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Abstract
We study a symplectic surgery operation we call unchaining, which effectively reduces the
second Betti number and the symplectic Kodaira dimension at the same time. Using unchain-
ing, we give novel constructions of symplectic Calabi–Yau surfaces from complex surfaces
of general type and completely resolve a conjecture of Stipsicz on the existence of excep-
tional sections in Lefschetz fibrations. Combining the unchaining surgery with others, which
all correspond to certain monodromy substitutions for Lefschetz pencils, we provide further
applications, such as new constructions of exotic symplectic 4-manifolds, and inequivalent
pencils of the same genera and the same number of base points on families of symplectic
4-manifolds. Meanwhile, we present a handy criterion for determining from the monodromy
of a pencil whether its total space is spin or not.
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1 Introduction

Over the past couple of decades, many new surgeries, such as rational blowdown, generalized
fiber sum, knot surgery, and Luttinger surgery, have been introduced to and successfully
employed in the study of symplectic 4-manifolds. These symplectic surgeries have typically
emerged as more flexible versions of complex algebraic operations or more rigid versions of
topological ones. A diverse family of symplectic surgeries, many of which seem to have very
little history in the complex algebraic or topological worlds, come from excising a compact
Stein subdomain and replacing it with a newone,which too induces the same contact structure
on its convex boundary. In this article we undertake an extensive study of a symplectic surgery
of this kind, which we call unchaining surgery, and demonstrate several interesting features
and applications of this surgery.

Since Lefschetz pencils and allowable Lefschetz fibrations are topological counterparts of
closed symplectic 4-manifolds and compact Stein domains [1, 15, 28, 40], these operations
have natural interpretations in the framework of positive factorizations of Dehn twists in the
mapping class group of fibers. Swapping Stein subdomains locally correspond to swapping
positive factorizations of the monodromy of a supporting open book of the boundary contact
3-manifold. Moreover, whenever the Stein subdomain, as a positive allowable Lefschetz
fibration, embeds into a Lefschetz pencil on the closed symplectic 4-manifold, swapping the
Stein subdomains has a global interpretation: it corresponds to a monodromy substitution in
the global monodromy of the pencil. The unchaining surgery takes its name in this context
from an important relation in the mapping class group of a surface: the chain relation, which
exchanges a product of Dehn twists along a chain of an odd number of curves on a compact
(sub)surface, with a pair of Dehn twists along the two boundary components of the tubular
neighborhood of this chain; see Lemma 2.2. (And the analogous surgery corresponding to
the chain relation for an even number of chains shares very similar features; see Remark 3.6.)

In all the exampleswe produce in this article, wewill perform unchaining from the vantage
point of substitutions in positive factorizations, and aim to preserve the global Lefschetz
fibration structures, so we can determine the Kodaira dimension of the resulting symplectic
4-manifolds—which is a notion thatmeasures the positivity of the symplectic canonical class,
extended from the case of compact complex surfaces, and is a diffeomorphism invariant [37].
Wewill read off the symplecticKodaira dimension using the additional datawe derive on their
exceptional multisections (symplectic (−1)-spheres which intersect all the fibers positively);
see Theorem 2.3 and [11, 49]. Precise definitions and background results for all of the above
are given in Sects. 2 and 3.

Our first application concerns the topology of symplectic Calabi–Yau surfaces, which
constitute symplectic 4-manifolds of Kodaira dimension zero, up to finite covers. Recall that
a symplectic Calabi–Yau surface (SCY) is a symplectic 4-manifold with a trivial canonical
class, similar to a complex Calabi–Yau surface. Up to date, the only known examples of
symplectic Calabi–Yau surfaces are torus bundles over tori and complex K3 surfaces [41],
and any symplectic Calabi–Yau surface is known to necessarily have the rational homology
type of these manifolds [6, 38]. While Simon Donaldson proposes in [16] that an analysis
of monodromies of pencils on SCYs may shed light on their geometry and topology, much
less is known about Lefschetz pencils on SCYs. In Sect. 4 we construct, for each g ≥ 3,
a variety of new positive factorizations yielding genus-g Lefschetz pencils on symplectic
4-manifolds with any Kodaira dimension, via careful applications of unchaining, starting
with holomorphic pencils on complex surfaces of general type; see Theorems 4.6 and 4.8. In
particular we obtain:
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Theorem 1.1 For each g ≥ 3, there is a symplectic genus-g Lefschetz pencil (Kg, kg),
where Kg is a symplectic Calabi–Yau homotopy K3 surface, and kg has the monodromy
factorization:

tδg−1 · · · tδ2 tδ1 tδ′
g−1

· · · tδ′
2
tδ′

1

=
{

txg · · · tx1 tx ′
g
· · · tx ′

1
(tc1 tc2 tc3)

8td4 · · · td2g+1 te2g+1 · · · te4 (g : odd)

txg · · · tx1 tx ′
g
· · · tx ′

1
(tc1 tc2 tc3)

6(tc3 tc2 tc1)
2td4 · · · td2g+1 te2g+1 · · · te4 (g : even)

in �
2g−2
g , where the curves δ j , δ

′
j , c j , d j , e j , x j , x ′

j are as in Figs.4, 5, and 6.

These complement the explicit monodromies of pencils on symplectic Calabi–Yau surfaces
with b1 > 0 given in the works of Ivan Smith, the first author, and Noriyuki Hamada and the
second author in [10, 30, 50].

It is an alluring open question whether this fairly short list of symplectic Calabi–Yau
surfaces is complete up to diffeomorphisms, and in particular if there is no symplectic Calabi–
Yau surfaces with b1 = 0, that is not diffeomorphic to a K3 surface [17, 25, 37]. As Tian-Jun
Li points out in [39], the poor state of this problem seems to also stem from the lack of
any new constructions of symplectic Calabi–Yau surfaces; many widely used symplectic
surgeries mentioned in the beginning of our article are seen not to yield any new SCYs,
except for trivial cases [14, 32, 39, 55]. These constructions demonstrate how unchaining
surgery can produce symplectic Calabi–Yau surfaces (Corollary 4.10) from complex surfaces
of general type, or from rational or ruled surfaces via the natural inverse of the operation. The
symplectic 4-manifolds Kg have the same fundamental group and Seiberg-Witten invariants
as complex K3 surfaces, and we do not know at this point whether they are all diffeomorphic
to them.

Our second application concerns a riveting conjecture of Andras Stipsicz on the existence
of exceptional sections in fiber-sum indecomposable Lefschetz fibrations. In [51], having
proved the converse, Stipsicz conjectured that any Lefschetz fibration, which cannot be
expressed as a fiber-sum of any two non-trivial fibrations, always admits an exceptional
section—an affirmative answer to which would mean that any Lefschetz fibration is a fiber-
sum of blown-up pencils. This conjecture was shown to fail in genus-2 by just a handful
of examples: a holomorphic fibration on a blown-up K3 surface by Auroux (which was
the first counter-example, as observed by Yoshihisa Sato in [48]), a symplectic fibration on a
homotopyEnriques surface by the first two authors of this article [11], a holomorphic fibration
with 6 irreducible and 7 reducible fibers by Xiao [57] (as observed to be a counter-example
by the first author), and one more (if different than Xiao’s), by an implicit argument in [3].
Only two more counter-examples, a pair of genus-3 fibrations on symplectic Calabi–Yau
homotopy K3 surfaces were provided again in [11], and there has been no known examples
for any g ≥ 4, up to date.

In Sect. 5, we prove that there is in fact no stable range for g, where this conjecture may
hold:

Theorem 1.2 For any g ≥ 2, there exists a genus-g fiber-sum indecomposable Lefschetz
fibration without any exceptional sections.

The most challenging part of constructing such examples is to locate all the exceptional
spheres in the symplectic 4-manifold so as to know for sure that there is none that can be
a section. We will produce all our genus g ≥ 4 examples by applying the braiding lantern
substitution of [11] to the explicit positive factorizations of a family of pencils with Kodaira
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dimension one we obtain via unchaining (Theorem 5.4). Along with the already existing
examples of g = 2, 3, this then completely resolves Stipsicz’s conjecture (noting that by the
well-known classification of genus-1 fibrations, the conjecture does hold in the remaining
case).

In the course of the proof of the above theorem, we establish another result, which would
be of independent interest: a complete characterization of when the total space of a Lefschetz
pencil is spin, in terms of its monodromy factorization (Theorem 5.1). This extends Stipsicz’s
earlier work in [52] for Lefschetz fibrations (no base points), and this generalization is
applicable to any symplectic 4-manifold, since a given symplectic 4-manifold may not admit
a Lefschetz fibration, but it always admits a pencil (with base points) by Donaldson.

Theorem 1.3 Let (X , f ) be a genus-g Lefschetz pencil with a monodromy factorization
tc1 · · · tcn = tδ1 · · · tδp . Then X admits a spin structure if and only if there exists a quadratic
form q : H1(�

p
g ;Z2) → Z2 with respect to the intersection pairing of H1(�

p
g ;Z2) such that

q(ci ) = 1 for any i and q(δ j ) = 1 for some j .

In the final section, Sect. 6, we will present two more applications, one regarding the
topology of symplectic 4-manifolds (Theorem 6.1, and one regarding that of pencils (The-
orem 6.4). All the examples we construct therein come from combining unchaining and
rational blowdown surgeries that respect the fibration structures.

Constructions of small simply-connected symplectic 4-manifoldswith b+
2 ≤ 3 via rational

blowdowns has a fairly long and rich history, pioneered by the works of Fintushel–Stern and
Jongil Park [23, 24, 44, 45]. Similar constructions via monodromy substitutions in positive
factorizations of Lefschetz pencils was first given by Endo andGurtas [18], who observed that
lantern substitutions (see Lemma 2.1) amount to a rational blowdown of a symplectic (−4)-
sphere—which since then, has been extended to many other substitutions corresponding to
blowdowns of more general configurations of spheres [19, 26, 34]. The hardship of the latter
approach is to have explicit positive factorizations of pencils that contain a sufficient number
of lantern configurations for rational blowdowns, andwas so far successfully applied to genus-
2 Lefschetz pencils in [4, 18].We demonstrate that, through unchaining, we do get such useful
monodromy factorizations, from which, we can for example obtain new symplectic genus-3
Lefschetz fibrations with exotic total spaces:

Theorem 1.4 There are genus-3 Lefschetz fibrations (X j , f j ), for j = 0, 1, 2, 3, where each
X j is a minimal symplectic 4-manifold homeomorphic but not diffeomorphic to 3CP2�(19−
j)CP2, and each f j+1 has a monodromy factorization obtained from that of f j by a lantern
substitution.

Moreover, by the techniques of [11], one can explicitly describe the symplectic canonical
class of each X j as a multisection of f j ; see Remark 6.3.

Our final application is on the diversity of Lefschetz pencils and fibrations of the same
genera on a given symplectic 4-manifold (up to equivalence of pencils/fibrations through
self-diffeomorphisms of the 4-manifold and the base, commuting the maps). Examples of
inequivalent Lefschetz fibrations on a blow-up of T 2 × �2, whose fibers have different
divisibility in homology were discussed by Ivan Smith in his thesis, and several inequivalent
fibrations on homotopy elliptic surfaces, distinguished by their monodromy groups, were
produced by Jongil Park and Ki-Heon Yun in [46, 47]. In [8, 9], building on Donaldson’s
existence result and the doubling construction for pencils, the first author established that
in fact any symplectic 4-manifold, possibly after blow-ups, admits inequivalent Lefschetz
pencils and fibrations of arbitrarily high genera. Also see [11, 29] for inequivalent pencils
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on homotopy K3 surfaces and on ruled surfaces, respectively. Here we produce many more
examples of inequivalent Lefschetz pencils and fibrations, notably with explicit positive
factorizations:

Theorem 1.5 For any g ≥ 3 and i = 0, 1, 2, . . . , g − 1, there are pairs of inequivalent
relatively minimal genus-g Lefschetz pencils (Yg(i), h j

g(i)), j = 1, 2 with the same number
of base points, and inequivalent Lefschetz fibrations on their blow-ups. For any g ≥ 3, there
are pairs of inequivalent relatively minimal genus-g Lefschetz pencils on once blown-up
elliptic surface E(1) �CP2 ∼= CP

2 � 10CP2, with different number of reducible fibers.

The examples of inequivalent pencils we obtain here are on a family of symplectic 4-
manifolds, whose symplectic Kodaira dimensions run through −∞, 0 and 1.

2 Preliminaries

Herewe review themainnotions andbackground results used throughout the paper.Manifolds
in this paper are assumed to be smooth, connected and oriented, unless otherwise stated.

2.1 Lefschetz fibrations and pencils

Let X and � be compact manifolds of dimension 4 and 2, respectively. A smooth map
f : X → � is called a Lefschetz fibration if the critical locus C = Crit( f ) is a discrete set
such that

• for any x ∈ Crit( f ) there are complex charts (U , ϕ) at x and (V , ψ) at f (x), compatible
with the orientation of X and �, so that

ψ ◦ f ◦ ϕ−1(z, w) = zw,

• the restriction f | f −1( f (C)) is a surface bundle, and
• the restriction f |Crit( f ) is injective.

For B ⊂ X a non-empty finite set of points, a smooth map f : X \ B → CP
1 is called a

Lefschetz pencil if f |X\νB is a Lefschetz fibration, where νB is the union of balls centered
at points in B, and for any b ∈ B there exist a complex chart (U , ϕ) compatible with the
orientation of X , and an orientation-preserving self-diffeomorphism 	 : CP1 → CP

1 so
that:

	 ◦ f ◦ ϕ−1(z, w) = [z : w].
Each point in B is called a base point of f .

We will denote a Lefschetz fibration or a pencil simply as the pair (X , f ). For a Lefschetz
fibration or pencil (X , f ), the set of critical values f (C) ⊂ � is discrete. So the genus of
the closure of a regular fiber f −1(q) does not depend on the regular value q , and is called
the genus of (X , f ). In this paper, we will always assume that (X , f ) is relatively minimal,
that is, for any point q ∈ f (X), the closure f −1(q) does not contain any (−1)-spheres.

Lastly, an allowable Lefschetz fibration is a Lefschetz fibration with base � = D2, where
the fibers have non-empty boundaries, and for any point q ∈ f (X), f −1(q) does not contain
any closed surfaces.
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2.2 Positive factorizations

Let �n
g be a compact genus-g surface with n boundary components. We denote by �n

g the
mapping class group of �n

g :

�n
g = π0

({
ψ ∈ Diff+(�n

g ) | ψ |∂�n
g
= id

})
.

Let (X , f ) be a Lefschetz fibration or pencil over � = CP
1 with l critical points and n

base points (where n = 0 if it is a fibration). Take a regular value p0 ∈ CP
1 and simple

paths γ1, . . . , γl from p0 to critical values which are mutually disjoint except at p0. Suppose
that γ1, . . . , γl appear in this order when we go around p0 counterclockwise. We denote
by αi a loop with base point p0 which first goes along γi , then goes around a critical value
counterclockwise and goes back to p0 alongγi . Kas [35] showed that amonodromyof f along
αi , which can be regarded as an element of �n

g under an identification �n
g

∼= f −1(p0)\νB,
is a positive Dehn twist tci (a right-handed Dehn twist) along a simple closed curve ci ⊂ �n

g ,
called the vanishing cycle of f associated to ci by γi .

We can deduce from the local description of f around the base points that the monodromy
of f along a concatenated loop α1 · · · αl is equal to tδ1 · · · tδn ∈ �n

g , where δ1, . . . , δn ⊂ �n
g

are simple closed curves parallel to respective boundary components. We therefore obtain
the following positive factorization of the boundary multi-twist tδ1 · · · tδn in �n

g :

tcl · · · tc1 = tδ1 · · · tδn ,

which is called the monodromy factorization of the Lefschetz pencil f . When there are no
base points, i.e. when n = 0, this is a factorization of identity in �g . Note that relative
minimality of a Lefschetz fibration or pencil implies that no ci is null-homotopic. In the
case of an allowable Lefschetz fibration, where the base is D2 instead of CP1, one derives
a positive factorization of an element in �n

g , n > 0, which does not need to be a boundary
multi-twist, and no ci is null-homologous.

Conversely, given such a positive factorization as above, one can build a genus-g Lefschetz
pencil (X , f ) with l critical points and n base points, where X is a symplectic 4-manifold
[28]. Similarly, a positive factorization of any mapping class μ in �n

g with n > 0, where no
Dehn twist curve ci is null-homologous, one can build a genus-g allowable Lefschetz fibration
(X , f ), where X is a Stein domain [1, 40]. On the boundary of X , this fibration induces an
open book with monodromy μ, which supports the natural contact structure induced by the
Stein structure on X (either as the maximal distribution of the complex structure restricted
to the boundary, or as the kernel of contact 1-form which is the primitive of the symplectic
structure around the boundary). Moreover, from a given positive factorization for a Lefschetz
fibration or pencil, we can obtain another one by substituting a subword of the factorization
with another product of positive Dehn twists. In the following sections we will construct
several Lefschetz fibrations and pencils by this procedure, sometimes called as monodromy
substitution. In these constructions,wewill repeatedly use the followingwell-known relations
(see e.g. [22]):

Lemma 2.1 (Lantern relation) Let δ1, δ2, δ3 and δ4 be the four boundary curves of �4
0 and

let x, y and z be the interior curves as shown in Fig.1. Then, we have the lantern relation in
�4
0:

tδ4 tδ3 tδ2 tδ1 = tz ty tx .
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Fig. 1 The curves x , y, z on �4
0

Lemma 2.2 (Odd chain relation) Let c1, c2, . . . , c2h+1 be simple closed curves on �n
g such

that ci and c j are disjoint if |i − j | ≥ 2 and that ci and ci+1 intersect transversely at one
point. Then, a regular neighborhood of c1 ∪ c2 ∪ · · · ∪ c2 h+1 is a subsurface of genus h with
two boundary components, δ1 and δ′

1. We then have the odd chain relation in �n
g :

(tc1 tc2 · · · tc2h+1)
2h+2 = tδ1 tδ′

1
.

Lastly, we have the conjugation relation φtaφ−1 = tφ(a), which implies the equalities
tbta = tata−1(b) = ttb(a)tb for any ta, tb and φ ∈ �n

g . Applying these equalities to change any
subfactors in a positive factorization is known as a Hurwitz move, which yields equivalent
Lefschetz fibrations or pencils. Whenever we have a Hurwitz equivalence of two positive
factorizations, we will use the notation ∼ to emphasize that the underlying fibration has not
changed.

2.3 Symplectic Kodaira dimension and Calabi–Yau surfaces

A symplectic 4-manifold is said to be minimal if it contains no symplectic sphere with self-
intersection−1. Let (Xmin, ωmin) be a minimal symplectic 4-manifold obtained from a given
closed symplectic manifold (X , ω) by blowing-down all the symplectic spheres. For Kmin

the canonical class of (Xmin, ωmin), the symplectic Kodaira dimension κ(X) of (X , ω) is
defined as follows:

κ(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∞ if Kmin · [ωmin] < 0 or K 2
min < 0

0 Kmin · [ωmin] = K 2
min = 0

1 Kmin · [ωmin] > 0 and K 2
min = 0

2 Kmin · [ωmin] > 0 and K 2
min > 0.

It turns out that κ(X) is not only independent of the associated minimal symplectic manifold
(Xmin, ωmin), but also the symplectic structure ω on X—so it is a diffeomorphism invariant.
Moreover, when κ(X) = −∞, the manifold X is known to be symplectomorphic to a rational
or ruled surface, so its diffeomorphism type is a blow-up of either CP2 or an S2-bundle over
a Riemann surface. In particular, b+(X) = 1. When κ(X) = 0, X is known have the same
rational homology as the blow-up of either a T 2-bundle over T 2, the Enrique surface or the
K3 surface. In particular, b+(X) ≤ 3. (See e.g. [37, 38].)

We will make use of the following criterion for a symplectic 4-manifold to have a specific
Kodaira dimension:

Theorem 2.3 (Kodaira dimension from monodromy factorizations, [10, 11, 49]) Let X be
a symplectic 4-manifold which is the total space of a genus g ≥ 3 Lefschetz fibration with
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a monodromy factorization which lifts to �n
g as a factorization of the boundary multi-twist,

that is

tcl · . . . · tc1 = tδn · . . . · tδ1 .

Then the symplectic Kodaira dimension of X is equal to

i. κ(X) = −∞ if n > 2g − 2,
ii. κ(X) = 0 if n = 2 g − 2 and b+(X) �= 1,
iii. κ(X) = 1 if n = 2 g − 3 and b+(X) > 3.

Here the boundary multi-twist corresponds to n disjoint sections that are all exceptional
spheres, which is a particular case of [49, Theorem 5–12] and [11, Theorem 4.1], where
the positive factorizations are given for multisections (intersecting the fiber at n points) that
are exceptional spheres. For part (i), observe that if the number of exceptional sections is
n > 2g − 2, blowing them down, we get a fiber class which violates the Seiberg-Witten
adjunction inequality, which is only possible in a rational or ruled surface. All parts but part
(iii) also hold for g = 2.
Note that the topological invariant b+(X) in the theorem can be read off from the positive
factorization. Since π1(X) is isomorphic to the quotient of π1(�g) by N (c1, . . . , cl), the
subgroup normally generated by ci s, we can calculate b1(X) as the rank of the abelianization
of π1(X). Then calculating e(X) = 4 − 4 g + l and σ(X) algorithmically (e.g. by [20]), we
can obtain b+(X) through the equality b+(X) = (e(X) − 2 + 2b1 + σ(X))/2.

3 Unchaining operation

In this section we will discuss the unchaining operation, which is a symplectic surgery that
can be interpreted (at least locally) as a monodromy substitution in a Lefschetz fibration.
This surgery will play a key role in all our constructions throughout the paper.

Let c1, . . . , c2g+1, δ1, δ
′
1 ⊂ �2

g be simple closed curves shown in Fig. 4. By Lemma 2.2,
the following relation holds in �2

g:

(tc1 · · · tc2g+1)
2g+2 = tδ1 tδ′

1
.

Denote the total space of the allowable Lefschetz fibration corresponding to the left and right
hand sides of the relation above by Vg and V ′

g , respectively. One can describe the compact
manifolds Vg and V ′

g by handlebody diagrams in Fig. 2.
Taking the Stein structures associated to their allowable Lefschetz fibrations above, we

regardVg andV ′
g as Stein domains. (It is a straightforward exercise to turn the handle diagrams

in Fig. 2 into diagrams of Stein handle decompositions following [1].) Since these fibrations
induce the same open book monodromy on their boundaries, the contact structures induced
on ∂Vg and ∂V ′

g by the underlying symplectic structures on Vg and V ′
g are contactomorphic.

Thus, if Vg is a Stein subdomain of a symplectic 4-manifold (X , ωX ), we can excise Vg and
glue in V ′

g symplectically via any contactomorphism ϕ : ∂Vg → ∂V ′
g , perhaps after scaling

the symplectic form on it (see e.g. [21]). We will call this particular symplectic cut-and-paste
operation unchaining:

Definition 3.1 Let (X , ωX )be a symplectic 4-manifold, containingVg as aStein submanifold.
The symplectic 4-manifold (Y , ωY ), where Y = (X\Vg) ∪ϕ V ′

g , with ωX |X\Vg = ωY |Y\V ′
g

and containing V ′
g as a Stein subdomain is then said to be obtained by unchaining (X , ωX )
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Fig. 2 Handlebody diagrams of Vg and V ′
g . All the 2-handles in both figures have (−1)-framing

along Vg ⊂ X (or by (2g + 1)-unchaining, whenever we would like to be specific about the
size).

This local surgery realizes a monodromy substitution when (X , ωX ) is the total space
of a symplectic Lefschetz fibration or pencil f , whose monodromy factorization contains
(tc1 · · · tc2 h+1)

2 h+2 as a subword, where c1, . . . , c2 h+1 are simple closed curves in a reference
fiber of f satisfying the condition in Lemma 2.2. We can then apply a C2h+1-substitution to
the monodromy factorization of f , that is, we can substitute a subword (tc1 · · · tc2 h+1)

2 h+2 in
the factorizationwith tδ1 tδ′

1
, where δ1, δ

′
1 are curves given inLemma2.2. Since the substitution

does not change the right-hand side of the factorization, we obtain another symplectic Lef-
schetz fibration or pencil h, whose total space is a symplectic 4-manifold (Y , ωY ) obtained
by unchaining (X , ωX ) along Vg . (In this case we choose ϕ : ∂Vg → ∂V ′

g to be a fiber-
preserving contactomorphism between the boundary open books, which is identity along the
fibers.) We will build all our examples in this paper from this perspective.

In the remainder of this section, we will explain how the Euler characteristic, the signature
and the fundamental group of X and Y are related by the unchaining operation along Vg ⊂ X .

Let us start with the invariants for the subdomains Vg and V ′
g . From the handle decom-

positions given above, it is easy to see that the Euler characteristics e(Vg) and e(V ′
g) are

respectively equal to 2(2 g2 + 2 g + 1) and −2 g + 2. The manifold Vg is the complement
of the union U of neighborhoods of a regular fiber and two (−1)-sections in a hyperelliptic
Lefschetz fibration over S2 with (2g +1)(2g +2) irreducible singular fibers and no reducible
ones. Therefore, we can deduce from [20] that the signature of the hyperelliptic fibration over
S2 is −2(g + 1)2. Since the signature of U is −1, by the Novikov additivity, the signature
of Vg is equal to −2(g + 1)2 + 1. On the other hand, since V ′

g is a disk bundle over a
genus-g surface with Euler number −2, the signature σ(V ′

g) = −1. Now by the additivity
of Euler characteristic and signature for gluing compact 4-manifolds along 3-manifolds, we
can conclude that:

Proposition 3.2 Let Y be obtained by unchaining X along Vg ⊂ X. Then,

e(Y ) = e(X) − 2g(2g + 3),
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Fig. 3 A generating set of a fiber
of the open book of ∂Vg

σ(Y ) = σ(X) + 2g(g + 2).

The relation between the fundamental groups of X and Y is more involved, since in
general it non-trivially depends on the fundamental group of the complement of Vg in X .
The manifold ∂Vg (and thus X ) contains a surface � ∼= �2

g which is a fiber of the boundary
open book. We take a generating set {a1, b1, . . . , ag, bg, d} of π1(�) as shown in Fig. 3.

We also denote the elements in π1(X \ Vg) represented by loops in Fig. 3 by ai , b j , and so
on. Recall that V ′

g admits a handle decomposition with one 0-handle, 2g + 1 1-handles, and

two 2-handles as in Figure 2. Now, Y is obtained from X \ Vg by attaching this handlebody
upside down to it. Then, the cellular decomposition induced by this handle decomposition
implies that Y is obtained from X \ Vg by attaching two 2-cells to an open book fiber � of
∂(X\Vg) = ∂V ′

g along loops freely homotopic to d and d−1 ·∏g
i=1[ai , bi ], and then attaching

2g + 1 3-cells and a 4-cell. By a standard consequence of Seifert Van-Kampen, the 2-cells
yield further relations via their attaching maps, while the higher dimensional cells have no
effect on π1. We therefore get:

Proposition 3.3 The fundamental group of Y is isomorphic to

π1(X \ Vg) / N

(
d,

g∏
i=1

[ai , bi ]
)

where N (d,
∏g

i=1[ai , bi ]) is the subgroup of π1(X \ Vg) normally generated by d,and∏g
i=1[ai , bi ]. In particular, if X\Vg is simply-connected, so is Y .

Remark 3.4 Propositions 3.2 and 3.3 show that in general unchaining operation is not equiv-
alent to a sequence of rational blow-downs and blow-ups. For instance, if a simply-connected
manifold Y can be obtained by applying (2g + 1)-unchaining to another simply-connected
manifold X (and we will see many instances in this paper), we deduce that b+(X) − b+(Y )

is equal to g(g + 1). However, rational blow-downs and blow-ups do not change b+.

By Propositions 3.2 and 3.3, the unchaining operation decreases the second Betti number
of a 4-manifold, so it is a handy operation for deriving a smaller symplectic 4-manifold. In
addition, the unchaining might give rise to new (−1)-spheres in Y , as we will see in our
examples in this paper, which we can further blow-down to obtain an even smaller manifold.
The same examples will demonstrate that the symplectic Kodaira dimension is also non-
increasing under the unchaining operation, i.e. κ(Y ) ≤ κ(X), which we conjecture to be true
in general:

Conjecture 3.5 If (Y , ωY ) is obtained from the symplectic 4-manifold (X , ωX ) by unchaining,
then their symplectic Kodaira dimensions satisfy κ(Y ) ≤ κ(X).

Remark 3.6 (Surgery along even chains) Almost every aspect of the unchaining surgery we
discuss here applies likewise to surgeries along even number of chains, which correspond to
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a similar relation in the mapping class group, where one replaces a product of Dehn twists
along an even number of chains with a single Dehn twist along the boundary of their tubular
neighborhood [22]. Although in this article we only discuss the odd case for brevity, the even
case similarly has many interesting applications, readily available in the existing literature:
For instance, even chain monodromy substitution was conclusively employed in Mustafa
Korkmaz and the first author’s reverse engineering of small positive factorizations in [12],
and the examples of genus-2 Lefschetz fibrations in [12] readily demonstrate that the analogue
of the unchaining surgery on even chains, too, can decrease theKodaira dimension. The exotic
rational surfaces constructed in [12] and several symplectic Calabi–Yau homotopy K3 and
homotopy Enriques surfaces in [11] can all be seen to be obtained by such a surgery from a
symplectic surfaces of Kodaira dimension two. (By the inverse of the operation, one replaces
a reducible fiber component with a Stein subdomain corresponding to the even chain). See
also [2].
We note that one difference in the case of a surgery along an even chain is that the operation
now swaps a Stein subdomain with a symplectic filling given by the neighborhood of a (−1)-
curve, which is not a Stein filling of the contact structure on the boundary supported by the
obvious open book.

4 New symplectic pencils via unchaining

Here we will produce new symplectic Lefschetz pencils from a family of pencils on complex
surfaces of general type, by carefully applying the unchaining operation. As we keep track of
the associated monodromies, we will then look at their lifts to detect a sufficient number of
(−1)-sections to determine the Kodaira dimension of the new symplectic 4-manifolds, using
Theorem 2.3.

In this and the following sections, Figs. 4–6 will be used repeatedly.

4.1 Positive factorizations for a family of holomorphic pencils

Let c1, . . . , c2g+1, δ1, δ
′
1 ⊂ �2

g be simple closed curves shown in Fig. 4. We can obtain the
closed surface �g by capping ∂�2

g by two disks. In this way we regard �2
g as a subsurface

of �g . By Lemma 2.2 we have:

(tc1 tc2 · · · tc2g+1)
2g+2 = 1 in �g , and

(tc1 tc2 · · · tc2g+1)
2g+2 = tδ1 tδ′

1
in �2

g. (1)

These positive factorizations prescribe a Lefschetz fibration (Zg, f ) and a pencil (Z ′
g, f ′),

respectively, where (Zg, f ) is obtained from (Z ′
g, f ′) by blowing-up the two base points.

We easily calculate the Euler characteristic as e(Z ′
g) = 4g2 + 2g + 4, and thus

e(Zg) = 4g2 + 2g + 6 .

Here the left-hand side of the relation (1) is obtained by lifting a braid monodromy of a
non-singular projective curve of degree 2(g +1) inCP2 under the double branched covering
branched at 2g + 2 points (see [42, Corollary VIII.2.3]), so f ′ is a holomorphic map, which
is the composition of the double branched covering p : Z ′

g → CP
2 ofCP2 branched along a

degree 2(g + 1) non-singular curve, and the linear projection from CP
2 to CP1. It is easy to

see that Z ′
g is simply-connected. Moreover, as shown in [31], the canonical bundle K X of the
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Fig. 4 The curves a, a′, b, b′ and ci (i = 1, . . . , 2g + 1) on �2
g

covering complex surface Z ′
g is isomorphic to p∗(H⊗(g−2)) and p∗(c1(H)) ∈ H2(Z ′

g) is
primitive, where H is the holomorphic line bundle overCP2 defined by a hyperplane section.
In particular the signature σ(Z ′

g) = −2(g + 1)2 + 2, and thus

σ(Zg) = −2(g + 1)2 ,

and Z ′
g is spin if and only if g is even. Furthermore, Z ′

g (and its blow-up Zg) is a complex
surfaces of general type since H is very ample.

It is decidedly easier to identify the Stein subdomainswewould like to perform unchaining
surgeries along as subfactorizations in positive factorizations of Lefschetz pencils. Nonethe-
less, it is still often the case that the desired subfactorization (just like the desired handle
decomposition) only emerges after deliberate manipulations of the original monodromy. The
rest of this subsection is devoted precisely to this cause, with the sole aim of deriving a
suitable positive factorization of the boundary multi-twist in �2

g , for each g ≥ 3, which is
Hurwitz equivalent the factorization (1):

Proposition 4.1 For g ≥ 3, let d j = t−1
c j−3

t−1
c j−2

t−1
c j−1

(c j ) and e j = tc j−3 tc j−2 tc j−1(c j ), for all
j = 4, 5, . . . , 2g + 1, where the curves c j , d j , e j are shown in Figs.4 and 5. Also set, for a
shorthand notation;

Dg = td4 td5 · · · td2g+1 and Eg = te2g+1 · · · te5 te4 .

Then, the following equations hold in �2
g:

tδ1 tδ′
1

= (tc1 tc2 tc3)
4g Dg Eg(tc5 tc6 · · · tc2g+1)

2g−2 (g : odd)
tδ1 tδ′

1
= (tc1 tc2 tc3)

4(g−1)+2(tc3 tc2 tc1)
2Dg Eg(tc5 tc6 · · · tc2g+1)

2g−2 (g : even)
which are Hurwitz equivalent to the positive factorizations in (1).

Theproof of this propositionwill require somepreparation, througha sequenceof technical
lemmas, Lemma 4.2, 4.3, and 4.4 we prove below.

Form = 1, 2, . . . , 2g−2, and l = m, m +1, m +2, the braid relators amount to following
Hurwitz equivalences:

tcl · tcm+3 tcm+2 tcm+1 tcm ∼ tcm+3 tcm+2 tcm+1 tcm · tcl+1 , (2)

tcm tcm+1 tcm+2 tcm+3 · tcl ∼ tcl+1 · tcm tcm+1 tcm+2 tcm+3 . (3)

where, and hereon, ∼ denotes Hurwitz equivalence of positive factorizations.
In all of the following lemmas, g ≥ 3, and the curves c j , d j and e j are the ones in Figs. 4

and 5.

Lemma 4.2 (tc1 tc2 · · · tc2 g+1)
4 ∼ (tc1 tc2 tc3)

4(tc3 tc2 tc1)
2 g−2td4 td5 · · · td2 g+1 in �2

g.
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Fig. 5 The curves d j , e j on �g ( j = 4, . . . , 2g + 1)

Fig. 6 The curves xk , x ′
k , zk , z′

k and yk , y′
k , which are contained in pairs of pants bounded by a, b, δ1 and

a′, b′, δ′
1 on �2

g in Fig. 4, respectively

Proof It is easy to check using the braid relators that

(tc1 tc2 · · · tc2g+1)
4 ∼ (tc1 tc2 tc3)

4 ·
4∏

i=1

tc5−i tc6−i · · · tc2g+2−i , (4)

4∏
i=1

tc5−i tc6−i · · · tc2g+2−i ∼
2g−2∏
i=1

tci+3 tci+2 tci+1 tci . (5)

Here, for k = 1, 2, . . . , 2g − 2, we claim the following holds in �2
g:

2g−2∏
i=k

tci+3 tci+2 tci+1 tci ∼ (tck+2 tck+1 tck )
2g−1−k tdk+3 tdk+4 · · · td2g+1 .

The proof of the claim will be by induction on 2g − 1 − k. For k = 2g − 2, the conclusion
holds, since we have the equivalence

tc2g+1 · tc2g tc2g−1 tc2g−2 ∼ tc2g tc2g−1 tc2g−2 · td2g+1 .

Assume that the relation holds for k + 1 < 2g − 2. By (2), we have

2g−2∏
i=k

tci+3 tci+2 tci+1 tci
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= tck+3 tck+2 tck+1 tck ·
2g−2∏

i=k+1

tci+3 tci+2 tci+1 tci

∼ tck+3 tck+2 tck+1 tck · (tck+3 tck+2 tck+1)
2g−1−(k+1)tdk+4 tdk+5 · · · td2g+1

∼ (tck+2 tck+1 tck )
2g−1−(k+1) · tck+3 tck+2 tck+1 tck · tdk+4 tdk+5 · · · td2g+1

∼ (tck+2 tck+1 tck )
2g−1−(k+1) · tck+2 tck+1 tck · tdk+3 · tdk+4 tdk+5 · · · td2g+1 ,

which completes the proof of the claim.
The proof of the lemma then follows from k = 1 case of the claim, and the relations (4)

and (5).

Lemma 4.3 The following holds in �2
g:

(tc1 tc2 · · · tc2g+1)
2g−2 ∼ te2g+1 · · · te5 te4(tc1 tc2 tc3)

2g−2(tc5 tc6 · · · tc2g+1)
2g−2.

Proof Once again, it easily follows from the braid relators that

(tc1 tc2 · · · tc2g+1)
2g−2 ∼

⎛
⎝2g−2∏

i=1

tc2g−1−i tc2g−i tc2g+1−i tc2g+2−i

⎞
⎠ (tc5 tc6 · · · tc2g+1)

2g−2. (6)

Here, in �2
g , we claim that

2g−2∏
i=k

tc2g−2+k−i tc2g−1+k−i tc2g+k−i tc2g+1+k−i ∼ te2g+1 · · · tek+4 tek+3(tck tck+1 tck+2)
2g−1−k,

for k = 1, 2, . . . , 2g − 2. Once again we induct on 2g − 1 − k. For k = 2g − 2 we have

tc2g−2 tc2g−1 tc2g · tc2g+1 ∼ te2g+1 · tc2g−2 tc2g−1 tc2g .

Assume that the relation holds for k + 1 < 2g − 2. By (3), we have

2g−2∏
i=k

tc2g−2+k−i tc2g−1+k−i tc2g+k−i tc2g+1+k−i

=
⎛
⎝ 2g−2∏

i=k+1

tc2g−2+k−i tc2g−1+k−i tc2g+k−i tc2g+1+k−i

⎞
⎠ · tck tck+1 tck+2 tck+3

∼ te2g+1 · · · tek+5 tek+4(tck+1 tck+2 tck+3)
2g−2−k · tck tck+1 tck+2 tck+3

∼ te2g+1 · · · tek+5 tek+4 · tck tck+1 tck+2 tck+3 · (tck tck+1 tck+2)
2g−2−k

∼ te2g+1 · · · tek+5 tek+4 · tek+3 · tck tck+1 tck+2 · (tck tck+1 tck+2)
2g−2−k .

Hence, the claim is proved.
The proof of the lemma then follows from the k = 1 case of the claim, and the relation

(6).

Lemma 4.4 (tc3 tc2 tc1)
4 ∼ (tc1 tc2 tc3)

4 in �2
g.

Proof Since tc1 tc3 ∼ tc3 tc1 , we have

tc3 tc2 tc1 tc3 tc2 tc1 tc3 tc2 tc1 tc3 tc2 tc1 ∼ tc3 tc2 tc3 tc1 tc2 tc3 tc1 tc2 tc3 tc1 tc2 tc1 .
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Here, we have the following relations, again by the braid relators:

tc1 tc2 tc3 · tci ∼ tci+1 · tc1 tc2 tc3 ,

tci tci+1 tci ∼ tci+1 tci tci+1 for i = 1, 2.

Using these relations, we have

(tc3 tc2 tc3)tc1 tc2 tc3 tc1 tc2 tc3(tc1 tc2 tc1) ∼ tc1 tc2 tc3(tc2 tc1 tc2)(tc2 tc3 tc2)tc1 tc2 tc3
∼ tc1 tc2 tc3(tc1 tc2 tc1)(tc3 tc2 tc3)tc1 tc2 tc3
∼ tc1 tc2 tc3(tc1 tc2 tc3 tc1 tc2 tc3)tc1 tc2 tc3 .

Therefore, we obtain (tc3 tc2 tc1)
4 ∼ (tc1 tc2 tc3)

4.

We can now give our proof of the main result of this subsection:

Proof of Proposition 4.1 Applying Lemmas 4.2 and 4.3 to the odd chain relation (Lemma 2.2)
we get:

tδ1 tδ′
1

= (tc1 tc2 · · · tc2g+1)
2g+2

∼ (tc1 tc2 tc3)
4(tc3 tc2 tc1)

2g−2Dg Eg(tc1 tc2 tc3)
2g−2(tc5 tc6 · · · tc2g+1)

2g−2.

Here, note that 2g−2 = 4k if g = 2k +1 and 2 g−2 = 4k +2 if g = 2k +2. Since c1, c2, c3
are disjoint from c5, c6, . . . , c2g+1, δ1, δ

′
1, by Hurwitz moves (including cyclic permutation)

and Lemma 4.4, we obtain the claim.

4.2 Families of new symplectic pencils via unchaining

The new positive factorizations for Lefschetz pencils on Z ′
g we obtained in Proposition 4.1

allows us to apply unchaining as a monodromy substitution, in fact, multiple times. In this
way, we will derive new positive factorizations of the boundary multi-twist in �2

g , which
can be further lifted to �m

g for varying m > 2 as we move forward. The main outcomes of
this subsection will be our construction of family of symplectic fibrations (Xg(i), fg(i)) and
pencils (X ′

g(i), f ′
g(i)) in Theorem 4.6.

Lemma 4.5 Let a, a′ and b, b′ be the boundary components of regular neighborhoods of
c1 ∪ c2 ∪ c3 and c5 ∪ c6 ∪ · · · ∪ c2 g+1 as in Fig.4, respectively. For g ≥ 3, the following
relations hold in �2

g:

tδ1 tδ′
1

=
{

tbt i
a tb′ t i

a′(tc1 tc2 tc3)
4(g−i) Dg Eg (g : odd)

tbt i
a tb′ t i

a′(tc1 tc2 tc3)
4(g−1−i)+2(tc3 tc2 tc1)

2Dg Eg (g : even),
(7)

where 0 ≤ i ≤ g if g is odd and 0 ≤ i ≤ g − 1 if g is even.

Proof Take the following chain relators:

C3 := (tc1 tc2 tc3)
4t−1

a′ t−1
a ,

C2g−3 := (tc5 tc6 · · · tc2g+1)
2g−2t−1

b′ t−1
b .

Suppose g is even. By applying C−1
3 substitutions i times and C−1

2g−3 substitution once to

(tc1 tc2 tc3)
4(g−1) and (tc5 tc6 · · · tc2 g+1)

2 g−2 on the right-hand side of our relation in Proposi-
tion 4.1, respectively, we obtain

tδ1 tδ′
1

=t i
a t i

a′(tc1 tc2 tc3)
4(g−1−i)+2(tc3 tc2 tc1)

2Dg Egtbtb′ .
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Since a, a′, b, b′ are disjoint from each other, the elements ta, ta′ , tb and tb′ all commute.
Moreover, tδ1 tδ′

1
is central in �2

g , so we can get the claimed relation after conjugating both
sides with the inverse of tbtb′ .

The proof for the case of odd g is very similar.

We will now show that there is a lift of the relations in Lemma 4.5 from �2
g to �

2(i+1)
g as

a factorization of the boundary multi-twist. These lifts play a crucial role in our calculation
of the symplectic Kodaira dimension of the underlying manifolds.

Theorem 4.6 There are symplectic genus-g Lefschetz pencils (X ′
g(i), f ′

g(i)), for each 0 ≤
i ≤ g if g is odd, and for 0 ≤ i ≤ g − 1 if g is even, with monodromy factorizations in
�
2(i+1)
g as follows:

tδi+1 · · · tδ2 tδ1 tδ′
i+1

· · · tδ′
2
tδ′

1

=
{

txi+1 · · · tx2 tx1 tx ′
i+1

· · · tx ′
2
tx ′

1
(tc1 tc2 tc3)

4(g−i) Dg Eg (g : odd)

txi+1 · · · tx2 tx1 tx ′
i+1

· · · tx ′
2
tx ′

1
(tc1 tc2 tc3)

4(g−1−i)+2(tc3 tc2 tc1)
2Dg Eg (g : even)

where the curves xk, x ′
k (for k = 1, 2, . . . , n) on the surface �2n

g , n = i + 1, are as in Fig.6.
Blowing up all the base points of each (X ′

g(i), f ′
g(i)) yields symplectic Lefschetz fibrations

(Xg(i), fg(i)), whose monodromy factorizations in �g are obtained from the above after
capping off all the boundary components.

Proof Let yk, y′
k (for k = 1, 2, . . . , n) and zk, z′

k (for k = 1, 2, . . . , n − 1) be the auxiliary
curves in Fig. 6, where n = i + 1. Note that yn−1 = xn, y′

n−1 = x ′
n and zn = δn, z′

n = δ′
n .

Set ty0 = tb, ty′
0

= tb′ and tx0 = tx ′
0

= tδ0 = tδ′
0

= id in �2n
g .

We claim that whenever we have a relation in �2n
g of the form

tz1 tz′
1

= tn−1
a tbtn−1

a′ tb′ · T ,

where T is an element in �2n
g , then the following relation holds in �2n

g as well for k =
1, 2, . . . , n:

tzk tδk−1 · · · tδ2 tδ1 · tz′
k
tδ′

k−1
· · · tδ′

2
tδ′

1

= tn−k
a tyk−1 txk−1 · · · tx2 tx1 · tn−k

a′ ty′
k−1

tx ′
k−1

· · · tx ′
2
tx ′

1
· T .

In particular, we obtain the following relation

tδn · · · tδ1 · tδ′
n
· · · tδ′

1
= txn · · · tx1 · tx ′

n
· · · tx ′

1
· T .

in �2n
g from yn−1 = xn, y′

n−1 = x ′
n and zn = δn, z′

n = δ′
n .

We will prove the claim by induction on k. This relation holds for k = 1 from ty0 = tb,
ty′

0
= tb′ , tx0 = tx ′

0
= tδ0 = tδ′

0
= id and the assumption tz1 tz′

1
= tn−1

a tbtn−1
a′ tb′ · T in �2n

g .
Assume that the relation holds for each 1 < k. Then, we multiply both sides of the above
relation by tzk+1 tδk tz′

k+1
tδ′

k
. Since the curves zk+1, δk, z′

k+1, δ
′
k are disjoint from each other

and any curves appeared in the above relation, we obtain:

tzk · tzk+1 tδk tδk−1 · · · tδ2 tδ1 · tz′
k
· tz′

k+1
tδ′

k
tδ′

k−1
· · · tδ′

2
tδ′

1

= tn−k−1
a tzk+1 tatyk−1 tδk txk−1 · · · tx2 tx1 · tn−k−1

a′ tz′
k+1

ta′ ty′
k−1

tδ′
k
tx ′

k−1
· · · tx ′

2
tx ′

1
· T .
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By the lantern relations tzk+1 tatyk−1 tδk = tzk tyk txk and tz′
k+1

ta′ ty′
k−1

tδ′
k

= tz′
k
ty′

k
tx ′

k
, we have

tzk · tzk+1 tδk tδk−1 · · · tδ2 tδ1 · tz′
k
· tz′

k+1
tδ′

k
tδ′

k−1
· · · tδ′

2
tδ′

1

= tn−(k+1)
a tzk tyk txk txk−1 · · · tx2 tx1 · tn−(k+1)

a′ tz′
k
ty′

k
tx ′

k
tx ′

k−1
· · · tx ′

2
tx ′

1
· T .

Because zk is disjoint from a and z′
k is disjoint from xi , yi , a, a′, zk+1, δi , we can remove tzk

and tz′
k
from both sides of this relation. This concludes the proof of the claim.

By considering a subsurface of �2n
g of genus g with two boundary components z1 and

z′
1, we get the positive factorization of tz1 t ′z1 given in Lemma 4.5. The proof of the theorem
now follows from applying the above argument to this positive factorization. Corresponding
to it is the promised family of symplectic Lefschetz pencils (X ′

g(i), f ′
g(i)). Capping all the

boundary components induces awell-known homomorphism�
2(i+1)
g → �g , underwhich the

monodromy factorization of this pencil maps to a monodromy factorization of a symplectic
Lefschetz fibration (Xg(i), fg(i)), which clearly realizes the blow-up of the pencil at all its
base points.

4.3 Topology of the symplectic 4-manifolds Xg(i) and X′
g(i)

Here we will investigate the topology of the symplectic manifolds X ′
g(i) and therefore that

of Xg(i) ∼= X ′
g(i) # 2(i +1)CP2, which are the total spaces of the new pencils and fibrations

we produced above. We will record all the results for X ′
g(i), which then translate to those of

Xg(i) through blow-ups.

Lemma 4.7 For 0 ≤ i ≤ g when g is odd, and 0 ≤ i ≤ g − 1 when g is even,

e(X ′
g(i)) = 12(g − i) and σ(X ′

g(i)) = −8(g − i).

When i ≤ g − 1, X ′
g(i) is simply-connected, whereas for i = g (when g is odd), we have

π1(X ′
g(g)) ∼= Z ⊕ Z.

Proof The positive factorization tδ1 tδ′
1
in Theorem 4.6, which gives rise to Xg(i) and X ′

g(i), is
obtained by applyingC3-substitutions i times andC2g−3-substitution once to the factorization
of tδ1 tδ′

1
in Proposition 4.1. (Note that Xg(0) �= Zg since we still have the latter substitution

in effect.) It means that for g ≥ 3, Xg(i) is obtained by applying 3-unchaining i times and
(2g−3)-unchaining once to Zg , and then X ′

g(i) is obtained by blowing-down Xg(i) 2(i +1)-
times. The Euler characteristics and signature calculations then follow directly from those of
Zg (Subsection 4.1), and Proposition 3.2.

To calculateπ1(Xg(i))we can invoke Proposition 3.3, or rely on the handle decomposition
induced by the global Lefschetz fibration to carry out a more direct calculation as follows:
Let a1, b1, . . . , ag, bg be generators of π1(�g) as shown in Fig. 3 (here we regard �2

g as a
subsurface of �g). Set γk = [a1, b1] · · · [ak, bk], which is represented by a separating curve,
and a0 = b0 = ag+1 = γg+1 = γ0 = γ−1 = 1 in π1(�g). Here, by [x, y] we mean the
commutator xyx−1y−1. Note that the curves xi and x ′

i are isotopic to a and a′ after filling all
boundary components of �

2(i+1)
g (see Fig. 6) and that the curves as in Figs. 4 and 5 are used

repeatedly. Up to conjugation in π1(�g), we have:

c1 = a1, c2 = b1, c3 = b1a−1
1 b−1

1 a2, a = a2, a′ = γ1a2,

d2k = bka−1
k bk−1bk−2ak−2b−1

k−2, 2 ≤ k ≤ g,
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d2k+1 = a−1
k+1bkbk−1ak−1, 2 ≤ k ≤ g,

e2k = γk−1akbkbk−1a−1
k−2γ

−1
k−3, 2 ≤ k ≤ g,

e2k+1 = γkak+1bkbk−1a−1
k−1γ

−1
k−2, 2 ≤ k ≤ g

Recall that π1(X) ∼= π1(�g) / N , where N is the subgroup of π1(�g) normally generated
by the vanishing cycles of the Lefschetz fibration (Xg(i), fg(i)), which are the Dehn twist
curves in its monodromy factorization. We then see that the collection of Dehn twist curves
in the factorization of kill all the generators through the above identities as follows. The
relations a2 = d4 = 1 give b2b1 = 1, especially b1b2 = b2b1 = 1. By d2k+2 = d2k+1 = 1
for 2 ≤ k ≤ g − 1, we obtain bk+1b−1

k−1 = 1. Combining two relations, we have bkbk−1 = 1

for 2 ≤ k ≤ g, and therefore a−1
k+1ak−1 = 1 from d2k+1 = 1. Moreover, we see that a2 j = 1

for any j by a2 = 1. The above argument means that π1(X) is generated by a1 and b1. In
particular, since the relations a2 = γ1a2 = 1 gives γ1 = 1, we see that a1 commutes with b1
and that the relations e2k = e2k+1 = 1 are not needed. Finally, by the relations a1 = b1 = 1,
we obtain π1(Xg(i)) = 1 for i = 0, 1, 2, . . . , g − 1.

When g is odd, we no longer have the Dehn twist curves c1, c2, c3, andwithout the implied
relations c1 = c2 = c3 = 1 (yielding a1 = b1 = a2 = 1, and in turn b2 = 1), the remaining
relations give π1(Xg(g)) ∼= 〈a1, b1 | γ1 = 1〉 = Z ⊕ Z.

Finally, armed with our deeper knowledge of the presence of —sufficiently many—
exceptional sections in each Lefschetz fibration (Xg(i), fg(i)), we can utilize Theorem 2.3
to determine the symplectic Kodaira dimension of majority of these manifolds:

Theorem 4.8 (Symplectic Kodaira dimension of X ′
g(i)) Let g ≥ 3, 0 ≤ i ≤ g when g is

odd, and 0 ≤ i ≤ g − 1 when g is even. In all of the following cases, X ′
g(i) is a symplectic

4-manifold with Kodaira dimension

κ(X ′
g(i)) =

⎧⎪⎨
⎪⎩

−∞ if i > g − 2

0 i = g − 2

1 i = g − 3 or i = g − 2n,

where n is any integer satisfying 2 ≤ n ≤ � g
2 �. In all of the cases above with i ≤ g − 2,

X ′
g(i) is spin, and thus minimal. Moreover, X ′

g(g − 1) ∼= E(1) and X ′
g(g) ∼= S2 × T 2 when

g is odd.

Proof First of all, let us observe that, since the Euler characteristic and signature satisfy
e = 2 − 2b1 + b+

2 + b−
2 and σ = b+

2 − b−
2 , our π1 calculations in Lemma 4.7 imply that

for g ≥ 3, and i = 0, 1, 2, . . . , g − 2, b1(X ′
g(i)) = 0, b+

2 (X ′
g(i)) = 2(g − i) − 1 and

b−
2 (X ′

g(i)) = 10(g − i) − 1. So X ′
g(i) (and Xg(i)) is neither a rational nor a ruled surface

when i = 0, 1, 2, . . . .g − 2.
With this observation, the cases of κ(X ′

g(i)) = −∞ and 0 are now immediate from
Theorem 2.3. It remains to prove that when i = g − 2n or i = g − 3, κ(X ′

g(i)) = 1.
By Lemma 5.6 in the next section, X ′

g(g − 2n) is spin, and in particular, minimal. We can
further deduce from the Euler characteristic and signature calculations in Lemma 4.7 that
K 2

X ′
g(g−2n)

= 2 e(X ′
g(g − 2n)) + 3 σ(X ′

g(g − 2n)) = 0. Moreover, b+
2 (X ′

g(g − 2n)) > 3

by the above calculation, so it cannot have Kodaira dimension zero by [38] (see also [6]). It
follows that κ(X ′

g(g − 2n)) = 1.
By the above calculations again, X ′

g(g − 3) is neither rational nor ruled, and since

b+
2 (X ′

g(g − 3)) > 3, it cannot have Kodaira dimension zero either. Next, consider the corre-
spondingLefschetz fibration (Xg(g−3), fg(g−3)) obtained by blowing up all the base points

123



Unchaining surgery and topology of symplectic 4-manifolds Page 19 of 32 77

of the pencil in hand, so it has 2g − 4 exceptional sections. If there is any other exceptional
sphere in (Xg(g − 3), fg(g − 3)), disjoint from these 2g − 4 exceptional spheres, it would
necessarily intersect the fiber positively, at least once. So a maximal collection of disjoint
exceptional spheres would be intersecting the fiber at least 2g − 3 times. By [49][Theorem
5–12], this would imply that κ(Xg(g − 3)) < 2, so the Kodaira dimension here would be 1.
On the other hand, if there is no such exceptional sphere, that is, if X ′

g(g − 3) is minimal, by

Lemma 4.7, we have K 2
X ′

g(g−3) = 2e(X ′
g(g − 3)) + 3σ(X ′

g(g − 3)) = 0, which also implies

κ(Xg(g − 3)) = 1.
For the diffeomorphism statements, recall that when κ = −∞ we either have a rational

or ruled surface in hand. So from our calculation of the topological invariants in Lemma 4.7,
we deduce that X ′

g(g −1) ∼= E(1), and X ′
g(g) is diffeomorphic to either S2 × T 2 or S2×̃T 2.

As we will see that X ′
g(g) is spin in Lemma 5.6), we conclude that X ′

g(g) ∼= S2 × T 2.

Remark 4.9 For the values of i that are not covered in the theorem, we expect that κ(X ′
g(i)) =

1, which would be immediate once these manifolds are seen to be minimal.

Among our families, the pencils (Kg, kg) := (X ′
g(g −2), f ′

g(g −2)) are perhaps the most
interesting. It follows from our calculations of the topological invariants and by Freedman’s
theorem that each Kg is a symplectic Calabi–Yau surface homeomorphic to the K3 surface.
Moreover, any symplectic homotopy K3 surface with trivial canonical class is known to have
only one Seiberg-Witten basic class [43], and so does Kg in particular.

Corollary 4.10 (Pencils on symplectic Calabi–Yau homotopy K3 surfaces) For each g ≥ 3,
there is a symplectic genus-g Lefschetz pencil (Kg, kg), where Kg is a symplectic Calabi–Yau
homotopy K3 surface, and kg has the monodromy factorization:

tδg−1 · · · tδ2 tδ1 tδ′
g−1

· · · tδ′
2
tδ′

1

=
{

txg−1 · · · tx1 tx ′
g
· · · tx ′

1
(tc1 tc2 tc3)

8td4 · · · td2g+1 te2g+1 · · · te4 (g : odd)

txg−1 · · · tx1 tx ′
g
· · · tx ′

1
(tc1 tc2 tc3)

6(tc3 tc2 tc1)
2td4 · · · td2g+1 te2g+1 · · · te4 (g : even)

in �
2g−2
g , where the curves δ j , δ

′
j , c j , d j , e j , x j , x ′

j are as in Figs.4, 5 and 6.

A natural question, which might be tractable through the explicit handle diagrams pre-
scribed by the factorizations above is:

Question 4.11 Are the symplectic Calabi–Yau homotopy K3 surfaces Kg, g ≥ 3, all diffeo-
morphic to the standard K3 surface?

Remark 4.12 Observe that, we can view Kg to be obtained from the rational surface E(1) by
the natural inverse of the unchaining surgery. We speculate that when this inverse operation
can be performed in the complex category, it would correspond to contracting a (−2)-curve
(of genus (g−2) for these examples) and then smoothing the singularity. This leads to another
interesting question: what are the symplectic Calabi–Yau surfaces one can get by contracting
a symplectic (−2)-curve in a rational surface?

5 Pencils on spin 4-manifolds and Stipsicz’s conjecture

In this section, we will first extend a result of Stipsicz in [52], which gave a characterization
of a Lefschetz fibration to be a spin 4-manifold, to that of Lefschetz pencils (Theorem 5.1).
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These are given in terms of the Z2-homology classes of the vanishing cycles and exceptional
sections of the associated positive factorization. We will then address Stipsicz’s conjecture
on the existence of (−1)-sections in fiber sum indecomposable Lefschetz fibrations [51] by
providing counter-examples of any genus g ≥ 2 (Theorem 5.4).

5.1 Spin structures on Lefschetz pencils

AZ2-valued function q : H1(�
g
p;Z2) → Z2 is said to be a quadratic form with respect to the

intersection pairing if q(a +b) is equal to q(a)+q(b)+〈a, b〉2 for any a, b ∈ H1(�
p
g ;Z2),

where 〈a, b〉2 ∈ Z2 is the mod 2 intersection pairing. Here is our characterization of whether
the total space of a Lefschetz pencil is spin, in terms of the associated positive factorization:

Theorem 5.1 (Spin characterization from pencil monodromies) Let (X , f ) be a genus-g
Lefschetz pencil with a monodromy factorization tc1 · · · tcn = tδ1 · · · tδp . Then X admits a
spin structure if and only if there exists a quadratic form q : H1(�

p
g ;Z2) → Z2 with respect

to the intersection pairing such that q(ci ) = 1 for any i and q(δ j ) = 1 for some j .

Since we can obtain the total space of a Lefschetz pencil by attaching 4-handles to the
complement of (−1)-sections of a Lefschetz fibration, Theorem 5.1 will follow from the
following lemma:

Lemma 5.2 Let (X , f ) be a Lefschetz fibration, p ≥ 1 be an integer, S1, . . . , Sp ⊂ X
be disjoint sections of f and tc1 · · · tcn = ta1

δ1
· · · t

ap
δp

be the corresponding monodromy
factorization (note that ai ∈ Z is the self-intersection of Si ). For S = �i Si , the disjoint union
of Si s, the complement X\S admits a spin structure if and only if there exists a quadratic

form q : H1(�
p
g ;Z2) → Z2 with respect to the intersection pairing, which satisfies:

(A) q(ci ) = 1 for any i ,
(B) q(δ j ) ≡ a j for some j .

The lemma above still holds for p = 0 provided that there exists a “homological dual” of a
regular fiber with even self-intersection. See [52] for details.

Proof Define the sets S1 and S2 as follows:

• S1 is the set of isomorphism classes of spin structures on �
p
g .

• S2 is the set of quadratic forms on H1(�
p
g ;Z2) with respect to the intersection pairing.

Note that both of the sets S1 and S2 admit free and effective actions of H1(�
p
g ;Z2). In the

same way as that in [33] (in which the author dealt with the spin structures on �g), one can
define a map Q : S1 → S2 as follows: for a spin structure s of �

p
g , define a function Q(s)

so that it takes the value 0 on c ∈ H1(�
p
g ;Z2) if the restriction of s on a circle representing

c can be extended to a spin structure over a 2-manifold and takes the value 1 otherwise. One
can further show that the map Q is equivariant with respect to the action of H1(�

p
g ;Z2), in

particular Q is bijective. (See [33] for details.)
Following the definition of spin structures given in [52], one can easily deduce that there

exists a one-to-one correspondence between S1 and the set of isomorphism classes of spin
structures on D2×�

p
g . Inwhat follows,wewill identify these two sets by this correspondence.

The complement X \ S can be decomposed as follows:

X \ S = D2 × �
p
g ∪ (h1 � · · · � hn) ∪ D2 × �

p
g , (8)

123



Unchaining surgery and topology of symplectic 4-manifolds Page 21 of 32 77

Fig. 7 The inner circles are the
boundary components near δ j ,
while the outer circles are parallel
to ∂ A

where hi is a 2-handle attached along the vanishing cycle ci . We denote the subset D2×�
p
g ∪

(h1 � · · · � hn) ⊂ X\S by X ′. As is shown in the proof of [52, Theorem 1.1], the condition
(A) in Lemma 5.2 holds for a quadratic form if and only if the associated spin structure on
D2 ×�

p
g can be extended to that on X ′. The latter D2 ×�

p
g in the decomposition (8) can be

regarded as the union of a 2-handle D2 × B, where B is a small ball close to the boundary
component near δ j , and 2g + p − 1 3-handles. Thus, X \ S admits a spin structure if and
only if there exists a spin structure on X ′ which can be extended to that on X ′ ∪ (D2 × B).

In what follows, we identify a surface �
p
g with a fiber in ∂ X ′. Let A be an annulus

neighborhood of the boundary component near δ j which contains B and is away from any
of the vanishing cycles c1, . . . , cn . We take a parallel transport self-diffeomorphism ϕ of �

p
g

along the boundary of f (X ′) so that it preserves ∂�
p
g and A point-wise. We can then obtain

the following diffeomorphism:

∂ X ′ ∼= ([0, 1] × �
p
g )/(1, x) ∼ (0, ϕ(x)).

By the assumption ϕ is isotopic (relative to A) to the a j -th power of the Dehn twist diffeo-
morphism along a simple closed curve near ∂ A. The latter diffeomorphism is further isotopic
to the identity via the isotopy (supported on a neighborhood of A) described in Fig. 7.

As the figure shows, the isotopy makes B rotate around the boundary component a j times
keeping the inward tangent vector at the center of B inward, and also makes the boundary
component −a j times. We denote the concatenation of the two isotopies by ϕt (t ∈ [0, 1]).
Identifying ∂ D2×�

p
g with ([0, 1]×�

p
g )/(1, x) ∼ (0, x), we can explicitly give an attaching

map of D2 × �
p
g to X ′ as follows:

([0, 1] × �
p
g )/(1, x) ∼ (0, x) � (t, x) �→ (t, ϕt (x)) ∈ ([0, 1] × �

p
g )/(1, x) ∼ (0, ϕ(x)).

Wedenote this attachingmapby	. The attachingmapof the 2-handle D2×B is the restriction
	 |∂ D2×B . For a given Z2-valued quadratic function q on H1(�

p
g ;Z2), the restriction of the

associated spin structure on the image	(∂ D2× B) bounds a spin 2-manifold if q(a jδ j ) = 0
and does not bound otherwise. Moreover, it is easy to deduce from the definition of	 that the
pull-back of a spin structure s on 	(∂ D2 × B) by 	 |∂ D2×B bounds a spin 2-manifold if and
only if either a j is odd and s does not bound a spin 2-manifold, or a j is even and s bounds a
spin 2-manifold. The latter condition is equivalent to the condition (B) in Lemma 5.2.

Remark 5.3 The proof of Lemma 5.2 also shows that for a quadratic form q with the condition
(A), the condition (B) holds if and only if q(δ j ) ≡ a j for any j . Furthermore, if we can find
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a quadratic form with the condition (A) and one of the section S1, . . . , Sp has even self-
intersection, the condition (B) is automatically satisfied. Indeed, q induces a quadratic form
on H1(�g;Z2) and it can be extended to that on H1(�

p
g ;Z2) so that the values of δi ’s are

all zero. (An alternative way to deduce this observation is to find a spin structure on X by
applying Stipsicz’s result to the induced quadratic form on H1(�g;Z2).)

5.2 Stipsicz’s conjecture on exceptional sections

We will now prove that:

Theorem 5.4 (Counter-examples to Stipsicz’s conjecture) For any g ≥ 3, there exists a
genus-g fiber-sum indecomposable Lefschetz fibration without any exceptional sections.

Unlike the handful of earlier counter-examples with g = 2, 3 [3, 11, 48], these examples will
have Kodaira dimension 1 when g ≥ 4.

We will describe these counter-examples with explicit monodromy factorizations. The
spin characterization in Theorem 5.1 will play a vital role here to pin down the exact number
of exceptional spheres in the total spaces.

Let c1, . . . , c2g+1, a, b, a′, b′ ⊂ �2
g be the simple closed curves shown in Fig. 4. As we

did in the proof of Theorem 4.6, for any n ≥ 1 we regard �2
g as a subsurface of�2n

g with two
boundary components z1, z′

1 so that the curves a, b, a′, b′ are embedded in �2n
g as shown

in Fig. 6. In what follows, we use symbols representing simple closed curves in �2n
g (such

as ci , a, b) to represent homology classes in H1(�
2n
g ;Z2) represented by the corresponding

curves.

Lemma 5.5 For any g ≥ 3 and n ≥ 1 such that g + n is odd, there exists a quadratic form
q : H1(�

2n
g ;Z2) → Z2 with respect to the intersection pairing which satisfies

1. q(c1) = · · · = q(c2g+1) = 1,
2. q(d4) = · · · = q(d2g+1) = q(e4) = · · · = q(e2g+1) = 1,
3. q(x1) = · · · = q(xn) = q(x ′

1) = · · · = q(x ′
n) = 1, and

4. q(δ1) = · · · = q(δn) = q(δ′
1) = · · · = q(δ′

n) = 1.

Proof Since the elements c1, . . . , c2g, δ1, . . . , δn, δ′
2, . . . , δ

′
n form a basis of H1(�

2n
g ;Z2),

there exists a quadratic form q : H1(�
2n
g ;Z2) → Z2 which assigns the value 1 to all the

elements in the basis. The following equalities (in H1(�
2n
g ;Z2)) can be verified easily:

c2g+1 = c1 + c3 + · · · + c2g−1 + δ1 + δ2 + · · · + δn,

d j = e j = c j−3 + c j−2 + c j−1 + c j ,

xi = c1 + c3 + δi , x ′
i = c1 + c3 + δ′

i ,

δ′
1 = δ1 + · · · + δn + δ′

2 + · · · + δ′
n .

Using these equalities, we can calculate values of q as follows:

q(c2g+1) =
g∑

i=1

q(c2i−1) +
n∑

j=1

q(δ j ) = g + n ≡ 1,

q(d j ) = q(e j ) =
3∑

i=0

q(c j − i) +
∑

0≤i<k≤3

〈
c j−i , c j−k

〉
2 = 4 + 3 ≡ 1,
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q(xi ) = q(c1) + q(c3) + q(δi ) = 3 ≡ 1, q(x ′
i ) = q(c1) + q(c3) + q(δ′

i ) = 3 ≡ 1,

q(δ′
1) =

n∑
i=1

q(δi ) +
n∑

i=2

q(δ′
i ) = 2n − 1 ≡ 1.

We can thus conclude that the form q satisfies the desired conditions.

Let X ′
g(i) be the symplectic genus-g Lefschetz pencil with 2(i + 1) base points we

constructed in Sect. 4, which has the following monodromy factorization:

tδi+1 · · · tδ1 tδ′
i+1

· · · tδ′
1

=
{

txi+1 · · · tx1 tx ′
i+1

· · · tx ′
1
(tc1 tc2 tc3)

4(g−i) Dg Eg (g : odd),

txi+1 · · · tx1 tx ′
i+1

· · · tx ′
1
(tc1 tc2 tc3)

4(g−i)−2(tc3 tc2 tc1)
2Dg Eg (g : even).

Lemma 5.6 The manifold X ′
g(i) is spin if and only if g + i is even.

Proof Since the signature of X ′
g(i) is equal to −8(g − i) (see Lemma 4.7), X ′

g(i) is not
spin if g + i is odd. On the other hand, when g + i is even, the quadratic form obtained in
Lemma 5.5 above satisfies the necessary conditions in Theorem 5.1, so X ′

g(i) is spin in this
case.

We are now ready to prove the main result of this subsection:

Proof of Theorem 5.4 Suppose that g is even. The manifold X ′
g(0) is spin by Lemma 5.6,

and in particular minimal. Furthermore, we can deduce from Theorem 4.8 that the Kodaira
dimension of Xg(0) = X ′

g(0)�2CP
2 is equal to 1. The monodromy factorization of the

Lefschetz fibration on Xg(0) can be changed by Hurwitz moves as follows:

tx1 tx ′
1
(tc1 tc2 tc3)

4g−2(tc3 tc2 tc1)
2Dg Eg

∼tx1 tx ′
1
t2c1 tt−1

c1 (c2)
tc3 tc2 tc3(tc1 tc2 tc3)

4g−4(tc3 tc2 tc1)
2Dg Eg.

The curves x1, x ′
1, δ1, δ

′
1 and two disjoint curves parallel to c1 bound a sphere with six

boundary components. Thus, we can apply the braiding lantern substitution ([11, Lemma
5.1]) to the underlined part above. This substitution replaces two disjoint exceptional sections
with an exceptional bisection. Furthermore, by [18, Theorem 3.1]), this amounts to a rational
blowdown of a symplectic (−4)-sphere which can be viewed as the union of the four holed
sphere on the fiber and the four disjoint vanishing cycles in the lantern configuration, whereas
by [27, Lemma 5.1] (also see [11, Proposition 6.1]), such a rational blowdown has the same
effect as regular blowdown whenever this (−4)-sphere intersects an exceptional sphere once,
which is the case here. (Either one of the exceptional spheres corresponding to the two bound-
ary twists in the braiding lantern configuration hits the (−4)-sphere once.) So the resulting
symplectic 4-manifold is X ′

g(0)#CP
2. Since X ′

g(0) is minimal and has Kodaira dimension 1
(especially not rational nor ruled), the homology class represented by the bisection produced
by the braiding lantern substitution above is the only class in H2(X ′

g(0)�CP
2;Z) (up to sign)

represented by a (−1)-sphere (see [36, Corollary 3]), in particular there is no (−1)-spheres
intersecting a fiber of the Lefschetz fibration on X ′

g(0)�CP
2 at one point transversely. Thus,

the Lefschetz fibration we obtained after the braiding lantern substitution cannot admit any
exceptional sections.

Next, assume g is odd. Once again, the manifold X ′
g(1) is spin by Lemma 5.6, and

therefore minimal. Furthermore, it follows from Theorem 4.8 that κ(Xg(1)) = 1 if g ≥ 5,
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and κ(X3(1)) = 0. The manifold Xg(1) admits a Lefschetz fibration with the following
monodromy factorization:

tδ2 tδ1 tδ′
2
tδ′

1
= tx2 tx1 tx ′

2
tx ′

1
(tc1 tc2 tc3)

4g−4Dg Eg

∼ tx2 tx ′
2
t2c1 · tx1 tx ′

1
t2c3 tt−1

c1 t−2
c3 (c2)

tt−1
c3 (c2)

(tc1 tc2 tc3)
4g−6Dg Eg.

As we did above, we can apply the braiding lantern substitution at the underlined parts.
The resulting Lefschetz fibration has two exceptional bisections, and its total space is
X ′

g(1)�2CP
2, by the same arguments as above. Since X ′

g(1) is minimal and has non-negative
Kodaira dimension (especially not rational nor ruled), one can again deduce from [36, Corol-
lary 3] that the homology classes represented by the two bisections (produced by the braiding
lantern substitutions) are the only classes (up to sign) represented by exceptional spheres.
Thus, the Lefschetz fibration on X ′

g(1)�2CP
2 cannot admit any exceptional sections.

Finally, by Usher’s theorem on minimality of symplectic fiber sums [54, Corollary 1.2]
(also see [7, Theorem 1]) the presence of exceptional spheres in total spaces of all the Lef-
schetz fibrations above imply that none can be a fiber sum of nontrivial Lefschetz fibrations.

Remark 5.7 There are many more counter-examples one can produce using similar argu-
ments and ingredients. Note that the product txi+1 · · · tx1 tx ′

i+1
· · · tx ′

1
is Hurwitz equivalent to

txi+1 tx ′
i+1

· · · tx1 tx ′
1
. We can change the product

(tc1 tc2 tc3)
4(g−i)−l(tc3 tc2 tc1)

l (where l = 0 or 2)

to t4(g−i)
c1 t4(g−i)

c3 W via Hurwitz moves, where W is some product of Dehn twists. Thus, as we
did in the proof of Theorem 5.4, we can apply braiding lantern substitution to the Lefschetz
fibration on Xg(i) obtained in Sect. 4 so that the resulting Lefschetz fibration has i + 1
exceptional bisections, when i + 1 is less than or equal to 4(g − i). If g + i is even and
i ≤ g −2, then we can further prove that the resulting fibration cannot admit any exceptional
sections. Hence, we record that at least for any g ≤ 9, there exists a genus-g Lefschetz
fibration (X , f ), which is a counter-example to the Stipsicz conjecture, where κ(X) = 0.

6 Further applications

In this last section, we will show that by combining unchaining surgery with rational blow-
downs, we can produce further interesting examples. The two applications we present here,
one regarding the topology of symplectic 4-manifolds and one regarding that of pencils, will
utilize the Lefschetz pencils X ′

g(i) we constructed using unchaining.

6.1 Exotic 4-manifolds with b+ = 3 via genus-3 fibrations

In this subsection we will prove the following theorem:

Theorem 6.1 There are genus-3 Lefschetz fibrations (X j , f j ), for j = 0, 1, 2, 3, where each
X j is a minimal symplectic 4-manifold homeomorphic but not diffeomorphic to 3CP2� (19−
j)CP2, and each f j+1 has a monodromy factorization obtained from that of f j by a lantern
substitution.

We will need the following lemma in our proof:
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Fig. 8 The curves in a genus-3
surface

Lemma 6.2 Let the curves c j , a, a′ be as in Figs.4 and 5. One can perform 7 consecutive
lantern substitutions within the product t2a t2a′ t6c1 t3c3 t3c5 t6c7 in �3, up to Hurwitz moves.

Proof Let x, x ′, y, y′, z, z′, w, s, s′, v be the curves given in �3 as in Fig. 8. Note that
x, x ′, y, y′, z, z′, w are non-separating and s, s′, v are separating. We have the following
lantern relators L1, L ′

1, L2, L ′
2 and L3:

L1 = tc3 ts tx t−1
a t−1

c1 t−1
c1 t−1

a′ , L ′
1 = tc5 ts′ tx ′ t−1

c7 t−1
a t−1

a′ t−1
c7 ,

L2 = taty tz t−1
c1 t−1

c5 t−1
c3 t−1

c7 , L ′
2 = ta′ ty′ tz′ t−1

c1 t−1
c5 t−1

c3 t−1
c7 ,

L3 = ta′ tv twt−1
a t−1

s t−1
s′ t−1

a .

For W1 and W2 any two products of Dehn twists in �g , we will write W1
L−→ W2 when

W2 is obtained by applying a lantern substitution to W1 using the lantern relator L . Since

t2a t2a′ t6c1 t3c3 t3c5 t6c7 ∼ t4c1 t3c3 t3c5 t4c7 · tc7 ta′ tatc7 · ta′ tc1 tc1 ta,

applying L1-substitutions gives

t4c1 t3c3 t3c5 t4c7 · tc7 ta′ tatc7 · ta′ tc1 tc1 ta
L1−→ t4c1 t3c3 t3c5 t4c7 · tc7 ta′ tatc7 · tc3 ts tx .

Moreover, because

t4c1 t3c3 t3c5 t4c7 · tc7 ta′ tatc7 · tc3 ts tx ∼ (tc7 tc5 tc3 tc1)
3 · tc1 tc3 tc7 · tc7 ta′ tatc7 · ts tx ,

by applying L2-substitutions twice and L ′
2-substitution once we obtain

(tc7 tc5 tc3 tc1)
3 · tc1 tc3 tc7 · tc7 ta′ tatc7 · ts tx

L2,L2,L ′
2−−−−−→(taty tz)

2(ta′ ty′ tz′) · tc1 tc3 tc7 · tc7 ta′ tatc7 · ts tx .

We can further apply L ′
1 and L ′

2-substitutions as follows:

(taty tz)
2(ta′ ty′ tz′) · tc1 tc3 tc7 · tc7 ta′ tatc7 · ts tx

L ′
1−→(taty tz)

2(ta′ ty′ tz′) · tc1 tc3 tc7 · tc5 ts′ tx ′ · ts tx
L ′
2−→(taty tz)

2(ta′ ty′ tz′)2 · ts′ tx ′ · ts tx .

Here, note that taty tz ∼ ty tz ta , which follows from the lantern relation taty tz = tc1 tc3 tc5 tc7 ,
as a is disjoint from c1, c3, c5, c7. Therefore, we may further rewrite the product above as
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(taty tz)
2(ta′ ty′ tz′)2 · ts′ tx ′ · ts tx

∼(ty tz)
2(ta′ ty′ tz′)2 · t2a ts ts′ · tx tx ′ .

Finally, by applying L3 we obtain

(ty tz)
2(ta′ ty′ tz′)2 · t2a ts ts′ · tx tx ′

L3−→ (ty tz)
2(ta′ ty′ tz′)2 · ta′ tv tw · tx tx ′ .

This finishes the proof.

The proof of the theorem will now follow from applying the above lemma to the positive
factorization for the Lefschetz fibration X3(1) we obtained by unchaining.

Proof of Theorem 6.1 Let (X , f ) be the genus-3 Lefschetz fibration (X3(1), f3(1)) on 4-fold
blow-up of a symplectic Calabi–Yau homotopy K3-surface, whose monodromy is:

tδ2 tδ1 tδ′
2
tδ′

1
= tx2 tx1 tx ′

2
tx ′

1
(tc1 tc2 tc3)

8td4 td5 td6 td7 te7 te6 te5 te4 .

We will show that this monodromy factorization is Hurwitz equivalent to a positive factor-
ization which contains the product in Lemma 6.2.

We can check at once that td4 td5 td6 td7(ci+4) = ci for i = 1, 2, 3. This gives

tc1 tc2 tc3 · td4 td5 td6 td7 ∼ td4 td5 td6 td7 · tc5 tc6 tc7 .

Therefore, in �3, the following relation holds

1 = t2a t2a′(tc1 tc2 tc3)
8td4 td5 td6 td7 te7 te6 te5 te4 (9)

∼ t2a t2a′(tc1 tc2 tc3)
4td4 td5 td6 td7(tc5 tc6 tc7)

4te7 te6 te5 te4 .

Here, using the braid relators and the disjointness of c1 and c3 we obtain

tc1 tc2 tc3 · tc1 tc2 tc3 · tc1 tc2 tc3 · tc1 tc2 tc3 ∼ tc1 · tc1 tc2 tc3 · tc1 tc2 · tc1 tc2 tc3 · tc1 tc2 tc3
∼ tc1 · tc1 tc2 tc3 · tc1 · tc1 tc2 tc3 · tc1 · tc1 tc2 tc3 .

That is, we have

(tc1 tc2 tc3)
4 ∼ (t2c1 tc2 tc3)

3 ∼ t6c1 t3c3 tt−4
c1 t−3

c3 (c2)
tt−2

c1 t−2
c3 (c2)

tt−1
c3 (c2)

.

Similarly, we get

(tc5 tc6 tc7)
4 ∼ (tc5 tc6 t2c7)

3 ∼ ttc5 (c6)tt2c5 t2c7 (c6)tt3c5 t4c7 (c6)t
3
c5 t6c7 .

Since c5 and c7 are disjoint from a, a′, c1, c2, c3, the above arguments, the relation (9) and
a cyclic permutation then give

1 = t2a t2a′ t6c1 t3c3 t3c5 t6c7 · tt−4
c1 t−3

c3 (c2)
tt−2

c1 t−2
c3 (c2)

tt−1
c3 (c2)

· td4 td5 td6 td7 · T2,

where T2 = ttc5 (c6)tt2c5 t2c7 (c6)tt3c5 t4c7 (c6) · tt3c5 t6c7 (e7)tt3c5 t6c7 (e6)tt3c5 t6c7 (e5)tt3c5 t6c7 (e4). As we applied in

the proof of Lemma 6.2, we can apply 7 consecutive Lantern substitutions to the mon-
odromy of (X , f ), which yield new symplectic genus-3 Lefschetz fibrations (Xk, fk), for
k = 1, . . . 7, where Xk is obtained from X by rationally blowing-down k symplectic (−4)-
spheres. (Note that we apply the 7 Lantern substitutions in the same order as we did in the
proof of Lemma 6.2.)

Let us first determine the homeomorphism type of each Xk . From the algebraic topological
invariants of (X , f ) = (X3(1), f3(1)) we calculated earlier, we deduce that e(Xk) = 28− k
and σ(Xk) = −20+k. Moreover, we claim that π1(Xk) = 1 for each k = 1, 2, . . . , 7. When
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1 ≤ k ≤ 5, we see that the monodromy of fk contains Dehn twists td4 , td5 , td6 , td7 , tc1 , tc2 , ta .
These Dehn twist curves alone give enough relations to kill the fundamental group as in
the proof of Theorem 4.7. If k = 6, 7, the monodromy of fk contains the Dehn twists
ta′ , tx , tt−1

c3 (c2)
, td4 , td5 , td6 , td7 . Since x = a1a2 = 1, t−1

c3 (c2) = b−1
1 a−1

2 b1a1b−1
1 = 1 and

a′ = [a1, b1]a2, we again have π1(X j ) = 1. None of these manifolds have even intersection
forms, because they all contain reducible fibers, which always yield surfaces of odd self-
intersection. (And none other than X4 has signature divisible by 16 anyway.) Hence, by
Freedman’s theorem, we see that each Xk is homeomorphic to 3CP2�(23 − k)CP2.

On the other hand, the standard 4-manifolds 3CP2�(23− k)CP2 do not admit symplectic
structures: any 4-manifold that is a smooth connected sum of two 4-manifolds with b+

2 > 0
has vanishing Seiberg-Witten invariants [56], whereas by Taubes, any symplectic 4-manifold
with b+ > 0 has non-trivial Seiberg-Witten invariants [53]. So, none of the Xk is diffeomor-
phic to 3CP2� (23 − k)CP2.

Themore interesting cases will be for k = 4, 5, 6, 7. (When k ≤ 3, c21(Xk) = −4+k < 0,
whereas by Taubes’ seminal work, a minimal symplectic 4-manifold with b+

2 > 0 always
has c21 ≥ 0.) The rest of our proof is devoted to showing that each Xk , for k = 4, 5, 6, 7, is
indeed minimal. To do so, we will need to go over our construction one more time, this time
paying attention to how exceptional spheres intersect the spheres cobounded by the 4 lantern
curves in each lantern substitution. (After a small perturbation, each one of these spheres can
be contained in a singular fiber with multiple nodes, and it is this symplectic (−4)-sphere one
rationally blowdowns in the course of the lantern substitution.) Below we will simply refer
to these as lantern spheres, and denote them using the corresponding lantern substitutions
(while pointing out any potential ambiguities).

The initial genus-3 Lefschetz fibration (X , f ) we started with, where X is the 4-fold
blow-up of a symplectic Calabi–Yau homotopy K3 surface we will simply denote by X ′,
had a total of 4 exceptional sections S1, S2, S′

1, S′
2, which hit the fibers at the marked points

obtained by collapsing the boundary components δ1, δ2, δ
′
1, δ

′
2 in Fig. 6. The reader may want

to refer to this figure and Fig. 4 for the rest of our discussion, where the curves x1, x2 and
x ′
1, x ′

2 are the lifts of a and a′ in our lantern substitutions.
The first lantern sphere L1 we rationally blowdown can be seen to intersect once with

S2, S′
2. So by [27, Lemma5.1], X1 is still diffeomorphic to 3-fold blow-up of X ′.Moreover, by

[11, Lemma 6.1], the substitution, when themarked points are taken into account, correspond
to a braiding lantern substitution, which turns the pair of exceptional sections the lantern
sphere intersects to an exceptional bisection of the resulting fibration. Denote this exceptional
bisection by S22′ . Let us denote the next three lantern spheres, two of which correspond to
the lantern substitution L2 while one of which corresponds to L ′

2, as L2(1), L ′
2(2) and L2(3)

in the order they will be blown down.
The next lantern sphere L2(1) intersects the exceptional spheres S1 and S22′ only once,

and therefore we once again conclude that X2 is diffeomorphic to a twice blow-up of X ′,
whereas the spheres S1 and S22′ now descend to an exceptional triple-section S122′ . Similarly,
we can verify that X3 is diffeomorphic to a single blow-up of X ′ and the exceptional sphere,
denoted by S11′22′ , becomes a quadruple-section. Now, the lantern sphere L2(3) intersects
S11′22′ algebraically and geometrically twice. So by [13, Lemma 1.1], the symplectic 4-
manifold X4 obtained by rationally blowing down L2(3) in X3 is minimal, and moreover,
the symplectic 4-manifolds X5, X6, X7 we obtain by further rational blowdowns along the
(−4)-spheres remain to be minimal. Lastly, for the statement of the theorem, we only record
the minimal cases (when k = 4, 5, 6, 7) by resetting the index of X j as j = k − 4.
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Remark 6.3 With all the additional information we have on the exceptional (multi)sections
of the Lefschetz fibrations (Xk, fk), we can easily calculate the Seiberg-Witten invariants
of Xk , and moreover, represent their basic classes as multisections. The symplectic Calabi–
Yau surface X ′ has trivial canonical class, which is its only Seiberg-Witten basic class [43].
Therefore the Seiberg-Witten invariants of each Xk ∼= X ′#(4 − k)CP2, for k = 0, 1, 2, 3,
are determined by the blow-up formula [56], and the 24−k basic classes of X0 := X , X1, X2

and X3 are all represented by the collection of exceptional (multi)sections {S1, S′
1, S2, S′

2},{S1, S1′ , S′
22′ }, {S1, S122′ }, and {S1122′ }, respectively, where each sphere is taken with either

orientation. In particular, X3 ∼= X ′#CP2 has only two basic classes: ±E , where E is rep-
resented by S11′22′ . In turn, by the Seiberg-Witten formula for rational blowdown [24], the
only basic class that descends from X3 to X4 is E , since it intersects the (−4)-sphere of
the rational blowdown exactly 4 times, and the class it descends to, up to sign, is the only
basic class of X4. Using the machinery of [11], we can conclude that this new class is rep-
resented by a quadruple-section (represented by the same 4 marked points on the fiber),
which is now a torus R0 of self-intersection 0. Iterating the same arguments, we see that
each X4+ j , for j = 0, 1, 2, 3, has only one basic class up to sign, which is represented by a
quadruple-section R j of genus j , with R2

j = j . By Taubes, the multisection R j represents
the symplectic canonical class (and its Seiberg-Witten value is +1).

6.2 Inequivalent pencils with explicit monodromies

Here we will construct inequivalent relatively minimal genus-g Lefschetz fibrations for each
g ≥ 3, on a family of symplectic 4-manifolds of Kodaira dimension −∞, 0 and 1, and
especially on rational surfaces.

Theorem 6.4 For any g ≥ 3 and i = 0, 1, 2, . . . , g − 1, there are pairs of inequivalent rela-
tively minimal genus-g Lefschetz pencils (Yg(i), h j

g(i)), j = 1, 2, and inequivalent Lefschetz
fibrations on their blow-ups. For any g ≥ 3, there are pairs of inequivalent relatively minimal
genus-g Lefschetz pencils on once blown-up elliptic surface E(1) �CP2 ∼= CP

2 � 10CP2,
with different number of reducible fibers.

These inequivalent pencils and fibrations will be produced following the recipe given in
[11], and will be distinguished by the number of their reducible fibers. Therefore they are
even inequivalent up to fibered Luttinger surgeries (see [5, 8, 9]), which never change the
topological type of fibers.

We will need the following lemma:

Lemma 6.5 Let x ′′
1 be the simple closed curve on �

2(i+1)
g as in Fig.9, and let D′

g :=
td6 td7 · · · td2 g+1 and E ′

g := te2 g+1 · · · te7 te6 . For each i = 0, 1, 2, . . . , g − 1, the follow-
ing positive factorization is Hurwitz equivalent to the monodromy factorization of the pencil
(X ′

g(i), f ′
g(i)) given in Theorem 4.6:

when g is odd,

tδi+1 · · · tδ2 tδ1 tδ′
i+1

· · · tδ′
2
tδ′

1

=
2∏

k=i+2

txk tx ′
k
· tc2 tc3(tc1 tc2 tc3)

4(g−1−i)+1(tc1 tc2 tc3)
2 · tx1 td4 td5 tx ′′

1
· D′

g E ′
g · tc5 · te5 te4
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Fig. 9 The curve x ′′
1 on �

2(i+1)
g

Fig. 10 The curves x, y, z on �
2(i+1)
g

when g is even,

tδi+1 · · · tδ2 tδ1 tδ′
i+1

· · · tδ′
2
tδ′

1

=
2∏

k=i+2

txk tx ′
k
· tc2 tc3(tc1 tc2 tc3)

4(g−1−i)+1(tc3 tc2 tc1)
2 · tx1 td4 td5 tx ′′

1
· D′

g E ′
g · tc5 · te5 te4 .

Proof Let us prove the case of even g, and leave the odd case to the reader, the proof of which
is very similar.

Note that since c1, c2, c3 are disjoint from x1, . . . , xi and x ′
1, . . . , x ′

i , and x� is disjoint
from x ′

j for any � and j , we have the following relation:

txi+1 · · · tx2 tx1 tx ′
i+1

· · · tx ′
2
tx ′

1
(tc1 tc2 tc3)

4(g−1−i)+2(tc3 tc2 tc1)
2Dg Eg

∼ tc1 ·
2∏

k=i+1

txk tx ′
k
· tc2 tc3(tc1 tc2 tc3)

4(g−1−i)+1(tc3 tc2 tc1)
2 · tx1 tx ′

1
· Dg Eg

∼
2∏

k=i+1

txk tx ′
k
· tc2 tc3(tc1 tc2 tc3)

4(g−1−i)+1(tc3 tc2 tc1)
2 · tx1 tx ′

1
· Dg Eg · tc1

where Dg = td4 td5 · · · td2g+1 and Eg = te2g+1 · · · te5 te4 . Here, it is easy to check that x ′′
1 =

(td4 td5)
−1(x ′

1) and c5 = (te5 te4)(c1). This gives

tx ′
1
· td4 td5 ∼ td4 td5 · tx ′′

1

te5 te4 · tc1 ∼ tc5 · te5 te4 .

This completes the proof.
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Fig. 11 The curves x ′, y′, z′ on �
2(i+1)
g

Proof of Theorem 6.4 We will run our constructions for any i = 0, 1, 2, . . . , g − 1.
It is easy to see that, after Hurwitz moves, the monodromy factorization of (X ′

g(i), fg(i))

yields a positive factorization with the subword t2c1 tx1 t ′x1 . Note that x1, x ′
1, δ1, δ

′
1 and two

disjoint curves parallel to c1 bound a sphere with six boundary components. Applying the
lantern substitution to this subword t2c1 tx1 tx ′

1
replaces it with the new subword tx ty tz in the

factorization, where x, y, z are the curves as in Fig. 10. Akin to the proof of Theorem 5.4,
this then gives a genus-g Lefschetz pencil (Y 1

g (i), h1
g(i)). This pencil h1

g(i) has one reducible
fiber corresponding to the Dehn twist along the separating curve y.

On the other hand, if we take the Hurwitz equivalent monodromy factorization of
(X ′

g(i), fg(i)) given in Lemma 6.5, it is again easy to see that, after further Hurwitz moves,
we get a positive factorization with the subword tc1 tx1 tx ′′

1
tc5 . Note that c1, x1, x ′′

1 , c5, δ1, δ′
1

bound a spherewith six boundary components.Whenwe apply a braiding lantern substitution
along this subword tc1 tx1 tx ′′

1
tc5 , we replace it with the new subword tx ′ ty′ tz′ in the factoriza-

tion, where x ′, y′, z′ are the nonseparating curves in Fig. 11. This gives a genus-g Lefschetz
pencil (Y 2

g (i), h2
g(i)) where as well, where all singular fibers of h2

g(i) are irreducible.
By the arguments we employed in earlier proofs, since the lantern spheres of for these

substitutions intersect an exceptional section once, we have Y j
g (i) ∼= X ′

g(i)�CP
2, for each

j = 1, 2. Therefore, the two pencils h j
g(i) can be viewed on the same symplectic 4-manifold,

but have different number of reducible fibers (one versus none), which means they are not
equivalent.

The examples in the last part of the theorem are derived in the particular case when
i = g − 1, where Yg(g − 1) ∼= X ′

g(g − 1)�CP2, and X ′
g(g − 1) ∼= E(1) by Theorem 4.7.
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