
ELF Codes: Concatenated Codes with an
Expurgating Linear Function as the Outer Code

Richard Wesel∗, Amaael Antonini∗, Linfang Wang∗, Wenhui Sui∗, Brendan Towell∗, and Holden Grissett∗
∗Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA

Email: {wesel, amaael, lfwang, wenhui.sui, brendan.towell, holdengs}@ucla.edu

Abstract—An expurgating linear function (ELF) is an outer
code that disallows low-weight codewords of the inner code. ELFs
can be designed either to maximize the minimum distance or to
minimize the codeword error rate (CER) of the expurgated code.
A list-decoding sieve can efficiently identify ELFs that maximize
the minimum distance of the expurgated code. For convolutional
inner codes, this paper provides analytical distance spectrum
union (DSU) bounds on the CER of the concatenated code.

For short codeword lengths, ELFs transform a good inner
code into a great concatenated code. For a constant message size
of K = 64 bits or constant codeword blocklength of N = 152
bits, an ELF can reduce the gap at CER 10−6 between the DSU
and the random-coding union (RCU) bounds from over 1 dB
for the inner code alone to 0.23 dB for the concatenated code.
The DSU bounds can also characterize puncturing that mitigates
the rate overhead of the ELF while maintaining the DSU-to-
RCU gap. List Viterbi decoding guided by the ELF achieves
maximum likelihood (ML) decoding of the concatenated code
with a sufficiently large list size. The rate-K/(K+m) ELF outer
code reduces rate and list decoding increases decoder complexity.
As SNR increases, the average list size converges to 1 and average
complexity is similar to Viterbi decoding on the trellis of the
inner code. For rare large-magnitude noise events, which occur
less often than the FER of the inner code, a deep search in the
list finds the ML codeword.

Index Terms—Expurgation, Tail-biting Convolutional Codes,
Convolutional Codes, Cyclic Redundancy Code, List Viterbi
Decoding, List Decoding

I. INTRODUCTION

Expurgating a code decreases the number of message sym-
bols without changing the length [1]. Expurgation strengthens
a code by removing weaker codewords at the expense of a
slight reduction in rate. For example, in his proof of channel
capacity, Gallager [2] removes the half of the randomly
selected codewords for which error probability is largest to
bound maximum rather than average probability of error.
For a linear code, where the minimum distance dmin is the
minimum weight of a nonzero codeword [1], expurgation that
removes the lowest-weight codewords will increase dmin and
thus reduce the probability of a codeword error.

Practical expurgation requires a function, i.e. an outer code,
that selects which codewords to remove. This paper develops
the paradigm of using an expurgating linear function (ELF)

This research is supported by National Science Foundation (NSF) grant
CCF-2008918. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect views of NSF.

to remove the lowest weight codewords of a linear code or,
more generally, to remove codewords so as to minimize a
union bound on codeword error rate (CER). The improved
performance comes at the expense of a reduction in rate
by the rate-K/(K + m) ELF outer code, but well-designed
ELFs move CER performance closer to an appropriately rate-
adjusted random coding union (RCU) bound [3], [4].

Lou et al. in [5] significantly improved error detection
performance over traditional cyclic redundancy codes (CRCs)
used with zero-terminated convolutional codes by specifically
designing CRCs that remove low-weight codewords and thus
reduce the undetected error rate. Subsequent papers [6]–[17]
used this approach to improve the minimum distance or
CER performance of the overall concatenated code, which
is decoded using list decoding. These subsequent papers
characterized the new designs as CRCs, but we call them
ELFs since they are not constrained to be a cyclic code of
any particular length and their primary function is expurgation
rather than error detection.

For a convolutional inner code with an ELF as the outer
code, ML decoding is achieved by serial or parallel list Viterbi
decoding with a sufficiently large list size [18]. As observed
in [10], as SNR increases, the expected list size converges to
one. The average list size is often small at the desired CER.

BCH codes [7] and legacy codes that include CRCs can be
reconsidered as ELF codes and decoded using list decoding to
decrease CER. Schiavone et al. [19] provide a compelling ex-
ample. The ELF paradigm applies to any inner code. Building
on [20], ELFs designed to maximize the minimum distance
of the expurgated polar code are described in [11], [21]. An
ELF for a trellis code appears in [17]. This paper focuses
on ELFs concatenated with tail-biting convolutional codes
(TBCCs) [22] as an example.

A. Contributions

This paper presents generating function techniques for dis-
tance spectrum union (DSU) upper bounds on the CER of
TBCCs concatenated with ELFs under maximum-likelihood
(ML) decoding. These bounds are extended to include punc-
turing for rate compatibility. Such bounds can characterize the
CER of every ELF for a given redundancy m and can be used
to select the ELF (and the puncturing) that minimizes CER.
Alternatively, this paper provides a sieve approach that uses
list decoding from the zero-message codeword to identify the
ELF that maximizes the minimum distance of the expurgated

U.S. Government work not protected by U.S. copyright.
287

 2023 12th International Symposium on Topics in Coding (ISTC)



code. The DSU bounds show that an ELF can improve the
gap between the DSU and RCU bounds from over 1 dB for
the inner code alone to 0.23 dB for the concatenated code.

B. Organization

Sec. II presents (DSU) upper bounds on the CER of
convolutional inner codes concatenated with ELF outer codes
with or without puncturing. Sec. III presents a sieve approach
to identify the ELF that maximizes the minimum distance
of the expurgated code. As an example, the best ELFs for
expurgating a (152, 76) block code created from a ν = 8 tail-
biting convolutional code are identified for ELF redundancies
of 0 ≤ m ≤ 12. Sec. IV uses the tools of Sec. II and Sec. III
to design an example punctured concatenation of an ELF and
a tail-biting convolutional code. Sec. V concludes the paper.

II. DISTANCE SPECTRUM UNION BOUNDS

Generating functions provide upper bounds on the bit error
rate [23] and the CER [5], [13] of convolutional codes. This
section reviews the generating function approach to computing
distance spectrum union (DSU) bounds on the CER of block
codes constructed using convolutional codes and describes
how such bounds may be applied to zero-terminated and tail-
biting convolutional codes with ELFs and with puncturing.

A. DSU Bounds for Zero Termination and Tail Biting

Consider an (N,K) binary block code transmitted over the
binary input AWGN channel where +

√
Es is transmitted for

binary 0 and −
√
Es is transmitted for binary 1. Let Aw be

the number of codewords with Hamming weight w. A DSU
bound on codeword error rate Pcw is shown below:

Pcw ≤
N∑

w=dmin

AwQ

(√
wEs

σ2

)
. (1)

Define the weight enumerator polynomial as

A(w) =
N∑

w=dmin

AwW
w. (2)

Using the bound Q(
√
x+ y) ≤ Q(

√
xe−y/2) [23], a slightly

looser bound than (1) may be computed from the weight
enumerator polynomial as follows:

Pcw ≤ Q

(√
dminEs

σ2

)
e

dminEs

2σ2 A
(
e−

Es
2σ2

)
. (3)

A transition matrix T (W ) facilitates computation of A(W )
for either a zero-terminated or tail-biting convolutional code.
For the example of a rate 1/n convolutional code with ν
memory elements, T (W ) is an s× s matrix, where s = 2ν .

The entry of T (W ) at row j and column i represents the
transition from state i to state j in the convolutional encoder.
If there is no transition from state i to state j, then the entry is
zero. Otherwise, the entry is Wwi,j where wi,j is the Hamming
weight of the n-bit symbol transmitted for that state transition.

Define the ith basic row vector ei as a length-s vector of
all-zeros except a one in position i. We will index the entries

1

ELF encoder 𝐸(𝑥)
state 𝑠!

Convolutional encoder 𝐺(𝑥)
state 𝑠"

𝑏# 𝑏$

Fig. 1. Convolutional encoder G(x) with an ELF E(x) as an outer code.

in both T (W ) and ei from zero to s − 1. For example, with
ν = 2 and thus s = 4, e1 =

[
0 1 0 0

]
.

For an (N = n(K + ν),K) block code implemented by
sending K information bits through a ν-state, rate-1/n, zero-
terminated convolutional code,

A(W ) = e0T (W )K+νeT0 − 1. (4)

Similarly, for an (N = nK,K) block code implemented
by sending K information bits through a 2ν-state tail-biting
convolutional code,

A(W ) =
2ν−1∑
i=0

eiT (W )KeTi − 1. (5)

B. DSU Bound for a Convolutional Code with an ELF

A degree-m ELF E(x) can be concatenated with a zero-
terminated rate-1/n convolutional code with encoder polyno-
mial matrix G(x). The m ELF redundancy bits reduce the
rate from K

(K+ν)n to K
(K+ν+m)n . Eq. (4) can be applied to the

T (W ) with s = 2(ν+m) for the zero-terminated convolutional
code E(x)G(x) so that

A(W ) = e0T (W )K+ν+meT0 − 1. (6)

For the case of an ELF E(x) concatenated with a rate-1/n
tail-biting convolutional code, the rate reduction is from K

Kn
to K

(K+m)n . To derive the DSU bound, separately consider the
state sE of the ELF encoder in Fig. 1 and the state sC of the
tail-biting convolutional encoder in Fig. 1. Note that

0 ≤sE ≤ 2m − 1 (7)
0 ≤sC ≤ 2ν − 1 (8)

Define the overall encoder state of the concatenated code
as s = sC + 2ν × sE . To compute an entry in T (W ), the
following computations are performed (referencing Fig. 1):
1) The message input bit bm is processed by the ELF encoder
with the origin ELF state s

(o)
E to compute the destination ELF

state s
(d)
E and ELF output bit be. 2) The ELF output bit be is

the input to the convolutional encoder which updates its origin
state s

(o)
C to the destination state s

(d)
C and produces an n-bit

output with Hamming weight wi,j . 3) The weight term Wwi,j

is written to T (W ) at row j and column i where j = s
(d)
C +

2ν×s
(d)
E and i = s

(o)
C +2ν×s

(o)
E . Using this T (W ), the weight

enumerator polynomial for an (N = 2× (K +m),K) block
code implemented by sending K information bits through an
outer ELF code with 2m states and encoding the ELF output
with a 2ν-state tail-biting convolutional code is

A(W ) =
2ν−1∑
i=0

eiT (W )K+meTi − 1. (9)

288

 2023 12th International Symposium on Topics in Coding (ISTC)



1 2 3 4 5 6

Eb=N0(dB)

10!10

10!9

10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1
C
o
d
ew

or
d
E
rr
or

R
at
e

DSU No ELF dmin = 12
DSU ELF 0xB5 dmin = 12
DSU m = 7 ELFs
DSU ELF 0xFF dmin = 16
Simulation 0xFF dmin = 16
RCU (128; 64)
RCU (142; 64)

Fig. 2. DSU bounds for the ν = 8 tail-biting convolutional code with K = 64
message bits with no ELF (red) and with each possible m = 7 ELF (blue).
Also shown is a simulation of list Viterbi decoding of the best ELF 0xFF
(green) and, for reference, the (142,64) and (128,64) RCU bounds (dashed).

In (9), T (W ) is an 2m+ν × 2m+ν matrix, but the only paths
that contribute to A(W ) are the 2ν paths that start and end at
the same value of sC and that start and end with sE = 0.

Fig. 2 shows the DSU bounds computed according to (9)
and (3) for all of the 64 possible (142, 64) codes resulting
from an m = 7 ELF concatenated with the ν = 8 tail-biting
convolutional code (561,753), where 561 is octal for 1+x4+
x5 + x6 + x8. The RCU bound for (142,64) codes is shown
for comparison. For reference, the DSU bound for the (128,64)
code that results from using the tail-biting convolutional code
without an ELF and its corresponding RCU bound are also
shown. The CER curve from simulating list decoding of the
tail-biting code used with the best ELF 0xFF shows that this
DSU bound is tight for CER ≤ 10−6.

Fig. 2 shows how the DSU bound on CER varies with the
choice of ELF. The best ELF is 0xFF whose DSU bound is
0.35 dB from the (142,64) RCU bound at CER=10−6. The
worst ELF is 0xB5 which is 1.10 dB from the RCU bound at
CER=10−6. The original (128,64) TBCC is 1.05 dB from the
(128,64) RCU bound. Thus, in this case a well-designed 7-bit
ELF reduced the gap from the RCU bound by 0.65 dB while
the poorest choice had a slightly larger gap.

Fig 3 shows average list size as a function of Eb/N0 for
the list decoding simulation shown in Fig. 2. The maximum
list size was set at 220, but the average list size is 1.26 at
Eb/N0=3.7 dB, where the CER is 1.1×10−6. Thus the average
complexity is similar to regular Viterbi decoding on a 256-state
trellis but the gap to the RCU bound is only 0.35 dB.

C. DSU Bound for Punctured Convolutional Code with ELF

This section extends the DSU bounding technique to handle
puncturing. The techniques below can be applied to any punc-
turing scheme. For simplicity of exposition, our description
only considers puncturing at most one of the n bits in each

Fig. 3. Average list size vs. Eb/N0 for the list Viterbi decoding simulation
of a ν = 8 TBCC concatenated with ELF 0xFF shown in Fig.2.

convolutional encoder symbol. Let p be the puncturing index
with range 0 ≤ p ≤ n, which indicates either that no bit is
punctured (p = 0) or which bit is punctured 1 ≤ p ≤ n.

Let Tp(W ) be the transition matrix of a trellis stage
with puncturing according to puncturing index p. The matrix
T0(W ) is the same as the T (W ) discussed above. The matrices
Tp(W ) for 1 ≤ p ≤ n have the power of W reduced by one for
the entries where the pth output bit, i.e. the punctured bit, is a 1.
With this description of punctured transition matrices Tp(W ),
let pi be the puncturing index that describes the puncturing
of the ith trellis stage. The weight enumerator polynomial for
the block code implemented by sending K information bits
through an outer ELF code with 2m states and then a 2ν-
state tail-biting convolutional code and then puncturing some
number of bits is expressed as follows:

A(W ) =

2ν−1∑
i=0

ei

K+m∏
i=1

Tpi(W )eTi − 1. (10)

Often, puncturing is designed according to a periodic pat-
tern. If the period includes q trellis stages, then we can define a
transition matrix Tπ(W ) for the puncturing period as follows:

Tπ(W ) =

q∏
i=1

Tpi
(W ) . (11)

If the K+m trellis stages are an integer number of puncturing
periods, the weight enumerator of the punctured tail-biting
convolutional code with an ELF can be expressed as

A(W ) =
2ν−1∑
i=0

eiTπ(W )(K+m)/qeTi − 1. (12)

III. A LIST DECODING SIEVE TO FIND THE BEST ELF

This section provides a list decoding sieve method to find
the ELFs that maximize the dmin of the concatenated code.
This approach is computationally more efficient than the error
event construction method of Yang [9]. The sieve performs
serial list Viterbi decoding [18] with the (noiseless) all-zeros
codeword as the received word. Codewords join the list in
order of increasing Hamming weight.

289

 2023 12th International Symposium on Topics in Coding (ISTC)



TABLE I
BEST ELFS E(x) FOR m = 0 TO m = 12 REDUNDANCY BITS

THAT MAXIMIZE MINIMUM DISTANCE FOR THE ν = 8 TBCC (561,753)
FOR K = 64 MESSAGE BITS, N = 2× (64 +m) TRANSMITTED BITS AND

FOR N = 2× 76 TRANSMITTED BITS, K = 76−m MESSAGE BITS.

K = 64, N = 2× (64 +m) N = 2× 76,K = 76−m
m E(x) dmin Admin E(x) dmin Admin
0 0x1 12 704 0x1 12 836
1 0x3 12 260 0x3 12 304
2 0x5 12 66 0x5 12 76
3 0xF 12 4 0xF 14 380
4 0x11 14 68 0x11 14 76
5 0x33 14 11 0x33 14 4
6 0x7F 16 210 0x55 14 2
7 0xFF 16 86 0x81 16 24
8 0x1AB 18 360 0x195 16 6
9 0x301 18 146 0x325 18 297
10 0x4F5 18 17 0x53D 18 21
11 0x9AF 20 300 0xE0D 18 2
12 0x1565 20 47 0x1565 20 47

TABLE II
EXPURGATED DISTANCE SPECTRA FOR m = 0 (NO EXPURGATION) TO
m = 12 FOR THE ν = 8 (N=152,K=76) TAIL-BITING CONVOLUTIONAL

MOTHER CODE DESCRIBED BY POLYNOMIAL (561,753).

Expurgated Distance Spectrum for w ≤ 20
m E(x) A12 A14 A16 A18 A20

0 0x1 836 3800 21736 123880 732564
1 0x3 304 1900 11324 61788 367764
2 0x5 76 988 5776 32300 177840
3 0xF 0 380 3344 15656 90060
4 0x11 0 76 1824 8056 43320
5 0x33 0 4 752 4040 22854
6 0x55 0 2 214 2210 11569
7 0x81 0 0 24 1341 5910
8 0x195 0 0 6 461 2932
9 0x325 0 0 0 297 1449
10 0x53D 0 0 0 21 742
11 0xE0D 0 0 0 2 393
12 0x1565 0 0 0 0 47

To find the best ELF polynomial E(x) of degree m, code-
words are grouped into sets Swi

according to their Hamming
weight wi. The first set has weight w1 equal to the dmin of the
inner code, and for each i, wi > wi−1. For each set Swi , the
sieve method removes from contention all polynomials E(x)
that divide any message polynomial m(x) that produces a
codeword in Swi

. The remaining ELF polynomials correspond
to concatenated codes with dmin > wi. This continues until a
weight w∗ is reached that would cause all the remaining ELF
polynomials to be removed from contention. From among the
remaining polynomials E(x) at weight w∗, select the E(x)
that achieves w∗ with the smallest number of neighbors.

Table I shows ELFs found by the list decoding sieve for
TBCCs, e.g., ELF 0x301 indicates E(x) = 1 + x8 + x9. The
left half of the table holds K constant at 64 bits while the
right half holds N constant at 152 bits. ELFs for 0 ≤ m ≤ 12
are designed using the sieve approach. The K = 64 results for
3 ≤ m ≤ 10 match the ELFs reported in [10]. When codeword
length is held constant, all the ELFs are expurgating the same
mother code. Table II shows how the the low-weight distance
spectrum of the (152,76) mother code thins out as m increases.

1 2 3 4 5 6

Eb=N0(dB)

10!10

10!9

10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1

C
o
d
ew

or
d

E
rr

or
R

at
e

A m=0

 m=12 !

A m=0

 m=12 !

DSU
RCU
m = 0
m = 1
m = 2
m = 3
m = 4
m = 5

m = 6
m = 7
m = 8
m = 9
m = 10
m = 11
m = 12

Fig. 4. DSU and RCU bounds for ELF codes of Table II.

0 1 2 3 4 5 6 7 8 9 10 11 12

ELF Redundancy m

0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

1:1

1:2

1:3

1:4

G
ap
to
R
C
U
(d
B
)

(N = 128 + 2m;K = 64)
(N = 152; K = 76!m)

Fig. 5. Gap at 10−6 between DSU and RCU bounds vs. m for Table I ELFs.

Fig. 4 uses (9) and (3) to compute the DSU bounds for
the expurgated tail-biting convolutional codes of Table II.
The corresponding RCU bounds are shown for reference. As
m increases the DSU bound on CER performance steadily
improves. Meanwhile the slight rate reduction does not signif-
icantly improve the CER performance of the RCU bound. As
a result, the gap between the DSU and RCU bounds decreases
as m increases. Fig. 5 further explores how ELFs reduce
the gap between DSU and RCU bounds by showing the gap
between DSU and RCU bounds at CER = 10−6 vs. m for all
the ELFs in Table I. We can see that in both cases the gap
decreases as m increases culminating in a gap of 0.227 dB
for the m = 12 ELF. For the m = 12 case, the two codes
are actually identical (152, 64) codes. Recall from Fig. 3 that
this increase in performance requires a minimal increase in
average complexity as described in, e.g, [8], [10].

290

 2023 12th International Symposium on Topics in Coding (ISTC)



1 2 3 4 5 6

Eb=N0(dB)

10!10

10!9

10!8

10!7

10!6

10!5

10!4

10!3

10!2

10!1
C
o
d
ew
or
d
E
rr
or
R
at
e

DSU 8 = 8, m = 12, dmin = 15
DSU 8 = 14, No ELF, dmin = 16
RCU (128; 64)

Fig. 6. DSU bounds for two (128,64) codes and the (128,64) RCU bound. One
code is the standard ν = 14 tail-biting convolutional code (75063,56711) with
no ELF and no puncturing. The other is the ν = 8 tail-biting convolutional
code (561,753) with ELF 0x1565 from Tables I and II with 24 bits punctured.

IV. A PUNCTURING EXAMPLE: RATE-1/2 K = 64

This section applies Sec. II-C to explore a (128, 64) code
created by puncturing 24 bits from the (152,64) block code
formed by concatenating the m = 12 ELF 0x1565 from Tables
I and II with the ν = 8 tail-biting convolutional code. This
example uses a periodic puncturing pattern with period q = 19,
where six bits are punctured from each of the four periods that
comprise the K + m = 76 trellis stages. The 19 puncturing
indices for this periodic puncturing pattern are as follows:

[0 0 1 0 0 1 0 0 0 0 2 0 1 0 0 2 0 0 2]

where puncturing index pi = 0 indicates no puncturing, pi = 1
indicates puncturing the output of the convolutional encoder
polynomial 561 and pi = 2 indicates puncturing the output of
the convolutional encoder polynomial 753. We did not perform
a fully exhaustive search even of puncturing patterns with
period q = 19, but this pattern gives reasonable performance.

Fig. 6 shows the DSU bound for the ν = 8 tail-biting
convolutional code (561,753) with ELF 0x1565 and 24 bits
punctured as described above. Also shown for comparison are
the (128,64) RCU bound and the DSU bound for the standard
ν = 14 tail-biting convolutional code (75063,56711) with no
ELF and no puncturing. The ν = 14 code has DSU to RCU
gap of 0.15 dB at CER 10−6. The ν = 8 solution has a gap of
0.18 dB at CER 10−6. At an operating point of CER = 10−6

the ν = 8 solution requires less average decoder complexity.

V. CONCLUSIONS

For short block lengths, expurgating linear functions (ELFs)
transform a good inner code into a great concatenated code
with a minimal increase in average complexity. This paper
presented DSU bounding techniques that allow tight bounds
on codeword error rate for ELF codes with and without punc-
turing and a sieve method for finding good ELFs efficiently.

REFERENCES

[1] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge
University Press, 2003.

[2] R. Gallager, “A simple derivation of the coding theorem and some
applications,” IEEE Trans. on Information Theory, vol. 11, no. 1, pp.
3–18, 1965.

[3] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. on Information Theory, vol. 56,
no. 5, pp. 2307–2359, May 2010.

[4] J. Font-Segura, G. Vazquez-Vilar, A. Martinez, A. Guillén i Fàbregas,
and A. Lancho, “Saddlepoint approximations of lower and upper bounds
to the error probability in channel coding,” in 2018 52nd Annual Conf.
on Information Sciences and Systems (CISS), 2018, pp. 1–6.

[5] C.-Y. Lou, B. Daneshrad, and R. D. Wesel, “Convolutional-code-specific
CRC code design,” IEEE Trans. on Communications, vol. 63, no. 10,
pp. 3459–3470, 2015.

[6] H. Yang, S. V. S. Ranganathan, and R. D. Wesel, “Serial list Viterbi
decoding with CRC: Managing errors, erasures, and complexity,” in
2018 IEEE Global Comm. Conf. (GLOBECOM), 2018, pp. 1–6.

[7] H. Yang, E. Liang, H. Yao, A. Vardy, D. Divsalar, and R. D. Wesel,
“A list-decoding approach to low-complexity soft maximum-likelihood
decoding of cyclic codes,” in 2019 IEEE Global Comm. Conf. (GLOBE-
COM), 2019, pp. 1–6.

[8] E. Liang, H. Yang, D. Divsalar, and R. D. Wesel, “List-decoded tail-
biting convolutional codes with distance-spectrum optimal CRCs for
5G,” in 2019 IEEE Global Comm. Conf. (GLOBECOM), 2019, pp. 1–6.

[9] H. Yang, L. Wang, V. Lao, and R. D. Wesel, “An efficient algorithm for
designing optimal CRCs for tail-biting convolutional codes,” in 2020
IEEE Int. Sym. Inf. Theory (ISIT), June 2020, pp. 1–6.

[10] H. Yang, E. Liang, M. Pan, and R. D. Wesel, “CRC-aided list decoding
of convolutional codes in the short blocklength regime,” IEEE Trans. on
Information Theory, vol. 68, no. 6, pp. 3744–3766, 2022.

[11] J. King, A. Kwon, H. Yang, W. Ryan, and R. D. Wesel, “CRC-aided list
decoding of convolutional and polar codes for short messages in 5G,”
in ICC 2022 - IEEE Int. Conf. on Comm., 2022, pp. 92–97.

[12] J. King, W. Ryan, and R. D. Wesel, “CRC-aided short convolutional
codes and RCU bounds for orthogonal signaling,” in GLOBECOM 2022
- 2022 IEEE Global Comm. Conf., 2022, pp. 4256–4261.

[13] D. Song, F. Areces, L. Wang, and R. Wesel, “Shaped TCM with list
decoding that exceeds the RCU bound by optimizing a union bound on
fer,” in GLOBECOM 2022 - 2022 IEEE Global Comm. Conf., 2022, pp.
4262–4267.

[14] J. King, “CRC-aided list decoding of short convolutional and polar
codes for binary and nonbinary signaling,” Master’s thesis, University
of California, Los Angeles (UCLA), 2022.

[15] W. Sui, H. Yang, B. Towell, A. Asmani, and R. D. Wesel, “High-
rate convolutional codes with CRC-aided list decoding for short block-
lengths,” in ICC 2022 - IEEE Int. Conf. on Comm., 2022, pp. 98–103.

[16] L. Wang, D. Song, F. Areces, and R. D. Wesel, “Achieving short-
blocklength RCU bound via CRC list decoding of TCM with proba-
bilistic shaping,” in ICC 2022 - IEEE Int. Conf. on Comm., 2022, pp.
2906–2911.

[17] L. Wang, D. Song, F. Areces, T. Wiegart, and R. D. Wesel, “Probabilistic
shaping for trellis-coded modulation with CRC-aided list decoding,”
IEEE Trans. on Communications, vol. 71, no. 3, pp. 1271–1283, 2023.

[18] N. Seshadri and C. E. W. Sundberg, “List Viterbi decoding algorithms
with applications,” IEEE Trans. on Communications, vol. 42, no. 234,
pp. 313–323, Feb. 1994.

[19] R. Schiavone, R. Garello, and G. Liva, “Application of list Viterbi algo-
rithms to improve the performance in space missions using convolutional
codes,” in 2022 9th Int. Workshop on Tracking, Telemetry and Command
Systems for Space Applications (TTC), 2022, pp. 1–8.

[20] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions
on Information Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[21] J. King, H. Yao, W. Ryan, and R. D. Wesel, “Design, performance,
and complexity of CRC-aided list decoding of convolutional and polar
codes for short messages.” [Online]. Available: https://arxiv.org/abs/
2302.07513

[22] H. Ma and J. Wolf, “On tail biting convolutional codes,” IEEE Trans.
on Communications, vol. 34, no. 2, pp. 104–111, February 1986.

[23] A. Viterbi, “Convolutional codes and their performance in communi-
cation systems,” IEEE Trans. on Communication Technology, vol. 19,
no. 5, pp. 751–772, 1971.

291

 2023 12th International Symposium on Topics in Coding (ISTC)


