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Abstract—Automatic food type recognition is an essential task
of dietary monitoring. It helps medical professionals recognize
a user’s food contents, estimate the amount of energy intake,
and design a personalized intervention model to prevent many
chronic diseases, such as obesity and heart disease. Various
wearable and mobile devices are utilized as platforms for food
type recognition. However, none of them has been widely used
in our daily lives and, at the same time, socially acceptable
enough for continuous wear. In this paper, we propose a food
type recognition method that takes advantage of Airpods Pro,
a pair of widely used wireless in-ear headphones designed by
Apple, to recognize 20 different types of food. As far as we
know, we are the first to use this socially acceptable commercial
product to recognize food types. Audio and motion sensor data
are collected from Airpods Pro. Then 135 representative features
are extracted and selected to construct the recognition model
using the lightGBM algorithm. A real-world data collection is
conducted to comprehensively evaluate the performance of the
proposed method for seven human subjects. The results show
that the average f1-score reaches 94.4% for the ten-fold cross-
validation test and 96.0% for the self-evaluation test.

Index Terms—earbuds, Airpods Pro, socially acceptable, food
type recognition, lightGBM

I. INTRODUCTION

Unhealthy eating habits are one of the major causes of

some chronic diseases, such as obesity, diabetes, metabolic

syndrome, and heart diseases. According to the Centers for

Disease Control and Prevention (CDC) report, in the USA, the

obesity prevalence is nearly 40% among adults [1], the preva-

lences of diabetes and metabolic syndrome are 11.3% and

35% [2], [3], respectively, and heart diseases lead the 20.6%

of deaths [4]. Chronic diseases have caused a great burden for

both individuals and society. To solve the problem, automatic

dietary monitoring (ADM) is a good solution because it can

help people maintain healthy eating habits. ADM systems aim

to identify: 1) when does the eating activity happen; 2) what

is the food type consumed; 3) how much is consumed. This

paper focuses on the second topic, i.e., food type recognition,

a critical component among these three topics.

Multiple wearable devices have been developed to automat-

ically recognize food types in recent years. For example, the

necklace-based devices embedded with microphones [5], or

proximity, ambient light, and an inertial motion sensor (IMU)

[6]. A headband-based device equipped with an accelerometer

This work is partially supported by GMU-CHHS pilot grant (Award
#PR9449797), and NSF grants CCF-2047516 (CAREER), CCF-2146873, and
III-2008557.

and gyroscope [7]. These devices need to be attached to the

skin or head tightly. Keum et al. present an intraoral mouth

sensor containing a temperature sensor and accelerometer,

which needs to be put inside the mouth while eating [8]. In

addition to these devices, the earbud is another commonly

used device. Many researchers customized earbuds prototypes

equipped with microphones to collect audio data [9]–[13],

and some may combine earbuds with several other devices.

For example, an automatic dietary monitoring system, which

contains customized earbuds, LG smartwatch, and Google

Glass, is used to recognize food types and detect eating events

[14]–[16].

Although multiple wearable devices introduced above are

utilized as platforms for food type recognition, none of them

has been widely used for long-term wear and is socially

acceptable for daily lives. Typically, these solutions have three

main shortages: 1) Some of them are too intrusive, such as the

necklace, headband, and intraoral mouth sensor. As a result,

people are not willing to wear or use them; 2) They are

not accessible to a large number of users; 3) They are not

entirely reliable. In other words, the hardware robustness is not

good enough. From the view of healthcare professionals and

patients with chronic diseases, these devices are not socially

acceptable for long-term daily usage. To solve the problem, we

propose a food type recognition method based on Airpods Pro,

a commercial product designed by Apple. As far as we know,

we are the first to use commercial earbuds alone for food

type recognition. Airpods Pro takes 34% of the headphone

market share in the USA [17], which strongly demonstrates

its social acceptance. The audio and motion sensors data are

collected when the earbuds are deployed in the left and right

ears. However, recognizing different food types using Airpods

Pro is not straightforward, and we need to answer two research

questions: 1) What are the most useful features that can

effectively represent the differences among chewing different

food types? 2) What is the efficient classifier to recognize

different food types?

To address these two research questions, we first conduct

a data collection. Five male and two female human subjects

participated in our experiment. Twenty food types are chosen

from the United States Department of Agriculture (USDA)

recommendation [18], which is the US government’s guidance

for healthy eating habits. These 20 food types cover six

categories: meat, protein, dairy, grain, fruit, and vegetable. The

data collection is done in an apartment’s dining room, with a
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Fig. 1: Sample of the 20 food types

regular eating environment and facilities. Each human subject

needs at least 30 food intakes, and videos are recorded for

manually labeling the ground truth.

In order to answer the first research question, we make a

comprehensive survey of the research works about extracting

features from audio and motion data. We extract spectral

features from audio data, such as energy, spectral centroid,

MFCC, etc. These features can reflect the difference in chew-

ing different food types. For example, the energy between

chewing crispy food and soft food is different. Then, we

extract statistical and shape features from motion data to reflect

the head movement. In total, we extracted 105 features from

audio data and 144 features from motion data. Finally, we

used lightGBM to evaluate the importance of each feature and

selected the most important 135 features.

To address the second research question, we compared

several commonly used classifiers, including Logistic Re-

gression, Naive Bayes, support vector machine (SVM), k-

nearest neighbors algorithm (KNN), random forest (RF), and

lightGBM, which is the optimized version of RF. Based on the

results, we chose lightGBM as our classifier and optimized

the parameters, such as the number of estimators, the max

depth, the number of leaves, etc. To compare our solution

with existing earbud-based solutions, we reimplemented the

algorithms of Ubicomp-16 [14] and MLHC-19 [16] and eval-

uated them on our dataset. The results show that the average

f1-score of our solution reaches 94.3% for the ten-fold cross-

validation test. Compared with these two baselines, the cross-

validation performance of our solution is 8% higher than that

of Ubicomp-16 and 30% higher than that of MLHC-19.

In summary, our primary contributions are:

• We are the first to use commercial earbuds alone for food

type recognition. We conducted a data collection using

Airdpods Pro, to recognize 20 food types for seven human

subjects.

• We extracted 105 features from audio data and 144 fea-

tures from motion data, and selected the most important

135 features to distinguish different food types.

• We chose lightGBM as the classifier and optimized its

parameters to achieve high performance. The evaluation

results show that our solution outperforms two baselines

by 8% and 30%, respectively.

The rest of this paper is organized as follows. First, Section

II describes the data collection. Next, the details of feature

extraction and classification are given in Section III. The

evaluation results are given in Section IV. Then, Section V

introduces the related works. Discussions and future work are

presented in Section VI. Finally, the conclusion is drawn in

Section VII.

II. DATA COLLECTION

We developed an ios APP to collect data from Airpods Pro.

The human subjects need to wear the Airpods Pro while eating.

First, we collected audio and motion data from the embedded

microphones and motion sensors. The data are wirelessly

transmitted from earbuds to the paired smartphone. Then we
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transferred the data from the smartphone to the computer for

offline analysis. In this section, we first introduce the specifics

of sensors. Then we describe the food types of our study.

Finally, we present how to collect data.

A. Sensors

Microphones, accelerometer, and gyroscope are embedded

in the Airpods Pro. Accelerometer and gyroscope are called

motion sensors. We collected audio data from microphones,

where the sampling rate is 44.1 kHz, and the data is one

channel. For the motion data collection, the sampling rate is

about 25 Hz. We collected the reading of pitch, roll, and yaw

from the gyroscope. These three dimensions of data are used to

measure the rotation of the head around the vertical, transverse,

and longitudianl axes. For the accelerometer, the reading of

user acceleration on X, Y, and Z axes are collected, which

measures the movement on these three axes.

B. Food type

Twenty food types are selected based on the dietary guide-

lines for Americans presented by the USDA [18]. They come

from six categories: meat, protein, dairy, grain, fruit, and

vegetable. These twenty food types are shown in table I,

covering all the groups and subgroups of the USDA guidelines.

TABLE I: The selected 20 food types

Category Food Type

Meat beef, pork, chicken, fish

Protein almond, egg, peanut

Dairy yogurt

Grain bagel, bread, rice

Fruit apple, banana, strawberry

Vegetable broccoli, lettuce, carrot, tomato, green pea, potato

A sample of the 20 food types are shown in figure 1, and all

of them are bought from Food Lion supermarket. Eight types

of food need to be boiled before eating, including beef, pork,

chicken, fish, egg, broccoli, green pea, and potato. The other

12 types of food are eaten raw without any cooking.

C. Groundtruth and Collected Dataset

We conducted the data collection in an apartment’s dining

room, with a regular eating environment and facilities. We use

a camera to record the eating process to retrieve the ground

truth, as shown in figure 2. The camera captures the movement

of the hand, mouth, and head. We manually label the start and

end times of each intake according to the video. In this paper,

we define the period from putting a piece of food into the

mouth to the end of the last chew as one intake.

Five male and two female human subjects participated in

our experiment. Each user needs to eat at least 30 intakes for

each type of food. They usually took two or three days to finish

the data collection of all the food types. Except for collecting

eating data, the data during some non-eating periods are also

collected. Each non-eating segment is about 20 seconds. The

user was free to do any normal activities while seated, with

only background noise.

Fig. 2: Screenshot of the groundtruth

In total, there are 4805 segments in our dataset, including

180 non-eating segments and 4625 intake segments for 20

food types. The detail of the collected data for each user and

each food type is shown in table II. The food type number 0

represents non-eating, and the rest correspond to the numbers

shown in figure 1. For instance, 1 is beef, 2 is pork, and 20

is potato.

III. FEATURE EXTRACTION AND CLASSIFIER SELECTION

Before feature extraction, the collected audio and motion

data are segmented by each food intake. The segments are

labeled manually according to the video ground truth. For each

segment, we extracted features from audio and motion data

separately. Then, the audio features and motion features are

merged to form the feature vector of a segment. In this section,

we first describe how to extract features from audio and motion

data. Then, we introduce feature and classifier selection.

A. Audio feature extraction

To characterize the detail of each chew in an intake, we

divided each audio segment into many frames. Each frame

takes 200ms, with 50% overlap with its prior frame. The

frame length is set to 200ms to avoid including multiple

chews within a single frame [14]. Then we extracted 21 frame

features from each frame. The details of them are shown

below:

• ZCR: Zero crossing rate (ZCR) is the rate of the data

changes from negative to positive and the reverse.

• energy: The sum of the square of all data values, normal-

ized by the number of the data within the frame.

• energy entropy: The raw frame data is divided into sub-

frames, each containing ten samples. This feature is the

entropy of all sub-frames energy, which measures the

abrupt change of energy.

• spectral centroid: The raw data are transformed into spec-

tral signals after fast fourier transform (FFT). Spectral

centroid indicates which frequency is the center of mass

among the spectral signals.
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TABLE II: Number of segments of each user for each food type

Food type 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total

User1 47 33 35 33 35 37 30 38 32 36 34 32 38 36 37 37 31 35 33 30 32 731

User2 22 33 33 33 35 33 33 32 33 33 33 33 30 33 34 33 33 32 31 33 32 677

User3 21 33 33 33 33 33 35 33 33 33 33 33 33 33 34 33 34 33 33 33 36 688

User4 22 33 33 33 33 33 31 33 33 32 33 33 33 33 33 33 33 32 33 33 33 678

User5 22 31 33 33 32 34 33 33 33 33 32 33 33 33 33 31 32 34 33 33 33 676

User6 22 33 33 33 32 33 33 33 33 33 32 32 33 32 33 33 33 33 33 33 30 675

User7 24 29 33 34 32 33 33 32 33 33 31 33 33 34 33 34 33 33 33 33 34 680

Total 180 225 233 232 232 236 228 234 230 233 228 229 233 234 237 234 229 232 228 228 230 4805

• spectral spread: It is the variance of the spectral signals.

If the audio has too much noise, usually the spectral

spread would be large. On the contrary, this feature would

be low if the audio only has isolated peaks.

• spectral entropy: The spectral signals are divided into

sub-frames with a size of ten samples. This feature is

the entropy of these spectral sub-frames energy, which

measures the spectral power distribution.

• spectral flux: It is "the squared difference between the

normalized magnitudes of the spectra [19]" of the current

frame and previous frame. If the current frame is the

first frame, then the previous one would be itself. This

feauture is used to distinguish whether the spectrum

changes quickly or not.

• spectral rolloff: It is the frequency that 90% of the

magnitude distribution is centered among spectral signals.

This feature is efficient to distinguish voiced and unvoiced

audio signals.

• MFCC: Mel Frequency Cepstral Coefficients (MFCC) are

widely used in audio signal processing, and we extracted

13 coefficients to distinguish the sounds of chewing

different types of food.

For each of the 21 features from each frame, we computed

five statistics to form the feature vector of one segment. The

five statistics are: mean, standard deviation (std), max, min,

and median. In total, we got 21× 5 = 105 audio features for

a segment.

B. Motion feature extraction

Similar to the audio feature extraction, we first divided each

motion segment into many frames. However, the sampling

rate of the motion sensors are relatively low, i.e., about

25Hz. Therefore, we set the frame length as 5s, with 50%

overlap with its prior frame. The motion sensors data has six

dimensions: pitch, roll, and yaw from the gyroscope and X, Y,

and Z from the accelerometer. First, we extracted ten features

from each of these six dimensions for each frame, including:

• basic statistics: We extracted six basic statistical features,

including: mean, max, min, median, variance, and

std.

• ZCR: ZCR is the rate of the data changes from negative

to positive and the reverse.

• IQR: Interquartile range (IQR) is the difference between

the upper and lower quartiles. This feature measures the

spread of the data.

• skewness: After getting the probability distribution of

the data, this feature measures the asymmetry of the

distribution.

• kurtosis: Similar to skewness, kurtosis is a feature to

measure the distribution. Kurtosis indicates whether the

distribution is heavy-tailed or light-tailed.

In addition, we extracted four shape features only from ac-

celerometer data.

• shape features: After getting the polynomial fit of the

data with the degree of three, then the four coefficients

of the polynomial formula are used as shape features.

In total, for each frame, we collected 10 × 6 = 60 frame

features from both the gyroscope and accelerometer data, and

4×3 = 12 features only from accelerometer data. For each of

them, we computed the mean, std value to form the motion

feature vector of a segment. There are 72 × 2 = 144 motion

features for each segment.

C. Feature selection

We extracted 105 features from audio data and 144 features

from motion data. In total, there are 249 features for each

segment. To eliminate redundant and useless features, a feature

selection algorithm is applied to select the most important

features for the following classifier construction.

We chose lightGBM to evaluate the feature importance.

LightGBM is a gradient boosting framework, which uses tree-

based learning algorithms. For the tree-based algorithms, the

data is split by a selected feature at each non-leaf node of the

tree. A feature would be more important if it is used in more

nodes. In lightGBM, the feature importance is represented by

the number of times that the feature is used. The larger the

number, the more important the feature is. Finally, we selected

the most important 135 features. The details of the feature

selection process is shown in section IV-C.

D. Classifier selection

To figure out which classifier is most appropriate in our

application scenario, we compared multiple widely used classi-

fiers, including Logistic Regression, Naive Bayes, SVM, KNN,

RF, and lightGBM. The performance comparison results with-

out parameter optimization are shown in section IV-D, which

indicates that lightGBM outperforms the other classifiers.

Ultimately, we decided to use lightGBM as our classifier.

To get the best performance, we optimized the model’s pa-

rameters, such as the number of estimators, learning rate, the

max depth, and the number of leaves.
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Fig. 3: Results of cross-evaluation

IV. EVALUATION

In this section, we first present the evaluation results of the

cross-evaluation and self-evaluation. Next, we introduce the

impact of sensor fusion. Finally, we describe how to select

features and classifier.

A. Performance Evaluation

The first question we would like to answer is about the

performance of our solution. To answer it, we present the

evaluation results of cross-evaluation and self-evaluation. The

cross-evaluation is for all users, which means the training and

test data come from all users. The self-evaluation is for each

individual, where the training and test are evaluated on the

same user’s data.

We reimplemented the food type recognition algorithms pre-

sented in Ubicomp-16 [14] and MLHC-19 [16], respectively,

and set them as baselines. We made some modifications to

the classification algorithm of MLHC-19 because it does not

fully meet our evaluation objective. The original algorithm is

a hierarchical classification, where the classification result is

a food type or category. However, in our evaluation, the result

should be a food type. We revised the algorithm of MLHC-19

as follows: if the classification result is a category, we selected

the food type with the highest probability as the classification

result. These two baselines are evaluated on our dataset and

compared with our solution.

We choose four metrics to evaluate the performance, in-

cluding f1-score, accuracy, precision, and recall. For accuracy,

similar to binary classification, it is the ratio of the number

of correctly predicted samples to the number of all samples.

As our solution is multi-class classification, our experiment

has non-eating and 20 food types. Therefore, for each of

the rest three metrics, we first calculated the value of each

class separately, thus non-eating and each food type. Then we

computed the mean value of all classes to get the overall result.

1) Cross-Evaluation: For cross-evaluation, we conducted

ten-fold cross-validation 20 times with different random seeds

of splitting data. The evaluation results are shown in figure 3.

From this figure, we can see that our solution outperforms the

two baselines. The average f1-score of our solution is 94.3%,

which is 8% higher than that of Ubicomp-16 and 30% higher

Fig. 4: Results of self-evaluation

than that of MLHC-19. Moreover, our solution has a much

smaller standard deviation. These results demonstrate that our

solution is more efficient in food type recognition and more

stable for data splitting.

To show the classification results in more detail, we plot the

confusion matrixes of these three algorithms and show them

in figure 5. From this figure, we observed that our solution

achieves good performance on every type, and there is much

less misclassified samples than the other two solutions. On

the contrary, Ubicomp-16 has more misclassified samples in

beef, pork, bagel, apple, and banana. Some pork and fish are

recognized as beef, and some eggs are misclassified as banana.

For MLHC-19, we can find many misclassified samples among

all the food types. In summary, our solution performs much

better in food type recognition compared to the two baselines.

2) Self-Evaluation: We trained and tested the model on

each user’s data in the self-evaluation. Similar to cross-

validation, we conducted ten-fold cross-validation 20 times,

and the results are shown in figure 4. In this figure, as the data

variance is larger, we also showed the first and third quartiles

in the boxplot. We observed the performance of our solution

is higher than the other two baselines for every user. For the

average f1-score of every user, our solution can reach 95.9%.

Ubicomp-16 has a similar performance, 93.2%, and MLHC-19

only has 78.1%.

Specifically, for user 1, the classification is more complex

because there is more background noise. Our solution achieves

an f1-score of 91.7%, while Ubicomp-16 and MLHC-19 only

have 85.1% and 63.8%, respectively. Compared with the

average performance of all users, the performance of our

solution is still good, while the other two solutions dropped

too much. It indicates that our solution is more reliable in a

natural environment than the two baselines.

B. Impact of sensor fusion

To determine the impact of different types of sensors, we

evaluated our proposed method with varying fusions of sensor

data, thus the features were extracted from audio data, motion

data, or both. The cross-evaluation results are shown in figure

6. The average f1-score of audio data is only 79.2%, while
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(a) Our (b) Ubicomp-16 (c) MLHC-19

Fig. 5: Confusion matrixs of cross-evaluation

Fig. 6: Results of different sensor’s data

that of motion data achieves 83.7%. A possible reason is that

the participants have relatively similar movement when eating

the same type of food. Compared with solely using audio or

motion data, the combination of both data achieves an f1-

score of 94.3%, which has at least 10% improvement. The

result demonstrates that the combination of audio and motion

sensor data does enhance the performance. On the other hand,

the f1-score of only using motion data is also good, 83.7%.

The energy consumption of motion sensors is relatively small

due to the low sampling rate. Therefore, only using motion

sensors for food type recognition also is a good choice if the

device can not provide too much energy.

C. Feature selection analysis

The second question we would like to answer is how many

features could achieve the best performance. First, we sort

the 249 features by importance. Then, we gradually select the

features from the most important to the least important. When

the number of selected features increases, the performance of

our proposed method is shown in figure 7. The performance

increases sharply from no more than 65% to higher than 90%

when the number of features increases from 5 to 35. Then the

performance fluctuates within a small range when the number

is larger than 35. The performance achieves the highest when

the number of features is 135. Therefore, we select the most

important 135 features for classification.

Fig. 7: Performance with different number of features

D. Classifier selection analysis

The last question we would like to answer is which classifier

is the best for food type recognition. We present the evaluation

results of multiple widely used classifiers, including Logistic

Regression, Naive Bayes, SVM, KNN, RF, and lightGBM.

The evaluation is based on the selected 135 features, and the

results are shown in table III. From this table, we can see

that the tree-based classifiers (RF & lightGBM) perform better

than others. Specifically, LightGBM outperforms all other

algorithms. Therefore, we choose lightGBM as the classifier

for our evaluation.

TABLE III: Results of different classifiers

f1-score

Logistic Regression 26.9%

Naive Bayes 45.5%

SVM 80.9%

KNN 89.1%

Random Forest 92.1%

lightGBM 94.3%

V. RELATED WORK

There have been many research works on food type recog-

nition using wearable devices. These methods can be catego-

rized by the sensors, including microphones, accelerometers,

gyroscopes, etc.
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The microphone is the most commonly used sensor for

food type recognition. Amft et al. placed a microphone in

the inner ear to record the sound while eating to classify

four different food types, including apple, chips, pasta, and

lettuce [9]. The accuracy of each food type is between 80% to

100%, which demonstrates the chewing sound could be used

to recognize food types. Later, they used a customized earpad

device embeded with a microphone to recognize three food

types with an accuracy of 94% [11]. By using the same device,

they achieved an accuracy of 86.6% for four food types [12]

and 80% for 19 food types [10]. PĺaSSler et al. presented a

hearing aid package that integrates two microphones, an in-

ear microphone, and a reference microphone, which are used

to record the acoustic signals from bone and environmental

sounds. It can classify seven food types and one drink with

an accuracy of 79%. In addition to the ear, microphones could

also be placed in other places. For example, it is placed near

the mouth to record the sound of chewing [20], which is used

to classify six types of food. Bi et al. developed a prototype

that attaches the microphones in the neck to record the sound

from the throat area [5], which achieves an accuracy of 84.9%

for classifying seven types of food, including apple, carrot,

chips, cookies, peanut, walnut, and water. Similarly, another

prototype that places the microphones in the neck is used

to classify 12 activities, such as eating, drinking, speaking,

etc [21]. Although the main objective of this work is not for

food type recognition, it can indirectly recognize two food

types, cookies and bread. Kalantarian et al. used a Samsung

smartwatch to identify four activities from background noise,

including eating apples, eating chips, drinking water, and

speaking [22]. Except for specific food types, the earbuds with

microphones are also used to classify whether the subject is

eating hard food, soft food, drinking, or speaking [23], [24].

Motion sensors are also used in classifying food types.

Wang et al. developed a headband embedded with an ac-

celerometer and gyroscope to sense the mastication dynamics

while eating [7], which can recognize 20 food types with an

accuracy of 82.3%. Kim et al. embedded a tri-axial accelerom-

eter in a wrist-worn prototype to identify 29 actions while

eating [25], which indirectly infers two types of food, rice

and noodle. Moreover, the motion sensors can be combined

with other types of sensors. A sub-centimeter scale device that

integrates an accelerometer and temperature sensor is put into

the mouth while eating. It can classify five food categories,

which contain nine types of food [8]. Mirtchouk et al. used

a customized earbud with internal and external microphones,

an LG G watch, and Google glasses to recognize 40 types

of food [14]. To address the challenge of collecting labeled

data in free-living environments, they proposed a hierarchical

classification algorithm where the classified result is a category

or specific food type, and the overall accuracy is 88% [16].

The above methods have made significant progress on this

research topic. However, most of the devices they used are cus-

tomized prototypes, which are not socially acceptable enough

for long-term daily usage. For example, even if the Google

glasses and LG smartwatches have been used to recognize

40 food types, these devices need to cooperate with another

customized earbud [14], and the user needs to wear three

devices at the same time. In contrast, our proposed method

solely uses Airpods Pro for food type recognition, which is

more socially acceptable. Likewise, the Samsung smartwatch

is a widely acceptable device but can only indirectly infer two

food types [22], and our solution can recognize 20 types of

food.

In addition to food type recognition, eating events detection

is another important topic in automatic dietary monitoring. An

electroglottography (EGG) device is embedded in a necklace

to detect swallowing [26], where the EGG sensor is good at

measuring the vocal vibration degree. A pair of eyeglasses

equipped with Electromyography (EMG) is used for eating

detection by monitoring the dynamics of temporalis muscles

[27]. Bi et al. placed a contact microphone behind the ear

to capture the chewing sound that passes through the bone

[28]. By embedding in the necklace, the proximity sensor can

be used to detect eating events by measuring the distance

between itself and the jawbone [29], [30]. Similar to food

type recognition, the above devices are customized prototypes

and are not socially acceptable enough compared with our

method.

VI. DISCUSSION AND FUTURE WORK

In this paper, we demonstrated that our solution could

perform well in classifying 20 types of food, which uses

Airpods Pro. The socially acceptable device makes long-term

wear possible. Moreover, the evaluation results show that the

combination of both audio and motion data outperforms using

only audio or motion data.

In our study, some food types are cooked in a similar

method as others. For example, all the beef, pork, chicken,

and fish in our experiment are boiled. However, these meat

may be cooked in different methods in our daily cuisine, such

as steak, fried chicken, steamed fish, etc. Different cooking

methods result in different food properties, such as hardness,

fracturability, and size. Therefore, the chewing sound of the

same food type would be different. Our future work will

explore the impact of the variety of cooking methods.

We evaluated our study in the apartment’s dining room.

However, people may choose to have meals in a restaurant

or dining hall, where there is much more background noise.

Moreover, they may talk and drink during eating. In future

works, we will investigate the solutions dealing with filtering

out the chewing sound and handling these complex back-

ground noise activities.

VII. CONCLUSION

In this paper, we propose a food type recognition method

that uses a socially acceptable device, the Airpod Pro, to

recognize 20 different types of food. As far as we know, we are

the first to solely use a socially acceptable commercial product

to recognize food types. The data from audio and motion

sensors are collected when the earbuds are deployed in the

left and right ears. We extracted 105 features from audio data
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and 144 features from motion data. Then we used lightGBM

to evaluate the importance of each feature and selected the

most important 135 features. We conducted the data collection

in an apartment’s dining room. The experiment includes five

male and two female human subjects. We chose lightGBM as

the classifier and optimized its parameters. The results show

that the average f1-score reaches 94.4% for the ten-fold cross-

validation test and 96.0% for the self-evaluation test.
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