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ABSTRACT. We introduce the matching functions technique in the setting
of Anosov flows. Then we observe that simple periodic cycle functionals
(also known as temporal distances) provide a source of matching functions
for conjugate Anosov flows. For conservative codimension one Anosov flows
ot: M — M, dim M > 4, these simple periodic cycle functionals are C! regu-
lar and, hence, can be used to improve regularity of the conjugacy. Specifically,
we prove that a continuous conjugacy must, in fact, be a C! diffeomorphism
for an open and dense set of codimension one conservative Anosov flows.

1. INTRODUCTION

Let M be a closed smooth Riemannian manifold. Recall that a smooth flow
ot: M — M is called Anosov if the tangent bundle admits a Dt-invariant splitting
TM = ES®X®FEY, where X is the generator of ¢!, E® is uniformly contracting and
E" is uniformly expanding under ¢!. Basic examples of Anosov flows are geodesic
flows in negative curvature and suspension flows of Anosov diffeomorphisms. If
dim E* = 1 then ¢! is called a codimension one Anosov flow.

Anosov flows i : M — M and p5: M — M are called orbit equivalent if there
exists a homeomorphism h: M — M which sends orbits of ¢} to the orbits of }
preserving the time direction. A much stronger equivalence property for flows is
conjugacy. Flows ¢} and ¢} are conjugate via a homeomorphism h if hog! = pioh
for all t € R.

Anosov’s structural stability asserts that if ! is a transitive Anosov flow and
©h is a sufficiently small C! perturbation of ! then @} is orbit equivalent to ¢f.
An orbit equivalence h can be improved to a conjugacy by adjusting along the flow
lines if and only if the periods of corresponding periodic orbits coincide, that is,
peryt (v) = perye (h(7)) for all periodic orbits v [KH95, Theorem 19.2.9]. Indeed,
one can begin with orbit equivalence, then, if periods match, the derivative of the
orbit equivalence along the flow is cohomologous to constant 1 by the Livshits
theorem. Then one use the transfer function to adjust the orbit equivalence into
another orbit equivalence whose derivative along the flow is 1, which is then a
conjugacy. According to [FOT73] this application of the Livshits theorem is due to
A. Katok.

The authors were partially supported by NSF grants DMS-1955564 and DMS-1900778,
respectively.
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It is also well-known that a conjugacy between Anosov flows must be bi-Holder
continuous. Generally speaking, a better regularity cannot be expected as can be
seen from the example of constant roof suspensions of two Anosov diffeomorphisms,
which are not C' conjugate, but merely Holder conjugate. However, it is the
authors’ belief that aside from this special case a lot more rigidity can be expected.
In the setting of 3-dimensional contact Anosov flows Feldman and Ornstein proved
that any continuous conjugacy is, in fact, smooth [FO73]. We proceed to present
more evidence to support our belief.

Theorem 1.1. Let ¢i: M — M and p5: M — M be volume preserving Anosov
flows, which are conjugate via a homeomorphism h: M — M. Assume that dim M =
4 and that there exists a periodic point p = ©¥ (p) such that the linearized return
map Dot T,M — T,M has a pair of (non-real) complex conjugate eigenvalues.
Then at least one of the following holds

1. @Y and ph are constant roof suspensions over Anosov diffeomorphisms;

2. conjugacy h is C® smooth;

The above theorem applies to abstract 4-dimensional volume preserving Anosov
flows. Recall that Verjovsky conjecture states that any codimension one Anosov
flow on a manifold of dimension greater than three is orbit equivalent to a suspension
flow of a toral automorphism. If Verjovsky conjecture is true then ¢! must, in fact,
be suspensions of Anosov diffeomorphisms of T3. We also prove the following result
in any dimension > 4.

Theorem 1.2. Let M be a closed manifold of dimension at least 4. Denote by U the
space of codimension one volume preserving Anosov flows on M. Then there exists
a Ct open and C® dense subset V < U such that if o} € V and o4 € U are conjugate
via a homeomorphism h: M — M then h is, in fact, a C* diffeomorphism.

Remark 1.3. In both Theorem 1.1 and Theorem 1.2, the assumption on the conju-
gacy can be weakened by only assuming that time-1 maps of the flows are conjugate.
To see that recall that any Anosov flow which is not a constant roof suspension is
topologically weakly mixing [P72]. Hence, we can assume that ¢} is topologically
weakly mixing. Then it is not hard to check that orbits whose period is irrational
are dense in M (see, e.g., [BG21, Lemma 2.2]). The restriction of the conjugacy
for time-1 maps on these irrational periodic orbits must be conjugacy for the flows,
because the time-1 map orbits are dense in the irrational periodic orbits. From
here, we see the time-1 map conjugacy is a conjugacy of flows on a dense set and
hence is, in fact, conjugacy of flows.

Remark 1.4. Analogous results, with the same proofs, also hold in the setting of
partially hyperbolic diffeomorphisms. Namely, one has to consider volume preserv-
ing partially hyperbolic diffeomorphisms with one-dimensional stable subbundle,
one-dimensional isometric center subbundle and a higher dimensional (> 2) unsta-
ble subbundle. Then one can conclude regularity of the conjugacy for an open and
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dense set of such diffeomorphisms. It is an interesting problem to generalize to
the setting with higher dimensional isometric center subbundle. We would like to
thank Danijela Damjanovi¢ for this remark.

The proofs of both theorems rely on matching functions along the higher dimen-
sional invariant foliation. We have previously developed such matching functions
technique for expanding maps [GRH20a] and for codimension one Anosov diffeo-
morphisms [GRH21]. By consistently working in C**¢ category one can, in fact,
conclude that the conjugacy in Theorem 1.2 is a C'*¢ diffeomorphism for some
small € > 0. In the setting of Theorem 1.1, the presence of the “conformal” peri-
odic unstable leaf allows to employ rather standard bootsrtap arguments to upgrade
the regularity of the conjugacy from C' to C®. The authors do not know how to
further bootstrap regularity of the conjugacy in the setting of Theorem 1.2.

Finally, we would like to point out that, in the case when the flows are suspen-
sions, the methods of [GRH21] become directly applicable. Specifically, recall the
following result from [GRH21].

Theorem 1.5 (Theorem 1.7, [GRH21]). Let L: T? — T% be a generic hyperbolic
automorphism with one dimensional stable subspace. Assume that

(log 11)* — (log &)? > log p(log & — log &1)

1 s the absolute value of the stable eigenvalue, & is the smallest absolute

where p~
value of the eigenvalues which are greater than 1 and & is the largest absolute value
of the eigenvalues of L.

Then there exists a C* neighborhood U of L in Diff" (T), r > 3, and a C"-dense
C'-open subset V < U such that if f1, f2 € V have matching Jacobian periodic data

then f1 and fo are C1*€ conjugate for some € > 0.

Following the proof of the above theorem and using the roof function instead
of using Jacobians an interested reader will also be able to establish the following

result.

Proposition 1.6. Let L: T¢ — T¢ be an Anosov diffeomphism satisfying the as-
sumptions of Theorem 1.5 and let o' be a suspension flow of L. Then there exists
a C' neighborhood U of ¢! in the space of volume preserving flows and a C*-open
subset V < U such that if o} € V and o4 € U are conjugate then they are, in fact,
C'*e conjugate for some € > 0.

1.1. Organization. In the next section we recall some facts about regularity of
invariant foliations. Then we introduce the matching function machinery for Anosov
flows. In Section 3 we give a rather self-contained proof of Theorem 1.1, except for
the bootstrap from C! to C* which was done in [GRH21]. In Section 4 we prove
Theorem 1.2.
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2. PRELIMINARIES

2.1. Regularity of invariant foliations. Let (! be a codimension Anosov flow.
The regularity of invariant subbundles is a well-studied in the literature [HPS77,
H94]. In particular, the weak stable distribution E?% is C if there exists a suffi-
ciently large ¢ such that

sup | Do (v*) || - | Do~ (vi) [ - [ D' () | < 1

where the supremum is taken over all unit vectors v® € E*(x),vy € E"(x),v} €
E“(¢'(x)), 2 € M. The stable distribution is C” if there exists a sufficiently large
t such that
sup | D' (v*) | - | D' (") [ < 1
where the supremum is taken over all unit vectors v°® € E*(x),v" € E*(z), v € M.
Note that the second condition is stronger then the first one. We can verify this
condition if ¢! is a codimension one volume preserving Anosov flow on a manifold
of dimension > 4.
Using volume invariance we have

[ D' (@) || - [ D' (") | < | D" (v°) | "o = T " T =1,

where Jé¢! and J“p! denote the stable and the unstable Jacobians of ¢f. By
compactness the supremum the above expression is also < 1. Therefore E* and
E% are C'. Hence, the stable foliation W* and and the weak stable foliation 1%
are also uniformly C*. (In fact, because the inequality is strict one can also conclude
CY regularity for some v > 1.) Reversing the time and using the same criterion one
can also see that the weak unstable foliation W is uniformly C*, but the unstable
W™ is merely Holder continuous transversely to the leaves.

2.2. Matching functions and the Subbundle Theorem. Now let ¢!: M — M,
i = 1,2, be codimension one, volume preserving Anosov flows which are conjugate,
hogl = phoh. We will consistently use the subscript i € {1,2} for distribution
and foliations of the flow ¢! to indicate dependence on the flow.

Here we will explain a certain construction of sub-bundles F; of the unstable
bundles E}* via locally matching functions.

For each z consider pairs of C! functions (p!, p?) where p' is defined on an open
neighborhood of = in W{%(z), p? is defined on an open neighborhood of h(z) in
W3u(h(x)) and such that

pt=p’oh
This relation is what we call a matching relation. We collect all such pairs into a
space V
Ve ={(p",p*) : p' = p*oh}
The domains of definition of p' and p? can be arbitrarily small open sets. Also
denote by V. 1 the collection of all possible p!, that is, projection of V,, on the first
coordinate, and by Vo the projection on the second coordinate.
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Now we can define linear subspaces E;(x) = EY“(z) by intersecting kernels of all
Dp' at x, i = 1,2. Namely,

Ei(x) = ﬂ ker Dp'(z)
PIEVa,i
Also let m;(x) = dim E;(x) and let m; = mingeps m;(x).

Conjugacy relation implies that if (p',p?) € Vii(p) then (p' o ¢f,p* o ¢h) €
V. It immediately follows that F; is invariant under D¢!. Also, we can check
that E;(z) is invariant under the stable holonomy. Indeed, let b € W7 (a) and let
Holap: WY, (a) — WYY, (b) be the stable holonomy given by sliding points along

1,loc
the stable foliation Wy with Hol, y(a) = b. Similarly, Holp(a),np): W't,e(h(a)) —
W3i,.(h(b)) is the stable holonomy for ¢}. Let (p',p*) € Vi, then, because the
stable holonomy is C*, and the conjugacy sends the stable foliation of ¢! to the
stable foliation of ¢! we can conclude that (p' o Hol, p, p? o Holy(q),n(v)) € Va- From
this and the definition of the spaces E; we can see that Ey(b) = D Hol, ,E1(a) and
E3(h(b)) = D Holp(q),np)F2(h(a)). In particular, we conclude that the level sets
of the dimension function {z : m;(z) = k}, are W-saturated. But they are also
saturated by the flow lines, hence, W2%-saturated.

It is not hard to verify that m;: M — Z, is an upper semi-continuous function.
To see that one can write F;(x) as a finite intersection (due to F;(x) being a finite
dimensional subspace)

K .
Ei(z) = ﬂ ker Dp’ ()

j=1
with minimal K. Then, we have that ker Dpé- (z) depend continuously on x due to
C*! regularity of pg . Then for all y which are sufficiently close to x

K .
Ei(y) < ] ker Dpi(y)

j=1

and we have

K K
m;(y) = dim F;(y) < dim ﬂ ker Dp(y) = dim ﬂ ker Dpli(z) = dim E;(z) = m;(x)
Jj=1 Jj=1

which is indeed the upper semi-continuity property for Z-valued funciton.
Therefore we have that the set {z : m;(z) = m;} = {& : m;(z) < m; + 3} is

open, non-empty and saturated by the minimal foliation W¢, which means that

{z : m;(x) = m;} = M and we have well-defined C! distributions E; < E*. We

have the following Subbundle Theorem, which is a direct analogue of the Subbundle

Theorem for Anosov diffeomorphisms [GRH21, Theorem 4.1].

Theorem 2.1 (Subbundle Theorem). Let ¢t: M — M, i = 1,2, be conjugate
Anosov flows, h o @} = o4 o h. Assume that both flows have Ct stable foliations.
Then there exist C* regular, Dt-invariant distributions E; = E*, such that

1. distributions F; integrate to t-invariant foliations W; < W};
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2. the distribution Ef ® E; integrates to an @t-invariant C* foliation which is
subfoliated by both W7 and W;;

3. conjugacy h maps Wy to Wa;

4. the restrictions of h to the unstable leaves are uniformly C' transversely to
W1 5

5. if (p',p?) € Vi is a matching pair then p; is constant on connected local
leaves of W;;

First we need to verify that E;(z) < E*(y). To see that consider p;(y) to be the
local time it takes for y to arrive on the local unstable manifold of z, that is, p;(y),
y € WP(z), is defined by

i,loc
Then, clearly ker Dp;(z) = E¥(x) and, hence, E;(x) € Ef(y), i = 1,2.

The proof of the first item is based on the fact that finite intersections of level
sets of matching functions give the integral submanifolds of E;. This argument is
omitted as it is exactly the same as the argument in [GRH21]. The second item
comes from the fact that F; and F; are invariant under the stable holonomy. Indeed,
from the discussion preceding the statement of the Subbundle Theorem we have
that V3, ; 0 Holgp = Va,i, a € W7 (b), hence we conclude that DHol, , E;(a) = E;(b)
and Holg p(F; 10c(a)) = Filoc(b), where the latter precisely means joint integrability
of F; and W. We remark that C* regularity of the stable foliation is crucial for
E; to be well-defined and to satisfy the second property.

The rest of these properties are verified in verbatim the same way as in the
discrete time case [GRH21], hence, we refrain from repeating these arguments here.

3. PROOF OF THEOREM 1.1 ON RIGIDITY OF 4-DIMENSIONAL VOLUME
PRESERVING ANOSOV FLOWS

We will give a self-contained proof for C! regularity. Using the Subbundle The-
orem one can make a shorter proof, but we opt for a slightly longer exposition
in order for the proof to be self-contained. At the end of the proof we will refer
to [GRH21] for the bootstrap from C* to C®.

Without loss of generality we can assume that the stable foliation is one-dimensional
and the unstable foliation is two-dimensional. Then DeT (p)| Eu(p) has a pair of
(non-real) complex conjugate eigenvalues. We will denote by W, W, W and
WP the stable, unstable, weak stable and weak unstable foliations of ¢!, respec-
tively, 1 = 1, 2.

We begin with the definition of the simple PCFs (periodic cycle functionals)
for Anosov flows ¢!: M — M. Consider the holonomy along the stable foliation
Holgp: Wfﬁ)c(a) - Wg}‘oc(b) which takes a to b. Then for any point x € W, .(a)
consider Holyp(z) and let y be the unique point on W, .(b) such that y and
Hol, () belong to the same short orbit segment, in other words, y = W}k (b) n



SMOOTH RIGIDITY FOR CODIMENSION ONE ANOSOV FLOWS 7

WOs

loc

to Hol, p(z), that is,

(Holay(x)). Define simple PCF pl, ,: W}

t0e(a) = R as the flow time from y

o7 (y) = Holy ()

(The quantity me(x) is also known as temporal distance.)

Ficure 1. Simple PCF.

Remark 3.1. The above definition corresponds to PCFs with potential equal to 1
(hence the term “simple”), so we omitted the dependence on the potential function.
Also, unlike general PCFs, such simple PCFs can be defined in the geometric way
by measuring the amount of non-intergrability between the stable and unstable
foliations as explained above. (For a more general definition with arbitrary Holder
potential and basic properties of PCFs for Anosov flows see [GRH20b].) Let a € M
and b e W7 (a). We will need the following properties of simple PCFs.

1. pfl’b are conjugacy invariant, that is,

Pi,b = Pi(a),h(b) oh
Indeed this immediately follows from the definition and the fact that the
conjugacy takes the stable and unstable foliations of ¢! to the stable and
unstable foliations of ¢b.

2. If p, , = 0 for all a € M and b € W (a) then foliations W and W;* jointly
integrate to a codimension 1 foliation. This is also immediate from the defini-
ton because sz,b = 0 precisely means that the stable holonomy preserves the
unstable leaves.

3. phy: Wi (b) — R are uniformly C'. Indeed, notice that pf, , is given by

i,loc
the time needed to flow from the image Holy»(W},.(a)) to Wi, .(b). The

i,loc
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manifolds W, (a) and W}

w .(b) are smooth, hence, p!, , is as smooth as the

stable holonomy.

Now we can proceed with the proof by considering two cases.

3.1. Case I: vanishing of PCFs. Assume that all p}l,b = ( for all ¢ and b. Then by
property 2 above W7 and W7 integrate together. Hence, one can apply a theorem
of Plante [P72, Theorem 3.1] to conclude that ¢} is a suspension of a 3-dimensional
Anosov diffeomorphism. By Newhouse’s result on classification of codimension one
Anosov diffeomorphisms, this diffeomorphism must live on T and must induce
a hyperbolic automorphism on H;(T3;R) by the Franks-Manning classification.
Hyperbolicity of induced map on H;(T3;R) easily implies that H;(M,R) ~ R,
which allows to apply another result of Plante [P72, Section 3] which says that in
this case the suspension is, in fact, a constant roof suspension. Hence in this case
we obtain that the flows ¢! are constant roof suspensions. (Alternatively, instead
of applying [P72] in the last step one can deduce that the roof function is constant
from vanishing of simple PCFs by using [GRH21, Proposition 2.2].)

3.2. Case II: non-vanishing PCFs. Now we assume that for some a € M and
some b € W7 (a) we have p(llvb # 0. From matching we also have pi(a)_’h(b) #= 0.
Then, because ptllvb(a) = 0 we have that p}z,b is non-constant and, hence, there exists
zo € Wi,.(a) such that Dp} (o) # 0. Since p, ;, is C* we also have Dpj ,(y) # 0
for all y which are sufficiently close to zg.

Now recall that we have a matching pair (p}Lb7 pi(a)vh(b)) € V,, with Dp(117b(x0) #
0. Hence my < mq(xo) < 1. Similarly, we have my < 1. (Recall the definition of
m; from Section 2.2.)

First assume that m; = 1. If m;(z) = 1, then there exist p' € V, ; such that
Dpi(x) # 0 and because p' is C* we also have Dp;(y) # 0 for all y which are
sufficiently close to x. This proves that the set {x : my(z) = 1} is a non-empty
set which is open inside unstable leaves. But we also have that {z : mq(z) = 1} is
Wis-saturated. Hence {x : m;(z) = 1} is non-empty, open and W%-saturated. By
minimality of W we conclude that {z : mi(z) = 1} = M. In particular m;(p) = 1,
which implies that E;(p) < E}(p) is a one-dimensional subspace invariant under
D@1T|Ei¢(p), where T is the period of p. But by our assumption Dcp1T|Ei¢ (p) doesn’t
have real eigenvalues. Hence we obtain a contradiction in this case and conclude
that m; = 0.

If my(x) = 0 then, by applying the same argument as in the previous paragraph,
to a pair of functions p', p' € V, 1 such that ker Dp! n ker Dp* = {0} we have that
m1(y) = 0 for all y which are sufficiently close to x. Hence the set {z : m;(z) = 0}
is non-empty, open and W{*-saturated. Hence m1(z) = m; = 0 for all z € M.

For any x consider (p', p?), (p, p?) € V. such that ker Dp! nker Dp' = {0}. Let
Pt = (p',p') and P? = (p?, p?). Because Dp'(x) and Dp'(x) are linearly indepen-
dent we have that P! is an invertible C'-diffeomorphism on a small neighborhood
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of = by the Inverse Function Theorem. By matching relations we have
PL=P20h

and we obtain that h~! = (P!)~! o P2, which is C! on a small neighborhood of z.
Since = was an arbitrary point we have that h~! is C! along the unstable foliation.

To see that h is also C'! along the unstable foliation note that b=t = (P1)~1 o P2
is a C! map which maps a 2-dimensional open set in the unstable leaf to a 2-
dimensional open set. Then the measure of the image of A=t = (P1)~! o P2 is
positive and given by the integral of Jacobian of h~!. Hence this Jacobian is non-
zero on some open subset, which implies, again by the Inverse Function Theorem,
that h~! a C! diffeomorphism when restricted to this subset. Hence, on this set
we have mo(x) = 0 and because the set {x : mo(z) = 0} is W%-saturated we can
conclude that h is C' along every unstable leaf by exactly the same argument we
used for h~! above. (Note that we couldn’t argue completely symmetrically here
because we did not assume existence of a periodic point with complex eigenvalues
for %.)

So, we have that h is a C'!' diffeomorphism when restricted to any unstable leaf.
Finally to bootstrap the regularity of i along the unstable leaves we can apply
[GRH21, Proposition 3.3] to the time-T maps ¢T and ¢l and conclude that h is
a smooth diffeomorphism when restricted to Wi (p). By using dynamics we have
that h‘W{)u(p) is also smooth. Then to obtain uniform smoothness along all unstable
leaves we can use denseness of W% (p) and repeat the arguments in the second half
of Section 3 of [GRH21] almost verbatim adjusting to the flow case.

Recall that the flows ¢! are volume preserving. We already have that conjugacy
h is smooth along the unstable foliation. Hence the unstable Jacobians match at
periodic points and invariance of volume gives matching of stable Jacobians as well.
Then A is smooth along the stable foliation by using the 1-dimensional de la Llave
argument [d11.92] and by applying the Journé Lemma [J88] we can conclude that h
is a smooth diffeomorphism.

4. PROOF OF THEOREM 1.2 ON RIGIDITY OF CODIMENSION ONE VOLUME
PRESERVING ANOSOV FLOWS

Without loss of generality we can assume that the stable subbundle is one-
dimensional, otherwise we can reverse the time direction. Theorem 1.2 is deduced
from the Subbundle Theorem 2.1 and the following proposition.

Proposition 4.1. Let M be a closed manifold of dimension at least 4. Consider
the space of volume preserving Anosov flows on M with dim E® = 1. Then there
exists a C' open and C® dense subset V such that if ' € V then the unstable
bundle does not admit a non-trivial subbundle £ — E*, dim FZ > 0, such that E is
Dot-invariant and integrates to a foliation which is jointly integrable with W*.
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We first explain how this proposition implies Theorem 1.2 and then prove the
proposition.

We have conjugate flows ¢! and ¢} with ¢} € V, where V is given by the above
proposition. Applying the Subbundle Theorem yields a subbundle E; < E} which
is invariant and integrates jointly with E7. If dim £y > 0 then we immediately
arrive at a contradiction since Proposition 4.1 assets that no such subbundle exists.

Hence we only need to consider the case when dim F7 = 0. In this case item 4 of
Theorem 2.1 gives smoothness of the conjugacy h along the unstable foliation. Now
we can finish the proof in the same way as the proof of Theorem 1.1: matching of
unstable Jacobians at periodic points and invariance of volume yield matching of
stable Jacobians at periodic points; then smoothness of h follows from work of de
la Llave argument [d1L92] and Journé Lemma [J88].

Remark 4.2. Note that the volume preserving assumption is used two times.
First time is to claim existence of a non-trivial matching pair, which comes from
matching of simple PCFs. These PCFs are C' regular due to C! regularity of the
stable holonomy, which, in turn needs the flow to be conservative. We use it the
second time to conclude matching of stable Jacobians from matching of unstable
Jacobians.

Proof of Proposition 4.1. We consider the space of volume preserving Anosov dif-
feomorphisms on M with C! topology. We begin by observing that it is sufficient
to find a C'* open and C®-dense subset with posited property in a sufficiently small
C! neighborhood of a given flow ¢f. Then the set V is given by taking the union
of all such subsets.

Hence we fix a codimension one volume preserving Anosov flow ¢f. Let p and
q be points which belong to distinct periodic orbits and which are heteroclinically
related. Pick a heteroclinic point r € Wy _(p) n W°(q). Now fix a small C*
neighborhood U of ¢} so that p, ¢ and r admit continuations for ¢ € Y. We define
the set V < U in the following way. A flow ! € V if it satisfies the following

conditions:

1. DT®)| Bu(p): E'(p) — E*(p) admits only finitely many invariant linear
subspaces F,, ¢ E*(p), a € A, of dimension > 1;

2. DHol; ,(E“(r)) D F, for all « € A, where Hol} ,: W2(r) — W(p) is the
stable holonomy which takes r to p.

First, recall that a linear map admits infinitely many distinct invariant subspaces
if and only if it has a repeated eigenvalue with at least two linearly independent
eigenvectors. This property is closed and, hence, condition 1 above is a C'' open
condition. The condition 2 is also C'! open because the holonomy map H oly , varies
continuously in C' topology. Therefore we have that V < U is C'' open.

Also if ¢! € U admits a non-trivial subbundle £ < E%, dim E > 0, such that
E is Dyt-invariant and integrates to a foliation which is jointly integrable with
W#, then stable holonomy preserves the foliation of E and, in particular, we have



SMOOTH RIGIDITY FOR CODIMENSION ONE ANOSOV FLOWS 11

D Hol; ,(E(r)) = E(p). Hence we have D Hol; ,(E*(r)) > E(p) and also, by
invariance, E(p) = F, for some «. Hence, by condition 2 we can conclude that
indeed ! ¢ V.

Hence, to finish the proof of the proposition it only remains to check that V
is C® dense in U. It is well known that eigenvalues at a periodic point can be
independently perturbed via a C® small perturbation, which means that the con-
dition 1 is C* dense. To check that the condition 2 is also C* dense we will need

the following lemma.

Lemma 4.3. If ©' € U and satisfies condition 1 then it admits arbitrarily C®-

small reparametrization g@tp whose stable holonomy verifies condition 2, that is,

D Hol; ,(E*(r)) $ Fy for all c € A.

Once this lemma is established C*, density of condition 2 follows easily. Indeed,
let Q be the invariant volume for ¢!, then the reparametrization <ptp preserves (1,
which is close to 2 in C® topology (€2, is given by rescaling Q by the inverse of
the function which rescales the vector field and then normalizing to total volume
1). By employing Moser’s trick we have a diffeomorphism h, C® close to idp;, such
that h*Q, = Q. Let ¢, = h™' 0 ¢! o h. Then we have ¢t*Q = Q and ¢!, is close
to ¢t in C® topology. Further, since gﬁz is smoothly conjugate to cpz, we still have
that condition 2 holds for 4. Thus we have C* small perturbation ¢, of ¢* which
is V and the proof of proposition is complete modulo the proof of Lemma 4.3. O

Proof of Lemma /.3. Consider a smooth transversal T through the periodic point
p such that W£ (p), W.(p) < T. Then locally ¢ is given as a suspension flow. We
denote by f: Tnf~1(T) — f(7T) the local first return map and by po: T f~1(T) —
R, the roof function. The reparametrizations <pr are defined by changing the roof
function from pgy to pg + p. Fix a small ball B < T which is centered at f(r) and
does not contain r and f?(r). We impose the following conditions on p:

1. po+p>0;

2. p(z) =0, when z ¢ B;

3. p(xz) =0, when x € W _.(p);
Our goal is to find a p which can be arbitrarily C* small, which implies that goz is
arbitrarily close to ¢f, and such that condition 2 holds for <pf).

We begin by making the following observations. Since gpﬁ, is a reparametrization
of ¢! the weak stable and weak unstable manifolds remain the same, while stable
and unstable manifolds can change, that is adjust along the flow direction. However
property 2 above implies that W} _(p) remains the same, and hence the heteroclinic
point r remains a heteroclinic point for ¢!. Furthermore, W% (¢) and it’s iterates
o' (W} .(q)) are still unstable manifolds for as long as ¢'(W}"“_(¢)) remains disjoint
with B. In particular, since ¢ B, we have that W} (r) and, hence, E*(r) remains
the same for reparametrizations we consider. However the reparametrization affects
the stable foliation near W} _(p) and hence affect the stable holonomy. We conclude
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]

Wie.(p)

loc

FIGURE 2.

that in order to verify condition 2:
D Hol; ,(E"(r)) $ Fa,ae A

we only need to study the effect of p on the derivative of the corresponding holonomy
D Hol3#: E%(r) — E%(p) as both E“(r) and the finite collection of invariant
subspaces F, remain unchanged for all p in the class of reparametrizations described
above. Note that we began to use superscript p to indicate dependence of holonomy
map on the reparamentrization.

In order to derive an explicit formula for D Hol;? we introduce a coordinate
system on the neighborhood of 7. These coordinates are induced by local foliations
WP W and by T. Specifically, we identify p with 0 and use z-coordinate on

W (p), y-coordinate on Wj (p). Then we say that a point z has coordinates
(z,t,y) if

2= @' (Wige(w) 0 Wige(y) 0 T) = Wige(w) 0 Wige(y) 0 ¢'(T)

Because weak foliations are C'! this coordinate system is also C'*. Heteroclinic point
r has coordinates (0,0, y,.). Weak stable leaves are given by & = const and hence
the stable leaves for ! are given by graphs of functions of y-coordinate, that is,

Wite(,0,0) = {(z, 4, T(2,y)) : y € Wii,.(p)}

Similarly, for reparametrized flows <pf) we have

Wise ot (2,0,0) = {(z, 4, T"(2,y)) : y € Wi,.(p)}
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Because W _(p) does not change under reparametrization we have T”(o,y) = 0
and the holonomy Hol3?: W%(p) — W(r) has the form

loc loc

Holyf(z,t) = (2, t +T?(x,y,))

1d,
D Hol% = ( 0)

Accordingly,
14
DIT(O’yT) 1
where D, denotes the differentail with respect to the z-variable. For ¢!, when
p = 0, the differential is given by the same expression with D, T\, ) in the corner.

We will derive the following formula for DIT(p0 )

Claim 4.4. Given a reparametrization <pf), where p satisfies conditions 1, 2 and 3
we have

DyT(o ) = DaTioy,) + Daps.9) Do)
Using this formula we can finish the proof of the lemma. We have
D Holy?(E*(p)) = {(v, DoT"(v)) : v e E*(p)}
= {(v, DzT(v)) + (0, Depyo,y,) (Pafi0,)(v) = ve E*(p)}

Note that D, f(o,y,) is a linear isomorphism and Dy p¢ (o ,,) can be any linear func-
tional with small norm because f(0,y,) = f(r) which is in the support of p. (Recall
that we didn’t impose any restriction on derivatives of p in the unstable direction,
except that we need p to be C® close to 0.) Hence, from above formula we have
that D Hol;£(E"(p)) can be any codimension one linear subspace in the neighbor-
hood of {(v, D,T(v)) : ve E*(p)} = D Hol;, ,.(E"(p)). Therefore, as we vary p the
50(E"(p)) n E*(r) form an open set in the Grassmannian space of

P,
codimension one subspaces of E¥(r).

spaces D Hol

Because Hol;»p is the inverse of Holy# the matrix for D Hol>»f has the same
lower-triangular structure. The space E“(r) has the form {(v, A(v))}, hence, by
the same token we also have the same conclusion for D Hol7#(E"(r)). That
is, as we vary p the spaces D Hol}b(E"(r)) n E*(p) form an open set in the
Grassmannian space of codimension one subspaces of E*(p). Pick a p such that
D Holj:b(E*(r)) n E*(p) is a generic codimension one subspace of E*(p). Then it
cannot contain any of the (finitely many) invariant subspace F, ¢ E*(p). Indeed
since this codimension one subspace is generic we have the following formula for
the dimension dim(D Hol;:f (E"(r)) n E*(p) n F,, = dim F;, — 1, which implies that
it cannot contain F,. (Recall that dim F,, > 1.) O

It remains to prove the formula for the differential of the holonomy.

Proof of Claim 4.4. We need to compare T?(z,y,) to T(x,y,) for small x. The
points (z,0,0) and (z,T(x,y),y,) belong to the same local stable manifolds and
are asymptotic in the future under (*, while the points (z,0,0) and (z, T”(z, y:), yr)
are asymptotic in the future under cpf). The forward orbits of these two pairs of
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points are exactly the same except when they cross the ball B < T, where the
reparametrization is supported. First time this happens under the first iteration of
the return map f since f(x,y,) € B for small z. Accordingly the “stable manifold
adjusts” so that the points remain forward asymptotic:

T (2,yr) ~ T, yr) + p(f (2, yr))
For the next return to B to happen the point should leave the neighborhood of
the periodic orbit of p first, that is, reach the domain where the first return map
f: Tnf~YT) — T is no longer well-defined, which will take a very long time because
x is small. Once the points ¢!(z,0,0) and ¢!(z,0,y,) leave the neighborhood of
the orbit of p they would be very close and will have common future returns to B.
More precisely, let B be a small neighborhood of B in T and denote by (z,, y,) n-th
return of ¢*(z,0,%,) to B. (We are considering B instead of B so that if the orbit of
(2,0, y,) misses B then the orbit of (2,0,0) misses B and vice versa. It could happen
that ¢! (z,0,y,) returns to B near its boundary and ¢*(x,0,0) misses B.) Then the
corresponding return of ¢?(x,0,0) has the form (z,, ¥, ) € T. The reparametrization
affects the stable manifolds only at these returns by adjusting with corresponding
values of p. And for (z,0,0) and (z, T?(z,y,), yr) to be asymptotic in forward time
we must have the following relation

T°(x,yr) = T(z,yr) + p(f(2,9r)) + Z P(TnsYn) = P(Tn, Un)
n>2

We will now show that

2 P(TnsYn) = p(Tn, Gn) = o( |z |)

n>2
Then differentiating with respect to x at (0,y,) the above relation immediately
yields the formula posited in the claim.

To estimate the series we first estimate the distance between (4, y2) and (22, ¥2).
As we mentioned before, for the second return to B to happen the orbit needs to
leave the neighborhood of the orbit of p. So let IV be the largest interger such that
N (x,y,) € T is well-defined. After the time ~ Nper(p) the point could make the
second return to B.

Denote by p > 1 the strongest expansion of f along in the unstable direction
and by A < 1 the weakest expansion of f in the stable direction. Because f is
volume preserving and the unstable subbundle has dimension > 2 we have that
Ap®™ =1 with k > 1. (By choosing T small we can assume that f is almost linear
and then this relation becomes obvious, or we can employ the standard adapted
metric construction to ensure that A and p satisfy this relation with x > 1.) Then
we have

|z x> C

because the forward orbit leaves T in IV steps. Hence we have

d((IQayQ)v (x27g2)) < d(fN(Z',yr),fN(,I,O)) < CQ)‘N = W < 03 H T H .
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It remains to notice that each subsequent return to B will take some large uniform

time and, hence, d((%n+1,Yn+1)s (Tnt1,Yn+1)) < Bd(Tn,Yn), (Tn,Yn)) with B €
(0,1). We conclude

Z p(xnayn) - p(xnvgn) < ‘IO‘Cl Z d((wn;yn)7 (xnzgn))

n=2 n=2
_ -2
< |plerd((w2,y2), (2,72)) D B> < Clpler | =] * = o( | )
n=2
which completes the proof of the claim. ([l
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