), = 3,,.
Set ty, = Iy, ty(r) =ty and tyg = tx(’] =15 = t(;(f) =idin an.

We claim that whenever we have a relation in Fg” of the form

tyty =14 0ty - T

where T is an element in Fg", then the following relation holds in F;" as well for k =
1,2,...,n:

Loplsg_y » - 18508y tz,’( t(S,’HI T fagfa’l

n—k n—k
=l lyglgoy ol ly oty by byl T.
In particular, we obtain the following relation
tBn"'t(Sl .[5;1..‘[8,] =txn"'tx1 .[X],l... xi . T.

in Fg" from y,—1 = x,,y,_; =X, and z, = 8,, 2, = 5,,.

We will prove the claim by induction on k. This relation holds for k = 1 from ¢, = 1,
ty, =1y, by = Iy = Iyy = gy = id and the assumption ./ = t{;”ltbt;,_ltb/ -Tin 2",
Assume that the relation holds for each 1 < k. Then, we multiply both sides of the above

. . / , S
relation by 7,15, s 15;('. Since the CUIVes Zit1, Sk Lt J), are disjoint from each other
and any curves appeared in the above relation, we obtain:

Ly T Ty - - 16p0sy - 1 - IZ;{+1t3]/< Iy, - Isyls
_ n—k—1 n—k—1
=1g " alaly o tadasy bl ly Tty tsty bty T
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By the lantern relations 1, taty,_ s, = t;.ty, Iy, and ty, larty [ty =1ty 1, we have

Lo~ g B By =~ 15505 tz; : tz,’(ﬂté,’( t&ifl T fagf(s;
o= (k+1 n—(k+1)
=10ty bttt 1 totytyty otgty - T.

Because z; is disjoint from a and z,’( is disjoint from x;, y;, a, a’, zx+1, 8;, we can remove Iz
and 7, from both sides of this relation. This concludes the proof of the claim.

By considering a subsurface of Eﬁ” of genus g with two boundary components z; and
z}, we get the positive factorization of 7, tél given in Lemma 4.5. The proof of the theorem
now follows from applying the above argument to this positive factorization. Corresponding
to it is the promised family of symplectic Lefschetz pencils (X ’g @), fé (i)). Capping all the

boundary components induces a well-known homomorphism I‘?H D, ¢» under which the

monodromy factorization of this pencil maps to a monodromy factorization of a symplectic
Lefschetz fibration (X, (i), fg(i)), which clearly realizes the blow-up of the pencil at all its
base points.

4.3 Topology of the symplectic 4-manifolds X, (i) and X’g(i)

Here we will investigate the topology of the symplectic manifolds X, (i) and therefore that

of X,(i)=X g, (i) #2(i + 1)CIP?, which are the total spaces of the new pencils and fibrations
we produced above. We will record all the results for X ;, (i), which then translate to those of
X, (i) through blow-ups.

Lemma4.7 ForQ <i < g when g isodd, and0 <i < g — 1 when g is even,
e(X’g(i)) =12(g —1i) and a(X’g(i)) = —8(g —1i).

Wheni < g — 1, X; (i) is simply-connected, whereas fori = g (when g is odd), we have
T (X)) ZZDL.

Proof The positive factorization t5, s, in Theorem 4.6, which gives rise to X, (i) and X ;, (i),is
obtained by applying C3-substitutions 7 times and C¢3-substitution once to the factorization
of t5, Is, in Proposition 4.1. (Note that X (0) # Z, since we still have the latter substitution
in effect.) It means that for g > 3, X, (i) is obtained by applying 3-unchaining i times and
(2g —3)-unchaining once to Z,, and then X ;, (i) is obtained by blowing-down X, (i) 2(i +1)-
times. The Euler characteristics and signature calculations then follow directly from those of
Z4 (Subsection 4.1), and Proposition 3.2.

To calculate 71 (X, (i)) we can invoke Proposition 3.3, or rely on the handle decomposition
induced by the global Lefschetz fibration to carry out a more direct calculation as follows:
Letay, by, ..., ag, bg be generators of (%) as shown in Fig. 3 (here we regard Z§ as a
subsurface of X,). Set yx = [ay, b1]- - - [ak, bx], which is represented by a separating curve,
and ag = by = agy1 = Yg+1 = Yo = Y-1 = 1 in m1(Zg). Here, by [x, y] we mean the

commutator xyx~!y~!. Note that the curves x; and x/ are isotopic to a and ' after filling all

boundary components of Zf,(iH) (see Fig. 6) and that the curves as in Figs.4 and 5 are used
repeatedly. Up to conjugation in 771 (%), we have:

—1;—1 /
cy=ay, cg=>by, c3=bia; b a2, a=a, a = yiaz,

doy = bray 'be_1bxsar—ob 'y, 2 <k < g,
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-1
dog+1 = ag | bibg—rak-1, 2 <k < g,
11
ex = Yk—1akbrbx—1a; v 3, 2 <k < g,
-1 -1
e%+1 = Yelk+1bebk—1a;_ v 5, 2<k < g

Recall that 771 (X) = m1(Xg) / N, where N is the subgroup of 771 (X,) normally generated
by the vanishing cycles of the Lefschetz fibration (X, (i), f;(i)), which are the Dehn twist
curves in its monodromy factorization. We then see that the collection of Dehn twist curves
in the factorization of kill all the generators through the above identities as follows. The
relations ay = d4 = 1 give bpby = 1, especially b1by = baoby = 1. By doj42 = dok4+1 = 1
for2 < k < g — 1, we obtain bk+1bk__11 = 1. Combining two relations, we have byby_1 = 1
for 2 < k < g, and therefore a,;llak,l = 1 from dp; | = 1. Moreover, we see thataz; = 1
for any j by ao = 1. The above argument means that 7r1(X) is generated by a; and b;. In
particular, since the relations a, = y1a; = 1 gives y; = 1, we see that a; commutes with b
and that the relations ex; = exr41 = 1 are not needed. Finally, by the relations a; = b; = 1,
we obtain 771 (Xg(i)) = 1fori =0,1,2,...,g — 1.

When g is odd, we no longer have the Dehn twist curves c1, ¢3, ¢3, and without the implied
relations ¢ = ¢ = ¢3 = 1 (yielding a; = by = a = 1, and in turn by = 1), the remaining
relations give 71 (X, () = (a1, b1 |1 =1)=Z S L.

Finally, armed with our deeper knowledge of the presence of —sufficiently many—
exceptional sections in each Lefschetz fibration (X, (i), f;(i)), we can utilize Theorem 2.3
to determine the symplectic Kodaira dimension of majority of these manifolds:

Theorem 4.8 (Symplectic Kodaira dimension of X(’g,(i) JLetg > 3,0 <i < gwhen gis
odd, and 0 < i < g — 1 when g is even. In all of the following cases, Xé (i) is a symplectic
4-manifold with Kodaira dimension

—o00 Ifi>g—2
k(X)) =1 0 i=g—2
1 i=g—3ori=g-—2n,

where n is any integer satisfying 2 < n < L%J. In all of the cases above withi < g — 2,
Xé (i) is spin, and thus minimal. Moreover, Xg,(g — 1) = E()and X;,(g) =~ 2 x T2 when
g is odd.

Proof First of all, let us observe that, since the Euler characteristic and signature satisfy
e=2—-2b + b;r +b, ando = 172+ — b, , our 7y calculations in Lemma 4.7 imply that
forg >3,andi =0,1,2,...,g — 2, bl(X;(i)) =0, b;(Xg(i)) =2(g—1i)—1and
by (Xé (@)) =10(g —i) — 1. So Xg, (i) (and X (i)) is neither a rational nor a ruled surface
wheni =0,1,2,....g —2.

With this observation, the cases of K(Xg,(i)) = —o0 and 0 are now immediate from
Theorem 2.3. It remains to prove that wheni = g —2nori = g — 3, K(X(/g (@) =1

By Lemma 5.6 in the next section, X 2:, (g —2n) is spin, and in particular, minimal. We can
further deduce from the Euler characteristic and signature calculations in Lemma 4.7 that
K)Z(é(g_zm = 2e(X,(g — 2n)) + 30 (X, (g — 2n)) = 0. Moreover, by (X, (g — 2n)) > 3
by the above calculation, so it cannot have Kodaira dimension zero by [38] (see also [6]). It
follows that K(X;,(g —2n)) = 1.

By the above calculations again, Xé (g — 3) is neither rational nor ruled, and since

b;r (X g, (g —3)) > 3, it cannot have Kodaira dimension zero either. Next, consider the corre-
sponding Lefschetz fibration (X, (g—3), f(g—3)) obtained by blowing up all the base points
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of the pencil in hand, so it has 2g — 4 exceptional sections. If there is any other exceptional
sphere in (X4 (g — 3), f,(g — 3)), disjoint from these 2¢g — 4 exceptional spheres, it would
necessarily intersect the fiber positively, at least once. So a maximal collection of disjoint
exceptional spheres would be intersecting the fiber at least 2g — 3 times. By [49][Theorem
5-12], this would imply that « (X¢(g — 3)) < 2, so the Kodaira dimension here would be 1.
On the other hand, if there is no such exceptional sphere, that is, if Xg, (g — 3) is minimal, by
Lemma 4.7, we have K)z(:g (e=3) = 2e(X:g, (g—3)+ 3(7(X(’g (g — 3)) = 0, which also implies
k(Xq(g—3) =1

For the diffeomorphism statements, recall that when x = —oo we either have a rational
or ruled surface in hand. So from our calculation of the topological invariants in Lemma 4.7,
we deduce that X}, (g — 1) = E(1), and X (g) is diffeomorphic to either §* x T2 or $* X T2
As we will see that X/g (g) is spin in Lemma 5.6), we conclude that X/g (g) = 8?2 x T2

Remark 4.9 For the values of i that are not covered in the theorem, we expect that x (X fg i) =
1, which would be immediate once these manifolds are seen to be minimal.

Among our families, the pencils (K, kg) := (X’g (g—2), fg’ (g —2)) are perhaps the most
interesting. It follows from our calculations of the topological invariants and by Freedman’s
theorem that each K, is a symplectic Calabi—Yau surface homeomorphic to the K3 surface.
Moreover, any symplectic homotopy K3 surface with trivial canonical class is known to have
only one Seiberg-Witten basic class [43], and so does K, in particular.

Corollary 4.10 (Pencils on symplectic Calabi—Yau homotopy K3 surfaces) For each g > 3,
there is a symplectic genus-g Lefschetz pencil (K, kg), where K 4 is a symplectic Calabi—Yau
homotopy K3 surface, and kg has the monodromy factorization:

Z(Sg—l cee l‘52t5lt5;71 oo [55[5’1
8 .
Lagy oIy txg, " 'lxi (e, 162t63) ldy *  ldygiyleggyr * " " ley (g : odd)
6 2 .
txg_l e txl txé’,, Tt txi (tcltczt63) (ZC3 tcztcl) td4 Tt td2g+] tezg+1 o te4 (g . even)

in 02872 S cidier xix! n Fi
inTg ,wherethecurvesSJ,Sj,cj,dj,ej,x/,xjareasmFlgs.4,5and6.

A natural question, which might be tractable through the explicit handle diagrams pre-
scribed by the factorizations above is:

Question 4.11 Are the symplectic Calabi-Yau homotopy K3 surfaces Kg, g > 3, all diffeo-
morphic to the standard K3 surface?

Remark 4.12 Observe that, we can view K to be obtained from the rational surface E(1) by
the natural inverse of the unchaining surgery. We speculate that when this inverse operation
can be performed in the complex category, it would correspond to contracting a (—2)-curve
(of genus (g —2) for these examples) and then smoothing the singularity. This leads to another
interesting question: what are the symplectic Calabi—Yau surfaces one can get by contracting
a symplectic (—2)-curve in a rational surface?

5 Pencils on spin 4-manifolds and Stipsicz’s conjecture

In this section, we will first extend a result of Stipsicz in [52], which gave a characterization
of a Lefschetz fibration to be a spin 4-manifold, to that of Lefschetz pencils (Theorem 5.1).
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These are given in terms of the Z,-homology classes of the vanishing cycles and exceptional
sections of the associated positive factorization. We will then address Stipsicz’s conjecture
on the existence of (—1)-sections in fiber sum indecomposable Lefschetz fibrations [51] by
providing counter-examples of any genus g > 2 (Theorem 5.4).

5.1 Spin structures on Lefschetz pencils

A Zp-valued function g : Hj (Ef,; Zn) — 7y is said to be a quadratic form with respect to the
intersection pairing if q(a + b) is equal to g (a) +q(b) + {a, b), forany a, b € H|(XF; Z,),
where (a, b), € Z, is the mod 2 intersection pairing. Here is our characterization of whether
the total space of a Lefschetz pencil is spin, in terms of the associated positive factorization:

Theorem 5.1 (Spin characterization from pencil monodromies) Let (X, f) be a genus-g
Lefschetz pencil with a monodromy factorization tc, -+ -tc, = ts, -+ -1s,. Then X admits a
spin structure if and only if there exists a quadratic form q : H{ (2 g s Zo) — 7y with respect

to the intersection pairing such that q(c;) = 1 for any i and q(8;) = 1 for some j.

Since we can obtain the total space of a Lefschetz pencil by attaching 4-handles to the
complement of (—1)-sections of a Lefschetz fibration, Theorem 5.1 will follow from the
following lemma:

Lemma5.2 Let (X, f) be a Lefschetz fibration, p > 1 be an integer, Sy, ...,S, C X
be disjoint sections of f and tc, ---t,, = tfll ---tgp" be the corresponding monodromy

factorization (note that a; € 7. is the self-intersection of S; ). For S = U; S;, the disjoint union
of Sis, the complement X\S admits a spin structure if and only if there exists a quadratic

form q : H{(2F; Zy) — Zy with respect to the intersection pairing, which satisfies:

(A) q(ci) =1 foranyi,
(B) ¢q(8;) = aj for some j.

The lemma above still holds for p = 0 provided that there exists a “homological dual” of a
regular fiber with even self-intersection. See [52] for details.

Proof Define the sets S; and S, as follows:

e S is the set of isomorphism classes of spin structures on Zg .
e 5 is the set of quadratic forms on H| (=P Z») with respect to the intersection pairing.

Note that both of the sets S; and S admit free and effective actions of H!(Z2: Z,). In the
same way as that in [33] (in which the author dealt with the spin structures on X,), one can
define amap Q : S; — S, as follows: for a spin structure s of X g , define a function Q(s)
so that it takes the value 0 on ¢ € H;(X?; Z,) if the restriction of s on a circle representing
¢ can be extended to a spin structure over a 2-manifold and takes the value 1 otherwise. One
can further show that the map Q is equivariant with respect to the action of H'(X%: Z»), in
particular Q is bijective. (See [33] for details.)

Following the definition of spin structures given in [52], one can easily deduce that there
exists a one-to-one correspondence between S; and the set of isomorphism classes of spin
structures on D2 x g . In what follows, we will identify these two sets by this correspondence.

The complement X \ S can be decomposed as follows:

X\S=D>x2f U u---uh,)UD>x %t ®)
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Fig.7 The inner circles are the
boundary components near § ;,
while the outer circles are parallel
to 0A

(a) The initial and the final (b) As the time parameter

configuration. increases, B rotates along the
meridian circle and the bound-
ary component also rotates in
the opposite way.

where A; is a 2-handle attached along the vanishing cycle ¢;. We denote the subset D x % é’f U
(hyu---Uhy,) C X\S by X'. As is shown in the proof of [52, Theorem 1.1], the condition
(A) in Lemma 5.2 holds for a quadratic form if and only if the associated spin structure on
Drx ¥ f; can be extended to that on X’. The latter D? x T g in the decomposition (8) can be
regarded as the union of a 2-handle D? x B, where B is a small ball close to the boundary
component near §;, and 2g + p — 1 3-handles. Thus, X \ S admits a spin structure if and
only if there exists a spin structure on X’ which can be extended to that on X’ U (D? x B).

In what follows, we identify a surface Eg with a fiber in dX’. Let A be an annulus
neighborhood of the boundary component near §; which contains B and is away from any
of the vanishing cycles ¢y, ..., ¢,. We take a parallel transport self-diffeomorphism ¢ of X g,’
along the boundary of f(X’) so that it preserves 0% g and A point-wise. We can then obtain
the following diffeomorphism:

X' = ([0, 1] x Z)/(1,x) ~ (0, p(x)).

By the assumption ¢ is isotopic (relative to A) to the a;-th power of the Dehn twist diffeo-
morphism along a simple closed curve near d A. The latter diffeomorphism is further isotopic
to the identity via the isotopy (supported on a neighborhood of A) described in Fig.7.

As the figure shows, the isotopy makes B rotate around the boundary component a; times
keeping the inward tangent vector at the center of B inward, and also makes the boundary
component —a; times. We denote the concatenation of the two isotopies by ¢; (¢ € [0, 1]).
Identifying aD% x Zg with ([0, 1] x Eg)/(l, x) ~ (0, x), we can explicitly give an attaching
map of D? x T} to X' as follows:

([0, 11 =) /(1, %) ~ (0, %) 3 (1, %) = (1, ¢ (x)) € ([0, 1] x Z¢)/(1, %) ~ (0, 9(x)).

We denote this attaching map by ®. The attaching map of the 2-handle D? x B is the restriction
® |;p2 - For a given Z,-valued quadratic function g on Hy (% f; ; Z), the restriction of the
associated spin structure on the image ® (3 D? x B) bounds a spin 2-manifold if ¢ (a i8j)=0
and does not bound otherwise. Moreover, it is easy to deduce from the definition of & that the
pull-back of a spin structure s on ®(d D> x B) by ® |, 2, 5 bounds a spin 2-manifold if and
only if either a; is odd and s does not bound a spin 2-manifold, or a; is even and s bounds a
spin 2-manifold. The latter condition is equivalent to the condition (B) in Lemma 5.2.

Remark 5.3 The proof of Lemma 5.2 also shows that for a quadratic form g with the condition
(A), the condition (B) holds if and only if ¢(§;) = a; for any j. Furthermore, if we can find
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a quadratic form with the condition (A) and one of the section Si, ..., S, has even self-
intersection, the condition (B) is automatically satisfied. Indeed, g induces a quadratic form
on Hi(Xg; Z) and it can be extended to that on H, (X! Z) so that the values of §;’s are
all zero. (An alternative way to deduce this observation is to find a spin structure on X by
applying Stipsicz’s result to the induced quadratic form on H;(Xg; Z»).)

5.2 Stipsicz’s conjecture on exceptional sections

We will now prove that:

Theorem 5.4 (Counter-examples to Stipsicz’s conjecture) For any g > 3, there exists a
genus-g fiber-sum indecomposable Lefschetz fibration without any exceptional sections.

Unlike the handful of earlier counter-examples with g = 2, 3 [3, 11, 48], these examples will
have Kodaira dimension 1 when g > 4.

We will describe these counter-examples with explicit monodromy factorizations. The
spin characterization in Theorem 5.1 will play a vital role here to pin down the exact number
of exceptional spheres in the total spaces.

Letcy, ..., co041,0a, b, a,b C Eg be the simple closed curves shown in Fig.4. As we
did in the proof of Theorem 4.6, for any n > 1 we regard E; as a subsurface of Eé” with two
boundary components 71, z’l so that the curves a, b, a’, b’ are embedded in Eg" as shown
in Fig. 6. In what follows, we use symbols representing simple closed curves in Eg” (such
as ¢j, a, b) to represent homology classes in H (E;”; Z») represented by the corresponding
curves.

Lemma5.5 Forany g > 3 andn > 1 such that g + n is odd, there exists a quadratic form
q: H (E;"; Zo) — Zy with respect to the intersection pairing which satisfies

L. g(c1) = =qlcg+1) = 1,

2. q(dy) = =q(drgy1) =qles) = - =q(ezgs1) =1,

3.q(x) = =q) =q(x)) =---=¢qx,) =1, and

4. q@B) =--=q@)=q@)=---=¢q@6,)=1

Proof Since the elements ci, ..., 2,81, ...,84,68), ..., 8, form a basis of H1(2§”; Zn),

there exists a quadratic form ¢ : Hl(Egn; Zy) — 7o which assigns the value 1 to all the
elements in the basis. The following equalities (in H (282”; 7)) can be verified easily:
g1 =Cl1+C3+ -+ 1+01 +8+ -+,
dj=ej=cj3+cj2+cj-1+¢,
xi=ci+e3+8, xi=ci+c+46],
=81+ 48 +8+- 43,

Using these equalities, we can calculate values of g as follows:

g n
qcagr) =Y qlcaic)+ Y qB)=g+n=1,
i=1 j=1

3
qdj)=qle)) =Y qlc;—i)+ Y (ejoicju),=4+3=1,
i=0 0<i<k<3
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q(xi) = qlc)) +q(c3) +q@) =3 =1, q(x}) = q(c) +q(c3) +q() =3 =1,

gD =Y a6+ q@)=2n—1=1.

i=1 =2

We can thus conclude that the form ¢ satisfies the desired conditions.

Let Xg, (i) be the symplectic genus-g Lefschetz pencil with 2(i + 1) base points we
constructed in Sect.4, which has the following monodromy factorization:

Igigy 18 t&fﬂ Y

ettt et 1) YT D Ey (g :0dd),
SR S NI (teytertey) 8D ™2 (tes 1oy 10, ) Dg Eg (g : even).

Lemma 5.6 The manifold X;, (i) is spin if and only if g + i is even.

Proof Since the signature of X;, (i) is equal to —8(g — i) (see Lemma 4.7), X’g (i) is not
spin if g 4 i is odd. On the other hand, when g + i is even, the quadratic form obtained in
Lemma 5.5 above satisfies the necessary conditions in Theorem 5.1, so X ;7 (i) is spin in this
case.

We are now ready to prove the main result of this subsection:

Proof of Theorem 5.4 Suppose that g is even. The manifold X ;, (0) is spin by Lemma 5.6,
and in particular minimal. Furthermore, we can deduce from Theorem 4.8 that the Kodaira
dimension of Xz(0) = X (’g (0)£2CP? is equal to 1. The monodromy factorization of the
Lefschetz fibration on X (0) can be changed by Hurwitz moves as follows:

4g—2 2
txltxi (tqtczlcg:) § (tC3tcgtC1) DgEg

~h by 2 1 eplestetes (e e 1) ™ (teyteste) ) Dg Eg.
The curves xi, x{, 81, 8; and two disjoint curves parallel to ¢; bound a sphere with six
boundary components. Thus, we can apply the braiding lantern substitution ([11, Lemma
5.1]) to the underlined part above. This substitution replaces two disjoint exceptional sections
with an exceptional bisection. Furthermore, by [18, Theorem 3.1]), this amounts to a rational
blowdown of a symplectic (—4)-sphere which can be viewed as the union of the four holed
sphere on the fiber and the four disjoint vanishing cycles in the lantern configuration, whereas
by [27, Lemma 5.1] (also see [11, Proposition 6.1]), such a rational blowdown has the same
effect as regular blowdown whenever this (—4)-sphere intersects an exceptional sphere once,
which is the case here. (Either one of the exceptional spheres corresponding to the two bound-
ary twists in the braiding lantern configuration hits the (—4)-sphere once.) So the resulting
symplectic 4-manifold is X ;: (0)#CP2. Since X 2, (0) is minimal and has Kodaira dimension 1
(especially not rational nor ruled), the homology class represented by the bisection produced
by the braiding lantern substitution above is the only class in H> (X é (0)#CP?; Z) (up to sign)
represented by a (—1)-sphere (see [36, Corollary 3]), in particular there is no (—1)-spheres
intersecting a fiber of the Lefschetz fibration on X ; (0)4CP? at one point transversely. Thus,
the Lefschetz fibration we obtained after the braiding lantern substitution cannot admit any
exceptional sections.
Next, assume g is odd. Once again, the manifold X ;,(1) is spin by Lemma 5.6, and
therefore minimal. Furthermore, it follows from Theorem 4.8 that « (X¢(1)) = 1if g > 5,
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and «(X3(1)) = 0. The manifold X, (1) admits a Lefschetz fibration with the following
monodromy factorization:

4g—4
t52’51[8§[8; = tx2t)f1tx£tx{ (Te Tes Iey) § DyEg

~ bl 12 by L 1, bt e i e T e 1) D E,.
As we did above, we can apply the braiding lantern substitution at the underlined parts.
The resulting Lefschetz fibration has two exceptional bisections, and its total space is
X ; (1)#2CP?, by the same arguments as above. Since X g (1) is minimal and has non-negative
Kodaira dimension (especially not rational nor ruled), one can again deduce from [36, Corol-
lary 3] that the homology classes represented by the two bisections (produced by the braiding
lantern substitutions) are the only classes (up to sign) represented by exceptional spheres.
Thus, the Lefschetz fibration on X ;(1)112@2 cannot admit any exceptional sections.
Finally, by Usher’s theorem on minimality of symplectic fiber sums [54, Corollary 1.2]
(also see [7, Theorem 1]) the presence of exceptional spheres in total spaces of all the Lef-
schetz fibrations above imply that none can be a fiber sum of nontrivial Lefschetz fibrations.

Remark 5.7 There are many more counter-examples one can produce using similar argu-
ments and ingredients. Note that the product z,,_, - - - ty, Ly, is Hurwitz equivalent to
Tl oty We can change the product

1

(teytesles )“(‘g_l‘)_[(tc3 te, tcl)l (where [ = 0 or 2)
to tfl(g_’)té(g =9 W via Hurwitz moves, where W is some product of Dehn twists. Thus, as we
did in the proof of Theorem 5.4, we can apply braiding lantern substitution to the Lefschetz
fibration on X, (i) obtained in Sect.4 so that the resulting Lefschetz fibration has i + 1
exceptional bisections, when i + 1 is less than or equal to 4(g — 7). If g + i is even and
i < g —2, then we can further prove that the resulting fibration cannot admit any exceptional
sections. Hence, we record that at least for any g < 9, there exists a genus-g Lefschetz
fibration (X, f), which is a counter-example to the Stipsicz conjecture, where « (X) = 0.

6 Further applications

In this last section, we will show that by combining unchaining surgery with rational blow-
downs, we can produce further interesting examples. The two applications we present here,
one regarding the topology of symplectic 4-manifolds and one regarding that of pencils, will
utilize the Lefschetz pencils X ; (i) we constructed using unchaining.

6.1 Exotic 4-manifolds with b* = 3 via genus-3 fibrations

In this subsection we will prove the following theorem:

Theorem 6.1 There are genus-3 Lefschetz fibrations (X j, f}), for j =0, 1,2, 3, where each
X j is aminimal symplectic 4-manifold homeomorphic but not diffeomorphic to 3 CP?4 (19—
j) CP?, and each f i+1 has a monodromy factorization obtained from that of f; by a lantern
substitution.

We will need the following lemma in our proof:
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Fig.8 The curves in a genus-3
surface

Lemma 6.2 Let the curves cj, a,a’ be as in Figs.4 and 5. One can perform T consecutive

lantern substitutions within the product tgts, tc61 133 1035 tc67 in I'3, up to Hurwitz moves.

Proof Let x,x',y,y',z,7/,w,s,s’,v be the curves given in X3 as in Fig.8. Note that
x,x",v,y, 2,7, w are non-separating and s, s’, v are separating. We have the following
lantern relators Ly, L, Ly, L} and L3:

T / 11,11
Ly = teytytyty 1015 1, LYy = testytut 17 100
1

et Ly = tytytyt 't 0]

_ -1
Lz_tatytzlcl 105 c3 “c7 ? c1 ‘cs ‘ez e

Ly = tytytyty 't e 1"

For Wi and W, any two products of Dehn twists in I'g, we will write W i) W, when
W, is obtained by applying a lantern substitution to Wy using the lantern relator L. Since

202083 1248 ~ 12 33 1%t tatate, - tarte e ta,

a‘a'fc1*c3tester c1’cz‘ester
applying L1-substitutions gives

33

ot baten < yrton foi by 5 15330 1 ttater - fontst
cilesleste; terla'taler ~ la'leylerla crla'laley = leglsly .

cpe3tester
Moreover, because

4.3 .3 4 3
T B lotey  Tegla taley ~ Teytsty ~ (tegtesteste)” < teyteste = teytgrtate, - Lsty,

by applying Lj-substitutions twice and L’ -substitution once we obtain

(tC7 tC5 ZC3 tcl )3 : tC1ZC3 tC7 : ZC7 ta/tatm sty
L2,L2,L/2 2
(tatytz) (ta’ty’tz/) “leplester < legta'tale; ~ Tglx.
We can further apply L} and L/-substitutions as follows:
2
(tatytz) (ta’ty’tz’) “leyleyley tepla'taley « Isty
L) 5
—> (talyt) (tarty 1) - Te Teyley = Testyrtyr - Iyl
Ly
> (tatyt) (b tyt)* - oty - Loty
Here, note that #,t,t, ~ tyt,t,, which follows from the lantern relation #,t,t, = t¢ teytestcs,

as a is disjoint from c1, c3, cs, ¢7. Therefore, we may further rewrite the product above as
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(tatyt:)* (ttyt)* - tyte - ity
~(tyt) 2 (tartyr 1) - 1285ty - ity

Finally, by applying L3 we obtain

L
(tyt)? (tartyt)? - 215ty - tety —> (1) 2 (tarty 1) -ttty - Lty

This finishes the proof.

The proof of the theorem will now follow from applying the above lemma to the positive
factorization for the Lefschetz fibration X3(1) we obtained by unchaining.

Proof of Theorem 6.1 Let (X, f) be the genus-3 Lefschetz fibration (X3(1), f3(1)) on 4-fold
blow-up of a symplectic Calabi—Yau homotopy K3-surface, whose monodromy is:

Isy I8, 51ty = Ixylx tyr ) (tc1 Iey tc3)8td4 Ldsldgldterteglestey -
270 2%

We will show that this monodromy factorization is Hurwitz equivalent to a positive factor-
ization which contains the product in Lemma 6.2.
We can check at once that 74,14 14414, (cit4) = ¢; fori =1, 2, 3. This gives

Teyleytey * tdytdstdgtd, ™ tdytdstdetdy * Testegtes-
Therefore, in I'3, the following relation holds
1= 1242, (te, tey ey ) Sty s g s Tor Teg Fes ey )
~ 122ty ey o) g tas g tay (tes egley) e egles ey
Here, using the braid relators and the disjointness of ¢; and ¢3 we obtain

Teplealey  leylepley = Leyleyles ~ Tepleales ™ Ty = Leyleyles ~ Tepley - Teyleyles * Tepleales
N tey - Teteytey - Tey Loy Tostey Ty - TeyTeyles.

That is, we have

4 . (42
(te teytes) (tqtcth) [cltqtzL 4&—33(62) [L—lth—32(L2) tL3 ()"

Similarly, we get

4 243
(festegley)” ~ (tc‘st%’q) ~ it (%)ltc2 2 (cg)t35t§7 (05)t05 C7

Since ¢5 and ¢7 are disjoint from a, d’, c1, ¢z, ¢3, the above arguments, the relation (9) and
a cyclic permutation then give

_42.2.6.3.3.6
l= Lty le Teylegte, o 1 f(z (c2) lq ’(-; (c2) l Ye2) “ldytastdstar - T2,

where T, = t’ts(cﬁ)th 2 (c(,)tt[ it (o) 1,3 t?7(e7)ttL ff7(€6)tl(5h6 (65)1} 18 (ea)- As we applied in
the proof of Lemma 6 2 we can apply 7 consecutive Lantern substltutlons to the mon-
odromy of (X, f), which yield new symplectic genus-3 Lefschetz fibrations (X, fi), for
k =1,...7, where X} is obtained from X by rationally blowing-down k symplectic (—4)-
spheres. (Note that we apply the 7 Lantern substitutions in the same order as we did in the
proof of Lemma 6.2.)

Let us first determine the homeomorphism type of each Xy . From the algebraic topological
invariants of (X, f) = (X3(1), f3(1)) we calculated earlier, we deduce that e(Xy) = 28 — k
and o (X;) = —20+k. Moreover, we claim that 71 (X;) = 1 foreachk = 1,2, ..., 7. When
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1 <k <5, we see that the monodromy of f; contains Dehn twists 4, , tus, tdg, tdys tey > ey s ta-
These Dehn twist curves alone give enough relations to kill the fundamental group as in
the proof of Theorem 4.7. If k = 6,7, the monodromy of f; contains the Dehn twists
ol Ty 2 o o U T T Sinee X = aray = 1, 151 (e) = by'ay'braihy! = 1 and

a’ = [a1, bi]az, we again have 71 (X ;) = 1. None of these manifolds have even intersection
forms, because they all contain reducible fibers, which always yield surfaces of odd self-
intersection. (And none other than X4 has signature divisible by 16 anyway.) Hence, by
Freedman’s theorem, we see that each X is homeomorphic to 3CP2£(23 — k)CP2.

On the other hand, the standard 4-manifolds 3CP2£(23 — k)CP? do not admit symplectic
structures: any 4-manifold that is a smooth connected sum of two 4-manifolds with b;r >0
has vanishing Seiberg-Witten invariants [56], whereas by Taubes, any symplectic 4-manifold
with ™ > 0 has non-trivial Seiberg-Witten invariants [53]. So, none of the X} is diffeomor-
phic to 3 CP%# (23 — k) CP2.

The more interesting cases will be fork = 4,5, 6, 7. (Whenk < 3, C% (Xy) =—44+k <0,
whereas by Taubes’ seminal work, a minimal symplectic 4-manifold with b;‘ > ( always
has c% > 0.) The rest of our proof is devoted to showing that each X, for k = 4,5,6,7, is
indeed minimal. To do so, we will need to go over our construction one more time, this time
paying attention to how exceptional spheres intersect the spheres cobounded by the 4 lantern
curves in each lantern substitution. (After a small perturbation, each one of these spheres can
be contained in a singular fiber with multiple nodes, and it is this symplectic (—4)-sphere one
rationally blowdowns in the course of the lantern substitution.) Below we will simply refer
to these as lantern spheres, and denote them using the corresponding lantern substitutions
(while pointing out any potential ambiguities).

The initial genus-3 Lefschetz fibration (X, f) we started with, where X is the 4-fold
blow-up of a symplectic Calabi—Yau homotopy K3 surface we will simply denote by X’,
had a total of 4 exceptional sections S, Sz, S i, Sé, which hit the fibers at the marked points
obtained by collapsing the boundary components 81, 82, 81, 85 in Fig. 6. The reader may want
to refer to this figure and Fig.4 for the rest of our discussion, where the curves xp, xo and
x{, x} are the lifts of @ and a’ in our lantern substitutions.

The first lantern sphere L; we rationally blowdown can be seen to intersect once with
S, Sé. Soby [27, Lemma 5.1], X is still diffeomorphic to 3-fold blow-up of X’. Moreover, by
[11, Lemma 6.1], the substitution, when the marked points are taken into account, correspond
to a braiding lantern substitution, which turns the pair of exceptional sections the lantern
sphere intersects to an exceptional bisection of the resulting fibration. Denote this exceptional
bisection by S»,/. Let us denote the next three lantern spheres, two of which correspond to
the lantern substitution L, while one of which corresponds to L/Z, as Ly(1), L’2(2) and L (3)
in the order they will be blown down.

The next lantern sphere L (1) intersects the exceptional spheres S and S, only once,
and therefore we once again conclude that X5 is diffeomorphic to a twice blow-up of X',
whereas the spheres S; and S>»» now descend to an exceptional triple-section Sy,o/. Similarly,
we can verify that X3 is diffeomorphic to a single blow-up of X’ and the exceptional sphere,
denoted by S;i20/, becomes a quadruple-section. Now, the lantern sphere L;(3) intersects
S1122 algebraically and geometrically twice. So by [13, Lemma 1.1], the symplectic 4-
manifold X4 obtained by rationally blowing down L>(3) in X3 is minimal, and moreover,
the symplectic 4-manifolds X5, X¢, X7 we obtain by further rational blowdowns along the
(—4)-spheres remain to be minimal. Lastly, for the statement of the theorem, we only record
the minimal cases (when k = 4, 5, 6, 7) by resetting the index of X ; as j =k — 4.
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Remark 6.3 With all the additional information we have on the exceptional (multi)sections
of the Lefschetz fibrations (X, fx), we can easily calculate the Seiberg-Witten invariants
of Xy, and moreover, represent their basic classes as multisections. The symplectic Calabi—
Yau surface X’ has trivial canonical class, which is its only Seiberg-Witten basic class [43].
Therefore the Seiberg-Witten invariants of each X = X'#(4 — k)CP?, fork = 0, 1,2, 3,
are determined by the blow-up formula [56], and the 24k pasic classes of Xg := X, X1, X2
and X3 are all represented by the collection of exceptional (multi)sections {57, S{, S, Sé},
{S1, Sr, Séz,}, {S1, S122/}, and {S1122/}, respectively, where each sphere is taken with either
orientation. In particular, X3 = X’ #CP? has only two basic classes: £E, where E is rep-
resented by S;1/22/. In turn, by the Seiberg-Witten formula for rational blowdown [24], the
only basic class that descends from X3 to X4 is E, since it intersects the (—4)-sphere of
the rational blowdown exactly 4 times, and the class it descends to, up to sign, is the only
basic class of X4. Using the machinery of [11], we can conclude that this new class is rep-
resented by a quadruple-section (represented by the same 4 marked points on the fiber),
which is now a torus Rg of self-intersection 0. Iterating the same arguments, we see that
each X4, for j =0, 1, 2, 3, has only one basic class up to sign, which is represented by a
quadruple-section R; of genus j, with R? = j. By Taubes, the multisection R j represents
the symplectic canonical class (and its Seiberg-Witten value is +1).

6.2 Inequivalent pencils with explicit monodromies

Here we will construct inequivalent relatively minimal genus-g Lefschetz fibrations for each
g > 3, on a family of symplectic 4-manifolds of Kodaira dimension —oo, 0 and 1, and
especially on rational surfaces.

Theorem 6.4 Forany g >3 andi =0,1,2,..., g§— 1, there are pairs of inequivalent rela-
tively minimal genus-g Lefschetz pencils (Y, (i), hi,(i ), j = 1,2, and inequivalent Lefschetz
fibrations on their blow-ups. For any g > 3, there are pairs of inequivalent relatively minimal
genus-g Lefschetz pencils on once blown-up elliptic surface E(1) 4 CP? = CP? 410 CP?,
with different number of reducible fibers.

These inequivalent pencils and fibrations will be produced following the recipe given in
[11], and will be distinguished by the number of their reducible fibers. Therefore they are
even inequivalent up to fibered Luttinger surgeries (see [5, 8, 9]), which never change the
topological type of fibers.

We will need the following lemma:

Lemma 6.5 Ler x| be the simple closed curve on E;OH) as in Fig.9, and let D;, =
Idgtdy ** * Tdy o1 and Eé = eyt Legleg. FOT eachi = 0,1,2,...,g — 1, the follow-
ing positive factorization is Hurwitz equivalent to the monodromy factorization of the pencil
(X(’g @), fg’(i)) given in Theorem 4.6:

when g is odd,

Igipr = Il Is) oo sy Ly
2

4(g—1—i)+1 2 ! !
= 1_[ txkth < leyley (Tey By tey) (g=1-D) (Tey ey tes) Ly ldylds Ty DgEg “les t Tesley
k=i+2
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Fig.9 The curve x{" on 2§(i+1)

0 0/ d; 0l O/ 0!

Fig. 10 The curves x, y, z on E;<i+l)

when g is even,

Isipy oIyl by - Ly Ly
2
4(g—1—i)+1 2 ! !
= l_[ Lyplyy - Loy les (Teyteytes) (e=1=0+ (tezleyte))” - Ty Ty ldsty) - DgEg “los  lesley-
k=i+2

Proof Let us prove the case of even g, and leave the odd case to the reader, the proof of which
is very similar.
Note that since cy, ¢z, ¢3 are disjoint from x1, ..., x; and x{, R xi’, and xy is disjoint

from x;. for any ¢ and j, we have the following relation:

Lyt Iply lxz{+l : txé tx{ ([cl Ie, tc3)4(g_1_l)+2 (Zc3 Ieyle )2Dg Eg

2
~ ey l_[ Luly) * leyles (tc'1tc‘2t03)4(g_l_l)+l(t03tcztc'1)2 "Ity Dy Eg
k=i+1
2
~ Tty - teates ey 1 1) 7 04 ey 16,16 - 1 1y - Dy Eg -1,
k=i+1

where Dy = tatys -+ tay,,, and Eg =ty - - leste,. Here, it is easy to check that x| =
(td4td5)_1 (x{) and ¢5 = (feste,)(c1). This gives

Ixj + ldylds ™~ Tdylds Iy
tostey * tey ™ tes - teste,.

This completes the proof.
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Fig.11 The curves x’, y’, 7’ on Z;UH)

Proof of Theorem 6.4 We will run our constructions foranyi =0, 1,2,..., g — 1.
It is easy to see that, after Hurwitz moves, the monodromy factorization of (X L, @), fe ()

yields a positive factorization with the subword tczl ty, t)’q. Note that x1, x{, 1, 8] and two
disjoint curves parallel to c; bound a sphere with six boundary components. Applying the
lantern substitution to this subword tgl I, 1y replaces it with the new subword 7,1, in the
factorization, where x, y, z are the curves as in Fig. 10. Akin to the proof of Theorem 5.4,
this then gives a genus-g Lefschetz pencil (Y; (i), h;; ()). This pencil h;; (i) has one reducible
fiber corresponding to the Dehn twist along the separating curve y.

On the other hand, if we take the Hurwitz equivalent monodromy factorization of
(Xg, (i), f¢(i)) given in Lemma 6.5, it is again easy to see that, after further Hurwitz moves,
we get a positive factorization with the subword #, #y, tytes. Note that 1, x1, x{, ¢s, 81, &}
bound a sphere with six boundary components. When we apply a braiding lantern substitution
along this subword #, 1, Lyrles, We replace it with the new subword z,/¢,/¢,/ in the factoriza-
tion, where x’, y’, 7’ are the nonseparating curves in Fig. 11. This gives a genus-g Lefschetz
pencil (Yg2 (i), hé(z’)) where as well, where all singular fibers of hg (i) are irreducible.

By the arguments we employed in earlier proofs, since the lantern spheres of for these
substitutions intersect an exceptional section once, we have Y, g’ iH=EX g, (i )#CP2, for each

Jj =1, 2. Therefore, the two pencils hz]z (i) can be viewed on the same symplectic 4-manifold,
but have different number of reducible fibers (one versus none), which means they are not
equivalent.

The examples in the last part of the theorem are derived in the particular case when
i =g—1,where Y, (g — 1) = X} (g — )CP?, and X}, (g — 1) = E(1) by Theorem 4.7.
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