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Abstract

Over the past decade wide-field optical time-domain surveys have increased the discovery rate of transients to the
point that <10% are being spectroscopically classified. Despite this, these surveys have enabled the discovery of
new and rare types of transients, most notably the class of hydrogen-poor superluminous supernovae (SLSN-I),
with about 150 events confirmed to date. Here we present a machine-learning classification algorithm targeted at
rapid identification of a pure sample of SLSN-I to enable spectroscopic and multiwavelength follow-up. This
algorithm is part of the Finding Luminous and Exotic Extragalactic Transients (FLEET) observational strategy. It
utilizes both light-curve and contextual information, but without the need for a redshift, to assign each newly
discovered transient a probability of being a SLSN-I. This classifier can achieve a maximum purity of about 85%
(with 20% completeness) when observing a selection of SLSN-I candidates. Additionally, we present two
alternative classifiers that use either redshifts or complete light curves and can achieve an even higher purity and
completeness. At the current discovery rate, the FLEET algorithm can provide about 20 SLSN-I candidates per
year for spectroscopic follow-up with 85% purity; with the Legacy Survey of Space and Time we anticipate this
will rise to more than ~ 103 events per year.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Core-collapse supernovae (304); Surveys (1671)

1. Introduction

Type 1 superluminous supernovae (hereafter SLSN-I) are a
class of astrophysical transients that exceed the luminosity of
normal SNe by up to two orders of magnitude. They were
originally classified based on their luminosity, since most have
typical peak absolute magnitudes of <—21 (Chomiuk et al.
2011; Quimby et al. 2011). However, events with spectroscopic
signatures that match those of SLSN-I have been discovered at
lower luminosities (e.g., Lunnan et al. 2013) and they are now
classified based on their hydrogen-free spectra, strong OII
absorption lines at early time, and a blue continuum (Angus
et al. 2019). At present, about 150 SLSN-I have been
spectroscopically classified; see Table Al for a listing and
references.

While the energy source of SLSN-I was intensely debated
for a few years followmg their d1scovery, it now appears that
radioactive decay of *°Ni (as in normal Type I SNe) and
circumstellar interaction (as in Type IIn SNe) cannot explain
the bulk of the population. Instead, the most likely energy
source appears to be the spindown of a millisecond magnetar
produced in the explosion (Kasen & Bildsten 2010; Metzger
et al. 2015). This model can explain the diverse light-curve
behavior (Nicholl et al. 2017c), the early-time UV spectra
(Mazzali et al. 2016), the late-time light-curve flattening
(Blanchard et al. 2018; Nicholl et al. 2018), and the nebular
spectra (Dessart et al. 2012; Nicholl et al. 2019) of SLSN-L
Still, the nature of SLSN-I progenitors, their environments, and
their relation to those of other stripped-envelope explosions
remain areas of active investigation (e.g., Blanchard et al.
2020). Similarly, the ubiquity and origin of unusual light-curve
and spectroscopic features seen in some SLSN-I, such as

late-time “bumps” (Nicholl et al. 2016; Inserra et al. 2017;
Blanchard et al. 2018; Lunnan et al. 2019), double-peaked light
curves (Nicholl et al. 2015), or potential helium lines (Yan
et al. 2020) remain unclear.

Making progress on these open questions Requires a
substantial increase in the identification rate of SLSN-I,
preferably at early times to enable spectroscopic follow-up. A
significant challenge is that SLSN-I are intrinsically rare; at a
volumetric rate of ~90 SNe yr~' Gpc ™2 at a wei ghted redshift
of z = 1.13, they represent <0.1% of the core-collapse SN rate
(Prajs et al. 2017). Even accounting for their larger discovery
volume they represent only ~1.5% of the detection rate in
magnitude-limited surveys (Villar et al. 2019; Fremling et al.
2020). Currently, only ~10% of all optical transients are
classified spectroscopically, and with the Legacy Survey of
Space and Time (LSST) on the Vera C. Rubin Observatory,
this will decline to <0.1%. Thus, efficient and rapid selection
of SLSN-I candidates is essential.

One approach to identifying SLSN-I candidates is to
use general purpose machine learning (ML) classification
algorithms that attempt to sort optical transients into
various spectroscopic classes. Some of these (e.g., RAPID:
Muthukrishna et al. 2019, Avocado: Boone 2019) have been
trained on synthetic data, such as the Photometric LSST
Astronomical Time-series Classification project (PLAsTiCC;
Kessler et al. 2019), but their performance with real data
remains untested. Other classifiers such as SuperRAENN
(Villar et al. 2020) or Superphot (Villar et al. 2019;
Hosseinzadeh et al. 2020) have been trained on real survey
data from the Pan-STARRS1 Medium Deep Survey (PS1/
MDS). Overall, these classifiers have a fairly high success rate
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and recover ~80% of SLSN-I, but only when using redshift
information and fairly complete light curves. Additionally, the
Automatic Learning for the Rapid Classification of Events
(ALeRCE) broker, which is currently providing real-time
classifications for transients from ZTF (Sanchez-Séez et al.
2020), is able to recover up to 100% of the SLSN-I in
their training sample, but with a large standard deviation of
~26% for the predicted classification, which they estimate by
running 20 versions of their classifier.

An alternative approach, which we develop and use in this
paper, is to devise a classification algorithm that is optimized
specifically for SLSN-I. In Blanchard (2019) we introduced an
initial simple algorithm that improved SLSN-I selection from
the random ~1.5% to ~20%, using the brightness contrast
between a transient and its host galaxy. This approach yielded
other unusual transients as well (Blanchard et al. 2017; Gomez
et al. 2019; Nicholl et al. 2020). Here, we describe a more
sophisticated machine learning algorithm that utilizes light-
curve and contextual information to enable efficient real-time
SLSN-I selection without the need for redshift information.
This classifier is the core of our Finding Luminous and Exotic
Extragalactic Transients (FLEET) observational program. We
find that this targeted approach achieves an overall higher
success rate than all-encompassing classifiers.

The structure of the paper is as follows. In Section 2 we
introduce and motivate the philosophy behind our approach. In
Section 3 we present the data set used to train our algorithm. In
Section 4 and Section 5 we outline the contextual and light-
curve information used for classification, respectively. In
Section 6 we describe the ML algorithm and the classification
results. In Section 7 we present our alternative classifiers that
use redshifts and full light curves as additional information.
Finally, we summarize our conclusions in Section 8. FLEET is
provided as a Python package on Github® and Zenodo (Gomez
et al. 2020), as well as included in the Python Package Index
with the name fleet-pipe.

2. Guiding Principles

As discussed above, there are several efforts aimed at ML
classification of astronomical transients, mainly based on light-
curve information from wide-field surveys. By design, some
classifiers make choices that tend to optimize their overall
classification success rate across a range of astronomical
transients (e.g., Boone 2019; Muthukrishna et al. 2019;
Gagliano et al. 2020; Hosseinzadeh et al. 2020; Villar et al.
2020). Here, we take a distinct approach by focusing on
optimized classification of a single class of transients. Our
algorithm is based on the following guiding principles:

1. Classifying only SLSN-I with no regard for the
classification success of other transients.

2. Obtaining the purest possible sample of SLSN-I, at the
expense of sample completeness.

3. Prioritizing speed and computational resources over
model complexity to allow for rapid classification.

4. Finding SLSN-I at early times to enable real-time
follow-up.

This approach enables us to make efficient use of large-aperture
telescopes for spectroscopic classification, as well as perform
later follow-up studies.

5 https://github.com/gmzsebastian/FLEET
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At the present, most transients are reported to the Transient
Name Server (TNS), a repository for transient discoveries and
classifications. FLEET is designed to assign any transient
reported to the TNS a classification probability of being a
SLSN-I. The current rate of ~1500 transients per month
reported to the TNS (and >10° per month expected from
LSST) motivates our emphasis on computational speed, as well
as purity at the expense of completeness. In particular, even if
we manage to identify less than half of the SLSN-I in the data
stream, but with a high success rate, then we can double the
existing sample of SLSN-I by the time LSST commences.

We provide a main rapid version of the classifier in addition
to two additional classifiers with somewhat different motiva-
tions: first, a classifier that uses redshift information for higher
purity classification, mainly in anticipation of robust photo-
metric redshifts that will be provided by LSST; and second, a
full light-curve classifier that can more confidently classify
SLSN-I, mainly aimed at constructing large samples with only
photometric data.

3. Test Set

To train our classifier we obtained all spectroscopically
classified transients from the TNS: SNe, tidal disruption events
(TDEs), active galactic nuclei (AGN) flares, and Galactic
transients (e.g., cataclysmic variables and variable stars). In
addition to those, we included the TDEs published in van
Velzen et al. (2020), which are not yet reported to the TNS, and
every unambiguous SLSN-I from the literature; see Table Al.
We also obtained all of the available photometry for each
transient, from the Open Supernova Catalog (OSC; Guillochon
et al. 2017) or the Zwicky Transient Facility (ZTF; Bellm et al.
2019). We require each transient to have at least 2 g-band and 2
r-band measurements to model their light curves. We restrict
the list to transients within the footprint of the Pan-STARRS1
37 (PS1/37) survey (Chambers & Pan-STARRS Team 2018)
for the purpose of identifying host galaxies. Finally, we
removed from the training set 44 transients with ambiguous
host galaxy identifications or spurious data in order to have the
cleanest data set possible; however, we kept these events in our
test set to analyze any resulting biases. The resulting sample is
composed of 1813 transients, with the following distinct labels
from the TNS: 800 SN Ia, 381 SN I, 156 SLSN-I, 95 CV, 71
SN IIn, 63 SN IIP, 59 SN Ic, 43 SLSN-II, 37 SN Ib, 33 SN IIb,
19 TDE, 16 SNIc-BL, 13 SN1bc, 12 AGN, 8 SN Ibn, and 7
Varstar (variable stars).

Since the number of events per class varies substantially,
making the training set unbalanced, the classification would be
biased toward the more common classes. To mitigate this bias
we oversample each class to have a total of 800 events, using
the Synthetic Minority Over-sampling Technique (SMOTE;
Chawla et al. 2002). This algorithm draws random samples
along vectors joining every pair of objects in feature space until
all classes have the same number of events. We tested an
alternative multivariate-Gaussian (MVG) oversampling techni-
que, as implemented in Villar et al. (2019), but find that when
sampling features that are close to zero and constrained to be
positive (e.g., redshift), SMOTE performs significantly better,
even when imposing a >0 threshold for the samples, or
sampling in log-space.

Since some of the classes in our sample are too small to be
properly oversampled, we experiment by grouping different
sets of transients together, not only to allow for oversampling
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Table 1
Observational Rates of Transients
Transient Fremling TNS Target f
SNI 587 (77.1%) 6500 (70.8%) 73.9%
SNII 155 (20.4%) 2109 (23.0%) 19.6%
SLSN-I 12 (1.6%) 123 (1.3%) 1.5%
SLSN-II 7 (0.9%) 45 (0.5%) 0.9%
Nuclear 58 (0.6%) 0.6%
Star 340 (3.7%) 3.5%

Note. Total number of each of the relevant classes of transients from the
Fremling et al. (2020) sample and the TNS sample. In parentheses is the
percent of the total sample each class represents. We normalize the rate of
events in our test set to an expected Target rate f calculated from the Fremling
et al. (2020) sample and the TNS sample, used for Equation (1).

but to attempt to optimize the success of the classifier at finding
SLSN-I and to improve computational efficiency. We find
that the best performing grouping is Varstar+CV, TDE+
AGN, SN II4-SNIIP, SN Ib+SN Ibn+SN Ibc+SN Ic+SN Ic-BL,
SLSN-I, SLSN-II, SN IIb, SN IIn, and SN Ia. We stress that since
our interest is in classifying SLSN-I with high purity, the grouping
and classification success of the other classes are not critical. Still,
it is interesting to note that the optimized groupings are indeed
related in terms of underlying physics.

3.1. Test Set

We test the efficacy of our classifier on all of the events from
the training set. In addition to all the events from the training
set, we include in the test set the 44 transients that were
removed in Section 3 to avoid introducing possible biases. We
implement a leave-one-out cross-validation method, allowing
us to train the classifier on every event except for one, and then
predict the classification of that one event, cycling through all
events. This allows us to robustly test our classifier without
having to divide the data set into a training and test set, which
would compromise the sample size.

We define completeness, classifier purity, and observed
purity as useful metrics to test the efficacy of our algorithm:

Completeness = SN

SLSN
SNt
SNt + SNr

SNt

SNT —+ ZiniSNF»i
_ Nousy X f;

i k)
N; X fsLsn

where Ng; sy is the total number of SLSN-I in the test set, SNt
is the total number of true positive SLSN-I recovered, and SNg
is the total number of false-positive SLSN-I. The relative
fractions of each transient class in our test set, which we
obtained directly from the TNS, do not reflect the true fractions
of these transients in a magnitude-limited survey. To determine
a purity that is representative of ongoing and future surveys, we
renormalize the classifier purity into an observed purity, which
more accurately represents the outcome of our pipeline in a real
survey. Here, SNg; is the false-positive rate for an individual
transient class i, and f; is the corresponding true observational

Classifier Purity =

Observed Purity =

ey
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rate for that class, listed in Table 1. We use the observational
rates of SNe from Fremling et al. (2020) to estimate the
expected Target Rate, f, for any magnitude-limited survey. We
then include nuclear transients (TDEs + AGN) and Galactic
transients (CVs + variable stars) from the TNS, normalizing by
the total number of classified transients from the TNS to the
total number of SNe in the Fremling et al. (2020) sample.

Given that SLSN-I are over-represented in our test set
compared to the rate they would have in a magnitude limited
survey, observed purity will be lower than the classifier purity.
For example, our test set has 800 SN Ia and 156 SLSN-I, or
0.20 SLSN-I for each SN Ia. But in a magnitude-limited
survey, there is typically only 0.02 SLSN-I for each SN Ia.
Therefore, if we wanted to predict how many SLSN-1 we
would be able to find in a real survey, we need to normalize the
classifier purity by, in this example, multiplying the false-
positive rate by a factor of ~10.

4. Contextual Information

SLSN-I are known to prefer low-luminosity galaxies
(Lunnan et al. 2014), and it is therefore advantageous to use
contextual information in their classification. Here we describe
our method of assigning a host galaxy to each transient, while
in Section 6.1 we explore which host galaxy properties are the
most useful features in the SLSN-I classification. For each
transient in our training set we obtain PS1/37 grizy (Chambers
& Pan-STARRS Team 2018) and SDSS ugriz (Alam et al.
2015; Ahumada et al. 2020) PSF and Kron magnitudes of every
cataloged source in a 1’ radius region around the transient
location. We use this information both to separate galaxies
from stars and to identify the most likely host galaxy.

4.1. Star—Galaxy Separation

The first step to identifying the host galaxy of each transient
is to separate stars from galaxies. SDSS provides a classifica-
tion for every object in their catalog, but since SDSS is
shallower than PS1/37 and has a smaller footprint, this is not
sufficient for our purposes. Instead, we develop a method to
assign a probabilistic value (between 0 and 1) of how likely
every object in SDSS and PS1/37 is to be a galaxy.

To train our star—galaxy separation algorithm we use data
from the Canada—France-Hawaii Telescope Legacy Survey
(CFHTLS; Hudelot et al. 2012), which provides magnitudes
and star—galaxy classifications down to ~26 mag, significantly
deeper than SDSS and PS1/37. We specifically use the DI
field (1 deg?) and cross match with every overlapping object in
SDSS and PS1/3m, for a total of ~23,000 objects. Galaxies
tend to have a larger difference between their PSF and Kron
magnitudes than stars, so we use this specific feature (PSF-
Kron) to separate them; see Figure 1 for an example in the
i-band. The CFHTLS uses the CLASS_STAR classifier flag in
SExtractor to separate stars from galaxies, which relies
on a multilayer feed forward neural network (Bertin &
Arnouts 1996).

In our galaxy-star separator we assign a probability of being
a galaxy to any object in SDSS or PS1/37 by using a custom
k-nearest-neighbors algorithm. Given an object’s PSF and
Kron magnitude, we find the 20 nearest objects in the PSF
versus PSF-Kron phase-space (Figure 1) to calculate its
probability of being a galaxy based on the fraction of those
20 neighbors from the CFHTLS training set that are galaxies.
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Figure 1. Galaxies (green) and stars (red) classified by the CFHTLS survey
(D1 field) plotted in terms of the difference between their PSF and Kron
magnitude as a function of apparent i-band magnitude in PS1/37. Using this
calibration, we assign a probability of being a galaxy to all objects in the field
of a transient based on their location in this diagram. The top panel shows the
percent of objects for which our classification matches that of the CFHTLS as a
function of apparent magnitude; a 90% match occurs at a magnitude of 22.5.

Experimenting with different numbers of neighbors, we find
that at least 10 neighbors are required to produce robust
estimates, with only marginal improvement in accuracy beyond
20 neighbors. For every object we calculate its probability of
being a galaxy in every available filter, and adopt the average
probability among all filters.

An alternative star—galaxy separator for objects in PS1/3 is
presented in Tachibana & Miller (2018). Although this latest
one has a very high accuracy, it does not include objects from
SDSS, for which we also require a classification when they are
not in the PS1/37 catalog. We note that if we label objects with
a probability of being a galaxy of FP; < 10% as stars, our
classifier agrees with the classification from Tachibana &
Miller (2018) at the 90% level. In Figure 2 we show an
example of our star—galaxy separator applied on a field from
PS1/37 centered on the location of the SLSN-I SN 2013hy.

We opt to only label objects with a galaxy probability of
F; < 10% as stars to avoid missing a possible host galaxy
identification. While this conservative cut retains more stars in
the sample, these are rarely predicted to be the most likely host
galaxy of a SN due to the small size of their PSF. We find that a
more strict threshold results in a large number of host galaxies
being rejected as stars. In the top panel of Figure 1 we show
that using the classification from the CFHTLS as a reference,
our threshold for labeling stars yields a successful galaxy
classification for essentially all objects with =22 mag and
~65% down to 23 mag.

4.2. Host Identification

Once we have identified which objects in the field are likely
to be galaxies we can determine which galaxy is the most likely
host for a given transient. First, we label stellar transients, using
the criterion of a star (i.e., P; < 10%) being located <1” from
a transient’s position. Then, for the nonstellar transients we
determine the probability of chance coincidence for each
galaxy in the field relative to the transient’s position. We follow
the method of Bloom et al. (2002) and Berger (2010) using the
measured number density of galaxies, >(<m), brighter than a
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magnitude m, to calculate the probability of chance coin-
cidence:

P.=1-— efn(d2+4R2)2(<m)
10033(m—24)—2.44
X(sm) = ———, @)
0.33 In(10)

where d is the angular separation between the center of a
galaxy and the transient, and R is the half-light radius of the
galaxy obtained from the SDSS catalog, or from the PS1/37
catalog if the object is not in the SDSS catalog. We consider the
galaxy with the lowest value of R to be the host, as long as
F.. < 0.1. Otherwise, we designate the transient as “hostless”
given the more likely situation that its host galaxy is fainter
than the magnitude limit of SDSS and PS1/3.

5. Light Curve Model

In addition to contextual information, we use the light curves
of each transient to predict which transients are most likely
SLSN-I. We obtain photometric data from the OSC, as well as
from ZTF using the Make Alerts Really Simple (MARS)®
broker. We correct all the photometry for Galactic extinction
using the Schlafly & Finkbeiner (2011) dust maps assuming
RV = 31

Since we are interested in gross features of the light curves,
rapid classification, and identifying only SLSN-I (rather than
robustly classifying all transient classes), we use a simple
exponential light-curve model:

m=e"l= A x Wt — ¢) + my, 3)

where W is the effective width of the light curve, A modifies the
decline time relative to the rise time, m is the peak magnitude,
and ¢ is a phase offset relative to the time of the first
observation. An example of this function fit to a SLSN-I
(SN 2011ke) is shown in Figure 3. We fit this model
independently to the g- and r-band light curves using the
emcee implementation of the Goodman and Weare (Goodman
& Weare 2010) Markov chain Monte Carlo algorithm (Foreman-
Mackey et al. 2013) and adopt the median of the posterior as
the best estimate for each parameter. We use flat priors for all
parameters: W = [0, 10], W, = [0.01, 1.0], ¢ = [—50, 50],
and mgy = [—30, 30]; but initiate the walkers’ position at a
value of my equal to the brightest observed magnitude, and a
value of ¢ that corresponds to the time of that measurement. We
find that a model with 50 walkers and 500 steps converges and
provides good results for the majority of transients, with a typical
autocorrelation time of ~30 steps.

We use two versions of Equation (3) to test and evaluate the
classifier. One version has a fixed value of A = 0.6 (the mean
value from fitting all of the SLSN-I light curves up to a
timescale of 70 days postdiscovery), and is used for the rapid
version of FLEET, which only uses the first 20 days of data
(described in Section 6). We note that the actual choice of A has
only a marginal effect on the results, since this model only uses
data up to 20 days after detection, which do not encompass a
decline phase. The second version of the model uses data up to
70 days after discovery and has A as a free parameter to fit the
light-curve decline. This model is used for the full light-curve

6 https: //mars.Ico.global /
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Figure 2. PS1/37 i-band image of a 1’ x 1’ field centered on the position of
the SLSN-I SN 2013hy, indicating objects classified as galaxies (green) and
stars (red) based on our star—galaxy separation algorithm (Section 4.1). The
blue cross marks the location of the SN and its associated host galaxy with
P ~ 0.03 as determined by the algorithm described in Section 4.2.
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Figure 3. Light curves of the SLSN-I SN 2011ke fit with the model described
in Equation (3). The dashed lines show the fit using only data up to 20 days
after detection (with a fixed value of A = 0.6), while the solid lines are the
result of fitting the data up to 70 days after detection (with A as a free
parameter). The former is part of our main rapid classifier, while the latter is
part of an alternative classifier that uses full light curves (Section 7.2).

classifier described in Section 7.2. In Figure 3 we show both
versions of the model, using only the first 20 days of data (fixed
A) and 70 days of data (A as a free parameter).

6. Classification Algorithm

To classify the transients we use the contextual and light-
curve information described in Section 4 and Section 5,
respectively, with an implementation of the random forest (RF)
algorithm in the scikit-1learn Python package (Pedregosa
et al. 2012). In this manner, we assign to each transient a
classification probability of being an SLSN-I. This algorithm

Gomez et al.

takes various subsamples of the training set and forms a
number of decision tree classifiers to classify each object. The
output classification probability is the result of averaging the
output of all the trees in the forest. We run the classifier with
100 estimators to mitigate overfitting and improve predictive
accuracy. We also run each version of the model 25 times using
different initial random seeds to estimate the -classifier’s
uncertainties. We run the classifier using the Gini index as
the criterion that minimizes the probability of misclassification.
We optimize the depth of the trees in each RF by running a grid
of models from a depth of 3 to 12 in steps of 1 and find a depth
of 7 performs best (a depth of 6 and 8 performed similarly well,
within a 1o uncertainty derived from the different random seed
iterations).

Additionally, we optimize the grouping of transient classes
into different sets, described in Section 3.1. We find that for the
most part grouping different classes of SNe together (e.g.,
SN IIn and SN II) or separating SNe into distinct classes (e.g.,
SNIb and SN Ic) provides very similar results, with the one
exception of grouping all SNe that are not SLSNe into one
group, which produces a much lower purity.

6.1. Feature Selection

Unlike newly discovered transients, the transients in our
training set have full light curves. Since a goal of FLEET is to
find SLSN-I in real time we test the algorithm using a varying
cutoff time for the light-curve data. Naturally, with more data
the light-curve models are better constrained, but this delays the
identification and spectroscopic follow-up into a later phase
when the SN is fainter. We find that using the first 20 days of
data provides the best results, where using less data
significantly reduces the classifier purity, but including more
data provides no improvement (within 1o uncertainties). After
the first 20 days of data most SLSN-I have not reached their
peak luminosity.

For the rapid classifier we have six light-curve parameters
(three in each filter) that can be used as input features: the
widths of the light curve, W, the phase offsets ¢, and the peak
magnitudes my. In addition to these we explore the use of two
additional features: (i) At, which is the time difference from
first detection of a transient to its observed light-curve peak in
either g- or r-band, whichever one is brightest; and (ii) the
g — r color at peak, using the model fits, where the time of
peak is the one with the brightest observed magnitude in either
the g- or r-band.

For the contextual information features we test the use of
several host galaxy parameters: the apparent magnitude of the
host, my, its half-light radius in the r-band, R, the projected
angular separation between the transient and its host center D,
the projected angular separation normalized by the galaxy
radius R, and the difference between mg and m, in the r-band,
Am. For hostless transients we use the limiting magnitude of
PS1/37 of r = 23.2 as an upper limit on m;,, and set all other
galaxy parameters to O (since those cannot be measured for a
nondetected host).

We tested several combinations of the available light-curve
and contextual features in order to determine which combina-
tion set yields the highest purity of SLSN-I, while maintaining
reasonable completeness; see Table 2. We find that the most
relevant features that help separate SLSN-I from other
transients are W, and W, Ar, R,, Am, and (g—r). In
Figure 4 we show how the different classes of transients lie
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Table 2
Feature Sets

Peak Classifier

# Features Purity Completeness ~ P(SLSN-I)
1 W+At+R,+ Am 83.0 £ 2.0% 163 £ 1.8% 0.73
2 W+At+ Am 73.3 £ 40.8% 2.6 £ 1.7% 0.81
3 W+AHR, 81.5 £2.5% 204 £ 1.3% 0.84
4 R,4+Am 98.7 + 6.5% 4.1 £ 1.4% 0.89
5 W+R, 755 £ 4.9% 16.1 £ 1.8% 0.74
6 W+A+R,+(g—r) 912 +2.4% 17.9 £ 3.3% 0.80
7 W+AHR,+ 82.0 &+ 25.4% 22 £ 0.9% 0.88
Am+(g—r)
8 W+R,+ Am+(g—r) 94.7 £ 12.2% 3.0 £0.7% 0.87

Note. Different sets of light-curve and contextual features used to train our
classifier. We list the highest classifier purity that each set of features achieves,
as well as the corresponding completeness and classification probability
P(SLSN-I) that correspond to that peak purity. W is the width of the light curve,
R, is the normalized host separation, Am is the peak transient magnitude minus
the host magnitude, At is the time of peak magnitude minus the time of
discovery, and (g—r) is the light-curve color at peak.

in feature space. In Table 2 we list the highest purity and
associated uncertainty achieved for each feature set, as well as
the corresponding completeness and classification confidence,
P(SLSN-I), at which this highest purity is achieved.

We find that for the rapid classifier, feature set #6 from
Table 2 performs best in terms of purity, while retaining a
reasonable completeness. This set contains the width of the
light curve W in g- and r-band, the normalized host separation
R,,, the time of peak magnitude minus the time of discovery in
either band, A, and the light-curve color at peak, (g—r).

The importance of each feature used is not defined
independently of other features; if two features are correlated
then their relative importance might be affected. In the bottom
panel of Figure 5 we show the correlation between features,
and find that with the exception of W, and W,, the features are
mostly independent. In order to calculate the correlated
importance we use the permutation importance method
described in Breiman (2001). The correlated importance of
each feature is shown in the top panel of Figure 5.

In Figure 6 we show how the rapid version of the classifier
(trained on the first 20 days of light-curve data) performs as a
function of days of light-curve data used, and include the
contaminating classes of transients. When considering the top
20 transients with the highest predicted confidence P(SLSN-I),
we find that the classifier performance rises for the first ~20
days, and then plateaus to a peak classifier purity of about 90%
(i.e., we correctly identify about 18 of the top 20 transients
classified as SLSN-I). This purity is relevant for the training
set, without normalizing for the observational rates described in
Section 3.1. The remaining 10% of misclassified events are
SLSN-II and SNII. We are generally less concerned about
misclassifying SLSN-II as SLSN-I, since the former are still of
scientific interest. The performance of the classifier degrades
slightly beyond 70 days, since it is only trained on the rising
part of the light curve. If we instead consider the top 40 events
predicted to be SLSN-I, we find that the fraction of correctly
identified SLSN-I goes down to about 75% (Figure 6).

6.2. Model Validation

We use three different methods to evaluate the performance
of our classifier: a confusion matrix, a purity/completeness
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Figure 4. Phase spaces of features selected for the classifier, plotted for the
various classes of transients. Top: the normalized host separation (R,,) vs. the
time difference between the light-curve peak and the first detection (Af). For
hostless transients we set R, = 0 (shown here at R, = 0.01 for visualization
purposes). SLSN-I typically have a higher Ar than other transients. Bottom:
light-curve width in the r-band W,, compared to the color of the transient during
peak (g—r), where we see SLSN-I have wider light curves, indicated by the
lower W,.

curve, and the fraction of SLSN-I recovered. Unless otherwise
stated, in this section the values being reported have been
corrected for the observational rates expected in a magnitude-
limited survey as described in Section 3.1; i.e., we use the
observed purity. Since we are not concerned with the
classification of transients other than SLSN-I, we collapse the
individual transient classifications into a binary SLSN-I versus
nonSLSN-I classification. To calculate the predicted prob-
ability of nonSLSN-I for each transient we sum the
probabilities of all other transient classes.

In Figure 7 we show how the rapid classifier performs at
classifying SLSN-I and not misclassifying other objects, as a
function of classification confidence level. We find that most of
the misclassified SLSN-I are at P(SLSN-I) < 0.6, with only
four misclassified SLSN-I at higher values of P(SLSN-I). The
few objects that are true SLSN-I but were misclassified as
something else with high confidence are usually SLSN-I with
relatively bright host galaxies that got misclassified as Type-II
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Figure 5. Top: correlated importance for the features used in the rapid version
of our classifier, where we see that Ar is the most important feature for

predictive accuracy. Bottom: correlation matrix for the same features. Except
for W, and W,, the features appear to have a low correlation.

SNe, which have light curves that might also appear broad due
to their late-time plateau.

The completeness and purity of the rapid classifier for the
three top performing feature sets are shown in Figure 8. As
expected, the purity increases and the completeness declines as
we restrict the sample to events with progressively higher
values of classification confidence. For P(SLSN-I) > 0.5, the
observed purity is ~50%, with a completeness of ~30-40%.
This represents about a factor of 30 times improvement over a
random selection of SLSN-I, which would yield a ~1.5%
success rate in a magnitude-limited survey (Fremling et al.
2020; Villar et al. 2019). The peak observed purity achieved by
our classifier is even higher, ~85%; however, we note that the
completeness achieved at peak observed purity is about 20%.
This low completeness level may still be acceptable given that
current surveys are reporting ~18,000 transients a year,
assuming an observational rate of 1.5% for SLSN-I
(Table 1); a 20% completeness corresponds to ~55 SLSN-I
candidates that could be targeted for follow-up, 85% of which
would be expected to be true SLSN-IL.
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Figure 6. Fraction of SLSN-I correctly identified by the rapid version of our
classifier among the top 20 objects predicted to be SLSN-I as a function of days
of light-curve data used. The peak purity is about 90% when using =20 days of
data. This purity is relevant for the training set, before normalizing to
observational rates in a magnitude-limited survey (Section 3.1). The black line
is the equivalent fraction of SLSN-I found when using the top 40 objects as
opposed to the top 20. The small contamination for the Star class at 270 days
comes from a single CV with a 50 day long outburst that was classified as an
SLSN-I due to its long light curve and lack of a detected “host.”
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Figure 7. Cumulative distribution as a function of classification confidence (P)
for transients classified as SLSN-I (red) and non-SLSN-I (blue). The crosses
mark events that are misclassified. We find that for the SLSN-I sample, the
misclassified events are mainly concentrated at P(SLSN-I) < 0.6.

In Figure 9 we show the confusion matrix, namely, the label
predicted by our classifier compared to the true label of the
transient. We impose a confidence cut of P > 0.75 for either
the SLSN-I or nonSLSN-I classes, corresponding to the peak
classifier purity (Figure 8); this leads to a sample of 1438
events. We see that 14 out of the 18 transients predicted to be
SLSN-I are correctly labeled, indicating a classifier purity
of 80%.

We run an additional model validation to test for overfitting.
Given the relatively small sample size of our data set we cannot
split the data set into the traditional training/validation/test
sets. Instead, we split the entire data set into two independent
sets, a training set (with 1209 objects) and a test set (with 604
objects). We optimize the combination of transient class
grouping, depth or the RF trees, and included features using
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Figure 8. The observed purity and completeness for the best performing set of
features described in Table 2. The purity curve represents the percent of
transients that are SLSN-I as a function of the classifier confidence P(SLSN-I).
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Figure 9. Using a sample of only transients with a classification probability of
P(SLSN-I) > 0.75 or P(not-SLSN-I) > 0.75 (for a total of 1438 transients), we
produce a confusion matrix that indicates a purity of 80% for SLSN-L.

a leave-one-out cross-validation method only on the training
set. We find that the best results (in terms of purity and
completeness) are consistent with those from the rapid classifier
presented in this section, with the exception that a depth of 5 is
slightly preferred over a depth of 7 for the RF trees. We then
test this classifier on the 604 object test set and find it performs
as expected with a maximum classifier purity of 75% and
a corresponding completeness of 15% for objects with
P(SLSN-I)> 0.75.

Running FLEET to classify a new transient takes in the order
of 10-20 on a personal computer, and about half the time to
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Figure 10. Peak absolute magnitude in the r-band vs. spectroscopic redshift for
all the transients in our sample (excluding stars). As expected, SLSN-I separate
well from other types of transients when the redshift is known.

rerun on an existing transient once the required catalog data has
been downloaded and stored locally. We note that since FLEET
is designed to rapidly select the most promising SLSN-I
candidates for follow-up, manual vetting of the top candidate
events can further increase the sample purity. This is because
some candidates might be due to obvious failure modes; for
example, an AGN with a highly variable light curve might be
classified as a SLSN-I due to its “broad” light curve, but
manual inspection will reveal a variable nuclear source that is
not SN-like. Another potential failure mode that can be
mitigated with manual inspection, is when SDSS and/or
PS1/37 report large galaxies as multiple individual sources,
causing the classifier to associate the transient with a small dim
source, instead of the main galaxy.

To summarize, our rapid classifier, using basic light-curve
and contextual information (and no redshift information) can
achieve a factor of 30-60 times improvement over random
selection for SLSN-I, with a completeness of ~20%.

7. Alternative Classifiers

The rapid version of the FLEET classifier presented above is
tailored to find a pure sample of SLSN-I before or near peak, as
to enable real-time follow-up. In this section we explore two
alternative classifiers that utilize additional information: (i)
using redshift as a feature, based on the expectation that LSST
will provide photometric redshifts with ~5% uncertainty for
galaxies down to i =~ 25 mag (Graham et al. 2018); and (ii)
using more complete light-curve information, including the
decline phase, which may hinder spectroscopic classification,
but will provide samples of SLSN-I for pure photometric
population studies. We optimize these alternative classifiers in
terms of feature selection, depth of the classifier’s trees, and
time span of the light curve used in the same manner as for the
main rapid classifier, as described in Section 6.

7.1. Redshift Classifier

A key advantage of our rapid classifier is that it does not rely
on redshift information. However, with the advent of LSST it is
expected that robust photometric redshifts will be available for
galaxies down to i &~ 25 mag. Since SLSN-I are generally more
luminous than other SN classes, redshift information is certain
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Figure 11. Left: completeness as a function of confidence for all three classifiers presented here. Right: purity, corrected for observational rates for the same classifiers.
The shaded regions represent the 1o uncertainties. The full light-curve and redshift classifiers have a higher completeness than the rapid classifier at any P(SLSN-I),

but similar purity when P(SLSN-I) > 0.5.

to aid in the classification confidence. In Figure 10 we plot the
peak absolute r-band magnitude as a function of redshift for all
of the extragalactic transients in our training set, indicating how
well SLSN-I can be separated when redshift information is
available.

To test this effect, we use the known spectroscopic redshift
of each transient in our training set (assigning Galactic
transients a redshift of 0). As in the rapid classifier, we only
use the first 20 days of data (designed to enable rapid follow-
up) and optimize for RF depth and features. We find that
feature set #6 (Table 2) performs best, with an optimal depth
of 9 for the RF trees.

In Figure 11 we show the observed purity and completeness
of this classifier as a function of classification confidence. We
find that the redshift classifier performs better than the main
rapid classifier, for essentially all values of P(SLSN-I), with an
observed purity of about 60% and completeness of about 60%
at P(SLSN-I) > 0.5 (compared to 50% and 30%, respectively,
for the main rapid classifier). The peak purity is effectively
100% with a corresponding completeness of about 15% at
P(SLSN-I) > 0.85. We run an additional test on this classifier
by adding a random 5% scatter to the redshift values from the
testing set and find no measurable difference in the output
purity and completeness. This scatter is meant to be
representative of the uncertainty of the photometric redshift
measurements expected from LSST (Graham et al. 2018).

In Figure 12 we show the classifier’s performance in terms of
the number of top SLSN-I candidates selected. The redshift
classifier achieves a purity of 50% for the top <65 candidate
SLSN-I, significantly higher than the =27 candidate SLSN-I at
50% purity for the main classifier. Stated differently, the
redshift classifier achieves 80% observed purity for the 27 top
candidate SLSN-I, compared to the 50% observed purity for
the main classifier. We therefore conclude that when robust
redshift information is available it can significantly aid in the
purity and completeness of the classifier.

7.2. Full Light-curve Classifier

The rapid classifier is trained on only the first 20 days of light-
curve data. Here we investigate the efficacy of using more

complete light curves. This may inhibit the success of spectro-
scopic classification, since SLSN-I are on average about 2 mag
fainter on a timescale of 70 days after discovery compared to at
20 days after discovery. But using light curves well beyond peak
allows for a more robust classification and can aid in the
construction of more complete photometric SLSN-I samples
once they fade away. For this full light-curve classifier we
measure the decline rate by fitting for A in Equation (3).

After optimizing the classifier we find that feature set #35,
which includes W and A (Table 2), and a depth of 9 for the RF
trees provide the best results in terms of achieved purity. We
similarly find that using the first 70 days of light-curve data
provides the best results; later time data tend to be of lower
quality and are more greatly affected by nonmonotonic light-
curve features that cannot be captured in our simple light-curve
model. In Figure 11 we show how the full light-curve classifier
performs in terms of classification probability. We find an
overall better performance than for the rapid classifier,
achieving a comparable peak observed purity, but at
P(SLSN-I)~ 0.65 instead of ~0.80, and hence with a higher
completeness of about 40% compared to 20% for the rapid
classifier. As shown in Figure 12, this essentially means that
the full light-curve classifier can achieve 50% purity for a
comparable number of top SLSN-I candidates as the redshift
classifier, ~65 events. Similarly, it can achieve an observed
purity comparable to the peak observed purity of the rapid
classifier, but for about 45 top SLSN-I candidates as opposed to
about 27.

8. Conclusions

We have presented a random forest classifier, FLEET,
designed specifically to rapidly identify SLSN-I with a high
purity, without the need for redshift information. We trained
this classifier on a sample of about 1800 classified transients
reported to the TNS, including 156 SLSN-I (i.e., 8.6% of the
total sample). The classifier uses both light-curve and
contextual host galaxy information. We assess the observed
purity achieved by FLEET for the actual rate of SLSN-I in a
magnitude-limited survey of ~1.5%. Our key findings for the
rapid FLEET classifier are as follows:
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Figure 12. Left: completeness as a function of the top most likely transients classified as SLSN-I for all three classifiers presented here. Right: purity, corrected for
observational rates for the same classifiers. The shaded regions represent the 1o uncertainties. We see the purity of the full light-curve classifier is relatively constant
when observing up to ~45 SLSN-I candidates. The redshift classifier shows the highest completeness for any number of SLSN-I selected, although the rapid classifier
performs similarly well in terms of completeness when considering only the top ~15 most likely SLSN-I.

1. We find that the most important features are the light-
curve width, g — r color at peak, and the projected
angular separation between the transient and host galaxy
normalized by host radius.

. We find an observed purity of about 50% for events
classified as SLSN-I, with a probability confidence of
P(SLSN-I) > 0.5. This is a factor of 33 times improve-
ment compared to a random selection (i.e., compared to
the fraction of 1.5% of SLSN-I in a magnitude-limited
survey). The completeness for this classification con-
fidence threshold is about 30%.

3. We find a peak observed purity of about 85% for SLSN-I,
corresponding to a classification probability threshold of
P(SLSN-I) > 0.80 and a total of ~15 objects. The
completeness for this classification confidence threshold is
about 20%.

In addition to the main rapid classifier we also explored two
alternative classifiers that use redshift information and full light
curves, respectively. As expected, we find that these classifiers
achieve better results, with a significant increase in complete-
ness by about a factor of 2, for an observed purity that matches
the peak performance of the main rapid classifier.

Placing our results in context we note that at present, current
surveys are reporting ~18,000 transients a year, out of which
~6000 transients per year have the requisite photometry
(minimum of 2 data points in the g- and r-bands) and
localization (within the footprint of PS1/37) to be classified by
our algorithm. For an observational SLSN-I fraction of 1.5%,
this sample contains about 90 SLSN-I per year. Our rapid
classifier can therefore recover about 30 SLSN-I with a purity
of 50%, thereby requiring about 60 follow-up spectra per year;
or alternatively, about 18 SLSN-I per year with a purity of
about 85%, requiring about 21 follow-up spectra. Looking
forward to LSST, which is expected to have ~10% SLSN-I in
its data stream (Villar et al. 2018), our classifier could discover
~140 SLSN-I a month, with ~170 follow-up spectra. This
would increase the existing sample by two orders of magnitude
over the lifetime of LSST.

10

The Berger Time-Domain Group is supported in part by NSF
grant AST-1714498. V.A.V. acknowledges support from a
Ford Foundation Dissertation Fellowship. Operation of
the Pan-STARRSI1 telescope is supported by the National
Aeronautics and Space Administration under grant No.
NNX12AR65G and grant No. NNX14AM74G issued through
the NEO Observation Program. This work has made use of data
from the European Space Agency (ESA) mission Gaia
(https://www.cosmos.esa.int/gaia), processed by the Gaia
Data Processing and Analysis Consortium (DPAC, https://
www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for
the DPAC has been provided by national institutions, in
particular the institutions participating in the Gaia Multilateral
Agreement. This research has made use of NASAs Astrophysics
Data System. This research has made use of the SIMBAD
database, operated at CDS, Strasbourg, France. Based on
observations obtained with MegaPrime/MegaCam, a joint
project of CFHT and CEA/IRFU, at the Canada-France-Hawaii
Telescope (CFHT) which is operated by the National Research
Council (NRC) of Canada, the Institut National des Science de
I’Univers of the Centre National de la Recherche Scientifique
(CNRS) of France, and the University of Hawaii. This work is
based in part on data products produced at Terapix available at
the Canadian Astronomy Data Centre as part of the Canada—
France-Hawaii Telescope Legacy Survey, a collaborative
project of NRC and CNRS. This research has made use of the
NASA/IPAC Extragalactic Database, which is funded by the
National Aeronautics and Space Administration and operated by
the California Institute of Technology.

Facilities: ADS, TNS .

Software: Astropy (Astropy Collaboration 2018), extinction
((Barbary 2016)), Matplotlib (Hunter 2007), emcee (Foreman-
Mackey et al. 2013), NumPy (van der Walt et al. 2011), scikit-
learn (Pedregosa et al. 2012), SMOTE Chawla et al. 2002.

Appendix

We show in Table Al the sample of all the SLSN-I used for
this classifier, sorted by redshift.
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Table Al

Type I SLSNe
Name Redshift Reference Name Redshift Reference Name Redshift Reference
SN2017egm 0.0307 49 PS1-5¢jz 0.2200 2 DES14Clrhg 0.4810 2
PTF11hrq 0.0571 21 SN2016wi 0.2240 27 SN2019itq 0.4810 this work
SN2018hti 0.0600 62 SN2018gft 0.2300 56 SN2016aj 0.4850 60
SN2019unb 0.0635 1 SN2010gx 0.2301 30 SN2019kwq 0.5000 53
SN2018bgv 0.0795 23 SN2018ffj 0.2340 this work PTF09atu 0.5015 10
SN2012aa 0.0830 48 SN2018gkz 0.2400 29 PS1-14bj 0.5125 4
SN2019hge 0.0866 61 SN2011kf 0.2450 28 SN2019otl 0.5140 this work
SN2017gci 0.0900 47 iPTF16bad 0.2467 27 PS1-12bgf 0.5220 4
SN2010md 0.0987 10 SN2019enz 0.2550 26° PS1-11ap 0.5240 4
SN2010kd 0.1010 64 LSQIl2dlf 0.2550 25 DES16C3dmp 0.5620 2
SN2016eay 0.1013 46 LSQI14mo 0.2560 24 DES15S1nog 0.5650 2
PTF12hni 0.1056 30 PTF09cnd 0.2584 10 SN2019sgg 0.5726 54
PTF12dam 0.1070 41 SN2019dIr 0.2600 53 SN2019kwu 0.6000 53
SN2019neq 0.1075 45 SN2019hno 0.2600 53 DES14X3taz 0.6080 2
SN2018kyt 0.1080 44 SN2018fd 0.2630 this work PS1-10bzj 0.6500 4
SN2017ens 0.1086 43 SN2013dg 0.2650 25 SN2013hy 0.6630 9,2
SN2015bn 0.1136 42 SN20181fd 0.2700 55 SN2019fiy 0.6700 53
PTF10nmn 0.1237 10, 21 iPTF13bjz 0.2712 30 PS1-12zn 0.6740 52
SN2007bi 0.1279 41 SN2018bym 0.2740 23 DES17X1blv 0.6900 2
SN2017dwh 0.1300 40 SN2011ep 0.2800 16 DES16C3cv 0.7270 2
SN2018avk 0.1320 23 SN2005ap 0.2832 22 PS1-11bdn 0.7380 4
SN2020exj 0.1330 59 PTF10uhf 0.2879 21 iPTF13ajg 0.7403 8
SN20191sq 0.1400 39 SN2016inl 0.2980 this work SNLS07D3bs 0.7570 51
SN2018ffs 0.1420 this work MLS121104 0.3030 52 DES15X3hm 0.8600 2
SN2011ke 0.1429 21 SN2019eot 0.3057 20 DES14X2byo 0.8680 2
SN2019bgu 0.1480 58 SN2017beq 0.3100 19 PS1-13gt 0.8840 4
SN2019cdt 0.1530 38 PS1-12cil 0.3200 4 PS1-10awh 0.9084 7
LSQIl4an 0.1630 37 SN2019cwu 0.3200 53 DES17X1amf 0.9200 2
SN2019ujb 0.1647 this work PTF12mxx 0.3296 10 DES16C3ggu 0.9490 2
SN20190bk 0.1656 61 iPTF13ehe 0.3434 18 PS1-10ky 0.9558 7
SN2018ibb 0.1660 57 SN2019sgh 0.3440 this work PS1-11aib 0.9970 4
SN2019pvs 0.1670 this work LSQl4bdq 0.3450 17 DES16C2aix 1.0680 2
PTF10bfz 0.1701 10 SN2018lfe 0.3500 63 PS1-10ahf 1.1000 4
SN2012il 0.1750 28 SN2019kwt 0.3562 53 DES15X1noe 1.1880 2
PTF12gty 0.1768 21 PTF10bjp 0.3584 10 SCPO6F6 1.1890 6
CSS160710 0.1800 36 LSQ14fxj 0.3600 16 PS1-10pm 1.2060 5
SN2019¢gfm 0.1816 35 SN2019zbv 0.3700 this work PSI-11tt 1.2830 4
SN2009cb 0.1864 21 SN20060z 0.3760 15 DES14Cl1fi 1.3020 2
SN2009jh 0.1867 10, 21 SN2019zeu 0.3900 this work PS1-11afv 1.4070 4
iPTF16asu 0.1870 34 DES15C3hav 0.3920 2 SNLS07d2bv 1.5000 3
SN2019nhs 0.1900 33 iPTF13cjq 0.3962 30 DES14S2qri 1.5000 2
SN2018cxa 0.1900 this work SN2019key 0.4000 53 PS1-13o0r 1.5200 4
SN2010hy 0.1901 10, 30 iPTF13bdl 0.4030 30 PS1-11bam 1.5650 4
SN2011kg 0.1924 10 SN2019cca 0.4103 14 PS1-12bmy 1.5720 4
SN2019kws 0.1977 53,61 iPTF16eh 0.4270 13 SNLS06d4eu 1.5881 3
SN2019xaq 0.2000 this work CSS130912 0.4305 11, 12 DES16C2nm 1.9980 2
SN2016ard 0.2025 32 PTF10vqv 0.4518 10 SN2213 2.0500 50
PTF10aagc 0.2060 10 CSS140925 0.4600 16
SN2016els 0.2170 31 DES17C3gyp 0.4700 2

Note. All the SLSN-I used to train our classifier. Note there are more SLSNe candidates in the literature, but we keep only the unambiguous ones to avoid polluting the
sample. 1:Prentice et al. (2019); 2:Angus et al. (2019); 3:Howell et al. (2013); 4:Lunnan et al. (2018a); 5:McCrum et al. (2015); 6:Quimby et al. (2011); 7:Chomiuk
et al. (2011); 8:Vreeswijk et al. (2014); 9:Papadopoulos et al. (2015); 10:Perley et al. (2016); 11:Vreeswijk et al. (2017); 12:Liu et al. (2018); 13:Lunnan et al. (2018b);
14:Perley et al. (2019b); 15:Leloudas et al. (2012); 16:Schulze et al. (2018); 17:Nicholl et al. (2015); 18:Yan et al. (2015); 19:Kasliwal & Cao (2019); 20:Fremling
et al. (2019e); 21:Quimby et al. (2018); 22:Quimby et al. (2007); 23:Lunnan et al. (2019); 24:Chen et al. (2017); 25:Nicholl et al. (2014); 26:Short et al. (2019);
27:Yan et al. (2017); 28:Inserra et al. (2013); 29:Fremling et al. (2018b); 30:de Cia et al. (2018); 31:Fraser et al. (2016); 32:Blanchard et al. (2018); 33:Perley et al.
(2019a); 34:Whitesides et al. (2017); 35:Chen (2019); 36:Drake et al. (2009); 37: Inserra et al. (2017); 38:Fremling et al. (2019d); 39:Fremling & Dahiwale (2019);
40:Blanchard et al. (2019); 41:Nicholl et al. (2013); 42:Nicholl et al. (2016); 43:Chen et al. (2018); 44:Fremling et al. (2019b); 45:Perley et al. (2019c); 46:Nicholl
et al. (2017b); 47:Lyman et al. (2017); 48:Roy et al. (2016); 49:Nicholl et al. (2017a); 50:Cooke et al. (2012); 51:Prajs et al. (2017); 52:Lunnan et al. (2014); 53:Yan
et al. (2019b); 54:Yan et al. (2019a); 55:Fremling et al. (2019a); 56:Fremling et al. (2018a); 57:Fremling et al. (2018c); 58:Fremling et al. (2019¢); 59:Dahiwale &
Fremling (2020); 60:Young (2016); 61:Yan et al. (2020); 62:Lin et al. (2020); 63: Y. Yin et al. 2020, in preparation; 64:Kumar et al. (2020).

# We find that a redshift of z = 0.255 is a better match to the SNe spectral features than the z = 0.22 reported in Short et al. (2019).
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