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Abstract. We introduce the matching functions technique in the setting
of Anosov flows. Then we observe that simple periodic cycle functionals
(also known as temporal distances) provide a source of matching functions
for conjugate Anosov flows. For conservative codimension one Anosov flows
ϕt : M Ñ M , dim M ě 4, these simple periodic cycle functionals are C1 regu-
lar and, hence, can be used to improve regularity of the conjugacy. Specifically,
we prove that a continuous conjugacy must, in fact, be a C1 diffeomorphism
for an open and dense set of codimension one conservative Anosov flows.

1. Introduction

Let M be a closed smooth Riemannian manifold. Recall that a smooth flow
ϕt : M ÑM is called Anosov if the tangent bundle admits a Dϕt-invariant splitting
TM “ Es‘X‘Eu, where X is the generator of ϕt, Es is uniformly contracting and
Eu is uniformly expanding under ϕt. Basic examples of Anosov flows are geodesic
flows in negative curvature and suspension flows of Anosov diffeomorphisms. If
dimEs “ 1 then ϕt is called a codimension one Anosov flow.

Anosov flows ϕt1 : M Ñ M and ϕt2 : M Ñ M are called orbit equivalent if there
exists a homeomorphism h : M Ñ M which sends orbits of ϕt1 to the orbits of ϕt2
preserving the time direction. A much stronger equivalence property for flows is
conjugacy. Flows ϕt1 and ϕt2 are conjugate via a homeomorphism h if h˝ϕt1 “ ϕt2 ˝h

for all t P R.
Anosov’s structural stability asserts that if ϕt1 is a transitive Anosov flow and

ϕt2 is a sufficiently small C1 perturbation of ϕt1 then ϕt2 is orbit equivalent to ϕt1.
An orbit equivalence h can be improved to a conjugacy by adjusting along the flow
lines if and only if the periods of corresponding periodic orbits coincide, that is,
perϕt1pγq “ perϕt2phpγqq for all periodic orbits γ [KH95, Theorem 19.2.9]. Indeed,
one can begin with orbit equivalence, then, if periods match, the derivative of the
orbit equivalence along the flow is cohomologous to constant 1 by the Livshits
theorem. Then one use the transfer function to adjust the orbit equivalence into
another orbit equivalence whose derivative along the flow is 1, which is then a
conjugacy. According to [FO73] this application of the Livshits theorem is due to
A. Katok.

The authors were partially supported by NSF grants DMS-1955564 and DMS-1900778,
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It is also well-known that a conjugacy between Anosov flows must be bi-Hölder
continuous. Generally speaking, a better regularity cannot be expected as can be
seen from the example of constant roof suspensions of two Anosov diffeomorphisms,
which are not C1 conjugate, but merely Hölder conjugate. However, it is the
authors’ belief that aside from this special case a lot more rigidity can be expected.
In the setting of 3-dimensional contact Anosov flows Feldman and Ornstein proved
that any continuous conjugacy is, in fact, smooth [FO73]. We proceed to present
more evidence to support our belief.

Theorem 1.1. Let ϕt1 : M Ñ M and ϕt2 : M Ñ M be volume preserving Anosov
flows, which are conjugate via a homeomorphism h : M ÑM . Assume that dimM “

4 and that there exists a periodic point p “ ϕT1 ppq such that the linearized return
map DϕT1 : TpM Ñ TpM has a pair of (non-real) complex conjugate eigenvalues.
Then at least one of the following holds

1. ϕt1 and ϕt2 are constant roof suspensions over Anosov diffeomorphisms;
2. conjugacy h is C8 smooth;

The above theorem applies to abstract 4-dimensional volume preserving Anosov
flows. Recall that Verjovsky conjecture states that any codimension one Anosov
flow on a manifold of dimension greater than three is orbit equivalent to a suspension
flow of a toral automorphism. If Verjovsky conjecture is true then ϕti must, in fact,
be suspensions of Anosov diffeomorphisms of T3. We also prove the following result
in any dimension ě 4.

Theorem 1.2. LetM be a closed manifold of dimension at least 4. Denote by U the
space of codimension one volume preserving Anosov flows on M . Then there exists
a C1 open and C8 dense subset V Ă U such that if ϕt1 P V and ϕt2 P U are conjugate
via a homeomorphism h : M ÑM then h is, in fact, a C1 diffeomorphism.

Remark 1.3. In both Theorem 1.1 and Theorem 1.2, the assumption on the conju-
gacy can be weakened by only assuming that time-1 maps of the flows are conjugate.
To see that recall that any Anosov flow which is not a constant roof suspension is
topologically weakly mixing [P72]. Hence, we can assume that ϕt1 is topologically
weakly mixing. Then it is not hard to check that orbits whose period is irrational
are dense in M (see, e.g., [BG21, Lemma 2.2]). The restriction of the conjugacy
for time-1 maps on these irrational periodic orbits must be conjugacy for the flows,
because the time-1 map orbits are dense in the irrational periodic orbits. From
here, we see the time-1 map conjugacy is a conjugacy of flows on a dense set and
hence is, in fact, conjugacy of flows.

Remark 1.4. Analogous results, with the same proofs, also hold in the setting of
partially hyperbolic diffeomorphisms. Namely, one has to consider volume preserv-
ing partially hyperbolic diffeomorphisms with one-dimensional stable subbundle,
one-dimensional isometric center subbundle and a higher dimensional (ě 2) unsta-
ble subbundle. Then one can conclude regularity of the conjugacy for an open and
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dense set of such diffeomorphisms. It is an interesting problem to generalize to
the setting with higher dimensional isometric center subbundle. We would like to
thank Danijela Damjanović for this remark.

The proofs of both theorems rely on matching functions along the higher dimen-
sional invariant foliation. We have previously developed such matching functions
technique for expanding maps [GRH20a] and for codimension one Anosov diffeo-
morphisms [GRH21]. By consistently working in C1`ε category one can, in fact,
conclude that the conjugacy in Theorem 1.2 is a C1`ε diffeomorphism for some
small ε ą 0. In the setting of Theorem 1.1, the presence of the “conformal” peri-
odic unstable leaf allows to employ rather standard bootsrtap arguments to upgrade
the regularity of the conjugacy from C1 to C8. The authors do not know how to
further bootstrap regularity of the conjugacy in the setting of Theorem 1.2.

Finally, we would like to point out that, in the case when the flows are suspen-
sions, the methods of [GRH21] become directly applicable. Specifically, recall the
following result from [GRH21].

Theorem 1.5 (Theorem 1.7, [GRH21]). Let L : Td Ñ Td be a generic hyperbolic
automorphism with one dimensional stable subspace. Assume that

plogµq2 ´ plog ξlq2 ą logµplog ξl ´ log ξ1q

where µ´1 is the absolute value of the stable eigenvalue, ξ1 is the smallest absolute
value of the eigenvalues which are greater than 1 and ξl is the largest absolute value
of the eigenvalues of L.

Then there exists a C1 neighborhood U of L in DiffrpTdq, r ě 3, and a Cr-dense
C1-open subset V Ă U such that if f1, f2 P V have matching Jacobian periodic data
then f1 and f2 are C1`ε conjugate for some ε ą 0.

Following the proof of the above theorem and using the roof function instead
of using Jacobians an interested reader will also be able to establish the following
result.

Proposition 1.6. Let L : Td Ñ Td be an Anosov diffeomphism satisfying the as-
sumptions of Theorem 1.5 and let ϕt be a suspension flow of L. Then there exists
a C1 neighborhood U of ϕt in the space of volume preserving flows and a C1-open
subset V Ă U such that if ϕt1 P V and ϕt2 P U are conjugate then they are, in fact,
C1`ε conjugate for some ε ą 0.

1.1. Organization. In the next section we recall some facts about regularity of
invariant foliations. Then we introduce the matching function machinery for Anosov
flows. In Section 3 we give a rather self-contained proof of Theorem 1.1, except for
the bootstrap from C1 to C8 which was done in [GRH21]. In Section 4 we prove
Theorem 1.2.
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2. Preliminaries

2.1. Regularity of invariant foliations. Let ϕt be a codimension Anosov flow.
The regularity of invariant subbundles is a well-studied in the literature [HPS77,
H94]. In particular, the weak stable distribution E0s is Cν if there exists a suffi-
ciently large t such that

sup }Dϕtpvsq } ¨ }Dϕ´tpvu1 q } ¨ }Dϕtpvu2 q } ν ă 1

where the supremum is taken over all unit vectors vs P Espxq, vu2 P Eupxq, vu1 P
Eupϕtpxqq, x P M . The stable distribution is Cν if there exists a sufficiently large
t such that

sup }Dϕtpvsq } ¨ }Dϕtpvuq } ν ă 1
where the supremum is taken over all unit vectors vs P Espxq, vu P Eupxq, x P M .
Note that the second condition is stronger then the first one. We can verify this
condition if ϕt is a codimension one volume preserving Anosov flow on a manifold
of dimension ě 4.

Using volume invariance we have

}Dϕtpvsq } ¨ }Dϕtpvuq } ă }Dϕtpvsq } Juϕt “ JsϕtJuϕt “ 1,

where Jsϕt and Juϕt denote the stable and the unstable Jacobians of ϕt. By
compactness the supremum the above expression is also ă 1. Therefore Es and
E0s are C1. Hence, the stable foliation W s and and the weak stable foliation W 0s

are also uniformly C1. (In fact, because the inequality is strict one can also conclude
Cν regularity for some ν ą 1.) Reversing the time and using the same criterion one
can also see that the weak unstable foliation W 0u is uniformly C1, but the unstable
Wu is merely Hölder continuous transversely to the leaves.

2.2. Matching functions and the Subbundle Theorem. Now let ϕti : M ÑM ,
i “ 1, 2, be codimension one, volume preserving Anosov flows which are conjugate,
h ˝ ϕt1 “ ϕt2 ˝ h. We will consistently use the subscript i P t1, 2u for distribution
and foliations of the flow ϕti to indicate dependence on the flow.

Here we will explain a certain construction of sub-bundles Ei of the unstable
bundles Eui via locally matching functions.

For each x consider pairs of C1 functions pρ1, ρ2q where ρ1 is defined on an open
neighborhood of x in W 0u

1 pxq, ρ2 is defined on an open neighborhood of hpxq in
W 0u

2 phpxqq and such that
ρ1 “ ρ2 ˝ h

This relation is what we call a matching relation. We collect all such pairs into a
space Vx

Vx “ tpρ
1, ρ2q : ρ1 “ ρ2 ˝ hu

The domains of definition of ρ1 and ρ2 can be arbitrarily small open sets. Also
denote by Vx,1 the collection of all possible ρ1, that is, projection of Vx on the first
coordinate, and by Vx,2 the projection on the second coordinate.
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Now we can define linear subspaces Eipxq Ă E0u
i pxq by intersecting kernels of all

Dρi at x, i “ 1, 2. Namely,

Eipxq “
č

ρiPVx,i

kerDρipxq

Also let mipxq “ dimEipxq and let mi “ minxPM mipxq.
Conjugacy relation implies that if pρ1, ρ2q P Vϕt1pxq then pρ1 ˝ ϕt1, ρ

2 ˝ ϕt2q P

Vx. It immediately follows that Ei is invariant under Dϕti. Also, we can check
that Eipxq is invariant under the stable holonomy. Indeed, let b P W s

1 paq and let
Hola,b : W 0u

1,locpaq ÑW 0u
1,locpbq be the stable holonomy given by sliding points along

the stable foliation W s
1 with Hola,bpaq “ b. Similarly, Holhpaq,hpbq : W 0u

2,locphpaqq Ñ

W 0u
2,locphpbqq is the stable holonomy for ϕt2. Let pρ1, ρ2q P Vb, then, because the

stable holonomy is C1, and the conjugacy sends the stable foliation of ϕt1 to the
stable foliation of ϕt2 we can conclude that pρ1 ˝Hola,b, ρ

2 ˝Holhpaq,hpbqq P Va. From
this and the definition of the spaces Ei we can see that E1pbq “ DHola,bE1paq and
E2phpbqq “ DHolhpaq,hpbqE2phpaqq. In particular, we conclude that the level sets
of the dimension function tx : mipxq “ ku, are W s

i -saturated. But they are also
saturated by the flow lines, hence, W 0s

i -saturated.
It is not hard to verify that mi : M Ñ Z` is an upper semi-continuous function.

To see that one can write Eipxq as a finite intersection (due to Eipxq being a finite
dimensional subspace)

Eipxq “
K
č

j“1
kerDρijpxq

with minimal K. Then, we have that kerDρijpxq depend continuously on x due to
C1 regularity of ρji . Then for all y which are sufficiently close to x

Eipyq Ă
K
č

j“1
kerDρijpyq

and we have

mipyq “ dimEipyq ď dim
K
č

j“1
kerDρijpyq “ dim

K
č

j“1
kerDρijpxq “ dimEipxq “ mipxq

which is indeed the upper semi-continuity property for Z-valued funciton.
Therefore we have that the set tx : mipxq “ miu “ tx : mipxq ă mi `

1
2u is

open, non-empty and saturated by the minimal foliation W 0s
i , which means that

tx : mipxq “ miu “ M and we have well-defined C1 distributions Ei Ă Eui . We
have the following Subbundle Theorem, which is a direct analogue of the Subbundle
Theorem for Anosov diffeomorphisms [GRH21, Theorem 4.1].

Theorem 2.1 (Subbundle Theorem). Let ϕti : M Ñ M , i “ 1, 2, be conjugate
Anosov flows, h ˝ ϕt1 “ ϕt2 ˝ h. Assume that both flows have C1 stable foliations.
Then there exist C1 regular, Dϕti-invariant distributions Ei Ă Eui , such that

1. distributions Ei integrate to ϕti-invariant foliations Wi ĂWu
i ;



6 ANDREY GOGOLEV AND FEDERICO RODRIGUEZ HERTZ

2. the distribution Esi ‘ Ei integrates to an ϕti-invariant C1 foliation which is
subfoliated by both W s

i and Wi;
3. conjugacy h maps W1 to W2;
4. the restrictions of h to the unstable leaves are uniformly C1 transversely to

W1;
5. if pρ1, ρ2q P Vx is a matching pair then ρi is constant on connected local

leaves of Wi;

First we need to verify that Eipxq Ă Eui pyq. To see that consider ρipyq to be the
local time it takes for y to arrive on the local unstable manifold of x, that is, ρipyq,
y PW 0u

i pxq, is defined by

ϕ
ρipyq
i PWu

i,locpxq

Then, clearly kerDρipxq “ Eui pxq and, hence, Eipxq Ă Eui pyq, i “ 1, 2.
The proof of the first item is based on the fact that finite intersections of level

sets of matching functions give the integral submanifolds of Ei. This argument is
omitted as it is exactly the same as the argument in [GRH21]. The second item
comes from the fact that Ei and Fi are invariant under the stable holonomy. Indeed,
from the discussion preceding the statement of the Subbundle Theorem we have
that Vb,i ˝Hola,b “ Va,i, a PW s

i pbq, hence we conclude that DHola,bEipaq “ Eipbq

andHola,bpFi,locpaqq “ Fi,locpbq, where the latter precisely means joint integrability
of Fi and W s

i . We remark that C1 regularity of the stable foliation is crucial for
Ei to be well-defined and to satisfy the second property.

The rest of these properties are verified in verbatim the same way as in the
discrete time case [GRH21], hence, we refrain from repeating these arguments here.

3. Proof of Theorem 1.1 on rigidity of 4-dimensional volume
preserving Anosov flows

We will give a self-contained proof for C1 regularity. Using the Subbundle The-
orem one can make a shorter proof, but we opt for a slightly longer exposition
in order for the proof to be self-contained. At the end of the proof we will refer
to [GRH21] for the bootstrap from C1 to C8.

Without loss of generality we can assume that the stable foliation is one-dimensional
and the unstable foliation is two-dimensional. Then DϕT1 ppq|Eu1 ppq has a pair of
(non-real) complex conjugate eigenvalues. We will denote by W s

i , Wu
i , W 0s

i and
W 0u
i the stable, unstable, weak stable and weak unstable foliations of ϕti, respec-

tively, i “ 1, 2.
We begin with the definition of the simple PCFs (periodic cycle functionals)

for Anosov flows ϕti : M Ñ M . Consider the holonomy along the stable foliation
Hola,b : W 0u

i,locpaq Ñ W 0u
i,locpbq which takes a to b. Then for any point x P Wu

i,locpaq

consider Hola,bpxq and let y be the unique point on Wu
i,locpbq such that y and

Hola,bpxq belong to the same short orbit segment, in other words, y “ Wu
locpbq X
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W 0s
locpHola,bpxqq. Define simple PCF ρia,b : Wu

i,locpaq Ñ R as the flow time from y

to Hola,bpxq, that is,
ϕ
ρia,bpxq

i pyq “ Hola,bpxq

(The quantity ρia,bpxq is also known as temporal distance.)

W 0u
i,loc(b)

b

Wu
i,loc(a)

a

x

y

Hola,b(x)

ρia,b(x)

Figure 1. Simple PCF.

Remark 3.1. The above definition corresponds to PCFs with potential equal to 1
(hence the term “simple”), so we omitted the dependence on the potential function.
Also, unlike general PCFs, such simple PCFs can be defined in the geometric way
by measuring the amount of non-intergrability between the stable and unstable
foliations as explained above. (For a more general definition with arbitrary Hölder
potential and basic properties of PCFs for Anosov flows see [GRH20b].) Let a PM
and b PW s

i paq. We will need the following properties of simple PCFs.

1. ρia,b are conjugacy invariant, that is,

ρ1
a,b “ ρ2

hpaq,hpbq ˝ h

Indeed this immediately follows from the definition and the fact that the
conjugacy takes the stable and unstable foliations of ϕt1 to the stable and
unstable foliations of ϕt2.

2. If ρia,b ” 0 for all a P M and b P W s
i paq then foliations W s

i and Wu
i jointly

integrate to a codimension 1 foliation. This is also immediate from the defini-
ton because ρia,b ” 0 precisely means that the stable holonomy preserves the
unstable leaves.

3. ρia,b : Wu
i,locpbq Ñ R are uniformly C1. Indeed, notice that ρia,b is given by

the time needed to flow from the image Hola,bpWu
i,locpaqq to Wu

i,locpbq. The
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manifolds Wu
i,locpaq and Wu

i,locpbq are smooth, hence, ρia,b is as smooth as the
stable holonomy.

Now we can proceed with the proof by considering two cases.

3.1. Case I: vanishing of PCFs. Assume that all ρ1
a,b ” 0 for all a and b. Then by

property 2 above W s
1 and Wu

1 integrate together. Hence, one can apply a theorem
of Plante [P72, Theorem 3.1] to conclude that ϕt1 is a suspension of a 3-dimensional
Anosov diffeomorphism. By Newhouse’s result on classification of codimension one
Anosov diffeomorphisms, this diffeomorphism must live on T3 and must induce
a hyperbolic automorphism on H1pT3;Rq by the Franks-Manning classification.
Hyperbolicity of induced map on H1pT3;Rq easily implies that H1pM,Rq » R,
which allows to apply another result of Plante [P72, Section 3] which says that in
this case the suspension is, in fact, a constant roof suspension. Hence in this case
we obtain that the flows ϕti are constant roof suspensions. (Alternatively, instead
of applying [P72] in the last step one can deduce that the roof function is constant
from vanishing of simple PCFs by using [GRH21, Proposition 2.2].)

3.2. Case II: non-vanishing PCFs. Now we assume that for some a P M and
some b P W s

1 paq we have ρ1
a,b ı 0. From matching we also have ρ2

hpaq,hpbq ı 0.
Then, because ρ1

a,bpaq “ 0 we have that ρ1
a,b is non-constant and, hence, there exists

x0 PW
u
1,locpaq such that Dρ1

a,bpx0q ‰ 0. Since ρ1
a,b is C1 we also have Dρ1

a,bpyq ‰ 0
for all y which are sufficiently close to x0.

Now recall that we have a matching pair pρ1
a,b, ρ

2
hpaq,hpbqq P Vx0 with Dρ1

a,bpx0q ‰

0. Hence m1 ď m1px0q ď 1. Similarly, we have m2 ď 1. (Recall the definition of
mi from Section 2.2.)

First assume that m1 “ 1. If m1pxq “ 1, then there exist ρ1 P Vx,1 such that
Dρ1pxq ‰ 0 and because ρ1 is C1 we also have Dρ1pyq ‰ 0 for all y which are
sufficiently close to x. This proves that the set tx : m1pxq “ 1u is a non-empty
set which is open inside unstable leaves. But we also have that tx : m1pxq “ 1u is
W 0s

1 -saturated. Hence tx : m1pxq “ 1u is non-empty, open and W 0s
1 -saturated. By

minimality ofW 0s
1 we conclude that tx : m1pxq “ 1u “M . In particularm1ppq “ 1,

which implies that E1ppq Ă Eu1 ppq is a one-dimensional subspace invariant under
DϕT1 |Eu1 ppq, where T is the period of p. But by our assumption DϕT1 |Eu1 ppq doesn’t
have real eigenvalues. Hence we obtain a contradiction in this case and conclude
that m1 “ 0.

If m1pxq “ 0 then, by applying the same argument as in the previous paragraph,
to a pair of functions ρ1, ρ̄1 P Vx,1 such that kerDρ1 X kerDρ̄1 “ t0u we have that
m1pyq “ 0 for all y which are sufficiently close to x. Hence the set tx : mipxq “ 0u
is non-empty, open and W 0s

1 -saturated. Hence m1pxq “ m1 “ 0 for all x PM .
For any x consider pρ1, ρ2q, pρ̄1, ρ̄2q P Vx such that kerDρ1 X kerDρ̄1 “ t0u. Let

P1 “ pρ1, ρ̄1q and P2 “ pρ2, ρ̄2q. Because Dρ1pxq and Dρ̄1pxq are linearly indepen-
dent we have that P1 is an invertible C1-diffeomorphism on a small neighborhood
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of x by the Inverse Function Theorem. By matching relations we have

P1 “ P2 ˝ h

and we obtain that h´1 “ pP1q´1 ˝ P2, which is C1 on a small neighborhood of x.
Since x was an arbitrary point we have that h´1 is C1 along the unstable foliation.

To see that h is also C1 along the unstable foliation note that h´1 “ pP1q´1 ˝P2

is a C1 map which maps a 2-dimensional open set in the unstable leaf to a 2-
dimensional open set. Then the measure of the image of h´1 “ pP1q´1 ˝ P2 is
positive and given by the integral of Jacobian of h´1. Hence this Jacobian is non-
zero on some open subset, which implies, again by the Inverse Function Theorem,
that h´1 a C1 diffeomorphism when restricted to this subset. Hence, on this set
we have m2pxq “ 0 and because the set tx : m2pxq “ 0u is W 0s

2 -saturated we can
conclude that h is C1 along every unstable leaf by exactly the same argument we
used for h´1 above. (Note that we couldn’t argue completely symmetrically here
because we did not assume existence of a periodic point with complex eigenvalues
for ϕt2.)

So, we have that h is a C1 diffeomorphism when restricted to any unstable leaf.
Finally to bootstrap the regularity of h along the unstable leaves we can apply
[GRH21, Proposition 3.3] to the time-T maps ϕT1 and ϕT2 and conclude that h is
a smooth diffeomorphism when restricted to Wu

1 ppq. By using dynamics we have
that h|W 0u

1 ppq is also smooth. Then to obtain uniform smoothness along all unstable
leaves we can use denseness of W 0u

1 ppq and repeat the arguments in the second half
of Section 3 of [GRH21] almost verbatim adjusting to the flow case.

Recall that the flows ϕti are volume preserving. We already have that conjugacy
h is smooth along the unstable foliation. Hence the unstable Jacobians match at
periodic points and invariance of volume gives matching of stable Jacobians as well.
Then h is smooth along the stable foliation by using the 1-dimensional de la Llave
argument [dlL92] and by applying the Journé Lemma [J88] we can conclude that h
is a smooth diffeomorphism.

4. Proof of Theorem 1.2 on rigidity of codimension one volume
preserving Anosov flows

Without loss of generality we can assume that the stable subbundle is one-
dimensional, otherwise we can reverse the time direction. Theorem 1.2 is deduced
from the Subbundle Theorem 2.1 and the following proposition.

Proposition 4.1. Let M be a closed manifold of dimension at least 4. Consider
the space of volume preserving Anosov flows on M with dimEs “ 1. Then there
exists a C1 open and C8 dense subset V such that if ϕt P V then the unstable
bundle does not admit a non-trivial subbundle E Ă Eu, dimE ą 0, such that E is
Dϕt-invariant and integrates to a foliation which is jointly integrable with W s.
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We first explain how this proposition implies Theorem 1.2 and then prove the
proposition.

We have conjugate flows ϕt1 and ϕt2 with ϕt1 P V, where V is given by the above
proposition. Applying the Subbundle Theorem yields a subbundle E1 Ă Eu1 which
is invariant and integrates jointly with Es1 . If dimE1 ą 0 then we immediately
arrive at a contradiction since Proposition 4.1 assets that no such subbundle exists.

Hence we only need to consider the case when dimE1 “ 0. In this case item 4 of
Theorem 2.1 gives smoothness of the conjugacy h along the unstable foliation. Now
we can finish the proof in the same way as the proof of Theorem 1.1: matching of
unstable Jacobians at periodic points and invariance of volume yield matching of
stable Jacobians at periodic points; then smoothness of h follows from work of de
la Llave argument [dlL92] and Journé Lemma [J88].

Remark 4.2. Note that the volume preserving assumption is used two times.
First time is to claim existence of a non-trivial matching pair, which comes from
matching of simple PCFs. These PCFs are C1 regular due to C1 regularity of the
stable holonomy, which, in turn needs the flow to be conservative. We use it the
second time to conclude matching of stable Jacobians from matching of unstable
Jacobians.

Proof of Proposition 4.1. We consider the space of volume preserving Anosov dif-
feomorphisms on M with C1 topology. We begin by observing that it is sufficient
to find a C1 open and C8-dense subset with posited property in a sufficiently small
C1 neighborhood of a given flow ϕt0. Then the set V is given by taking the union
of all such subsets.

Hence we fix a codimension one volume preserving Anosov flow ϕt0. Let p and
q be points which belong to distinct periodic orbits and which are heteroclinically
related. Pick a heteroclinic point r P W s

locppq X W 0upqq. Now fix a small C1

neighborhood U of ϕt0 so that p, q and r admit continuations for ϕt P U . We define
the set V Ă U in the following way. A flow ϕt P V if it satisfies the following
conditions:

1. DϕT ppq|Euppq : Euppq Ñ Euppq admits only finitely many invariant linear
subspaces Fα Ă Euppq, α P A, of dimension ě 1;

2. DHolsr,ppE
uprqq Č Fα for all α P A, where Holsr,p : W 0u

locprq ÑW 0u
locppq is the

stable holonomy which takes r to p.
First, recall that a linear map admits infinitely many distinct invariant subspaces

if and only if it has a repeated eigenvalue with at least two linearly independent
eigenvectors. This property is closed and, hence, condition 1 above is a C1 open
condition. The condition 2 is also C1 open because the holonomy map Holsr,p varies
continuously in C1 topology. Therefore we have that V Ă U is C1 open.

Also if ϕt P U admits a non-trivial subbundle E Ă Eu, dimE ą 0, such that
E is Dϕt-invariant and integrates to a foliation which is jointly integrable with
W s, then stable holonomy preserves the foliation of E and, in particular, we have
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DHolsr,ppEprqq “ Eppq. Hence we have DHolsr,ppE
uprqq Ą Eppq and also, by

invariance, Eppq “ Fα for some α. Hence, by condition 2 we can conclude that
indeed ϕt R V.

Hence, to finish the proof of the proposition it only remains to check that V
is C8 dense in U . It is well known that eigenvalues at a periodic point can be
independently perturbed via a C8 small perturbation, which means that the con-
dition 1 is C8 dense. To check that the condition 2 is also C8 dense we will need
the following lemma.

Lemma 4.3. If ϕt P U and satisfies condition 1 then it admits arbitrarily C8-
small reparametrization ϕtρ whose stable holonomy verifies condition 2, that is,
DHolsr,ppE

uprqq Č Fα for all α P A.

Once this lemma is established C8, density of condition 2 follows easily. Indeed,
let Ω be the invariant volume for ϕt, then the reparametrization ϕtρ preserves Ωρ,
which is close to Ω in C8 topology (Ωρ is given by rescaling Ω by the inverse of
the function which rescales the vector field and then normalizing to total volume
1). By employing Moser’s trick we have a diffeomorphism h, C8 close to idM , such
that h˚Ωρ “ Ω. Let ϕ̂tρ “ h´1 ˝ ϕtρ ˝ h. Then we have ϕ̂t˚ρ Ω “ Ω and ϕ̂tρ is close
to ϕt in C8 topology. Further, since ϕ̂tρ is smoothly conjugate to ϕtρ, we still have
that condition 2 holds for ϕ̂tρ. Thus we have C8 small perturbation ϕ̂tρ of ϕt which
is V and the proof of proposition is complete modulo the proof of Lemma 4.3. �

Proof of Lemma 4.3. Consider a smooth transversal T through the periodic point
p such that W s

locppq,W
u
locppq Ă T. Then locally ϕt is given as a suspension flow. We

denote by f : TXf´1pTq Ñ fpTq the local first return map and by ρ0 : TXf´1pTq Ñ

R` the roof function. The reparametrizations ϕtρ are defined by changing the roof
function from ρ0 to ρ0 ` ρ. Fix a small ball B Ă T which is centered at fprq and
does not contain r and f2prq. We impose the following conditions on ρ:

1. ρ0 ` ρ ą 0;
2. ρpxq “ 0, when x R B;
3. ρpxq “ 0, when x PW s

locppq;
Our goal is to find a ρ which can be arbitrarily C8 small, which implies that ϕtρ is
arbitrarily close to ϕt, and such that condition 2 holds for ϕtρ.

We begin by making the following observations. Since ϕtρ is a reparametrization
of ϕt the weak stable and weak unstable manifolds remain the same, while stable
and unstable manifolds can change, that is adjust along the flow direction. However
property 2 above implies that W s

locppq remains the same, and hence the heteroclinic
point r remains a heteroclinic point for ϕtρ. Furthermore, Wu

locpqq and it’s iterates
ϕtpWu

locpqqq are still unstable manifolds for as long as ϕtpWu
locpqqq remains disjoint

with B. In particular, since r R B, we have that Wu
locprq and, hence, Euprq remains

the same for reparametrizations we consider. However the reparametrization affects
the stable foliation nearW s

locppq and hence affect the stable holonomy. We conclude
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T

p

q

xWu
loc(p)

B

r Hols,ρp,r(x)W 0u
loc(r)

Figure 2.

that in order to verify condition 2:

DHolsr,ppE
uprqq Č Fα, α P A

we only need to study the effect of ρ on the derivative of the corresponding holonomy
DHols,ρr,p : E0uprq Ñ E0uppq as both Euprq and the finite collection of invariant
subspaces Fα remain unchanged for all ρ in the class of reparametrizations described
above. Note that we began to use superscript ρ to indicate dependence of holonomy
map on the reparamentrization.

In order to derive an explicit formula for DHols,ρp,r we introduce a coordinate
system on the neighborhood of T. These coordinates are induced by local foliations
W 0s
loc, W 0u

loc and by T. Specifically, we identify p with 0 and use x-coordinate on
Wu
locppq, y-coordinate on W s

locppq. Then we say that a point z has coordinates
px, t, yq if

z “ ϕtpW 0s
locpxq XW

0u
locpyq X Tq “W 0s

locpxq XW
0u
locpyq X ϕ

tpTq

Because weak foliations are C1 this coordinate system is also C1. Heteroclinic point
r has coordinates p0, 0, yrq. Weak stable leaves are given by x “ const and hence
the stable leaves for ϕt are given by graphs of functions of y-coordinate, that is,

W s
locpx, 0, 0q “ tpx, y, T px, yqq : y PW s

locppqu

Similarly, for reparametrized flows ϕtρ we have

W s
loc,ϕtρ

px, 0, 0q “ tpx, y, T ρpx, yqq : y PW s
locppqu
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Because W s
locppq does not change under reparametrization we have T ρpo, yq “ 0

and the holonomy Hols,ρp,r : W 0u
locppq ÑW 0u

locprq has the form

Hols,ρp,rpx, tq “ px, t` T
ρpx, yrqq

Accordingly,

DHols,ρp,r “

ˆ

Idx 0
DxT

ρ
p0,yrq 1

˙

where Dx denotes the differentail with respect to the x-variable. For ϕt, when
ρ “ 0, the differential is given by the same expression with DxTp0,yrq in the corner.
We will derive the following formula for DxT

ρ
p0,yrq.

Claim 4.4. Given a reparametrization ϕtρ, where ρ satisfies conditions 1, 2 and 3
we have

DxT
ρ
p0,yrq “ DxTp0,yrq `Dxρfp0,yrqDxfp0,yrq

Using this formula we can finish the proof of the lemma. We have

DHols,ρp,rpE
uppqq “ tpv,DxT

ρpvqq : v P Euppqu
“ tpv,DxT pvqq ` p0, Dxρfp0,yrqpDxfp0,yrqpvqqq : v P Euppqu

Note that Dxfp0,yrq is a linear isomorphism and Dxρfp0,yrq can be any linear func-
tional with small norm because fp0, yrq “ fprq which is in the support of ρ. (Recall
that we didn’t impose any restriction on derivatives of ρ in the unstable direction,
except that we need ρ to be C8 close to 0.) Hence, from above formula we have
that DHols,ρp,rpE

uppqq can be any codimension one linear subspace in the neighbor-
hood of tpv,DxT pvqq : v P Euppqu “ DHolsp,rpE

uppqq. Therefore, as we vary ρ the
spaces DHols,ρp,rpE

uppqq X Euprq form an open set in the Grassmannian space of
codimension one subspaces of Euprq.

Because Hols,ρr,p is the inverse of Hols,ρp,r the matrix for DHols,ρr,p has the same
lower-triangular structure. The space Euprq has the form tpv,Apvqqu, hence, by
the same token we also have the same conclusion for DHols,ρr,ppE

uprqq. That
is, as we vary ρ the spaces DHols,ρr,ppE

uprqq X Euppq form an open set in the
Grassmannian space of codimension one subspaces of Euppq. Pick a ρ such that
DHols,ρr,ppE

uprqq X Euppq is a generic codimension one subspace of Euppq. Then it
cannot contain any of the (finitely many) invariant subspace Fα Ă Euppq. Indeed
since this codimension one subspace is generic we have the following formula for
the dimension dimpDHols,ρr,ppE

uprqqXEuppqXFα “ dimFα´1, which implies that
it cannot contain Fα. (Recall that dimFα ě 1.) �

It remains to prove the formula for the differential of the holonomy.

Proof of Claim 4.4. We need to compare T ρpx, yrq to T px, yrq for small x. The
points px, 0, 0q and px, T px, yrq, yrq belong to the same local stable manifolds and
are asymptotic in the future under ϕt, while the points px, 0, 0q and px, T ρpx, yrq, yrq
are asymptotic in the future under ϕtρ. The forward orbits of these two pairs of
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points are exactly the same except when they cross the ball B Ă T, where the
reparametrization is supported. First time this happens under the first iteration of
the return map f since fpx, yrq P B for small x. Accordingly the “stable manifold
adjusts” so that the points remain forward asymptotic:

T ρpx, yrq « T px, yrq ` ρpfpx, yrqq

For the next return to B to happen the point should leave the neighborhood of
the periodic orbit of p first, that is, reach the domain where the first return map
f : TXf´1pTq Ñ T is no longer well-defined, which will take a very long time because
x is small. Once the points ϕtpx, 0, 0q and ϕtpx, 0, yrq leave the neighborhood of
the orbit of p they would be very close and will have common future returns to B.
More precisely, let B̂ be a small neighborhood of B in T and denote by pxn, ynq n-th
return of ϕtpx, 0, yrq to B̂. (We are considering B̂ instead of B so that if the orbit of
px, 0, yrqmisses B̂ then the orbit of px, 0, 0qmisses B and vice versa. It could happen
that ϕtpx, 0, yrq returns to B near its boundary and ϕtpx, 0, 0q misses B.) Then the
corresponding return of ϕtpx, 0, 0q has the form pxn, ȳnq P T. The reparametrization
affects the stable manifolds only at these returns by adjusting with corresponding
values of ρ. And for px, 0, 0q and px, T ρpx, yrq, yrq to be asymptotic in forward time
we must have the following relation

T ρpx, yrq “ T px, yrq ` ρpfpx, yrqq `
ÿ

ně2
ρpxn, ynq ´ ρpxn, ȳnq

We will now show that
ÿ

ně2
ρpxn, ynq ´ ρpxn, ȳnq “ op }x } q

Then differentiating with respect to x at p0, yrq the above relation immediately
yields the formula posited in the claim.

To estimate the series we first estimate the distance between px2, y2q and px2, ȳ2q.
As we mentioned before, for the second return to B̂ to happen the orbit needs to
leave the neighborhood of the orbit of p. So let N be the largest interger such that
fN px, yrq P T is well-defined. After the time « Nperppq the point could make the
second return to B.

Denote by µ ą 1 the strongest expansion of f along in the unstable direction
and by λ ă 1 the weakest expansion of f in the stable direction. Because f is
volume preserving and the unstable subbundle has dimension ě 2 we have that
λµκ “ 1 with κ ą 1. (By choosing T small we can assume that f is almost linear
and then this relation becomes obvious, or we can employ the standard adapted
metric construction to ensure that λ and µ satisfy this relation with κ ą 1.) Then
we have

}x }µN ą C1

because the forward orbit leaves T in N steps. Hence we have

dppx2, y2q, px2, ȳ2qq ď dpfN px, yrq, f
N px, 0qq ď C2λ

N “
C2

µκN
ă C3 }x }

κ



SMOOTH RIGIDITY FOR CODIMENSION ONE ANOSOV FLOWS 15

It remains to notice that each subsequent return to B̂ will take some large uniform
time and, hence, dppxn`1, yn`1q, pxn`1, ȳn`1qq ă βdppxn, ynq, pxn, ȳnqq with β P

p0, 1q. We conclude
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ně2
ρpxn, ynq ´ ρpxn, ȳnq

ˇ

ˇ

ˇ

ˇ

ˇ

ď |ρ|C1

ÿ

ně2
dppxn, ynq, pxn, ȳnqq

ď |ρ|C1dppx2, y2q, px2, ȳ2qq
ÿ

ně2
βn´2 ď C|ρ|C1 }x } κ “ op }x } q

which completes the proof of the claim. �
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