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The hypothetical axion particle (of unknown mass) is a leading candidate for dark matter (DM).
Many experiments search for axions with microwave cavities, where an axion may convert into a cav-
ity photon, leading to a feeble excess in the output power of the cavity. Recent work [Backes et al.,
Nature 590, 238 (2021)] has demonstrated that injecting squeezed vacuum into the cavity can substan-
tially accelerate the axion search. Here, we go beyond and provide a theoretical framework to leverage the
benefits of quantum squeezing in a network setting consisting of many sensor cavities. By forming a local
sensor network, the signals among the cavities can be combined coherently to boost the axion search.
Furthermore, injecting multipartite entanglement across the cavities—generated by splitting a squeezed
vacuum—enables a global noise reduction. We explore the performance advantage of such a local, entan-
gled sensor network, which enjoys both coherence between the axion signals and entanglement between
the sensors. Our analyses are pertinent to next-generation DM-axion searches aiming to leverage a network
of sensors and quantum resources in an optimal way. Finally, we assess the possibility of using a more
exotic quantum state, the Gottesman-Kitaev-Preskill (GKP) state. Despite a constant-factor improvement
in the scan time relative to a single-mode squeezed state in the ideal case, the advantage of employing a
GKP state disappears when a practical measurement scheme is considered.
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I. INTRODUCTION
The nature of dark matter (DM) poses an unsolved

mystery in physics. Axions are a well-motivated DM
hypothesis. Originally proposed to address the strong
CP problem [1–4], light pseudoscalars are also common
in top-down constructions of high-energy physics [5,6].
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Such light bosonic fields may be produced in the early
Universe in large occupation numbers and pose a low aver-
age momentum in late times. The axion can hence be
described today as a coherent state—a classical nonrela-
tivistic wave, oscillating at a frequency set by the axion
mass.

The energy density in the axion field is a good can-
didate to serve as the dark matter [7–9]. The axion
dark-matter hypothesis can be tested experimentally in
cavity-based searches [10] in which axions can convert to
photons in a quiet cavity mode in the presence of a back-
ground magnetic field [11], with searches actively ongoing
(e.g., ADMX [12,13], HAYSTAC [14], ORGAN [15], and
CAPP [16]). The resonant frequency of the cavity mode
must match the axion mass ma, an unknown parameter, and
should thus be scanned as part of the search. The size of the
cavity Lcav is parametrically set by the inverse axion mass
ma, Lcav ∼ m−1

a . A challenge of axion cavity searches lies
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in detecting a small displacement of the electromagnetic
field from the initial state, thus distinguishing the faint
signal from the noise. Enhancing the sensitivity to small
signals allows one to enhance the rate at which the cavity
frequency is scanned, leading to a more effective search.
Quantum resources and quantum measurement techniques
can play a vital role here.

Quantum information science brings an unprecedented
capability in ultraprecise sensing [17–22]. Nonclassical
phenomena such as entanglement and squeezing have been
utilized to improve the measurement precision of vari-
ous application scenarios, including biosensing [23], radar
target detection [24–26], the detection of gravitational
waves [27–30], and the search for dark matter [31–37].
Indeed, a recent experiment [33] has utilized squeezing
in microwave cavity sensors to speed up the dark-matter
search by a factor of 2 despite loss and noise. However,
quantum sensing has much more to offer: entangling mul-
tiple sensors is known to fundamentally change how the
precision scales with the number of sensors, from the stan-
dard quantum limit (imposed by the law of large numbers)
to Heisenberg scaling attained via multipartite entangle-
ment [17]. Moreover, entangled sensor networks enable
distributed quantum sensing (DQS), thus permitting an
enhanced extraction of global properties of the network
[38–43].

In this work, we propose a design of entangled sensor
networks for axion dark-matter searches. A local network
of sensors can benefit the search thanks to a feature of
the axion dark-matter signal that lies in its nonrelativis-
tic nature. The virial velocity of dark matter in our galaxy
is of order v ∼ 10−3 in units of the speed of light. The
momentum of axion particles mav, which sets the gradient
in the axion field, is parametrically suppressed compared
to the axion mass. In any moment in time, the axion field
will change over a spatial length of order λ ∼ 103m−1

a ,
which is the signal coherence length. Since the size of each
cavity-based sensor is of order m−1

a , a local network of sen-
sors, sketched in Figure 1, will be subject to a coherent
axion signal common to all sensors within the network.
By forming a local sensor network, the signals from dif-
ferent cavities can be coherently combined to boost the
scan rate. Furthermore, injecting multipartite entanglement
across the cavities—generated by splitting a squeezed vac-
uum—enables a global noise reduction, leading to a further
enhancement in the scan rate.

Our paper is organized as the following. Section II
contains the preliminary knowledge to prepare the pre-
sentation of our main results (Sec. III) on entangled sen-
sor networks. In Sec. II A, we provide some background
on dark matter and axions. In Sec. II B, we introduce
a quantum model of microwave cavities for dark-matter
search. In Sec. II C, we revisit the Dicke radiometer
equation and give the figure of merit of a dark-matter
search system—the scan rate. In Sec. II D, we discuss

FIG. 1. Illustration of entangled sensor cavities within a net-
work volume of radius r̄, taken to be much smaller than the axion
wavelength λ. Thanks to this hierarchy of scales, the entire net-
work experiences a coherent signal, which can be combined at
the amplitude level. The cylinders represent the cavities and the
colored lines represent their entanglement. The black solid lines
represent joint processing of the measurement to search for dark
matter.

how squeezing can boost the scan rate, as proposed in
Refs. [31,32,34]. In Sec. III, we introduce our quantum
network scheme, beginning with the ideal identical sensor
case in Sec. III A and generalizing to nonidentical case in
Sec. III B. To fully explore quantum sensing techniques, in
Appendix G we consider more exotic quantum states, such
as the Gottesman-Kitaev-Preskill (GKP) state [44], which
is shown to be valuable in sensing both quadratures of dis-
placements [45,46]. More detailed tutorials and analyses
are provided in the Appendices for further reference.

II. PRELIMINARY

A. Axion dark matter
Amongst the many orders of magnitudes in mass that a

dark-matter candidate can reside in, the ultralight regime
(with DM masses between 10−21 eV ∼ keV), with the
wavelike aspect of dark matter being more prominent, is
interesting in many respects. In particular, quantum-noise-
limited devices can play a critical role here in probing
dark matter. In this regime, bosonic dark matter—such as
axions, scalar DM, dark photon etc.—are all possible dark-
matter candidates. The optimal experimental setup in the
search will depend on how they couple to standard model
particles.

Even within axion DM searches, one can consider var-
ious couplings, such as its coupling to spin or to electro-
magnetic fields. In a cavitylike setup, it is natural to exploit
its coupling to photons via the following interaction:

− a
4fa

FµνF̃µν = a
fa

$E · $B. (1)
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Here a represents the dynamical axion dark-matter field,
fa is the axion decay constant, and we express the gen-
eral covariant interaction in terms of local quantities in
the laboratory, the electric and magnetic fields, $E and $B,
respectively. This implies, for instance, in a background
magnetic field $B, an axion DM will induce an electric
field $E within the cavity [10]. We consider this standard
approach in this work, though the principle of leveraging
a quantum network to benefit the scan rate is applicable
more generally to wavelike dark matter.

Many of the features that we discuss apply to any wave-
like dark matter, but we refer to the axion for concreteness.
The local DM density in our region of the Milky Way is
approximately,

ρa ∼ 0.3 − 0.4 GeV/cm3. (2)

The local number density of ultralight DM with mass ma is
then

ρa

ma
∼ 1015

(
µeV
ma

)
cm−3 ∼ 1015

(
λ

km

)
cm−3. (3)

Here λ is the De Broglie wavelength of the cold dark mat-
ter, approximately (mav)−1 with a typical virial velocity of
order v ∼ 200 km/sec [47]. Due to the large number den-
sity of the axion field, locally, within a coherence time, the
axion DM behaves like a classical wave,

〈a〉(ma, $k0, t) =
√

2ρa

m2
a

cos
(
ω0t + $k0 · $x + φa

)
. (4)

Here
√

2ρa/m2
a is the classical wave amplitude, φa is the

phase, $k0 is the wave vector with |$k0| = 2π/λ, and ω0 ≡√
m2

a + |$k0|2 ∼ ma is the axion central frequency. In real-
ity, all parameters drift continuously with time, however
we work in a discrete approximation. Hence, within a
coherence time, the phase φa is fixed; while above the
coherence time, φa is completely random in [0, 2π). Simi-
larly, after a coherence time, the direction of $k0 is expected
to change by order one, its magnitude by order 10−3ma, and
thus, ω0 will change by order 10−6ma. Therefore, the axion
can effectively be thought of as a coherent background
source of frequency ma and bandwidth of order 'a ∼
ma/Qa, where Qa ∼ 106 is the “axion quality factor.”

The axion De Broglie wavelength also sets a coherence
length for the axion field, above which spatial variations
of the axion field become appreciable. Because the Earth
moves through the DM halo with a similar velocity, the
time the lab spends within a coherence length is (mav

2)−1,
which is the coherence length of the axion signal.

In gist, the classical field in Eq. (4) is a good approxima-
tion within a coherence time. A more accurate description

TABLE I. Description of physical parameters.

Physical parameters Description

Qc Intrinsic cavity quality factor
V Cavity volume
B Magnetic field
gaγ Axion-photon coupling
ma Axion mass
ρa DM energy density
'a ∼ (ma/Qa) Axion bandwidth, Qa ∼ 106

is a superposition of nearly coherent waves with a fre-
quency spread of order 10−6 around the central frequency
of ma. It is thus sometimes said that the axion is a coher-
ent oscillator with a quality factor Qa ∼ 106. As a result,
the phase φa in the approximate description above drifts
slowly and is randomized roughly every 106 periods or so.

The prevailing way to search for axion dark matter is
to place an electromagnetic cavity with a high-quality fac-
tor Qc in a static magnetic field $B. Cavity modes in which
$E · $B (= 0 will be excited by the coherent oscillating axion
background. The power of the axion induced signal in the
cavity is

Pcav ∼ g2
aγ

ρa

ma
B2Vη min [Qc, Qa] , (5)

where η is an order 0.1–1 form factor and V is the vol-
ume of the cavity (see Table I for a summary of physical
parameters). It is useful for our analysis to write the typical
(unitless) axion-induced displacement of the cavity field

δE ∼

√
Pcav

ma'a
. (6)

The goal of the axion search is to sense this displacement
over the noise, be it thermal or quantum in nature. With this
effective description of the axion dynamics and its interac-
tion in a cavity, we now move on to writing a quantum
model for the detector to account for the relevant effects.

B. Quantum model of a cavity
We utilize the workhorse cavity setup described in Refs.

[31,32] to model the coupling of a hypothetical axion
field to the electromagnetic mode of a (microwave) cav-
ity (see Fig. 2) and eventually develop a quantum channel
model for the input-output transformations of the cavity.
Mathematical details justifying this model and channel
decomposition are found below and in Appendix B. We
emphasize that the model presented below works for detec-
tion of any fluctuating classical field, which linearly drives
the quantum field of a microwave cavity. Thus, throughout
the document, we use the terminology “signal field” and
“axion field” interchangeably.
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FIG. 2. Cavity model. (Top) Illustration of the various cou-
plings to the cavity: γm denotes the measurement-port coupling
parameter (with the input and output measurement ports being
accessible and controllable) for the âm mode; γ+ denotes intrin-
sic cavity loss via the â+ mode; and γs determines the coupling
strength between the cavity mode and the axion-field mode
âs (note γs ) γm, γ+; cf. [31]). (Bottom) An equivalent single-
mode Gaussian quantum-channel description, which faithfully
describes the input-output transformation of the measurement-
port mode, âm. Channel decomposes into a thermal-loss channel
with attenuation parameter |χmm|2 and thermal-noise parameter
NT = 1 + 2n̄T, followed by a cavity-induced rotation by an angle
θmm and a random, axion-induced displacement.

We model axion-to-photon conversion in a microwave
cavity by treating the axion-field as a coherent (within the
DM coherence time) linear drive, which drives a damped
microwave cavity mode at a feeble rate γs (a signal con-
version rate, with units of inverse seconds; its connec-
tion to physics parameters are discussed in Appendix F).
A transmission line running into and emanating from the
“measurement port” of the cavity allows access to the cav-
ity field. We assume full control of the measurement port in
the sense that (1) the coupling rate between the cavity and
the measurement port, γm, is tunable; (2) we can design
and inject fields into the cavity through the measurement-
port input; and (3) we can measure the quadrature variables
of the measurement-port output with homodyne or hetero-
dyne detection. As shown in Fig. 2, formally, the cavity
model consists of three input-output modes—the measure-
ment port âm, the loss port â+ describing damping of the
microwave cavity, and the axion field (linear drive) âs,
respectively—with only the measurement port âm being
experimentally accessible. Here we describe each mode by
its annihilation operator.

The input-output relations for the system of modes
(âm, â+, âs) can be found in the spectral domain, in the
rotating reference frame of the cavity (rotating at cavity
resonance frequency ωc), resulting in the linear relation
(see Appendix B and Ref. [31])

â(out)
k (ω) =

∑

j ∈{m,s,+}
χ kj (ω)â(in)

j (ω), (7)

where ω is the cavity detuning, with [âk(ω), â†
j (ω

′)] =
2πδkj δ(ω − ω′) being the commutation relations for both
the input and output fields. Hence, âk(ω) has units of√

quanta/Hz. The linear susceptibility matrix, χ , is defined
with matrix elements

χ kj (ω) = δkj −
√

γkγj

γ /2 + iω
, (8)

where γ =
∑

j ∈{m,s,+} γj is the total coupling rate. It can
be shown that

∑
j χ∗

ij χ jk = δik, and thus χ is a unitary
matrix, which, in the quadrature basis (Q’s and P’s; see
below), corresponds to a symplectic orthogonal transfor-
mation (see Appendix B for explicit details). The cor-
responding unitary dynamics is therefore Gaussian [48],
which will allow us to reduce the full, unitary dynamics of
the three-mode system to a single-mode quantum channel
of the measurement-port mode, as we describe below. The
forthcoming analyses are with respect to a single detuned
frequency ω.

To simplify the SNR calculations, we model the con-
tinuous spectrum as a set of discrete frequency modes
with bin size inverse to the total observation time [49] and
define the quadrature operators for the measurement port,

Q̂m ≡ 1√
2

(
âm + â†

m
)

and P̂m ≡ i√
2

(
â†

m − âm
)

, (9)

so that the canonical commutation relations [Q̂m, P̂m] = iÎ.
Here it is understood that this definition holds for both “in”
and “out” modes. We now define the vector of quadra-
ture operators R̂m ≡ (Q̂m, P̂m).. From which we define the
mean vector and the covariance matrix for the measure-
ment port (i.e., the vector of first moments and matrix of
second moments, respectively),

µm ≡ 〈R̂m〉 (10)

(σ m)ij ≡
〈{(

R̂m − µm

)

i
,
(

R̂m − µm

)

j

}〉
, (11)

where the index i corresponds to the ith entry of the vec-
tors, the expectation value is taken with respect to some
quantum state of the mode âm, and {·, ·} is the symmetric,
anticommutator.
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We work in the Heisenberg picture and thus describe
the input-output dynamics of the mode âm by first
specifying the input moments (µ(in)

m , σ (in)
m )—which is

equivalent to specifying the input quantum state to the
measurement port, assuming an initial Gaussian quantum
state—and then determine the Gaussian quantum channel
G : (µ(in)

m , σ (in)
m ) → (µ(out)

m , σ (out)
m ) where (µ(out)

m , σ (out)
m ) are

the moments of the measurement port exiting the cavity.
Although the full transformations implied by Eq. (7) are
unitary, the reduced transformation induced by the channel
G (which can be derived from the full unitary transfor-
mation) is nonunitary, due to our restriction to a single
mode. Nonetheless, G serves as a valid quantum opera-
tion. Indeed, as described in detail in Appendix B, we
can decompose the Gaussian quantum channel G into a
concatenation of three standard channels:

1. A thermal-loss channel LNT
χmm , with attenuation

parameter |χmm|2 and noise spectral-density param-
eter NT = 1 + 2n̄T ≥ 1, where n̄T is the bosonic,
thermal occupation number for a harmonic oscilla-
tor in equilibrium at temperature T and oscillating
at the detuned frequency ωc + ω. Physically, the
attenuation parameter |χmm|2 describes the ability of
quanta injected into the cavity to efficiently transfer
to the output. The noise parameter NT describes the
noise added in this transfer process; such a process
always adds at least a unit of vacuum noise (hence,
NT ≥ 1). For instance, near the operating conditions
(see, for instance, Refs. [32,33]) ωc ≈ 2π × 7 GHz
and T ≈ 35 mK, n̄T ≈ 1.1 × 10−4; the noise is thus
vacuum dominated.

2. A cavity-induced phase rotation .θmm , where θmm ≡
arg(χmm) is the relative angle between the input and
output fields of the measurement port. This defines
a natural reference frame for the measurement-port
fields, which we can go to by applying the comple-
mentary phase shift .−θmm to input fields prior to
the cavity interaction. See Eqs. (B13) and (B14) and
Appendix B for details regarding the cavity-induced
angle θmm (and θms defined below).

3. An axion-induced displacement, Dν , where ν =
|χms|O(θms)µs is the signal amplitude to be read
out from the measurement port of the cavity [50].
Here, |χms| is the absolute value of the (m, s) ele-
ment of the susceptibility matrix χ , O(θms) is a
2 × 2 rotation matrix by the angle θms ≡ arg(χms),
and µs is the spectral amplitude of the axion field
in phase space (frequency dependence is dropped
for brevity).

In gist, the quantum channel mapping the input to the
output is G = Dν ◦ .θmm ◦ LNT

χmm , where “◦” means the
concatenation of quantum channels. In deriving this result,
we assume the axion field to be a classical, coherent

field. However, it is easy to generalize this to a classi-
cal ensemble (associated with the stochastic evolution of
the axion field in phase space), by specifying a phase-
space probability density function (PDF), p(µs), for the
axion field.

Utilizing the Gaussian formalism (see Appendices A
and B), we find a general expression for the measurement-
port output moments in terms of the input moments and the
channel parameters,

µ(out)
m = |χmm|O(θmm)µ(in)

m + |χms|O(θms)µs (12)

and

σ (out)
m = |χmm|2O(θmm)σ (in)

m O.(θmm)+NT
(
1 − |χmm|2

)
I2.

(13)

For later reference, we write the relevant susceptibility
coefficients in terms of the original coupling rates,

|χmm|2 = 1 − γmγ+ + γmγs

(γ /2)2 + ω2 ≈ (γm − γ+)
2/4 + ω2

(γ /2)2 + ω2 , (14)

|χms|2 = γmγs

(γ /2)2 + ω2 , (15)

where we expand γ 2 = (
∑

j ∈{m,s,+} γj )
2 and use the well-

justified approximation γs ) γm, γ+. To be clear, the
approximations are at O(γ 2

s ). A plot of the suscepti-
bility coefficients and the mixing angles are shown in
Fig. 9 of Appendix B. We include a table of cavity-model
parameters that we use throughout the paper in Table II.

C. Revisiting the Dicke radiometer equation and the
scan rate

In this section we derive the SNR for an axion search
(known as the Dicke radiometer equation [51]) and intro-
duce the standard figure of merit for the search, the so-
called scan rate. For this purpose, we assume that the input
to the cavity consists of only thermal fluctuations, which
reduce to vacuum fluctuations at zero temperature. We
extend this to other quantum inputs in later sections. After
describing the detection methods, we formally introduce
the scan rate, which is the rate at which one can tune the
cavity-resonance frequency in search for an axion signal
in frequency space. The scan rate is an important figure of
merit because the mass of axion is unknown, spanning a
range covering at least three decades (or more), and thus
scanning over such a large range as swiftly as possible is
desirable.

We compute the SNR of the power-spectral-density
(PSD) in a homodyne detection scheme, when the
measurement-port input consists of thermal and vacuum
fluctuations only, i.e., µ(in)

m = 0 and σ (in)
m = NTI2. For com-

pleteness, we present the heterodyne result in Appendix C.
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TABLE II. Cavity-model parameters are in the top half of the table. Several useful parameters that are derived in terms of the model
parameters are shown in the bottom half. Their connections to a few physical parameters can be found in Table. I.

Model parameters Description Connection to axion model

ω Cavity detuning (resonance at ω = 0) Frequency variable = ωc + ω
γ+ Internal dissipation rate of cavity γ+ ≡ ωc/Qc
γm Measurement-port coupling rate γm ≡ β(ωc/Qc), with coupling β
γs Signal coupling rate: γs ) γ+, γm γs ≡ g2

aγ B2η/4'a
µs Signal amplitude µs ≡

√
ρaV/ma

T System temperature . . .
γ Loaded cavity linewidth γ ≈ γm + γ+ = ωc/Ql
χ ij Complex coefficients of susceptibility matrix Eqs. (14) and (15)
θij Complex angles of susceptibility matrix Eqs. (B14) and (B13)
n̄T Bosonic thermal occupation at temp. T Bose-Einstein distribution
NT Additive noise parameter: NT = 1 + 2n̄T Vacuum plus thermal noise
ns Occupation number of signal ns = ρaV/ma number of axions in cavity

1. Within the axion coherence time
We begin our analyses for detection within the coher-

ence time of the axion field, taking the axion signal as
unknown but coherent. A homodyne detection scheme
enables measurement of a single quadrature of an electro-
magnetic field, e.g., the Q quadrature, at the fundamental
quantum noise level. An optical homodyne measurement
consists of mixing the signal mode with a strong local
oscillator of the same frequency (i.e., a high-amplitude
laser of known phase) at a balanced beam splitter and mea-
suring the difference in the intensities at each output port
of the beam splitter. In the context of axion search in the
microwave domain, a homodyne measurement differs from
that in the optical domain. In a typical configuration for
microwave homodyne measurement, a high-gain phase-
sensitive amplifier first amplifies a selected quadrature
without introducing additional noise, followed by a phase-
insensitive amplifier that further boosts both quadratures.
The amplified signal is then multiplied with a microwave
local oscillator on a frequency mixer. A low-pass filter then
rejects the high-frequency components of the frequency
mixer’s output, leaving the measured quadrature on the
baseband signal.

If we assume that mixing with the local oscillator only
adds about NT amount of noise to the signal [which is
approximately vacuum dominant; NT ≈ 1 + O(10−4)], we
can use Eqs. (12) and (13) directly to find an expression
for the homodyne SNR of the signal power containing the
axion signature,

SNR(hom) ≡ 〈Q̂m〉2

Var(Q̂m)
= |χms|2|µs|2 cos2(φs + θms)

NT

= γmγs|µs|2 cos2(φs + θms)

NT
(
(γ /2)2 + ω2

) , (16)

where the quadrature variance Var(Q̂m) = NT, |µs| is the
amplitude of the axion field, φs is the phase of the axion

field with respect to the Q quadrature (in polar coordi-
nates), and θms is a cavity-induced rotation angle. Here
φs = φa + $k0 · $x, where $x is the location of the mea-
surement device. Equation (16) represents the expected
“single-shot” SNR, which we expect to hold within an
axion coherence time.

2. Long integration times
We now consider observation times TO 4 1/'a, where

'a is the axion bandwidth, and derive the SNR of the PSD
at the cavity-detuned frequency ω. We assume that there
are (Shannon-Nyquist sampling) M = 2'aTO 4 1 inde-
pendent and identically distributed samples of the power
within a total time TO, from which we may acquire a
significant SNR via the law of large numbers.

Formally, denote the measured (normalized) power-
spectral-density along the Q quadrature as P , which takes
on a random value for each detection interval. As typical
for DM-axion searches, we assume that, over many detec-
tion intervals, the classical axion field undergoes a random
walk about the origin in phase space. The phase-space
PDF p(µs) is then a uniform, bivariate Gaussian distri-
bution with zero mean and uniform variance σ s = 2nsI2
(i.e., ns = E[µ.

s µs]/2 is the occupation-number spectral
density of the axion field; see Appendix F for connection
to physical parameters). Under this assumption, it is easy
to see that the sample-averaged power, taken over 2TO'a
samples, is E[P] = |χms|2ns, which one can ascertain by
inspection of Eq. (16). Furthermore, due to the underlying
Gaussian statistics of both the homodyne-detection results
and the phase-space PDF, we have that the power variance
of an individual, random sample is

Var(P) = 2
(

Var(Q̂m) + |χms|2ns

)2

≈ 2Var2(Q̂m), (17)
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where Var(Q̂m) can be taken directly from Eq. (16). The
first term is due to the variance in measuring Q (including
thermal and vacuum fluctuations) while the second term
is the variance of the power due to the underlying phase-
space PDF p(µs). The factor of 2 out front is due to the
fact that the (univariate) PDF for Q is Gaussian and thus
Var(P) ∼ Var(Q2) = 2Var2(Q). In the approximation, we
omit the signal’s contribution to the variance due to its
relative smallness.

Combining these results with the assumption of
Nyquist-Shannon sampling M = 2'aTO, we find an
expression for the SNR about the detuned frequency ω,

SNR
(hom) ≈ γmγsns

NT
(
(γ /2)2 + ω2

)
︸ ︷︷ ︸

≡αQL(ω)

√
'aTO, (18)

where we define the quantum-limited (QL) visibility
αQL(ω), which refers to the intrinsic limit set by the vac-
uum fluctuations of the modes. The SNR is peaked on
resonance and is given as [52],

SNR
(hom)

ω=0 = 4γmγsns

NTγ 2

√
'aTO

= γm/γ+

(γm/γ+ + 1)2

4γsns

NTγ+

√
'aTO. (19)

This is just the Dicke radiometer equation [51], which has
peak sensitivity at critical coupling, γm/γ+ = 1—a known
result; see, e.g., Refs. [53,54]. (It is common, in the lit-
erature, to define the ratio β ≡ γm/γ+, but we bypass this
convention in the main text to avoid adding extra notation.)

Using similar logic as above, one can show that het-
erodyne has the same average SNR performance at the
quantum limit. In other words, heterodyne and homodyne
detection perform equally well when sampling a random
signal (at least in this setting, where phase-insensitive
amplifier noise is negligible; see Appendix C). We hence-
forth drop the superscript labeling the detection scheme
and restrict ourselves primarily to homodyne measure-
ments. Only homodyne measurement benefits from quan-
tum squeezing and allows us to surpass the quantum
limit.

3. Introducing the scan rate
We now review the (spectral) scan rate. Our presenta-

tion follows a similar line of argument as that provided
in Appendix A of Ref. [32], but we include it here for
completeness.

Since the DM-axion’s mass is unknown over a large fre-
quency range, a more relevant quantity than the SNR at a
given cavity-resonance setting is the frequency-integrated
SNR, SNRI , where the subscript “I” indicates integration
over many resonance frequencies. Given that one spends a

time TO at each resonance frequency and takes infinitesi-
mal steps ε from one resonance frequency to the next, the
SNRs at each resonance-frequency step add in quadrature
such that, upon using Eq. (18), the SNR around a single
(detuned) frequency ω is

SNR2
I = 'aTO

ε

n∑

k=−n

α2(ω; ωc + kε)ε, (20)

where n is the number of tuning steps and α(ω; ω′) is the
visibility function for an arbitrary input state (not neces-
sarily the vacuum) when the resonant frequency is ω′. In
other words, for a fixed frequency ω—that we arbitrarily
measure with respect to some central resonance-frequency,
ωc, at k = 0—we square and sum the independent contri-
butions from each cavity resonance-frequency setting.

Ideally, we can tune the resonance frequency contin-
uously, such that the ratio ε/2πTO converges to some
(optimal) nonzero value, assuming some desired target
SNR, ζSNR. The reason we expect this convergence is that,
as the tuning step becomes smaller and smaller (requiring
also that n becomes larger), we need to spend less and less
time, TO, at a given resonance frequency, since contribu-
tions from the many tuning steps, which are infinitesimally
far away, will contribute significantly to the SNR. This
leads to a natural definition of the spectral scan rate, R,
via ε/2πTO → R ≡ dνc/dt in a continuum limit (to be
defined precisely below), where dνc = dωc/2π denotes an
infinitesimal change in the resonance frequency [55].

We now impose a continuum limit on Eq. (20) by taking
ε → 0 and n → ∞ whilst keeping the product nε (practi-
cally on the order of a few bandwidths) and the ratio R ≡
ε/2πTO fixed. Doing so, we have that Eq. (20) becomes,

SNR2
I = 'a

2πR

∫ 3max

−3max

α2(ω; ωc + 3)d3. (21)

We now make a crucial observation: namely, α(ω; ωc +
3) = α(ω − 3), where on the right-hand side we omit
the notation about the fixed resonant frequency ωc. In
other words, changing the resonance frequency, ωc, by an
amount 3 is equivalent to fixing ωc and evaluating the
SNR at the detuned frequency ω − 3.

If we now implement a change of variables 3′ ≡ ω − 3
in Eq. (21) and make the simplifying assumption 3max →
∞, the ω dependence in the integral above drops out
entirely. This substitution then reduces Eq. (21) to the aver-
age SNR of the grand spectrum. Therefore, assuming a
target value for the SNR of the grand spectrum, ζSNR, we
can solve for the scan rate, R, required to achieve the
target,

R = 'a

2πζ 2
SNR

∫ ∞

−∞
α2(3′)d3′, (22)
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which is a frequency-independent result. This result is
fairly intuitive. For example, consider increasing the target
SNR, ζSNR, while keeping all else fixed. This necessarily
reduces the scan rate, as more observation time at each
resonance frequency is required in order to reach the target.

We emphasize that Eq. (22) applies for general input
quantum states [upon substituting a proper visibility, α(ω),
which is dependent on the quantum state of the modes].
For vacuum input, we take the quantum-limited visibility,
αQL(ω), from Eq. (18) to obtain the quantum-limited scan
rate,

RQL ≈ 2'an2
sγ

2
s

ζ 2
SNRN 2

Tγ+

(γm/γ+)
2

[(γm/γ+) + 1]3 , (23)

where we assume that NT ≈ constant over the integration
range and use γ ≈ γm + γ+ (ignoring the γs contribution).
The optimal value for the scan rate R4

QL is found at the
overcoupled parameter setting γm/γ+ = 2, a known result
in the 'a ) γ+ regime [53,54,56,57]. This parameter set-
ting differs from critical coupling, γm/γ+ = 1, where the
SNR at zero detuning is maximal. The reason behind this
difference is due to the trade-off between bandwidth and
sensitivity when searching for an axion signal. Since the
frequency range over which we expect to find an axion
signal is large, we require that our cavity be fairly sensitive
over a large bandwidth, however increasing the bandwidth
comes at the price of decreasing the peak sensitivity of the
cavity (see Fig. 9 in Appendix B for a visualization of this
trade-off). The scan rate is a good figure of merit, which
takes both the bandwidth and sensitivity into account.

D. Squeezing-enhanced dark-matter search
The final part of the preliminary section is devoted

to summarizing a squeezing-enhanced scan introduced in
Ref. [31] and developed and implemented in Refs. [32,33].
We provide a qualitative description as to how squeezing
can help a DM search and then, for completeness, quote the
results for the squeezing-enhanced scan rate, Rsq, while
leaving detailed derivations to Appendix D.

Ideally, we want good sensitivity over a large bandwidth
in order to quickly scan frequency space for a DM signal.
For a quantum limited setup (referring to a classical setup
where the noise is dominated by vacuum fluctuations of the
microwave fields), there is a sensitivity-bandwidth trade-
off, which ultimately limits a DM search performance.
[This is quantified by the optimal quantum limited scan
rate, R4

QL; see discussion surrounding Eq. (23).] For a
squeezing-enhanced setup, it turns out that squeezing can-
not change the peak sensitivity of the microwave cavity
receiver, which is set by the on-resonance sensitivity in
the quantum limited regime (see below and Appendix D
for more details). However, a key point is that squeezing
can increase the effective bandwidth of the cavity receiver

FIG. 3. Squeezing the measurement port prior to the cavity
interaction reduces input fluctuations in one quadrature. Anti-
squeezing after the cavity interaction amplifies the axion-induced
displacement in one quadrature (relative to, e.g., noise added
after the cavity interaction by phase-insensitive amplification).

without sacrificing sensitivity. (This is actually a general
phenomena in quantum sensing in a lossy, Markovian envi-
ronment [58].) In succinct terms, squeezing allows for a
more effective DM search by bypassing the bandwidth-
sensitivity trade-off set by quantum limited setups [32,33].
A mathematical analysis of such an enhancement is just
below.

The squeezing setup introduced in Ref. [32] is shown
in Fig. 3. A squeezed vacuum is prepared and injected
into the cavity, reducing input noise fluctuations along
the squeezed quadrature. For instance, a (noisy) squeezed
vacuum, with squeezing along the Q quadrature, has a
covariance matrix σ (in)

m = NTdiag(1/G, G), where G is the
gain of the squeezer, NT represents the initial noise fluc-
tuations (including vacuum and thermal fluctuations), and
“diag” denotes a diagonal matrix specified by the diagonal
elements. Post cavity interaction, an antisqueezer amplifies
the output signal along the initially squeezed quadrature.
This is beneficial considering the potential noise added in
signal processing. As discussed in Refs. [31,32], squeez-
ing does not increase the peak sensitivity on resonance but
instead enhances the off-resonance sensitivity—resulting
in an effectively increased bandwith of the cavity receiver,
which, in turn, yields an accelerated scan rate proportional
to the amount of squeezing (see below).

In Appendix D, we derive the SNR (and thus the visibil-
ity function) for squeezed-vacuum input. Using the general
Eq. (22), we then compute the squeezing-enhanced scan-
rate, Rsq. A natural figure of merit is the ratio of the
squeezing-enhanced scan rate, Rsq, to the quantum lim-
ited scan rate, R4

QL [see discussion surrounding Eq. (23)
for precise definition of R4

QL]. We compute this ratio to be

Rsq

R4
QL

= 27
√

G (γm/γ+)
2

32
(
{[(γm/γ+) − 1]2/4G} + (γm/γ+)

)3/2 , (24)

in agreement with Ref. [32]. This quantity has a maxi-
mum corresponding to an optimal coupling of γm, which
is around γm/γ+ ≈ 2G. In the limit of G 4 1 and at
optimal coupling, γm/γ+ ≈ 2G, the optimal squeezing-
enhanced scan rate, R4

sq, approaches R4
sq/R4

QL ≈ 0.7G.
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Thus the scan rate (approximately) scales linearly with the
squeezing gain.

Before moving forward, let us make a few final com-
ments. First, if measurement noise (originating from, e.g.,
phase-insensitive amplification prior to detection) is not
too large, then we can omit the antisqueezer in the pro-
cess (shown in Fig. 3 as S†) without loss of generality, as
including such does not alter the performance of the setup.
From here on, unless otherwise stated, we assume amplifier
noise in the detector setup is negligible and thus omit the
antisqueezer. As a matter of practice though, some form of
amplification prior to measurement is typically necessary
to transform a very weak or quantum limited signal into
something that is classically detectable. The antisqueezer
(or more generally, a phase-sensitive amplifier) is thus a
practical necessity for homodyne detection. Furthermore,
a phase-insensitive amplifier cannot be used as a substi-
tute for the phase-sensitive amplifier in this scenario, as the
former generally degrades the performance of homodyne
detection, even in the presence of squeezing. For more
discussion on the effects phase-insensitive amplification to
homodyne detection, see Appendix C.

Second, a more practical (though formally equivalent)
implementation than the single-mode squeezed-vacuum
setup considered here is to use two-mode squeezing gen-
erated by a Josephson parametric amplifier (JPA) (see,
for instance, Refs. [33,59]). Using two-mode squeezing
can naturally resolve the cavity-induced phase θmm. There-
fore, frequency-dependent squeezing is unnecessary in the
microwave cavity setup to achieve a quantum advantage.
For completeness, we analyze the two-mode squeezing
setup in Appendix D and show its equivalence in perfor-
mance to the single-mode setup discussed here.

III. ENTANGLED SENSOR NETWORKS FOR
DARK-MATTER SEARCH

We extend the single-sensor model to a sensor network
consisting of M cavities positioned at spatially distinct
locations, each of which couples to the same background
axion field. In general, the cavities can be in close prox-
imity or well separated, but we primarily focus on a local
sensor network, as depicted in Fig. 1. This choice allows
us to neglect the position-dependent phase $k0 · $x and hence
maintain coherence among the sensors.

Define the set of M measurement-port input modes
{â(in)

mi
}M

i=1, where the subscript i refers to the ith sensor
cavity. The measurement-port output modes are likewise
defined, i.e., {â(out)

mi
}M

i=1. Then, within the axion coherence
time, the quantum channel GM mapping the set of input
modes to the set of output modes is given by a tensor
product of the individual cavity channels,

GM =
M⊗

i=1

Dνi ◦ .θmimi
◦ LNTi

χmimi
. (25)

W¢ W

FIG. 4. DQS setup. A single-mode squeezed vacuum is dis-
tributed to an array of M cavities, which are coupled via passive
linear networks, W′ and W. The network utilizes classical corre-
lations between the axion-induced displacements at each cavity
to coherently combine the signal fields into the primary output
mode, â(out)

1 , and generate a larger signal amplitude. The linear
networks are optimized to maximize the signal and minimize
the noise in the primary mode. We relabel parameters in the
diagram for brevity: ηk ≡ |χmkmk

|2; θk ≡ θmkmk ; and αk is the
complex amplitude of the output signal (i.e., the axion-induced
displacement) of the kth cavity.

The subscript i here not only labels the individual cav-
ities but also signifies the fact that each cavity may
have different operating conditions, loss rates, resonance
frequencies, etc.

We have thus reduce axion detection to a model of dis-
placement sensing with a sensor network, a topic generally
studied in the field of DQS [38,43], where continuous-
variable multipartite entanglement—generated by passing
a single-mode squeezed vacuum through a linear net-
work—plays a crucial role. Utilizing techniques from DQS
[38,43], we consider the situation depicted in Fig. 4, where
a squeezed-vacuum state is distributed to M local sensor
cavities, which are coupled via passive, linear networks,
W′ and W [60]. The linear network, W, can be replaced
by local homodyne measurements and postprocessing to
achieve the same performance.

We often refer to the setup depicted in Fig. 4 as a DQS
setup, since we generate quantum entanglement by send-
ing the squeezed vacuum through the linear network, W′.
Later in the paper, we also refer to a quantum limited, dis-
tributed classical sensing (QL DCS) setup, where the input
radiation consists of only vacuum fluctuations but joint
postprocessing of the output signals is allowed.

Given the DQS setup of Fig. 4, our goal is to maximize
the scan rate of Eq. (22) by assuming control of the pas-
sive linear networks, W′ and W, and by taking advantage
of input quantum resources as well as the classical corre-
lations of the axion signals between individual cavities. In
doing so (details provided below), we arrive at our main
result.
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Main result—In the ideal scenario of a susceptibility-
matched DQS network consisting of M identical
microwave cavities, the scan rate of the network scales as
M 2Rsq, where Rsq is the scan rate of a single squeezed
cavity with the same level of squeezing. This scaling is
achieved by using one squeezer and one homodyne detec-
tor—all situated on the “primary” mode, â1—as well as
balanced M -mode linear networks, W and W′ = W−1.

Thus, in the ideal case, we achieve a performance
enhancement of M 2 by operating the network coherently
and making use of the classical correlations of the axion
field (i.e., via joint postprocessing). Moreover, we obtain a
simultaneous boost to the scan rate (relative to the quantum
limited case) via multipartite entanglement shared between
the cavities (generated from a single squeezed vacuum).
We also extend these results to a susceptibility-mismatched
array of nonidentical cavities and discuss subtleties that
arise therein. Main derivations and discussions leading to
these results are just below.

For simplicity, we assume each cavity operates at
roughly the same temperature T, such that NTi ≈ NT, and
for brevity, we introduce the temporary notation: ηk ≡
|χmkmk

|2 and αk is defined as the complex amplitude of the
output signal such that |αk| ≡ |χmksk

||µsk | and arg(αk) ≡
φsk + θmksk . We assume the phases θmkmk can be practically
resolved by utilizing the two-mode squeezing setup dis-
cussed in Appendix D 1; we thus ignore the phases θmkmk
from hereon. Furthermore, we assume that the radius of
the network volume is much smaller than the wavelength
of the axion field, implying that the axion field at all sen-
sors are homogeneous, i.e., the amplitude |µsk | = µs and
phase φsk = φs, ∀ k. We therefore ignore spatial variations
of the axion field across the network [61].

Our derivations follow by stepping through the circuit
illustrated in Fig. 4, with focus on the primary mode
â1, which we assume is in a (noisy) squeezed-vacuum

state and squeezed along the Re(â(in)
1 ) quadrature. The

other input modes are quiet and, thus, only populated by
uncorrelated thermal and vacuum fluctuations.

Consider the set of modes {b̂l} just after the linear net-
work W′. The transformation from the input modes {â(in)

k }
to these intermediary modes is dictated by the coefficients
of the network (the “weights”), {w′

lk}, which obey the
orthogonality relation

∑
k w′

mkw′ ∗
kn = δmn. In terms of the

input modes, the intermediary mode b̂l can be written as,

b̂l =
M∑

k=1

w′
lkâ(in)

k = w′
l1â(in)

1 +
√

1 − |w′
l1|2ê(in)

l , (26)

where we single out the primary mode â(in)
1 and define

the input “environmental mode” ê(in)
l =

∑M
k=2 w′

lk/√
1 − |w′

l1|2â(in)
k , which is populated by the uncorrelated

thermal and vacuum fluctuations of the remaining input
modes, {â(in)

k }M
k=2.

Now consider the second set of intermediary modes {b̂′
l}

just after the cavity interaction but before the linear net-
work W. Defining the environmental modes {êl}, which are
introduced from cavity transmission loss, the intermediary
mode b̂′

l can be written as,

b̂′
l = √

ηlb̂l +
√

1 − ηlêl + αl, (27)

where b̂l is taken from Eq. (26) and αl denotes the axion-
induced displacement at the lth cavity. Next, we introduce
the weights {wjl}, which likewise obey an orthogonality
relation

∑
k wmkw∗

kn = δmn. We then obtain a formal rela-
tion for the output modes, â(out)

j =
∑M

l=1 wjlb̂′
l. Combining

this relation with Eqs. (26) and (27) and choosing j = 1,
we find a generic expression for the output primary mode
of the network,

â(out)
1 =

M∑

l=1

( (
w1lw′

l1
√

ηl
)

â(in)
1︸ ︷︷ ︸

Squeezed noise

+ w1l

√
1 − |w′

l1|2
√

ηlê
(in)
l + w1l

√
1 − ηlêl

︸ ︷︷ ︸
Thermal and vacuum noise

+ w1lαl︸ ︷︷ ︸
Signal

)
, (28)

where we identify the parts that contribute to the signal
and to the noise. Performing a homodyne measurement
along the real quadrature of â(out)

1 then gives an estimate
of the signal power and the noise power. Hence, under-
standing and manipulating this mode relation is of primary
significance to our forthcoming analyses.

From here, the objective is to optimize the weights,
w and w′, in order to maximize the scan rate given by
homodyne measurement. As the exact optimization is chal-
lenging, we take a two-step approach by first maximizing

the signal and then minimizing the noise in the out-
put. A heuristic solution to the optimization for identical
sensors is just below. A more formal derivation of the
optimization strategy (applied to the general case of non-
identical sensors) is given in Appendix E. In the identi-
cal sensor case, the two-step optimization solution is the
exact solution due to symmetry; while in the noniden-
tical sensors case, we numerically show that the solu-
tion from the two-step optimization is close to the exact
optimal.
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A. Identical sensors
For identical sensor cavities, ηl = η and αl = α ∀l; thus,

we have from Eq. (28)

â(out)
1 = √

η

( M∑

l=1

w1lw′
l1

)

â(in)
1 + α

( M∑

l=1

w1l

)

+ thermal noise. (29)

The signal amplitude along the homodyne-measurement
direction is given by

〈
Re
(

â(out)
1

)〉
= |α|

M∑

l=1

|w1l| cos
(

arg w1l + arg α
)
. (30)

Obviously, the amplitude is maximized for arg w1l = − arg
α, which aligns the quadrature measurement along
the direction of the axion-field displacement. However,
arg α = φs + θms, where φs is the randomly fluctuating
(and presumably unknown) phase of the axion field.
Hence, no choice of arg w1l—other than the sensor-
independent choice arg w1l = arg w1 ∀l—is beneficial for
the output signal if φs is unknown. In this sense, an
arbitrary identical phase can be chosen for the weights
arg w1l.

On the other hand, the magnitude of the weights |w1l|
should take on a specific value. Since each cavity is dis-
placed by an equivalent amount α, no cavity is preferred,
and thus it is necessary to choose uniform weights, |w1l| =
1/

√
M . Assuming uniform weights, taking arg w1l = 0 ∀l,

using the definitions |αl| ≡ |χm+s+ |µs and arg α ≡ φs, and
averaging over the coherence time of the axion field leads
to an expression for the average signal power,

E
[〈

Re
(

â(out)
1

)〉2]
= E




(

|α|
M∑

l=1

|w1l| cos
(

arg α
)
)2




= E




(

|χms|µs

M∑

l=1

cos (φs + θms) /
√

M

)2




=
( M∑

l=1

1/
√

M

)2

|χms|2E
[
µ2

s cos2 (φs + θms)
]

= M |χms|2ns, (31)

where we use the fact that E[µ2
s cos2(φs + θms)] = ns, for

any angle θms that is independent of the random variable
φs. This result is just M times the signal power of a sin-
gle cavity, which is intrinsically derived from the classical
correlations of the axion-field displacements at the various
sensors. (Such scaling is not permissible with indepen-
dently operated sensors, which do not take advantage of

FIG. 5. Scaling of the scan rate with the number of sensors
M (log-log plot). Solid line corresponds to a squeezed input for
a DQS setup, with gain G ≈ 1.56 (6 dB of squeezing). Dashed
lines correspond to QL setups with (QL DCS; circles) and
without (Ind. Sensors; triangles) joint postprocessing. Observe
quadratic scaling of the scan rate for distributed sensing scenar-
ios versus linear scaling for independent sensors (i.e., the slope
of the former is twice that of the latter) as well as a constant
factor improvement for all M in the DQS setup due to squeez-
ing with fixed gain. Normalization is with respect to the single
cavity, quantum limited setup.

the classical correlations of the field; see Fig. 5 for how
this affects the scan rate.)

To minimize the noise power, we have to optimally uti-
lize the squeezing injected into the â(in)

1 mode. In other
words, we must ensure that (1) all of the squeezing
is along the direction of the homodyne measurements,
Re(â(out)

1 ), and (2) the squeezing is distributed properly to
all the sensor cavities. Now we previously assumed that
the phases θmkmk can be practically resolved via the two-
mode squeezing setup laid out in Appendix D 1. We thus
justifiably ignored these phases in our analysis. This (par-
tially) ensures no excess noise from antisqueezing will
appear in the measured quadrature, however we must also
choose arg w′

l1 = − arg w1l when dividing the input and
combining the signals to further avoid antisqueezing noise.
These observations follow by inspection of the first term of
Eq. (29). To accomplish (2), we choose uniform weights,
|w′

l1| = 1/
√

M , for the linear network W′, since all cavities
perform equally well and should thus get an equal share of
squeezing. Observe that, with these choices, W′ = W−1.
Considering that the â(in)

1 mode is in a (noisy) squeezed-
vacuum state and environmental modes are filled with
thermal and vacuum fluctuations, the noise power becomes

Var
(

Re
(

â(out)
1

))
= NT (η/G + 1 − η)

= NT
(
|χmm|2/G + 1 − |χmm|2

)
, (32)
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which, remarkably, is just the squeezed noise power of a
single cavity.

Combining Eqs. (31) and (32), and substituting the
explicit expressions (15) and (14) for χms and χmm, we
obtain the SNR after integrating over many axion coher-
ence times,

SNRM ;ideal

=
E
[〈

Re
(

â(out)
1

)〉2]

Var
(

Re
(

â(out)
1

))
√

'aTO

= M |χms|2ns

NT
(
|χmm|2/G + 1 − |χmm|2

)
√

'aTO

= Mγmγsns

NT
(
{[(γ /2)2 + ω2 − γmγ+]/G} + γmγ+

)
√

'aTO,

(33)

which is M times the SNR of a single cavity when a (noisy)
squeezed-vacuum state is injected into it; see Eq. (D3).
Therefore, given the squeezing-enhanced scan rate for a
single cavity, Rsq from Eq. (24) and the definition of
scan rate in Eq. (22), an M -cavity scan rate of M 2Rsq is
achievable, as claimed.

We want to emphasize that such a performance is
achieved by utilizing a single squeezed-vacuum input,
which is split into equal copies to entangle the M sensors.
Another approach to achieve the same performance with
separable sensors would require M copies of squeezed vac-
uum together with coherent postprocessing of the signals.
In this sense, our proposed distributed sensing scheme
reduces the number of squeezers from M to one, at the
cost of requiring tunable, passive, linear couplings (e.g.,
W′) between the input-output microwave fields.

B. Nonidentical sensors with the same resonance
frequencies

Ideally, we want the scenario described just above—a
coherent quantum sensor network consisting of many
identical copies of a single, spectacular cavity. However,
practical realizations are often far from this ideality and
discrepancies between sensors naturally arise. Any such
differences—originating from, e.g., differing intrinsic qual-
ity factors, axion-photon conversion rates, etc.—generally
cause a susceptibility mismatch between the cavities, lead-
ing to varying signal and noise outputs across the network.
A further detriment is the fact that the output signal ampli-
tudes will have relative phases due to the susceptibility
mismatch, quantified by differences in the cavity-induced
angles {θmksk }, causing nonoptimal interference of the
amplitudes when attempting to combine the signals.

Here, we discuss this more general case of noniden-
tical sensors and systematically analyze optimization of

the linear networks, W and W′, which maximize the sig-
nal and minimize the noise in the output power. In what
follows, we assume that each cavity within the sensor net-
work has the same resonance frequency but differ in other
aspects, e.g., by their intrinsic quality factors. Identical res-
onance frequency is not only optimal for enhancing the
scan rate, but also required so that cavity-induced phase
shifts can be resolved by matching the center frequency of
a JPA squeezed source to the resonance frequencies (see
Appendix D 1). We remark that the effects of resonance fre-
quency fluctuations on network performance (assessed by
the SNR) has been addressed in Ref. [62] for an analogous
setup of a multicell cavity.

1. Near-optimal weights: Theoretical analysis

The expression to consider is the output amplitude â(out)
1

of Eq. (28). From the discussions in the identical-sensors
case, it should be apparent that, to maximize the signal
power, we must maximize the signal amplitude, which is a
weighted sum of the amplitudes from all the cavities, with
respect to the weights {w1k}. To minimize the noise, we
must make optimal use of the squeezing injected into the
â(in)

1 mode by optimizing with respect to the weights {w′
1k}.

We first maximize the signal along the direction of the
homodyne measurement. Then, conditioned on the signal
optimization, we minimize the noise. Detailed derivations
are supplied in Appendix E. Results of the derivations and
brief explanations are given below.

To maximize the signal power in the primary mode
â(out)

1 , we appropriately combine the signal amplitudes
from each cavity based on their relative contributions to
the signal as well as resolve any potential phase differ-
ences between amplitudes, which would otherwise lead to
destructive interference. Such an optimization (explicitly
provided in Appendix E) leads to the following expression
for the weights:

w1k =
|χmksk

|
√∑M

j =1 |χmj sj |2
e−iθmksk . (34)

For identical sensors, |χmksk
| = |χms|, implying that w1k =

1/
√

M , as shown in the previous section.
From here, we can calculate the signal power. First,

define the quantity,

〈〈
|χms|2

〉〉
1/M ≡

(∑M
k=1 |w1k||χmksk

|
)2

M

=
∑M

k=1 |χmksk
|2

M
, (35)

which [after using Eq. (34)] is the uniform average of
|χms|2, due to this particular choice of weights. The signal
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power is then,

E
[〈

Re
(

â(out)
1

)〉2]
= E




( M∑

k=1

|w1k||χmksk
|
)2

µ2
s cos2 φs





= M
〈〈
|χms|2

〉〉
1/M ns, (36)

which is just M times the average signal power of a cavity
in the network. Furthermore, this result is provably better
than uniformly combining the signals. Indeed, if we chose
uniform weights (|w1k| = 1/

√
M ), then the signal power

would scale as 〈〈|χms|〉〉2
1/M , which is always less than or

equal to
〈〈
|χms|2

〉〉
1/M .

To minimize the noise, we make optimal use of squeez-
ing. Our attention is thus on the first term in Eq. (28)—the
squeezed noise. We must ensure that the squeezing is dis-
tributed to (1) modes with the highest cavity transmission,
such that a maximal amount of squeezing is utilized, and
(2) modes that contribute most to the output signal. This
draws us to the following choice for the weights w′

k1 (again,
see Appendix E for details):

w′
k1 =

|χmksk
||χmkmk

|
√∑M

j =1 |χmj sj|2|χmj mj|2
eiθmksk . (37)

From the above equation, we can calculate an expression
for the noise power. Before doing so, recall ηl ≡ |χmm|2
and define the quantity,

〈〈
|χmm|2

〉〉
w2 ≡

( M∑

l=1

|w1l||w′
l1|

√
ηl

)2

=
∑M

l=1 |χm+s+ |
2|χmlml

|2
(∑M

j =1 |χmj sj |2
) , (38)

where the equality follows by substituting Eqs. (34) and
(37) into the above. Observe that

〈〈
|χmm|2

〉〉
w2 is the average

of |χmm|2 with respect to the distribution |w1l|2 (hence the
subscript, w2). Using this definition along with Eq. (28),
we find, after some algebra, the total noise power,

Var
(

Re
(

â(out)
1

))
= NT

( 〈〈
|χmm|2

〉〉
w2 /G + 1

−
〈〈
|χmm|2

〉〉
w2

)
. (39)

The first term is due to squeezing of the â(in)
1 input mode,

while the second and third terms follow from the fact that
the other M − 1 uncorrelated, quiet input modes contribute
a total amount of NT(1 −

〈〈
|χmm|2

〉〉
w2) thermal and vacuum

fluctuations to the output noise power.

The SNR for the DQS setup is then formally given by
the ratio of the signal power expressed in Eq. (36) to the
noise power expressed in Eq. (39),

SNRM ;{w,w′} =
M
〈〈
|χms|2

〉〉
1/M ns

NT

( 〈〈
|χmm|2

〉〉
w2 /G + 1 −

〈〈
|χmm|2

〉〉
w2

) .

(40)

C. Scan-rate performance for multicavity network
1. General observations and remarks

We now assess the scan-rate performance of a general,
nonidentical M -sensor cavity network. As the theoretically
derived weights from the two-step optimization, Eqs. (34)
and (37), are near optimal, we utilize these in the forthcom-
ing analysis to benchmark performance. The main results
are succinctly plotted in Fig. 5. Data shows the scaling
of the scan rate with the number of sensors M when the
network is in coherent operation (blue lines; circles) ver-
sus a network of independent sensors (red lines; triangles).
The plot also shows relative performance with (DQS, solid
line) and without (QL DCS, dashed line) squeezing. Even
when the network is nonideal, in the sense that individ-
ual cavities have different levels of performance, one can
still achieve substantial performance enhancement from
squeezing and a quadratic scaling in the number of sensors
M under coherent operation of the network (see below for
an example of this with five cavity receivers).

Another aspect that we want to briefly consider is inter-
ference between the signal amplitudes when we combine
them. Interference will occur, for instance, if the cavity-
induced angles {θmksk } of the signals are non-negligible
or not locally resolved. As resolving such angles adds
additional complexity to the linear networks used for dis-
tributing and combining microwave fields, we want to gain
some intuition on how detrimental signal interference can
be to the SNR if such phases are not taken care of. Con-
sider a set of weights {w1k} that do not resolve the angles
θmksk . One can derive an expression for the signal power
for these sets of weights, similar to relation (36),

E
[〈

Re
(

â(out)
1

)〉2]

= E




( M∑

k=1

|w1k||χmksk
| cos

(
φs + θmksk

)
)2

µ2
s





= ns

( M∑

k=1

|w1k|2|χmksk
|2

+
M∑

i,j
i(=j

|w1i||w1j ||χmisi ||χmj sj | cos
(
θmisi − θmj sj

))
.

(41)
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The first summation is just the average power of a sin-
gle cavity in the network. The second summation contains
interference terms between the signal amplitudes.

To estimate the effects of interference on the scan rate,
we consider a superficial example. First, to single out the
interference effects, we operate at the quantum limit (i.e.,
zero squeezing, G = 1), as squeezing does not effect the
signal power. Second, we assume each cavity to differ
only in their intrinsic linewidths, which we choose to fall
uniformly within the interval γ+ ∈ [1, 3] (measured with
respect to the smallest linewidth, taken arbitrarily as unity).
We use this as an input into Eq. (41), square the resulting
expression, and integrate over frequencies to obtain an esti-
mate for the scan rate, assuming either uniform weights
|w1k| = 1/

√
M or the near-optimal weights of Eq. (34)

without the phase factor. To estimate relative performance,
we normalize the results with respect to the near-optimal
scan rate when the phases {θmksk } are corrected.

We find that, for a spread of linewidths γ+ ∈ [1, 3], inter-
ference causes a 3–5% decrease in the scan rate compared
to when the phases are completely corrected. We further-
more find a notable differences in performance between
choosing uniform weights versus choosing near-optimal
weights when interference effects are present, at about the
2% level for this example. A more exhaustive and sys-
tematic study of signal-interference effects in the scan-rate
performance can be accomplished using our formalism
(e.g., relying on a more realistic model for inhomogeneities
within the network), however we leave this problem to the
future, experimentally driven research.

2. Including loss
Any real experiment is plagued with inefficiency or loss.

Our goal here is to weave loss into our network analy-
sis and analyze its effects. We introduce loss between the
cavity and detection/post-processing stage (Fig. 6). Loss at
this stage is most detrimental as the signal as well as the
squeezing is hindered by such.

Formally, including loss at the detection and post-
processing stage amounts to making the substitution
w0k → w0k

√
ζk within our analysis, where ζk is the trans-

mittance for the kth sensor (i.e., probability for a single
photon to transmit from the output of the kth cavity to the
postprocessing stage), and including an additional noise
term, NT(1 −

∑M
k=1 |w1k|2ζk), due to vacuum and thermal

fluctuations arising from the loss ports. The theoretically
derived weights, w1k and w′

k1 in Eqs. (34) and (37), also
pick up an extra factor

√
ζk during optimization when loss

is present. We provide a concrete example highlighting the
effect of loss on the scan rate just below.

3. Example: five sensor cavities
Here, we examine the detriments of loss and inhomo-

geneity for a distributed sensing setup containing five

W

FIG. 6. Including loss between the cavity-postprocessing stage
in a distributed sensing setup; ζk ∈ [0, 1] is the transmission prob-
ability for the kth mode (1 − ζk is the loss) and {ê′

k} are a set of
uncorrelated environmental modes.

cavities. We consider quantum limited configurations (QL
DCS) as well as DQS squeezed configurations.

In our loss analysis, we assume that the transmittance at
each mode varies (according to a random, uniform distri-
bution) within the range ζk ∈ [ζ̄ − δ, ζ̄ + δ], where ζ̄ is the
average transmittance (and thus 1 − ζ̄ is the average loss)
and δ is the variance of the loss across the network, which
we fix to δ = 0.05. We run 100 simulations, choosing {ζk}
randomly in each, and average the results, resulting in the
data present in Fig. 7, where we plot the (average) scan
rate versus the (average) loss, 1 − ζ̄ [63]. For all values of
the loss within the parameter regime considered (1 − ζ̄ ∈
[0.05, 0.5]), the squeezed DQS setups always have a per-
formance advantage over the QL DCS setup, though the
advantage is not as substantial when there is a significant
amount of loss. Moreover, squeezing enhancement is ulti-
mately “loss limited,” in the sense that, for a given amount
of loss, 1 − ζ̄ , there is a maximum amount of squeezing,
above which there is no more benefit to be had by increas-
ing the gain of the squeezer. We observe the loss-limited
phenomenon in Fig. 7 by the convergence of the various
DQS squeezed curves as the loss increases. This was also
observed in Ref. [32] for the particular value 1 − ζ̄ ≈ 0.3,
where the authors showed a loss-limited squeezing limit of
G ≈ 20 (i.e., 18–20 dB of squeezing), which is comparable
to our results near that regime.

We now consider the case where the five cavities are
not identical (an inhomogenous network). To highlight
the effects of inhomogeneity alone, we work in the zero-
loss regime. The signal and noise may vary from cavity-
to-cavity in three ways: (1) different axion-photon cou-
pling strengths, γs; (2) different resonance frequencies; and
(3) different intrinsic linewidths (i.e., different intrinsic
quality factors), γl. Regarding (1), an example of this
would be that the strength of magnetic fields in each cav-
ity (used to induce an axion → photon conversion) vary
by some degree. This would simply lead to some cavities

030333-14



ENTANGLED SENSOR-NETWORKS... PRX QUANTUM 3, 030333 (2022)

Scan rate versus loss

FIG. 7. Scan rate versus average loss for a distributed sens-
ing setup with five cavities. For the QL DCS setup, each cavity
is quantum limited and the signals are jointly postprocessed.
For the DQS setups, a squeezed vacuum (with some amount of
squeezing, in dB) is distributed across the network and the sig-
nals are jointly postprocessed. Normalization is with respect to
the (zero-loss) single cavity, quantum limited setup.

having a larger signal than others. Of course, if the dif-
ference between the signal amplitudes is too large, then
the “bad” cavities in the network do not provide much
benefit. For only small differences here, we still expect a
scaling and squeezing advantage (analogous to small dif-
ferences in linewidths that we present below). Regarding
(2), perhaps the largest detriment due to varying resonance
frequencies is that the cavity response functions will not
overlap, leading to a broadened signal with a lower peak.
If the resonance frequencies differ by too large, then the
coherent network effectively reduces to an independent set
of sensors, with each sensor centered at different resonance
frequencies. Since we have shown that it is advantageous
to operate a coherent network versus a network of inde-
pendent sensors, the resonance frequencies of the sensors
should, therefore, be as closely matched as possible. We
remark that small deviations of resonance frequencies was
addressed in a similar network setting, for a multicell cav-
ity [62] as well as in the ADMX collaboration’s four-cavity
design [64]. Furthermore, in Appendix D, we show how
fluctuations in the resonance frequency of a single cav-
ity can lead to, e.g., unwanted noise from the antisqueezed
quadrature. Similar effects will occur in a network setting
as well, but as long as these fluctuations are not too large,
antisqueezing noise will be negligible.

For concreteness, we examine how the performance of
the network diminishes when the cavities have different
linewidths (intrinsic quality factors). We measure the vari-
ations in performance by choosing one cavity (the “best”

cavity) with fixed linewidth, γl, and allowing all other cav-
ities to have varying linewidths given by γlj = γl(1 + εj ),
where εj is a random, positive number drawn from an
exponential distribution (to assure its positivity), Pr

[
εj
]

=
exp

(
−εj /'

)
/', where ' is the “deviation parameter” that

effectively measures how far the linewidth of the j th cavity
differs from that of the best cavity, γl (indeed, 100 × ' is
the average percent difference).

For simplicity, we assume the same deviation parame-
ter, ', for each cavity in the network. We consider QL
DCS setups as well as DQS setups (with 6 dB of squeez-
ing distrubted across the network for the latter). The DQS
setup always performs proportionally better here. We run
100 simulations, with each cavity taking an independent
and random linewidth in each simulation, for a given ',
and average the results. We then vary ' and observe how
this affects the performance of the network, as measured
by the scan rate. The results are shown in Fig. 8, where
we plot the scan rate for uniform weights, |w′

0k|2 = 1/5
(black dashed and solid curves; uni. dist.), and for the
near-optimal weights of Eq. (37) (purple dashed and solid
curves; opt. dist.). As the deviation parameter becomes
larger, the network performance degrades for both cases.
For instance, at ' ≈ 0.2, the percent difference from the
identical sensors case (' = 0) is about 8%. For larger
deviations in the network, our optimal weights become
more favorable (for both QL DCS setups and DQS setups),
as seen by a splitting of the black and purple curves in
Fig. 8 as ' increases.

IV. DISCUSSIONS AND CONCLUSIONS

In this work, we propose a compact, entangled sensor
network to accelerate the search for ultralight, bosonic
dark-matter particles. By coherently combining the signals
from each sensor in the network, the sensor network enjoys
an M 2 scaling of the scan rate versus the number of sensors
M , compared to M scaling for an independent set of sen-
sors (imposed by the law of large numbers). By utilizing
entanglement between the sensors, generated by splitting
and distributing a single squeezed vacuum, the sensors fur-
ther enjoy a boosted scan rate from squeezing—scaling as
M 2G in the high-squeezing limit, where G is the gain of
the squeezed vacuum.

Our results may be immediately pertinent to multiple-
cell haloscopes searching for DM in higher mass regions
[62,65]. Squeezing can be properly distributed to the mul-
tiple cells in the cavity, and the output amplitudes can be
coherently combined to surpass the quantum limited search
in such setups, as discussed in our paper. Another fascinat-
ing possibility is application of our techniques to the next
generation of experiments with the ADMX collaboration’s
four-cavity array [64]. Importantly, our DQS proposal will
only add extra extrinsic complexity to the setup, as a sin-
gle squeezed vacuum can be externally prepared (along the
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(uni. dist.)
(opt. dist.)

uni. dist.)
opt. dist.)

FIG. 8. Scan rate for a inhomogenous network of 5 cavities
with varying linewidths. The deviation parameter, ', measures
how large the intrinsic linwidths of the cavities in the network
differ from a (fixed) “best” cavity (100 × ' is the average per-
cent difference). QL-DCS and DQS setups are both shown for
comparison. A squeezed vacuum with 6 dB of squeezing is
distributed across the network in the DQS setup.

same lines as in the recent HAYSTAC experiment [33])
and then routed (via a passive linear network, W′) to the
cavities in the array. The four-cavity array can thus, in
principle, obtain a quantum enhancement atop of the bene-
fit from coherently combining the signals at the amplitude
level, as we show in this work.

We point out that one can also realize the same per-
formance as our DQS scheme by, instead, injecting inde-
pendent squeezed vacua into each cavity—thus requiring
M squeezers for the M cavities. This further demands
phase locking of the individual squeezers to assure that the
squeezed quadratures are aligned. On the other hand, our
proposed DQS scheme achieves equivalent performance
with only a single squeezer, at the cost of an additional
passive linear network (i.e., W′), which routes the ingoing
microwave fields to the cavities. This resource reduction,
from M squeezers in the former to one squeezer in the lat-
ter, ultimately originates from the quantum correlations of
the noises between microwave fields. Our proposal thus
serves as an intriguing application of quantum entangle-
ment towards probing fundamental physics (and towards
quantum enhanced broadband sensing with multiple cavity
receivers, in general).

Additionally, it is important to foresee potential tech-
nological impediments in the experimental implementa-
tion of the proposed protocol. Dark-matter search using
a single squeezed microwave source has been demon-
strated in Ref. [33], achieving a 1.9 enhancement in the

scanning rate over a conventional classical dark-matter
search scheme. Scaling up the system to M sensors would
pose a series of experimental challenges. First, the previ-
ous squeezing enhanced experiment was carried out in a
1.7-liter microwave cavity at mK temperature in a dilution
refrigerator. To accommodate multiple sensors subject to
the limited volume of crystat chambers and a high mag-
netic field environment, one needs to design miniaturized
cavities or use multiple cryostats connected with high-
efficiency quantum transduction and interconnect [66,67]
to accommodate the sensor cavities. Second, a multisensor
system would need additional components such as circula-
tors to prevent signal crosstalk between different sensors.
Such a requirement would increase transmission losses
and thereby diminish the enhancement enabled by squeez-
ing. To surmount such a hurdle one can resort to novel
signal routing schemes such as a parametric swap interac-
tion [68] to eliminate the lossy nonreciprocal components.
Third, the synchronization of the resonant frequencies and
phases of distributed squeezed states at multiple cavi-
ties would call for advanced electronics for real-time data
acquisition, processing, and feedforward. In this regard,
field programmable gate arrays would offer the desired
data-processing bandwidth and scalability.

We have focused on a sensor network distributed in a
small volume, as we are mostly concerned with the initial
search for dark-matter particles. In the future, distributing
the sensors at distance will enable extraction of more infor-
mation about dark matter, as discussed in Refs. [69–71].
Furthermore, assuming a functional (continuous-variable)
quantum network [72,73] with microwave-optical quan-
tum transduction [66,67], one can consider utilizing long-
baseline interferometry [74] on the microwave signals to
boost the detection of finer characteristics of dark mat-
ter, after the existence of dark-matter particles has been
confirmed. We defer these fascinating analyses to future
work.

Before closing, we comment on other potential quan-
tum resources for enhancing DM search. GKP states have
already been explored for distributed displacement sensing
[46]. In Appendix G, we show that GKP states can indeed
improve the scan rate by a constant factor in the ideal
case, however its advantage diminishes when a practical
measurement scheme is adopted. It is still an open prob-
lem whether other exotic quantum resources can provide a
boost under practical conditions.
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Note added—Recently, we became aware of a related
but distinct quantum network design for a DM search
with cavities [75]. The authors of that work assume that
each cavity mode is directly coupled to two other modes
by a parametric process (squeezing) and a passive pro-
cess (beam-splitter interaction), respectively. They then
design a complex array of such interactions consisting
of, e.g., many interleaved parametric processes to build a
completely connected, active quantum network. The setup
is quite different from ours in that we assume no direct
coupling between cavity modes; we require only passive
“routing” of inputs and outputs to and from the cavities;
and furthermore, we need only a single parametric process
(e.g., to create a squeezed vacuum state), which is extrinsic
to the internal evolution of the cavity modes.

APPENDIX A: QUICK TUTORIAL ON GAUSSIAN
STATES AND TRANSFORMATIONS

In this paper, the relevant interactions between, say,
n modes of an electromagnetic field (axion induced or
otherwise) are quadratic in the annihilation and creation
operators, âj and â†

j , where j ∈ {1, 2, . . . , n}. Furthermore,
the quantum states involved are mostly Gaussian (i.e.,
states generated by quadratic Hamiltonians); and even for
non-Gaussian states such as the GKP state, the Gaussian
approximation provides valuable insights. Such character-
istics beg the use of the Gaussian formalism [48,76], which
is an efficient formalism that reduces the dynamics of an n-
mode quantum state to matrix multiplication between a set
of 2n × 2n matrices (encoding the dynamics) acting on the
2n × 1 mean vector and 2n × 2n covariance matrix (to be
described below) of the quantum state. We briefly review
some relevant features of the Gaussian formalism below.
The interested reader may consult Refs. [48,76] for more
details.

Given the annihilation and creation operators, âj and â†
j ,

define the quadrature operators

Q̂j ≡ 1√
2

(
âj + â†

j

)
and P̂j ≡ 1√

2

(
â†

j − âj

)
, (A1)

such that [Q̂j , P̂k] = iδjk ∀j , k, where we have let ! = 1.
Now define the 2n × 1 vector of quadrature operators,

R̂ ≡ (Q̂1, P̂1, Q̂2, P̂2, . . . , Q̂n, P̂n)
., (A2)

where the transpose is with respect to the vector space,
not the operator space. The commutation relations can
therefore be written as,

[
R̂j , R̂k

]
= i$jk where $ = In ⊗

(
0 1

−1 0

)
, (A3)

where In is the n × n identity matrix. The matrix $ is
known as the symplectic form and encodes the canonical
commutation relations between the quadrature operators of
all n modes.

We now define the mean vector, µ (the vector of first
moments), and covariance matrix, σ (the matrix of second
moments), of an n-mode quantum state ρ̂ as,

µj ≡ Tr
(

R̂j ρ̂
)

(A4)

and σ jk ≡ Tr
({

R̂j − µj , R̂k − µk

}
ρ̂
)

, (A5)

where {·, ·} denotes the symmetric anticommutator. If ρ̂ is
a Gaussian state, then the mean vector and the covariance
matrix completely determine all properties of the state. For
example, a single-mode thermal state of mean quanta n̄ has
zero first moments and covariance matrix (1 + 2n̄)I2.

Any unitary operation Û acting on the n-mode bosonic
Hilbert space and generated from a Hamiltonian, which
is quadratic in the quadrature operators corresponds to
2n × 2n symplectic matrix, S. The symplectic matrix acts
linearly on the vector of quadrature operators such that
if R̂(in) represents the quadrature operators of the input
modes, then the quadrature operators of the output modes,
R̂(out), are found by matrix multiplication, i.e., R̂(out) =
SR̂(in). One calls the matrix S symplectic since it preserves
the symplectic form, S$S. = $. Taking the input-output
transformation together with the definition of the first and
second moments [Eq. (A5)], one finds the output moments
in terms of the input moments,

µ(out) = Sµ(in) and µ(out) = Sσ (in)S.. (A6)

Equation (A6) holds for arbitrary input states, though such
is sufficient to completely describe Gaussian states.

One can extend the discussion to include nonunitary
dynamics in the Gaussian context, when the system of
interest interacts (via quadratic interactions) with an inac-
cessible (Gaussian) environment. This leads to the general
notion of a Gaussian completely positive, trace-preserving
(CPTP) map—better known as a (bosonic) Gaussian quan-
tum channel. It can be shown that one can completely
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describe a Gaussian quantum channel, G, by two 2n × 2n
real matrices, X and Y (the scaling matrix and noise matrix,
respectively) and a displacement vector ν, such that

µ
G→ Xµ + ν and σ

G→ XσX. + Y, (A7)

where Y + i$ ≥ iX$X. is the only condition that the
scaling matrix and noise matrix must satisfy in order for the
above transformations to correspond to a proper Gaussian
quantum channel.

Interestingly, we can provide a unitary extension of
the quantum channel G, which corresponds to a sym-
plectic matrix S acting jointly on the system A, with
input mean and covariance (µs, σ s), and an “environment”
E, with mean and covariance (µE , σ E). To make corre-
spondence with the scaling matrix and noise matrix from
above, we write the symplectic matrix in block form,
S =

(
A B
C D

)
where A encodes the internal system dynamics

and B encodes the coupling to the environment. It is then
straightforward to show that one can associate the quantum
channel G with the symplectic matrix S, provided that

X = A, Y = Bσ EB., and ν = BµE . (A8)

APPENDIX B: QUANTUM MODEL OF THE
CAVITY

Here we provide details regarding our single-mode
quantum-channel description for the input-output dynam-
ics of an electromagnetic cavity.

1. Brief background

We consider a damped cavity, defined by the mode Â
with (free) Hamiltonian Ĥc = !ωcÂ†Â, where ωc is the
cavity resonance frequency, linearly coupled to a set of
memoryless (Markovian) “bath” modes. We model the full
interaction between the cavity mode and the input-output
modes of the bath with the Heisenberg-Langevin equations
(see, for instance, Appendix E.2 from the arXiv version of
Ref. [77]) in the rotating reference frame of the cavity,

dÂdt = −γ

2
Â +

∑

j ∈{m,s,+}

√
γj â(in)

j , (B1)

where γ is the damping rate of the cavity, which satisfies
γ =

∑
j ∈{m,s,+} γj , and â(in)

j represent the input modes that
transfer energy within the cavity through their respective
ports; see Fig. 2 for an illustration. Here, the Markovian
assumption is that [â(in)

j (t), â(in)†
k (t′)] = δjkδ(t − t′). Note

that â(in)
j has units

√
quanta/sec.

Though there is no explicit coupling between the ports,
the cavity mode acts as an intermediary, allowing for an
effective energy transfer from, e.g., the signal port, âs, to
the measurement port, âm. After interaction with the cavity,

the ports then exit the cavity as output modes—carrying
the transferred energy either through inaccessible ports,
such as the loss port â+ and signal-field port âs, or through
the accessible measurement port âm. Each output mode
satisfies the time-dependent relation [77]

â(out)
j (t) = â(in)

j (t) + √
γ Â(t). (B2)

After passing to the spectral domain by a Fourier transfor-
mation, one can solve Eq. (B1) for the spectral amplitude
of the cavity mode Â and substitute that expression into
Eq. (B2). The results are Eqs. (7) and (8) of the main text.

2. Channel reduction
We now reduce the input-output relations of Eq. (7) for

the three modes (âm, âs, â+) to a single-mode input-output
channel for the lone measurement port âm. First, define the
vector of annihilation and creation operators for the input
and output modes,

â ≡ (âm, â†
m, âs, â†

s , â+, â†
+)

.. (B3)

Now let χ ij = |χ ij |eiθij , where {θij } are the angles of the
complex susceptibility-matrix elements, which are only
nonzero off resonance; see, e.g., Eqs. (B13) and (B14).
An explicit expression for the susceptibility coefficient is
in Eq. (8). From the definition (B3) and the input-output
transformation (7), it is easy to show that,

â(out) = χ̃ â(in), (B4)

where

χ̃ =




|χmm|eiθmmσ z |χms|eiθmsσ z |χm+|eiθm+σ z

|χms|eiθmsσ z |χ ss|eiθssσ z |χ s+|eiθs+σ z

|χm+|eiθm+σ z |χ s+|eiθs+σ z |χ ++|eiθ++σ z



 , (B5)

with σ z being the 2 × 2 Pauli-Z matrix. We can go to
the quadrature basis R̂ = (Q̂m, P̂m, Q̂s, P̂s, Q̂+, P̂+)

. via a
unitary transformation R̂ = Ūâ, where

Ū = diag(ū, ū, ū) and ū = 1√
2

(
1 1
−i i

)
. (B6)

From here, the input-output relations in the quadrature
basis follows:

R̂(out) =
(
Ūχ̃Ū†) R̂(in), (B7)

with the symplectic orthogonal transformation Ūχ̃Ū†

given explicitly by

Ūχ̃Ū† =




|χmm|O(θmm) |χms|O(θms) |χm+|O(θm+)
|χms|O(θms) |χ ss|O(θss) |χ s+|O(θm+)
|χm+|O(θm+) |χ s+|O(θs+) |χ ++|O(θ++),



 ,

(B8)
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where O(θij ) is a 2 × 2 symplectic orthogonal matrix
corresponding to a rotation by an angle θij . To reduce
the dynamics to a single-mode channel description,
we first need to provide the scaling matrix, X, and
noise matrix, Y, which one can derive by using Eq.
(A8) and making the equivalences A = |χmm|O(θmm) and
B =

(
|χms|O(θms)|χm+|O(θm+)

)
(B is a 2 × 4 rectangular

matrix).
To make further progress, we make some simplify-

ing (though physically reasonable) assumptions about the
“environmental” modes âs and â+. First, we assume that
the axion port and loss port (âs and â+) are independent and
that their input covariance matrices consist only of thermal
fluctuations at temperature T, such that σ E = NTI4δ(0),
where NT = (1 + 2n̄T) [78] and n̄T = 1/(e(ωc+ω)/T − 1) in
natural units (! = kB = 1), where ωc is the cavity res-
onance frequency. Second, we assume the signal field,
referred to as mode âs, to be a classical coherent field
with amplitude |µs| ∼

√
quanta/sec/Hz and phase φs, such

that the input mean vector for the signal port is µs =
|µs|(cos φs, sin φs)

.. The mean vector for the loss port is
taken to be the zero vector. From these assumptions, we
have that

µE = µs ⊕ 0+ and σ E = NTI4. (B9)

Using Eq. (A8), we calculate an expression for the noise
matrix,

Y ∝ BB.

=
(
|χms|O(θms)|χm+|O(θm+)

) (|χms|O.(θms)
|χm+|O.(θm+)

)

=
∑

k (=m

|χmk|2I2

=
(
1 − |χmm|2

)
I2.

For the first equality, we used the correspondence B =(
|χms|O(θms)|χm+|O(θm+)

)
; for the second equality, we

used the orthogonality of the O matrices; and for the third
equality, we used the unitarity relation

∑
j χ∗

ij χ jk = δik.
After performing similar calculations for the scaling matrix
X and displacement ν, we thus find,

X = |χmm|O(θmm), (B10)

Y = NT
(
1 − |χmm|2

)
I2, (B11)

and ν = |χms|O(θms)µs, (B12)

where the angles, θms and θmm, are defined through the
susceptibility coefficients [see Eq. (8)] via

sin θms = ω
√

γ 2/4 + ω2
(B13)

and

sin θmm = ωγm√(
(γm − γ+)2/4 + ω2

) (
γ 2/4 + ω2

) . (B14)

The expressions (B10)–(B12) correspond to a thermal-loss
channel LNT

χmm—with the (cavity) transmission parameter
|χmm|2 and noise parameter NT = 1 + 2n̄T—followed by
a (unitary) phase-shift channel .θmm and a (unitary) dis-
placement channel Dν . See Fig. 2 for an illustration. The
full quantum channel describing the input-output relations
for the measurement port therefore decomposes as [79],

G = Dν ◦ .θmm ◦ LNT
χmm

, (B15)

as eluded to in the main text. Using the general moment
transformations (A7) together with the channel decompo-
sition of Eqs. (B10)–(B12), the input-output relations for
the first and second moments of the measurement port are
found to be

µ(out)
m = |χmm|0(θmm)µ(in)

m + |χms|O(θms)µs, (B16)

and

σ (out)
m = |χmm|20(θmm)σ (in)

m 0(θmm). + NT
(
1 − |χmm|2

)
I2,

(B17)

which agree with Eqs. (12) and (13) of the main text.
We point out that we can cancel out the angle, θmm, by
applying a phase rotation .−θmm on the measurement-port
input fields prior to the cavity interaction. (In the quan-
tum setting, by utilizing two-mode squeezing, this angle
can automatically be taken care of without any extra phase
rotation, as we explain in Appendix D 1.)

For reference, a plot of the cavity transmission, |χmm|2,
and the signal-cavity coupling |χms|2 is shown in Fig. 9, as
well as a plot of the sine of the mixing angles, sin θmm and
sin θms. Peaks in sin θmm appear at ω4 = ±

√
(γ 2

m − γ 2
+ )/2,

at which point Im(χmm) → ±1. However, as we approach
critical coupling and cavity resonance, γm → γ+ and ω →
0, there is sharp transition in the phase due to the two
competing limits. Observe that as ω → ±∞, θmm → 0 and
θms → ±π/2.

APPENDIX C: HOMODYNE VERSUS
HETERODYNE DETECTION

We calculate the SNR inferred from heterodyne detec-
tion and show that the result is equivalent to a homodyne-
detection scheme when the signal is random. However,
we show that this equivalence breaks whenever a phase-
insensitive amplifier is introduced just prior to detection.

Heterodyne detection consists of (nonlinearly) mixing
the signal mode with a strong local oscillator of a dif-
ferent frequency and measuring the corresponding output

030333-19



ANTHONY J. BRADY et al. PRX QUANTUM 3, 030333 (2022)

×10–6

FIG. 9. (Left) Plot of cavity the transmission |χmm|2 (blue curves) and the axion-photon transmission |χms|2 (red curves); |χms|2
governs the signal behavior. (Right) Plot of mixing angles, θmm (blue curves) and θms (red curves). Solid lines correspond to critical
coupling γm = γ+. Dashed lines correspond to the overcoupling, γm = 2γ+. We have arbitrarily chosen γs = 10−6γ+ to obtain curves
for |χms|2.

intensities. In this optical domain, this process is equiva-
lent to first splitting the signal beam at a balanced beam
splitter into two (assuming vacuum noise or low thermal
noise at the other input port of the beam splitter), applying
a relative phase shift of π/2 to one outputs of the beam
splitter, and subsequently performing a homodyne detec-
tion on each signal—thus allowing one to measure both
quadrature variables, Q and P. Since one can simply sum
the SNRs inferred from each detector (i.e., the SNRs of the
independent homodyne measurements add in quadrature),
it would appear that, in principle, a heterodyne-detection
scheme can have some benefit over the homodyne scheme.
This intuition is not generically true however, since, in the
example just described, the signal power arriving at each
detector is half of the initial signal, due to the balanced
beam splitters.

Quantitatively, assuming that each beam splitter in the
heterodyne-detection scheme adds NT noise, we can find
an expression for the SNR of the power for a heterodyne-
detection scheme directly from Eqs. (12),

SNR(het) ≡ 1
2

(
〈Q̂m〉2

Var(Q̂m)
+ 〈P̂m〉2

Var(P̂m)

)

= 1
2

|χms|2µ2
s

NT

= 1
2

γmγsµ
2
s

NT
(
(γ /2)2 + ω2

) . (C1)

Observe that the difference between homodyne- and
heterodyne-detection schemes is the angle dependence in
the cos2 φs term for the former and the factor of 1/2 for
the latter. Though, for a completely random signal, these

detection schemes perform equally well after uniformly
averaging over the phase φs.

1. Phase-insensitive amplification noise
For a weak signal (as is the case for an axion signal),

it is common to add a (high-gain) linear amplifier just
prior to measurement in order to make the signal classi-
cally detectable [80]. Here, we show that the addition of
a phase-insensitive amplifier to the detection chain leads
heterodyne detection to be the preferred detection method
versus homodyne detection. When performing homodyne
measurements, it is thus pertinent to relegate most ampli-
fication to phase-sensitive amplification, which does not
contribute additional noise to the measured quadrature.

A (single-mode) phase-insensitive amplifier channel,
Ag , with gain g ≥ 1, is a Gaussian quantum channel,
which, given the first and second moments µ and σ ,

Ag : µ −→ √
gµ (C2)

σ −→ gσ + NA(g − 1)I2, (C3)

where NA ≥ 1 parameterizes the number of noisy quanta
introduced into the signal (NA = 1 for a vacuum or
“quantum limited” amplifier). In what follows, we sim-
ply assume that the amplifier adds the same amount of
noisy quanta as all other nonunitary processes that we have
considered so far and thus set NA = NT.

Assuming an initially quiet cavity mode (i.e., no driving
or squeezing), the input moments to the amplifier chan-
nel, which originate from the output of the cavity, are
µ = |χms|O(θms)µs and σ = NTI2. The output moments of
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the amplifier are then,

µ(out) = √
g|χms|O(θms)µs, (C4)

σ (out) = NT(2g − 1)I2. (C5)

The SNR for homodyne detection, after averaging over the
coherence time of the axion field, is then,

SNR
(hom)

g =
(

g
2g − 1

) |χms|2ns

NT
, (C6)

where ns = E[µ2
s/2], we maintain the form of χms, and

omit the sampling factor
√

'aTO for brevity.
For heterodyne detection, it is straightforward to show

that phase-insensitive amplification does not alter the
SNR; in other words, SNR

(het)
g = SNR

(het)
g=1 = |χms|2ns/NT.

Therefore,

1
2

≤
SNR

(hom)

g

SNR
(het)
g

= g
2g − 1

≤ 1, (C7)

where the lower bound is found in the high-gain limit and
the upper bound is achieved at g = 1. Hence, heterodyne
detection is the preferred detection method when high-gain
phase-insensitive amplification is used. Though, this is not
the case when squeezing is present in the homodyne setup.

APPENDIX D: SNR FOR SQUEEZING-ENHANCED
SEARCH

We explicitly calculate the SNR for the squeezing-
enhanced protocol introduced in Ref. [32] and imple-
mented in Ref. [34]. In what follows, to make optimal
use of squeezing, we work in the natural reference frame
of the measurement-port fields and thus set θmm = 0.
An illustration of the setup, in the rotated frame, is shown
in Fig. 3.

The protocol starts by initially squeezing the input noise
along one quadrature, say the Q quadrature, by an amount
1/G where G ≥ 1. Assuming initial thermal equilibrium at
the measurement port, this corresponds to taking the input
moments as µ(in)

m = 0 and σ (in)
m = NTdiag(1/G, G). Substi-

tuting these expressions into Eqs. (12) and (13), one easily
finds the output moments of the cavity (just before the
antisqueezer). We do not provide the explicit expression
for this penultimate step, however after some thought, one
deduces that the initial squeezer reduces the measurement-
port input noise (relative to the signal) by a factor G along
the Q quadrature. On the other hand, nonunity reflection
from the cavity introduces (vacuum and thermal) noise
to the measurement-port output, which we cannot reduce

further with external operations (other than cooling the
system and/or reducing the loss).

Immediately proceeding the cavity interaction, we apply
an antisqueezer to the output of the cavity, which amplifies
the Q quadrature by a factor G, leading to the final output
moments,

µ(f )
m = |χms|diag(G, 1/G)O(θms)µs, (D1)

σ (f )
m = NT|χmm|2I2 + NT

(
1 − |χmm|2

)
diag(G, 1/G).

(D2)

We see that the signal, as well as the cavity-noise term (i.e.,
the second term in σ

(f )
m ), has been amplified along the Q

quadrature by a factor G relative to the input noise (the first
term in σ

(f )
m ). These observations suggest some benefit to

the squeezing protocol, as long as we restrict ourselves to
measurements along the squeezed quadrature, Q.

We now calculate the SNR after a large observation time
as a function of the squeezing G. After some algebra, we
find the expression,

SNRsq = γmγsns

NT
(
{[(γ /2)2 + ω2 − γmγ+]/G} + γmγ+

)

×
√

'aTO, (D3)

which is consistent with the results of Ref. [32]. This
reduces to the quantum limited result of Eq. (18) at G = 1
(no squeezing). Using this equation and the relationship
between the SNR and the scan rate [see Eq. (23)], one finds
the squeezing-enhanced scan rate quoted in the main text,
Eq. (24).

As pointed out in Refs. [31,32], independently of
squeezing, the SNR above has a maximum ∝ γs/γ+ at
cavity resonance ω = 0 and at critical coupling γm = γ+.
Unfortunately, no amount of squeezing can push beyond
this maximum, no matter the choice of the measurement-
port coupling parameter γm. Physically, this is because the
measurement-port susceptibility coefficient, χmm, which
dictates the transfer of quanta from the measurement-port
input to the measurement-port output, vanishes at these
parameter settings. See Fig. 9 for an illustration of this
point. Therefore, when operating on resonance and at crit-
ical coupling, no quanta incident on the measurement-port
input—whether it be from squeezed vacuum or initial
thermal fluctuations—transfers to the measurement-port
output. This establishes an intrinsic sensitivity limit on
the peak SNR, which one can only increase by either
decreasing the loss in the cavity or decreasing the oper-
ating temperature or both. On the other hand, squeezing
can significantly increase the bandwidth over which the
SNR is close to its peak value. To quickly see this,
we can take the infinite squeezing limit of Eq. (D3)
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FIG. 10. Squeezing-enhanced search with two-mode squeez-
ing generated by a JPA [33,59]. To highlight the equivalence
to the single-mode squeezing setup (see Fig. 3), we decompose
the JPA squeezer into subelements consisting of single-mode
squeezers on the individual modes a(ω) and a(−ω). Observe that
we squeeze along Q quadrature of the a(ω) mode and along the
P quadrature of the a(−ω) mode initially.

and observe that limG→∞ SNRsq ∝ γs/γ+, which is inde-
pendent of the cavity detuning, ω. Increasing the band-
width while maintaining peak sensitivity is why squeezing
can help DM-axion searches. For a more general dis-
cussion of such a bandwidth-sensitivity relationship, see
Ref. [58].

1. Practical implementation to resolve cavity-induced
phase shift

Instead of single-mode squeezing, we can use two-
mode squeezing generated by a JPA [59]. The JPA is
pumped with a strong field centered on twice the cav-
ity resonance (ωpump = 2ωc) and generates photon pairs
in a two-mode squeezed vacuum state that are split in
frequency across the cavity resonance—with one photon
at frequency ωc + ω and its partner at ωc − ω (ω is the
detuning). The two-mode squeezed state generated by this
process is then injected into the cavity. As we show, a
benefit of using two-mode squeezed vacuum, as opposed
to single-mode squeezed vacuum, is that it naturally
resolves the cavity-induced phase θmm. Squeezing via a
JPA was used in the recent axion-search demonstrations of
Refs. [32,33].

A schematic of the setup is shown in Fig. 10. For sim-
plicity, we do not include an antisqueezer (a “JPA amp”)
after the cavity interaction, as including such in this setting
would not change the forthcoming results for the SNR. Our
goal is to show that the variance of the output [specifically,
Var(Q) of the upper mode and Var(P) of the lower mode]
is independent of θmm—without introducing an external
phase shift—but otherwise equivalent to the single-mode
squeezing case described previously, up to some small sub-
tleties. To accomplish this goal, we track the covariance
matrix through the circuit depicted in Fig. 10.

Assuming initial thermal equilibrium of both modes at
temperature T, the covariance matrix just after the JPA

squeezer but prior to the cavity interaction is,

σ 1 ≡ NT

2

(
I2 −I2
I2 I2

)(
e−2rσ z 0

0 e2rσ z

)(
I2 I2

−I2 I2

)

(D4)

= NT

(
cosh(2r)I sinh(2r)σ z
sinh(2r)σ z cosh(2r)I

)
, (D5)

where σ z is the Pauli-Z matrix. The above covariance
matrix is that of a (noisy) two-mode squeezed vacuum.
To find the covariance matrix after the cavity inter-
action, we make two observations: first, observe that
|χmm(−ω)| = |χmm(ω)|—i.e., the cavity transmission is
the same for each mode; see Fig. 9 for an illustration. Sec-
ond, θmm(−ω) = −θmm(ω)—i.e., the cavity-induced rota-
tion is an odd function of frequency; see Eq. (B14). Now
define the phase-rotation matrix,

V ≡
(

O[θmm(ω)] 0
0 O[θmm(−ω)]

)

=
(

O[θmm(ω)] 0
0 O.[θmm(ω)]

)
, (D6)

where the second line follows since θmm is an odd function
of frequency. From thus, the covariance matrix just after
the cavity interaction is found,

σ 2 = |χmm(ω)|2Vσ 1V. + (1 − |χmm(ω)|2)I4

= |χmm(ω)|2σ 1 + (1 − |χmm(ω)|2)I4. (D7)

The identity Vσ 1V. = σ 1 can be derived from using the
definitions of σ 1 and V above, but this actually follows
from the simple fact that Oσ zO = σ z for any 2 × 2 real,
orthogonal matrix O. We have thus shown that the output
covariance matrix of the cavity is independent of the angle
θmm.

Now we evaluate the variances of the quadrature mea-
surements. Applying the second beam splitter—situated
just after the cavity interaction—undoes the beam-splitter
interaction within the JPA squeezer, thereby reducing the
output covariance matrix (prior to measurements) to a
direct sum of independent single-mode squeezed states,

σ (out) = |χmm(ω)|2
(
e−2rσ z ⊕ e2rσ z

)
+ (1 − |χmm(ω)|2)I4.

(D8)

We see that homodyne measurements along the Q quadra-
ture of mode â(ω) and along the P quadrature of mode
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â(−ω) have equal variances, which are given by

Var
[
Q̂(ω)

]
= Var

[
P̂(−ω)

]

= |χmm(ω)|2e−2r + 1 − |χmm(ω)|2. (D9)

Upon defining the gain, G ≡ e2r, this result is equivalent to
the single-mode squeezing case (without the antisqueezer
at the end).

Now to identify the signal. First, observe that
|χms(−ω)| = |χms(ω)|; see Fig. 9 for an illustration. Sec-
ond, observe that θms(−ω) = −θms(ω) (similar to θmm),
which follows from Eq. (B13). From these observations
and upon inspecting Fig. 10, we immediately write down
the output signal,

µ(out) ≡

Final beam splitter︷ ︸︸ ︷
1√
2

(
I2 I2

−I2 I2

)
Axion-induced displacement︷ ︸︸ ︷(
|χms(ω)|O[θms(ω)]µs

|χms(−ω)|O[θms(−ω)]µs

)

= |χms(ω)|√
2

(
I2 I2

−I2 I2

)(
O[θms(ω)]µs

O.[θms(ω)]µs

)

= |χms(ω)|√
2

(
O[θms(ω)]µs + O.[θms(ω)]µs
O.[θms(ω)]µs − O[θms(ω)]µs,

)
,

(D10)

where µs ≡ µs(cos φs, sin φs)
. is the axion field.

From here, we find the signal amplitudes from the
quadrature measurements,

〈Q̂(ω)〉 =
√

2|χms| cos (θms(ω)) µs cos φs, (D11)

〈P̂(−ω)〉 =
√

2|χms| sin (θms(ω)) µs cos φs. (D12)

Observe that,

〈Q̂(ω)〉2 + 〈P̂(−ω)〉2 = 2|χms(ω)|2µ2
s cos2 φs,

(D13)

=⇒ E
[
〈Q̂(ω)〉2 + 〈P̂(−ω)〉2

]
= 2|χms(ω)|2ns. (D14)

with the last equation being the average signal power.

Using the fact that the SNRs for Q̂(ω) and P̂(−ω) add
in quadrature for each detection step and integrating over
many axion coherence times, we find the SNR of the PSD
at the detuned frequency ω,

SNRJPA =




E
[
〈Q̂(ω)〉2

]

Var
(

Q̂(ω)
) +

E
[
〈P̂(−ω)〉2

]

Var
(

P̂(−ω)
)




√

'aTO

= 2γmγsns

NT
(
{[(γ /2)2 + ω2 − γmγ+]/G} + γmγ+

)

√
'aTO, (D15)

where Eqs. (14) and (15) have been used to expand χmm
and χms explicitly. This result is twice the SNR for the
single-mode squeezing assisted search; see Eq. (D3). The
factor of 2 comes from the fact that we are using two fre-
quency modes. The performance of the JPA approach (per
mode) is thus equivalent to that of the single-mode squeez-
ing case. The real difference here is that we did not have to
explicitly take care of the phase θmm.

a. Effect of resonance-frequency fluctuations
We qualitatively investigate how a fluctuating cavity-

resonance frequency affects the output noise power of the
cavity when squeezing is present. Such fluctuations will
generally introduce some antisqueezing into the signal,
due to the fluctuations induced in the angle θmm. We can
model this by assuming that the JPA pump frequency is
fluctuating.

That is, consider the JPA pump to be at frequency
3p . The JPA then generates photon pairs with frequen-
cies (3p/2 − ωc) ± ω in the cavity-rotating frame, where
ω is the detuning from cavity resonance. Let us assume
that 3p is a Gaussian random variable with mean 2ωc
and standard deviation σc. Define ε ≡ 3p/2 − ωc, such
that 〈ε〉 = 0 and 〈ε2〉 = σ 2

c where ε ∼ N (0, σc) is Gaus-
sian distributed. The input modes to the cavity are then
a(ε ± ω). The relevant cavity parameters for each mode
are |χmm(ε ± ω)| and θmm(ε ± ω). We calculate the vari-
ance in the Q quadrature of the â(ε + ω) output mode
(assuming this quadrature was squeezed initially), finding

Var
[
Q̂(ε + ω)

]
= NT|χmm(ε + ω)|2

(
e−2r

(
1 + cos [θmm(ε + ω) + θmm(ε − ω)]

2

)

+ e2r
(

1 − cos[θmm(ε + ω) + θmm(ε − ω)]
2

))
+ NT

(
1 − |χmm(ε + ω)|2

)
. (D16)

A similar relation holds for Var[P̂(ε − ω)].
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We thus see that antisqueezing appears in the noise
power (the term proportional to e2r) when frequency
fluctuations are present, which can be detrimental to
performance if the fluctuations are too large. We aim to
establish a qualitative condition on the size of these fluc-
tuations. Let us focus our attention on this antisqueezing
term in the above expression.

Firstly, observe that θmm(ε − ω) = −θmm(ω − ε) due to
the oddness of θmm. Using this fact, we can expand the
argument of the cosine assuming the fluctuations are small,
leading to the qualitative relation,

θmm(ε + ω) + θmm(ε − ω) = θmm(ω + ε) − θmm(ω − ε)

∼ (∂ωθmm)ε. (D17)

Now the typical scale associated with changes in cavity
quantities is the intrinsic linewidth, γ+; hence, ∂ωθmm ∼
1/γ+. If we substitute this qualitative expression into anti-
squeezing term of Eq. (D16) and expand the cosine to
first nontrivial order in its argument, we find that the anti-
squeezed noise scales as e2rε2/γ 2

+ ∼ e2rσ 2
c /γ 2

+ , where σc is
the typical size of the frequency fluctuations. For the anti-
squeezed noise to contribute much less than thermal and
vacuum fluctuations, we require that e2rσ 2

c /γ 2
+ ) 1 =⇒

σc ) e−rγ+. Recall that er =
√

G, where G is the gain of
the squeezer. Once this constraint is no longer satisfied, the
antisqueezed noise roughly becomes the size of a thermal
and vacuum fluctuation (the squeezing part can nonethe-
less tend to zero for large r), and the quadrature variance
reduces approximately to the vacuum case without squeez-
ing, at which point any performance enhancement gained
by squeezing is completely lost.

A more stringent condition is to require the antisqueezed
noise to be much smaller than the squeezed noise, leading
to the stronger constraint σc ) e−2rγ+. In this regime, anti-
squeezing is completely negligible compared to all other
noise terms in the quadrature variance.

APPENDIX E: DERIVATION OF NEAR-OPTIMAL
WEIGHTS

We provide detailed derivations of the near-optimal
weights—Eqs. (34) and (37) in the main text—for a dis-
tributed network of quantum sensor cavities.

Consider the signal amplitude along the real quadrature
of â(out)

1 from Eq. (28),
∑M

k=1 Re(w1kαk). Recall that, by
definition, αk = |χmksk

|µsei(φs+θmksk ) and so

Re(w1kαk) = |w1k||χmksk
|µs cos

(
arg w1k + φs + θmksk

)
.

(E1)

Assuming the axion phase, φs, is random and unknown,
the amplitude is otherwise maximized in the phase variable
for the choice arg w1k = −θmksk . This choice supports com-
plete constructive interference between the output signal

amplitudes of the cavities when combining them, which, if
left unaccounted for, would lead to a reduction in the total
signal power.

For arg w1k = −θmksk , the total output amplitude∑M
k=1 Re(w1kαk) ∝

∑M
k=1 |w1k||χmksk

|, up to a sensor-
independent factor µs cos φs. Thus, to further maximize
the signal, we must maximize

∑M
k=1 |w1k||χmksk

| with
respect to the (magnitude of) the weights |w1k|, subject to
the orthogonality constraint

∑M
k=1 |w1k|2 = 1. Define the

Lagrange function,

L =
M∑

k=1

|w1k||χmksk
| − λ

( M∑

k=1

|w1k|2 − 1

)

, (E2)

where λ is a Lagrange multiplier. Optimizing the
Lagrangian with respect to the weights, ∂|w1k |L = 0, sug-
gests that w1k ∝ |χmksk

|. Imposing the orthogonality con-
dition on the weights supplies the prefactor, from which
one obtains,

w1k =
|χmksk

|
√∑M

j =1 |χmj sj |2
e−iθmksk , (E3)

in accordance with Eq. (34) of the main text.
We now minimize the output noise power. For brevity,

we temporarily define the real number cl ≡ |w1l||w′
l1|

√
ηl

and the phase ϕl ≡ arg w1l + arg w′
l1. A quick calculation

shows that the â(in)
1 mode contributes the following to the

real quadrature of the â(out)
1 mode:

Re
(

â(out)
1

)
=

M∑

l=1

cl Re
(

eiϕl â(in)
1

)
+ . . .

=
M∑

l=1

cl

(
cos ϕl Re

(
â(in)

1

)
− sin ϕl Im

(
â(in)

1

))

+ . . . , (E4)

where the dots represent contributions from thermal and
vacuum noise.

Assume that we squeeze along the real quadrature of the
input, Re(â(in)

1 ). The above relation tells us there there will
be a contribution from antisqueezing, as well as squeez-
ing, when performing homodyne measurements along real
quadrature of the output if ϕl (= 0. The antisqueezed por-
tion will cause an increase in the noise. To neutralize this
increase in noise, we must set ϕl = 0. Using the result that
arg w1l = −θm+s+ from Eq. (34), the preceding argument
implores use to choose arg w′

l1 = θm+s+ .
With the phases resolved, we minimize the noise

with respect to the magnitude of the weights |w′
1l|.

To accomplish this task, we maximize the function∑
l=1 |w1l||w′

l1|
√

ηl [coming from the first term in Eq.
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(28)], subject to the orthogonality constraint
∑M

l=1 |w′
l1|2 =

1. Define the Lagrange function,

L =
∑

l=1

|w1l||w′
l1|

√
ηl − λ

( M∑

l=1

|w′
l1|2 − 1

)

, (E5)

where λ is the Lagrange multiplier. Assuming the weights
of W are set by Eq. (34) and optimizing the Lagrangian
with respect to the weights, ∂|w′

k1|L = 0, implies that
|w′

k1| ∝ |w1k|
√

ηk. Imposing the orthogonality condition
on the weights supplies the prefactor, from which we
obtain

w′
k1 =

|χmksk
||χmkmk

|
√∑M

j =1 |χmj sj |2|χmj mj |2
eiθmksk , (E6)

in accordance with Eq. (37) of the main text.

APPENDIX F: MAKING CONTACT WITH
CLASSICAL CAVITY LANGUAGE

For a continuous spectrum, we define the axion signal
field number spectral density as

〈â†
s (ω)âs(ω

′)〉 = 2πnsδ(ω − ω′). (F1)

Under this convention, the commutation relation
[âs(ω

′), â†
s (ω)] = 2πδ(ω′ − ω). The time domain field

operator is therefore

âs(t) =
∫

dω

2π
âs(ω)eiωt, (F2)

which satisfies the commutation relation [âs(t′), â†
s (t)] =

δ(t − t′). Here, âs(t) has unit of
√

quanta/sec and âs(ω) has
unit of

√
quanta/HZ. Hence, ns has units quanta/sec/HZ.

The axion-induced signal field flux is

〈â†
s (t)âs(t)〉 =

∫
dω

2π
ns ≈ ns'a. (F3)

Therefore, the signal power coming out of the cavity from
the measurement port, in units of energy/sec, is

Psig ≈ |χms(0)|2!ωcns'a

= 4γm/γ+

(γm/γ+ + 1)2 !ωcns'aγs/γ+, (F4)

where ωc is the cavity resonance frequency (equal to
the axion mass, assuming the axion is resonant with the
cavity). The signal power, Psig, is related to the power
inside the cavity, Pcav of Eq. (5), via Psig ≈ Pcavβ/(1 +
β)2, where β ≡ γm/γ+ and the approximation holds for
Qa 4 Qc.

To express the axion-conversion rate γs in terms of phys-
ical parameters, we consider the classical expression for
signal power,

Psig = β

1 + β
g2

aγ

ρa

ma
B2VηQeff, (F5)

where Q−1
eff = (1 + β)Q−1

c + Q−1
a ; Qc and Qa are the intrin-

sic cavity and axion quality factors, respectively. The
readout and measurement process introduces additional
loss, which is captured by β = γm/γ+. The combination
Q−1

l ≡ (1 + β)Q−1
c is often referred to as the loaded qual-

ity factor. Here, ma is the mass of the axion, which is equal
to the resonant frequency of the cavity signal mode ωc;
ρa is the local axion dark-matter density; gaγ is the cou-
pling constant of mass dimension −1; B is the magnetic
field; V is the volume of the cavity; and η is the geometri-
cal overlap between cavity mode and the axion dark-matter
field.

To relate Eq. (F5) to Eq. (F4), we define the coupling γs
between the axion and a cavity photon to be

γs = (gaγ B
√

η)22πδ(ω − ma)
finite 'a−−−−→ (gaγ B

√
η)2 1

4'a
.

(F6)

We also identify ns = ρaV/ma as the flux of axions per
axion bandwidth to be found inside the cavity. We now
rewrite Eq. (F4) as

Psig = 4γm/γ+

(γm/γ+ + 1)

!ωc

γ
ns'aγs, (F7)

where γ ≈ γ+ + γm can be identified as the total width of
the cavity given by ωc/Qeff, and (γm/γ+)/(γm/γ+ + 1) is
the same as β/(1 + β).

Equation (F4) is completely general with respect to any
signal field with occupation number ns and coupling rate
γs. For instance, if the signal comes from dark-photon dark
matter that has a mass mA′ and the kinetic mixing ε with
photons, then one may take,

γs
dark photon−−−−−−→ (εmA′

√
η)2 1

4'A′
,

ns
dark photon−−−−−−→ ρA′V/mA′ , (F8)

where 'A′ represents the bandwidth of the dark photon.

APPENDIX G: GKP-ASSISTED DM SEARCH

We consider using a more exotic quantum resource—the
GKP state [74]—to assist in a DM search. We first provide
some background and technical details regarding GKP
states, the SUM-gate detection method, and then proceed
with the GKP-assisted DM search protocol.
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1. Description of the GKP state
The GKP state was originally developed for quantum

error correction as a way to protect quantum information
(hosted in qubits [44] or other bosonic systems [81]) from
noise. Heuristically, the ideal, canonical GKP state |GKP〉
is an infinite lattice in the phase space of a bosonic mode,
which is translation invariant with respect to shifts in the Q
or P quadrature by an amount

√
2π . Due to the translation-

invariant property of the GKP state in phase space, it
is possible to simultaneously and precisely measure both
quadrature variables, Q and P, modulo

√
2π . This is essen-

tially due to the fact that each lattice point on the GKP grid
is infinitely squeezed along both the Q and P directions,
which is most evident when we write out the canonical
GKP state in the Q and P quadrature bases [44,45,81],

|GKP〉 ∝
∑

n∈Z

∣∣∣n
√

2π
〉

q
=
∑

n∈Z

∣∣∣n
√

2π
〉

p
, (G1)

where |·〉q (|·〉p ) represents a Q quadrature (P quadra-
ture) basis state. This state however is unnormalizable, as
infinite squeezing in each quadrature leads to an infinite
number of quanta in the perfect GKP state. We instead con-
cern ourselves with finite GKP states constrained to a finite
region in phase space, defined as

|GKP'〉 ∝ e−'2n̂ |GKP〉 , (G2)

up to normalization, and 1/' is the effective radius in
phase space (emanating from the origin), which supports
the GKP grid. The above state is pure, however it is eas-
ier to deal with its noisy version, which is an incoherent
mixture of GKP states [82],

NσGKP (GKP)

∝
∫

R2
dµ exp

(
−µ.σ−1

GKPµ
)

D̂µ|GKP〉〈GKP|D̂†
µ,

(G3)

where σ GKP = 2
[
(1 + e−'2

)/(1 − e−'2
)
]

I2 ≡ I2/G. One
can multiply σ GKP by a factor of NT = 1 + 2n̄T to include
initial thermal fluctuations in GKP state preparation.
Observe that the above description is a perfect GKP state
going through an additive noise channel with equal noise
added to each quadrature. We write the state in this seem-
ingly complicated way as it is easier to generalize to
arbitrary Gaussian processes acting on the GKP state that
we consider later.

2. SUM gate
In the GKP-assisted detection strategy, we couple the

signal mode, described by quadrature operators Q̂ and P̂,
to an ancilla mode in a GKP state, described by quadrature

operators Q̂anc and P̂anc, via the unitary operation, ŜUM =
exp(−iQ̂P̂anc), which acts on the quadrature operators as,

ŜUM : Q̂ → Q̂, P̂ → P̂ − P̂anc,

Q̂anc → Q̂anc + Q̂, P̂anc → P̂anc.
(G4)

It is easy to derive a symplectic matrix representation of
the SUM gate and its inverse, which we immediately write
in 2 × 2 blocks as

SUM =
(

I2 −9P
9Q I2

)
, (G5)

and SUM−1 =
(

I2 9P
−9Q I2

)
, (G6)

where 9Q = diag(1, 0) and 9P = diag(0, 1) represent pro-
jections along the Q quadrature and P quadrature of the
respective modes.

3. Joint distribution
We formally derive the joint PDF for two imperfect

GKP states, which are coupled via a SUM gate. This is pre-
cisely the situation for GKP-assisted axion search, where
the output of the cavity (in a noisy GKP state) couples to an
imperfect GKP ancilla via the SUM gate just before homo-
dyne measurements are performed on each mode. Consider
modes 1 and 2 in noisy GKP states NYk (GKP) with noise
matrices Yk = ykI2, where yk ≥ 0 and k ∈ {1, 2}. Defining
Y ≡ ⊕2

k=1Yk, the joint state can then be written as,

NY(GKP⊗2) ∝
∫

R4
dµ exp

(
−µ.Y−1µ

)
D̂µ

(
|GKP〉〈GKP|⊗2) D̂†

µ,

(G7)

where, for instance,

Y−1 =
( y2

y1+y2
I2 0

0 y1
y1+y2

I2

)
. (G8)

We now apply a two-mode SUM gate, formally resulting
in the correlated state

NY(GKP⊗2) → ŜUM
(
NY(GKP⊗2)

)
ŜUM

†
. (G9)

Two simplifying observations are in order. Firstly, the
perfect GKP states are invariant under the SUM gate, i.e.,

ŜUM
(
|GKP〉〈GKP|⊗2) ŜUM

†
= |GKP〉〈GKP|⊗2.

(G10)

Secondly, since the SUM gate is a symplectic transforma-
tion, the action of SUM on the Weyl operators D̂µ can be

030333-26



ENTANGLED SENSOR-NETWORKS... PRX QUANTUM 3, 030333 (2022)

taken care of by a redefinition of the integration variable,

µ′ ≡ (SUM−1).µ, (G11)

where SUM−1 (without a hat) is the inverse of the sym-
plectic matrix for the SUM gate from Eq. (G6). Note also
that dµ = dµ′ since SUM is a symplectic transformation.
Upon defining a new noise matrix,

Y′ ≡
(
SUM−1). Y

(
SUM−1) , (G12)

it follows that,

ŜUM
(
NY(GKP⊗2)

)
ŜUM

†
= NY′(GKP⊗2), (G13)

where the noise matrix Y′ is the covariance matrix for the
multivariate Gaussian PDF of the two-mode state.

In the GKP-assisted DM search protocol (see below),
orthogonal homodyne measurements are performed on the
signal and the ancilla, respectively; in the notation here,
this corresponds to a quadrature measurement P1 of mode
1 and Q2 of mode 2, discarding the other quadratures Q1
and P2. The reduced PDF of the measurement outcomes,
after discarding Q1 and P2, is uncorrelated in the remain-
ing variables P1 and Q2. Thus, measurements along these
quadrature directions are independent and described by
univariate Gaussian PDFs.

4. GKP search protocol
Here, we consider using the GKP state [44] in a dark-

matter search. We describe how, in the ideal case, the GKP
search strategy can enhance the scan rate by a constant fac-
tor relative to a squeezing-enhanced search with the same
amount of squeezing, however, we also show a practical
no go for GKP-assisted scan when ancillary measurement
noise is taken into consideration.

The potential benefits of this new strategy derive from
the non-Gaussian resource consumed in its implementa-
tion—the GKP state. Colloquially, the canonical GKP state
is a grid in phase space, with unambiguously identifiable
lattice points separated by

√
2π . One can simultaneously

measure the Q and P quadrature variables of the GKP state
mod

√
2π (ignoring practical noise sources), due to the√

2π translation invariance of grid [44,45]. The Heisen-
berg uncertainty principle holds good due to the mod

√
2π

structure [44].
Practically though, if a displacement of the grid occurs,

one must infer in what direction [say, left or right for a
one-dimensional (1D) displacement] and with what mag-
nitude the displacement occurs, however due to the

√
2π

translation invariance, this inference is ambiguous if the
displacement is close to (or known up to) half a lat-
tice spacing,

√
π/2 [83]. This ambiguity, however, is not

a problem for very small displacements (and fairly low

FIG. 11. GKP-assisted search. A GKP state is prepared and
injected into the microwave cavity. Just prior to injection, the
input mode is amplified by a (quantum limited) phase-insensitive
amplifier Ag with gain chosen as g = 1/|χmm|2, which converts
the cavity-transmission loss to additive Gaussian noise—a nec-
essary addition when using GKP states. The output mode of the
cavity, which is slightly displaced due to the axion field, then
interacts via the SUM gate with an ancillary mode prepared in
a GKP state. Finally, orthogonal homodyne measurements are
performed on each mode.

amount of noise), such as an axion-induced displacement,
as we now discuss. For further details regarding the GKP
state, see Appendix G; see also Ref. [46] for applications
of GKP in general distributed-sensing scenarios.

The GKP-assisted protocol consists of the following
steps (see Fig. 11):(1) A GKP state is prepared and sent
through a phase-insensitive amplifier Ag , with gain g =
1/|χmm|2 chosen in such a way to convert the cavity trans-
mission loss to additive Gaussian noise; (2) the amplified
GKP state is injected into a microwave cavity, where an
axion-induced displacement of the cavity field occurs (note
here we have gone back to the rotated frame for a single
cavity); (3) the output of the cavity (the signal, a dis-
placed GKP state) is coupled via the SUM gate to an
ancilla mode prepared in an ancillary GKP state; (4) homo-
dyne detection is performed along the Q quadrature of
the GKP ancilla and along the P quadrature of the signal
mode. The independent measurements are then combined
in quadrature to infer the SNR.

For simplicity in this initial presentation, we assume
added noise (vacuum-added noise from the cavity, intrin-
sic noise in the imperfect GKP resource states etc.) is
much smaller than half the lattice spacing of the GKP
grid,

√
π/2. In this regime, we can safely make a Gaus-

sian approximation for the modes and focus our attention
to a particular lattice point of the GKP grid (the origin
in phase space) about which all displacements are mea-
sured with respect to. We return to this approximation later.
We can then describe a GKP state in terms of its Wigner
function restricted to the origin, which is a Gaussian func-
tion with moments (µGKP = 0 mod

√
2π , σ GKP), where

the covariance matrix

σ GKP = NT

G
I2. (G14)
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Observe that we have included initial thermal fluctuations
that may be present during GKP-state preparation. Follow-
ing convention, we define the squeezing of the GKP state
in dB as sdB ≡ 10 log(G). Intuitively, the local variance
of the GKP state, σ GKP, represents the typical size of the
fluctuations of a lattice point on the GKP grid, due to the
finite squeezing used to prepare the GKP state (plus initial
thermal fluctuations).

For a (quantum limited) amplifier of gain g, the GKP
state just before entering the cavity gets mapped to
σ GKP → gσ GKP + (g − 1)I2. Choosing g = 1/|χmm|2 and
using the general input-output Eqs. (12) and (13), the
output of the cavity can be found,

µ(out)
m = |χms|O(θms)µs, (G15)

σ (out)
m = NT

G
I2 + 2NT

(
1 − |χmm|2

)
I2, (G16)

where it is understood that µ(out)
m is defined mod

√
2π .

We drop the modulo dependence for brevity. Observe that
extra vacuum noise has been added to the output (seen
as a factor of 2 in σ (out)

m above) from phase-insensitive
amplification. The cavity output then couples via the SUM
gate to the GKP ancilla, which has local moments (µanc =
0, σ anc = NT/GancI2), leading to a formal expression for
the reduced moments,

SUM : µ(out)
m → µ(out)

m , σ (out)
m → σ (out)

m + 9Pσ anc9P,
(G17)

µanc → 9Qµ(out)
m , σ anc → σ anc + 9Qσ (out)

m 9Q,
(G18)

where 9Q = diag(1, 0) and 9P = diag(0, 1) are projec-
tions along the Q quadrature and P quadrature of the
respective single-mode spaces. Since µanc = 0, we see
that the mean vector of the signal goes unchanged while
the mean vector of the GKP ancilla gets translated along
the Q quadrature by the Q component of the signal,
9Qµ(out)

m . We also observe a shuffling of Q and P quadra-
ture noises between the signal and the ancilla. Written out
explicitly, the noise in the P (Q) quadrature of the signal
(ancilla) is NT/Geff + 2NT(1 − |χmm|2), where 1/Geff ≡
1/G + 1/Ganc.

After coupling the signal to the ancilla, the Q quadra-
ture of the ancilla and P quadrature of the signal are then
measured. The variances of these measurements add in
quadrature, which—after integrating over a coherence time
of the axion field—leads to an estimate for the SNR for
GKP-assisted search,

SNRGKP ≈ 2γmγsns

NT
({

[(γ /2)2 + ω2]/Geff
}

+ 2γmγ+

)
√

'aTO,

(G19)

where the approximation indicates the Gaussian approx-
imation for the GKP state, which is valid whenever the
displacements and noise are much smaller than

√
π/2.

Observe that the GKP-assisted detection cannot increase
the peak SNR. This is easily seen in the infinite squeezing
limit. In this limit, the first term in the denominator van-
ishes, and the factors of 2 in the numerator and denomina-
tor of the remaining terms cancel, leading to the same peak
SNR as the critically coupled, quantum limited scenario.

We now consider two limiting cases of the GKP-assisted
search and analyze its performance relative to a squeezing-
enhanced search, when the squeezing G is taken as equal
for each search method. In the first case, we relax the noise
assumption about the ancillary measurement and assume
that it is negligible. In this limit, it is shown that a GKP-
assisted search has a scan rate (almost) double that of
a squeezing-enhanced search when the squeezing levels
of each are comparable. In the second case, we include
the effects of ancillary measurement noise and show a
practical no go in terms GKP-assisted performance. This
result places strict constraints on any practical performance
enhancements to be gained from GKP states when search-
ing for a random signal, at least within the framework of
the cavity model presented here.

a. Case 1: Negligible measurement noise
Assuming a negligible amount of ancillary measurement

noise, we show that the GKP-assisted scan performs about
twice that of a squeezing-enhanced scan, in principle,
when the squeezing levels for each method are compara-
ble. If the GKP ancillary noise is negligible, then Ganc 4 G
and therefore Geff = G. Substituting this value into the
SNR of Eq. (G19), we find the scan rate of the GKP-
assisted search relative to the optimal quantum limited
search,

RGKP

R4
QL

= 27
√

G (γm/γ+)
2

8
(
{[(γm/γ+) + 1]2/4G} + 2(γm/γ+)

)3/2 .

(G20)

We plot this ratio in Fig. 12 and compare with the
squeezing-enhanced search. The optimal coupling value
for the GKP case is γm/γ+ ≈ 4G. At this optimal setting
and in the large squeezing limit, the above ratio reduces
to R4

GKP/R4
QL ≈ 1.4G and thus R4

GKP/R4
sq ≈ 2GGKP/Gsq,

which comes from the analysis just below Eq. (24). Here
we have explicitly notated the squeezing levels in the
GKP-assisted scan and squeezing-enhanced scan by GGKP
and Gsq, respectively. Therefore, when the squeezing lev-
els for each scan method are comparable—i.e., GGKP ≈
Gsq—the GKP-assisted scan asymptotically outperforms
the squeezing-enhanced scan by about a factor of 2.

In Fig. 13, we show a more detailed comparison between
the two search methods by considering the ratio of the scan
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FIG. 12. Comparison of scan rate for squeezing-enhanced
search [Eq. (24)] and GKP-assisted search [Eq.(G20)] as a func-
tion of the ratio γm/γ+ for several representative values of the
squeezing in dB, sdB = 10 log10(G). There exists optimal values
for γm depending on the squeezing level (γm/γ+ ≈ 2G for squeez-
ing enhanced and γm/γ+ ≈ 4G for GKP assisted, respectively).
We consider equal squeezing for each search method at sdB =
10, 13 dB (corresponding to G = 10, 20). The curves for the
GKP-assisted search are for negligible ancillary-measurement
noise and correspond to the Gaussian approximation for the GKP
state.

rates evaluated at their respective optimal-coupling values,
R4

GKP/R4
sq. The dashed line is the theoretical prediction

for GKP-assisted scan rate from the Gaussian analysis
just presented, while the solid error-revised curve takes
into consideration the mod

√
2π structure of the GKP grid

(and thus deviations from Gaussianity). See Appendix G
for further details of the latter. Observe that the asymp-
totic enhancement value of 2 is reached in the large-
squeezing limit. Two further observations are noteworthy:
(1) when the squeezing is greater than 10 dB, the discrep-
ancy between the Gaussian approximation and the actual
estimate is quite small (! 10%); (2) there is a “break-
even” point at approximately equal to 8 dB of squeezing
when the GKP-assisted scan begins to outperform the
squeezing-enhanced scan.

Before moving to the next section, we point out that
we are comparing the two schemes with the same level of
squeezing, while the GKP state has more energy than the
squeezed vacuum state. We have chosen such a compari-
son as the level of squeezing represents the capability of
state engineering and an energy constraint is irrelevant in
our sensing scenario.

b. Case 2: Non-negligible measurement noise
In the case where the GKP ancilla has the same noise as

the GKP state injected into the cavity, Ganc = G, which is
perhaps the most practical case, we find that there is a prac-
tical no go when it comes to performance enhancement

FIG. 13. GKP-assisted scan-rate enhancement relative
to squeezing-enhanced scan, for negligible GKP-ancillary
measurement-noise. Vertical axis is the ratio between the
GKP-assisted scan-rate, R4

GKP, and squeezing-enhanced scan
rate, R4

sq, evaluated at their respective optimal-coupling values,
γm/γ+ ≈ 4G and γm/γ+ ≈ 2G, respectively, assuming equal
squeezing level G for each.

of a GKP-assisted search versus a single-mode squeezing-
enhanced search. The reason is that, in GKP-assisted detec-
tion, although one can measure both quadrature variables
of the signal and thus gain a factor of 2, the noise also
gets increased by (more than) a factor of 2, due to the
noise in the ancilla and noise from the amplifier that is
required to convert the cavity-transmission loss to additive
Gaussian noise. In particular, from the previous analysis,
the noise in the P(Q) quadrature of the signal (ancilla)
just after the SUM gate is 1/Geff + 2(1 − |χmm|2), where,
without loss of generality, we assume vacuum-dominated
noise and thus set NT = 1. Assuming an ancilla GKP state,
which is identical to the GKP state that is injected into the
cavity, we have Geff = G/2, and thus the quadrature noise
is 2

(
1/G + 1 − |χmm|2

)
. Observe that the noise in the

single-mode squeezing case is |χmm|2/G + 1 − |χmm|2.
Since 0 ≤ |χmm|2 ≤ 1, there is (more than) twice as much
quadrature noise in the GKP-assisted detection than the
squeezing assisted detection. In the GKP-assisted detec-
tion, the factor of 2 from the noise cancels out the factor
of 2 in the signal which was acquired from measuring
both quadrature variables. One can also see this by com-
paring Eqs. (D3) and (G19) when Geff = G/2. Therefore,
the GKP-assisted scan does no better (if not worse) than
the single-mode squeezing-enhanced scan in this practical
limit.

5. Detailed error analysis
We consider the error in our ideal Gaussian approx-

imation for the GKP state as a general function of
additive Gaussian noises, which leads to the error-
revised curve in Fig. 13. All the practically relevant
noise sources—cavity-added vacuum-noise, thermal noise,
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imperfect GKP resource states—can be converted to addi-
tive Gaussian noises; see, e.g., Ref. [84] for details of
such a conversion. Further, since our detection strategy
consists of independent homodyne measurements on the
signal and ancilla and since the noises added to the Q and
P quadrature variables are equivalent, it is sufficient to
restrict ourselves to one quadrature, say the Q quadrature,
in the current analysis. The PDF describing fluctuations of
the GKP grid (of the signal or the ancilla) due to noise is
given by a Gaussian distribution,

py(q) = 1
√

πy
e−(q2/y), (G21)

where 〈q2〉 = y/2 is the variance (
√

y/2 is the standard
deviation). For instance, cavity-transmission losses corre-
spond to y/2 = (1 − |χmm|2). With the modulo structure
of the GKP grid in mind, we provide a strategy to estimate
an unknown displacement, which has been previously ana-
lyzed in the applications of continuous-variable quantum
error correction [81] and DQS [46]. The estimator q̃ for a
given displacement q is chosen as,

q̃ = R√
2π (q) ≡

∑

n∈Z
(q − n

√
2π)

× I
(

q ∈ [(n − 1/2)
√

2π , (n + 1/2)
√

2π ]
)

, (G22)

where

I
(
q ∈ [(n − 1/2)

√
π , (n + 1/2)

√
π]
)

=
{

1 q ∈ [(n − 1/2)
√

2π , (n + 1/2)
√

2π ]
0 else,

(G23)

is an indicator function [81]. The value n
√

2π quanti-
fies how many lattice spacings the displacement q is from
the origin at n = 0. The relative displacement from the
nth lattice point, q − n

√
2π , then lies within half a lattice

spacing
√

π/2 of this point. Assuming an unknown axion-
induced displacement of εs ≡ |χms|µs sin φs along the Q
quadrature, an estimate for the kth moment is then,

〈q̃k〉 ≡
∑

n∈Z

∫ (n+1/2)
√

2π

(n−1/2)
√

2π

dqpy(q − εs)(q − n
√

2π)k,

(G24)

where the axion-induced displacement has been absorbed
into the mean for the PDF. When √y, εs )

√
π , 〈q̃〉 ≈ εs

and Var(q̃) ≈ y/2, and the Gaussian approximation for the
GKP state holds good.

From this estimation strategy, we can estimate the
SNR for the power, which we formally define as S̃NR ≡
〈q̃〉2/Var(q̃). We wish to compare this estimation to its

FIG. 14. Plot of the (square of the) estimated SNR, S̃NR, to
its Gaussian counterpart 2ε2

s /y as a function of the squeezing
G when the additive noise y obeys Eq. (G26). An arbitrarily
low value of εs = 0.001 was chosen for the axion-induced dis-
placement to generate the plot. This choice does not appreciably
change the analysis for all εs ! 0.1.

Gaussian counterpart of 2ε2
s /y, within the relevant scenar-

ios and parameter regimes discussed in the main text, in
which case 2ε2

s /y reduces to Eq. (14). To do so, we make
the correspondence y = 1/G + 2(1 − |χmm|2), which is
the additive noise in the GKP-assisted search scenario. See
Fig. 11 and accompanying analysis. Upon optimization of
the scan rate, in general, the squeezing G and the cavity
transmission |χmm|2 are related, however from the Gaus-
sian analysis, we find an optimal coupling of γm/γ+ ≈ 4G,
from which the following relation may be derived:

1 − |χmm|2 = 4G{
[(4G + 1)2/4] + ω2

} ≤ 16G
(4G + 1)2 ,

(G25)

where we have taken the on resonance (ω = 0) value as
a worst-case approximation. We assume this value from
hereon to simplify the analyses. The additive noise then
reduces to a simple function of the squeezing,

y = 1/G + 32G
(4G + 1)2 . (G26)

Since the scan rate scales as the square of the SNR, the rel-
evant quantity to consider is S̃NR2. Figure 14 shows the
deviation of the estimated SNR, S̃NR, relative to its Gaus-
sian counterpart, 2ε2

s /y, as a function of the squeezing in
dB. For squeezing levels above 10 dB, there is less than a
10% discrepancy between S̃NR [evaluated via Eq. (G24)]
and the Gaussian approximation for the GKP state [i.e., Eq.
(G19)]. We note that, at 10 dB of squeezing, y ≈ 0.3.

Finally, considering the (optimal) GKP-assisted scan
rate, R4

GKP, from the Gaussian analysis, Eq. (G20), we can
estimate the optimal error-revised GKP-assisted scan rate
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R̃4
GKP by the following. Let S̃NRGKP be the SNR evaluated

from the estimation procedure just presented and SNRGKP
be the SNR taken from the Gaussian analysis [Eq. (G19)].
Then,

R̃GKP ∝
∫

dωS̃NR2
GKP

=
∫

dωSNR
2
GKP

(
S̃NRGKP

SNRGKP

)2

≥
(

S̃NRGKP

SNRGKP

)2

ω=0

∫
dωSNR

2
GKP,

where we use the fact that there is a maximal amount of
vacuum noise on resonance, ω = 0, at which point the ratio
S̃NRGKP/SNRGKP is the smallest. Now observe that,

RGKP ∝
∫

dωSNR
2
GKP,

where RGKP is the scan rate from the Gaussian analysis. It
thus follows that,

R̃4
GKP ≥

(
S̃NRGKP

SNRGKP

)2

R4
GKP (G27)

where it is understood that the prefactor is evaluated at ω =
0 and γm/γ+ ≈ 4G (the optimal point inferred from the
Gaussian analysis). The error-revised (solid) curve referred
to in Fig. 13 corresponds to the estimate on the right-hand
side of Eq. (G27).
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j (ω)â(in)
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