
Annals of Mathematics 198 (2023), 231–391
https://doi.org/10.4007/annals.2023.198.1.3

Naked singularities for the

Einstein vacuum equations:

The exterior solution

By Igor Rodnianski and Yakov Shlapentokh-Rothman

Abstract

In this work we initiate the mathematical study of naked singularities

for the Einstein vacuum equations in 3 + 1 dimensions by constructing

solutions which correspond to the exterior region of a naked singularity.

A key element is our introduction of a new type of self-similarity for the

Einstein vacuum equations. Connected to this is a new geometric twisting

phenomenon which plays the leading role in singularity formation.

Prior to this work, the only known examples of naked singularities were

the solutions constructed by Christodoulou for the spherically symmetric

Einstein-scalar-field system, as well as other solutions explored numerically

for either the spherically symmetric Einstein equations coupled to suitable

matter models or for the Einstein equations in higher dimensions.
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1. Introduction

Already in the earliest investigations of the Einstein vacuum equations,

(1.1) Ricµν (g) = 0,

the existence of singular solutions forced theorists to confront fundamental

questions concerning the domain of validity for general relativity. Namely,

since (severe) singularities do occur in some solutions, e.g., the Schwarzschild
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solution [Sch16], what is the relevance/predictive power of a non-singular por-

tion of a given solution? Though originally the possibility was entertained

that generic asymmetric perturbations of a spacetime (M, gµν) satisfying (1.1)

would be regular, the incompleteness theorem of Penrose [Pen65] showed that

when a trapped surface is present, some degree of pathology is in fact a stable

feature. Fortunately, Penrose also suggested a way out of this problem, at least

for isolated self-gravitating systems:

Conjecture 1 (The weak cosmic censorship conjecture original version

[Pen69]). For asymptotically flat solutions to the Einstein vacuum equations,

singularities are always hidden behind an event horizon.

In particular, if the weak cosmic censorship conjecture holds, and if we are

only interested in gravitational physics outside the event horizon, we do not

need to concern ourselves with the structure of singularities!

A singular solution that is not confined within an event horizon is known

as a “naked singularity.” Informally, a naked singularity may be thought of as

a singular solution where the future light cone of the singularity extends to

an asymptotic region in such a way that arbitrarily far away observers may

still intersect the light cone in finite time and thus “see” the singularity. (See

Definition 1.1 below for a precise definition.) In addition to being visible to

far away observers, another important quality of a naked singularity is that

the singular point represents a “genuine” loss of regularity relative to the initial

data. Finally, we note that the “exterior region” of a naked singularity refers

to region of a naked singularity that is in the future of the past light cone of

the singular point.

Previously, Christodoulou constructed naked singularities for the spheri-

cally symmetric Einstein-scalar-field system [Chr94]. In this case, the loss of

regularity referred to in the previous paragraph may be seen as follows: Let m

denote the Hawking mass of a sphere and r denote the area radius of a given

sphere. Then m
r is a scale-invariant quantity that, for regular solutions, must

vanish when r = 0. However, at the singular point of Christodoulou’s solutions,

we have that r = 0 but m
r does not converge to 0. In contrast, the Cauchy data

for Christodoulou’s solutions lie in the so-called “absolutely continuous” class

of data that is more regular than the scale-invariant class of bounded variation

data. On a more technical level, we recall that a key role in the construction is

played by a reduction of the self-similar spherically symmetric Einstein-scalar-

field system to a two dimensional autonomous system. The existence of such a

system cannot be expected outside of spherical symmetry, and thus the study

of naked singularities for the Einstein vacuum equations (where the assump-

tion of spherical symmetry would eliminate the dynamics) must take a different

approach. (For a more thorough discussion of Christodoulou’s solutions, see

Sections 1.1–1.1.4.)
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Christodoulou has also constructed naked singularities for the Einstein

dust model [Chr84], and there has been further numerical analysis and con-

struction of naked singularities for the spherically symmetric Einstein equations

coupled to fluid models that allow for pressure [OP90], [JD92]. Additionally,

though we will not survey this here, we note that there is a large numerical

literature concerning other types of naked singularities; see, for example, solu-

tions associated with critical phenomena [Cho93], [BG16], [Gun99] and higher

dimensional black holes [LP10], [AZ18].

We now give precise definitions of a spacetime not possessing a complete

null infinity and a “naked singularity,” that is, a singularity that is not hidden

behind an event horizon.

Definition 1.1. Let (M, g) posses an asymptotically flat null hypersur-

face H, let L′ be a geodesic outgoing null normal vector for H with affine

parameter v, let Sv denote a surface of constant v on H, and define L′ along

H to be the unique future directed null vector transversal to H that satisfies

g (L′, L′) = −2.

Then we say that (M, gµν) does not posses a complete future null infinity if

there exist a constant A > 0, a sequence {vi}
∞
i=1 with vi → ∞, and a sequence

{pi} with pi ∈ Svi , such that the each maximal null geodesic γi, with tangent

vector L′ at pi, has affine length less than A.

If (M, gµν) does not posses a complete future null infinity and is a maximal

globally hyperbolic development of suitably regular1 and complete initial data,

then we say that (M, gµν) contains a naked singularity.

(The original version of) weak cosmic censorship can then be understood as

the statement that naked singularities do not arise from the maximal globally

hyperbolic developments of complete asymptotically flat initial data. We note

that Definition 1.1, which is in the spirit of the definition given in [Chr99b],

has the benefit of not relying on an explicit conformal compactification of the

spacetime.

It is important to note that the “maximality” of a globally hyperbolic

development may depend on the regularity class that the spacetimes are a priori

restricted to lie in. As with other fundamental questions in general relativity,

different regularity frameworks could, in principle, lead to different outcomes for

the weak cosmic censorship conjecture. (Compare with, for example, the role

played by the regularity of the Cauchy horizon in the strong cosmic censorship

1We do not here give an explicit definition of “suitably regular,” but simply note that any

given choice of functional framework must be justified; cf. the discussion of Christodoulou’s

naked singularities in Section 1.1 and the discussion of the solutions constructed in this paper

in Section 1.2.
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conjecture [DL17], [LO19a], [LO19b].) Later in the paper we will discuss the

relevant precise notion of maximal globally hyperbolic development.

We now state our main theorem.

Theorem 1. Let N ≫ 1 be a sufficiently large integer and 0 < ǫ≪ γ ≪ 1

be sufficiently small, potentially depending on N . Then there exists a spacetime

(M, gµν) solving the Einstein vacuum equations so that

(1) (M, gµν) is covered by coordinates
(
u, v̂, θA

)
∈ [−v2, 0)× [0,∞)× S2 where

v > 0, and gµν takes the following double-null form:

(1.2) g = −2Ω̂2 (du⊗ dv̂ + dv̂ ⊗ du) + /gAB

Ä
dθA − bAdu

ä
⊗
Ä
dθB − bBdu

ä
.

(2) (M, gµν) has the following Penrose diagram:2

{v̂
=
0}

{u
=
−
v
2 }

I +

{u
=
0}

O

(3) There exists a constant c > 0, independent of ǫ and N , so that we have gµν ∈

CN (M\ {v̂ = 0}), gµν ∈ C1,cǫ2 (M), and (gµν , ∂v̂gµν) ∈ CN ({v̂ = 0}).
(4) The null hypersurface {u = −v2} is asymptotically flat as v̂ → ∞, and

future null infinity I+ is incomplete in the sense of Definition 1.1.

(5) Along {v̂ = 0} we have that in a Lie-propagated coordinate frame,

(1.3) Ω̂
Ä
u, θA

ä
= (−u)κΩ̃

Ä
θA
ä
, /gAB = u2/̃gAB

Ä
θC
ä
, bA = ub̃A

Ä
θB
ä
,

where κ, Ω̃, /̃gAB , and b̃A are a suitable positive constant, positive function,

Riemannian metric, and 1-form on S2 .

(6) There exists a vector field S = u∂u — generator of scaling symmetry —

that is tangent to {v̂ = 0} and conformally Killing along {v̂ = 0}.

(7) Let m(u) denote the Hawking mass of a sphere S2u,0 ⊂ {v̂ = 0}. Then we

have a constant C > 0, independent of ǫ, such that

(1.4) ǫ2C−1 ≤
m(u)√

Area
Ä
S2u,0

ä ≤ Cǫ2,

2For the reader unfamiliar with the Penrose diagram notation, we recommend the discus-

sion in the lecture notes [DR13] and the references therein.
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and so that the shear3 χ̂
AB

.
= tf

Ä
(L∂u + Lb) /gAB

ä
satisfies the following

bound along {v̂ = 0}:

(1.5)
ǫ|a
(
θA
)
|

−u
C−1 ≤

∣∣∣χ̂
Ä
u, θA

ä∣∣∣
/g
≤ C

ǫ|a
(
θA
)
|

−u
,

where tf denotes the trace-free part, and the function a : S2 → R satisfies

Area ({θ : |a(θ)| ≤ 1/2}) . γ .

Remark 1.1. The key mechanism behind the fact that our solution de-

scribes the exterior region of a naked singularity O with the behavior of the

Hawking mass in (7) is that the deformation tensor of bA with respect to the

metric /gAB on S2 is non-vanishing :

/∇AbB + /∇BbA =
(
Lb/g
)
AB

.

The parameter ǫ is related to the size of

| /∇⊗̂b| ∼ ǫ, | /div b| ∼ ǫ2.

In view of this, the phenomenon described in the theorem is highly non-

symmetric and can be thought of as generated by a rotation of the incoming

cone v̂ = 0; see Remark 1.7. For a further discussion of the importance of b

having a non-trivial deformation tensor, see the discussion after Lemma 3.3.

Remark 1.2. It follows from the method of our proof that, after a suitable

rescaling of the double-null coordinates, the metric extends to {u = 0}\{v̂ = 0}
in a Hölder continuous fashion and that the area of the spheres S20,v converge to

infinity as v → ∞. Since it is not needed for the interpretation of the solution

as the exterior region of a naked singularity, we will not here pursue sharp

regularity statements for the solution along {u = 0}. Nevertheless it would be

interesting to systematically study and determine the precise behavior of the

solution along {u = 0}.

Remark 1.3. One should contrast the regularity of the outgoing data de-

scribed in (3) with the behavior of the Hawking mass and the shear along the

incoming cone v̂ = 0 as u→ 0 in (7); see further discussion in Section 1.2.

Remark 1.4. We will have that ‖χ̂‖
L2
(
S2
−v2,0

) ∼ ǫ−1. In particular, we

are in a “large data regime.” Furthermore, χ̂AB is only Hölder continuous

as v̂ → 0 and the curvature component α satisfies ‖α‖
L2
(
S2
−v2,v̂

) |{u=−v2} ∼

v̂−1+cǫ2 as v̂ → 0. We note that since the pioneering work [Chr09], there have

been various works that treat the Einstein equations in large data regimes, for

3This is the shear defined with respect to the geodesic null frame e3
.
= L∂u

+ Lb and

e4
.
= Ω̂−2L∂v̂

.
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example, [KR12], [AL17]. However, in contrast to our situation, these other

large data regimes concerned solutions with initial data that was Minkowskian

along (the analogue of) {v̂ = 0} and whose evolution typically ended in trapped

surface formation.

Remark 1.5. It is a consequence of the method of proof used that the qual-

itative behavior of solutions described in Theorem 1 is stable to perturbations

of the outgoing characteristic data along {u = −v2} that vanish sufficiently

quickly as v̂ → 0 and v̂ → ∞. However, without the vanishing condition at

v̂ = 0, one expects a generic sufficiently regular asymptotically flat perturbation

to create an instability and result in trapped surface formation.

Remark 1.6. It is a straightforward consequence of method of proof that

as ǫ → 0, gµν converges to the Minkowski metric in H1
loc. However, in view of

Remark 1.4, this convergence to the Minkowski metric does not hold, already,

in C1.

Remark 1.7. The following schematic diagram may help the reader to vi-

sualize the null geometry of the cone {v̂ = 0}:

S

γ

O

Here S represents an S2-section of the cone, the straight lines represent various

null normal lines, and the curve γ represents an orbit of the vector field S

that generates the scaling symmetry along the cone {v̂ = 0}. In particular,

γ winds around infinitely often as it approaches the point O. (Note that this

diagram is drawn with respect to a different set of coordinates than those used

in the statement of Theorem 1; in fact, in the coordinate system of Theorem 1,

the orbits of S appear as straight lines and instead the null normal lines twist

around the cone. In those coordinates, S = u∂u and the null generator L = ∂u+

bA /∇A.) This twisting of the cone can be considered to be the key mechanism

behind the formation of the naked singularity and serves as replacement for

the role played by the logarithmic growth of the scalar field in Christodoulou’s

solutions.
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Remark 1.8. Lastly, we remark that we actually construct a large family

of spacetimes that satisfy the conclusions of Theorem 1. The various possible

choices of incoming data along the null hypersurface {v̂ = 0} are parametrized

by choices of “(ǫ, γ, δ,N0,M0,M1)-regular 4-tuples”; see Definition 4.5 for the

specifics.

We now quickly outline the rest of the introductory part of the paper.

In Section 1.1 we will review the naked singularities of Christodoulou. Then,

in Sections 1.2 and 1.3 we will compare Christodoulou’s solutions with the

solutions constructed in our Theorem 1. In particular, we will see that the

solutions of Theorem 1 correspond to the exterior region of a naked singularity.

Finally, in Section 1.4 we will discuss the relations between (the proof of our)

Theorem 1 and the formal power series for self-similar solutions derived by

Fefferman–Graham [FG85], [FG12]. In particular, we will see that underlining

the proof of Theorem 1 is a fundamentally new type of self-similarity of the

Einstein vacuum equations.

1.1. Christodoulou’s naked singularities for the spherically symmetric

Einstein-scalar-field system. In the work [Chr94], Christodoulou studied the

spherically symmetric Einstein-scalar-field system and constructed examples of

naked singularities. Thus, the original formulation of weak cosmic censorship

conjectures fails for this system! (Of course, due to the rigidities imposed by

Birkhoff’s theorem, we cannot hope to set the scalar field to be 0, and thus

Christodoulou’s constructions do not yield naked singularity solutions to the

Einstein vacuum equations.) Despite the existence of these naked singularities,

in a later work [Chr99a], Christodoulou showed that generically naked singu-

larities do not occur for the spherically symmetric Einstein-scalar-field system,

and thus weak cosmic censorship holds if we relax the statement to the require-

ment that naked singularities do not occur for generic initial data. (It is in fact

this relaxed version of weak cosmic censorship that is the currently accepted

formulation.)

Now we will review in detail the solutions constructed by Christodoulou.

1.1.1. The spherically symmetric Einstein-scalar-field system and k-self-

similarity. A solution to the Einstein-scalar-field system consists of a 3 + 1

dimensional Lorentzian manifold (M, hµν) and a real-valued scalar field φ :

M → R that satisfy

(1.6) Ricµν (h)−
1

2
hµνR(h) = ∂µφ∂νφ−

1

2
hµνh

γδ∂γφ∂δφ, hµνDµDνφ = 0,

where Ric and R denote the Ricci tensor and scalar curvature respectively, and

D denotes the covariant derivative associated to h.

Under the assumption of spherical symmetry, we may define the quo-

tient manifold (Q, gµν)
.
= (M, hµν) /SO(3), which will be a 1 + 1 dimensional
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Lorentzian manifold with boundary, where the boundary consists of the fixed

points of the SO(3) action. We then have the area radius function r : Q →
[0,∞) that gives the area of the corresponding SO(3) orbit. Finally, the scalar

field descends to a function φ : Q → R. The equations (1.6) then reduce to

r∇µ∇νr =
1

2
gµν (1− ∂γr∂γr)− r2

Å
∂µφ∂νφ−

1

2
gµνg

γδ∂γφ∂δφ

ã
,(1.7)

∇µ
(
r2∂µφ

)
= 0, K (g) = r−2 (1− ∂µr∂µr) + ∂µφ∂µφ,(1.8)

where K denotes the Gaussian curvature and ∇µ denotes the covariant deriv-

ative associated to gµν . We refer to the system (1.7)–(1.8) as the spherically

symmetric Einstein-scalar-field system.

There are two important symmetries of the spherically symmetric Einstein-

scalar-field system:

(1) Given a triple (gµν , r, φ) solving the system (1.7)–(1.8) and a constant a>0,

the triple
(
a2gµν , ar, φ

)
will also solve (1.7)–(1.8).

(2) Given a triple (gµν , r, φ) solving the system (1.7)–(1.8) and a real constant b,

the triple (gµν , r, φ+ b) will also solve (1.7)–(1.8).

This leads to the definition of k-self-similarity:

Definition 1.2. Let k ∈ R. We say that a triple (gµν , r, φ) solving the

spherically symmetric Einstein-scalar-field system is k-self-similar if there exists

a 1-parameter group of diffeomorphisms {fa}a>0 of Q such that

f∗agµν = a2gµν , f∗ar = ar, f∗aφ = φ− k log a.

If a triple (gµν , r, φ) is k-self-similar with k = 0, then we say that the solution

is scale-invariant.

1.1.2. Solutions of bounded variation. The work [Chr93] established well-

posedness for the spherically symmetric Einstein-scalar-field system in the class

of solutions of bounded variation. Here we will not give a full review of bounded

variation solutions; however, it will be useful to recall the following facts about

the behavior of the Hawking mass m
.
= r

2

Ä
1− |∇r|2

ä
and the scalar field φ for

any solution of bounded variation:
(1) For every outgoing null hypersurface Cout ⊂ Q with affine parameter v,

the scalar field φ is required to be absolutely continuous along Cout, and

r ∂φ∂v is required to be a function of bounded variation along Cout. Similarly,

for every incoming null hypersurface Cin ⊂ Q with affine parameter u, the

scalar field φ is required to be absolutely continuous along Cin, and r ∂φ∂u is

required to be a function of bounded variation along Cin. Finally, for each

outgoing null hypersurface Cout with a compact closure and incoming null

hypersurface Cin with a compact closure, we must also have that

(1.9)

∫

Cout

∣∣∣∣
∂φ

∂v

∣∣∣∣ dv <∞,

∫

Cin

∣∣∣∣
∂φ

∂u

∣∣∣∣ du <∞.
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Note that these integrals are invariant under a reparametrization of the

affine parameters u and v!

(2) Let Γ denote the projection to Q of the fixed points of the SO(3) action

on M. Then, for every null hypersurface C intersecting Γ, we must have

that

(1.10) lim
r→0

(m
r

)
|C = 0.

1.1.3. Global structure of k-self-similar solutions. In Section 2 of [Chr93],

Christodoulou analyzed a natural class of scale-invariant solutions and showed

that it is possible to write them all down explicitly (cf. [Rob89]). However,

none of the solutions thus obtained are relevant for the construction of naked

singularities.

More important for us will be the case when k 6= 0. These solutions,

however, are significantly more complicated, and the bulk of the work [Chr94]

is concerned with a thorough analysis of these. For the current paper, the most

relevant part of Christodoulou’s analysis is the following:

Theorem 1.1 ([Chr94]). Let 0 < k2 < 1/3. Then there exist k-self-similar

solutions such that the following properties hold:

(1) The 1 + 1 Lorentzian manifold (Q, gµν) has a global expression in “self-

similar Bondi coordinates”

g = −e2νdu2 − 2eν+λdudr, Q
.
= {(u, r) ∈ (0,−∞)× [0,∞)},

where ν (u, r)= ν̃
(
− r
u

)
and λ (u, r)= λ̃

(
− r
u

)
for suitable functions ν̃ and λ̃.

(2) The Penrose diagram of (Q, gµν) is given by

N

I
−

Γ

I +
{u
=
0}

O

Here Γ denotes the boundary of Q where r = 0 and that corresponds to

the projection of the fixed points of the SO(3) action on M. The point O
corresponds to (u, r) = (0, 0) and is a terminal singularity (see point (3)

below). Lastly, N denotes the past light cone of the singular point O , and
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I± (future/past null infinity) corresponds to the ideal endpoints of complete

future/past oriented null geodesics.

(3) The hypersurface N is future null geodesically incomplete, yet the solution

cannot be extended to O and remain a solution of bounded variation. This

is a consequence of the requirements (1.9) and (1.10) and either of the

following two facts:

(1.11)
2m

r
|N =

k2

1 + k2
6= 0,

(1.12) n(φ)|N =
(1 + k)1/2 k

r
,

where n|N =
(
2e−ν ∂

∂u − e−λ ∂
∂r

)
|N denotes an ingoing null vector normal

to N , and we note that since it may be shown that λ and ν are constant

along N , there exists c0, c1 ∈ (0,∞) so that (u(s), r(s)){s>0} = (−c0s, c1s)
is an integral curve of n along N with O corresponding to s = 0.

(4) Along any null geodesic terminating on I− or I+ we have that r → ∞.

(5) The triple (gµν , φ, r) forms a solution of bounded variation (where we em-

phasize that O is not included in the spacetime). We have that the radius

function r is in C2 (Q), the Gauss curvature K (g) is in C0 (Q), and the

scalar field φ is in C2 (Q \ N ) and in C
1, k2

1−k2 (Q).

We note that solutions of this type were also studied numerically in the

work [Bra95].

It is worth emphasizing that because the gradient of the scalar field is

Hölder continuous instead of being merely a function of bounded variation,

the triple (gµν , r, φ) may be considered as being more regular than a solution

of bounded variation. (We again remind the reader that the point O is not

included in the spacetime.) (In fact the solution is also more regular than the

AC-class of absolutely continuous data; cf. [Chr99b], [Chr99a].)

1.1.4. Asymptotically flat truncations. The k-self-similar solutions that we

constructed in Theorem 1.1 are not asymptotically flat; in particular, all of the

solutions constructed by Theorem 1.1 have

lim
r→∞

m (u, r) = ∞.

However, the solutions may be “truncated” along an outgoing null hypersurface

to construct an asymptotically flat solution:

Theorem 1.2. [Chr94] Let 0 < k2 < 1/3. There exist a 1+1 dimensional

Lorentzian manifold (Q, gµν) and functions r, φ : Q → R so that (gµν , r, φ)

solves the spherically symmetric Einstein-scalar-field system and (Q, gµν) has

the following Penrose diagram:
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N

Co
utΓ

I +

{u
=
0}

O

W

In the past of W the spacetime is identical to that produced by Theorem 1.1. As

with the solutions of Theorem 1.1, we have that r → ∞ for any null geodesic

terminating on I+ . However, in contrast to the solutions produced by Theo-

rem 1.1, the scalar field φ|Cout vanishes for sufficiently large r , and the solution

is asymptotically flat. Lastly, future null infinity is incomplete in the sense of

Definition 1.1.

We emphasize that despite the limited regularity of the solutions of Theo-

rem 1.2, these solutions may be considered naked singularities for the following

three reasons:

(1) The initial data along Cout is more regular than that of solutions of bounded

variation.

(2) The work [Chr93] established well-posedness for the spherically symmetric

Einstein-scalar-field system in the class of solutions of bounded variation.

(3) The solutions of Theorem 1.2 cannot be extended to the point O as a

solution of bounded variation.

1.2. Comparison of the solutions of Theorem 1 with the naked singularities

of Christodoulou. In this section we will compare the spacetimes constructed by

this paper’s Theorem 1 with those constructed by Christodoulou’s Theorem 1.2,

and we will see that the solutions of Theorem 1 correspond to the exterior region

of a naked singularity.

There is, of course, the obvious difference that we do not show in this

paper that the spacetimes of Theorem 1 contain a past complete extension

to the past of {v̂ = 0}. We will discuss the problem of constructing such an

extension in Section 1.3. Thus we now focus on the region in Christodoulou’s

solutions to the future of the hypersurface N . It will be useful to keep in mind

the schematic rule that when comparing the spherically symmetric Einstein-

scalar-field system with the Einstein vacuum equations one should identify ∂uφ

with the ingoing shear χ̂
AB

and ∂vφ with the outgoing shear χ̂AB.

(1) (Regularity of initial outgoing data). Under the correspondence of ∂vφ

and χ̂AB we find that the data along Cout is analogous to the data along

{u = −v2} in that both ∂vφ and χ̂AB are Hölder continuous. Of course, for

the Einstein vacuum equations, we cannot appeal to Christodoulou’s well-

posedness for bounded variation solutions. However, the works [LR15],
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[LR17] have established a local well-posedness result for data where χ̂AB
(and a suitable number of angular derivatives), though required to vanish

near the tip of the cone, are otherwise allowed to only lie in L2 along an

outgoing null hypersurface. The theory developed by [LR15], [LR17] does

not concern itself with the behavior near the “axis”; however we conjecture

that a well-posedness result including the axis may be established for initial

data where χ̂AB and χ̂
AB

and a suitable number of angular derivatives

thereof are Hölder continuous.

(2) (Singular boundary). The asymptotic behavior of the Hawking mass and

χ̂
AB

along {v̂ = 0} given by (1.4) and (1.5) are analogous to the behavior

of the Hawking mass and n(φ) along N given by (1.11) and (1.12). Outside

of spherical symmetry the Hawking mass is not invariant under a change

of foliation of the cone {v̂ = 0}. However, the blow-up of the shear χ̂
AB

can be re-phrased in a more invariant fashion as follows. Let γ(s) be the

parametrization of a future oriented null geodesic γ along {v̂ = 0} induced

by the normal vector field ∂u+b
A /∇A. Then one may show that there exists

such γ with
∫
γ

∣∣∣χ̂
∣∣∣
/g
ds = ∞. This statement is reparametrization invariant

and corresponds to a logarithmic singularity for /gAB along γ (which in

turn formally corresponds to the logarithmic blow-up of the scalar-field in

Christodoulou’s spacetimes). Furthermore, it is also possible to show in

this case the existence of a Jacobi field J that blows-up along γ. (See also

point (4) in Section 1.3 below.)

(3) (Asymptotic flatness and incompleteness of future null infinity). Both so-

lutions possess an asymptotically flat outgoing null hypersurface and do

not posses a complete future null infinity.

(4) (Underlying self-similar solution). As explained above, Christodoulou’s

solutions are obtained by “truncation” of an underlying self-similar solution.

In contrast, there is no self-similar solution produced at an intermediate

stage during the proof of Theorem 1. However, via an amalgamation of the

techniques and estimates of this paper along with the methods developed

in our previous work [RSR18], it is possible to construct an underlying

solution that is self-similar in the sense of possessing a vector field S with

LSgµν = 2gµν , and so that, in analogy with the relation of Theorems 1.1

and 1.2, a suitable truncation yields spacetimes as in Theorem 1. We will

not pursue this line of approach in this paper since going though a self-

similar solution does not lead to any essential simplification of the proof.

Nevertheless, the solutions of Theorem 1 will be “self-similar as v
−u → 0”

in the sense that

LSgµν − 2gµν → 0 as
v

−u
→ 0, S

.
= u

∂

∂u
+ (1− 2κ) v̂

∂

∂v̂
,
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where κ is a positive constant that satisfies κ ∼ ǫ2. In terms of the normal

vector e3, we will have, in particular, that
Ä
uLe3 − u−1b̃AL∂

θA

ä
gµν |v̂=0 =

2gµν |v̂=0. The logarithmic twisting induced by the flow of u−1b̃A can be

considered an analogue to the k-self-similar actions on the scalar field φ 7→
φ+ k log(u).

1.3. Constructing the interior solution. In this paper we will not establish

any results concerning extensions of the spacetime to the past of the hyper-

surface {v̂ = 0}. However, in a current work in progress we construct a past

extension of the spacetime from Theorem 1 where the new spacetime
Ä
M̃, g̃µν

ä

takes the double-null form (1.2) for
(
u, v̂, θA

)
∈ [−v2, 0)× [u,∞)× S2 and

(1) The spacetimes
Ä
M̃, g̃µν

ä
and (M, gµν) coincide in the region

(
u, v̂, θA

)
∈

[−v2, 0)× [0,∞)× S2.

(2)
Ä
M̃, g̃µν

ä
has the Penrose diagram:

{
v̂
=
u
}

{v̂
=
0}

{u
=
−
v
2 }

I +

{u
=
0}

O

(3) We have that g̃µν ∈C
N (M\ ({v̂=0} ∪ {u= v̂})), g̃µν ∈C

1,cǫ2 (M) (where

c is the same constant from point (3) of Theorem 1), and (g̃µν , ∂v̂ g̃µν) ∈
CN ({v̂ = 0}). In a neighborhood of any point on the “axis” {v̂ = u} there

exists a new coordinate system so that g̃µν is CN . (We emphasize that

clearly the point O does not lie on {u = v̂}.)
(4) The timelike curve π(s) defined by s 7→ (u, v̂) = (s, s) for s ∈ [−v2, 0)

corresponds to a smooth timelike curve in
Ä
M̃, g̃µν

ä
(see point (3) above),

has a finite length 2v2, is future inextendible, and there does not exist

any continuous Lorentzian extension of the spacetime
Ä
M̃, g̃µν

ä
where π is

extendible to a curve with length greater than 2v2.

We remark that in order to glue in these interior solutions with our exterior

solutions, it is important that in Theorem 1 we actually have considerable

flexibility in the choices of the lapse Ω̃ and metric /̃gAB; see (1.3).
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1.4. Connections to Fefferman–Graham theory. As we will review in more

detail in Section 2.3, in the works [FG85], [FG12] Fefferman and Graham clas-

sified formal power series expansions corresponding to a certain type of self-

similar solution, and in the work [RSR18] we showed that all of these expansions

correspond to true solutions of the Einstein vacuum equations. The solutions

considered by Fefferman and Graham all share the property that there exists

a null hypersurface H such that the conformal Killing field Kµ is normal to H.

Among other things, this implies that the cone H is shear free. In contrast, the

underlying self-similar solution for the spacetimes of Theorem 1 (see point (4)

in Section 1.2) posses a null hypersurface H where the conformal Killing field

Kµ is tangent but not normal and, in particular, the cone is not shear free.

Thus, this provides a genuinely new local model for self-similar solutions. One

may draw an analogy for the relation between these new solutions and the so-

lutions of Fefferman–Graham with the relation of the rotating Kerr black hole

solutions and the Schwarzschild solutions. Finally, we note that one expects

analogues of this construction to work also in higher dimensions.

Beyond the generation of new local models for self-similar solutions, the

(proof of) Theorem 1 is also relevant for the global study of Fefferman and Gra-

ham’s self-similar solutions. We briefly explain: Fefferman and Graham’s solu-

tions in 3+1 dimensions are parametrized by two choices of data, /gAB|(u,v)=(−1,0)

and tf∂v/gAB|(u,v)=(−1,0), where tf denotes the trace-free part of a symmetric

(0, 2)-S2u,v tensor; see Section 2.3. In [RSR18] we showed that given such a pair,

there is some ǫ > 0 so that a corresponding self-similar solution exists in the

region (u, v) ∈ {0 ≤ v
−u < ǫ} ∩ {u ∈ (−∞, 0)}. It is thus natural to ask about

the global behavior of this solution. In particular, if the data /gAB|(u,v)=(−1,0)

is close to the round metric and tf∂v/gAB|(u,v)=(−1,0) is suitably small (where tf

denotes the trace-free part of a symmetric (0, 2)-tensor), do we obtain a “global”

solution in the region ({v ≥ 0} ∩ {u ≤ 0}) \ {(u, v) = (0, 0)}?

Note. One can also look in the “interior region” corresponding to {v ≤ 0},
where one expects the problem to be elliptic as opposed to hyperbolic. However,

in 3+1 dimensions one does not expect to find any non-trivial interior solutions

corresponding to the Fefferman–Graham data along the cone {v = 0}. In

dimensions strictly higher than 3+ 1 this rigidity disappears, and the problem

of constructing global interior solutions for small data was positively resolved

in work of Graham–Lee [GL91]. Finally, we note that in dimensions strictly

larger than 3 + 1, the global behavior in the exterior region {v ≥ 0}, for a

certain restricted class of small data, reduces to the problem of the stability of

de-Sitter space to small perturbations from I−, various aspects of which have

been positively resolved in the works [Fri86], [And05], [Rin08].
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It follows from a combination of the techniques of [RSR18] and the es-

timates behind the proof of Theorem 1 that one has existence in a region

({v≥0}∩{u < 0})\{(u, v)=(0, 0)} and, after a suitable change of coordinates,

the metric g extends to the cone {u = 0} in a Hölder continuous fashion. It

would be very interesting, however, to determine whether or not the cone

{u = 0} is shear free and thus is itself locally modeled on a Fefferman–

Graham solution. We note that the analogous statement for scale-invariant

solutions to the spherically symmetric Einstein-scalar-field system is true and

is related to Christodoulou’s proof of well-posedness for solutions of bounded

variation [Chr93].
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2. Preliminaries

2.1. Equations of the double-null foliation. In this section we will recall

the form of the Einstein equations in a double null foliation (see [KN03] for

detailed derivations). We start with a 3 + 1 dimensional Lorentzian manifold

(M, gµν) solving the Einstein vacuum equations. We let {θA} denote local co-

ordinates4 on S2 and assume that for some open U ⊂ R2, there exist coordinates(
u, v, θA

)
∈ U × S2 so that the metric gµν takes the form

(2.1) g = −2Ω2 (du⊗ dv + dv ⊗ du) + /gAB

Ä
dθA − bAdu

ä
⊗
Ä
dθB − bBdu

ä
.

Here Ω is a function on U × S2 called the “lapse,” for each (u, v), /gAB denotes

the induced Riemannian metric on the corresponding copy of S2, and for each

(u, v), bA, called the “shift,” is a 1-form on the corresponding copy of S2. We will

denote the copy of S2 at a particular (u, v) by S2u,v, and we refer to any tensor

field on M that is tangential to each S2u,v as an “S2u,v-tensor”; see [KN03]. We use

the standard convention that Latin indices are reserved for S2u,v-tensors. The

covariant derivative associated to gµν will be denoted by Dµ, the projection

of D4 and D3 to S2u,v will be denoted by ∇4 and ∇3 respectively, and the

induced covariant derivative of S2u,v will be denoted by /∇A. We will assume

that (M, gµν) is oriented, which allows us to define /ǫAB to be the volume form

corresponding to /gAB. Unless indicated otherwise, norms of S2u,v-tensors are

4Unless said otherwise, we will assume it understood by the reader that each coordinate

function θA is only defined on a suitable coordinate patch of S2.
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computed with respect to /gAB, indices of S2u,v-tensors are raised and lowered

with respect to /gAB, and the Hodge star operator ∗ applied to an S2u,v-tensor

refers to a contraction with /ǫAB.

One consequence of the form (2.1) of the metric is that the level sets of u

and v are null hypersurfaces. This leads us to define the following null pair:

e4
.
= Ω−1∂v, e3

.
= Ω−1

Ä
∂u + bA∂θA

ä
,

which will then satisfy

g (e4, e3) = −2.

The Ricci coefficients are the following S2u,v tensors:

χAB
.
= g (DAe4, eB) , χ

AB
= g (DAe3, eB) ,

ηA
.
= −

1

2
g (D3eA, e4) , η

A

.
= −

1

2
g (D4eA, e3) ,

ω
.
= −

1

4
g (D4e3, e4) , ω

.
= −

1

4
g (D3e4, e3) ,

(2.2) ζA
.
=

1

2
g (DAe4, e3) .

We will use ψ to denote an arbitrary Ricci coefficient.

We often refer to the 1-form ζA as the “torsion” 1-form. Note that χAB
and χ

AB
are simply the second fundamental forms of the S2u,v and hence are

symmetric tensors. It will be convenient to split χAB and χ
AB

into their trace

and trace-free parts:

χAB
.
= χ̂AB +

1

2
trχ/gAB, χ

AB

.
= χ̂

AB
+

1

2
trχ/gAB.

The Ricci coefficients are related to the derivatives of the metric quantities

Ω, /gAB, and bA as follows:

ω = −
1

2
∇4 log Ω, ω = −

1

2
∇3 log Ω, L∂vb

A = −4Ω2ζA,

ηA = ζA + /∇A log Ω, η
A
= −ζA + /∇A log Ω,

Le4/gAB = 2χAB, Le3/gAB = 2χ
AB
.

Here L denotes the Lie-derivative.

We letR denote the curvature tensor of g and then define the null curvature

components as follows:

αAB
.
= R (eA, e4, eB, e4) , αAB

.
= R (eA, e3, eB, e3) ,

βA
.
=

1

2
R (eA, e4, e3, e4) , β

A

.
=

1

2
R (eA, e3, e3, e4) ,

ρ
.
=

1

4
R (e4, e3, e4, e3) , σ

.
=

1

4
(∗R) (e4, e3, e4, e3) .
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Here ∗ denotes the Hodge star operator. The symmetries of the curvature

tensor and the Einstein vacuum equations imply that α and α are symmetric

trace-free tensors. The curvature components listed above suffice to reconstruct

the entire curvature tensor. (This fact uses both that we are in 3+1 dimensions

and that the Einstein vacuum equations are satisfied.) We will often use Ψ to

denote an arbitrary null curvature component.

Next we recall the notion of signature from [CK93].5

Definition 2.1. For a Ricci coefficient ψ or a null curvature component Ψ,

we define s (ψ), the signature of ψ or s (Ψ), the signature of Ψ, by

s (ψ)
.
= #(e3)−#(e4) , s (Ψ)

.
= #(e3)−#(e4) ,

where #(e3) denotes the number of e3’s that show up in the definition of ψ

and #(e4) denotes the number of e4’s that show up in the definition. We have

s (χ̂) = −1, s (trχ) = −1, s (ω) = −1,

s (η) = 0, s
(
η
)
= 0, s (ζ) = 0,

s
(
χ̂
)
= 1, s

(
trχ
)
= 1, s (ω) = 1,

s (α) = −2, s (β) = −1,

s (ρ) = 0, s (σ) = 0,

s (α) = 2, s
(
β
)
= 1.

The derivatives of the Ricci coefficients are related to the null curvature

components by the following set of “null-structure equations”:

∇4 trχ+
1

2
(trχ)2 = − |χ̂|2 − 2ω trχ,(2.3)

∇4χ̂AB + trχχ̂AB = −αAB − 2ωχ̂AB,(2.4)

∇3 trχ+
1

2

(
trχ
)2

= −
∣∣∣χ̂
∣∣∣
2
− 2ω trχ,(2.5)

∇3χ̂AB + trχχ̂
AB

= −αAB − 2ωχ̂
AB
,(2.6)

∇3χ̂AB +
1

2
trχχ̂AB = 2ωχ̂AB +

(
/∇⊗̂η

)
AB

+
(
η⊗̂η

)
AB

−
1

2
trχχ̂

AB
,(2.7)

∇3 trχ+
1

2
trχ trχ = 2ρ+ 2ω trχ+ 2 /divη + 2 |η|2 − χ̂ · χ̂,(2.8)

∇4χ̂AB +
1

2
trχχ̂

AB
= 2ωχ̂

AB
+
(
/∇⊗̂η

)
AB

+
(
η⊗̂η

)
AB

−
1

2
trχχ̂AB,(2.9)

∇4 trχ+
1

2
trχ trχ = 2ρ+ 2ω trχ+ 2 /divη + 2

∣∣∣η
∣∣∣
2
− χ̂ · χ̂,(2.10)

∇4ηA = −
(
χ ·
(
η − η

))
A
− βA,(2.11)

5Our definition is actually the negative of the definition from [CK93].
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∇3ηA = −
(
χ ·
(
η − η

))
A
+ β

B
,(2.12)

/curl η = σ +
1

2
χ̂ ∧ χ̂(2.13)

/curl η = −σ −
1

2
χ̂ ∧ χ̂,(2.14)

∇4ω =
1

2
ρ+ 2ωω +

1

2
|η|2 − η · η,(2.15)

∇3ω =
1

2
ρ+ 2ωω +

1

2

∣∣∣η
∣∣∣
2
− η · η,(2.16)

and

K = −ρ+
1

2
χ̂ · χ̂−

1

4
trχ trχ,(2.17)

(
/div χ̂

)
A
−

1

2
/∇A trχ = −βA +

1

2
trχζA − (ζ · χ̂)A ,(2.18)

(
/div χ̂

)
A
−

1

2
/∇A trχ = β

A
−

1

2
trχζA +

(
ζ · χ̂

)
A
,(2.19)

whereK denotes the Gaussian curvature of /gAB, and we have used the following

definitions for 1-forms ψA and symmetric trace-free (0, 2)-tensors φAB:
Ä
ψ(1)⊗̂ψ(2)

ä
AB

.
= ψ

(1)
A ψ

(2)
B + ψ

(1)
B ψ

(2)
A − /g

CDψ
(1)
C ψ

(2)
D /gAB,(

/∇⊗̂ψ
)
AB

.
= /∇AψB + /∇BψA − /g

CD /∇CψD/gAB,

φ(1) ∧ φ(2)
.
= /ǫAC/g

BDφ
(1)
ABφ

(2)
CD,

ψ(1) ∧ ψ(2) .= /ǫABψ
(1)
A ψ

(2)
B ,

/divψ
.
= /g

AB /∇AψB,

/curlψ
.
= /ǫAB /∇AψB,

(
/divφ
)
A

.
= /g

BC /∇BφCA.

The null curvature components satisfy the following consequence of the

Bianchi identities:

∇3αAB +
1

2
trχαAB =

(
/∇⊗̂β

)
AB

+ 4ωαAB

− 3 (χ̂ABρ+
∗χ̂ABσ) +

(
(ζ + 4η) ⊗̂β

)
AB

,
(2.20)

∇4βA + 2 trχβA =
(
/divα
)
A
− 2ωβA +

((
2ζ + η

)
· α
)
A
,(2.21)

∇3βA + trχβA = /∇Aρ+ 2ωβA +
(
∗ /∇
)
A
σ

+ 2
(
χ̂ · β

)
A
+ 3 (ηAρ+

∗ηAσ) ,
(2.22)

∇4σ +
3

2
trχσ = − /div∗β +

1

2
χ̂ ∧ α− ζ ∧ β − 2η ∧ β,(2.23)

∇3σ +
3

2
trχσ = − /div∗β −

1

2
χ̂ ∧ α+ ζ ∧ β − 2η ∧ β,(2.24)
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∇4ρ+
3

2
trχρ = /divβ −

1

2
χ̂ · α+ ζ · β + 2η · β,(2.25)

∇3ρ+
3

2
trχρ = − /divβ −

1

2
χ̂ · α+ ζ · β − 2η · β,(2.26)

∇4βA + trχβA = − /∇Aρ+ 2ωβ
A

+
(
∗ /∇
)
A
σ + 2

(
χ̂ · β

)
A
+ 3
Ä
−η

A
ρ+ ∗η

A
σ
ä
,

(2.27)

∇3βA + 2 trχβA = −
(
/divα
)
A
− 2ωβ

A
+ ((2ζ − η) · α)A ,(2.28)

∇4αAB +
1

2
trχαAB = −

(
/∇⊗̂β

)
AB

+ 4ωαAB

− 3
Ä
χ̂
AB
ρ− ∗χ̂

AB
σ
ä
+
((
ζ − 4η

)
⊗̂β
)
AB

.
(2.29)

We refer to this set of equations as the Bianchi equations.

We now recall a well-known lemma from [CK93].

Lemma 2.1. Let us introduce the rule that

s (∇3ψ)
.
= 1 + s (ψ) , s (∇4ψ)

.
= −1 + s (ψ) , s

(
/Dψ
) .
= s (ψ) ,

s (∇3Ψ)
.
= 1 + s (Ψ) , s (∇4Ψ)

.
= −1 + s (Ψ) , s

(
/DΨ
) .
= s (Ψ) ,

s (ψ ·Ψ)
.
= s (ψ) + s (Ψ) ,

where /D stands for any contraction of a /gAB-covariant derivative. Then, in any

given null structure equation or Bianchi equation, each individual summand will

have the same signature.

In the course of our construction we will study spacetimes where the

v-dependence of χ̂AB is only Hölder continuous, and thus the curvature com-

ponent αAB may be only be understood distributionally (see (2.4)) and, more

importantly, does not lie in L2
loc. As a first step in the proof of our main

theorem, we will use the results from [LR15], [LR17] that establish local exis-

tence for the characteristic initial value problem for data where χ̂AB has limited

regularity in the v-direction. One key idea in the works [LR15], [LR17] is to

introduce a renormalization scheme that serves to eliminate the curvature com-

ponent αAB from the Bianchi equations. One can also eliminate the curvature

component αAB, and this will also be useful for us when we study the solution

near the cone {u = 0}; see Section 9. We now present these renormalized

Bianchi equations. We first define

(2.30) ρ̌
.
= ρ−

1

2
χ̂ · χ̂, σ̌

.
= σ −

1

2
χ̂ ∧ χ̂.



NAKED SINGULARITIES FOR THE EINSTEIN VACUUM EQUATIONS 251

Then we have

∇3βA+trχβA = /∇Aρ̌+
(
∗ /∇
)
A
σ̌+2ωβA+2

(
χ̂ · β

)
A
+3 (ηAρ̌+

∗ηAσ̌)

+
1

2

(
/∇A

(
χ̂ · χ̂

)
+
(
∗ /∇
)
A

(
χ̂ ∧ χ̂

))
+
3

2

(
ηAχ̂ · χ̂+∗ηAχ̂ ∧ χ̂

)
,

(2.31)

∇4σ̌+
3

2
trχσ̌ = − /div∗β − ζ ∧ β − 2η ∧ β −

1

2
χ̂ ∧

(
/∇⊗̂η

)
−

1

2
χ̂ ∧

(
η⊗̂η

)
,

(2.32)

∇4ρ̌+
3

2
trχρ̌ = /divβ+ζ · β+2η · β −

1

2
χ̂ ·
(
/∇⊗̂η

)
−

1

2
χ̂ ·
(
η⊗̂η

)
+
1

4
trχ |χ̂|2 ,

(2.33)

∇3σ̌+
3

2
trχσ̌ = /div∗β+ζ ∧ β − 2η ∧ β+

1

2
χ̂ ∧

(
/∇⊗̂η

)
+
1

2
χ̂ ∧

(
η⊗̂η

)
,

(2.34)

∇3ρ̌+
3

2
trχρ̌ = − /divβ+ζ · β

− 2η · β −
1

2
χ̂ ·
(
/∇⊗̂η

)
−

1

2
χ̂ ·
(
η⊗̂η

)
+
1

4
trχ

∣∣∣χ̂
∣∣∣
2
,

(2.35)

∇4βA+trχβ
A
= − /∇Aρ̌+

(
∗ /∇
)
A
σ̌+2ωβ

A
+2
(
χ̂ · β

)
A
− 3
Ä
η
A
ρ̌− ∗η

A
σ̌
ä(2.36)

−
1

2

(
/∇A

(
χ̂ · χ̂

)
+
(
∗ /∇
)
A

(
χ̂ ∧ χ̂

))
−

3

2

Ä
η
A
χ̂ · χ̂+∗η

A
χ̂ ∧ χ̂

ä
.

Finally, we record the well-known expressions for the commutators
[
∇4, /∇A

]

and
[
∇3, /∇A

]
.

Lemma 2.2. We have

[
Ω∇4, /∇A

]
φB1···Bk

= Ω
k∑

i=1

Ä
(∗β)A /ǫ

C
Bi

− χ C
A η

Bi
+ χBiAη

C
ä
φB1···B̂iC···Bk

− Ωχ C
A /∇CφB1···Bk

,

(2.37)

[
Ω∇3, /∇A

]
φB1···Bk

= Ω
k∑

i=1

Ä
−
(
∗β
)
A
/ǫ C
Bi

− χ C
A

ηBi + χ
BiA

ηC
ä
φB1···B̂iC···Bk

− Ωχ C
A

/∇CφB1···Bk
.

(2.38)

Remark 2.1. We observe that the conclusions of Lemma 2.1 extend both

to the renormalized Bianchi equations (2.31)–(2.36) and to the commutation

formulas (2.37) and (2.38).
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The following remark will be important later.

Remark 2.2. One can also consider spacetimes (M, g) where there exist

coordinates
(
u, v, θA

)
∈ U × S2 so that the metric g takes the form

(2.39) g = −2Ω2 (du⊗ dv + dv ⊗ du) + /gAB

Ä
dθA − bAdv

ä
⊗
Ä
dθB − bBdv

ä
.

We refer to coordinates where the metric takes the form (2.1) as double-null

coordinates with “the shift in the e3-direction” and to coordinates with the

metric takes the form (2.39) as double-null coordinates with “the shift in the

e4-direction.” For a spacetime (M, g) with coordinates so that the metric takes

the form (2.39), we define

e4
.
= Ω−1

Ä
∂v + bA∂θA

ä
, e3

.
= Ω−1∂u,

and then all of the equations satisfied by the various double-null unknowns are

the same with the exception of the shift that now satisfies

L∂ub
A = 4Ω2ζA.

Lastly, it will be useful to introduce the following conventions.

Convention 2.1. The term b≪ 1 means that one should take b ≤ c, where

c is a small constant, independent of all other introduced parameters, but

whose exact value may be determined at the end of the paper. For two positive

constants a and b, a ≪ b means a
b ≪ 1, and for a positive constant b > 0,

b≫ 1 means that b−1 ≪ 1.

Convention 2.2. We will now describe a schematic notation for certain non-

linear tensorial expressions. Throughout we let a
(i)
j denote a tensorial quantity.

The schematic notation is defined as follows:

(1) The notation
Ä
a
(1)
1 , . . . , a

(1)
i1

ä
· · ·
Ä
a
(j)
1 , . . . , a

(j)
ij

ä
denotes an expression that

could in principle represent an arbitrary linear combination of contractions

of tensor products of j-tuples
Ä
a
(1)
k1
, . . . , a

(j)
kj

ä
.

(2) The notation
Ä
a
(1)
1 , . . . , a

(1)
i1

äk
denotes

Ä
a
(1)
1 , . . . , a

(1)
i1

ä
· · ·
Ä
a
(1)
1 , . . . , a

(1)
i1

ä
︸ ︷︷ ︸

k

.

(3) The notation /∇
Ä
a
(1)
1 , . . . , a

(1)
i1

ä
denotes an arbitrary linear combination of

contractions of terms /∇a
(i)
j .

(4) The notation /∇
j
Ä
a
(1)
1 , . . . , a

(1)
i1

ä
denotes /∇( /∇(· · · /∇︸ ︷︷ ︸

j

Ä
a
(1)
1 , . . . , a

(1)
i1

ä
))

2.2. The characteristic initial value problem. In the course of the paper

we will need to invoke local existence results for suitable characteristic initial

value problems. In this section we will quickly review the relevant theory.
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Throughout this section, we let u0, u1, v0, and v1 be real numbers that satisfy

u0 < u1 and v0 < v1.

We start with a definition of a characteristic initial data set.

Definition 2.2. We say that two 1-parameter families
Å
Ω(in)

Ä
u, θA

ä
,
Ä
bA
ä(in) Ä

u, θB
ä
, /g

(in)
AB

Ä
u, θC

äã

for (u, θA) ∈ [u0, u1] × S2 and
Ä
Ω(out)

(
v, θA

)
, /g

(out)
AB

(
v, θC

)ä
for (v, θA) ∈

[v0, v1] × S2 consisting of nowhere vanishing C1 functions Ω(in) and Ω(out),

a continuous vector field
(
bA
)(in)

, and C1 1-parameter families of Riemannian

metrics /g
(in)
AB and /g

(out)
AB on S2, as well as a continuous 1-form (ζA)u0,v0 on S2

form a “characteristic initial data set” if the following hold:

(1) We have Ω(in)|u=u0 = Ω(out)|v=v0 and /g
(in)
AB |u=u0 = /g

(out)
AB |v=v0 .

(2) After defining trχ, χ̂
AB

, and ω for u ∈ [u0, u1] by

Ä
Ω(in)

ä−1
L∂u+b(in)/g

(in)
AB

.
= trχ/g

(in)
AB + 2χ̂

AB
,

ω
.
= −

1

2

Ä
Ω(in)

ä−1 Ä
∂u + b(in)

ä
log Ω(in),

and the requirement that χ̂
AB

be trace-free, we have that the following

equation is satisfied:

(2.40)
Ä
Ω(in)

ä−1 Ä
∂u + b(in)

ä
trχ+

1

2

(
trχ
)2

= −2ω trχ−
∣∣∣χ̂
∣∣∣
2
.

(3) After defining trχ, χ̂AB, and ω for v ∈ [v0, v1] by

Ä
Ω(out)

ä−1
L∂v/g

(out)
AB

.
= trχ/g

(out)
AB + 2χ̂AB, ω

.
= −

1

2

Ä
Ω(out)

ä−1
∂v log Ω

(out),

and the requirement that χ̂AB be trace-free, we have that the following

equation is satisfied:

(2.41)
Ä
Ω(out)

ä−1
∂v trχ+

1

2
(trχ)2 = −2ω trχ− |χ̂|2 .

Note that the two differential equations that we require the characteristic

data to satisfy are simply the two Raychaudhuri equations (2.3) and (2.5).

Now we recall the following local well-posedness result for the characteristic

value problem.

Theorem 2.3 ([Ren90], [Luk12]). Given any characteristic initial data set

so that Å
Ω(in),Ω(out),

Ä
bA
ä(in)

, /g
(in)
AB , /g

(out)
AB , (ζu0,v0)A

ã

are smooth, there exists a smooth spacetime (M, gµν) such that
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(1) There exists a positive constant c, depending on the initial data set, so that

the metric gµν takes the double-null form (2.1) for

(u, v) ∈ {([u0, u1]× [v0, v0 + c]) ∪ ([u0, u0 + c]× [v0, v1])}.

(2) We have Ä
Ω, bA, /gAB

ä
|v=v0 =

Å
Ω(in),

Ä
bA
ä(in)

, /g
(in)
AB

ã
,

Ä
Ω, /gAB

ä
|u=u0 =

Ä
Ω(out), /g

(out)
AB

ä
,

and ζA|(u,v)=(u0,v0) = (ζu0,v0)A .

data da
ta

(u0, v0)

(u1, v0) (u0, v1)

Since we will need to consider solutions where the v-dependence of χ̂AB is

only Hölder continuous, it will be convenient to refer to the following generaliza-

tion of Theorem 2.3 (which can be deduced from the main results from [LR15],

[LR17]):

Theorem 2.4 ([LR15], [LR17]). Let N be a sufficiently large positive in-

teger, and let /̊gAB denote a round metric on S2 that we extend to [u0, u1]× S2

and [v0, v1] × S2 by Lie-propagation. Suppose we have a characteristic initial

data set satisfying the following bounds for some C > 0:∥∥∥
Ä
b(in), log Ω(in)

ä∥∥∥
L∞
u H̊N

≤ C,
∥∥∥log Ω(out)

∥∥∥
L∞
v H̊N

≤ C,

∥∥∥
(
χ,L∂uχ, ω

)∥∥∥
L∞
u H̊N

≤ C, ‖(χ, ω)‖L∞
v H̊N ≤ C,

‖ζu0,v0‖H̊N ≤ C,
∥∥∥
Ä
det/g

(out)
ä−1
∥∥∥
L∞
v,θ

≤ C,

∥∥∥
Ä
det/g

(in)
ä−1
∥∥∥
L∞
u,θ

≤ C,
∥∥∥/g(out)

∥∥∥
L∞
v H̊N

≤ C,

∥∥∥/g(in)
∥∥∥
L∞
u H̊N

≤ C ,

where H̊ i denotes (inhomogeneous) Sobolev norms defined with respect to the

metric /̊gAB .

Then there exists a spacetime (M, gµν) such that

(1) There exists a positive constant c, depending on the constant C , so that the

metric gµν takes the double-null form (2.1) for (u, v)∈{([u0, u1]×[v0, v0+c])
∪ ([u0, u0 + c]× [v0, v1])}.
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(2) We have

Ä
Ω, bA, /gAB

ä
|v=v0 =

Å
Ω(in),

Ä
bA
ä(in)

, /g
(in)
AB

ã
,

Ä
Ω, /gAB

ä
|u=u0 =

Ä
Ω(out), /g

(out)
AB

ä
,

and ζA|{(u,v)=(u0,v0)} = (ζu0,v0)A .

(3) There exists C ′ > 0 so that in the region (u, v) ∈ {([u0, u1]× [v0, v0 + c]) ∪
([u0, u0 + c]× [v0, v1])}, the metric components, Ricci coefficients, and cur-

vature components have the following regularity:

(2.42)
∥∥∥
(
β, ρ, σ, β

)∥∥∥
L∞
u L2

vH̊
N−2

≤ C ′,
∥∥∥
(
ρ, σ, β, α

)∥∥∥
L∞
v L2

uH̊
N−2

≤ C ′,

(2.43)
∥∥∥
(
b, χ, χ, ω, ω, /∇ log Ω

)∥∥∥
L∞
u L∞

v H̊N−2
≤ C ′

(2.44)
∥∥∥
(
det/g

)−1
∥∥∥
L∞
u L∞

v L∞
θ

≤ C ′,
∥∥/g
∥∥
L∞
v L∞

u H̊N−2 ≤ C ′.

(4) (M, gµν) is a weak solution to Ricµν(g) = 0. In particular, (2.3), (2.5)–

(2.19), and (2.22)–(2.36) all hold.

Also, there exists a constant Y (independent of N ) so that we also have the

following blow-up criterion: Let 0 < r1 ≤ v1 − v0 and 0 < r2 ≤ u1 − u0 . Then

one of the two possibilities must occur.

(1) There exists a spacetime (M, gµν) in the double-null form (2.1) that con-

tains

(u, v) ∈ {([u0, u1]× [v0, v0 + r1]) ∪ ([u0, u0 + r2]× [v0, v1])},
Ä
Ω, bA, /gAB

ä
|v=v0 =

Å
Ω(in),

Ä
bA
ä(in)

, /g
(in)
AB

ã
,

Ä
Ω, /gAB

ä
|u=u0 =

Ä
Ω(out), /g

(out)
AB

ä
,

ζA|{(u,v)=(u0,v0)} = (ζu0,v0)A ,

and the bounds (2.42)–(2.44) hold for some C ′ <∞.

(2) For some 0 < s1 < r1 and 0 < s2 < r2 there exists a spacetime (M, gµν) in

the double-null form (2.1) that contains

(u, v) ∈ {([u0, u1]× [v0, v0 + s1)) ∪ ([u0, u0 + s2)× [v0, v1])}
.
= Us1,s2 ,

Ä
Ω, bA, /gAB

ä
|v=v0 =

Å
Ω(in),

Ä
bA
ä(in)

, /g
(in)
AB

ã
,

Ä
Ω, /gAB

ä
|u=u0 =

Ä
Ω(out), /g

(out)
AB

ä
,

ζA|{(u,v)=(u0,v0)} = (ζu0,v0)A ,
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and
∥∥∥
(
χ, χ, ω, ω, /∇ log Ω, ζ, /g

)∥∥∥
L∞(Us1,s2)H̊Y

+
∥∥∥
(
det/g

)−1
∥∥∥
L∞(Us1,s2)L

∞
θA

= ∞.

Finally, we know that the singularities of α must propagate in e3-direction;

more specifically, whenever v̂0 > v0 , then

(2.45) ‖α|u=u0‖L2
v∈[v̂0,v1]

H̊N−2 <∞ ⇒ sup
u∈[u0,u1]

‖α‖L2
v∈[v̂0,v1]

H̊N−2 <∞.

Remark 2.3. One may, of course, provide explicit upper bounds on the

optimum values of the constants N and Y , but these will not play any role in

this paper.

2.3. (Asymptotically) self-similar solutions. In this section we revisit the

types of self-similarity (for 3 + 1 dimensional solutions) considered in the

works [FG85], [FG12], [RSR18].

Definition 2.3. We say that a solution (M, gµν) given in the double-null

form (2.1) and defined in the region {u < 0} ∩ {0 ≤ v
−u ≤ c} for some c > 0 is

“self-similar” if it is smooth, and in a coordinate frame we have

Ω
Ä
u, v, θA

ä
= Ω̌

(v
u
, θA
)
, bA

Ä
u, v, θB

ä
= ub̌A

(v
u
, θB

)
,

/gAB

Ä
u, v, θC

ä
= u2/̌gAB

(v
u
, θC

)(2.46)

for some Ω̌, b̌A, and /̌gAB. Equivalently, the “scaling vector field” K
.
= u∂u+v∂v

satisfies

LKgµν = 2gµν .

Note, in particular, that if a solution (M, gµν) is self-similar, then the

restrictions of Ω, bA, and /gAB to {v = 0} must satisfy the following:

(2.47)

Ω|v=0

Ä
u, θA

ä
=Ω̌
Ä
θA
ä
, bA

Ä
u, θB

ä
=ub̌A

Ä
θB
ä
, /gAB

Ä
u, θC

ä
=u2/̌gAB

Ä
θC
ä
.

For any Riemannian metric /̌gAB on S2, one natural way to generate a triple

Ä
Ω(in)(u, θA), (bA)(in)(u, θB), /g

(in)
AB (u, θ

C)
ä

satisfying the requirement (2.47) and also the Raychaudhuri constraint equa-

tion (2.40) is to set

(2.48) Ω(in)
Ä
u, θA

ä .
= 1, (bA)(in)

Ä
u, θB

ä .
= 0, /g

(in)
AB (u, θ

C)
.
= u2/̌gAB(θ

C)

for all u ∈ (−∞, 0).

The following result, due to Fefferman–Graham, classifies formal power

series expansions that obtain the incoming data defined by (2.48):
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Theorem 2.5 ([FG85], [FG12]). Let /̌gAB be an arbitrary smooth Rie-

mannian metric on S2 . Then there exist {Ω̌(i) (θ)}∞i=1 , {(b̌A)(i) (θ)}∞i=1 , and

{/̌g
(i)

AB
(θ)}∞i=1 so that we obtain a formal metric gµν solving Ricµν(g) = 0 by

defining the following formal power series expansions in v
u and in coordinate

frames:

Ω
Ä
u, v, θA

ä .
= 1 +

∞∑

i=1

(v
u

)i
Ω̌(i)
Ä
θA
ä
,

bA
Ä
u, v, θB

ä .
= u−1

∞∑

i=1

(v
u

)i Ä
b̌A
ä(i) Ä

θB
ä
,

(2.49)

/gAB

Ä
u, v, θC

ä .
= u2/̌gAB

Ä
θC
ä
+ u2

∞∑

i=1

(v
u

)i
/̌g
(i)

AB

Ä
θC
ä
.(2.50)

By a formal solution, we mean that

• if one truncates these sums at some integer N ,

• defines a corresponding self-similar double-null metric by using the truncated

sums to define the metric components,

• and computes the corresponding Ricci tensor Ric
(N)
µν ,

then, along any constant u-curve, one will have in a coordinate frame that

Ric
(N)
µν = Ou,N

Ä
vp(N)

ä
where p→ ∞ as N → ∞. (In particular, we may make

no assertion about the convergence of the the infinite sums in (2.49) and (2.50).)

Furthermore the expansions (2.49) and (2.50) are uniquely determined by

the requirement that the incoming characteristic data satisfy (2.48) and a choice

of tf
Ä
/̌g
(1)
ä
AB

. (Here tf denotes the trace-free part.)

Remark 2.4. As a point of comparison, we can consider the simpler situ-

ation of spherically symmetric solutions φ to the wave equation on Minkowski

space,

∂u∂v (rφ) = 0,

which are self-similar in the sense that

φ(u, v) = φ̊
(v
u

)

for a suitable function φ̊. It is straightforward to classify all such solutions that

are of bounded variation in the sense of Christodoulou [Chr93]. One finds that

these comprise a 2-parameter class indexed by (a, b) ∈ R2 as follows:

φ (u, v) =





a {v ≤ 0},

a+ b v
v−u {v > 0} ∩ {u < 0},

a+ b {u ≥ 0}.
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The parameter a is, of course, a trivial freedom reflecting the ability to add a

constant to any solution to the wave equation.

In our previous work [RSR18] we accomplished two main goals:

(1) to show that the formal power series expansions of Fefferman–Graham from

Theorem 2.5 correspond to true solutions;

(2) to identify a large class of characteristic initial data sets (see Definition 2.2)

that lead to solutions that, while not self-similar, converge to a self-similar

solution as the point (u, v) = (0, 0) is approached.

We will not here undertake a full review of the proof of these results; however,

it will be clarifying to revisit one of the preliminary steps in the analysis. We

start with the following definition:

Definition 2.4. Let
Ä
Ω(in)(u, θA), (bA)(in)(u, θB), /g

(in)
AB (u, θ

C)
ä

be defined by

(2.48) restricted to u ∈ [−1, 0) and J be a non-negative integer. Choose

ζ̃A(θ
B) and outgoing characteristic data

Ä
Ω(out)(v, θA), /g

(out)
AB

(
v, θC

)ä
defined

for v ∈ [0, ṽ) and satisfying Ω(in)
(
−1, θA

)
= Ω(out)

(
0, θA

)
, /g

(iin)
AB

(
−1, θC

)
=

/g
(out)
AB

(
0, θC

)
, and (2.43). Then we say ζ̃A(θ

B) and
Ä
Ω(out)(v, θA), /g

(out)
AB

(
v, θC

)ä
are “consistent with an asymptotic scale-invariance to order J” if after apply-

ing Theorem 2.3, then along {v = 0} we have the following bounds for any

curvature component Ψ and Ricci coefficient ψ:

(2.51)∣∣∣∇j
4
/∇
i
Ψ
∣∣∣ .i,j |u|

−2−i−j ,
∣∣∣∇j

4
/∇
i
ψ
∣∣∣ .i,j |u|

−i−j−1 ∀i ≥ 0 and 0 ≤ j ≤ J,

where these norms are computed with respect to /g
(in)
AB .

Remark 2.5. As was shown in Section 3.11 of [RSR18], for an exactly

self-similar solution, we will have
∣∣∣∇j

4
/∇
i
Ψ
∣∣∣ ∼i,j |u|−2−i−j and

∣∣∣∇j
4
/∇
i
ψ
∣∣∣ ∼i,j

|u|−1−i−j . Thus the bounds (2.51) are motivated by requiring that along {v=0}
the solution is, at worst, as singular as an exactly self-similar solution.

The following is a slight extension of a proposition proved in [RSR18].

Proposition 2.6. We have that ζ̃A and
Ä
Ω(out), /g

(out)
AB

ä
is “consistent with

an asymptotic scale-invariance of order J” (see Definition 2.4) for any J ∈ Z≥0

if and only if we have

(2.52) ζ̃A = 0,
Ä
/g
(out)
äAB

L∂v
(
/g
)(out)
AB

|v=0 = 2K|v=0,

where K denotes the Gaussian curvature of /gAB . Furthermore, if we assume

that (2.52) is satisfied, set

NAB
.
= tf
Ä
L∂v

(
/g
)(out)
AB

ä
|v=0,
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and then extend NAB to all of {v = 0} by Lie-propagation with respect to ∂u ,

then we have the following bounds and identities for the Ricci coefficients and

curvature components along {v = 0}:

trχ =
2

u
, χ̂

AB
= 0, ω = 0, αAB = 0, ηA = 0, η

A
= 0, β

A
= 0,(2.53)

σ = 0, ρ = 0, trχ = −2uK, |ω| = O (1) , χ̂AB = −uNAB,(2.54)

βA = u
[
/divNA − /∇AK

]
,
∣∣α+ u

(
/∇⊗̂

(
/divN − /∇K

))∣∣ . |u|−1.(2.55)

Proof. If Ω(out) is assumed to be identically 1 and J = 0, then this is

contained in Proposition 4.1 from [RSR18]; the modifications needed for the

more general Ω(out) and J are straightforward. (See also the discussion in

Section 2.2 of [RSR18].) �

Note that due to the vanishing of the shear χ̂
AB

these solutions will not,

in particular, satisfy (1.5). Furthermore, it is an immediate consequence of the

Gauss–Bonnet Theorem that the Hawking mass of any S2u,0 sphere must vanish.

In particular, we do not have (1.4). In fact, solutions that are self-similar in

the sense of Definition 2.3 or, in view of the main results of [RSR18], solutions

corresponding to data that is “consistent with an asymptotic scale-invariance

of order 0” may be considered to be analogous to Christodoulou’s solutions of

bounded variation [Chr93] (and also the solutions discussed in Remark 2.4). In

particular, we should not consider the class of solutions from [RSR18] as good

models for naked singularities.

Given the discussion in the previous paragraph, it is natural to wonder

whether self-similar solutions can be built from characteristic initial data sets

that, while satisfying (2.47), are more general than those allowed by (2.48);

however, the following proposition puts a severe restriction on the behavior of

g along {v = 0}:

Proposition 2.7. Let (M, gµν) be a solution to the Einstein vacuum

equations that is self-similar in the sense of Definition 2.3. Then we must have

(2.56) Lb/gAB|v=0 = 0, LbΩ|v=0 = 0.

Proof. Omitted. �

Furthermore, using the techniques developed in [RSR18] one can show that

any self-similar solution satisfying (2.56) is isometric to a self-similar solution

whose restriction to {v = 0} satisfies (2.48). Thus, it is clear that in order to

construct naked singularities, we must leave this class of solutions.

3. κ-self-similarity and an outline of the proof

A key role in the proof of our main result will be played by a more general

notion of a self-similar solution compared to the type discussed in Section 2.3.
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One way to think about this new self-similarity is as follows: The self-similarity

discussed in Section 2.3 assumes the existence of a double-null foliation whose

domain of validity includes the important null hypersurface {v = 0} and where

the self-similar vector field K takes the form K = u∂u+ v∂v. However, there is

no a priori reason to expect a solution to the Einstein vacuum equations with

a conformal Killing vector field K to admit such a coordinate system.

Our new κ-self-similarity still starts with a double-null coordinate system

where the self-similar vector field K takes the form K = u∂u + v∂v. However,

we no longer assume that the coordinates extend to {v = 0}. Instead, we

require that for an alternative coordinate system
(
v̂, u, θA

)
where v̂

.
= v1−2κ,

the metric extends to {v̂ = 0}. The coordinate system
(
v̂, u, θA

)
will still be

a double-null coordinate system, however, the self-similar vector field K will

now take the form K = u∂u + (1− 2κ) v̂∂v̂. Thus we may equivalently think

of κ-self-similarity as relaxing (slightly) the requirement that K takes the form

u∂u+v∂v in a double-null coordinate system. We now give the precise definition.

Definition 3.1. We say that a smooth solution (M, gµν) given in the double-

null form (2.1) and defined in the region {u < 0} ∩ {0 < v
−u ≤ c} for some

c > 0 is “κ-self-similar” if in a coordinate frame, we have

Ω
Ä
u, v, θA

ä
= Ω̌

(v
u
, θA
)
, bA

Ä
u, v, θB

ä
= ub̌A

(v
u
, θB

)
,

/gAB

Ä
u, v, θC

ä
= u2/̌gAB

(v
u
, θC

)(3.1)

for some Ω̌, b̌A, and /̌gAB, and there exists 0 < κ ≪ 1 such that in the co-

ordinates
(
v̂, u, θA

)
defined by v̂

.
= v1−2κ, for every i, |j| ≥ 0 (where j is a

multi-index), there exists γ(|j|) > 0 such that Li∂uL
(j)
∂θ
gµν extends to {v̂ = 0}

as a C1,γ(|j|) tensor.

Remark 3.1. If κ = 0 and the metric in fact extends to {v̂ = 0} as a smooth

metric, then the metric will be self-similar in the sense of Definition 2.3. We

further emphasize that, as we will see later, the lapse Ω of a κ-self-similar

solution will satisfy limv→0

(
vκΩ

(
−1, v, θA

))
= h

(
θA
)

for some function h :

S2 → (0,∞). In particular, a solution in a given double-null coordinate system(
u, v, θA

)
can only possibly be κ-self-similar for a unique value of κ.

Remark 3.2. We emphasize that the coordinates (u, v, θA) in which the

metric is required to satisfy (3.1) are not regular as v → 0. In particular, as

we will see in more detail later, in these coordinates we have Ω2 ∼
Ä
v
−u

ä−2κ
.

While, for the solutions we consider, we will not establish sharp estimates for

γ(|j|) for general j, it will follow from our analysis that we have the estimate

(3.2) γ(0) ≤
2κ

1− 2κ
.



NAKED SINGULARITIES FOR THE EINSTEIN VACUUM EQUATIONS 261

In particular, even though a κ-self-similar solution is smooth for {v̂ > 0} it will

have limited regularity if we include the hypersurface {v̂ = 0}.

Remark 3.3. The fundamental reason we will need to restrict to |κ| ≪ 1 in

this paper is because, in view of the κ-constraint equation (see (3.8) below) the

size of κ is directly related to the size of
(
vκΩ, /g, b

)
along {v = 0}, and we will

need to have the smallness of
(
vκΩ, /g, b

)
|v=0 in order to carry out our nonlinear

analysis. However, this constraint is, in principle, just an artifact of our method

of proof and, in view of the regularity constraint (3.2), it is an interesting

problem to construct solutions where κ is allowed to be as large as possible.

Despite not allowing for regular limits as v → 0, the (u, v, θA) coordinates

are useful because

(1) The self-similar vector field takes the simple form K = u∂u + v∂v. This

implies that algebraic identities induced by self-similarity take a relatively

simple form (see, for example, Lemma 3.2) and also allows us to view the

class of κ-self-similar solutions as a perturbation of the self-similar solutions

of Definition 2.3.

(2) Even though the Ricci coefficients ψ and curvature components Ψ will in

general be singular as v → 0, we will have a very simple procedure for

weighting them appropriately (when Ψ 6= αAB and ψ 6= ω). Namely,

letting s denote the signature of ψ and Ψ (see Definition 2.1) we will have

that Ωsψ and ΩsΨ have regular limits as v → 0; see Lemma 3.1 below.

One may think of the parameter κ as being (roughly) the analogue of k2/2 in

Christodoulou’s k-self-similar solutions.

Finally, we note that while it is technically convenient for us to phrase

Definition 3.1 in terms of a coordinate system that is regular along {v̂ = 0}, it

may be more useful conceptually to think of them as “b-self-similar” solutions.

This is because the need to consider κ-self-similar solutions arises when one

wants to construct a self-similar solution with a non-trivial shift bA along the

incoming cone {v̂ = 0}, or equivalently, when one wants the scaling symmetry

to induce a twist along the spheres in addition to rescaling in the null direction.

See also Lemma 3.3 and the following discussion.

3.1. The ingoing Raychaudhuri equation and the role of κ-self-similarity.

In this section we will explain how κ-self-similarity allows us to overcome the

obstacle of Proposition 2.7.

The following lemma shows how to weight the Ricci coefficients and null

curvature components in (u, v, θA) coordinates so as to have regular limits as

v → 0.

Lemma 3.1.Let (M, g) be a κ-self-similar solution. Then, in the
(
u, v̂, θA

)

coordinates, the metric g is of the form
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g = −2Ω2v2κ (1− 2κ)−1 (du⊗ dv̂ + dv̂ ⊗ du)

+ /gAB

Ä
dθA − bAdu

ä
⊗
Ä
dθB − bBdu

ä
.

(3.3)

The self-similar vector field takes the form

K = u∂u + (1− 2κ) v̂∂v̂.

Finally, using that, in the form (3.3), the tensor Li∂uL
(j)
∂θ
gµν must extend to

{v̂ = 0} as a C1,p tensor for 0 < p ≤ γ(|j|), we find that the following double

null quantities defined in (u, v, θA) coordinates must extend to {v = 0} contin-

uously and the restrictions to {v = 0} are smooth tensors in
(
u, θA

)
:

vκΩ, bA, /gAB, Ωω, vΩω, ζA, ηA, ηA, Ωχ̂
AB
, Ω trχ,(3.4)

Ω−1χ̂AB, Ω−1 trχ, Ω2αAB, Ωβ
A
, ρ, σ, Ω−1βA.(3.5)

Equivalently, for any Ricci coefficient ψ not equal to ω or null curvature

component Ψ not equal to α, we have that Ωsψ and ΩsΨ extend continuously

to {v = 0}, where s denotes the signature of ψ or Ψ. Finally, we note that we

will have
|Ωsψ|v=0| . |u|−1, |ΩsΨ|v=0| . u−2.

Proof. This follows in a straightforward manner from the definitions of the

various metric components, Ricci coefficients, and curvature components and

the fact that
∂

∂v
= (1− 2κ) v−2κ ∂

∂v̂
. �

Convention 3.1. In the
(
u, v, θA

)
coordinates, not all components of the

metric g extend continuously to {v = 0}. Nevertheless, we will refer to the

hypersurface {v = 0} with the understanding that along {v = 0} it only makes

sense to consider the quantities listed in (3.4) and (3.5).

Before proceeding, it is useful to note that by differentiating the formulas

in (3.1) we can produce various relations between the Ricci coefficients. We list

the most important ones in the lemma below.

Lemma 3.2. Let (M, gµν) be a self-similar solution or a κ-self-similar

solution. Then we have

Ω trχ+Ω
v

u
trχ =

2

u
+ /div b, Ωχ̂

AB
+Ω

v

u
χ̂AB =

1

2

(
/∇⊗̂b

)
AB

,(3.6)

Ωω +
v

u
Ωω +

1

2
Lb log Ω = 0.(3.7)

Proof. See Lemma B.1 of [RSR18] for the proof in the case of a self-similar

solution. The same proof works for the κ-self-similar case. �

Observe that any κ-self-similar solution gµν in the
(
u, v̂, θA

)
coordinates

must satisfy the e3-Raychaudhuri equation (2.5) along {v̂ = 0}. This may be
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interpreted as a constraint equation for incoming characteristic κ-self-similar

data. In Lemma 3.3 we compute the precise form of this constraint equation.

Lemma 3.3. For any κ-self-similar solution or self-similar solution, along

{v = 0} the following equation must hold:

1

−u
/div b− Lb /div b−

1

2

(
/div b
)2

=
1

4

∣∣ /∇⊗̂b
∣∣2 − 4κ

u2

+
4

−u
Lb log Ω− 2 (Lb log Ω)

(
/div b
)
,

(3.8)

where we take κ = 0 in (3.8) for a self-similar solution. (We note that (3.8) may

be equivalently phrased as an equation for b̌ along S2 for b̌ as in Definition 3.1.)

Proof. See Appendix D. �

We emphasize that it follows from Lemma 3.1 that Lb log Ω extends to

{v = 0}. We call equation (3.8) the κ-constraint equation.

We can now explain the role of κ-self-similarity in the construction of

naked singularities. Recall from the discussion in Sections 1.2 and 2.3 that in

order for the singular point at (u, v) = (0, 0) to formally correspond to a non-BV

singularity in the sense of Christodoulou [Chr93], we desire that the shear of the

incoming cone is non-integrable as u→ 0; see also the discussion in item (2) of

Section 1.2. We also desire (see the discussion in Section 1.1.3) for the Hawking

mass m
Ä
S2u,0

ä
to satisfy that m

Ä
S2u,0

ä Ä
Area

Ä
S2u,0

ää−1/2
is uniformly bounded

from below as u → 0. For a self-similar solution, every Ricci coefficient ψ will

satisfy |ψ|v=0|/g
(
u, θA

)
= u−1h

(
θA
)

for a suitable function h. Using this, it

is possible to show that the above requirements will hold for a self-similar or

κ-self-similar solution only if, for some c > 0, the restriction of the ingoing

shear χ̂
AB

to {u = −c} ∩ {v = 0} is non-vanishing along a suitable portion of

S2; cf. the Hawking mass calculation later in Lemma 10.3.

For self-similar or κ-self-similar solutions, Lemma 3.2 implies Ωχ̂
AB

|v=0

= 1
2

(
/∇⊗̂b

)
AB

. Thus, in view of the previous paragraph, we are naturally

lead to ask if we can find /gAB, Ω, and bA so that bA has a non-trivial trace-

free deformation tensor and satisfies the κ-constraint equation (3.8). However,

Proposition 2.7 implies that this is impossible for self-similar solutions with

κ = 0!6 In contrast, if we allow κ to be non-zero, then, as shown in Appen-

dix A, we have an infinite class of solutions to the κ-constraint equation where

6This is conceptually clearest in the case where Ω = 1 and we assume that bA ∼ ǫ. In this

case (3.8) suggests that /div b ∼ ǫ2 and, along {u = −1} ∩ {v = 0}, equation (3.8) becomes of

the form

/div b =
1

4

∣∣ /∇⊗̂b
∣∣2 +O

Ä
ǫ3
ä
⇒

∫

S2

∣∣ /∇⊗̂b
∣∣2 = O

Ä
ǫ3
ä
.

This argument can be iterated and suggests that no solutions bA exist.
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(
/∇⊗̂b

)
AB

is non-trivial.7 This is the crucial place where κ-self-similarity plays

a role in our construction.

We close this section with one final remark about κ-self-similar solutions:

Remark 3.4. One may consider a generalization of the notion of κ-self-

similar solutions from Definition 3.1 where instead of just being a constant along

{v=0}, κ depends on the angular variable κ(θA), and we have Lbκ|v=0=0. (If

the condition Lbκ|v=0 = 0 is violated, one may show that the e3-Raychaudhuri

equation cannot be satisfied along {v = 0}.) We will not explicitly consider such

solutions here; however, the possible existence of them will implicitly appear

later in our analysis as we approach the cone {u = 0}; see Section 9.

In the next seven subsections, we will discuss the main steps of the proof

of our main result Theorem 1.

3.2. Degenerate transport equations on S2 . In Section 4 we will carry out

an analysis of certain classes of degenerate transport equations on S2. The

linear version of these equations come in two main forms:

(1) The first type is of the form (u+ LXu+ h · u)A1···Ak
= FA1···Ak

, where XA

is a given vector field on S2, h =
∑k

i=0 ci
Ä
h(i)
ä B1···Bi

A1···Ai
is a given linear

combination of (i, i)-tensors on S2 for i ∈ [0, k], and FA1···Ak
is a given

tensors on S2. We will furthermore have a smallness assumption on XA

and h. We will show that these equations have unique solutions uA1···Ak

that satisfy suitable a priori estimates. The basic idea is to use the smallness

of XA and h to treat these equations as perturbations of the identity.

(2) The second type of equation, called the “κ-singular equation,” will be of

the form

(3.9)

Å
LbfAB −

(
/∇⊗̂b

)C
(A
fB)C −

1

2
/div bfAB

ã
− 2κfAB = HAB,

where bA is a given vector field on S2, we have a Riemannian metric /gAB
on S2, κ is as in Definition 3.1, and H is a given trace-free symmetric

2-tensor on S2. The goal will be to show that there exists a unique solution

fAB satisfying appropriate a priori estimates. For a suitable 0 < ǫ ≪ 1

we will have, schematically, that bA ∼ ǫ and κ ∼ ǫ2. In particular, this

equation cannot be treated as a perturbation of the identity. Our analy-

sis will instead be based on exploiting an anti-symmetric structure. This

7The difference with the discussion from footnote 6 is that if we allow κ 6= 0, then we have

/div b =
1

4

∣∣ /∇⊗̂b
∣∣2 − 4κ+O

Ä
ǫ3
ä
,

and for an appropriate value of κ ∼ ǫ2, there are no obstructions to finding a solution with
/∇⊗̂b 6= 0.



NAKED SINGULARITIES FOR THE EINSTEIN VACUUM EQUATIONS 265

anti-symmetric structure leads easily to L2-estimates for fAB, but we will

have to work considerably harder for higher order estimates. We will also

consider an evolutionary analogue of the κ-singular equation on [0,∞)×S2:

(3.10) LsfAB +

Å
LbfAB −

(
/∇⊗̂b

)C
(A
fB)C −

1

2
/div bfAB

ã
− 2κfAB = HAB.

This will be treated in a similar fashion to the κ-singular equation.

Equations of these types arise in the following fashion: For a κ-self-similar

solution, let φ stand for one of expressions in (3.4) or (3.5). Then we have that

φ
(
u, v, θA

)
= u−cφ̌

(
v
u , θ

A
)

for a suitable integer c and some φ̌
(
x, θA

)
that has

a regular limit as x→ 0 . In view of this, we will have that

Ω∇3φ = −
v

u
Ω∇4φ+ Lbφ+ lower order terms.

Since we will also have that vΩ∇4φ→ 0 as v → 0, it is thus clear that whenever

we restrict a Ω∇3φ equation to {v = 0} we will obtain an equation of the form

Lbφ+ lower order terms = 0.

We will need to construct solutions to these equations in certain cases, and

in all of these cases except when we study Ω−1χ̂, these equations will be of

the type mentioned in item (1). When we carry out this same procedure for

Ω−1χ̂, the restriction of the equation for Ω∇3

(
Ω−1χ̂

)
leads to the study of

equation (3.9). Lastly, equation (3.10) will arise when we construct outgoing

characteristic initial data for our solutions. We will want the corresponding

Ω−1χ̂ to be self-similar to leading order as v → 0, and thus the equation for

Ω∇3

(
Ω−1χ̂

)
will lead to an equation of the form (3.10) that must hold along

this initial outgoing null hypersurface to leading order as v → 0.

Finally, we will use the linear theory developed to undertake a detailed

analysis of certain classes of solutions to the nonlinear κ-constraint equation (3.8).

Remark 3.5. Though we will not pursue this direction, we could derive

formal expansions for κ-self-similar metrics near {v̂ = 0} in the spirit of

Fefferman–Graham [FG85], [FG12]. We note, however, a significant difference

between our setting and that of Fefferman–Graham; namely, the formal expan-

sions of [FG85], [FG12] are algebraic in that successive terms in the expansion

are given by rational functions of (angular derivatives of) previous terms in the

expansions, while in our setting deriving even a formal expansion will require

one to solve degenerate transport equations of the type discussed above.

3.3. Constructing the characteristic initial data sets. In Section 5 we con-

struct classes of characteristic initial data sets along the hypersurfaces {v̂ = 0}
∩ {u ∈ [−1, 0)} and {u = −1} ∩ {v̂ ∈ [0, v0)} for some 0 < ǫ ≪ v0 ≪ 1.

The desired solution for our main result Theorem 1 will be constructed from

this characteristic initial data. As we have mentioned before, the solutions we
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construct will not be globally κ-self-similar; nevertheless, they will become ap-

proximately κ-self-similar as v
−u → 0. This approximate κ-self-similarity will

be reflected in the construction of the characteristic initial data sets.

Before we describe the construction we make the following point about

working in the
(
u, v̂, θA

)
coordinates versus the

(
u, v, θA

)
coordinates: Strictly

speaking, the local existence results must be applied to the metric in
(
u, v̂, θA

)

coordinates, since it is only in these coordinates the full metric g extends reg-

ularly to {v̂ = 0}. However, any statement in the
(
u, v̂, θA

)
can be translated

into an equivalent statement in the
(
u, v, θA

)
coordinates and, as we have men-

tioned before, it is often more convenient to work with metric and double-null

quantities defined in the (u, v, θA) coordinates.

We return now to the discussion of characteristic initial data. Keeping

Lemma 3.1 in mind, the incoming characteristic data we may prescribe are

the restrictions to {v = 0} of vκΩ, bA, and /gAB, where, κ > 0 is, for the

moment, a free parameter. Since the change of variables (u, v) 7→ (λu, λv)

leaves the hypersurface {v = 0} invariant (keeping Convention 3.1 in mind),

we immediately obtain a notion of being κ-self-similar along {v = 0}. Namely,

the incoming characteristic initial data will be κ-self-similar along {v = 0} if

there exist a function Ω̌(θA), a vector field b̌A(θB), and a Riemannian metric

/̌gAB(θ
C) on S2 such that

Ä
vκΩ, bA, /gAB

ä
|v=0 =

Ä
(−u)κΩ̌, u−1b̌A, u2/̌gAB

ä
.

Furthermore, our choice of incoming characteristic initial data must satisfy the

κ-constraint equation (3.8). We allow as our initial data any solution to (3.8)

that satisfies certain regularity and smallness assumptions and if bA takes a

certain specific form to leading order in the small parameter ǫ that will measure

the size of b|v=0; see Definition 4.5. In Appendix A we construct an infinite

class of such admissible solutions. For a small constant 0 < ǫ ≪ 1, for all of

these solutions we will have that

(3.11) |b| ∼ ǫ,
∣∣ /div b

∣∣ . ǫ2, |ϕ| . ǫ2, | log Ω| . ǫ2, κ ∼ ǫ2,

where /gAB = u2e2ϕ/̊gAB for /̊gAB denoting the round metric. (We will suppress

in this introductory section certain ǫ−δ losses for 0 < δ ≪ 1.) Having thus

determined this incoming data, we set

Ä
Ω(in), (bA)(in), /g

(in)
AB

ä .
=
Ä
(−u)κΩ̌, u−1b̌A, u2/̌gAB

ä
.

The next piece of characteristic data we need to define is the value of the

torsion ζA, or equivalently, ηA restricted to (u, v) = (−1, 0). From Lemma B.3

and the choice of incoming characteristic data above, in the eventual solution
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ηA satisfies the following equation along {v = 0}:

∇∂u+bηA+
3

2

Å
2

u
+ /div b

ã
ηA +

1

2

((
/∇⊗̂b

)
· η
)
A

= 2 /∇A (Lb log Ω)− /div
(
/∇⊗̂b

)
A
+

1

2
/∇A /div b.

(3.12)

Note that ∂u + bA /∇A has integral curves which are tangent to {v = 0}, and

the right-hand side of (3.12) will be O
(
ǫu−2

)
. In particular, keeping (3.11)

in mind, it is straightforward to see that solutions of (3.12) with generic data

posed at {u = −1} will satisfy supS2 |η| & |u|−3+Cǫ for a suitable constant C,

independent of ǫ. This behavior is more singular than the κ-self-similar rate of

|u|−1 and we would not be able to effectively control the resulting solution on

a long enough time-scale. We will thus need to fine-tune the initial data for ηA
so as to arrange for ηA to satisfy |η| ∼ |u|−1 (cf. Proposition 2.6). To see how

we might carry out this fine-tuning, it is useful to first note that if (M, gµν) is

κ-self-similar, then we would have both |η| ∼ |u|−1 and that

(3.13) ∇∂u+bηA|v=0 = LbηA −
1

2

((
/∇⊗̂b

)
· η
)
A
−

1

2

Å
2

u
+ /div b

ã
ηA.

(This last expression is derived by using that in a κ-self-similar spacetime and in

a coordinate frame we would have that ηA
(
v, u, θB

)
= η̌A

Ä
v
−u , θ

B
ä
.) Plugging

(3.13) into (3.12) and restricting to {u = −1} leads to the equation

(3.14) LbηA +
(
−2 + /div b

)
ηA = 2 /∇A (Lb log Ω)− /div

(
/∇⊗̂b

)
A
+

1

2
/∇A /div b.

Using the theory that we will develop in Section 4, we will be able to show that

this has a unique solution. This unique solution is the prescribed value that

we use for η at (u, v) = (−1, 0).8

Now we come to the outgoing characteristic data
Ä
vκΩ(out), /g

(out)
AB

ä
along(

v, θA
)

∈ [0, v] × S2, where 0 < v ≪ 1 is a constant that we may freely

prescribe. We will take vκΩ(out) simply to be constant in the v-direction. (The

value of vκΩ(out) at v = 0 is fixed already by the value of vκΩ(in) at u = −1.)

Since the value of /gAB is already determined at v = 0 and trχ is determined

by the constraint (2.41), the prescription of /g
(out)
AB may be considered roughly

equivalent to the prescription of Ω−1χ̂AB along v ∈ [0, v] and Ω−1 trχ at v = 0;

see the proof of Proposition 5.4 for details. The problem of prescribing Ω−1 trχ

is similar to ηA; generic choices of Ω−1 trχ along (u, v) = (−1, 0) would lead

to Ω−1 trχ having a singular behavior as u → 0, which is more singular than

8Note that if we solve the transport equation (3.12) for η from initial data solving (3.14),

then by uniqueness of solutions to transport equations, it must be the case that in the

coordinate frame ηA
(
u, θA

)
= η̌A

(
θB
)

and that η solves (3.14) when restricted to {u = −1}.
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the κ-self-similar rate. Just as with ηA there is a specific value of Ω−1 trχ,

obtained by solving the equation

(3.15)

Lb
(
Ω−1 trχ

)
+
(
Ω−1 trχ

)Å1
u
+ div b+

2κ

u
+ 2Lb log Ω

ã
= −2K+2 /divη+2 |η|2,

which leads to a behavior consistent with κ-self-similarity. It is this unique

value of Ω−1 trχ determined by this equation and the analysis of Section 4

that we take for Ω−1 trχ|(u,v)=(−1,0).

The prescription for Ω−1χ̂AB will be more complicated than that for ηA
and Ω−1 trχ. We need to pose this for v ∈ [0, v] but it will be conceptually

clarifying to first focus on the prescribed value of Ω−1χ̂AB at (u, v) = (−1, 0).

In the eventual solution, a consequence of (2.7) is that along {v = 0} we will

have that Ω−1χ̂AB satisfies the following propagation equation:

∇∂u+b

(
Ω−1χ̂

)
AB

+
1

2

Å
2

u
+ /div b

ã (
Ω−1χ̂

)
AB

−
2κ

u

(
Ω−1χ̂

)
AB

=
(
/∇⊗̂η

)
AB

+
(
η⊗̂η

)
AB

−
1

4

(
Ω−1 trχ

) (
/∇⊗̂b

)
AB

,

(3.16)

where ηA and Ω−1 trχ have already been determined in the above analysis.

This equation is schematically of the form

(3.17) ∇∂u+b

(
Ω−1χ̂

)
AB

+
1 +O (ǫ)

u

(
Ω−1χ̂

)
AB

−
2κ

u

(
Ω−1χ̂

)
AB

= O
(
ǫu−2

)
.

Note that whether or not solutions Ω−1χ̂AB to equation (3.16) with generic

data at u = −1 satisfy the κ-self-similar bound
∣∣Ω−1χ̂

∣∣ . |u|−1 depends on

the O(ǫ) term on the left-hand side of (3.17)! Using the theory developed in

Section 4, one can in fact show that generic solutions do not satisfy the κ-

self-similar bound. Thus, as with ηA and Ω−1 trχ we need to fine-tune the

value of Ω−1χ̂AB on (u, v) = (−1, 0). We start by observing that if (M, gµν) is

κ-self-similar, then we would have both
∣∣Ω−1χ̂

∣∣ ∼ |u|−1 and that

(3.18)

∇∂u+b

(
Ω−1χ̂

)
AB

|v=0 =
1

u

(
Ω−1χ̂

)
AB

+ Lb
(
Ω−1χ̂

)
AB

− 2
(
Ωχ
)C

(A
χ̂B)C .

Plugging (3.18) into (3.17) leads to

Lb
(
Ω−1χ̂

)
AB

−

Å
1

2
/div b−

2κ

u
− 2Lb log Ω

ã
Ω−1χ̂AB −

(
/∇⊗̂b

)C
(A

(
Ω−1χ̂

)
B)C

=
(
/∇⊗̂η

)
AB

+
(
η⊗̂η

)
AB

−
1

2

(
Ω−1 trχ

) (
/∇⊗̂b

)
AB

,

(3.19)

which is essentially the κ-singular equation (3.9). Using the theory developed

in Section 4 we will be able to show that there is a unique solution Ω−1χ̂AB to
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this equation; however, we will only have the estimate |Ω−1χ̂|v=0| ∼ ǫ−1|u|−1.

(Conceptually, the source of the amplification can be easily understood if one

simply drops the anti-symmetric operator term in parentheses in (3.9) and

refers to (3.11).) In particular, this implies that for 0 ≤ v
−u . 1, the best

L∞ bound we can hope to propagate for χ̂AB into our spacetime (M, gµν) is∥∥Ω−1χ̂
∥∥
L∞(S2u,v)

. ǫ−1|u|−1.

Given the largeness of χ̂AB in L∞, we can only hope to control the solution

on a long time-scale if χ̂AB becomes small after integration in v. In fact, we

will eventually show something much stronger; that is, we will eventually show

that |χ̂| ∼ ǫ|u|−1 once v
−u & e−(Cǫ)−1

! To understand the possible behavior

of χ̂AB for v
−u > 0, and how that affects what characteristic data we should

impose, we need to consider equation (3.16) for v > 0. For 0 < v
−u ≪ 1,

we expect (optimistically) that the right-hand side and the coefficients of the

Ω−1χ̂AB on the left-hand side will be roughly constant in v
−u . Furthermore,

just as along {v = 0}, we expect that the initial data for Ω−1χ̂AB along {u =

−1}∩{0 ≤ v ≪ 1} needs to be fine-tuned in order for Ω−1χ̂AB to have a bound

as u→ 0 that is consistent with κ-self-similarity. This suggests that we make a

self-similar ansatz for Ω−1χ̂AB, freeze the coefficients of (3.16) with their values

at {v = 0}, and then try to understand the set of solutions to (3.16). Since the

resulting equation involves only κ-self-similar quantities, it suffices to consider

the restriction to {u = −1} ∩ {0 ≤ v ≪ 1}. We then obtain the following

analogue of (3.19) along {u = −1} ∩ {0 ≤ v ≪ 1}:

vL∂v
(
Ω−1χ̂

)
AB

+ Lb|v=0

(
Ω−1χ̂

)
AB

−

Å
1

2
/div b+ 2κ− 2Lb log Ω

ã
|v=0

(
Ω−1χ̂

)
AB

−
((
/∇⊗̂b

)
|v=0

)C
(A

(
Ω−1χ̂

)
B)C

=

Å
/∇⊗̂η + η⊗̂η −

1

2

(
Ω−1 trχ

) (
/∇⊗̂b

)ã
AB

|v=0.

(3.20)

Equation (3.20) is a (degenerate) transport equation that, after the change

of variables s
.
= − log(v), is of the same essential form as equation (3.10). The

value of Ω−1χ̂AB that we will impose along {u = −1} will be, to leading order

as v → 0, a suitable solution to equation (3.20). We determine this “suitable

solution” as follows. Along integral curves of ∂s + bA /∇A, equation (3.20) be-

comes an ordinary differential equation. In particular, solutions to (3.20) are in

one-to-one correspondence with initial data for (3.20) prescribed at S2−1,v. Our

desired Ω−1χ̂AB is then obtained by solving (3.20) with the “initial condition”

that Ω−1χ̂AB|v=v = 0. Using the theory developed in Section 4 we will see

that this solution converges as v → 0 to the unique solution to (3.19). Thus,

we see that this choice of data effectively drives down Ω−1χ̂AB, as v increases

from 0, from a value of size ǫ−1 to 0 in a fashion that, to leading order, is



270 IGOR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

consistent with κ-self-similar bounds. In fact, we will see that Ω−1χ̂AB ∼ ǫ for

v ∈
î
C exp

Ä
− (Cǫ)−1

ä
, v
ó

for a suitable constant C, which is independent of ǫ.

The fundamental downside of this procedure is that Ω−1χ̂AB will only be

Hölder continuous as v → 0.9 This restricts the regularity of the solutions we

construct. On a more technical level, this has the effect that
∥∥Ω−2α

∥∥
L2(S2−1,v)

∼

v−1+Cǫ2 as v → 0 that, among other things, means that αAB is not in L2
v and

cannot be controlled directly by energy estimates. However, the most singular

part of αAB will behave in an approximately κ-self-similar manner, and we will

be able to effectively subtract it off.

Having determined our initial data, we may apply Theorem 2.4 to obtain

the existence of a solution in a region as follows:

{v̂
=
0}

{u
=
−
1}

(−1, 0)

(0, 0)

(−1, v)

Note that the region of local existence obtained by Theorem 2.4 degenerates as

we approach the point (u, v̂) = (0, 0) because the size of our incoming initial

data is diverging as we approach u = 0 along {v̂ = 0}. In particular, we do not

have any quantitative control of the curve represented by the dashed line as it

approaches (0, 0).

3.4. Bootstrap argument for region I. In Section 6 we will carry out a

bootstrap argument and eventually show that the solution constructed in the

previous section may be extended to the region {0 ≤ v
−u ≤ v} ∩ {u ∈ (0,−1]}:

v
−u = v

{v̂
=
0}

{u
=
−
1}

(−1, 0)

(0, 0)

(−1, v)I

Recalling that 0 < ǫ ≪ v ≪ 1 and that Ω−1χ̂AB|v=0 ∼ ǫ−1, we see that

existence up to the hypersurface v
−u = v may be a considered a “semi-global”

existence result. The scheme we shall use to control the solution in this region

9We note that this loss of regularity appears to be a genuine feature associated to the

construction of κ-self-similar solutions that become small away from the cone {v̂ = 0}. Thus,

to construct more regular naked singularities, one must either deviate from solutions based

on κ-self-similarity or give up on obtaining smallness away from {v̂ = 0}.
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is very close in spirit to the scheme used in the work [RSR18], and we refer the

reader to Section 2 of [RSR18] for an overview of how one carries out scale-

invariant estimates for the curvature components and Ricci coefficients. Here

we will simply note the key differences of this paper with the work [RSR18]:

(1) As in [RSR18], we will not carry out energy estimates directly with null

curvature components, but instead use certain renormalizations of them.

Keeping Lemma 3.1 in mind, we will define

α̃AB
.
= Ω2αAB − lim

v→0
Ω2αAB, β̃

A

.
= Ωβ

A
− lim
v→0

Ωβ
A
,

ρ̃
.
= ρ− lim

v→0
ρ, σ̃

.
= σ − lim

v→0
σ.

Here the limits are taken in a Lie-propagated frame. Other than the

weighting by the lapse Ω, this is analogous to the scheme from [RSR18].

Since 0 < ǫ ≪ v, unlike in [RSR18], we cannot compensate for the large-

ness of χ̂AB (and hence βA) with the smallness of v
−u . Instead we will

explicitly subtract off a leading order self-similar ansatz for χ̂AB (and

hence βA).10 More specifically, we define
⊲

Ω−1χ̂AB by self-similarly ex-

tending Ω−1χ̂AB|u=−1 to the whole spacetime, and then define
⊲

Ω−2αAB

and
⊲

Ω−1βA to be the parts of αAB and βA that are sourced by
⊲

Ω−1χ̂AB
in (2.4) and (2.18) respectively; that is,

⊲

Ω−2αAB
.
= −

Å
v

−u

ã2κ(Å v

−u

ã−2κ

Ω−2

)
Lv

Ç
⊲

Ω−1χ̂

å
,

⊲

Ω−1βA
.
= − /div

Ç
⊲

Ω−1χ̂

å

A

− ηB

Ç
⊲

Ω−1χ̂

å

AC

/g
BC .

Then we set

α̃AB
.
= Ω−2αAB −

⊲

Ω−2αAB,

β̃A
.
= Ω−1βA −

⊲

Ω−1βA − lim
v→0

ï
1

2
/∇
(
Ω−1 trχ

)
A
−

1

2
ηA
(
Ω−1 trχ

)ò
.

We will find that α̃AB and β̃A are both vanishing as v → 0 and have size ǫ.

(2) The renormalization procedure for α̃AB and β̃A produces inhomogeneous

terms in the Bianchi equations that are large in L∞. However, when car-

rying out the energy estimates, these inhomogeneous terms are always in-

tegrated in v and these integrals will be sufficiently small.

10We note, however, that an analogy may be drawn to the renormalizations of α carried

out in [RSR18] in the n > 2 case.
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(3) The Ricci coefficient ω will satisfy, in general, Ωω ∼ ǫ2v−1. Because v−1

is not integrable, we cannot treat such terms perturbatively. Thus, we will

always multiply through with an appropriate power of the lapse Ω so as

to remove ω from the equations. This elimination of ω in fact removes

the need to have any estimates for ω in our bootstrap norm. The correct

power of the lapse turns out be completely determined by signature con-

siderations; that is, you simply multiply any Ricci coefficient or curvature

component of signature s by Ωs.

(4) As opposed to the situation studied in [RSR18], the Ricci coefficients are, in

general, non-vanishing as v → 0. This will force us to work with renormal-

izations of the Ricci coefficients that are analogous to the renormalizations

of the curvature components.

3.5. Bootstrap argument for region II. In Section 7 we will carry out a

bootstrap argument and eventually show that the solution constructed in the

previous section may be extended to the region {v ≤ v
−u ≤ v−1} ∩ {u ∈

(0,−1]} ∩ {v ≤ v}:

{
v
−u

= v
−1 }

{v
=
v}

{v̂
=
0}

{u
=
−
1}

(−1, 0)

(0, 0)

(−1, v)I

II

In this region we will have that u and v are comparable. Furthermore, we

will have shown in the previous section that the largeness of χ̂AB has dissipated

by the time the hypersurface v
−u = v is reached. These two facts makes the

analysis considerably simpler than that of region I. In particular, since the

natural “time” variable is v
−u , this region may be considered to be a finite-in-

time local existence result. The key technique is to use conjugation of various

equations by exp
(
D v
u

)
where 1 ≪ D ≪ ǫ−1 to generate lower order terms of

good signs.

3.6. Shifting the shift and gluing in an asymptotically flat cone. In Sec-

tion 8 we will carry out two preliminary changes to the solution constructed in

Section 7.

First we will equip the portion of the spacetime covered by {1 ≤ v
−u ≤ v−1}

with a new double-null foliation where the shift vector is in the e4-direction; see

Remark 2.2. We briefly explain the reason for this: In the original double-null

foliation, the shift vector bA satisfies the propagation equation

(3.21) L∂vb
A = −4Ω2ζA.
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From the analysis of Section 7 we will have that
∣∣b| v

−u
=v−1

∣∣ ∼ ǫ, which im-

plies that in the Lie-propagated coordinate frame, bA| v
−u

=v−1 ∼ ǫv−1. Now

let ũ < 0 and consider a point (ũ, ṽ) to the future of v
−u = v−1. If we try

to integrate (3.21) from v
−u = v−1 to control bA, the best estimate we could

possibly obtain is

|b| . ǫ
ṽ

−ũ
,

which severely blows up as ũ → 0. (In principle, there could be cancellations

with the right-hand side of (3.21), but we will not be able to exploit this.)

However, once we have shifted the double-null foliation to put the shift in the

e4 direction, then instead of (3.21) we will have

(3.22) L∂ub
A = 4Ω2ζA.

This equation will allow us to obtain the desired estimates for bA in a straight-

forward fashion.

The second important change will be to glue in an asymptotically flat cone

H along {u = −v2} (which will thus be completely contained in the region

{ v
−u ≥ v−1/2}) and apply a local existence result to extend our solution to the

following region:

{v̂
=
0}

{u
=
−
1}

(−1, 0)

(0, 0)

(−1, v)I

ĨI

H

We will pose data along H so that by a domain of dependence argument the

solution in the region I and ĨI agrees with the corresponding subset of the

previous solution produced from Section 7. We emphasize that at this step of

the argument, we will not have quantitative control of the region of existence

to the future of H.

3.7. The bootstrap argument for region III. In Section 9 we will carry out

a bootstrap argument and eventually show that the solution constructed in the

previous section may be extended up to {u < 0}:
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{u
=
0}

{v̂
=
0}

{u
=
−
1}

(−1, 0)

(0, 0)

(−1, v)I

ĨI

III H

We now explain some of the key ideas for this bootstrap argument:

3.7.1. Expected bounds. The basic expectation as we approach u = 0 for

{v . 1} is that the solution may be modeled by a κ-self-similar solution where

the role of {v = 0} is replaced by {u = 0}, and where κ may acquire some

angular dependence in the sense of Remark 3.4. However, there is a very

important difference with the analysis that we undertook along {v = 0} and for

0 ≤ v
−u . 1: Since we will not require precise information about the u→ 0 limits

of all of the double-null unknowns in order to close our bootstrap argument,

it will turn out that we will not need to obtain precise information about the

lapse Ω, shear χ̂
AB

, or curvature component αAB .11

Due to the asymptotically flat cone H, we do not expect the solution to

be exactly modeled on a κ-self-similar solution when v ≫ 1; nevertheless, we

will propagate scale-invariant bounds. In particular, for all Ricci coefficients

ψ 6= ω, ηA, χ̂AB and curvature components Ψ 6= αAB, we expect the following

bounds to hold in region III:

(3.23)
∣∣Ω−sψ∗

∣∣ . ǫv−1,
∣∣Ω−sΨ

∣∣ . ǫv−2,

where we let s denote the signature of the Ricci coefficient ψ or the curvature

component Ψ, and ψ∗ denotes the difference of ψ and its Minkowski value.

Note that in contrast to the situation in region I, we will want to eliminate

ω from our system, and it is thus natural to weight quantities with Ω−s as

11The main reason for the differences in the study of the solution as u→ 0 versus v → 0 is

the following: Our various estimates will employ |u| and v weights. In order to generate lower

order terms of a good sign, in these weights the power of |u| will be generally be non-negative

and the power of v will be non-positive. In some of the situations when the power of the

v-weight is strictly negative, then we will need to subtract off the leading behavior as v → 0

of our Ricci coefficient or curvature component so that our corresponding initial flux is finite.

No analogous issue occurs in the region u→ 0.
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opposed to Ωs. The lapse Ω will satisfy the following bound:

(3.24) |log Ω| . ǫ

∣∣∣∣log
Å
v

−u

ã∣∣∣∣ .

(In principle, one expects to be able to replace ǫ with ǫ2 in (3.24) but we will

not need this improvement and thus will not try to establish such a bound.)

In analogy with the behavior of αAB near {v = 0}, for fixed v, we expect

that αAB will be singular as u → 0. In our analysis of region I, we posed

explicitly the value of χ̂AB along {u = −1}, and we could thus use this value to

effectively subtract off the singular behavior of αAB. As we approach {u = 0}
it is less straightforward to regularize αAB, and we will instead work with

the renormalized Bianchi equations where αAB has been removed; see (2.31)–

(2.36). Similarly, we will forgo explicitly renormalizing out the most singular

self-similar behavior for χ̂
AB

. Instead, for some 0 < p ≪ 1, we will propagate

the following bound:

(3.25)
∣∣∣Ω−1χ̂

∣∣∣ . ǫ

Å
v

−u

ãp
v−1.

Note that this is weaker than the expected bounds
∣∣∣Ω−1χ̂

∣∣∣ . min

ÅÅ
1 +

∣∣∣∣logk
(−u
v

)∣∣∣∣
ã
ǫ, ǫ−1

ã
,

which are the true analogues of the bounds satisfied by χ̂AB near {v̂ = 0}.
For ω, in analogy to the scheme used in region I, we will multiply through

by a power of the lapse Ω that eliminates ω. Thus we will never need to estimate

ω in the context of the bootstrap argument.

In contrast to region I, we will propagate estimates that are consistent with

ηA blowing up as u→ 0; more concretely, we will have, for some 0 < p≪ 1,

(3.26) |η| . ǫ

Å
v

−u

ãp
v−1.

Conceptually, the reason we must allow for this is because of the potential

existence of κ-self-similar solutions where κ has angular dependence; see Re-

mark 3.4. If such a solution existed, then ηA would blow-up logarithmically as

u→ 0.

3.7.2. Energy estimates. We now explain the basic idea for our energy esti-

mates. Since we are working with the renormalized Bianchi equations of [LR17],

our “first” Bianchi pair is (β
A
, (ρ, σ)). We write the equations schematically as

Ω∇4

(
Ωβ
)
A
+ (Ω trχ)

(
Ωβ
)
A
= − /∇Aρ̌+

(
∗ /∇
)
A
σ̌ + · · · ,(3.27)

Ω∇3ρ̌ = − /div
(
Ωβ
)
+ · · · ,(3.28)

Ω∇3σ̌ = /div∗
(
Ωβ
)
+ · · · .(3.29)



276 IGOR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

Written in this way, there are no appearances of ω in the equations (3.27)–

(3.29). Next, we would like to conjugate these equations by a suitable weight

function w, contract (3.27) with wΩβ
A
, contract (3.28) with wρ̌, contract (3.29)

with wσ̌, and then integrate by parts. It will be a consequence of our bootstrap

assumptions that within region III,

(3.30)

∣∣∣∣Ω trχ−
2

v

∣∣∣∣ .
v

v
.

With this in mind, we let 0 < p≪ 1 and set

w
.
=
(−u
v

)p
v−3/2.

(In reality, to avoid certain logarithmic divergences, we use the weight w̃
.
=(

−u
v

)p
v−3/2(−u)−δ and then multiply the final estimate by (−u)δ, but we will

suppress this point for the introduction.)

We obtain

Ω∇4

(
wΩβ

)
A
+

Å
(Ω trχ)−

Å
3

2
+ p

ã
v−1

ã (
wΩβ

)
A

= − /∇A (wρ̌) +
(
∗ /∇
)
A
(wσ̌) + w (· · · )A ,

(3.31)

Ω∇3 (wρ̌) +
p

−u
wρ̌ = − /div

(
wΩβ

)
+ w (· · · ) ,(3.32)

Ω∇3 (wσ̌) +
p

−u
wσ̌ = /div∗

(
wΩβ

)
+ w (· · · ) .(3.33)

Using (3.30), we see that all of the lower order terms produced by scheme are

positive; furthermore, in the ρ̌ and σ̌ equations, the lower order is proportional

to u−1 which is a good weight since we are in a region where −u
v ≪ 1.

A similar scheme is used for the rest of the Bianchi pairs. Note that the

(−u)−1 weights in the lower order terms will produce very good spacetime esti-

mates for all curvature components except for β
A
; in particular, the lower order

term proportional to trχ is only important in the analysis of β
A
’s equation.

For the control of the nonlinear terms, the key observations are the ab-

sence of nonlinear terms that involve contractions of β
A

and χ̂
AB

and the

absence of any nonlinear term with ηA in (2.36). Finally, in order to apply

Sobolev inequalities, we will also need to commute with angular derivatives;

these commutations will be carried out in a way that avoids the creation of

terms containing ηA in the ∇4 equations; see (2.37).

3.7.3. Integrating transport equations. We close this sketch of our scheme

for the bootstrap argument with a discussion about integrating transport equa-

tions. For every double-null quantity y, other than Ω, ω, χ̂
AB

, β
A
, ηA, and

αAB we will have a ∇3 equation of the form

∇3y + aωy = · · · .
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Here a ∈ R is a suitable constant, which may be determined by the signature

of y. Letting s denote the signature of y, we may derive from this equation

∇u

(
Ω−sy

)
= Ω2 (· · · ) ,

where the terms in the · · · all are expected to have regular limits as u → 0.

Since Ω2 blows-up slowly as u → 0, we can easily integrate these equations

in the u-direction to obtain good estimates for y. Note that even if the only

estimates available for the terms in the · · · blow-up as u → 0, as long as the

rate is integrable, the estimate will still close. This is why it will not be a

problem that our energy estimates involve weights that degenerate as u→ 0.

For the estimates of Ω, χ̂
AB

, ηA, and β
A
, we will only have access to ∇4

equations. (Note that in our bootstrap argument we will not estimate ω or

αAB.) More specifically, we will have that
Ä
Ω, χ̂

AB
, ηA
ä

satisfy equations of

the following forms:

Ω∇4 log Ω = O
(
ǫv−1

)
,

Ω∇4

Ä
Ω−1χ̂

AB
, ηA
ä
+

Å
1 +O (ǫ)

v

ãÄ
Ω−1χ̂

AB
, ηA
ä
= O

(
ǫv−2

)
.

Integrating these from the hypersurface v
−u = v−1, it is immediately clear

that we cannot expect to show that these quantities are bounded as u → 0;

cf. the discussion of equation (3.21) above. Instead we will close the bootstrap

argument with the bounds (3.24), (3.25), and (3.26).

3.8. Incompleteness of future null infinity, the (u, v̂, θA) coordinates, and

the Hawking mass. In Section 10 we will first truncate our solution to region

to {−v2 ≤ u < 0} so that we obtain a globally hyperbolic region:

{u
=
0}

(0, 0)

Ĩ

ĨI

III

{u
=
−
v
2 }

Then we will show the solution obtained has an incomplete future null

infinity in the sense of Definition 1.1 (this will be straightforward given the

estimates we will have already established), we will define global (u, v̂, θ) co-

ordinates by setting v̂ = v1−2κ (see Definition 3.1), and finally conclude the

proof of Theorem 1 by computing the Hawking mass of each sphere S2u,0 to

establish (1.4).
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4. Degenerate transport equations on S2

In this section we will establish existence results and a priori estimates for

various classes of linear and nonlinear PDE’s that will show up in the context

of setting up our characteristic initial data.

We let T (s,k)
(
S2
)

denote the space of (s, k)-tensors on S2, and Ŝ
(
S2
)

will denote the space of symmetric trace-free (0, 2)-tensors. Using the covari-

ant derivative for the round sphere, we may define the corresponding Sobolev

spaces H̊j . A metric /gAB ∈ H̊max(2,j) also allows us to the Sobolev spaces

Hj
Ä
T (s,k)

(
S2
)ä

for j = 0, 1, . . . by

‖u‖Hj
.
=

j∑

i=0

∥∥∥ /∇i
u
∥∥∥
L2
,

where, in general, we let /∇A denote the covariant derivative associated to

a metric /gAB. We will denote the covariant derivative corresponding to the

round sphere by ∇̊A. We will write integrals with d /Vol and ˚dVol to denote

integration against the volume forms of /gAB and /̊gAB respectively, and /div and

d̊iv to denote the divergence operators of /gAB and /̊gAB respectively.

We collect various facts about Sobolev spaces inequalities that we will use

later in the following lemmas. We start with two basic Sobolev inequalities

on S2.

Lemma 4.1. On the round sphere, we have, for any tensor u,

(4.1) ‖u‖Lp .p ‖u‖
2
p

L2

∥∥∥∇̊u
∥∥∥
1− 2

p

H̊1
∀p <∞, ‖u‖L∞ . ‖u‖

1
2

L2 ‖u‖
1
2

H̊2
.

Proof. This simply follows by applying Euclidean Sobolev inequalities in

suitable coordinate charts. �

It will be useful to compare Sobolev spaces generated by various metrics

/gAB and those generated by the round metric /̊gAB.

Lemma 4.2. Let i ≥ 2, k ≥ 0, and /gAB be a Riemannian metric on S2

satisfying at least one of the following two assumptions:

(1) We have /gAB = e2ϕ/̊gAB for ϕ ∈ H̊ i
(
S2
)
.

(2) We have
∥∥/g − /̊g

∥∥
H̊i ≤ C(i, k) for a suitably small constant C(i, k) that

depends only on i and k .

Then we have that for every (0, k)-tensor w ,

‖w‖Hi ∼i,k ‖w‖H̊i .

Proof. This is a straightforward consequence of Lemma 4.1. �

The following well-known lemma is also useful.
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Lemma 4.3. Let w1 and w2 be tensors on S2 . Then, for i ≥ 2, we have

(4.2) ‖w1w2‖H̊i . ‖w1‖H̊i ‖w2‖H̊i .

Lastly, we record the formula for the commutator between a Lie derivative

and a covariant derivative.

Lemma 4.4. Let /gAB be a Riemannian metric on S2 , XA be a vector field

on S2 , and HB1···Bk
be a tensor on S2 . Then we have

[
/∇A,LX

]
HB1···Bk

=
k∑

i=1

(X)ΓBiACH
C

B1··· ···Bk
,

where

(X)ΓABC =
1

2

Ä
/∇A

(X)πBC + /∇B
(X)πAC − /∇C

(X)πAB
ä
,

and (X)π denotes the deformation tensor of X .

Proof. This is Lemma 7.1.3 in [CK93]. �

4.1. First order perturbations of the identity.

Definition 4.1. Let XA be a C1 vector field on S2, and let

h =
k∑

i=0

ci
Ä
h(i)
ä B1···Bi

A1...Ai

denote a linear combination of tensors h(i) ∈ T (i,i) with each h(i) continu-

ous. Then we define a differential operator P acting on tensors uA1···Ak
∈

C1
Ä
T (0,k)

(
S2
)ä

by

PuA1···Ak

.
= (u+ LXu+ h · u)A1···Ak

,

where we do not specify which indices the contraction (h · u)A1···Ak
is taken

with respect to. (Note, however, that this will always be a k-tensor; e.g.,

h B1···Bi
A1···Ai

uC1···Ck−iB1···Bi ∈ T (0,k).)

Our goal in this section will be to establish a theory that yields existence

and uniqueness results and a priori estimates for solutions u to

(4.3) PuA1···Ak
= FA1···Ak

,

whenever XA and h satisfy suitable regularity and smallness assumptions. Ul-

timately, because of the smallness assumptions, we will be able to treat the

operator P as a perturbation of the identity. Let M ≥ 0 be a non-negative

integer. Then we define

AM
.
= sup

0≤j≤M+1

∥∥∥∇̊jX
∥∥∥
L2(S2)

+ sup
0≤j≤M

∥∥∥∇̊jh
∥∥∥
L2(S2)

,
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where the L2 spaces are defined with respect to the round metric. We will

always work with X and h that satisfy A2 <∞. Note that, by Lemma 4.1, we

will thus have
∥∥∥∇̊X

∥∥∥
L∞

+ ‖h‖L∞ . A2.

The main result of this section will be the following:

Proposition 4.5. Let M ≥ 2 be a positive integer. Then, if FA1···Ak
∈

H̊M
Ä
T (0,k)

(
S2
)ä

and A2 is suitably small, depending on (0, k) and M , and

AM <∞, then there exists uA1···Ak
∈ H̊M

Ä
T (0,k)

(
S2
)ä

solving

(4.4) PuA1···Ak
= FA1···Ak

,

and such that moreover LXuA1···Ak
∈ H̊M

Ä
T (0,k)

(
S2
)ä

. We also have that

uA1···Ak
satisfies the estimate

‖u‖H̊M + ‖LXu‖H̊M .k,r,M (AM + 1) ‖F‖H̊M .

Finally, if wA1···Ak
is another solution to (4.4) with the same right-hand side

FA1···Ak
, wA1···Ak

∈ L2 , and LXwA1···Ak
∈ L2 , then we must have that wA1···Ak

=

uA1···Ak
.

In order to prove Proposition 4.5 we will introduce an elliptic regularization

of P :

Definition 4.2. For every q > 0, we define the operator

P (q) .= P − q∆̊,

where ∆̊ is the Laplace–Beltrami operator associated to the round metric /̊gAB.

Since the operator P (q) is elliptic, it is straightforward to establish exis-

tence and uniqueness for solutions to P (q)u
(q)
A1···Ak

= FA1···Ak
.

Proposition 4.6. Let M ≥ 2 be a positive integer, q > 0, FA1···Ak
∈

H̊M
Ä
T (0,k)

(
S2
)ä

, AM < ∞, and A2 be sufficiently small independently of q .

Then there exists a unique u
(q)
A1···Ak

∈ H̊M+2
Ä
T (0,k)

(
S2
)ä

that solves

(4.5) P (q)u
(q)
A1···Ak

= FA1···Ak
.

Proof. We start by showing that ker
Ä
P (q)
ä
= 0. Indeed, suppose that

wA1···Ak
∈ H̊1

Ä
T (0,k)

(
S2
)ä

is a weak-solution to

(4.6)
(
w + LXw + h · w − q /∆w

)
A1···Ak

= 0.
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Note that the divergence theorem, a straightforward integration by parts, and

the Sobolev inequality from Lemma 4.1 yield that
∫

S2
〈LXw,w〉̊/g

˚dVol ≥ −C
∥∥LX /̊g

∥∥
L∞ ‖w‖2L2

≥ −CA2 ‖w‖
2
L2

for some constant C that just depends on k. Thus, taking the /̊gAB inner

product of (4.6) with wA1···Ak
, integrating over S2, and integrating by parts

leads to the following identity:

(4.7)

∫

S2

î
(1− CA2 − ‖h‖L∞) |w|2 + q

∣∣ /∇w
∣∣2ó ˚dVol ≤ 0.

Thus, A2 suitably small (and the Sobolev inequality (4.1)) implies wA1···Ak
= 0.

The adjoint of P (q) is clearly of the same essential form as P (q), and thus

the same integration by parts identity also implies that ker
ÄÄ
P (q)
ä∗ä

= 0.

Therefore, by standard L2-elliptic theory, given FA1···Ak
∈ H̊M

Ä
T (0,k)

(
S2
)ä

there exists a unique u
(q)
A1···Ak

∈ H̊M+2
Ä
T (0,k)

(
S2
)ä

solving (4.5). �

Now we turn to proof of Proposition 4.5

Proof. Let us fix some k throughout the proof and allow all constants to

depend on them. For each q > 0, we may appeal to Proposition 4.6 to produce

a solution u
(q)
A1···Ak

to equation (4.5). Our plan will be to show that there exists

uA1···Ak
= limq→0 u

(q)
A1···Ak

that solves (4.4) and satisfies the desired estimates.

We start by establishing estimates for u
(q)
A1···Ak

that are uniform as q→0.

Repeating the integration by parts that lead to the identity (4.7) now estab-

lishes the basic estimate

(4.8)

∫

S2

Å∣∣∣u(q)
∣∣∣
2
+ q

∣∣∣∇̊u(q)
∣∣∣
2
ã

˚dVol .

∫

S2
|F |2 .

Next, we observe that an integration by parts and Lemma 4.4 establish the

following inequality:

q

∫

S2

¨
∆̊u(q),LXu

(q)
∂
/̊g

˚dVol

≥ −Cq

∫

S2

ï∣∣LX /̊g
∣∣
∣∣∣∇̊u(q)

∣∣∣
2
+
∣∣∣∇̊LX /̊g

∣∣∣
∣∣∣∇̊u(q)

∣∣∣
∣∣∣u(q)

∣∣∣
ò

˚dVol

≥ −Cq

∫

S2

ï
(A2 +A3)

∣∣∣∇̊u(q)
∣∣∣
2
+A3

∣∣∣u(q)
∣∣∣
2
ò

˚dVol.

In particular, we can contract (4.5) with LXu
(q)
A1···Ak

, integrate by parts, and

add the result to a suitably large constant times the estimate (4.8), choose q
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so that qA3 ≪ 1, and then establish that

(4.9)

∫

S2

Å∣∣∣u(q)
∣∣∣
2
+ q

∣∣∣∇̊u(q)
∣∣∣
2
+
∣∣∣LXu(q)

∣∣∣
2
ã

˚dVol .

∫

S2
|F |2 ˚dVol.

For higher order estimates we will need to differentiate the equation. Commut-

ing through by ∇̊M produces the following equation:

(
∇̊Mu(q) + LX

Ä
∇̊Mu(q)

ä
− q
Ä
∆̊
Ä
∇̊Mu(q)

ä
+
î
∇̊M , ∆̊

ó
u(q)
ä(4.10)

+
î
∇̊M ,LX

ó
u(q) + ∇̊M

Ä
h · u(q)

ä)
B1···BMA1···Ak

= ∇̊MFB1···BMA1···Ak
.

Let us examine more closely the commutator terms. We have, using Lemma 4.4,

î
∇̊M ,LX

ó
u
(q)
B1···BMA1···Ak

=
M−1∑

i=0

Ä
O
Ä
∇̊M−iLX /̊g

ä
· ∇̊iu(q)

ä
B1···BMA1···Ak

.

(4.11)

From the definition of the curvature tensor, we also have

∣∣∣
î
∇̊M , ∆̊

ó
u(q)

∣∣∣ .M

M∑

i=0

∣∣∣∇̊iu(q)
∣∣∣ .(4.12)

Now we contract (4.10) with ∇̊Mu
(q)
B1···BMA1···Ak

and integrate by parts as

before. We end up with the estimate (using only that A2 is sufficiently small)

∫

S2

Å∣∣∣∇̊Mu(q)
∣∣∣
2
+ q

∣∣∣∇̊M+1u(q)
∣∣∣
2
+
∣∣∣LX
Ä
∇̊Mu(q)

ä∣∣∣2
ã

˚dVol

.M

∫

S2

ï∣∣∣∇̊MF
∣∣∣
2
+ q

∣∣∣
î
∇̊M , ∆̊

ó
u(q)

∣∣∣
2

+
∣∣∣
î
∇̊M ,LX

ó
u(q)

∣∣∣
2
+
∣∣∣∇̊M

Ä
h · u(q)

ä∣∣∣2
ò

˚dVol.

(4.13)

Next we will examine the various terms on the right-hand side of (4.13). Us-

ing (4.12) and an interpolation inequality, for every 0 < p ≪ 1, we may easily

establish that

q

∫

S2

∣∣∣
î
∇̊M , ∆̊

ó
u(q)

∣∣∣
2

˚dVol .M q
∥∥∥u(q)

∥∥∥
2

H̊M
(4.14)

.M q

ï
p−M−1

∥∥∥u(q)
∥∥∥
2

L2
+ p

∥∥∥u(q)
∥∥∥
2

H̊M+1

ò
.
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Taking p sufficiently small we can thus combine (4.14) with (4.9) and (4.13) to

establish

∫

S2

Å∣∣∣∇̊Mu(q)
∣∣∣
2
+ q

∣∣∣∇̊M+1u(q)
∣∣∣
2
+
∣∣∣LX
Ä
∇̊Mu(q)

ä∣∣∣2
ã

.M

∫

S2

ï∣∣∣∇̊MF
∣∣∣
2
+ |F |2 +

∣∣∣
î
∇̊M ,LX

ó
u(q)

∣∣∣
2
+
∣∣∣∇̊M

Ä
h · u(q)

ä∣∣∣2
ò
.

(4.15)

Next we turn to the term
∣∣∣
î
∇̊M ,LX

ó
u(q)

∣∣∣
2
. Using (4.11) and interpolation we

have
∫

S2

∣∣∣
î
∇̊M ,LX

ó
u(q)

∣∣∣
2

˚dVol .M

M−1∑

i=0

∫

S2

∣∣∣∇̊M+1−iX
∣∣∣
2 ∣∣∣∇̊iu(q)

∣∣∣
2

.M AM

∫

S2

ï∣∣∣∇̊M−1u(q)
∣∣∣
2
+
∣∣∣u(q)

∣∣∣
2
ò

˚dVol.

(4.16)

Similarly, one may establish that

∫

S2

∣∣∣∇̊M
Ä
h · u(q)

ä∣∣∣2 ˚dVol

. A2

∫

S2

∣∣∣∇̊u(q)
∣∣∣
2

˚dVol + C(M)AM

∫

S2

ï∣∣∣∇̊M−1u(q)
∣∣∣
2
+
∣∣∣u(q)

∣∣∣
2
ò

˚dVol.

(4.17)

Combining (4.16) and (4.17) with (4.15) and (4.9) and carrying out a straight-

forward induction argument, we obtain the desired uniform estimate

(4.18)
∥∥∥u(q)

∥∥∥
H̊M

+
∥∥∥LXu(q)

∥∥∥
H̊M

.M (AM + 1) ‖F‖H̊M .

(Note that we have simply dropped the higher order term on the left-hand side

multiplied by q.)

Now we turn to a study of the limit of the u
(q)
A1···Ak

as q → 0. Let 0 < q1 <

q2. We may easily deriveÄÄ
u(q2) − u(q1)

ä
+ LX

Ä
u(q2) − u(q1)

ä
+ h ·

Ä
u(q2) − u(q1)

ä

− q2∆̊
Ä
u(q2) − u(q1)

ää
A1···Ak

= (q2 − q1) ∆̊u
(q1)
A1···Ak

.
(4.19)

Contracting (4.19) with a suitable linear combination of
Ä
u(q2) − u(q1)

ä
A1···Ak

and LX
Ä
u(q2) − u(q1)

ä
A1···Ak

and integrating by parts as we have done above

then yields

∥∥∥u(q2) − u(q1)
∥∥∥
L2

+
∥∥∥LX

Ä
u(q2) − u(q1)

ä∥∥∥
L2

. |q2 − q1|
∥∥∥∆̊u(q1)

∥∥∥
L2

. (1 +A3) |q2 − q1| ‖F‖H̊2 .

(4.20)
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In the last inequality we have used (4.18). In particular, u
(q)
A1···Ak

and LXu
(q)
A1···Ak

form Cauchy sequences as q → 0 in L2. Moreover, by interpolating with (4.18)

we have that both u
(q)
A1···Ak

and LXu
(q)
A1···Ak

form Cauchy sequences in H̊s for

any s < M . Let uA1···Ak
∈ H̊M−1 denote limq→0 u

(q)
A1···Ak

. We clearly then have

that uA1···Ak
solves the desired equation (4.4). Next, using (4.18), a standard

weak-∗ compactness argument yields the desired bound

(4.21) ‖u‖H̊M + ‖LXu‖H̊M .M (AM + 1) ‖F‖H̊M .

Lastly, we have to show that uA1···Ak
is unique among all solutions wA1···Ak

to (4.4) where ‖w‖L2 + ‖LXw‖L2 <∞. Indeed, let wA1···Ak
be such a solution.

Then, we have

((w − u) + LX (w − u) + h · (w − u))A1···Ak
= 0.

Contracting with (w − u+ LX (w − u))A1···Ak
and integrating by parts as above

yields immediately that

‖w − u‖L2 + ‖LX (w − u)‖L2 = 0. �

4.2. The κ-constraint equation. In this section we will study the “κ-con-

straint equation.” We first collect below various constants that we will use and

their respective hierarchy of smallness:

(4.22) 0 < ǫ≪ γ ≪ δ ≪ 1.

We will assume that

ǫ
δ

500 γ−200 ≪ 1.

We next fix our conventions for spherical coordinates on S2.

Convention 4.1. Throughout the rest of the paper, we will use (θ, φ) to

denote spherical coordinates on S2, where φ ∈ [0, 2π) is the azimuthal angle,

and θ ∈ [0, π] is the polar angle. We also have the corresponding round metric

on the S2, given by the formula /̊g = dθ2 + sin2 θdφ2.

We now give a sequence of important definitions.

Definition 4.3. We say that a 4-tuple
Ä
/gAB, b

A, κ,Ω
ä

consisting of a Rie-

mannian metric /gAB on S2, a vector field bA on S2, a positive constant κ > 0,

and a function Ω on S2 satisfies the κ-constraint equation if

/div b− Lb
(
/div b
)
=

1

2

(
/div b
)2

+
1

4

∣∣ /∇⊗̂b
∣∣2

− 4κ+ 2κ /div b− 2Ω−1 (LbΩ) /div b+ 4Ω−1LbΩ.
(4.23)

The starting point for our construction of κ-self-similar solutions will be a

4-tuple
Ä
/gAB, b

A, κ,Ω
ä

satisfying the κ-constraint equation, which also satisfies
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certain regularity requirements. We now give the relevant definition. We start

by defining a certain type of “seed” data.

Definition 4.4. Given 0 < ǫ ≪ γ ≪ 1 and M0,M1 ∈ Z>0 satisfying

M0,M1 ≫ 1, “seed data” refers to any smooth vector field b̌A on S2 that

satisfies

b̌A = ǫb̃A + zA, b̃|(θ,φ)
.
=

ÇÇ∫ θ

π/2

a(θ̂)

sin θ̂
dθ̂

å
+ r

å
∂φ,

where r ∈ R satisfies |r| . ǫ, and we require that a satisfy the following:

(1) a(θ) is a smooth function of θ;

(2) a(θ) is identically 1 for θ ∈ [2γ, π − 2γ];

(3) a(θ) is identically 0 for θ ∈ [0, γ] ∪ [π − γ, π];

(4)
∣∣∣dkadθk

∣∣∣ . γ−k.

Furthermore, we require that z is a smooth vector field on S2 with

(4.24) ∇̊Az
A = 0, ‖z‖H̊M1 ≤ ǫM0 .

Remark 4.1. For

b̃ =

ÇÇ∫ θ

π/2

a(θ̂)

sin θ̂
dθ̂

å
+ r

å
∂φ,

a computation yields

(4.25) ∇̊⊗̂b̃ =
a(θ)

sin(θ)

(
∂φ⊗̂∂θ + ∂θ⊗̂∂φ

)
.

(Here we are raising and lowering indices with the round metric /̊g.)

In particular, ∣∣∣∇̊⊗̂b̃
∣∣∣
2

/̊g
= 2a2(θ).

We also have
∇̊Ab̃

A = 0.

Now we can define the notion of an (ǫ, γ, δ,N0,M0,M1)-regular 4-tupleÄ
/gAB, b

A, κ,Ω
ä
.

Definition 4.5. Let 0 < ǫ ≪ γ ≪ δ ≪ 1, (N0,M0,M1) ∈ (Z>0)
3 satisfy

N0 ≫ 1, M0 ≫ N0, and M1 ≫ N0, and recall that /̊gAB denotes the fixed choice

of a round metric on S2. We say that a 4-tuple
Ä
/gAB, b

A, κ,Ω
ä

of a metric,

vector field, constant, and function on S2 is “(ǫ, γ, δ,N0,M0,M1)-regular” if

they solve the κ-constraint equation /gAB = e2ϕ/̊gAB, bA = b̌A + ∇̊Af (for b̌A as

in Definition 4.4) with
∫
S2
f ˚dVol = 0, and we have

(4.26) ‖ϕ‖H̊N0 + ‖log Ω‖H̊N0+2 + ‖f‖H̊N0+2 . ǫ2−δ,

(4.27)
∥∥∥L∂φϕ

∥∥∥
H̊N0−1

+
∥∥∥L∂φ log Ω

∥∥∥
H̊N0+1

+
∥∥∥L∂φf

∥∥∥
H̊N0+1

. ǫM1/2.
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Remark 4.2. We briefly explain the role of the function f : The 4-tupleÄ
/gAB, b

A, κ,Ω
ä

will determine our metric along the null hypersurface {v=0}.

Since for this induced data along {v = 0} we will need to solve the null con-

straint equation (3.8), we cannot expect to freely choose each of /gAB, bA, κ,

and Ω. In the small data regime, we may consider (3.8) to be an equation that

determines d̊iv b and κ, while /gAB, Ω, and ˚curl b are free. Since the function f

satisfies ∆̊f = d̊iv b, we may consider f and κ to be determined in terms of our

choice of /gAB and Ω. (Note that ˚curl b = ˚curl b̌ is fixed by our choice for b.)

Remark 4.3. The key way in which we will use that ˚curl b = ˚curl b̌ is that

it will allow us to understand well the leading order form of b with respect to ǫ

(see Lemmas 4.9 and 4.11). This detailed information will be important in the

proof of Propositions 4.15 and 4.18.

For most of the results of this section we will assume at the beginning

that we have a (ǫ, γ, δ,N0,M0,M1)-regular 4-tuple
Ä
/gAB, b

A, κ,Ω
ä

and establish

various additional properties of the 4-tuple. (In Appendix A we show that one

may construct (ǫ, γ, δ,N0,M0,M1)-regular 4-tuples.) For the sake of brevity

we will generally refer to a (ǫ, γ, δ,N0,M0,M1)-regular 4-tuple as a “regular

4-tuple.”

Remark 4.4. It is not in fact necessary for our construction to assume that

/gAB = e2ϕ/̊gAB. Instead one may replace ϕ with
(
/g − /̊g

)
AB

in both (4.26)

and (4.27). Then, one may show that there exist a diffeomorphism F and a

function ϕ so that F ∗/gAB = e2ϕ/̊gAB and so that (4.26) and (4.27) all hold with

log Ω, bA, and f replaced by F ∗ log Ω, F ∗bA, and F ∗f . We omit the details

as we will not need this more general result.

Convention 4.2. In the remainder of this section we will often be working

with two metrics /gAB and /̊gAB, and thus there may be some ambiguity when

raising or lowering indices. Thus we make the following definitions for any

vector field XA:

Ä
∇̊⊗̂X

äAB .
= /̊g

AC
∇̊CX

B + /̊g
AB

∇̊BX
C − /̊g

AB
∇̊CX

C ,

(
/∇⊗̂X

)AB .
= /g

AC /∇CX
B + /g

AB /∇BX
C − /g

AB /∇CX
C .

In the next lemma, we recall two formulas for how certain differential

operators transform under a conformal change of the metric.

Lemma 4.7. Let /gAB = e2ϕ/̊gAB . Then, for any vector field XA we have

/∇AX
A = ∇̊AX

A + 2LXϕ,
(
/∇⊗̂X

)AB
= e−2ϕ

Ä
∇̊⊗̂X

äAB
.
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Proof. These follow from the well-known coordinate expressions

/∇AX
A =

1√
/g
∂A
Ä»

/gX
A
ä
,

(
/∇⊗̂X

)AB
= ∂AXB + ∂BXA −XC∂C

Ä
/g
AB
ä
− /g

AB 1√
/g
∂C
Ä»

/gX
C
ä
. �

The next lemma concerns a precise estimate for κ.

Lemma 4.8. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense of Defi-

nition 4.5. Then we have

(4.28) κ =
ǫ2

16

∫ π

0

a2(θ) sin(θ) dθ +O
Ä
ǫ3−δ
ä
.

In particular, κ ∼ ǫ2 .

Proof. Integrating (4.23) over S2 leads to

−4κ /Area
(
S2
)
+

1

4

∫

S2

∣∣ /∇⊗̂b
∣∣2
/g
d /Vol +

∫

S2

[
−

1

2

(
/div b
)2

+ 2κ
(
/div b
)

− 2Ω−1 (LbΩ) /div b− 4
(
/div b
)
(log Ω)

]
d /Vol = 0.

(4.29)

From Lemma 4.7 we have

/div b = d̊iv b+ 2Lbϕ = ∆̊f + 2Lbϕ.

Thus, using (4.26) and Sobolev inequalities, we have

∥∥ /div b
∥∥
L∞ .

∥∥∥∆̊f
∥∥∥
L∞

+ ‖Lbϕ‖L∞(4.30)

. ‖f‖
1/2

H̊3
‖f‖

1/2

H̊4
+ ‖Lbϕ‖

1/2

H̊1
‖Lbϕ‖

1/2

H̊2

. ǫ2−δ.

It follows from (4.29) and the bounds (4.30) and (4.26) that

(4.31) |κ| . ǫ2 + ǫ2−δ |κ| ⇒ |κ| . ǫ2.

Having established (4.31) and appealing again to (4.30) and (4.26), we now see

that

(4.32)∣∣∣∣
∫

S2

ï
−
1

2

(
/div b
)2
+ 2κ

(
/div b
)
−2Ω−1 (LbΩ) /div b−4

(
/div b
)
(log Ω)

ò
d /Vol

∣∣∣∣ . ǫ3.

Next, using Remark 4.1 and Lemma 4.7, we note that

∣∣ /∇⊗̂b
∣∣2
/g
=
∣∣∣∇̊⊗̂b

∣∣∣
2

/̊g
= 2ǫ2a2(θ) + 2ǫ̊/g

Ä
∇̊⊗̂b̃, ∇̊⊗̂

Ä
z + ∇̊f

ää
+
∣∣∣∇̊⊗̂

Ä
z + ∇̊f

ä∣∣∣2 .
(4.33)



288 IGOR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

From (4.33), the bounds from (4.24) and (4.26), and Sobolev inequalities, we

thus obtain that

(4.34)
∣∣∣
∣∣ /∇⊗̂b

∣∣2
/g
− 2ǫ2a2(θ)

∣∣∣ . ǫ3−δ.

Since we also have that ‖ϕ‖L∞ . ǫ2−δ, we then obtain that

1

/Area (S2)

∫

S2

∣∣ /∇⊗̂b
∣∣2
/g
d /Vol =

1

4π

∫ 2π

0

∫ π

0

∣∣ /∇⊗̂b
∣∣2
/g
sin θ dθdφ+O

(
ǫ3
)

(4.35)

=

∫ π

0

a2(θ) sin θ dθ +O
Ä
ǫ3−δ
ä
.

The formula (4.28) then follows from (4.29). �

The next lemma provides a more precise estimate for /div b.

Lemma 4.9. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense of Defi-

nition 4.5. Then we have

(4.36) /div b =
ǫ2

2
a2(θ)−

ǫ2

4

∫ π

0

a2(θ′) sin(θ′) dθ′ +O
Ä
ǫ3−3δ

ä
.

In particular,

(4.37) − /div b & −γ2ǫ2 − ǫ3−3δ.

Proof. We start by re-writing (4.23) as

Å
/div b−

1

4

∣∣ /∇⊗̂b
∣∣2
/g
+ 4κ

ã
− Lb

Å
/div b−

1

4

∣∣ /∇⊗̂b
∣∣2
/g
+ 4κ

ã(4.38)

=
1

4
Lb

(∣∣ /∇⊗̂b
∣∣2
/g

)
+

1

2

(
/div b
)2

+ 2κ /div b− 2Ω−1 (LbΩ) /div b+ 4Ω−1LbΩ.

We have

‖b‖H̊3 . ǫ
∥∥∥b̃
∥∥∥
H̊3

+ ‖z‖H̊3 + ‖f‖H̊4 . ǫ1−δ.

Thus we can apply Proposition 4.5 and Lemma 4.7 to conclude that

∥∥∥∥ /div b−
1

4

∣∣ /∇⊗̂b
∣∣2
/g
+ 4κ

∥∥∥∥
H̊2

.

∥∥∥∥
1

4
Lb

(∣∣ /∇⊗̂b
∣∣2
/g

)
+

1

2

(
/div b
)2

+ 2κ /div b− 2Ω−1 (LbΩ) /div b+ 4Ω−1LbΩ

∥∥∥∥
H̊2

. ǫ3−3δ.

(4.39)

Applying a Sobolev inequality thus immediately implies that

(4.40) /div b =
1

4

∣∣ /∇⊗̂b
∣∣2
/g
− 4κ+O

Ä
ǫ3−3δ

ä
.

Now we combine (4.40) with (4.34) and Lemma 4.8 to obtain (4.36). �
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To leading order in ǫ, the vector field bA is given by ǫb̃A. However, it will

be important for us to have precise estimates on the ǫ2 order part of bA. This

will be established in the next sequence of results.

Definition 4.6. Let a(θ) be as in Definition 4.4. We then define a function

h(θ) : [0, π] → R by

(4.41)

h(θ)
.
=

1

2 sin θ

ñÇ∫ θ

0

a2(x) sin(x) dx

å
−

Å∫ π

0

a2(x) sin(x) dx

ãÅ
1− cos θ

2

ãô
.

Now we will establish some useful properties of the function h(θ).

Lemma 4.10. Let h(θ) : [0, π] → R be as in Definition 4.6. Then the

following are true:

(1) We have

(4.42)
1

sin θ

d

dθ
(sin θh(θ)) =

1

2
a2(θ)−

1

4

∫ π

0

a2(x) sin(x) dx.

(2) The function h(θ) has exactly three zeros, all simple, which occur at θ = 0,

y0 , and π for |y0 − π/2| . γ .

(3) The function sin(θ)h(θ) has exactly two interior critical points θ1 ∈ [γ, 2γ]

and θ2 ∈ [π− 2γ, π− γ]. At θ1 there is a local minimum, and at θ2 there is

a local maximum.

(4) There exists a small constant c > 0 (independent of γ ≪ 1) so that

(4.43) |h(θ)| ≥
γ2

100
for θ ∈ [γ2/4, y0 − c] ∪ [y0 + c, π − γ2/4].

(5) Near the poles θ = 0 and θ = π we have

h = −
θ

4

(
1 +O

(
γ2
))

+O
(
θ2
)

∀θ ∈ [0, γ],(4.44)

h =
(π − θ)

4

(
1 +O

(
γ2
))

+O
Ä
(π − θ)2

ä
∀θ ∈ [π − γ, π].(4.45)

(6) For |θ − y0| ≤ c (see (4.43)), there exists a constant d > 0, independent of

γ , so that

(4.46) h(θ) = −dγ2 (y0 − θ) +O
Ä
γ2 (y0 − θ)2

ä
.

(7) We have the following global bound on h:

(4.47)

∣∣∣∣∣
dk

dθk
(sin(θ)h(θ))

∣∣∣∣∣ .k γ
2−k ∀θ ∈ [0, π].
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(8) If we are far enough in the interior of [0, π], then we have a much better

bound:

(4.48)

∣∣∣∣∣
dk

dθk
(sin(θ)h(θ))

∣∣∣∣∣ .k γ
2 ∀θ ∈ [3γ, π − 3γ].

(9) We have

∣∣ /∇⊗̂ (h∂θ)
∣∣
/g
. min

Ä
θ2, (π − θ)2

ä
for θ ∈

[
0,
γ

2

]
∪
[
π −

γ

2
, π
]
,(4.49)

∣∣ /∇⊗̂ (h∂θ)
∣∣
/g
. γ2 for θ ∈ [y0 − 2γ, y0 + 2γ] .(4.50)

(10) We have

∇̊⊗̂ (h∂θ) =

Å
h(θ)

cos θ

sin θ
+

1

4

∫ π

0

a2(x) sin(x) dx−
1

2
a2(θ)

ãÅ
1

sin θ
∂φ

ã

⊗̂

Å
1

sin θ
∂φ

ã
−

Å
h(θ)

cos θ

sin θ
+
1

4

∫ π

0

a2(x) sin(x) dx−
1

2
a2(θ)

ã
∂θ⊗̂∂θ.

(4.51)

Proof. Given formula (4.41), equation (4.42) is a straightforward calcula-

tion. Next, we turn to understanding the graph of h(θ). We start by considering

the function

(4.52) r (θ)
.
=

1

2
a2(θ)−

1

4

∫ π

0

a2(x) sin(x) dx.

First of all,

cos(2γ)− cos(π − 2γ) =

∫ π−2γ

2γ

sin(x) dx ≤

∫ π

0

a2(x) sin(x) dx

≤

∫ π−γ

γ

sin(x) dx = cos(γ)− cos(π − γ).

Thus we conclude that

2− 4γ2 +O
(
γ4
)
≤

∫ π

0

a2(x) sin(x) dx ≤ 2− γ2 +O
(
γ4
)
.

From this it is immediate that there exist θ1 ∈ [γ, 2γ] and θ2 ∈ [π − 2γ, π − γ]

such that

(4.53) r (θ1) = 0, r(θ2) = 0, r(θ) 6= 0 if θ 6= θ1 or θ2.

In particular, (4.53) and (4.42) imply that θ1 and θ2 are the interior critical

points of sin(θ)h(θ). Furthermore, one sees immediately that sin(θ)h(θ) is

decreasing from 0 to θ1, is increasing from θ1 to θ2, and is decreasing again from

θ2 to π. We also see immediately that sin(θ)h(θ) vanishes at θ = 0 and θ = π

and it is clear that there will be exactly one other zero. It is straightforward to

see that the remaining zero must occur at a y0, which satisfies |y0 − π/2| . γ2.



NAKED SINGULARITIES FOR THE EINSTEIN VACUUM EQUATIONS 291

Next, we come to the bound (4.44). For this, we simply examine the

formula (4.41) when θ ∈ [0, γ]. We find that

h(θ) = −
1

4

Å∫ π

0

a2(x) sin(x) dx

ã
1− cos(θ)

sin(θ)
∀θ ∈ [0, γ]

⇒ h(θ) = −
1

4

(
2 +O

(
γ2
)) θ2/2 +O

(
θ4
)

θ +O (θ3)
∀θ ∈ [0, γ].

This establishes (4.44). The bound (4.45) is established in an analogous fashion.

Next, we examine the behavior near θ = y0. Taylor expanding sin(θ) yields

that

sin(θ) = 1 +O
Ä
(θ − π/2)2

ä
.

Thus, for θ − y0 sufficiently small (independently of γ), we may use (4.42) to

see that ∣∣∣∣
d

dθ
(sin(θ)h(θ))

∣∣∣∣ ≥
1

10
γ2.

We also obtain (4.46) since one easily finds that d2

dθ2
(sin(θ)h(θ)) |θ=y0 = O

(
γ2
)
.

Finally, using the estimates above, one can also obtain (4.43).

Next, we turn to the bound (4.47). We start with k = 0. It will be

important to recall that a(x) is globally bounded, is identically 1 for x ∈
[2γ, π − 2γ], and vanishes for x ∈ [0, γ] ∪ [π − γ, π]. We have

2 |sin(θ)h(θ)|

=

∣∣∣∣∣

∫ θ

0

a2(x) sin(x) dx−

Å∫ π

0

a2(y) sin(y) dy

ã
1− cos(θ)

2

∣∣∣∣∣

=

∣∣∣∣∣

∫ θ

0

(
a2(x)− 1

)
sin(x) dx−

Å∫ π

0

(
a2(y)− 1

)
sin(y) dy

ã
1− cos(θ)

2

∣∣∣∣∣

.

∫ 2γ

0

sin(x) dx+

∫ π

π−2γ

sin(x) dx

. γ2.

This establishes (4.47) for k = 0. The general case follows similarly. Finally,

we note that (4.48) is proven in a straightforward manner.

It remains to establish (4.49). First of all, using Lemma 4.7, we have that∣∣ /∇⊗̂ (h∂θ)
∣∣
/g
=
∣∣∣∇̊⊗̂ (h∂θ)

∣∣∣̊
/g
. In spherical coordinates, the non-zero Christoffel

symbols on the round metric are Γθφφ = − sin θ cos θ and Γφφθ = cot θ. Thus,

one easily computes that

∇̊ (h∂θ) = h(θ)
cos θ

sin θ

Å
1

sin θ
∂φ

ã
⊗

Å
1

sin θ
∂φ

ã
+
dh

dθ
∂θ ⊗ ∂θ.

If we keep in mind equation (4.42) for h, then we see that we will have
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∇̊⊗̂ (h∂θ) =

Å
2h(θ)

cos θ

sin θ
+

1

4

∫ π

0

a2(x) sin(x) dx−
1

2
a2(θ)

ãÅ
1

sin θ
∂φ

ã

⊗̂

Å
1

sin θ
∂φ

ã
−

Å
2h(θ)

cos(θ)

sin(θ)
+

1

4

∫ π

0

a2(x) sin(x) dx−
1

2
a2(θ)

ã
∂θ⊗̂∂θ.

(4.54)

This implies (4.51). The estimate (4.50) is a straightforward consequence of

the formula (4.51). Now, using (4.41), we see that when θ < γ,

h (θ) = −

Å∫ π

0

a2(x) sin(x) dx

ãÅ
θ

8
+O

(
θ3
)ã
.

Combining this with (4.54) thus leads to
∣∣ /∇⊗̂h

∣∣
/g
. θ2.

A similar argument works when |π − θ| ≪ 1. �

Lemma 4.11. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense of Def-

inition 4.5. Then we can write

bA /∇A = b̌A /∇A + ǫ2h(θ)∂θ + eA /∇A,

where e satisfies
‖e‖H̊3 . ǫ3−2δ.

Proof. Using (4.42), Lemma 4.7, and Remark 4.1 we may derive the fol-

lowing equation for e:

(4.55) d̊iv e = /div b−
ǫ2

2
a2(θ) +

ǫ2

4

∫ π

0

a2(θ) sin(θ) dθ − 2Lbϕ, ˚curl e = 0.

Then, using equations (4.23), (4.28), and (4.25) we may derive the following

equation for D̃
.
= /div b− ǫ2

2 a
2(θ) + ǫ2

4

∫ π
0 a

2(θ) sin(θ) dθ:

D̃ − LbD̃ =
1

2

(
/div b
)2

+ 2κ /div b+ Lb

ï
ǫ2

2
a2(θ)−

ǫ2

4

∫ π

0

a2(θ) sin(θ) dθ

ò

+

Å
1

4

∣∣ /∇⊗̂b
∣∣2
/g
− 4κ−

ǫ2

2
a2(θ) +

ǫ2

4

∫ π

0

a2(θ) sin(θ) dθ

ã

− 2Ω−1 (LbΩ) /div b+ 4Ω−1LbΩ

=
1

2

(
/div b
)2

+ 2κ /div b+ Lb

ï
ǫ2

2
a2(θ)−

ǫ2

4

∫ π

0

a2(θ) sin(θ) dθ

ò

+
ǫ

2
/̊g
Ä
∇̊⊗̂b̃, ∇̊⊗̂

(
ǫz + ǫ2h(θ)∂θ + e

)ä

+
∣∣∣∇̊⊗̂

(
ǫz + ǫ2h(θ)∂θ + e

)∣∣∣
2

/̊g

+ κ̌− 2Ω−1 (LbΩ) /div b+ 4Ω−1LbΩ,

(4.56)

where, by Lemma 4.8, κ̌ is a constant satisfying |κ̌| . ǫ3−δ.
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We start with

‖Lbϕ‖H̊2 . ǫ1−δ
∥∥∥L∂φϕ

∥∥∥
H̊2

+ ǫ ‖z‖H̊2 ‖ϕ‖H̊3 + ‖∇f‖H̊3 ‖ϕ‖H̊3(4.57)

. ǫ4−2δ.

Next, from (4.55) and elliptic estimates, we obtain

(4.58) ‖e‖H̊3 .
∥∥∥D̃
∥∥∥
H̊2

+ ‖Lbϕ‖H̊2 .
∥∥∥D̃
∥∥∥
H̊2

+ ǫ4−2δ.

Next we observe that (4.23) and Proposition 4.5 easily lead to the bound
∥∥ /div b

∥∥
H̊2 . ǫ2−δ.

Then we apply Proposition 4.5 to (4.56) and obtain that
∥∥∥D̃
∥∥∥
H̊2

. ǫ3−δ + ǫ1−δ ‖e‖H̊3 + ‖e‖2
H̊3 .(4.59)

Combining (4.58) and (4.59) leads to

‖e‖H̊3 . ǫ3−2δ,
∥∥∥D̃
∥∥∥
H̊3

. ǫ3−δ. �

Remark 4.5. Lemma 4.11 shows that f (from Definition 4.5) is forced, in

view of the requirement that (3.8) holds, to take the form

∇̊f = ǫ2h(θ)∂θ + e.

See also Remark 4.2.

4.3. The κ-singular equation. In this section we will study the “κ-singular

equation,” which will later play a fundamental role in setting up our charac-

teristic data; see Section 3.3. This equation will be similar to the equation

PuA1···Ak
= FA1···Ak

from Definition 4.1 except that XA and h will not have

a smallness condition. Instead, the study of the κ-singular equation will be

tractable only because of a certain anti-symmetric structure. We now turn to

the relevant definitions.

Definition 4.7. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense of

Definition 4.5. Then we say that t ∈ Ŝ
(
S2
)

satisfies the corresponding κ-

singular equation with the right-hand side H ∈ Ŝ
(
S2
)

if

(4.60)

L tAB − 2κtAB
.
=

Å
LbtAB −

(
/∇⊗̂b

)C
(A
tB)C −

1

2
/div btAB

ã
− 2κtAB = HAB.

We recall that Ŝ
(
S2
)

denotes the space of trace-free symmetric tensors in

T (0,2)
(
S2
)
.

It will also be convenient to extend the action of L to tensors wC1···CkAB

by having L just act on the last two indices.
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Remark 4.6. We quickly recall for the reader where the need to study

equations of this form arises; see the detailed discussion in Section 3.3. Namely,

we will need to pose outgoing characteristic data for our solution. We will desire

to pose this outgoing data in such a way that the prescribed value of Ω−1χ̂ is

consistent with the solution behaving in an approximately self-similar fashion

as v → 0. If our spacetime was exactly κ-self-similar, then one finds that Ω−1χ̂

must satisfy equation (3.19) along any sphere on {v = 0}. Equation (3.19) is

exactly of the form (4.60) for suitable HAB.

Just as in Section 4.1, it will be convenient to define an elliptic regulariza-

tion of the κ-singular equation.

Definition 4.8. Given a κ-singular equation as in Definition 4.7 and q > 0,

we define the corresponding q-regularization by

(4.61) LbtAB − 2κtAB −
(
/∇⊗̂b

)C
(A
tB)C −

1

2
/div btAB + q /∆tAB = HAB.

The next lemma identifies an important anti-symmetric structure in (4.60).

Lemma 4.12. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense of Def-

inition 4.5 and L be defined as in Definition 4.7. Then L is anti-symmetric

with respect to the Hilbert space structure induced by /gAB .

Proof. We have
(
/g
−1
)AC (

/g
−1
)BD

LbtABhCD

= Lb (t · h)− Lb
Ä(
/g
−1
)AC (

/g
−1
)BDä

tABhCD −
(
/g
−1
)AC (

/g
−1
)BD

fABLbhCD

= Lb (t · h) + 2
(
Lb/g
)AC (

/g
−1
)BD

tABhCD −
(
/g
−1
)AC (

/g
−1
)BD

tABLbhCD

= Lb (t · h) + 2div b (t · h) + 2
(
/∇⊗̂b

)AC (
/g
−1
)BD

tABhCD

−
(
/g
−1
)AC (

/g
−1
)BD

tABLbhCD.

Thus, after integrating and applying the divergence theorem, we obtain
∫

S2

î(
/g
−1
)AC (

/g
−1
)BD

L tABhCD +
(
/g
−1
)AC (

/g
−1
)BD

tABL hCD
ó
d /Vol

=

∫

S2

(
Lb (t · h) + /div b (t · h)

)
d /Vol

= 0. �

It will be convenient to have a version of Lemma 4.12 that holds for higher

order tensors (where we lose the exact anti-symmetry).

Lemma 4.13. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense of Def-

inition 4.5, k > 0, wC1···CkAB be a (0, k + 2) tensor that is symmetric and
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trace-free in the AB indices, and y be a C1 function on S2 . Then we have
∫

S2

y

[
LbwC1···CkAB −

1

2

(
/∇⊗̂b

)D
A
wC1···CkBD

−
1

2

(
/∇⊗̂b

)D
B
wC1···CkAD −

1

2

(
/div b
)
wC1···CkAB

]
wC1···CkAB

=

∫

S2

[
1

2
y

k∑

i=1

(
/∇⊗̂b

)D
E
wC1···D···CkABw

C1···E···CkAB +
k

2
y /div b |w|2 −

1

2
(Lby) |w|

2

]
.

Proof. This is proven in a similar fashion as Lemma 4.12. �

The following consequence of Lemma 4.2 is useful.

Lemma 4.14. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense of Def-

inition 4.5. From the metric /gAB we may define Sobolev spaces H i on tensor

fields. For any tensor field wA1···Ak
∈ T (0,k) , we have

(4.62) ‖w‖Hi ∼s,k ‖w‖H̊i , i = 0, 1, · · · , N0.

Now we are ready for the analogue of Proposition 4.6.

Proposition 4.15. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense

of Definition 4.5. Let q > 0, HAB ∈ H̊2
Ä
S(2)

(
S2
)ä

. Then there exists a unique

t
(q)
AB ∈ H̊4

Ä
S(2)

(
S2
)ä

that solves

(4.63) Lbt
(q)
AB − 2κt

(q)
AB −

(
/∇⊗̂b

)C
(A
t
(q)
B)C −

1

2
/div bt

(q)
AB + q /∆t

(q)
AB = HAB.

Proof. Let us write (4.63) as

L(q)t
(q)
AB = HAB.

By standard L2-elliptic theory, in order to prove the proposition, it suffices

to show that ker
Ä
L(q)
ä
= {0} and ker

ÄÄ
L(q)
ä∗ä

= {0}. We start with L(q).

Suppose that we have a trace-free symmetric tensor wAB solving

(4.64) LbwAB − 2κwAB −
(
/∇⊗̂b

)C
(A
wB)C −

1

2
/div bwAB + q /∆wAB = 0.

Keeping Lemmas 4.12 and 4.8 in mind, we take the inner product of (4.64)

with −wAB and integrate by parts. We end up with

(4.65)

∫

S2

[Ä
ǫ2 −O

Ä
ǫ3−δ
ää

|w|2
/g
+ q

∣∣ /∇w
∣∣2
/g

]
d /Vol = 0.

Assuming that ǫ is small enough, we conclude that wAB = 0. The proof that

ker
ÄÄ
L(q)
ä∗ä

= {0} is analogous. �

In the next lemma we collect various estimates that will be used to control

commutators later.
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Lemma 4.16. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense of Def-

inition 4.5, and let wA1···Ak
be (0, k)-tensor. Then

∥∥∥
[
L∂φ ,Lb

]
w
∥∥∥
H̊i

.i ǫ
M1/2 ‖w‖H̊i+1 , 0 ≤ i ≤

N0

2
,(4.66)

∥∥∥∇̊⊗̂
(
L∂φb

)
w
∥∥∥
H̊i

+
∥∥∥
(
L∂φ /div b

)
w
∥∥∥
H̊i

.i ǫ
M1/2 ‖w‖H̊i , 0 ≤ i ≤

N0

2
,

(4.67)

∥∥( /∇
(
/∇⊗̂b

))
w
∥∥
H̊i .i ǫ

1−δ ‖w‖H̊i , 0 ≤ i ≤
N0

2
,(4.68)

∥∥( /∇ /div b
)
w
∥∥
H̊i .i ǫ

1−δ ‖w‖H̊i , 0 ≤ i ≤
N0

2
,(4.69)

∥∥[ /∇, /∆
]
w
∥∥
H̊i .i ‖w‖H̊i+1 , 0 ≤ i ≤

N0

2
,(4.70)

∥∥[ /∇,L
]
w
∥∥
H̊i .i ǫ

1−δ ‖w‖H̊i , 0 ≤ i ≤
N0

2
,(4.71)

∥∥[ /∆,L
]
w
∥∥
H̊i .i ǫ

1−δ ‖w‖H̊i+2 , 0 ≤ i ≤
N0

2
,(4.72)

∥∥∥
[
L∂φ , /∆

]
w
∥∥∥
H̊i

.i ǫ
M1/2 ‖w‖H̊i+2 , 0 ≤ i ≤

N0

2
.(4.73)

Proof. These all follow in a straightforward fashion from Sobolev inequal-

ities. �

In the next proposition, we will show that we can take the limit as q → 0 for

the solutions produced by Proposition 4.15; however, the estimates for higher

derivatives of tAB that we get will have a bad dependence on ǫ.

Proposition 4.17. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense

of Definition 4.5, and let HAB ∈ H̊j
Ä
Ŝ
(
S2
)ä

for 1 ≤ j ≤ N0
2 . Then there

exists a unique tAB ∈ H̊j
Ä
Ŝ
(
S2
)ä

solving

(4.74) LbtAB−2κtAB−
(
/∇⊗̂b

)C
(A
tB)C−

1

2
/div btAB+2 (Lb log Ω) tAB = HAB.

Moreover, we have the following estimates for t:

(4.75)

ǫ4
j∑

k=0

∫

S2

∣∣∣ /∇k
t
∣∣∣
2

/g
d /Vol .j ǫ

−(2+δ)j
j∑

k=0

j−k∑

i=0

ǫ−(2+2δ)k

∫

S2

∣∣∣ /∇i
Lk∂φH

∣∣∣
2

/g
d /Vol.
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If we take a L∂φ derivative, then we have the alternative estimate

ǫ4
j−1∑

k=0

∫

S2

∣∣∣ /∇k
L∂φt

∣∣∣
2

/g
d /Vol .j

j−1∑

k=0

j−k∑

i=0

ǫ−(2+2δ)k

∫

S2

∣∣∣ /∇i
Lk∂φL∂φH

∣∣∣
2

/g
d /Vol

+ ǫM0/10
j∑

k=0

∫

S2

∣∣∣ /∇k
H
∣∣∣
2

/g
d /Vol.

(4.76)

Proof. Before entering into the details we give a sketch of the proof. First

of all, multiplying the equation through by Ω2 leads to the equation

Lb
(
Ω2t
)
AB

− 2κΩ2tAB −
(
/∇⊗̂b

)C
(A

(
Ω2t
)
B)C

−
1

2
/div b

(
Ω2t
)
AB

= Ω2HAB.

In view of the bounds (4.26) it is clear that we can assume, without loss of

generality, that Ω2 = 1. Now we describe the strategy for the estimates. For

each q > 0, we may appeal to Proposition 4.15 to produce a solution t
(q)
AB to

equation (4.63). Our plan will be to show that there exists tAB = limq→0 t
(q)
AB

that solves (4.74) and satisfies the desired estimates. In what follows, we assume

that q ≪ ǫ100. As usual in such an argument, the fundamental challenge is to

prove estimates for t
(q)
AB that are independent of q. In particular, we cannot

exploit the ellipticity coming from the q /∆ term.

The basic estimate at our disposal is the one obtained by contracting

equation (4.63) with t
(q)
AB and using the anti-symmetric structure. (This is

what was exploited to obtain estimate (4.65) in Lemma 4.15.) This leads to an

estimate for ǫ2
∥∥t(q)

∥∥
L2 .

In order to obtain higher order estimates for t
(q)
AB we will need to commute

the equation. However, naive commutation produces an equation where the

anti-symmetric structure from (4.74) is completely destroyed. Thus, we will

have to design a careful scheme for commuting. We begin by exploiting the

fact that the coefficients in our equation are almost axisymmetric in that the

commutators with L∂φ can be controlled by large powers of ǫ; see Lemma 4.16.

Thus, we may commute with L∂φ and repeat the basic L2-estimate to control

ǫ2
∥∥L∂φt(q)

∥∥
L2 in terms of quantities we already control and a large power of ǫ

times
∥∥∇̊t(q)

∥∥
L2 . Next, it is also natural to commute with L . Noting that we

have, schematically,

(4.77) L t
(q)
AB ∼ ǫ2h(θ)L∂θ t

(q)
AB +O (ǫ)L∂φt

(q)
AB +O (ǫ) t

(q)
AB +O

(
ǫ3
∣∣∣∇̊t
∣∣∣
)
,

we may use the control of L t
(q)
AB, L∂φt

(q)
AB, and t

(q)
AB together to control

|h(θ)|L∂θ t
(q)
AB.

Away from small neighborhoods of θ = 0, y0, and π, this suffices to control

∇̊At
(q)
BC (with a loss of ǫ−δ). In order to cure this degeneration we commute
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equation (4.74) with /∇A. The resulting equation does not have the exact anti-

symmetric structure that we used before, but when we carry out localized esti-

mates near θ = 0, y0, and π the additional terms that show up may be analyzed

and turn out to be controllable in terms of previously controlled quantities.

Putting this all together leads to an estimate for ∇̊At
(q)
BC . A similar strategy

then allows for additional commutations. Given this control, it is straightfor-

ward to prove that t
(q)
AB converges to a unique limit tAB as q → 0. One un-

avoidable downside of the technique we will use is that the identity (4.77) only

allows for us to control ǫ2L∂θ t
(q)
AB in terms of terms O (ǫ) t

(q)
AB and O (ǫ)L∂φt

(q)
AB.

Similarly, when we commute with /∇A there are lower order terms produced of

the form O
(
ǫ1−δ

)
t
(q)
AB. These terms lead to the fact that the estimate (4.75)

loses additional powers of ǫ every time we consider an extra derivative.

We now turn to the details. First of all, let us agree to the convention

that throughout this proof unless noted otherwise all norms are computed with

respect to /g and all volume forms are computed with respect to /gAB. Now let

q ≪ ǫ100 and, using Proposition 4.15, let t
(q)
AB solve (4.63). Contracting (4.63)

with −ǫ2t
(q)
AB, integrating by parts, and using Lemma 4.12 leads to

∫

S2

ï
ǫ4
∣∣∣t(q)

∣∣∣
2
+ qǫ2

∣∣∣ /∇t(q)
∣∣∣
2
ò
. ǫ2

∫

S2
H · t(q)(4.78)

⇒

∫

S2

ï
ǫ4
∣∣∣t(q)

∣∣∣
2
+ qǫ2

∣∣∣ /∇t(q)
∣∣∣
2
ò
.

∫

S2
|H|2 .(4.79)

Next, we want to commute Li∂φ (for i ≤ N0
2 ) through our equation for t(q).

Recalling that we may write our equation as

(4.80) L t
(q)
AB − 2κt

(q)
AB + q /∆t

(q)
AB = H

(q)
AB,

we obtain

L

Ä
Li∂φt

(q)
ä
AB

− 2κ
Ä
Li∂φt

(q)
ä
AB

+ q /∆Li∂φt
(q)
AB(4.81)

+
∑

j+k=i−1

Lj∂φ

Ä[
L∂φ ,L + q /∆

]
Lk∂φt

(q)
ä
AB

= Li∂φHAB.

The same integration by parts that leads to (4.79) yields

∫

S2

ï
ǫ4
∣∣∣Li∂φt

(q)
∣∣∣
2
+ qǫ2

∣∣∣ /∇Li∂φt
(q)
∣∣∣
2
ò

.

∫

S2



∣∣∣Li∂φH

∣∣∣
2
+

∑

j+k=i−1

∣∣∣Lj∂φ
Ä[
L∂φ ,L + q /∆

]
Lk∂φt

(q)
ä∣∣∣2

 .

(4.82)
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Let us now examine the second term of the right-hand side of (4.82) a little

more closely. We start by observing that Lemma 4.7 implies

(4.83) /∇⊗̂bC (At
(q)
B)C = /̊g

CD
Ä
∇̊⊗̂b

ä
C(A

t
(q)
B)D.

In particular,

(4.84)
[
L∂φ ,L

]
wAB =

[
L∂φ ,Lb

]
wAB− /̊g

CD
∇̊⊗̂

(
L∂φb

)
C(A

wB)D−
1

2

(
L∂φ /div b

)
wAB.

Thus, for 0 ≤ i ≤ N0
2 , Lemma 4.16 and (4.82) lead to

∫

S2

ï
ǫ4
∣∣∣Li∂φt

(q)
∣∣∣
2
+ qǫ2

∣∣∣ /∇Li∂φt
(q)
∣∣∣
2
ò

.i

∫

S2



∣∣∣Li∂φH

∣∣∣
2
+

i∑

j=0

Å
ǫM1/2

∣∣∣ /∇j
t(q)
∣∣∣
2
+ qǫM1/2

∣∣∣ /∇j+1
t(q)
∣∣∣
2
ã
 .

(4.85)

Next we commute (4.81) with /∇
l
C1···Cl

. We obtain

L

Ä
/∇
l
C1···Cl

Li∂φt
(q)
AB

ä
− 2κ

Ä
/∇
l
C1···Cl

Li∂φt
(q)
AB

ä
+ q /∆

Ä
/∇
l
C1···Cl

Li∂φt
(q)
AB

ä

= −
∑

p+r=l−1

/∇
p
C1···Cp

Äî
/∇Cp+1

,L + q /∆
ó
/∇
r
Cp+2···Cl

Li∂φt
(q)
AB

ä

−
∑

j+k=i−1

/∇
l
C1···Cl

Lj∂φ

Ä[
L∂φ ,L + q /∆

]
Li∂φt

(q)
AB

ä
+ /∇

l
C1···Cl

Li∂φHAB.

(4.86)

Let χ0 (θ) be a non-negative cut-off function that is identically 1 when

θ ∈ {[0, γ/4]∪ [π− γ/4, π]}, is identically 0 for θ ∈ [γ/2, π− γ/2], and satisfies∣∣∣dχ1

dθ

∣∣∣ . γ−1. Now, for 0 ≤ i+l ≤ N0
2 , we contract with −χ0(θ)ǫ

2 /∇
l
C1···Cl

Li∂φt
(q)
AB

and integrate by parts. We start the analysis by using (4.37) and Lemma 4.13

to see that

ǫ2
∫

S2
χ0L

Ä
/∇
l
Li∂φt

(q)
ä
· /∇

l
Li∂φt

(q)

. ǫ2
∫

S2

(
l |χ0| γ

2ǫ2 + |Lbχ0|
) ∣∣∣ /∇l

Li∂φt
(q)
∣∣∣
2

.l ǫ
4γ2

∫

θ∈[0,γ/2]∪[π−γ/2,π]

∣∣∣ /∇l
Li∂φt

(q)
∣∣∣
2

+ ǫ4−δ
∫

θ∈[γ/4,γ/2]∪[π−γ/2,π−γ/4]

∣∣∣ /∇l
Li∂φt

(q)
∣∣∣
2
.

(4.87)

In the last line we have used (4.49), the fact that b̃A vanishes for θ ≤ γ,

Sobolev inequalities and Lemmas 4.11 and 4.16. With (4.87) established, we

now contract (4.86) with −χ0(θ)ǫ
2 /∇

l
C1···Cl

Li∂φt
(q)
AB and integrate by parts to
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eventually obtain

∫

S2
χ0

Å
ǫ4
∣∣∣ /∇l

Li∂φt
(q)
∣∣∣
2
+ qǫ2

∣∣∣ /∇l+1
Li∂φt

(q)
∣∣∣
2
ã

.l+i ǫ
2

∣∣∣∣
∫

S2
χ0L

Ä
/∇
l
Li∂φt

(q)
ä
· /∇

l
Li∂φt

(q)

∣∣∣∣

+ qǫ2
∫

S2

∣∣∣ /∇2
χ0

∣∣∣
∣∣∣ /∇l

Li∂φt
(q)
∣∣∣
2
+ ǫ2

∫

S2
χ0

∣∣∣ /∇l
Li∂φH

∣∣∣
∣∣∣ /∇l

Li∂φt
(q)
∣∣∣

+ ǫ2
∫

S2
χ0

∣∣∣∣∣
∑

p+r=l−1

/∇
p
Ä[
/∇,L + q /∆

]
/∇
r
Li∂φt

(q)
ä
+

+
∑

j+k=i−1

/∇
l
Lj∂φ

Ä[
L∂φ ,L + q /∆

]
Lk∂φt

(q)
ä ∣∣∣∣∣
∣∣∣ /∇l

Li∂φt
(q)
∣∣∣ .

(4.88)

Using Lemma 4.16 to estimate the commutator term

/∇
p
C1···Cp

Äî
/∇Cp+1

,L + q /∆
ó
/∇
r
Cp+2···Cl

Li∂φt
(q)
AB

ä

and arguing like we did above to control the other commutator term, esti-

mates (4.88) and (4.87) eventually imply the following:

∫

θ∈[0,γ/4]∪[π−γ/4,π]

Å
ǫ4
∣∣∣ /∇l

Li∂φt
(q)
∣∣∣
2
+ qǫ2

∣∣∣ /∇l+1
Li∂φt

(q)
∣∣∣
2
ã

.l+i

∫

θ∈[γ/4,γ/2]∪[π−γ/2,π−γ/4]

Å
ǫ4−δ

∣∣∣ /∇l
Li∂φt

(q)
∣∣∣
2
+ qǫ2−δ

∣∣∣ /∇l
Li∂φt

(q)
∣∣∣
2
ã

+

∫

θ∈[0,γ/2]∪[π−γ/2,π]

Ñ
∑

0≤j≤l−1

Å
ǫ2−δ

∣∣∣ /∇j
Li∂φt

(q)
∣∣∣
2

+q2ǫ−δ
∣∣∣ /∇j+1

Li∂φt
(q)
∣∣∣
2
ã
+
∣∣∣ /∇l

Li∂φH
∣∣∣
2

é

+
l+i∑

j=0

∫

S2

Å
ǫM1/2

∣∣∣ /∇j
t(q)
∣∣∣
2
+ qǫM1/2

∣∣∣ /∇j+1
t(q)
∣∣∣
2
ã
.

(4.89)

This estimate will be used to control /∇
l
C1···Cl

Li∂φt
(q)
AB near θ = 0 and θ = π

in terms of /∇
l
C1···Cl

Li∂φt
(q)
AB for θ near [γ/4, γ/2] and [π − γ/2, π − γ/4] and in

terms of /∇
l−1
C1···Cl−1

Li∂φt
(q)
AB.

Now we will discuss another localized higher order estimate. This time we

will localize near θ = y0. Let χ1(θ) be a non-negative function that is identically

1 for |θ − y0| ≤ γ, identically 0 for |θ − y0| ≥ 2γ, and satisfies |∂θχ1| . γ−1.
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We now turn to an estimate that will be the analogue of (4.87). First of all,

for 0 ≤ i+ l ≤ N0
2 , we have

∣∣∣∣∣

∫

S2

l∑

i=1

χ1

(
/∇⊗̂b

)D
E
/∇C1

· · · /∇D · · · /∇Cl
Li∂φt

(q)
AB

/∇
C1 · · · /∇

E
· · · /∇

Cl
Ä
Li∂φt

(q)
äAB

∣∣∣∣∣

.l ǫ

∫

S2
χ1

∣∣∣ /∇∂φ
/∇
l−1

Li∂φt
(q)
∣∣∣
∣∣∣ /∇∂θ

/∇
l−1

Li∂φt
(q)
∣∣∣

+

∣∣∣∣∣

∫

S2

l∑

i=1

χ1

Ä
/∇⊗̂
Ä
b− b̃

ääD
E
/∇C1

· · · /∇D · · · /∇Cl
Li∂φt

(q)
AB

/∇
C1

· · · /∇
E
· · · /∇

Cl
Ä
Li∂φt

(q)
äAB∣∣∣∣

.

∫

S2
χ1

Å
ǫ
∣∣∣ /∇∂φ

/∇
l−1

Li∂φt
(q)
∣∣∣
∣∣∣ /∇∂θ

/∇
l−1

Li∂φt
(q)
∣∣∣+ γ2ǫ2

∣∣∣ /∇l
Li∂φt

(q)
∣∣∣
2
ã
.

(4.90)

In the last line we have used (4.50), Sobolev inequalities, and Lemma 4.11.

We may combine (4.90) with Lemma 4.13 to obtain the following analogue

of (4.87):

ǫ2
∣∣∣∣
∫

S2
χ1L

Ä
/∇
l
Li∂φt

(q)
ä
· /∇

l
Li∂φt

(q)

∣∣∣∣

.l+i

∫

y0−γ≤θ≤y0+γ

Å
ǫ2−δ

∣∣∣ /∇∂φ
/∇
l−1

Li∂φt
(q)
∣∣∣
2
+ γ2ǫ4

∣∣∣ /∇l
Li∂φt

(q)
∣∣∣
2
ã

+

∫

θ∈[y0−2γ,y0−γ]∪[y0+γ,y0+2γ]

ǫ4−δ
∣∣∣ /∇l

Li∂φt
(q)
∣∣∣
2
.

(4.91)

Now we establish an analogue of (4.89) by contracting (4.86) with

−χ1(θ)ǫ
2 /∇

l
C1···Cl

Li∂φt
(q)
AB

and integrating by parts. For 0 ≤ i+ l ≤ N0
2 , we have

∫

y0−γ≤θ≤y0+γ

Å
ǫ4
∣∣∣ /∇l

Li∂φt
(q)
∣∣∣
2
+ qǫ2

∣∣∣ /∇l+1
Li∂φt

(q)
∣∣∣
2
ã

(4.92)

.i+l

∫

y0−γ≤θ≤y0+γ
ǫ2−δ

∣∣∣ /∇∂φ
/∇
l−1

Li∂φt
(q)
∣∣∣
2

+

∫

θ∈[y0−2γ,y0−γ]∪[y0+γ,y0+2γ]

Å
ǫ4−δ

∣∣∣ /∇l
Li∂φt

(q)
∣∣∣
2
+ qǫ2−δ

∣∣∣ /∇l
Li∂φt

(q)
∣∣∣
2
ã
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+

∫

y0−2γ≤θ≤y0+2γ

Ñ
∑

0≤j≤l−1

Å
ǫ2−δ

∣∣∣ /∇j
Li∂φt

(q)
∣∣∣
2

+q2ǫ−δ
∣∣∣ /∇j+1

Li∂φt
(q)
∣∣∣
2
ã
+
∣∣∣ /∇l

Li∂φH
∣∣∣
2

é

+
l+i∑

j=0

∫

S2

Å
ǫM1/2

∣∣∣ /∇j
t(q)
∣∣∣
2
+ qǫM1/2

∣∣∣ /∇j+1
t(q)
∣∣∣
2
ã
.

Before carrying out the next estimate, we observe the following conse-

quence of Lemma 4.11 and a Sobolev inequality. For any (0, k)-tensor wA1···Ak
,

we have
∫

S2
|Lw|2 & ǫ4

∫

S2
|h(θ)|2 |L∂θw|

2

− ǫ2−δ
∫

S2

ï∣∣∣L∂φw
∣∣∣
2
+ |w|2

ò
− ǫ6−4δ

∫

S2

∣∣∣∇̊w
∣∣∣
2
.

(4.93)

Next, for 0 ≤ i + l ≤ N0
2 , we commute (4.81) with L l, then contract withÄ

ǫ−2lL lLi∂φt
(q)
AB

ä
, and integrate by parts. Keeping in mind the trivial fact that

L commutes with itself, arguing as above and using Lemma 4.16 leads to the

estimate

∫

S2

ï
ǫ4−4l

∣∣∣L lLi∂φt
(q)
∣∣∣
2
+ qǫ2−4l

∣∣∣ /∇L
lLi∂φt

(q)
∣∣∣
2
ò

.l+i

∫

S2


ǫ−4l

∣∣∣L lLi∂φH
∣∣∣
2
+

i+l∑

j=0

Å
ǫM1/3

∣∣∣ /∇j
t(q)
∣∣∣
2
+ qǫM1/3

∣∣∣ /∇j+1
t(q)
∣∣∣
2
ã
 .

(4.94)

Combining with (4.93) leads to

∫

S2

ï
ǫ4 |h(θ)|2l

∣∣∣Ll∂θL
i
∂φ
t(q)
∣∣∣
2
+ qǫ2 |h(θ)|2l

∣∣∣ /∇Ll∂θL
i
∂φ
t(q)
∣∣∣
2
ò

.l+i

∫

S2


ǫ6−4δ

∣∣∣ /∇l
Li∂φt

(q)
∣∣∣
2
+

∑

k+m+n=l
0≤k<l

ǫ4−2(m+n)
∣∣∣ /∇k

Lm∂φL
i
∂φ
t(q)
∣∣∣
2




+

∫

S2


ǫ−4l

∣∣∣L lLi∂φH
∣∣∣
2
+

i+l∑

j=0

Å
ǫM1/3

∣∣∣ /∇j
t(q)
∣∣∣
2
+ qǫM1/3

∣∣∣ /∇j+1
t(q)
∣∣∣
2
ã
 .

(4.95)
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We now have all of the ingredients to prove

j∑

k=0

∫

S2

ï
ǫ4
∣∣∣ /∇k

t(q)
∣∣∣
2
+ qǫ2

∣∣∣ /∇k+1
t(q)
∣∣∣
2
ò

.j ǫ
−(2+δ)j

j∑

k=0

j−k∑

i=0

ǫ−(2+2δ)k

∫

S2

∣∣∣ /∇i
Lk∂φH

∣∣∣
2
.

(4.96)

In order to do this, we let j = 1, 2, . . ., or ⌊N0
2 ⌋, 0 ≤ i ≤ j, 0 ≤ k ≤ i, and

then define

Y (i, j, k)
.
=

∫

S2

ï
ǫ4
∣∣∣ /∇k

Lj−i∂φ
t(q)
∣∣∣
2
+ qǫ2

∣∣∣ /∇k+1
Lj−i∂φ

t(q)
∣∣∣
2
ò
,

Ỹ (i, j, k)
.
=

∫

S2

ï
ǫ4 |h(θ)|2k

∣∣∣Lk∂θL
j−i
∂φ
t(q)
∣∣∣
2
+ qǫ2 |h(θ)|2k

∣∣∣Lk+1
∂θ

Lj−i∂φ
t(q)
∣∣∣
2
ò
.

From (4.95), we obtain

Ỹ (i, j, k) . ǫ2−4δY (i, j, k)

+
∑

p+m+n=k

0≤p<k

ǫ−2(m+n)Y (i−m, j, p) + ǫ−2k
k∑

k̃=0

∫

S2

∣∣∣∣ /∇
k̃
Lj−i∂φ

H

∣∣∣∣
2

+

k+j−i∑

r=0

∫

S2

Å
ǫM1/3

∣∣∣ /∇r
t(q)
∣∣∣
2
+ qǫM1/3

∣∣∣ /∇r+1
t(q)
∣∣∣
2
ã
.

(4.97)

From (4.89), (4.92), and (4.97) we obtain (with m,n ≥ 0)

Y (i, j, k) . ǫ−2−δY (i− 1, j, k − 1) +
k∑

k̃=1

ǫ−2−δY (i, j, k − 1)

+
∑

p+m+n=k

0≤p<k

ǫ−2(m+n+δ/2)Y (i−m, j, p) + ǫ−2k−δ
k∑

k̃=0

∫

S2

∣∣∣∣ /∇
k̃
Lj−i∂φ

H

∣∣∣∣
2

+ ǫ−δ
k+j−i∑

r=0

∫

S2

Å
ǫM1/3

∣∣∣ /∇r
t(q)
∣∣∣
2
+ qǫM1/3

∣∣∣ /∇r+1
t(q)
∣∣∣
2
ã
.

(4.98)

A straightforward induction argument in i and k (using the estimate (4.85)

for the base case) then leads to (4.96). (The estimate (4.96) is not sharp, but

that will not matter for us.) Of course, the estimate (4.96) implies uniform
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bounds of t(q):

(4.99)

∫

S2

ï∣∣∣ /∇j
t(q)
∣∣∣
2
+ q

∣∣∣ /∇j+1
t(q)
∣∣∣
2
ò
.ǫ,j

j∑

k=0

j−k∑

i=0

∫

S2

∣∣∣ /∇i
Lk∂φH

∣∣∣
2
.

Having now established uniform estimates for t
(q)
AB as q → 0, we turn to

showing that t
(q)
AB converges to a unique tAB as q → 0. We now let 0 < q2 < q1

and derive the following:

(4.100)

L

Ä
t(q1)−t(q2)

ä
AB

− 2κ
Ä
t(q1)−t(q2)

ä
AB

+q1∆̊
Ä
t(q1)−t(q2)

ä
AB

=(q2 − q1) ∆̊t
(q2)
AB .

Contracting with
Ä
t(q1) − t(q2)

äAB
, carrying out the usual integration by parts,

and using the bound (4.99) leads to
∫

S2

ï∣∣∣t(q1) − t(q2)
∣∣∣
2
+ q1

∣∣∣∇̊
Ä
t(q1) − t(q2)

ä∣∣∣2
ò

.ǫ,H |q1 − q2|

∣∣∣∣
∫

S2
∆̊t

(q2)
AB

Ä
t(q1) − t(q2)

äAB∣∣∣∣
. |q1 − q2|

∫

S2

∣∣∣∇̊t(q2)
∣∣∣
(∣∣∣t(q1) − t(q2)

∣∣∣+
∣∣∣∇̊
Ä
t(q1) − t(q2)

ä∣∣∣
)
.

This leads to∫

S2

ï∣∣∣t(q1) − t(q2)
∣∣∣
2
+ q1

∣∣∣∇̊
Ä
t(q1) − t(q2)

ä∣∣∣2
ò
.ǫ,H |q1 − q2|

∫

S2

∣∣∣∇̊t(q2)
∣∣∣
2
.

In particular, we immediately see that {t
(q)
AB}q>0 is Cauchy and we have that

t
(q)
AB →q→0 tAB ∈ L2. Furthermore, by a standard compactness argument, we

can take the limit as q → 0 in all of the bounds for t
(q)
AB that we have established

and obtain that tAB ∈ H̊⌊
N0
2

⌋ and satisfies (4.74).

Finally, taking the q → 0 limit in the bounds (4.96) yields (4.75). With

(4.75) it is straightforward to revisit the above estimates and establish (4.76).

�

In the remainder of the section we will study the following evolutionary

analogue of the κ-singular equation.

Definition 4.9. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense of

Definition 4.5. Let {tAB(v, θ)}v∈(0,v] be a 1-parameter family of C1 symmetric

trace-free tensors on S2 so that tAB(v, θ) is C1 in v ∈ (0, v]. Then we say

that tAB (v, θ) satisfies the corresponding κ-singular evolution equation with

the right-hand side HAB (v, ·) ∈ L∞
v Ŝ

(
S2
)

if

(4.101) vL∂v tAB + L tAB − 2κtAB + 2Lb log ΩtAB = HAB.

We start with an analogue of Proposition 4.17.
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Proposition 4.18. Let
Ä
/gAB, b

A, κ,Ω
ä

be a regular 4-tuple in the sense of

Definition 4.5, and let {HAB(v)}v∈(0,v] be a 1-parameter family of symmetric

trace-free tensors in H̊j
Ä
Ŝ
(
S2
)ä

for 1 ≤ j ≤ N0
2 . Then then there exists a

unique 1-parameter family {tAB(v)}v∈(0,v] ∈ H̊j
Ä
Ŝ
(
S2
)ä

solving (4.101), and

tAB is uniquely determined by tAB(v).

Next we let H̃ ∈ H̊j
Ä
Ŝ
ä

and use Proposition 4.17 to define t̃ by solving

(4.102) L t̃AB − 2κt̃AB + 2Lb log Ωt̃AB = H̃AB.

Then, for any ṽ > 0, we have the following estimates for t̂AB
.
= tAB − t̃AB :

j∑

k=0

[
sup
v∈[ṽ,v]

∥∥∥∥∥

Å
v

v

ã− κ
10

/∇
j
t̂

∥∥∥∥∥

2

L2

+ ǫ2
∫ v

ṽ

∥∥∥∥∥

Å
v

v

ã− κ
10

/∇
j
t̂

∥∥∥∥∥

2

L2

dv

v

]

.j ǫ
−2j−2jδ

(
j∑

k=0

j−k∑

i=0

ǫ−2k−2kδ

Ç∫ v

ṽ

∥∥∥∥∥

Å
v

v

ã− κ
10

/∇
i
Lk∂φĤ(v)

∥∥∥∥∥
L2

dv

v

å2)

+ ǫ−2j−2jδ
j∑

k=0

(
ǫ−2k−2kδ

j−k∑

i=0

∥∥∥ /∇i
Lk∂φ t̂(v)

∥∥∥
2

L2

)
,

(4.103)

where

ĤAB
.
= HAB − H̃AB.

Proof. The proof of this proposition is very similar to the proof of Propo-

sition 4.17, and thus we will only provide a sketch of the proof. First of all,

as with the proof of Proposition 4.17 we may, without loss of generality, take

Ω = 1.

We may write our equation as

vL∂v t̂AB + L t̂AB − 2κt̂AB = ĤAB.

Next, we carry out a change of variables s
.
= − log

Ä
v
v

ä
. We then obtain the

equation

(4.104) − L∂s t̂AB + L t̂AB − 2κt̂AB = ĤAB.

In the s-variable, the bound we need to show is

j∑

k=0

ñ
sup

s∈[0,s0]

∥∥∥e
κs
10 /∇

k
t̂(s)

∥∥∥
2

L2
+ ǫ2

∫ s0

0

∥∥∥e
κs
10 /∇

k
t̂(s)

∥∥∥
2

L2

ô

.j ǫ
−2j−2jδ

j∑

k=0

(
j−k∑

i=0

ǫ−2k−2kδ

ñÅ∫ s0

0

∥∥∥e
κs
10 /∇

i
Lk∂φĤ

∥∥∥
L2
ds

ã2
+
∥∥∥ /∇i

Lk∂φ t̂(0)
∥∥∥
L2

ô)
.

(4.105)
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We now turn to establishing (4.105). First of all, by the theory of charac-

teristics, whenever

sups∈[0,s0]

∥∥∥Ĥ(s)
∥∥∥
Hi

< ∞, we immediately obtain the existence of fAB(s, θ)

with sups∈[0,s0] ‖f(s)‖Hi ≤ C (s0, H) solving (4.104).

We start with the case j = 0. Commuting (4.104) with e
κs
10 leads to

(4.106) − L∂s
Ä
e

κs
10 t̂
ä
AB

+ L

Ä
e

κs
10 t̂
ä
AB

−

Å
2−

1

10

ã
κ
Ä
e

κs
10 t̂
ä
AB

= e
κs
10 ĤAB.

We now contract (4.106) with −e
κs
10 t̂AB, integrate over [0, s0]× S2 with respect

to the volume form dsd /Vol (which will be the implied volume form throughout

this proof) and then integrate by parts using Lemma 4.12. We obtain

sup
s̃∈[0,s0]

∫

S2

∣∣∣e
κs
10 t̂
∣∣∣
2
|s=s̃ + ǫ2

∫ s0

0

∫

S2

∣∣∣e
κs
10 t̂
∣∣∣
2

.

∫ s0

0

∫

S2

∣∣∣e
κs
10 Ĥ · e

κs
10 t̂
∣∣∣+
∫

S2

∣∣t̂
∣∣2 |s=0

=⇒ sup
s̃∈[0,s0]

∫

S2

∣∣∣e
κs
10 t̂
∣∣∣
2
|s=s̃ + ǫ2

∫ s0

0

∫

S2

∣∣∣e
κs
10 t̂
∣∣∣
2

.

Ç∫ s0

0

Å∫
S2

∣∣∣e
κs
10 Ĥ

∣∣∣
2
ã1/2å2

+

∫

S2
|f |2 |s=0.

(4.107)

As with the proof of Proposition 4.17 we introduce the convention that all

norms are computed with respect to /g unless said otherwise. This estimate will

serve as the analogue of (4.79).

We next explain how to establish (4.105) in the case j = 1. Now, just as

in the proof of Proposition 4.17 we commute (4.106) with L∂φ and obtain the

following analogue of (4.81):

− L∂s
Ä
e

κs
10L∂φ t̂

ä
AB

+ L

Ä
e

κs
10
(
L∂φ t̂

)ä
AB

−

Å
2−

1

10

ã
κ
Ä
e

κs
10L∂φ t̂

ä
AB

+ e
κs
10
[
L∂φ ,L

]
t̂AB = e

κs
10L∂φĤAB.

(4.108)

Now contracting this with e
κs
11L∂φf

AB, integrating by parts, and arguing as in

the derivation of (4.85) leads to the following estimate:
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sup
s̃∈[0,s0]

∫

S2

∣∣∣e
κs
10L∂φ t̂

∣∣∣
2
|s=s̃ + ǫ2

∫ s0

0

∫

S2

∣∣∣e
κs
10L∂φ t̂

∣∣∣
2

.

∫ s0

0

∫

S2

(∣∣∣e
κs
10 Ĥ

∣∣∣+ e
κs
10

∣∣∣
[
L∂φ ,L

]
t̂
∣∣∣
) ∣∣∣e

κs
10L∂φ t̂

∣∣∣+
∫

S2

∣∣∣L∂φ t̂
∣∣∣
2
|s=0

=⇒ sup
s̃∈[0,s0]

∫

S2

∣∣∣e
κs
10L∂φ t̂

∣∣∣
2
|s=s̃ + ǫ2

∫ s0

0

∫

S2

∣∣∣e
κs
10L∂φ t̂

∣∣∣
2

.

Ç∫ s0

0

Å∫
S2

∣∣∣e
κs
10 Ĥ

∣∣∣
2
ã1/2å2

+ ǫM1/2

∫ s0

0

∫

S2

ï∣∣∣eκs
10 ∇̊t̂

∣∣∣
2
+
∣∣∣e

κs
10 t̂
∣∣∣
2
ò
+

∫

S2

∣∣∣L∂φ t̂
∣∣∣
2
|s=0.

(4.109)

This estimate is an analogue of (4.85) (with i = 1).

Next, we can, of course, commute our equation with L to obtain

(4.110)

−L∂s
Ä
e

κs
10 L t̂

ä
AB

+L

Ä
e

κs
10 (L f)

ä
AB

−

Å
2−

1

10

ã
κ
Ä
e

κs
10 L f

ä
AB

= e
κs
10 L ĤAB.

Arguing as in the derivation of (4.107) leads to

sup
s̃∈[0,s0]

∫

S2

∣∣∣e
κs
10 L t̂

∣∣∣
2
|s=s̃ + ǫ2

∫ s0

0

∫

S2

∣∣∣e
κs
10 L t̂

∣∣∣
2

.

Ç∫ s0

0

Å∫
S2

∣∣∣e
κs
10 L Ĥ

∣∣∣
2
ã1/2å2

+

∫

S2

∣∣L t̂
∣∣2 |s=0.

(4.111)

Now, using (4.111) and arguing as in the proof of Proposition 4.17 with (4.93)

we obtain the following:

sup
s̃∈[0,s0]

∫

S2

∣∣∣h(θ)e
κs
10L∂θ t̂

∣∣∣
2
|s=s̃ + ǫ2

∫ s0

0

∫

S2

∣∣∣h(θ)e
κs
10L∂θ t̂

∣∣∣
2

. sup
s̃∈[0,s0]

∫

S2
e

κs
5

ï
ǫ−2−δ

∣∣∣L∂φf
∣∣∣
2
+ ǫ−2−δ

∣∣t̂
∣∣2 + ǫ2−2δ

∣∣∣∇̊f
∣∣∣
2
ò
|s=s̃

+ ǫ2
∫ s0

0

∫

S2
e

κs
5

ï
ǫ−2−δ

∣∣∣L∂φf
∣∣∣
2
+ ǫ−2−δ

∣∣t̂
∣∣2 + ǫ2−2δ

∣∣∣∇̊f
∣∣∣
2
ò

+ ǫ−4

Ç∫ s0

0

Å∫
S2

∣∣∣e
κs
10 L Ĥ

∣∣∣
2
ã1/2å2

+ ǫ−4

∫

S2

∣∣L t̂
∣∣2 |s=0.

(4.112)
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Now we combine this with (4.107) and (4.109) to obtain

sup
s̃∈[0,s0]

∫

S2

∣∣∣h(θ)e
κs
10L∂θ t̂

∣∣∣
2
|s=s̃ + ǫ2

∫ s0

0

∫

S2

∣∣∣h(θ)e
κs
10L∂θ t̂

∣∣∣
2

.

Ç∫ s0

0

Å∫
S2

∣∣∣e
κs
10 ∇̊Ĥ

∣∣∣
2
ã1/2å2

+ ǫ−2−δ

Ç∫ s0

0

Å∫
S2

∣∣∣e
κs
10L∂φĤ

∣∣∣
2
ã1/2

+

Å∫
S2

∣∣∣e
κs
10 Ĥ

∣∣∣
2
ã1/2å2

+ sup
s̃∈[0,s0]

∫

S2
e

κs
5 ǫ2−2δ

∣∣∣∇̊f
∣∣∣
2
|s=s̃ +

∫ s0

0

∫

S2
e

κs
5 ǫ4−2δ

∣∣∣∇̊f
∣∣∣
2

+

∫

S2

ï∣∣∣∇̊t̂
∣∣∣
2
+ ǫ−2−δ

∣∣∣L∂φ t̂
∣∣∣
2
+ ǫ−2−δ

∣∣t̂
∣∣2
ò
|s=0.

(4.113)

The combination of the left-hand side of the estimates (4.113) and (4.109)

controls ∇̊Af for all θ outside of small neighborhoods of {0, y0, π}.
As in the proof of Proposition 4.17 we will now commute with /∇A and

carry out localized estimates θ = 0, y0, and π. We have

− L∂s
Ä
e

κs
10 /∇C t̂

ä
AB

+ L

Ä
e

κs
10 /∇C t̂

ä
AB

−

Å
2−

1

10

ã
κ
Ä
e

κs
10 /∇C t̂

ä
AB

= −
[
L , /∇C

]
e

κs
10 t̂+ e

κs
10 /∇CĤAB.

(4.114)

Now we simply follow the derivation (4.89); that is, we contract (4.114) with

−χ0(θ) /∇
C
t̂AB where χ(θ) is a suitable cut-off function that is identically 1 for

θ ∈ [0, γ/4] ∪ [π − γ/4, π], identically 0 for θ ∈ [γ/2, π − γ/2], and satisfies

|χ′
0| . γ−1. Arguing as in the derivation of (4.89) then leads to

sup
s̃∈[0,s0]

∫

{θ∈[0,γ/4]∪[π−γ/4,π]}

∣∣∣e
κs
10 /∇t̂

∣∣∣
2
+ ǫ2

∫ s0

0

∫

{θ∈[0,γ/4]∪[π−γ/4,π]}

∣∣∣e
κs
10 /∇t̂

∣∣∣
2

. ǫ2−δ
∫ s0

0

∫

{θ∈[γ/4,γ/2]∪[π−γ/2,π−γ/4]}

ï∣∣∣eκs
10 /∇t̂

∣∣∣
2
+
∣∣∣e

κs
10 t̂
∣∣∣
2
ò

+

Ç∫ s0

0

Å∫
S2

∣∣∣e
κs
10 Ĥ

∣∣∣
2
ã1/2å2

+

∫

S2

∣∣ /∇t̂
∣∣2 |s=0.

(4.115)
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Similarly, one may establish the following analogue of (4.92):

sup
s̃∈[0,s0]

∫

{θ∈[y0−γ,y0+γ]}

∣∣∣e
κs
10 /∇t̂

∣∣∣
2
+ ǫ2

∫ s0

0

∫

{θ∈[y0−γ,y0+γ]}

∣∣∣e
κs
10 /∇t̂

∣∣∣
2

. ǫ2−δ
∫ s0

0

∫

{θ∈[y0−2γ,y0−γ]∪[y0+γ,y0+2γ]}

∣∣∣e
κs
10 /∇t̂

∣∣∣
2

+ ǫ−δ
∫ s0

0

∫

S2

ï∣∣∣eκs
10L∂φ t̂

∣∣∣
2
+
∣∣∣e

κs
10 t̂
∣∣∣
2
ò

+

Ç∫ s0

0

Å∫
S2

∣∣∣e
κs
10 Ĥ

∣∣∣
2
ã1/2å2

+

∫

S2

∣∣ /∇t̂
∣∣2 |s=0.

(4.116)

Combining (4.109), (4.113), (4.115), and (4.116) leads to the establishment

of (4.105) with j = 1.

The proof then concludes with an induction argument completely analo-

gous to Proposition 4.17. �

5. Setting up the characteristic initial data

In this section we will set-up the characteristic initial data that will form

the starting point of our construction. We start with a definition/lemma for a

quantity
△
ηA.

Lemma 5.1. Let
Ä
/gAB, b

A, κ, Ω̃
ä

be a regular 4-tuple. Then, using Propo-

sition 4.5, we define a 1-form on S2 ,
△
ηA , to be the unique solution to

(5.1)
(
2− /div b

)△
ηA−Lb

Å
△
ηA

ã
= −2 /∇ALb log Ω̃+ /∇

B ( /∇⊗̂b
)
BA

−
1

2
/∇A /div b.

Then we have that∥∥∥∥
△
η

∥∥∥∥
H̊N0−1

. ǫ1−δ,

∥∥∥∥L∂φ
△
η

∥∥∥∥
H̊N0−2

. ǫM1/2.

Proof. The bound on
∥∥△η
∥∥
H̊N0−1 follows from Proposition 4.5, Sobolev in-

equalities, Lemma 4.7, and the bounds (4.26).

To estimate L∂φ
△
ηA we commute (5.1) with L∂φ to obtain

(
2− /div b

)
L∂φ

△
ηA − LbL∂φ

Å
△
ηA

ã
=
(
L∂φ /div b

)△
ηA +

[
L∂φ ,Lb

]△
ηA

+L∂φ

Å
−2 /∇ALb log Ω̃ + /∇

B ( /∇⊗̂b
)
BA

−
1

2
/∇A /div b

ã
.

(5.2)

Then we use Proposition 4.5 again as well as the bounds (4.27) and (4.66). �

Next we have a definition/lemma for a quantity
△

Ω−1 trχ.
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Lemma 5.2. Let
Ä
/gAB, b

A, κ, Ω̃
ä

be a regular 4-tuple. Then, using Propo-

sition 4.5 we define a function on S2 ,
△

Ω−1 trχ, to be the unique solution to

Lb

Ç
△

Ω−1 trχ

å
+

Ç
△

Ω−1 trχ

åÄ
−1 + div b− 2κ+ 2Lb log Ω̃

ä

=−2K + 2 /div
△
η+2

∣∣∣∣
△
η

∣∣∣∣
2

,

(5.3)

where K denotes the Gaussian curvature of /gAB . Then we have the following

bounds for
△

Ω−1 trχ:
∥∥∥∥∥

△

Ω−1 trχ− 2

∥∥∥∥∥
H̊N0−2

. ǫ1−δ,

∥∥∥∥∥L∂φ
△

Ω−1 trχ

∥∥∥∥∥
H̊N0−3

. ǫM1/2.

Proof. We can re-write (5.3) as

Lb

Ç
△

Ω−1 trχ− 2

å
+

ÇÇ
△

Ω−1 trχ

å
− 2

åÄ
−1 + div b− 2κ+ 2Lb log Ω̃

ä

= −2(K − 1)− 2
Ä
div b− 2κ+ 2Lb log Ω̃

ä
+ 2 /div

△
η + 2

∣∣∣∣
△
η

∣∣∣∣
2

,

(5.4)

and then the bound on
∥∥

△

Ω−1 trχ − 2
∥∥
H̊N0−2 follows from Proposition 4.5,

Lemma 5.1, and the bounds (4.26).

In order to estimate L∂φ

△

Ω−1 trχ we commute (5.3) with L∂φ to obtain

LbL∂φ

Ç
△

Ω−1 trχ

å
+

Ç
L∂φ

△

Ω−1 trχ

åÄ
−1 + div b− 2κ+ 2Lb log Ω̃

ä

= L∂φ

Ç
−2K + 2 /div

△
η + 2

∣∣∣∣
△
η

∣∣∣∣
2
å

−
[
L∂φ ,Lb

]
Ç

△

Ω−1 trχ

å
−

Ç
△

Ω−1 trχ

å
L∂φ
Ä
−1 + div b− 2κ+ 2Lb log Ω̃

ä
.

(5.5)

Then we use Proposition 4.5 again as well as the bounds (4.27) and (4.66). �

Lastly, we have a definition/lemma concerning the quantity
⊲

Ω−1χ̂AB.

Lemma 5.3. Let
Ä
/gAB, b

A, κ, Ω̃
ä

be a regular 4-tuple and v > 0. Then,

using Proposition 4.18, we define a 1-parameter family of symmetric trace-free
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tensors on S2 ,

ß ⊲

Ω−1χ̂AB(v)

™
v∈(0,v]

, in the coordinate frame by solving

vLv
⊲

Ω−1χ̂AB + L

⊲

Ω−1χ̂AB − 2κ
⊲

Ω−1χ̂AB + 2Ω̃−1
Ä
LbΩ̃
ä ⊲

Ω−1χ̂AB

=

Å
/∇⊗̂

△
η

ã
AB

+

Å
△
η⊗̂

△
η

ã
AB

−
1

2

Ç
△

Ω−1 trχ

å
(
/∇⊗̂b

)
AB

,

(5.6)

⊲

Ω−1χ̂AB|v=v = 0.

Here we have used the natural extension of tensors defined on S2 to tensors

defined on S2 × [0, v] by simply extending the tensors to be independent of v .

We have the following bounds for
⊲

Ω−1χ̂AB for any constant 1 ≪ N1 ≪ N0 :

sup
v∈[0,v]

∥∥∥∥
⊲

Ω−1χ̂

∥∥∥∥
H̊⌊N1/2⌋

. ǫ−2N1 ,(5.7)

sup
v∈[0,v]

Å∣∣∣∣log−⌊
N1
10

⌋

Å
v

v

ã∣∣∣∣+1

ãñ∥∥∥∥
⊲

Ω−1χ̂

∥∥∥∥
H̊⌊N1/100⌋

+

∥∥∥∥vL∂v
⊲

Ω−1χ̂

∥∥∥∥
H̊⌊N1/100⌋

ô
.ǫ1−δ.

(5.8)

Furthermore, we have that limv→0

⊲

Ω−1χ̂AB exists (in a Lie-propagated frame),

and we also have that

(5.9) lim
v→0

v−
κ
10

∥∥∥∥∥
⊲

Ω−1χ̂−

Ç
lim
v→0

⊲

Ω−1χ̂

å∥∥∥∥∥
H̊⌊N1/2⌋

= 0.

Finally, we note that we will have

(5.10) /g
AB

⊲

Ω−1χ̂AB = 0.

Remark 5.1. Though it will be sufficient for our purposes, the bound (5.7)

is far from sharp. However, it is possible to show that in fact
∥∥∥∥

⊲

Ω−1χ̂|v=0

∥∥∥∥
L2

∼ ǫ−1.

Thus, while (5.7) could be improved, it is in fact necessary for any estimate of
⊲

Ω−1χ̂AB which is uniform in v to degenerate as ǫ→ 0.

Proof. The bound (5.7) and limit (5.9) are immediate consequences of

Proposition 4.18 (with H̃AB=
(
/∇⊗̂

△
η
)
AB

+
(
△
η⊗̂

△
η
)
AB

−1
2

( △

Ω−1 trχ
)(
/∇⊗̂b

)
AB

),

Proposition 4.17, Lemmas 5.1 and 5.2, and (4.26). (The bound of ǫ−2N1 may

of course be improved, but this estimate will suffice for this paper.)
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For the bound (5.8) it is clear that we cannot directly appeal to Propo-

sition 4.18. Instead we start by proving that for all j ≥ 1 and k ≥ 1 with

0 ≤ j + k ≤ N1 − 1, there is the following bound for
⊲

Ω−1χ̂AB:
∥∥∥∥∥(vL∂v)

j

Ç
⊲

Ω−1χ̂

å
|v=v

∥∥∥∥∥
H̊k

. ǫj−δ,

∥∥∥∥∥(vL∂v)
j L∂φ

Ç
⊲

Ω−1χ̂

å
|v=v

∥∥∥∥∥
H̊k−1

. ǫM1/2.

(5.11)

To see why (5.11) holds, we note that a direct consequence of (5.6) is that

(vLv)
j

⊲

Ω−1χ̂AB|v=v

=(−1)j−1
Ä
L −2κ+2Lb log Ω̃

äj−1
Ç
/∇⊗̂

△
η+

△
η⊗̂

△
η−

1

2

Ç
△

Ω−1 trχ

å
(
/∇⊗̂b

)
å

AB

|v=v.

(5.12)

Combining (5.12) with (4.26), (4.27), and Lemmas 5.1 and 5.2 then yields (5.11).

Now we define

PAB
.
= (vL∂v)

⌊
N1
10

⌋

Ç
⊲

Ω−1χ̂

å

AB

.

Commuting (5.6) with (vL∂v)
⌊
N1
10

⌋ leads to the following equation:

vLvPAB + LPAB − 2κPAB + 2Ω̃−1
Ä
LbΩ̃
ä
PAB = 0.(5.13)

Now we apply Proposition 4.18 (with H̃ = 0) and obtain the following estimate

for P :

sup
v∈[0,v]

‖P‖2
H̊⌊

N1
100 ⌋

. ǫ−⌊
N1
40

⌋ ‖P|v=v‖
2

H̊⌊
N1
100 ⌋

+ ǫ−⌊
N1
40

⌋
∥∥∥L∂φP|v=v

∥∥∥
2

H̊⌊
N1
100 ⌋

. ǫ⌊
N1
500

⌋,

(5.14)

where in the final inequality we used (5.11).

Next, we observe that after changing variables to s
.
= − log

Ä
v
v

ä
, we have

∂
⌊
N1
10

⌋
s

⊲

Ω−1χ̂AB = P.

In particular, repeatedly integrating from s = 0, using the bounds (5.14)

and (5.11), and then switching back to the v-variable leads to the bound (5.8).

It only remains to establish (5.10). Contracting (5.6) with /gAB leads to

the following equation for Θ
.
= /gAB

⊲

Ω−1χ̂AB:

vL∂vΘ+ LbΘ+
1

2
/div bΘ− 2κΘ+ 2Ω̃−1

Ä
LbΩ̃
ä
Θ = 0.
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This is a transport equation for Θ, and since Θ|v=v = 0, we conclude that Θ

vanishes everywhere. �

Now we are ready for the main result of the section.

Proposition 5.4. Let
ÄÄ
/g0

ä
AB

, (b0)
A , κ, Ω̃

ä
be a regular 4-tuple, N > 0

be a sufficiently large integer satisfying 1 ≪ N ≪ N0 , and let v > 0. Then, for ǫ

sufficiently small, there exist an open set U ⊂ R2 with {v = 0}∪{u = −1} ⊂ U
and a spacetime (M, gµν) in the double-null form (2.1) for (u, v) ∈ U ∩ {−1 ≤
u < 0} ∩ {0 ≤ v < v} satisfying the following properties:

(1) Within the region U , we have the following regularity for various double-null

unknowns:
(
vκΩ, v−κΩ−1

)
∈ L∞

loc,(5.15) Ä
Ω−1βA, ρ, σ,ΩβA

ä
∈ L∞

u,locL
2
v,locH̊

N
loc,Ä

ρ, σ,Ωβ
A
,Ω2αAB

ä
∈ L∞

v,locL
2
u,locH̊

N
loc,

(5.16)

Ä
bA,ΩχAB,Ω

−1χAB, vΩω,Ωω, /∇A log Ω
ä
∈ L∞

u,locL
∞
v,locH̊

N
loc,(5.17)

(
det
(
/g
))−1

∈ L∞
loc, K ∈ L∞

u,locL
∞
v,locH̊

N
loc,(5.18)

and for every v0 > 0, we have

(5.19) αAB ∈ L∞
u,locL

2
v>v0,locH̊

N
loc <∞.

(2) All of the quantities listed in (5.15)–(5.18) have limits in H̊N on {v = 0}
∪ {u = −1}.

(3) The initial data along {v = 0} is obtained:

lim
v→0

/gAB = u2
Ä
/g0

ä
AB

, lim
v→0

(bA) = −u (b0)A , lim
v→0

Å
v

−u

ãκ
Ω = Ω̃,

where the limits are taken in coordinate frames.

(4) We have

(5.20) ηA|{(u,v)=(−1,0)} =
△
ηA, Ω−1 trχ|{(u,v)=(−1,0)} =

△

Ω−1 trχ,

(5.21) Ω−1χ̂AB|{u=−1} =
⊲

Ω−1χ̂C(A

Ä
/g
−1
0

äCD
/gB)D

,

where
△
ηA ,

△

Ω−1 trχ, and
⊲

Ω−1χ̂AB are as in Lemmas 5.1, 5.2, and 5.3 respec-

tively, and in a coordinate frame along {u = −1}, we define
Ä
/g0

ä
AB

(
v, θC

)

.
=
Ä
/g0

ä
AB

(
θC
)
.

(5) We have that L∂v (v
κΩ) |u=−1 = 0.



314 IGOR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

Proof. The idea of the proof is to change variables to
(
u, v̂, θA

)
defined by

v̂
.
= (1− 2κ)−1 v1−2κ (cf. Definition 3.1) and then apply Theorem 2.4.

We need to determine the correct choice of incoming and outgoing char-

acteristic data sets (in the sense of Definition 2.2) so that after undoing the

coordinate change v̂
.
= (1− 2κ)−1 v1−2κ, we end up with the desired space-

time. Let us start with the incoming data and ζA|(−1,0). Keeping in mind that

dv = v2κdv̂, we set

Ω(in)
Ä
u, θA

ä .
= (−u)κ Ω̃

Ä
θA
ä
, /g

(in)
AB

Ä
u, θA

ä .
= u2

Ä
/g0

ä
AB

(θA),

Ä
bA
ä(in) Ä

u, θA
ä
= u−1

Ä
bA
ä
0
(θA), ζA|(−1,0)

.
=

△
ηA − /∇AΩ̃.

Next we turn to the outgoing characteristic data. Here we will set

Ω(out)
Ä
v̂, θA

ä .
= Ω̃
Ä
θA
ä
.

It will also be convenient to define Θ B
A

.
=

⊲

Ω−1χ̂AC
Ä
/g−1
0

äCB
, which will satisfy

Θ A
A = 0. Keeping in mind that ∂v̂ = v2κ∂v, we see that we will need to define

/g
(out)
AB

(
v̂, θA

)
so that the following all hold:

/g
(out)
AB |v̂=0 = /gAB,(5.22)

1

2
Ω̃−2
Ä
/g
(out)
äAB

∂v̂
Ä
/g
(out)
ä
AB

|v̂=0 =
△

Ω−1 trχ,(5.23)

1

2
Ω̃−2tf

Ä
∂v̂/g

(out)
ä
AB

= Θ C
(A /gB)C

,(5.24)

Ω̃−1∂v

Å
1

2
Ω̃−1
Ä
/g
(out)
äAB

∂v̂
Ä
/g
(out)
ä
AB

ã

+
1

2

Å
1

2
Ω̃−1
Ä
/g
(out)
äAB

∂v̂
Ä
/g
(out)
ä
AB

ã2

= −
1

4

Ä
/g
(out)
äAC Ä

/g
(out)
äBD

Ω̃−2tf
Ä
∂v̂/g

(out)
ä
AB

tf
Ä
∂v̂/g

(out)
ä
CD

.

(5.25)

As usual, the tf denotes the trace-free part, and the AB denote a Lie-propagated

coordinate frame. The condition (5.22) is necessary so that /g
(in)
AB |u=−1 =

/g
(out)
AB |v=0, the conditions (5.23) and (5.24) are necessary so that the last two

equalities of (5.20) will hold, and (5.25) is necessary so that (2.41) will hold.

We now follow the well-known procedure for finding such a /g
(out)
AB . We will look

for /g
(out)
AB in the form

(5.26) /g
(out)
AB = e2ϕ

(out)

/̂g
(out)

AB
,
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where /̂g
(out)

AB
is defined both by (5.26) and the requirement that it has the same

volume form as /gAB. The constancy of the volume form implies that

/̂g
AB
∂v̂ /̂gAB = 0.

Thus, (5.24) is seen to become

∂v̂ /̂g
(out)

AB
= 2Ω̃2e−2ϕ(out)

Θ C
(A /gB)C

(5.27)

⇒ /̂g
(out)

AB
(v̂, θ) = /gAB(θ) +

∫ v̂

0

(
2Ω̃2Θ C

(A /gB)C
e−2ϕ(out)

)
dv̂.(5.28)

Next, plugging (5.26) into (5.22), (5.25), and (5.23) eventually yields the fol-

lowing second order ordinary differential equation for ϕ(out):

∂2v̂ϕ
(out) +

Ä
∂v̂ϕ

(out)
ä2

= −
1

2
Ω̃2
(
/̂g
(out)

)AC (
/̂g
(out)

)BDÇ ⊲

Ω−1χ̂

å

AB

(
/̂g
(out)

)BDÇ ⊲

Ω−1χ̂

å

CD

,

(5.29)

ϕ(out)|v̂=0 = 0, ∂v̂ϕ
(out)|v̂=0 =

1

2
Ω̃2

Ç
△

Ω−1 trχ

å
.(5.30)

We thus see that (5.28), (5.29), and (5.30) determine an integral-differential

system for ϕ(out) and /̂g
(out)

AB
.

Now, standard arguments and the bound (5.8) show that this integral-

differential system for ϕ(out) and /̂g
(out)

AB
has a solution for v̂ ∈ [0, (1−2κ)−1v1−2κ]

satisfying the bounds

(5.31)
∥∥∥/̂g(out) − /g

∥∥∥
H̊Ñ

≤ Aǫ1−δ,
∥∥∥∂vϕ(out)

∥∥∥
H̊Ñ

+
∥∥∥ϕ(out)

∥∥∥
H̊Ñ

≤ Aǫ1−δ,

where A≫ 1 is a suitable constant independent of ǫ and Ñ is a suitable integer

satisfying N ≪ Ñ ≪ N0.

Having constructed the outgoing and ingoing data, we may appeal to Theo-

rem 2.4 in the
(
u, v̂, θA

)
variables. (The necessary regularity statements for the

outgoing and ingoing data follow from Definition 4.5 and Lemmas 5.1 and 5.3,

and the bound (5.31).) Finally, we obtain the desired spacetime in the
(
u, v, θA

)

variables by setting

v
.
= ((1− 2κ)v̂)

1
1−2κ .

The regularity statements follow from noting that the lapse Ω of the spacetime

in the (u, v, θ) coordinates will satisfy Ω ∼ vκ, from the definitions of the

various metric components, Ricci coefficients, and curvature components, and

the fact that
∂

∂v
= v−2κ ∂

∂v̂
. �
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Remark 5.2. For any Ricci coefficient ψ not equal to ω and any null cur-

vature component Ψ not equal to α, we will have that s (ψ) or s (Ψ) gives the

power of Ω that shows up in (5.16) and (5.18).

6. The bootstrap argument for region I

The main result of this section will be the following:

Theorem 6.1. Let (M, gµν) be a spacetime produced by Proposition 5.4,

and let v > 0 be sufficiently small. Then we can pick ǫ sufficiently small so

that (M, gµν) exists in the region
¶
(u, v) : −1 ≤ u < 0 and 0 ≤ v

−u ≤ v
©

, and

in this region the spacetime satisfies the regularity bounds (5.15)–(5.18) and the

estimates (6.13) and (6.14).

We will prove this theorem with a bootstrap argument. In Section 6.1,

we will define the relevant norms. Then in Section 6.2 we will carry out the

bootstrap argument.

6.1. Norms. Often, instead of working directly with metric quantities ϑ,

Ricci coefficients ψ, or null curvature components Ψ we will define quantities ϑ̃,
fiΩsψ and fiΩsΨ where we have subtracted off terms reflecting the leading order

self-similar behavior as v → 0. We turn now to the relevant definitions and

conventions.

Convention 6.1. Throughout this section, unless said otherwise, all norms

of tensorial quantities are computed with respect to /gAB, and we will always

use the round metric induced volume form when we integrate on each S2u,v.

Definition 6.1. We introduce the definition that, unless said otherwise, for

any tensor or function µ,

µ
Ä
u, v, θA

ä .
= lim

v→0
µ
Ä
u, v, θA

ä
,

where the limit is taken with respect to a Lie-propagated coordinate frame if

µ is tensorial. Similarly, /∇A will denote the connection with respect to /gAB,

and we will overline differential operators such as Ω∇3 or /div to indicate that

they should be computed from the v → 0 limits of the relevant quantities. For

example,

/divϑ = /g
AB /∇AϑB = /g

AB
(
LθAϑB + /Γ

C

ABϑC

)
,

Ω∇3ϑA
.
= L∂uϑA + LbϑA − /g

BC
χ
AB
ϑC ,

where /Γ
C

AB denotes the Christoffel symbols of /gAB (and hence /Γ
C

AB denote the

Christoffel symbols of /gAB).
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We start with metric quantities.

Definition 6.2. Let (M, g) be a spacetime produced by Proposition 5.4.

We define, in the coordinate frame,

b̃A
.
= bA − bA, Ω̃

.
=

Å
v

−u

ãκ
Ω−

Å
v

−u

ãκ
Ω,

‹/∇A
.
= /∇A − /∇A, /̃gAB

.
= /gAB − /gAB.

Note that it is a consequence of Proposition 5.4 that these limits exist.

Next we turn to Ricci coefficients except for ω and χ̂AB.

Definition 6.3. Let (M, gµν) be a spacetime produced by Proposition 5.4,

let ψ denote any Ricci coefficient other than χ̂AB or ω, and let s be the signature

of ψ. Then we define

ψ̃
.
= Ωsψ − Ωsψ.

Note that it is a consequence of Proposition 5.4 that this limit exists.

For χ̂AB, αAB, βA, ρ, and σ, we will need to consider a more involved

renormalization scheme.

Definition 6.4.We may uniquely extend
⊲

Ω−1χ̂AB self-similarly to the whole

spacetime by setting, in the coordinate frame,

⊲

Ω−1χ̂AB
Ä
u, v, θC

ä .
= (−u)

⊲

Ω−1χ̂AB

(v
u
, θC

)
.

(We recall that
⊲

Ω−1χ̂AB is defined in the course of Proposition 5.4 (using

Lemma 5.3).)

Using
⊲

Ω−1χ̂AB, we now define quantities
⊲

Ω−2αAB,
⊲

Ω−1βA,
⊲
ρ, and

⊲
σ:

⊲

Ω−2α
.
= −

Å
v

−u

ã2κ(Å v

−u

ã−2κ

Ω−2

)
Lv

Ç
⊲

Ω−1χ̂

å
,

⊲

Ω−1βA
.
= − /div

Ç
⊲

Ω−1χ̂

å

A

− ηB

Ç
⊲

Ω−1χ̂

å

AC

/g
BC ,

⊲
ρ
.
= ρ−

1

2
χ̂ · χ̂+

1

2
Ωχ̂

AB

Ç
⊲

Ω−1χ̂

å

CD

/g
AC
/g
BD,

⊲
σ
.
= σ −

1

2
χ̂ ∧ χ̂+

1

2

Ç
⊲

Ω−1χ̂

å

AB

(
Ωχ̂
)
CD

/ǫAC/g
BD.
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Remark 6.1. Note that both ρ and χ̂ · χ̂ have regular limits as v → 0.

However, ρ− 1
2 χ̂ · χ̂ exhibits cancellation in the sense that we will have

u2
∣∣∣∣
Å
ρ−

1

2
χ̂ · χ̂

ã
|v=0

∣∣∣∣ . ǫ,

even though individually for ρ and χ̂ · χ̂, the best estimate we have is

u2 |ρ|v=0| . 1, u2
∣∣∣χ̂ · χ̂|v=0

∣∣∣ . 1.

An analogous remark holds for σ and χ̂ ∧ χ̂.

Now we can define the renormalized χ̂AB.

Definition 6.5. Let (M, gµν) be a spacetime produced by Proposition 5.4.

Then we define
˜̂χAB

.
= Ω−1χ̂AB −

⊲

Ω−1χ̂AB.

Next we come to the renormalized curvature components Ψ̌ except for βA.

Definition 6.6. Let (M, gµν) be a spacetime produced by Proposition 5.4.

Then we define

α̃AB
.
= Ω−2αAB −

⊲

Ω−2αAB,

β̃A
.
= Ω−1βA −

⊲

Ω−1βA −
1

2
/∇A (Ω−1 trχ)−

1

2
ηA (Ω−1 trχ),

ρ̃
.
= ρ−

⊲
ρ, σ̃

.
= σ −

⊲
σ, β̃

A

.
= β

A
− β

A
, α̃AB

.
= αAB − αAB.

For any (ũ, ṽ) satisfying −1 ≤ ũ < 0 and 0 < ṽ
−ũ ≤ v, it will be convenient

to define

Rũ,ṽ = {(u, v) : u ∈ [−1, ũ] and v ∈ [0, ṽ]}.

We emphasize that ˚dVol refers to the volume form on the round sphere of

radius 1, and (by our conventions) we calculate |·| with respect to /gAB.

We are now ready to define the energy norms for the null curvature com-

ponents.

Definition 6.7. Let 0<q<1/2, −1≤ ũ<0, and 0< ṽ
−ũ ≤ v. Then we define

‖α‖2
Aq,ũ,ṽ

.
=

2∑

i=0

sup
(u,v)∈Rũ,ṽ

ñ∫ v

0

∫

S2
Ω2 (−u)

4−2q+2i

v̇1−2q

∣∣∣ /∇i
α̃
∣∣∣
2

˚dVol dv̇

+

∫ u

−1

∫ v

0

∫

S2

(−u̇)3−2q+2i

v̇1−2q
Ω2
∣∣∣ /∇i

α̃
∣∣∣
2

˚dVol du̇ dv̇

ô
,

‖α‖2
Aq,ũ,ṽ

.
=

2∑

i=0

sup
(u,v)∈Rũ,ṽ

ñ∫ u

−1

∫

S2

(−u̇)4−
q

100
+2i

v1−
q

100

∣∣∣ /∇i
α̃
∣∣∣
2

˚dVol du̇

+

∫ u

−1

∫ v

0

∫

S2

(−u̇)4−
q

100
+2i

v̇2−
q

100

∣∣∣ /∇i
α̃
∣∣∣
2

˚dVol du̇ dv̇

ô
,
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and for any curvature component Ψ ∈ {ρ, σ, β
A
}, we have

‖Ψ‖2
Aq,ũ,ṽ

.
=

2∑

i=0

sup
(u,v)∈Rũ,ṽ

[∫ u

−1

∫

S2

(−u̇)4−
q

100
+2i

v1−
q

100

∣∣∣ /∇i‹Ψ
∣∣∣
2

˚dVol du̇

+

∫ v

0

∫

S2
Ω2 (−u)

4− q
100

+2i

v̇1−
q

100

∣∣∣ /∇i‹Ψ
∣∣∣
2

˚dVol dv̇

+

∫ u

−1

∫ v

0

∫

S2

(−u̇)4−
q

100
+2i

v̇2−
q

100

∣∣∣ /∇i‹Ψ
∣∣∣
2

˚dVol du̇ dv̇

]
.

For βA, we have

‖β‖2
Aq,ũ,ṽ

.
=

2∑

i=0

sup
(u,v)∈Rũ,ṽ

[∫ u

−1

∫

S2

(−u̇)4−2q+2i

v1−2q

∣∣∣ /∇i
β̃
∣∣∣
2

˚dVol du̇

+

∫ v

0

∫

S2
Ω2 (−u)

4− q
100

+2i

v̇1−
q

100

∣∣∣ /∇i
β̃
∣∣∣
2

˚dVol dv̇

+

∫ u

−1

∫ v

0

∫

S2

(−u̇)4−2q+2i

v̇2−2q

∣∣∣ /∇i
β̃
∣∣∣
2

˚dVol du̇ dv̇

]
.

We also introduce the notation

Aq,ũ,ṽ
.
=

∑

Ψ∈{α,β,ρ,σ,β,α}

‖Ψ‖
Aq,ũ,ṽ

.

Finally, when it will not cause confusion, we will often suppress a subset of the

(q, ũ, ṽ) indices from the A or A subscript.

Remark 6.2. As we have mentioned in the introduction, the rationale

behind these weights is similar to the rationale behind the weights in the

work [RSR18]. For the convenience of the reader, we now quickly recapitu-

late the main points:

(1) We expect the solution to be “asymptotically self-similar” as we approach

(u, v) = (0, 0). Thus we choose our norms to be invariant under the rescal-

ing diffeomorphism
(
u, v, θA

)
7→
(
λu, λv, θA

)
for λ > 0. In particular, our

energy norms along constant u or v hypersurfaces should have a total u and

v weight that adds up to 3 plus 2 times the number of angular derivative

commutations. For a spacetime energy norm, the total weight should add

up to 2 plus 2 times the number of angular derivative commutations.

(2) When we carry out the energy estimates for
Ä
α̃, β̃
ä
, we will need to con-

jugate the ∇3 equation for α by a suitable u-weight. This produces lower

order terms proportional to |u|−1; the norms have to be chosen so that

these additional lower order terms in combination with the already present

terms from trχα have a good sign in our energy estimate. Every other
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curvature component satisfies a ∇4 equation, and the conjugation by a

negative v-weight will produce a good spacetime term.

(3) We have to make sure the norms are chosen so that we have a finite con-

tribution to our estimates from initial data and from the inhomogeneities

produced by the various curvature renormalizations.

Next, we have the norms for the Ricci coefficients (except for the lower

regularity norm for trχ and trχ).

Definition 6.8. Let 0 < q < 1/2, −1 ≤ ũ < 0, and 0 < ṽ
−ũ ≤ v. Then we

define the following: for any Ricci coefficient ψ ∈ {ω, ηA, χ̂AB, ηA},

‖ψ‖2
Bq,ũ,ṽ

.
=

2∑

i=0

sup
(u,v)∈Rũ,ṽ

(−u)4−
q

100
+2i

v2−
q

100

∫

S2

∣∣∣ /∇i
ψ̃
∣∣∣
2

˚dVol;(6.1)

for χ̂AB, we have

‖χ̂‖2
Bq,ũ,ṽ

.
=

2∑

i=0

sup
(u,v)∈Rũ,ṽ

(−u)4−2q+2i

v2−2q

∫

S2

∣∣∣ /∇i˜̂χ
∣∣∣
2

˚dVol;(6.2)

for ψ ∈ {trχ, trχ}, we set

‖ψ‖2
Bq,ũ,ṽ

.
=

2∑

i=1

sup
(u,v)∈Rũ,ṽ

(−u)4−
q

100
+2i

v2−
q

100

∫

S2

∣∣∣ /∇i
ψ̃
∣∣∣
2

˚dVol.(6.3)

(Note that the sum starts with i = 1.)

We also introduce the notation

Bq,ũ,ṽ
.
=
∑

ψ 6∈{ω}

‖ψ‖
Bq,ũ,ṽ

.

Finally, when it will not cause confusion, we will often suppress a subset of the

(q, ũ, ṽ) indices from the B or B subscript.

Next we have a norm for the L2 norm of trχ and trχ

Definition 6.9. Let 0 < q < 1/2, −1 ≤ ũ < 0, and 0 < ṽ
−ũ ≤ v. Then for

ψ ∈ {trχ, trχ}, we define

(6.4) ‖ψ‖
Cq,ũ,ṽ

.
= sup

(u,v)∈Rũ,ṽ

(−u)4−
q

100

v2−
q

100

∫

S2

∣∣∣ψ̃
∣∣∣
2

˚dVol.

We also introduce the notation

Cq,ũ,ṽ
.
=

∑

ψ∈{trχ,trχ}

‖ψ‖
Cq,ũ,ṽ

.

Finally, when it will not cause confusion, we will often suppress a subset of the

(p, ũ, ṽ) indices from the C or C subscript.
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Lastly, we have the norms for the metric coefficients.

Definition 6.10. Let 0 < q < 1/2, −1 ≤ ũ < 0, and 0 < ṽ
−ũ ≤ v. Then we

define

∥∥/g
∥∥

Dq,ũ,ṽ

.
=

2∑

i=0

sup
(u,v)∈Rũ,ṽ

(−u)2+2i− q
100

v2−
q

100

∫

S2

∣∣∣∇̊i
/̃g
∣∣∣
2

˚dVol,

‖b‖
D ,q,i,ũ,ṽ

.
=

2∑

i=0

sup
(u,v)∈Rũ,ṽ

(−u)2+2i− q
100

v2−
q

100

∫

S2

∣∣∣ /∇i
b̃
∣∣∣
2

˚dVol,

‖log Ω‖
Dp,ũ,ṽ

.
=

2∑

i=0

sup
(u,v)∈Rũ,ṽ

(−u)2+2i− q
100

v2−
q

100

∫

S2

∣∣∣ /∇i
log
Ä
Ω̃
ä∣∣∣2 ˚dVol,

(6.5)

where we recall that ∇̊ is the covariant derivative with respect to a fixed round

metric /̊gAB on the sphere. We also introduce the notation

Dq,ũ,ṽ
.
=
∑

ϑ 6=/g

‖ϑ‖
Dq,ũ,ṽ

.

Finally, when it will not cause confusion, we will often suppress a subset of the

(q, ũ, ṽ) indices from the D or D subscript.

Our last definition concerns weighted Sobolev spaces on S2:

Definition 6.11. For any (0, k)-tensor w, (u, v), and i ∈ {0, 1, 2}, we define

‖w‖H̃i(S2u,v)
.
=

i∑

j=0

(v − u)j
Ç∫

S2u,v

/g
Ä
/∇
j
w, /∇

j
w
ä

˚dVol

å1/2

,

‖w‖L̃p(S2u,v)
.
=

Ç∫
S2u,v

/g (w,w)
p/2 ˚dVol

å1/p

,

where ˚dVol denotes the volume form of the round sphere.

We close with a useful lemma.

Lemma 6.2. There exists R > 0 (independent of ǫ) so that we have the

following bounds:

[∥∥∥∥
⊲

Ω−1χ̂

∥∥∥∥
2

H̃4(S2u,v)
+

∥∥∥∥vL∂v
⊲

Ω−1χ̂

∥∥∥∥
2

H̃4(S2u,v)

]
.

∣∣∣∣logR
Å
v

−u

ã∣∣∣∣ ǫ2−2δ(−u)−2,(6.6)

∥∥∥∥
⊲

Ω−1β

∥∥∥∥
2

H̃4(S2u,v)
.

∣∣∣∣logR
Å
v

−u

ã∣∣∣∣ ǫ2−2δ(−u)−4.(6.7)
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If ψ is a Ricci coefficient, ψ 6∈ {χ̂AB, trχ, trχ}, s denotes the signature of ψ ,

and Θ ∈
¶
ρ− 1

2 χ̂ · χ̂, σ − 1
2 χ̂ ∧ χ̂, β, α

©
, then

(6.8)
∥∥∥Ωsψ

∥∥∥
2

H̃4(S2u,0)
. ǫ2−2δ(−u)−2, ‖Θ‖2

H̃4(S2u,0)
. ǫ2−2δ(−u)−4,

and lastly,

∥∥Ω−1 trχ
∥∥2
H̃4(S2u,0)

. (−u)−2,
∥∥∥Ω trχ

∥∥∥
2

H̃4(S2u,0)
. (−u)−2,

(6.9)

∥∥ /∇
(
Ω−1 trχ

)∥∥2
H̃3(S2u,0)

. ǫ2−2δ(−u)−2,
∥∥∥ /∇
(
Ω trχ

)∥∥∥
2

H̃3(S2u,0)
.ǫ2−2δ(−u)−2.

(6.10)

Proof. These bounds follow immediately from Lemmas 5.1–5.3, the con-

struction of (M, gµν) in Proposition 5.4, and the null structure equations that

relate curvature components to Ricci coefficients. For example, let us con-

sider ηA. We have (see footnote 8) that in the coordinate frame, ηA
(
u, θB

)
=

△
ηA
(
θB
)
, and thus the estimate (6.9) for ηA follows from the corresponding

estimates for
△
ηA that were established in Lemma 5.1. �

6.2. The estimates. A standard argument using Proposition 5.4 shows that

Theorem 6.1 will follow from the following proposition.

Proposition 6.3. Let q ∈ (0, 1/2), 0 < p ≪ 1, and let (M, gµν) be a

spacetime produced by Proposition 5.4 that exists in a rectangle Rũ,ṽ for some

ũ ∈ (−1, 0) and ṽ ∈ (0, v] satisfying

0 <
ṽ

−ũ
≤ v,

and that satisfies the “bootstrap assumption”

Aq,ũ,ṽ +Bq,ũ,ṽ +Dq,ũ,ṽ ≤ 2Aǫ1−δ,(6.11)

∥∥/g
∥∥

Dq,ũ,ṽ
+ sup

(u,v)∈Rũ,ṽ

1∑

i=0

(−u)2+i
∥∥∥ /∇i‹K

∥∥∥
L2(S2u,v)

+ Cq,ũ,ṽ ≤ 2Av
p
10 ,(6.12)

where A≫ 1 is a suitable constant.

Then, if ǫ and v are suitably small, depending only on q and p and A, we

have the following estimate, which improves on the bootstrap assumption:

(6.13) Aq,ũ,ṽ +Bq,p,ũ,ṽ +Dq,ũ,ṽ ≤ Aǫ1−δ,

(6.14)
∥∥/g
∥∥

Dq,ũ,ṽ
+ sup

(u,v)∈Rũ,ṽ

1∑

i=0

(−u)2+i
∥∥∥ /∇i‹K

∥∥∥
L2(S2u,v)

+ Cq,ũ,ṽ ≤ Av
p
10 .
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The proof of Proposition 6.3 will be broken into stages, primarily based

on what norm we are estimating.

6.2.1. Sobolev spaces, Sobolev inequalities, and elliptic estimates on S2 . In

this section we will analyze the Sobolev spaces H̃ i and establish some standard

elliptic estimates. We start by observing that the Sobolev spaces generated by

/gAB and /̊gAB are comparable.

Lemma 6.4. Let (M, gµν) satisfy the hypothesis of Proposition 6.3, and

let wA1···Ak
be a (0, k)-tensor. Then we have that

‖w‖H̃i(S2u,v)
∼k (−u)

−k ‖w‖H̊i(S2u,v)
for i ∈ {0, 1, 2},

‖w‖L̃p(S2u,v)
∼k (−u)

−k ‖w‖L̊p(S2u,v)
,

where we recall that H̊ i and L̊p denote the Sobolev and Lp spaces generated by

the round metric /̊gAB .

Proof. This is an immediate consequence of Lemma 4.2, the bootstrap

hypothesis, and the smallness of v and ǫ. �

Now we observe that the standard Sobolev inequalities hold for the spaces H̃ i.

Lemma 6.5. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then,

for any (0, k)-tensor wA1···Ak
and p ∈ [1,∞), we have that

‖w‖L̃p(S2u,v)
.p,k ‖w‖H̃1(S2u,v)

, sup
S2u,v

|w| .k ‖w‖H̃2(S2u,v)
,

and for any (0, k)-tensor wA1···Ak
and (0, k′)-tensor vA1···Ak′

, we have

‖w · v‖H̃2(S2u,v)
.k,k′ ‖w‖H̃2(S2u,v)

‖v‖H̃2(S2u,v)
.

Proof. This is an immediate consequence of Lemmas 6.4 and 4.1. �

These Sobolev inequalities will be used repeatedly in our estimates of non-

linear terms, and we will often do so without explicit comment.

We close the section with some standard elliptic estimates.

Lemma 6.6. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then

for any function f , 1-form θA , and symmetric trace-free 2-tensor νAB , we have

‖f‖H̃2(S2u,v)
. (−u)2

∥∥ /∆f
∥∥
L2(S2u,v)

+ ‖f‖L2(S2u,v)
,

(6.15)

‖θ‖H̃i(S2u,v)
. (−u)

[∥∥ /divθ
∥∥
H̃i−1(S2u,v)

+
∥∥ /curlθ

∥∥
H̃i−1(S2u,v)

]
for i ∈ {1, 2},

(6.16)

‖ν‖H̃i(S2u,v)
. (−u)

∥∥ /divν
∥∥
H̃i−1(S2u,v)

, for i ∈ {1, 2}.

(6.17)
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Proof. The estimates (6.16) and (6.17) are straightforward consequences

of the following well-known identities and the bootstrap assumptions:

∫

S2

î∣∣ /∇θ∣∣2 +K |θ|2
ó
d /Vol =

∫

S2

î∣∣ /divθ∣∣2 + ∣∣ /curlθ∣∣2
ó
d /Vol,

∫

S2

î∣∣ /∇ν∣∣2 + 2K |ν|2
ó
d /Vol = 2

∫

S2

∣∣ /divν
∣∣2 d /Vol.

Finally, to obtain (6.15), we simply write

/div
(
/∇f
)
= /∆f, /curl

(
/∇f
)
= 0

and apply (6.16). �

6.2.2. Estimates for the curvature component norm A . The next lemma

will play an important role in the energy estimates for α̃.

Lemma 6.7. We have

(6.18) Ω∇3

Ç
⊲

Ω−2α

å

AB

+
1

2
Ω trχ

Ç
⊲

Ω−2α

å

AB

− 8Ωω

Ç
⊲

Ω−2α

å

AB

= 0.

Proof. We start by noting that a straightforward calculation shows that

(5.6) is equivalent to

Ω∇3

Ç
⊲

Ω−1χ̂

å

AB

+
1

2
Ω trχ

Ç
⊲

Ω−1χ̂

å

AB

− 4Ωω

Ç
⊲

Ω−1χ̂

å

AB

=

Å
/∇⊗̂η + η⊗̂η −

1

2
(Ω−1 trχ) Ωχ̂

ã
AB

.

(6.19)

Next we note that
[
Ω∇3,Lv

]
= 0 and that

Ωω = −
κ

2u
−

1

2
Lb log

ÇÅ
v

−u

ãκ
Ω

å
.

Thus we immediately obtain (6.18). �

Next, we analyze the “initial data” terms that will come up in our energy

estimates.

Lemma 6.8. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then,

for every v ∈ (0, v], i ∈ {0, 1, 2} and curvature component Ψ 6= αAB , we have

∫ v

0

∫

S2
Ω2v−1+ q

100

∣∣∣ /∇i‹Ψ
∣∣∣
2
|(−1,v̇,θA) dv̇

˚dVol . ǫ2−2δ.(6.20)
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Proof. Let us start with β̃A. It follows from the definition of β̃A and (2.18)

that we have

β̃A = −
Ä
/div − /div

äÇ ⊲

Ω−1χ̂

å

A

+

Å
1

2
/∇A

(
Ω−1 trχ

)
−

1

2
/∇ (Ω−1 trχ)A

ã

− η̃B/g
BC

Ç
⊲

Ω−1χ̂CA

å
+

1

2

Ä(
η
(
Ω−1 trχ

))
A
− η (Ω−1 trχ)A

ä
.

(6.21)

Before we estimate this, we need to establish some bounds for /̃gAB, η̃A, and

t̃rχ. Since along {u = −1} we have that Ω = v−κ and

Ω−1χ̂ =
⊲

Ω−1χ̂C(A

Ä
/g
−1
0

äCD
/gB)D

,

we have the following equations along {u = −1}:

L∂v/gAB = 2v−2κ

Ç
⊲

Ω−1χ̂C(A

Ä
/g
−1
0

äCD
/gB)D

+
1

2

(
Ω−1 trχ

)
/gAB

å
,(6.22)

L∂v
(
Ω−1 trχ

)
= v−2κ

Å
−
1

2

(
Ω−1 trχ

)2
−
∣∣Ω−1χ̂

∣∣2
ã
,

(6.23)

Ω∇4ηA = v−2κ
(
2Ω−1χ̂ · η +Ω−1 trχη +Ω−1β

)
A
.(6.24)

It is now straightforward to use the bound (5.8) for
⊲

Ω−1χ̂AB as well as Grön-

wall’s inequality to conclude from (6.21)–(6.24) that

(6.25) sup
v∈(0,v]

v−1+ q
100

∥∥∥β̃
∥∥∥
H̊6

. ǫ1−δ.

Of course, from (6.25) we obtain that (6.20) holds for ‹Ψ = β̃A. For α̃AB, the

desired bound is immediate from (6.6), the argument above, and the definition

of α̃AB.

Next we come to σ̃. Using (2.23), the following equation is easily derived:

Ω∇4σ̃ = Ω2

[
−

3

2

(
Ω−1 trχ

)
Ç
σ̃ +

1

2
χ̂∧

⊲

Ω−1χ̂

å

− /div∗
(
Ω−1β

)
+

1

2
›̂χ∧α+

1

2
χ̂∧α̃+ η ∧

(
Ω−1β

)
]
.

(6.26)

Integrating equation (6.26), using also the ∇4 equation for χ̂
AB

, and arguing

as above easily lead to the desired bound for σ̃. The bounds for ρ̃ and β̃
A

are

obtained in a similar fashion. �

Now we are ready to begin the energy estimates.
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Proposition 6.9. Let (M, gµν) satisfy the hypothesis of Proposition 6.3.

Then we have

‖(α, β)‖
Aq,ũ,ṽ

. ǫ2−2δ.

Proof. From (2.20) we may easily derive the following:

Ω∇3

(
Ω−2α

)
AB

+
1

2
trχ

(
Ω−2α

)
AB

− 8 (Ωω)
(
Ω−2α

)
AB

=
(
/∇⊗̂

(
Ω−1β

)
− 3

((
Ω−1χ̂

)
ρ+ ∗

(
Ω−1χ̂

)
σ
)
+ 5η⊗̂

(
Ω−1β

))
AB

.

(6.27)

Then, from Lemma 6.7 and (6.27) we obtain

Å
Ω∇3α̃+

1

2
Ω trχα̃− 8 (Ωω) α̃

ã
AB

=

Ç
Ω̃∇3

Ç
⊲

Ω−2α

å
+

1

2
t̃rχ

Ç
⊲

Ω−2α

å
− 6ω̃

Ç
⊲

Ω−2α

å
+ /∇⊗̂

Ç
⊲

Ω−1β

åå

AB︸ ︷︷ ︸
E1

+
Ä
/∇⊗̂β̃

ä
AB

+
(
−3
((
Ω−1χ̂

)
ρ+ ∗

(
Ω−1χ̂

)
σ
)
+ 5η⊗̂

(
Ω−1β

))
AB︸ ︷︷ ︸

F1

.

(6.28)

Next, we use (2.21) to derive

Ω∇4

(
Ω−1β

)
A
+ 2Ω2

(
Ω−1 trχ

) (
Ω−1β

)
A
= /divαA + (η · α)A .(6.29)

Our next goal is to write this in terms of β̃A and α̃AB. We start with

/divαA = /div
(
Ω2Ω−2α

)
A

= /div
(
Ω2Ω̃−2α

)
A
+

˜
/div
(
Ω2
( ⊲

Ω−2α
))

A

+ /div

[ÇÅ
v

−u

ãκ
Ω

å2 Å
v

−u

ã−2κ
Ç

⊲

Ω−2α

å]

A

= /div
(
Ω2α̃

)
A
+

Å
v

−u

ã−2κ ˜

/div

(ÅÅ
v

−u

ãκ
Ω

ã2Ç ⊲

Ω−2α

å)

A

+ L∂v

Ç
/div

Ç
⊲

Ω−1χ̂

åå

A

.

(6.30)
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Similarly,

(η · α)A =
(
η · Ω2α̃

)
A
+

Å
v

−u

ã−2κ
Ñ

˜
η ·

ÅÅ
v

−u

ãκ
Ω

ã2 ⊲

Ω−2α

é

A

+ L∂v

Ç
η ·

Ç
⊲

Ω−1χ̂

åå

A

.

(6.31)

Combining (6.29) with (6.30) and (6.31) leads to

Ω∇4β̃A + 2Ω2
(
Ω−1 trχ

)
β̃A = Ω2 /divα̃A +Ω2

((
2η + η

)
· α̃
)
A

+Ω2

[
Ω−1χ ·

Ç
⊲

Ω−1β

å
− 2

(
Ω−1 trχ

) ⊲

Ω−1β

+

Å
v

−u

ã−2κ ˜

/div

(ÅÅ
v

−u

ãκ
Ω

ã2Ç ⊲

Ω−2α

å)

+

Å
v

−u

ã−2κ ˜
η

ÅÅ
v

−u

ãκ
Ω

ã2 ⊲

Ω−2α

]

A
.
= Ω2 /divα̃A +Ω2

((
2η + η

)
α̃
)
A
+ E2.

(6.32)

Finally, for each i ∈ {0, 1, 2}, we commute (6.28) with Ω /∇
i

and (6.32)

with /∇
i
. We end up with (suppressing the indices on the covariant derivative

in the rest of the proof for typographical purposes)

Ω∇3

Ä
Ω /∇

i
α̃
ä
AB

+
1 + i

2
Ω trχ

Ä
Ω /∇

i
α̃
ä
AB

− 6 (Ωω) Ω /∇
i
α̃AB

= Ω
Ä
/∇⊗̂ /∇

i
β̃
ä
AB

+Ω /∇
i
E1 +Ω /∇

i
F1

+Ω
î
Ω∇3, /∇

i
ó
α̃AB+

i

2
Ω trχα̃AB+Ω

î
/∇
i
, /∇⊗̂

ó
β̃AB+Ω /∇

i
(1
2
Ω trχ (Ωα̃)AB

︸ ︷︷ ︸
G1

−6 (Ωω) α̃AB

)
−

1

2
Ω trχ

Ä
Ω /∇

i
α̃
ä
AB

− 6 (Ωω) Ω /∇
i
α̃AB

︸ ︷︷ ︸
G1

,

(6.33)

Ω∇4 /∇
i
β̃A =

Ä
Ω2 /div

Ä
/∇
i
α̃
ä
+ /∇

i
î
Ω2
(
2η + η

)
α̃− 2Ω2

(
Ω−1 trχ

)
β̃
óä
A

+ /∇
i
E2 +

Äî
Ω∇4, /∇

i
ó
β̃ +
î
/∇
i
,Ω2 /div

ó
α̃
ä
A︸ ︷︷ ︸

G2

.(6.34)
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Finally, we conjugate with the weight w
.
= (−u)2−q+i

v1/2−q and obtain

Ω∇3

Ä
wΩ /∇

i
α̃
ä
AB

+

Å
2− q + i

−u
+

1 + i

2
Ω trχ

ãÄ
wΩ /∇

i
α̃
ä
AB

−6 (Ωω)wΩ /∇
i
α̃AB

= wΩ
Ä
/∇⊗̂ /∇

i
β̃
ä
AB

+ wΩ /∇
i
E1 + wΩ /∇

i
F1 + wG1,

(6.35)

Ω∇4

Ä
w /∇

i
β̃
ä
A
+

1/2− q

v
w /∇

i
β̃A

= wΩ2 /div
Ä
/∇
i
α̃
ä
A
+ w /∇

i
î
Ω2
((
2η + η

)
· α̃
)
A
− 2Ω2

(
Ω−1 trχ

)
β̃A
ó

+ w /∇
i
E2 + wG2.

(6.36)

We now note a key fact that by the bootstrap assumptions (6.11) and (6.12)

we have that Å
2− q + i

−u
+

1 + i

2
Ω trχ

ã
& (−u)−1 > 0.

Of course we also have that Å
1

2
− q

ã
v−1 > 0.

Thus, after contracting (6.35) with wΩ /∇
i
α̃AB, (6.36) with w /∇

i
β̃A, adding the

resulting equations together, integrating by parts, and using the bootstrap

assumptions, we end up with

sup
(u,v)∈Rũ,ṽ

[ ∫ v

0

∫

S2
Ω2 (−u)

4−2q+2i

v̇1−2q

∣∣∣ /∇i
α̃
∣∣∣
2

˚dVol dv̇

(6.37)

+

∫ u

−1

∫ v

0

∫

S2

(−u̇)3−2q+2i

v̇1−2q
Ω2
∣∣∣ /∇i

α̃
∣∣∣
2

˚dVol du̇ dv̇
]

+ sup
(u,v)∈Rũ,ṽ

[∫ u

−1

∫

S2

(−u̇)4−2q+2i

v1−2q

∣∣∣ /∇i
β̃
∣∣∣
2

˚dVol du̇

+

∫ u

−1

∫ v

0

∫

S2

(−u̇)4−2q+2i

v̇2−2q

∣∣∣ /∇i
β̃
∣∣∣
2

˚dVol du̇ dv̇

]

.

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)5−2q+2i

v̇1−2q

ï∣∣∣Ω /∇i
E1
∣∣∣
2
+
∣∣∣Ω /∇i

F1

∣∣∣
2
+ |G1|

2
ò

˚dVol du̇ dv̇

+

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)4−2q+2i

v̇−2q

[ ∣∣∣ /∇i
î
Ω2
(
2η + η

)
α̃− 2Ω2

(
Ω−1 trχ

)
β̃
ó∣∣∣2

+
∣∣∣ /∇i

E2
∣∣∣
2
+ |G2|

2
]

˚dVol du̇ dv̇
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.
=

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)5−2q+2i

v̇1−2q
|I| ˚dVol du̇ dv̇

+

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)4−2q+2i

v̇−2q
|II| ˚dVol du̇ dv̇.

Let us start with the analysis of the terms in I. We will group these terms

into three categories:

(1) We have the “linear/data” terms contained in Ω /∇
i
E1. Using the bootstrap

hypothesis, Sobolev inequalities on S2, Lemma 6.2, and the crucial fact

that in the norms (6.1), (6.3), (6.4), and (6.5) we see q
100 instead of 2q,

leads to the bound (where we suppress the volume form for typographical

reasons)

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)5−2q+2i

v̇1−2q

∣∣∣Ω /∇i
E1
∣∣∣
2
. ǫ2−2δ

∫ ũ

−1

∫ ṽ

0

(−u̇)−1− q
10 v̇−1+ q

10 log24
Å
v̇

−u̇

ã
.

. ǫ2−2δ.

(6.38)

(2) Next, we have the nonlinear terms generated by Ω /∇
i
F1 and G1 except for

the terms generated by the commutator
î
/∇
i
, /∇⊗̂

ó
β̃AB. The contributions

of these terms to I are easily seen to all schematically be one of the following

forms:

Ω2
∣∣∣ /∇i

(Ωs1ψ1 · Ω
s2Ψs2)

∣∣∣
2
, Ω2

∣∣∣ /∇i
(Ωs1ψ1 · α̃)

∣∣∣
2
, Ω2

∣∣∣ /∇i−1
(Ωs1ψ1 · Ω

s2ψ2 · α̃)
∣∣∣
2
,

where

(a) each ψi denotes a Ricci coefficient of signature si that is not equal to

ω or trχ;

(b) if ψi multiplies α̃AB, then we must have ψi 6= χ̂AB;

(c) if trχ shows up in one of the quadratic terms, it must be acted on by
/∇, and trχ cannot be both of the Ricci coefficients in the cubic term;

(d) each Ψi denotes a null curvature component of signature si that is not

equal to αAB.

Using the bootstrap hypothesis, Sobolev inequalities on S2, and Lemma 6.2

leads to the bound (where we suppress the volume form for typographical

reasons)

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)5−2q+2i

v̇1−2q
Ω2

[ ∣∣∣ /∇i
(Ωs1ψ1 · Ω

s2Ψs2)
∣∣∣
2

+
∣∣∣ /∇i

(Ωs1ψ1 · α̃)
∣∣∣
2
+
∣∣∣ /∇i−1

(Ωs1ψ1 · Ω
s2ψ2 · α̃)

∣∣∣
2
]

. ǫ2−2δ.
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(3) Lastly, we have the terms generated by the commutator
î
/∇
i
, /∇⊗̂

ó
β̃AB.

These occur only if i ∈ {1, 2} and they are of the following schematic form:

Ω2
∣∣∣ /∇i−1

Ä
(K, 1) · β̃

ä∣∣∣2 .
We have the following immediate consequences of Sobolev inequalities

on S2:∥∥∥Kβ̃
∥∥∥
L̃2

.
∥∥∥β̃
∥∥∥
L̃2

+
∥∥∥‹K
∥∥∥
L̃4

∥∥∥β̃
∥∥∥
L̃4

.
∥∥∥β̃
∥∥∥
L̃2

+
∥∥∥‹K
∥∥∥
H̃1

∥∥∥β̃
∥∥∥
H̃1
,

∥∥∥
(
/∇K

)
β̃
∥∥∥
L̃2

.
∥∥∥ /∇‹K

∥∥∥
L̃2

∥∥∥β̃
∥∥∥
L̃∞

.
∥∥ /∇K

∥∥
L̃2

∥∥∥β̃
∥∥∥
H̃2
,

∥∥∥K · /∇β̃
∥∥∥
L̃2

.
∥∥∥ /∇β̃

∥∥∥
L̃2

+
∥∥∥‹K
∥∥∥
L̃4

∥∥∥ /∇β̃
∥∥∥
L̃4

.
∥∥∥ /∇β̃

∥∥∥
L̃2

+
∥∥∥‹K
∥∥∥
H̃1

∥∥∥β̃
∥∥∥
H̃2
,

where all of the spaces are defined over S2u,v. Thus, using the bootstrap as-

sumption and the smallness of v, we may easily establish that (suppressing

the volume forms)
∫ ũ

−1

∫ v

0

∫

S2

(−u̇)5−2q+2i

v̇1−2q
Ω2
∣∣∣ /∇i−1

Ä
(K, 1) · β̃

ä∣∣∣2

.

2∑

j=0

∫ ũ

−1

∫ v

0

∫

S2

(−u̇)5−2q+2j

v̇1−2q
Ω2
∣∣∣ /∇j

β̃
∣∣∣
2

. ǫ2−2δ.

(6.39)

Now we discuss the terms contained in II from the expression (6.37). We

will again group these into three different categories, which we treat in a similar

fashion to the terms in I.

(1) We have the “linear/data” terms contained in Ω /∇
i
E2. Using the bootstrap

hypothesis, Sobolev inequalities on S2, and Lemma 6.2 leads to the bound

(where we suppress the volume form for typographical reasons)

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)4−2q+2i

v̇−2q

∣∣∣Ω /∇i
E2
∣∣∣
2
.ǫ2−2δ

∫ ũ

−1

∫ ṽ

0

(−u̇)−1− q
10 v̇−1+ q

10 log24
Å
v̇

−u̇

ã

.ǫ2−2δ.

(6.40)

Note that, as opposed to the bound (6.38), we do not need to exploit fully

the vanishing of any Ricci coefficients ψ̃.

(2) Next we have all of the terms except for Ω /∇
i
E2 and those generated by the

commutator
î
/∇
i
,Ω2 /div

ó
α̃A. These are all of the following schematic form:

∣∣∣ /∇i
Ä
Ω2 · (Ωs1ψ1) ·

Ä
α̃, β̃
ää∣∣∣2 ,

∣∣∣ /∇i
Ä
Ω2 · (Ωs1ψ1) · (Ω

s2ψ2) · β̃
ä∣∣∣2 ,

where ψi denotes a Ricci coefficient of signature si that is not equal to ω.

Using the bootstrap hypothesis, Sobolev inequalities on S2, and Lemma 6.2
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leads to the bound (where we suppress the volume form for typographical

reasons)

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)4−2q+2i

v̇−2q

[ ∣∣∣ /∇i
Ä
Ω2 · (Ωs1ψ1) ·

Ä
α̃, β̃
ää∣∣∣2

+
∣∣∣ /∇i
Ä
Ω2 · (Ωs1ψ1) · (Ω

s2ψ2) · β̃
ä∣∣∣2
]
. ǫ2−2δ.

(6.41)

(3) Finally, we have the terms generated by the commutator
î
/∇
i
,Ω2 /div

ó
α̃A.

These will be of the schematic form

Ω2
∣∣∣ /∇i−1

((K, 1) · α̃)
∣∣∣
2
.

The same argument that established (6.39) leads to
∫ ũ

−1

∫ v

0

∫

S2

(−u̇)4−2q+2i

v̇−2q
Ω2
∣∣∣ /∇i−1

((K, 1) · α̃)
∣∣∣
2

.

2∑

j=0

∫ ũ

−1

∫ v

0

∫

S2

(−u̇)4−2q+2j

v̇−2q
Ω2
∣∣∣ /∇j

α̃
∣∣∣
2

. ǫ2−2δ.

(6.42)

This concludes the proof that the terms in (6.37) are bounded by ǫ2−2δ and

hence finishes the proof. �

In the next proposition we carry out the analogous energy estimates for

the Bianchi pairs (βA, ρ, σ),
Ä
ρ, σ, β

A

ä
, and

Ä
β
A
, αAB

ä
.

Proposition 6.10. Let (M, g) satisfy the hypothesis of Proposition 6.3.

Then we have that

A . ǫ1−δ.

Proof. We may re-write the Bianchi equations (2.22)–(2.29) as follows:

Ω∇3

(
Ω−1β

)
A
+
(
Ω trχ

)
Ω−1βA

= /∇Aρ̃+ 4 (Ωω) Ω−1βA + ∗ /∇Aσ̃ + 2
(
Ω−1χ̂

)
·
(
Ωβ
)
A

+ 3 (ηAρ+
∗ηAσ) + /∇A (ρ− ρ̃) + ∗ /∇A (σ − σ̃) ,

(6.43)

Ω∇4σ̃ +
3

2
Ω2
(
Ω−1 trχ

)
σ

= Ω2

ï
− /div∗

(
Ω−1β

)
−
(
η + 2η

)
∧
(
Ω−1β

)
+

1

2
Ωχ̂ ∧ α̃

ò

+
1

2

Å
v

−u

ã−2κ ˜ÅÅ
v

−u

ãκ
Ω

ã2 (
Ωχ̂
)
∧

⊲

Ω−2α,

(6.44)
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Ω∇3σ +
3

2

(
Ω trχ

)
σ = − /div∗β̃ −

1

2

(
Ω−1χ̂

)
∧
(
Ω2α

)
− η ∧

(
Ωβ
)
− /div∗

(
Ωβ
)
,

(6.45)

Ω∇4ρ̃+
3

2
Ω2
(
Ω−1 trχ

)
ρ

= Ω2

ï
/div
(
Ω−1β

)
−

1

2

(
Ωχ̂
)
· α̃+

(
η + 2η

)
·
(
Ω−1β

)ò

−
1

2

Å
v

−u

ã−2κ ˜ÅÅ
v

−u

ãκ
Ω

ã2 (
Ωχ̂
)
·

⊲

Ω−2α,

(6.46)

Ω∇3ρ+
3

2

(
Ω trχ

)
ρ

= − /divβ̃ −
1

2

(
Ω−1χ̂

)
·
(
Ω2α

)
− η ·

(
Ωβ
)
− /div

(
Ωβ
)
,

(6.47)

Ω∇4β̃A +Ω2
(
Ω−1 trχ

) (
Ωβ
)
A

= Ω2
[
−Ωχβ − /∇ρ+ ∗ /∇σ + 2

(
Ωχ̂
)
·
(
Ω−1β

)
+ 3

(
−ηρ+ ∗ησ

)]
A
,

(6.48)

Ω∇3

(
Ωβ
)
A
+ 2

(
Ω trχ

) (
Ωβ
)
A

= − /divα̃A − 4 (Ωω) Ωβ
A
+ 2η ·

(
Ω2α

)
A
− /div

Ä
Ω2α
ä
A
,

(6.49)

Ω∇4α̃AB +
1

2
Ω2
(
Ω−1 trχ

)
Ω2αAB

= Ω2
[
− 2Ωχ · α− /∇⊗̂

(
Ωβ
)

− 3
((
Ωχ̂
)
ρ− ∗

(
Ωχ̂
)
σ
)
+
(
η − 4η

)
⊗̂
(
Ωβ
) ]

AB
.

(6.50)

(It may be useful for the reader to draw an analogy with this form of the

Bianchi equations and the renormalized Bianchi equations (2.31)–(2.36).)

Now we treat each of the Bianchi pairs ((6.43), (6.44), (6.46)), ((6.45),

(6.47), (6.48)), and ((6.49), (6.50)) just as we treated the (αAB, βA) pair in

the proof of Proposition 6.9. That is, for each i ∈ {0, 1, 2}, we commute

each ∇4 equation with /∇
i
A1···Ai

, commute each ∇3 equation with Ω /∇
i
A1···Ai

,

conjugate each equation with the weight (−u)2−
q

200+i

v1/2−
q

200
(note that the weight has

changed from Proposition 6.9), and finally carry out the energy estimate. Note

the key point that other than αAB, every null curvature component satisfies

a ∇4 equation, and thus, in analogy to βA in the proof of Proposition 6.9,

there will be a good spacetime term for ρ, σ, β
A
, and αAB with a v-weight
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v−2+ q
100 . Thus, (using that we already have estimated a spacetime term for βA

in Proposition 6.9) we end up with

(6.51) A2 . ǫ2−2δ +
2∑

i=0

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)4−
q

100
+2i

v̇−
q

100

|Ni| ˚dVol du̇ dv̇,

where, just as in the proof of Proposition 6.9, the terms making up Ni may be

sorted into three categories:

(1) We have “linear/data” terms involving
⊲

Ω−2αAB, ρ − ρ̃, Ωβ
A
, and Ω2αAB.

We collect all of these terms below:
∣∣∣Ω /∇i ( /∇ (ρ− ρ̃)

)∣∣∣
2
,

∣∣∣Ω /∇i (∗ /∇ (σ − σ̃)
)∣∣∣

2
,

∣∣∣∣∣∣
/∇
i

ÑÅ
v

−u

ã−2κ ˜ÅÅ
v

−u

ãκ
Ω

ã2 (
Ωχ̂
)
∧

⊲

Ω−2α

é∣∣∣∣∣∣

2

,

∣∣∣Ω /∇i ( /div∗
(
Ωβ
))∣∣∣

2
,

∣∣∣∣∣∣
/∇
i

ÑÅ
v

−u

ã−2κ ˜ÅÅ
v

−u

ãκ
Ω

ã2 (
Ωχ̂
)
·

⊲

Ω−2α

é∣∣∣∣∣∣

2

,

∣∣∣Ω /∇i ( /div
(
Ωβ
))∣∣∣

2
,

∣∣∣Ω /∇i
Ä
/div
Ä
Ω2α
ää∣∣∣2 .

Let Fi denote the sum of all of these terms. Using the bootstrap hypothesis,

Sobolev inequalities on S2, and Lemma 6.2 leads to the bound (where we

suppress the volume form for typographical reasons)

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)4−
q

100
+2i

v̇−
q

100

|Fi|
2.ǫ2−2δ

∫ ũ

−1

∫ ṽ

0

(−u̇)−1− q
1000 v̇−1+ q

1000 log24
Å
v̇

−u̇

ã

.ǫ2−2δ.

(6.52)

(2) Next, we have all of the remaining terms except those generated by com-

mutators of angular operators with /∇
i
A1···Ai

. These terms are all of the

following schematic form:

(
Ω2, 1

) ∣∣∣ /∇i
(Ωs1ψ1 · Ω

s2Ψs2)
∣∣∣
2
,

(
Ω2, 1

) ∣∣∣ /∇i
Ä
Ωs1ψ1 ·

Ä
Ωs2Ψ2,‹Ψ

ää∣∣∣2
(
Ω2, 1

) ∣∣∣ /∇i−1
Ä
Ωs1ψ1 · Ω

s2ψ2 ·
Ä
Ωs3Ψ3,‹Ψ

ää∣∣∣2 ,
where

(a) each ψi denotes a Ricci coefficient of signature si that is not equal to ω;

(b) each Ψi denotes an arbitrary null curvature component of signature si
that is not equal to αAB;

(c) each ‹Ψ denotes an arbitrary null curvature component.
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Using the bootstrap hypothesis, Sobolev inequalities on S2, and Lemma 6.2

leads to the bound (where we suppress the volume form for typographical

reasons)

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)4−
q

100
+2i

v̇−
q

100

[
(
Ω2, 1

) ∣∣∣ /∇i
(Ωs1ψ1 · Ω

s2Ψs2)
∣∣∣
2

+
(
Ω2, 1

) ∣∣∣ /∇i
Ä
Ωs1ψ1 ·

Ä
Ωs2Ψ2,‹Ψ

ää∣∣∣2

+
(
Ω2, 1

) ∣∣∣ /∇i−1
Ä
Ωs1ψ1 · Ω

s2ψ2 ·
Ä
Ωs3Ψ3,‹Ψ

ää∣∣∣2
]
. ǫ2−2δ.

(6.53)

(3) Finally, we have the terms generated by the commutator of /∇
i
A1···Ai

with

angular operators. These are all of the following schematic form:

(
Ω2, 1

) ∣∣∣ /∇i−1
Ä
(K, 1) ·

Ä
Ωs1Ψ1,‹Ψ

ää∣∣∣2 ,
where Ψ1 denotes a null curvature component of signature s1 not equal to

αAB, and ‹Ψ also denotes a nulll curvature component not equal to αAB.

Arguing as we did in the proof of Proposition 6.9 leads to the bound

∫ ũ

−1

∫ ṽ

0

∫

S2

(−u̇)4−
q

100
+2i

v̇−
q

100

(
Ω2, 1

) ∣∣∣ /∇i−1
Ä
(K, 1) ·

Ä
Ωs1Ψ1,‹Ψ

ää∣∣∣2 . ǫ2−2δ.

We have thus show that all of the terms on the right-hand side of (6.51) are

bounded by ǫ2−2δ, and this completes the proof. �

6.2.3. Estimates for Ricci coefficients other than trχ and χ̂. In this section

we will carry out the estimates for all of the Ricci coefficients other than trχ

and χ̂
AB

. We start with ω.

Lemma 6.11. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then

(6.54) ‖ω‖
B

. ǫ2−2δ.

Furthermore, if we define

ω̃(0) (u, v, θ)
.
= (1− 2κ)−1

Å
v

−u

ã1−2κ

×

ÇÅ
v

−u

ãκ
Ω

å2 ï
1

2
ρ−

1

4

(
Ωχ̂
)
· (Ω−1χ̂) +

1

2
|η|2 − η · η

ò

+
1

4

ÇÅ
v

−u

ãκ
Ω

å2

Ωχ̂
AB/g

AB

∫ v

0

Å
v̇

−u

ã−2κ ⊲

Ω−1χ̂AB dv̇,

ω̃(1) .= ω̃ − ω̃(0),
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then

sup
(u,v)∈Rũ,ṽ

2∑

i=0

∫ u

−1

∫

S2

∣∣∣ /∇i
ω̃(1)

∣∣∣
2 (−u̇)5+2i− q

100

v3−
q

100

du̇ ˚dVol . ǫ2−2δ.(6.55)

Proof. We start by multiplying (2.15) through by Ω2 so as to remove the

ωω term:

(6.56) Ω∇4ω̃ = Ω2

Å
1

2
ρ+

1

2
|η|2 − η · η

ã

implies

Ω∇4ω̃
(1) =

Å
v

−u

ã−2κ

Ω̃2

Å
1

2
ρ+

1

2
|η|2 − η · η

ã
+

Å
v

−u

ã−2κ

×

ÇÅ
v

−u

ãκ
Ω

å2 Å
1

2
ρ̃+

1

2
|η|2 − η · η −

Å
1

2
|η|2 − η · η

ãã

+
1

4

ÇÅ
v

−u

ãκ
Ω

å2ÇÅ
v

−u

ã−2κ (
Ωχ̂
)
·
(
Ω−1χ̂

)

− Ωχ̂
AB

L∂v

Ç
/g
AB

∫ v

0

Å
v̇

−u

ã−2κ ⊲

Ω−1χ̂AB dv̇

åå

.
= F ,

(6.57)

Ω∇4ω̃
(1) =

Å
v

−u

ã−2κ

Ω̃2

Ç
1

2
ρ̃+

1

2

Å
ρ−

1

2

(
Ωχ̂
)
· (Ω−1χ̂)

ã

+
1

2
Ωχ̂ ·

Ç
⊲

Ω−1χ̂

å
+

1

2
|η|2 − η · η

å

+

Å
v

−u

ã−2κ
ÇÅ

v

−u

ãκ
Ω

å2 Å
1

2
ρ̃+

1

2
|η|2 − η · η −

Å
1

2
|η|2 − η · η

ãã

.
= F .

Now for i ∈ {0, 1, 2}, we can commute (6.57) with /∇
i
A1···Ai

and use (2.37) to

obtain

(6.58) Ω∇4

Ä
/∇
i
A1···Ai

ω̃(1)
ä
= /∇

i
F + E(i),

where E(i) is controlled by terms of the schematic form

/∇
i (
Ω2 (Ωs1ψ1) (Ωω)

)
, /∇

i−1 (
Ω2 (Ωs1ψ1) (Ω

s2ψs2) (Ωω)
)
,

where ψi denotes a Ricci coefficient not equal to ω of signature si.

Now we use Lemma 6.2, Proposition 6.10, the bootstrap assumptions (6.11)

and (6.12), smallness of ǫ and v, Sobolev inequalities, Cauchy-Schwarz, and
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Grönwall’s inequality to integrate (6.58) and obtain

∥∥∥ω̃(1)
∥∥∥
H̃2(S2u,v)

.

∫ v

0

‖F‖H̃2(S2u,v̇)
dv̇ . ǫ1−δ

Å
v

−u

ã1− q
200

(−u)−1.(6.59)

Since Lemma 6.2 is easily seen to imply that

∥∥∥ω̃(0)
∥∥∥
H̃2(S2u,v)

. ǫ1−δ
Å
v

−u

ã1− q
200

(−u)−1,(6.60)

we have proven (6.54).

In order to establish (6.55) we will need to obtain a better v-weight than

we saw in the estimate (6.59). The reason that in (6.59) we are only able to

obtain a maximal v-weight of v1−
q

100 is because of the need to control /∇
2
AB ρ̃ in

the A -norm. However, if we also integrate in u, then the A -norm for ρ̃ comes

with a more negative v-weight. Thus, from (6.58) we derive

1

2
Ω∇4

Ç∫ u

−1

∫

S2

∣∣∣ /∇i
ω̃(1)

∣∣∣
2 (−u̇)4+2i− q

100

v3−
q

100

du̇ ˚dVol

å

+
3/2− q

100

v

∫ u

−1

∫

S2

∣∣∣ /∇i
ω̃(1)

∣∣∣
2 (−u̇)4+2i− q

100

v3−
q

100

du̇ ˚dVol

=

∫ u

−1

∫

S2

Ä
/∇
i
F + E(i)

ä
· /∇

i
ω̃(1) (−u̇)

4+2i− q
100

v3−
q

100

du̇ ˚dVol

(6.61)

implies

sup
(u,v)∈Rũ,ṽ

∫ u

−1

∫

S2

∣∣∣ /∇i
ω̃(1)

∣∣∣
2 (−u̇)4+2i− q

100

v3−
q

100

du̇ ˚dVol

.

∫ u

−1

∫ v

0

∣∣∣ /∇i
F
∣∣∣
2 (−u̇)4+2i− q

100

v2−
q

100

du̇ ˚dVol . ǫ2−2δ. �

Next we provide the estimates for ηA.

Lemma 6.12. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then

we have that

‖η‖
B

. ǫ1−δ.

Proof. Given that we have the following consequence of (2.11),

(6.62) Ω∇4η̃A = −Ω2
[(
Ω−1χ

)
·
(
η − η

)
− Ω−1β

]
A
,

the proof of this lemma is carried out in an analogous manner to the proof of

Lemma 6.11, and we thus omit the details. (Of course it is strictly easier since

we do not need to establish an analogue of (6.55).) �

Next we will treat η
A
.
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Lemma 6.13. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then

we have that ∥∥∥η
∥∥∥

B
. ǫ1−δ.

Proof. We start with the following consequence of (2.12):

(6.63) Ω∇3ηA +

Å
1

2
Ω trχ+Ωχ̂

ã
η
A
=

Å
1

2
Ω trχ+Ωχ̂

ã
ηA +Ωβ

A
.

Restricting to {v = 0} yields

(6.64)

Å
Ω∇3η +

Å
1

2
Ω trχ+Ωχ̂

ã
η

ã
A

=

ÅÅ
1

2
Ω trχ+Ωχ̂

ã
η +Ωβ

ã
A

.

Taking the differences of (6.63) and (6.64) leads to

Ω∇3η̃A +

Å
1

2
Ω trχ+Ωχ̂

ã
η̃
A

= Ω̃∇3ηA +

Å
1

2
t̃rχ+ ‹̂χ·

ã
η
A

+

Å
1

2
Ω trχ+Ωχ̂

ã
ηA +Ωβ

A
−

ÅÅ
1

2
Ω trχ+Ωχ̂

ã
η +Ωβ

ã
A

.
= E + F .

(6.65)

Next, for i ∈ {0, 1, 2}, we commute with /∇
i

(suppressing indices on /∇ in the

rest of the proof for typographical reasons) and then conjugate by the weight
(−u)i+2−

q
200

v1−
q

200
to obtain

Ω∇3

Ç
(−u)i+2− q

200

v1−
q

200

/∇
i
η̃

å

A

+

Å
2− q

200 + i

−u
+

1 + i

2
Ω trχ+Ωχ̂

ãÇ
(−u)i+2− q

200

v1−
q

200

/∇
i
η̃

å

A

=
(−u)i+2− q

200

v1−
q

200



î
Ω∇3, /∇

i
ó
η̃+

i

2
Ω trχ/∇

i
η̃+

∑

i1+i2=i

i1 6=0

/∇
i1
Å
1

2
Ω trχ+Ωχ̂

ã
/∇
i2η



A︸ ︷︷ ︸

Gi

+
(−u)i+2− q

200

v1−
q

100

/∇
i
(E + F) .

(6.66)

Note that it is a consequence of the bootstrap assumption that

2− q
100 + i

−u
+

1 + i

2
Ω trχ−

∣∣∣Ωχ̂
∣∣∣ & (−u)−1.
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We also have that Gi is a sum of terms that are schematically of the form

/∇
i (
(Ωs1ψ1) · η̃

)
, /∇

i−1 (
(Ωs1ψ1) · (Ω

s2ψ2) · η̃
)
,

where

(1) ψi denotes a Ricci coefficient of signature s that is one of ηA, ω, χ̂
AB

, or

trχ;

(2) if ψi = trχ in the first term, then there must be at least one angular

derivative applied to it;

(3) we cannot have that both ψi’s in the second term are equal to trχ.

Thus, if we contract (6.66) with (−u)i+2−
q

200

v1−
q

200
/∇
i
η̃
A

and use Lemmas 6.12 and

6.2, Proposition 6.10, the bootstrap assumptions (6.11) and (6.12), smallness

of ǫ and v, and Sobolev inequalities we end up with
∥∥∥η
∥∥∥
2

B
. sup

(u,v)∈Rũ,ṽ

∫ u

−1

∫

S2

(−u̇)5+2i− q
100

v2−
q

100

ï∣∣∣ /∇i
E
∣∣∣
2
+
∣∣∣ /∇i

F
∣∣∣
2
ò
du̇ ˚dVol(6.67)

+ sup
(u,v)∈−1×[0,v]

∫

S2
v−2+ q

100

∣∣∣ /∇i
η̃
∣∣∣
2

˚dVol

. ǫ2−2δ. �

Next we provide the estimates for trχ and χ̂AB.

Lemma 6.14. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then

we have that

‖trχ‖
C
. v

p
10 , ‖(χ̂, trχ)‖

B
. ǫ1−δ.

Proof. We start with the estimate for trχ. From (2.3) we may easily derive,

for any i ∈ {0, 1, 2} (suppressing indices on /∇
i
),

(6.68)

Ω∇4

Ä
/∇
i
t̃rχ
ä
= − /∇

i
Å
Ω2

Å
1

2

(
Ω−1 trχ

)2
+
∣∣Ω−1χ̂

∣∣2
ãã

+
î
/∇
i
,Ω∇4

ó
t̃rχ.

Now it is straightforward to integrate in the v-direction, use Lemma 6.2, the

bootstrap assumptions (6.11) and (6.12), smallness of ǫ and v, Sobolev inequal-

ities, Cauchy-Schwarz, and Grönwall’s inequality to integrate (6.58) and obtain

in a similar fashion to (6.59) that

(6.69) ‖trχ‖
B

. ǫ1−δ, ‖trχ‖
C
. v

p
10 .

Now we come to χ̂AB. From (2.4) we may derive the following:

Ω∇4

(
Ω−1χ̂

)
AB

+Ω2
(
Ω−1 trχ

) (
Ω−1χ̂

)
AB

= −Ω2αAB

= −Ω2α̃AB −

Å
v

−u

ã−2κ

Ω̃2

Ç
⊲

Ω−2α

å

AB

+ Lv

Ç
⊲

Ω−1χ̂

å

AB

.

(6.70)
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We thus obtain

Ω∇4
˜̂χAB = Ω2

[
−Ω2

(
Ω−1 trχ

) (
Ω−1χ̂

)
− 2

(
Ω−1χ

)C
(A

Ç
⊲

Ω−1χ̂

å

B)C

− α̃−

Å
v

−u

ã−2κ

Ω̃2

Ç
⊲

Ω−2α

åô

AB
.
= E .

(6.71)

Commuting with /∇
i
for i ∈ {0, 1, 2} leads to (suppressing the indices on /∇

i
)

Ω∇4 /∇
i˜̂χAB = /∇

i
E +
î
/∇
i
,Ω∇4

ó ˜̂χ
AB
.

Now we can treat this equation like (6.68), and we end up with

‖χ̂‖
B

. ǫ1−δ. �

6.2.4. Estimating trχ and χ̂
AB

. The final Ricci coefficients that we need to

estimate are trχ and χ̂
AB

. We will need a preliminary definition and lemmas.

Definition 6.12. Let (M, gµν) satisfy the hypothesis of Proposition 6.3.

Then we define the following: In a frame that is Lie-propagated from {v = 0},

˜̂χ(0)

AB

.
= (1− 2κ)−1 v

Å
v

−u

ã−2κ

×

ÇÅ
v

−u

ãκ
Ω

å2 Å
1

2
(Ω−1 trχ)

Ä
Ωχ̂

AB

ä
+
(
/∇⊗̂η

)
AB

+
(
η⊗̂η

)
AB

ã

−
1

2

ÇÅ
v

−u

ãκ
Ω

å2

Ω trχ

∫ v

0

Å
v̇

−u

ã−2κ ⊲

Ω−1χ̂AB dv̇+

+ 2

ÇÅ
v

−u

ãκ
Ω

å2

χ̂
C

(A

∫ v

0

Å
v̇

−u

ã−2κ ⊲

Ω−1χ̂B)C dv̇,

(6.72)

β̃
(0)

A

.
=

ÇÅ
v

−u

ãκ
Ω

å2 ∫ v

0

Å
v̇

−u

ã−2κ

×

ï
−
1

2
(Ω−1 trχ)

(
Ωβ
)
− /∇

⊲
ρ+ ∗ /∇

⊲
σ + 2

(
Ωχ̂
) ⊲
β + 3

Ä
−η

⊲
ρ+ ∗η

⊲
σ
äò

A

dv̇

+

ÇÅ
v

−u

ãκ
Ω

å2 ∫ v

0

Å
v̇

−u

ã−2κ ⊲

Ω−1χ̂ABβ
B dv̇,

(6.73)
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t̃rχ
(0) .

= (1− 2κ)−1 v

Å
v

−u

ã−2κ
ÇÅ

v

−u

ãκ
Ω

å2

×

Ç
−
1

2
(Ω−1 trχ)

(
Ω trχ

)
+ 2

Å
ρ−

1

2
(Ω−1χ̂) ·

(
Ωχ̂
)ã

+2 /divη+
∣∣∣η
∣∣∣
2
å
,

(6.74)

η̃
(0)
A

.
= (1− 2κ)−1 v

Å
v

−u

ã−2κ

×

ÇÅ
v

−u

ãκ
Ω

å2 Å
−
1

2
(Ω−1 trχ)

(
η − η

)
+

1

2
Ω−1 trχη

ã
A

+

ÇÅ
v

−u

ãκ
Ω

å2 ∫ v

0

Å
v̇

−u

ã−2κ

×

Ç
−

⊲

Ω−1χ̂ ·
(
η − η

)
−

⊲

Ω−1β+
⊲

Ω−1χ̂ · η

å

A

dv̇,

(6.75)

Å
/̃g−1

AB
ã(0)

.
= (1− 2κ)−1

ÇÅ
v

−u

ãκ
Ω

å2

Ω−1 trχ/gAB
Å
v

−u

ã1−2κ

− 2

ÇÅ
v

−u

ãκ
Ω

å2

/g
AC
/g
BD

∫ v

0

Å
v̇

−u

ã−2κ ⊲

Ω−1χ̂CD dv̇,

b̃A
(0) .

= −
1

8
(1− 2κ)−1

Ä
ηA − ηA

äÅÅ v

−u

ãκ
Ω

ã2 Å v

−u

ã1−2κ

,

˜̂χ(1)

AB

.
= ˜̂χ

AB
− ˜̂χ(0)

AB
, β̃

(1)

A

.
= β̃

A
− β̃

(0)

A
,

t̃rχ
(1) .

= t̃rχ− t̃rχ
(0)
, η̃

(1)
A

.
= η̃A − η̃

(0)
A ,

Å
/̃g−1

AB
ã(1)

.
= /̃g−1

AB
−

Å
/̃g−1

AB
ã(0)

, b̃A
(1) .

= b̃A − b̃A
(0)
.

All contractions here are with respect to /gAB.

Finally, we will let H(j) denote an expression for which we have
∥∥∥H(j)

∥∥∥
H̃1(S2u,v)

. ǫ1−δ(−u)−j
Å
v

−u

ã3/2
.

The quantities ˜̂χ(0)

AB
and

˜̂
β
(0)

A
represents the leading order (in v

−u) parts

of ˜̂χ
AB

and β̃
A
. In the next lemma we show that β̃

(1)
A does indeed satisfy an

estimate with a larger power of v
−u than β̃

(0)
A does.

Lemma 6.15. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then

we have that β̃
(1)

A
∈ H(2) and η̃

(1)
A ∈ H(1) .
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Proof. It follows from (6.48) and the definition of β̃
(0)
A that we have

L∂v β̃
(1)

A
= +

Å
v

−u

ã−2κ

Ω̃2
[
−

1

2

(
Ω−1 trχ

) (
Ωβ
)
− /∇ρ+ ∗ /∇σ + 2

(
Ωχ̂
)
·
(
Ω−1β

)

+ 3
(
−ηρ+ ∗ησ

)
+Ω−1χ̂ ·

(
Ωβ
) ]

A

+

Å
v

−u

ã−2κ
ÇÅ

v

−u

ãκ
Ω

å2 [
−

1

2

(
Ω−1 trχ

)
β̃ − /∇ρ̃+ ∗ /∇σ̃

+ 2
(
Ωχ̂
)
· β̃ + 3

(
−ηρ̃+ ∗ησ̃

)
+ ˜̂χ · Ωβ

]
A

+

Å
v

−u

ã−2κ
ÇÅ

v

−u

ãκ
Ω

å2 [
−

1

2
t̃rχΩβ − ‹/∇⊲

ρ+›∗ /∇⊲
σ + 2˜̂χ ·

⊲

Ω−1β

+ 3
Ä
−η̃

⊲
ρ+ ‹∗η ⊲σ

ä
+

⊲

Ω−1χ̂β̃
]
A
.

(6.76)

Commuting with /∇, integrating this in v direction, using the bootstrap assump-

tions, Sobolev inequalities, as well as Proposition 6.10 yield that β̃
(1)

A
∈ H(2).

Next, we observe that it follows immediately from Proposition 6.10, the

bootstrap assumptions, and Sobolev inequalities, that if we integrate (6.34) in

the v-direction for i ∈ {0, 1}, we obtain that

(6.77)
∥∥∥β̃
∥∥∥
H̃1(S2u,v)

.

Å
v

−u

ã4/5
(−u)−2 .

For η, we may derive the following equation:

L∂v η̃
(1)
A =

Å
v

−u

ã−2κ

Ω̃2
[
−
(
Ω−1χ

) (
η − η

)
− Ω−1β +Ω−1χ · η

]
A

−

Å
v

−u

ã−2κ Å v

−u

κ
Ω

ã2 Ä
β̃ +Ω−1χη̃

ä
A

+

Å
v

−u

ã−2κ Å v

−u

κ
Ω

ã2 [
−

1

2
t̃rχ

(
η − η

)
−

1

2

Ä
Ω−1 trχ

ä
˜(η − η

)

− ˜̂χ ·
(
η − η

)
−

⊲
Ωχ̂ · ˜(η − η

)]
A

+

Å
v

−u

ã−2κ Å v

−u

κ
Ω

ã2
(χ̃ · η)A .

(6.78)

Then, by (6.77), we may argue as we did for β
A

to obtain that η̃
(1)
A ∈H(1). �

The next lemma expresses the Codazzi equation in terms of ˜̂χ(1)

AB
and β̃

(1)

A
and uses Lemma 6.15.
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Lemma 6.16. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then

we have that

/div˜̂χ(1)

A
−

1

2
/∇At̃rχ

(1)
= H(2).

Proof. The proof is given in Appendix C �

Lemma 6.17. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then

we have that ∥∥∥
(
trχ, χ̂

)∥∥∥
B

. ǫ1−δ,
∥∥∥trχ

∥∥∥
C
. v

p
10 .

Proof. We start with the lower order estimates for trχ. From (2.10) one

may derive

(6.79)

Ω∇4t̃rχ=2Ω2

Å
−
1

4

(
Ω−1 trχ

) (
Ω trχ

)
+ρ−

1

2

(
Ωχ̂
)
·
(
Ω−1χ̂

)
+ /divη +

∣∣∣η
∣∣∣
2
ã
.

Integrating this in the v-direction and using the bootstrap assumptions, Propo-

sition 6.10, Lemma 6.13, and Sobolev inequalities immediately leads to

(6.80)
∥∥∥trχ

∥∥∥
C
. v

p
10 .

For the B-norm estimate of trχ, we cannot use its ∇4 equation because we

do not have any estimates for /∇
3
η
A
. Instead we will use the ∇3 Raychaudhuri

equation. From (2.5) we may derive the following equation:

(6.81) Ω∇3

(
Ω trχ

)
+

1

2

(
Ω trχ

)2
+ 4 (Ωω)

(
Ω trχ

)
+
∣∣∣Ωχ̂

∣∣∣
2
= 0.

Restricting this to {v = 0} yields

(6.82) Ω∇3

(
Ω trχ

)
+

1

2

(
Ω trχ

)2
+ 4 (Ωω)

(
Ω trχ

)
+
∣∣∣Ωχ̂

∣∣∣
2
= 0.

Taking the difference of (6.81) with (6.82) leads to

(
Ω∇3 + b̃A /∇A

) Ä
t̃rχ
ä
+
(
Ω trχ

)
t̃rχ+ 4

(
Ωω
)
t̃rχ+ b̃A /∇AΩ trχ

= −4ω̃Ω trχ− 4ω̃t̃rχ− 2Ωχ̂ · ˜̂χ− ˜̂χ · ˜̂χ−
1

2

Ä
t̃rχ
ä2

− 2
(̃
/g−1
)AC

/g
BDΩχ̂

AB
Ωχ̂

CD
+
(̃
/g−1
)AC (̃

/g−1
)BD

Ωχ̂
AB

Ωχ̂
CD

.

(6.83)

Now we define

ω̃† .
= ω̃ −

1

4

ÇÅ
v

−u

ãκ
Ω

å2

Ωχ̂

∫ v

0

Å
v̇

−u

ã−2κ ⊲

Ω−1χ̂ dv̇,
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˜̂χ†

AB

.
= ˜̂χ

AB
+

1

2

ÇÅ
v

−u

ãκ
Ω

å2

Ω trχ

∫ v

0

Å
v̇

−u

ã−2κ ⊲

Ω−1χ̂AB dv̇

− 2

ÇÅ
v

−u

ãκ
Ω

å2

χ̂
C(A/g

CD

∫ v

0

Å
v̇

−u

ã−2κ ⊲

Ω−1χ̂B)D dv̇,

Å
/̃g−1

†
ãAB

.
= /̃g−1

AB
+ 2

ÇÅ
v

−u

ãκ
Ω

å2

/g
AC
/g
BD

∫ v

0

Å
v̇

−u

ã−2κ ⊲

Ω−1χ̂CD dv̇.

This then allows us to write(
Ω∇3 + b̃A /∇A

) Ä
t̃rχ
ä
+
(
Ω trχ

)
t̃rχ+ 4

(
Ωω
)
t̃rχ+ b̃A /∇AΩ trχ

= −4ω̃†Ω trχ− 4ω̃t̃rχ− 2Ωχ̂ · ˜̂χ†
− ˜̂χ · ˜̂χ−

1

2

Ä
t̃rχ
ä2

− 2

Å
/̃g−1

†
ãAC

/g
BDΩχ̂

AB
Ωχ̂

CD
+
(̃
/g−1
)AC (̃

/g−1
)BD

Ωχ̂
AB

Ωχ̂
CD

.

(6.84)

Next, we note that it follows immediately from their respective definitions that

each of the quantities v−1+2κt̃rχ
(0)

, v−1+2κω̃†, v−1+2κ

Å
/̃g−1

†
ãAB

, v−1+2κb̃A
(0)

,

and v−1+2κ˜̂χ†

AB
all depend only on u and θA. Since it is also follows from the

bootstrap assumptions and their respective ∇4 equations that

lim
v→0

v−1+2κ

(
b̃A

(1)
, t̃rχ

(1)
,

Å
/̃g−1

AB
ã(1)

,

˜̂χ(1)

AB
, ˜bA · /∇At̃rχ, ω̃t̃rχ, ˜̂χ · ˜̂χ,

(̃
/g−1
)AC (̃

/g−1
)BD

)
= 0,

we may multiply (6.84) with v−1+2κ, take the limit as v → 0, extend the

resulting equation to be independent of v, and finally multiply by v1−2κ and

subtract the result from (6.84) to conclude that

(
Ω∇3 + b̃A /∇A

)(›trχ(1)
)
+
(
Ωtrχ

)›trχ(1)
+ 4

(
Ωω
)›trχ(1)

= −4ω̃(1)Ωtrχ−2Ωχ̂
AB

˜̂χ(1)

CD
/g
AC
/g
BD−2

Å
/̃g
−1

AC
ã(1)

/g
BDΩχ̂

AB
Ωχ̂

CD
− b̃A

(1)
/∇AΩtrχ

︸ ︷︷ ︸
E

− 4ω̃›trχ− ˜̂χ · ˜̂χ− fib · /∇›trχ(0)
− 2Ωχ̂

AB

˜̂χ†

CD

Ä
/g
AC
/g
BD − /g

AC
/g
BD
ä

︸ ︷︷ ︸
G1

−2

Å
/̃g
−1

†
ãAC fi

/g
BDΩχ̂

AB
Ωχ̂

CD
−

1

2

Ä›trχ
ä2

︸ ︷︷ ︸
G2

.

(6.85)
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We then set G
.
= G1+G2. Now for i ∈ {1, 2}, we commute (6.85) with /∇

i
(sup-

pressing the indices for typographical reasons) and conjugate with the weight

w
.
= (−u)i+9/4

v5/4
to obtain

Ω∇3

(
w /∇

i
t̃rχ

(1)
)
+

Å
9/4 + i

−u
+Ωtrχ+

i

2
Ω trχ+ 4Ωω

ã
w /∇

i
t̃rχ

(1)

= w /∇
i
(E − G) + w

ïî
Ω∇3, /∇

i
ó
t̃rχ+

i

2
Ω trχ/∇

i
t̃rχ

ò

+ w
∑

i1+i2=i

i1 6=0

/∇
i1 (Ω trχ+ 4Ωω

)
/∇
i2 t̃rχ.

(6.86)

It follows easily from the bootstrap assumptions that

9/4 + i

−u
+Ωtrχ+

i

2
Ω trχ+ 4Ωω & (−u)−1.

Thus, we may contract (6.86) with w /∇
i
t̃rχ

(1)
, integrate in u, apply the boot-

strap assumption and Sobolev inequalities and, for any (u, v) ∈ Rũ,ṽ and i ∈
{1, 2}, eventually obtain

∫

S2u,v

∣∣∣ /∇i
t̃rχ

(1)
∣∣∣
2 (−u)2i+9/2

v5/2
˚dVol +

∫ u

−1

∫

S2u̇,v

∣∣∣ /∇i
t̃rχ

(1)
∣∣∣
2 (−u̇)2i+7/2

v5/2
˚dVol du̇

.

∫ u

−1

∫

S2

(−u̇)2i+11/2

v5/2

ï∣∣∣ /∇i
E
∣∣∣
2
+
∣∣∣ /∇i

G
∣∣∣
2
ò

˚dVol du̇

+

∫

S2−1,v

∣∣∣ /∇i
t̃rχ

(1)
∣∣∣
2
|u=−1v

−5/2 ˚dVol.

(6.87)

Since every term in G involves (implicitly) at least two “tilded” quantities, the

v-weight of v−5/2 is not a problem and it is immediate from the bootstrap

assumptions that

(6.88)

∫ u

−1

∫

S2

(−u̇)2i+11/2

v5/2

∣∣∣ /∇i
G
∣∣∣
2

˚dVol du̇ . ǫ2−2δ.

Next, we note that it follows from the definition of t̃rχ
(1)

, the ∇4 equation for

trχ, and a straightforward argument using Proposition 5.4 that

(6.89)

∫

S2−1,v

∣∣∣ /∇i
t̃rχ

(1)
∣∣∣
2
|u=−1v

−5/2 ˚dVol . ǫ2−2δ.
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This leaves us with the E term. Using Lemma 6.11 and the bootstrap assump-

tions we have that
∫ u

−1

∫

S2

(−u̇)2i+11/2

v5/2

∣∣∣ /∇i
G
∣∣∣
2

˚dVol du̇

. ǫ2−2δ + ǫ

∫ u

−1

∫

S2

(−u̇)2i+7/2

v5/2

∣∣∣∣ /∇
i˜̂χ(1)

∣∣∣∣
2

˚dVol du̇.

(6.90)

Now we appeal to Lemmas 6.16 and 6.6 to obtain that

2∑

i=0

∫ u

−1

∫

S2

(−u̇)2i+7/2

v5/2

∣∣∣∣ /∇
i˜̂χ(1)

∣∣∣∣
2

˚dVol du̇

. ǫ2−2δ +
2∑

i=1

∫ u

−1

∫

S2

(−u̇)2i+7/2

v5/2

∣∣∣ /∇i
t̃rχ

(1)
∣∣∣
2

˚dVol du̇.

(6.91)

Combining (6.87) and (6.88)–(6.91), and another application of Lemmas 6.16

and 6.6 thus leads to

2∑

i=1

∫

S2u,v

∣∣∣ /∇i
t̃rχ

(1)
∣∣∣
2 (−u)2i+9/2

v5/2
˚dVol . ǫ2−2δ,(6.92)

2∑

i=1

∫

S2u,v

∣∣∣∣ /∇
i˜̂χ(1)

∣∣∣∣
2 (−u)2i+9/2

v5/2
˚dVol . ǫ2−2δ.(6.93)

Recalling that t̃rχ = t̃rχ
(0)

+ t̃rχ
(1)

and ˜̂χ
AB

= ˜̂χ(0)

AB
+ ˜̂χ(1)

AB
, we see that the

proof is finished. �

6.2.5. Estimates for the metric coefficient norm D . Finally we come to the

estimates for the metric coefficients.

Lemma 6.18. Let (M, gµν) satisfy the hypothesis of Proposition 6.3. Then

we have

D . ǫ1−δ,
∥∥/g
∥∥

D
. v

p
10 .

Proof. These estimates are all straightforward consequences of the previ-

ously established estimates and integrating the following equations from v = 0

or u = −1:

L∂vb
A=−4Ω2ζA, L∂v/gAB=2Ω2

(
Ω−1χ

)
AB

,

Å
∂

∂u
+ b · /∇

ã
log Ω̃=−2ω̃. �

This concludes the proof of Proposition 6.3, and hence also Theorem 6.1.

7. The bootstrap argument for region II

The main result of this section will be the following:
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Theorem 7.1. Let (M, gµν) be a spacetime produced by Proposition 5.4,

and let v > 0 be arbitrarily small. Then we can pick ǫ sufficiently small so that

(M, gµν) exists in the region
¶
(u, v) : −1 ≤ u < 0 and 0 ≤ v

−u ≤ v−1
©

, and in

this region the spacetime satisfies the regularity bounds (5.15)–(5.18) and the

estimates (7.9).

We will prove this theorem with a bootstrap argument. In Section 7.1

we will define the relevant norms. In Section 7.2, we establish various useful

estimates that follow from Theorem 6.1. Then in Section 7.3 we will carry out

the bootstrap argument.

7.1. Norms. In this section we will present the norms around which we

will base our estimates. Let 0 < v ≪ 1 be a small constant.

Let us set

Q
.
= {u ∈ (0,−1)} ∩ {v ∈ [0, 1]} ∩

ß
v ≤

v

|u|
≤ v−1

™
,

Qũ,ṽ
.
= Q ∩ {u ≤ ũ} ∩ {v ≤ ṽ}.

Finally, we introduce a constant D ≫ 1 and then assume that ǫ is picked small

enough so that

ǫ exp

ÇÅ
D

v

ã100å
≪ 1.

Convention 7.1. Throughout this section, unless said otherwise, all norms

of tensorial quantities are computed with respect to /gAB, and we will always

use the round metric induced volume form ˚dVol on each S2u,v.

Definition 7.1. Let Ψ be a null curvature component not equal to αAB or

αAB, and let (ũ, ṽ) satisfy v≤ ṽ
|ũ| ≤v

−1. Then the energy norm Eũ,ṽ is defined by

‖Ψ‖2
Eũ,ṽ

.
= sup

0≤j≤2
sup

(u0,v0)∈Qũ,ṽ

[∫ v0

−vu0

∫

S2

∣∣∣exp
(
D
v

u

)
/∇
j
Ψ
∣∣∣
2
(v − u0)

3+2j dv ˚dVol,

+

∫ u0

max(−v−1v0,−1)

∫

S2

∣∣∣exp
(
D
v

u

)
/∇
j
Ψ
∣∣∣
2
(v0 − u)3+2j du ˚dVol

+

∫ v0

−vu0

∫ u0

max(−v−1v0,−1)

∫

S2

∣∣∣exp
(
D
v

u

)
/∇
j
Ψ
∣∣∣
2
(v − u)2+2j dv du ˚dVol

]
.

As usual, for αAB and αAB, we drop the u-flux and v-flux respectively:

‖α‖2
Eũ,ṽ

.
= sup

0≤j≤2
sup

(u0,v0)∈Qũ,ṽ

[∫ v0

−vu0

∫

S2

∣∣∣exp
(
D
v

u

)
/∇
j
α
∣∣∣
2
(v − u0)

3+2j dv ˚dVol

+

∫ v0

−vu0

∫ u0

max(−v−1v0,−1)

∫

S2

∣∣∣exp
(
D
v

u

)
/∇
j
α
∣∣∣
2
(v0 − u)2+2j dv du ˚dVol

]
,
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‖α‖2
Eũ,ṽ

.
= sup

0≤j≤2
sup

(u0,v0)∈Qũ,ṽ

×

[∫ u0

min(−v−1v0,−1)

∫

S2

∣∣∣exp
(
D
v

u

)
/∇
j
α
∣∣∣
2
(v0 − u)3+2j du ˚dVol

+

∫ v0

−vu0

∫ u0

max(−v−1v0,−1)

∫

S2

∣∣∣exp
(
D
v

u

)
/∇
j
α
∣∣∣
2
(v0 − u)2+2j dv du ˚dVol

]
.

We also introduce the notation

Eũ,ṽ
.
=
∑

Ψ

‖Ψ‖
Eũ,ṽ

.

Finally, when it will not cause confusion, we will often suppress a subset of the

(ũ, ṽ) indices from the E or E subscript.

Then we have the corresponding norms for the Ricci coefficients.

Definition 7.2. For any Ricci coefficient ψ, we let ψ∗ denote the difference

of ψ and its Minkowski value.12 Let (ũ, ṽ) satisfy v ≤ ṽ
|ũ| ≤ v−1. Then, for any

Ricci coefficient ψ, the Ricci coefficient norm F is defined by

‖ψ‖2
Fũ,ṽ

.
= sup

0≤j≤2
sup

(u0,v0)∈Qũ,ṽ

∫

S2

∣∣∣exp
(
D
v

u

)
/∇
j
ψ∗
∣∣∣
2
(v0 − u0)

2+2j ˚dVol.

We also introduce the notation

Fũ,ṽ
.
=
∑

ψ

‖ψ‖
Fũ,ṽ

.

Finally, when it will not cause confusion, we will often suppress a subset of the

(ũ, ṽ) indices from the F or F subscript.

Finally, we have the norm for the metric coefficients.

Definition 7.3. For any metric coefficient φ, we let φ∗ denote the difference

of φ and its Minkowski value.13 Let (ũ, ṽ) satisfy v ≤ ṽ
|ũ| ≤ v−1. Then, for any

metric coefficient φ not equal to /gAB, the metric coefficient norm G is defined by

‖φ‖2
Gũ,ṽ

.
= sup

0≤j≤2
sup

(u0,v0)∈Qũ,ṽ

∫

S2

∣∣∣exp
(
D
v

u

)
/∇
j
φ∗
∣∣∣
2
(v0 − u0)

2j ˚dVol.

We also introduce the notation

Gũ,ṽ
.
=
∑

φ

‖φ‖
Gũ,ṽ

.

Finally, when it will not cause confusion, we will often suppress a subset of the

(ũ, ṽ) indices from the G or G subscript.

12Equivalently, for ψ 6∈ {trχ, trχ}, we have ψ∗ = ψ, and otherwise we have trχ∗ =

trχ− 2
v−u

and trχ∗ = trχ+ 2
v−u

.
13Equivalently, we have Ω∗ = Ω− 1, (bA)∗ = bA, and /g

∗

AB
= /gAB

− (v − u)2̊/gAB
.
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Lastly, we define an “initial data” norm.

Definition 7.4. We set

H
.
= sup

Ψ
sup

0≤j≤2

ñ
sup
s∈[0,1]

∫ −vs

−s

∫

S2

∣∣∣ /∇j
Ψ
∣∣∣
2
|{(u,v)=(s,−sv)}s

3+2j ds

+

∫ 1

v

∫

S2

∣∣∣ /∇j
Ψ
∣∣∣
2
|{(u,v)=(−1,s)} ds

ô

+ sup
ψ

sup
0≤j≤2

ñ
sup

s∈[−1,0]

∫

S2s,−sv

∣∣∣ /∇j
ψ∗
∣∣∣
2
s2+2j−2κ ds+ sup

s∈[δ1,1]

∫

S2−1,s

∣∣∣ /∇j
ψ∗
∣∣∣
2
ds

ô

+ sup
0≤j≤2

sup
s∈[−1,−0]

∫

S2s,−sv

|s|2j
ï∣∣∣ /∇j (

Ω−1 − 1
)∣∣∣

2
+
∣∣∣ /∇j

/g
∗
∣∣∣
2
+
∣∣∣ /∇j

b
∣∣∣
2
ò

+ sup
0≤j≤2

sup
s∈[v,1]

∫

S2−1,s

ï∣∣∣ /∇j (
Ω−1 − 1

)∣∣∣
2
+
∣∣∣ /∇j

/g
∗
∣∣∣
2
+
∣∣∣ /∇j

b
∣∣∣
2
ò
.

7.2. Preliminaries consequences of Theorem 6.1.

Proposition 7.2. Let (M, gµν) satisfy the hypothesis of Proposition 6.3.

Then we have that

H . ǫ1−δ.

Proof. We start with the curvature components Ψ. First of all, given

that we have closed the bootstrap argument that proves Proposition 6.3, by a

standard preservation of regularity argument (see the proof of Proposition 7.1

from [RSR18]), and at the cost of an additional angular derivative of initial

data, we have the following estimate:

sup
0≤j≤2

sup
(u,v)

∫

S2u,v

∣∣∣ /∇j
Ψ
∣∣∣
2
u4+2j ≤ ǫ2−2δ,

sup
0≤j≤3

sup
(u,v)

∫

S2u,v

∣∣∣ /∇j (
η, η
)∣∣∣

2
u2+2j ≤ ǫ2−2δ.

(7.1)

Integrating (7.1) immediately yields

sup
Ψ

sup
0≤j≤2

ñ
sup
s∈[0,1]

∫ −vs

−s

∫

S2

∣∣∣ /∇j
Ψ
∣∣∣
2
|{(u,v)=(s,−sv)}s

3+2j ds

+

∫ 1

v

∫

S2

∣∣∣ /∇j
Ψ
∣∣∣
2
|{(u,v)=(−1,s)} ds

ô
. ǫ2−2δ.

Next we come to the Ricci coefficients. We first note that for χ̂AB, χ̂
AB

,

ηA, η
A
, and ω, the desired bounds manifestly follow from Proposition 6.3.

However, we will need to improve the estimates for trχ and trχ and produce

an estimate for ω. Let us start with trχ. We can write the ∇4 equation for
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trχ in the following form:

∂

∂v

Å
Ω−1 trχ−

2

v − u

ã
+

2Ω2

v − u

Å
Ω−1 trχ−

2

v − u

ã

= −
Ω2

2

Å
Ω−1 trχ−

2

v − u

ã2
− Ω2

∣∣Ω−1χ̂
∣∣2 +

(
1− Ω2

) 2

(v − u)2
.

(7.2)

Note that it also follows from Lemma 5.2 that
∥∥∥∥Ω−1 trχ−

2

−u

∥∥∥∥
H̃2(S2u,0)

. ǫ1−δ.

Thus, it is straightforward to commute to (7.2) with /∇
i
A1···Ai

for i ∈ {0, 1, 2}
and use the already established bounds to obtain that

(7.3) sup
(u,v)

∥∥∥∥Ω−1 trχ−
2

v − u

∥∥∥∥
H̃2(S2u,v)

. ǫ1−δ.

Similarly, from the ∇4 equation for trχ, one may derive

∂

∂v

Å
Ω trχ+

2

v − u

ã
+

1

2
Ω2
(
Ω−1 trχ

)Å
Ω trχ+

2

v − u

ã

= Ω2

ï
2ρ−

(
Ω−1χ̂

)
·
(
Ωχ̂
)
+ 2 /divη + 2

∣∣∣η
∣∣∣
2
ò

+

Å
1

v − u
−

1

2
Ω2
(
Ω−1 trχ

)ã 2

v − u
.

(7.4)

Using (7.3) and (7.1) allows us to straightforwardly commute to (7.2) with

/∇
i
A1···Ai

for i ∈ {0, 1, 2} and use the already established bounds to obtain that

(7.5) sup
(u,v)

∥∥∥∥Ω trχ+
2

v − u

∥∥∥∥
H̃2(S2u,v)

. ǫ1−δ.

From (7.3) and (7.5) the desired bounds for trχ and trχ easily follow.

Next we turn to estimating ω. From the ∇3 equation for ω, we may derive

the following:

(7.6) Ω∇3

(
Ω−1ω − Ω−2 κ

2v

)
−4 (Ωω)

(
Ω−1ω − Ω−2 κ

2v

)
=

1

2
ρ+

1

2

∣∣∣η
∣∣∣
2
−η ·η.

Using that along {u = −1} we have that Ω−1ω−Ω−2 κ
2v = 0, we may use (7.6)

in an analogous fashion to the proof of Lemma 6.13 to establish that

(7.7) sup
(u,v)

∥∥∥Ω−1ω − Ω−2 κ

2v

∥∥∥
H̃2(S2u,v)

. ǫ1−δ.

In turn, this easily implies the desired bound on ω.
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Lastly, we just need to improve the bound on /gAB, since the desired bounds

for the other metric coefficients already follow from Proposition 6.3. For this

we simply note that

L∂v/g
∗
AB

= 2 (Ωχ)∗AB
and argue as we did for trχ and trχ. �

7.3. The estimates. A standard argument using Proposition 5.4 shows that

Theorem 7.1 will follow from the following proposition:

Proposition 7.3. Let v > 0 and (M, gµν) be a spacetime produced by

Proposition 5.4 that exists in the region rectangle Rũ,ṽ for some ũ ∈ (−1, 0)

and ṽ ∈ (0, 1] satisfying

0 <
ṽ

−ũ
≤ v−1,

and that satisfies the “bootstrap assumption”

(7.8) Eũ,ṽ + Fũ,ṽ +Gũ,ṽ ≤ 2Aǫ1−δ.

We then claim that (7.8) implies

(7.9) Eũ,ṽ + Fũ,ṽ +Gũ,ṽ ≤ Aǫ1−δ.

As usual, the proof will be broken up into a few separate estimates. We

start with estimates for the curvature components, then prove estimates for the

Ricci coefficients, and finish with the estimates for the metric coefficients.

Throughout the proofs in this section we will use without comment that

for any point in Q, we have

v|u| ≤ v ≤ v−1|u|, vv ≤ |u| ≤ v−1v.

Unless said otherwise, we will also allow all of our constants to depend on

v and v−1. We start by observing that the Sobolev spaces generated by /g and

/̊g are comparable.

Lemma 7.4. Let (M, gµν) satisfy the hypothesis of Proposition 7.3. Then

we have that

‖w‖H̃i(S2u,v)
∼k (v − u)−k ‖w‖H̊i(S2u,v)

for i ∈ {0, 1, 2},

‖w‖L̃p(S2u,v)
∼k (v − u)−k ‖w‖L̊p(S2u,v)

,

where we recall that H̊ i and L̊p denote the Sobolev and Lp spaces generated by

the round metric /̊g , and the spaces H̃j are defined as in Definition 6.11.

Proof. This is an immediate consequence of Lemma 4.2, the bootstrap

hypothesis, and the smallness of ǫ. �

Now we observe that the standard Sobolev inequalities hold for the

spaces H i.
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Lemma 7.5. Let (M, gµν) satisfy the hypothesis of Proposition 7.3. Then,

for any (0, k)-tensor wA1···Ak
, we have that

‖w‖L̃p(S2u,v)
.p,k ‖w‖H̃1(S2u,v)

, ‖w‖L̃∞(S2u,v)
.k ‖w‖H̃2(S2u,v)

,

and for any (0, k)-tensor wA1···Ak
and (0, k′)-tensor vA1···A′

k
, we have

‖w · v‖H̃2(S2u,v)
.k,k′ ‖w‖H̃2(S2u,v)

‖v‖H̃2(S2u,v)
.

Proof. This is an immediate consequence of Lemmas 7.4 and 4.1. �

These Sobolev inequalities will be used repeatedly in our estimates of non-

linear terms, and we will often do so without explicit comment.

7.3.1. Energy estimates for curvature. We start with the energy estimates

for curvature.

Proposition 7.6. Let (M, g) satisfy the hypothesis of Proposition 7.3.

Then we have

E . ǫ1−δ.

Proof. We may write each Bianchi pairÄ
(αAB, βA) , (βA, (ρ, σ)) ,

Ä
(ρ, σ) , β

A

ä
,
Ä
β
A
, αAB

ää

in the schematic form

(7.10) ∇4Ψ
(1) = DΨ(2) + ψ ·Ψ, ∇3Ψ

(2) = −D∗Ψ(1) + ψ ·Ψ,

where D represents an angular derivative operator defined with respect to /gAB
and D∗ denotes the L2

(
/g
)
-adjoint on S2. As we have written the equations,

we note that there are “linear terms” hiding in the right-hand sides due to the

presence of trχ and trχ. For each i ∈ {0, 1, 2}, we may then commute with

/∇
i
A1···Ai

and use Lemma 2.2 to obtain an equation of the schematic form (with

indices on /∇
i
suppressed)

∇4 /∇
i
Ψ(1) = D /∇

i
Ψ(2) + /∇

i
(ψ ·Ψ) + /∇

i−1
(ψ1 · ψ2 ·Ψ) + /∇

i−1
(KΨ)︸ ︷︷ ︸

E1

,

∇3 /∇
i
Ψ(2) = −D∗ /∇

i
Ψ(1) + /∇

i
(ψ ·Ψ) + /∇

i−1
(ψ1 · ψ2 ·Ψ) + /∇

i−1
(KΨ)︸ ︷︷ ︸

E2

.

(7.11)

Before carrying out our energy estimate, we conjugate the equations (7.11)

by w (u, v)
.
= (v − u)3/2 exp

(
D v
u

)
, where D is a suitable large positive constant

to be determined later, depending only on v:

∇4

Ä
w /∇

i
Ψ(1)
ä
−

ï
(3/2)Ω−1

v − u
+Ω−1D

u

ò Ä
w /∇

i
Ψ(1)
ä
= D

Ä
w /∇

i
Ψ(2)
ä
+ wE1,

(7.12)
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∇3

Ä
w /∇

i
Ψ(2)
ä
+

ï
(3/2)Ω−1

v − u
+Ω−1Dv

u2

ò Ä
w /∇

i
Ψ(2)
ä
= −D∗

Ä
w /∇

i
Ψ(1)
ä
+ wE2.

(7.13)

The point of conjugating with the exponential weight is that for D suffi-

ciently large, the coefficient of the linear term on the left-hand sides of (7.12)

and (7.13) will be positive and thus generate a good spacetime term in the

energy estimate.

Let (u, v) ∈ Qũ,ṽ. Multiplying (7.12) by w /∇
i
Ψ(1) and (7.13) by w /∇

i
Ψ(2),

carrying out the usual integration by parts, using the bootstrap assumption

(7.8), and appealing to Proposition 7.2 leads to

sup
Ψ

[∫ u

max(−1,−v−1v)

∫

S2
w2
∣∣∣ /∇i

Ψ(1)
∣∣∣
2
|(s,v) ds ˚dVol

+

∫ v

−vu

∫

S2
w2
∣∣∣ /∇i

Ψ(2)
∣∣∣
2
|(u,s) ds ˚dVol

+D

∫

Qu,v

∫

S2
w2 (v̇ − u̇)−1

ï∣∣∣ /∇i
Ψ(1)

∣∣∣
2
+
∣∣∣ /∇i

Ψ(2)
∣∣∣
2
ò
du̇ dv̇ ˚dVol

]

. D−1

∫

Qu,v

∫

S2
w2(−u̇)

î
|E1|

2 + |E2|
2
ó
du̇ dv̇ ˚dVol + ǫ2−2δ.

(7.14)

Here we have used that in the region under consideration, v and |u| are com-

parable and thus we have w2 ∼ (v − u)3. Next, it is immediate from the

bootstrap assumptions, Sobolev inequalities, and the largeness of D that we

have (suppressing the volume forms)

D−1

∫

Qu,v

∫

S2
w2(−u̇)

î
|E1|

2 + |E2|
2
ó
. D−1 sup

Ψ

∫

Qu,v

∫

S2
w2 (v̇ − u̇)−1

×

[∣∣∣ /∇i
Ψ
∣∣∣
2
+

∑

i1+i2=i−1

w2(−u̇)
∣∣∣
Ä
/∇
i2K
ä Ä

/∇
i2Ψ
ä∣∣∣2
]
.

(7.15)

The first term on the right-hand side of (7.15) may be clearly be absorbed

into the left-hand side of (7.14). Next, we note that it is a straightforward

consequence of integrating the ∇4 equation for ρ and the bootstrap assumption

that we have

sup
(ũ,ṽ)∈Qu,v

∥∥∥exp
(
D
v

u

)
ρ
∥∥∥
H̃1(S2ũ,ṽ)

(v − u)2 . ǫ1−δ + E.

It then follows easily from the Gauss curvature equation and the bootstrap

assumption that

(7.16) sup
(ũ,ṽ)∈Qu,v

∥∥∥exp
(
D
v

u

)
(K − 1)

∥∥∥
H̃1(S2ũ,ṽ)

(v − u)2 . ǫ1−δ + E.
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Finally, a straightforward induction argument, Proposition 7.6, (7.14), (7.15),

and (7.16) leads to

sup
0≤i≤2

sup
Ψ

[∫ u

max(−1,−v−1v)

∫

S2
w2
∣∣∣ /∇i

Ψ(1)
∣∣∣
2
|(s,v) ds ˚dVol

+

∫ v

−vu

∫

S2
w2
∣∣∣ /∇i

Ψ(2)
∣∣∣
2
|(u,s) ds ˚dVol

+D

∫

Qu,v

∫

S2
w2 (v̇ − u̇)−1

ï∣∣∣ /∇i
Ψ(1)

∣∣∣
2
+
∣∣∣ /∇i

Ψ(2)
∣∣∣
2
ò
du̇ dv̇ ˚dVol

]

. E2 + ǫ2−2δ.

Invoking the bootstrap assumption again finishes the proof. �

7.3.2. Estimates for the Ricci coefficients. Next we turn to the estimates

for the Ricci coefficients.

Proposition 7.7. Let (M, g) satisfy the hypothesis of Proposition 7.3.

Then we have
R . ǫ1−δ.

Proof. Every Ricci coefficient ψ∈{χ̂
AB
, χ̂AB, ω, ω, ηA, ηA} satisfies ψ=ψ∗

(recall that ψ∗ is defined in Definition 7.2) and also satisfies an equation of one

of the following schematic forms:

∇4ψ
∗ = (ψ1, ψ

∗
1) · ψ

∗
2 +Ψ,(7.17)

∇3ψ
∗ = (ψ1, ψ

∗
1) · ψ

∗
2 +Ψ,(7.18)

where ψi stands for a Ricci coefficient and Ψ for a null curvature component.

For trχ and trχ, we use the corresponding Raychaudhuri equations, which

may be written in the following form:

∇4 trχ
∗=

(
1− Ω−1

) 2

(v − u)2
−

2

v − u
trχ∗−

4ω

v − u
−2ω trχ∗−

1

2
(trχ∗)2−|χ̂|2,

(7.19)

∇3 trχ
∗=

(
Ω−1−1

) 2

(v − u)2
+

2

v − u
trχ∗+

4ω

v − u
−2ω trχ∗−

1

2

(
trχ∗

)2
−
∣∣∣χ̂
∣∣∣
2
.

(7.20)

Thus, all together every Ricci coefficient ψ satisfies an equation of one of the

following forms:

∇4ψ
∗ = E , ∇3ψ

∗ = E ,

where E is controlled by a sum of terms of the following possible schematic forms:

ψ1 · ψ
∗
2, ψ∗

1 · ψ
∗
2, Ψ,

(
Ω−1

)∗
(v − u)−2, ψ∗

1 (v − u)−1 ,

with the constraint that αAB can only show up in a ∇4 equations and that

αAB can only show up in a ∇3 equation.
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Commuting with /∇
i
A1···Ai

leads to equations of the schematic form (with

indices on /∇
i
suppressed):

∇4 /∇
i
ψ∗ = /∇

i
E + Fi, ∇3 /∇

i
ψ∗ = /∇

i
E + Fi,

where Fi is controlled by a sum of terms of the schematic form:

/∇
i
(ψ1 · ψ

∗) , /∇
i−1

(ψ1 · ψ2 · ψ
∗) .

Now we conjugate by w
.
= (v − u) exp

(
D v
u

)
to obtain

∇4

Ä
w /∇

i
ψ∗
ä
+
D

u
w /∇

i
ψ∗ = q /∇

i
E + qFi,

∇3

Ä
w /∇

i
ψ∗
ä
+D

v

u2
w /∇

i
ψ∗ = w /∇

i
E + wFi.

Now we contract with w /∇
i
ψ∗ and integrate to obtain, for every (u, v) ∈ Qũ,ṽ,

either ∫

S2u,v

w2
∣∣∣ /∇i

ψ∗
∣∣∣
2

˚dVol +

∫ v

−uv

∫

S2u,v̇

D

u
w2
∣∣∣ /∇i

ψ∗
∣∣∣
2
dv̇ ˚dVol

. D−1

∫ v

−uv

∫

S2u,v̇

(v̇ − u)w2

ï∣∣∣ /∇i
E
∣∣∣
2
+ |Fi|

2
ò
dv̇ ˚dVol,

(7.21)

or ∫

S2u,v

w2
∣∣∣ /∇i

ψ∗
∣∣∣
2

˚dVol +

∫ u

max(−vv−1,1)

∫

S2u,v̇

Dv

u̇2
w2
∣∣∣ /∇i

ψ∗
∣∣∣
2
du̇ ˚dVol

. D−1

∫ u

max(−vv−1,1)

∫

S2u,v̇

(v − u̇)w2

ï∣∣∣ /∇i
E
∣∣∣
2
+ |Fi|

2
ò
du̇ ˚dVol.

(7.22)

The proof then concludes from the bootstrap assumptions, the largeness of D,

and absorbing the terms from the right-hand side into the spacetimes terms on

the left-hand sides of (7.21) and (7.22). �

7.3.3. Estimates for the metric coefficients. Lastly, we come to the esti-

mates for the metric coefficients.

Proposition 7.8. Let (M, gµν) satisfy the hypothesis of Proposition 7.3.

Then we have

G . ǫ1−δ.

Proof. This follows by simply by integrating the following transport equa-

tions for the metric coefficients,

(7.23) ∂v
(
Ω−1

)
= 2ω, Lv/gAB = 2ΩχAB, Lvb

A = −4Ω2ζA,

and controlling the Ricci coefficients on the right-hand side with Proposi-

tion 7.7; see the proof of Proposition 7.7. �

This concludes the proof of Proposition 7.3, and hence also Theorem 7.1.
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8. Shifting the shift and gluing in an asymptotically flat cone

It will be convenient to introduce the following notation:

W
.
=

ß
(u, v) : −1 ≤ u < 0, 1 ≤

v

−u
< v−1, 0 ≤ v ≤ v

™
.

We begin by noting the following consequence of a preservation of regu-

larity argument:

Proposition 8.1. Let 0 < v ≪ 1, let ǫ > 0 be sufficiently small, and let

(M, gµν) be a spacetime produced by Theorem 7.1 so that (M, gµν) exists in the

region W , and in this region the spacetime satisfies the regularity bounds (5.15)–

(5.18) and the estimates (7.9).

Then, for any 1 ≪ Ñ ≪ N0 , we have that

sup
0≤j≤Ñ

sup
(u,v)∈W

∫

S2u,v

∣∣∣ /∇j
Ψ
∣∣∣
2
v4+2j . ǫ2−2δ,

sup
0≤j≤Ñ

sup
(u,v)∈W

∫

S2u,v

∣∣∣ /∇j
ψ∗
∣∣∣
2
v2+2j . ǫ2−2δ,

sup
0≤j≤Ñ

sup
(u,v)∈W

∫

S2u,v

∣∣∣ /∇j
φ∗
∣∣∣
2
v2j . ǫ2−2δ.

Proof. The proof follows mutatis mutandis as in Proposition 7.2. �

8.1. Shifting the shift. In this section we construct a new coordinate sys-

tem so that the shift vector is in the e4-direction; see Remark 2.2.

Lemma 8.2. Let 0 < v ≪ 1, let ǫ > 0 be sufficiently small, and let

(M, gµν) be a spacetime produced by Theorem 7.1 so that (M, gµν) exists in the

region W , and in this region the spacetime satisfies the regularity bounds (5.15)–

(5.18) and the estimates (7.9).

Consider the sphere S2
− 1

2
v, 1

2
v

at the intersection of the null hypersurfaces

{u = −1
2v} and {v = 1

2v}, and then consider an arbitrary cover of S− 1
2
v, 1

2
v by

a set of coordinate charts U1, . . . , Uk with corresponding coordinate functions

{θA(i)} for i = 1, . . . , k . The functions {θA(i)}, originally defined on Ui , may

then be extended to W × Ui by requiring that ∂uθ
A
(i) = ∂vθ

A
(i) = 0. (This is

possible because [∂u, ∂v] = 0.) These coordinates
(
u, v, θA(i)

)
are, of course, the

coordinates that may be used in the double-null expression (2.1).

Given any choice of coordinates θA(i) on S2
− 1

2
v, 1

2
v
, we will now define a new

set of functions {θ̊A(i)} on W × S2 by requiring that θ̊A(i)
(
u, v, θB

)
: W ×Ui → R
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satisfies

(8.1)

θ̊A
Ä
−v, v, θB

ä .
= θA

Å
−
1

2
v,

1

2
v, θB

ã
∀v ∈ [0, v], e3

Ä
θ̊A
ä
= 0.

Then we claim that
Ä
u, v, θ̊A(i)

ä
form regular coordinates on W × S2 . Further-

more, the metric gµν now takes the following form:

(8.2) g = −2Ω2 (du⊗ dv + dv ⊗ du) + /gAB

Ä
dθ̊A − b̊Adv

ä
⊗
Ä
dθ̊B − b̊Bdv

ä

for a shift vector b̊B that is uniquely determined by

(8.3) L∂u b̊
A = 4Ω2ζA, b̊A| v

−u
=1 = −bA.

Finally, in this new double-null gauge, for any 1 ≪ Ñ ≪ N0 , we have that

sup
0≤j≤Ñ

sup
(u,v)∈W

∫

S2u,v

∣∣∣ /∇j
Ψ
∣∣∣
2
v4+2j . ǫ2−2δ,

sup
0≤j≤Ñ

sup
(u,v)∈W

∫

S2u,v

∣∣∣ /∇j
ψ∗
∣∣∣
2
v2+2j . ǫ2−2δ

(8.4)

and

(8.5) sup
0≤j≤Ñ

sup
(u,v)∈W

∫

S2u,v

∣∣∣ /∇j
φ∗
∣∣∣
2
v2j . ǫ2−2δ.

Proof. We can re-write the transport equation (8.1) defining the new func-

tions θ̊A(i) as the following equation for ϑ̊A
.
= θ̊A − θA:

(8.6)
∂

∂u
ϑ̊A +

(
b · /∇

)
ϑ̊A = −bA.

Using Proposition 8.1, it follows easily from (8.6) that for any 1 ≪ Ň ≪ N0,

we have that

(8.7) sup
0≤j≤Ň

sup
(u,v)∈W

∫

S2u,v

∣∣∣ /∇2j
ϑ̊A
∣∣∣
2
v2j ˚dVol . ǫ2−2δ.

In particular, it is immediate that for each (u, v) ∈ W , the functions {θ̊A(i)}

form a regular set of coordinate functions on S2u,v lying in the Sobolev space

HŇ for any 1 ≪ Ň ≪ N0.

Next we argue that the metric takes the desired form (8.2). First of all,

the change of variables formula implies each ∂
∂θ̊A

is tangent to S2u,v. Thus, we

have

g
(
e3, ∂θ̊A

)
= g

(
e4, ∂θ̊A

)
= 0.

Furthermore, the change of variables formula implies that there exist b̃A and

b̊A so that

Ωe3 =
∂

∂u
+ b̃A

∂

∂θ̊A
, Ωe4 =

∂

∂v
+ b̊A

∂

∂θ̊A
.
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However, (8.1) immediately implies that b̃ = 0, and we furthermore have

g
(
∂v, ∂θ̊A

)
= g

(
Ωe4, ∂θ̊A

)
− g
Ä̊
bB∂θ̊B , ∂θ̊A

ä
= b̊A,

g (∂v, ∂v) = Ω2g (e4, e4)− g
Ä̊
bA∂A, ∂v

ä
= −

∣∣∣̊b
∣∣∣
2
.

It now follows that the metric takes the form (8.2) for some b̊A. To see that (8.3)

holds, we first note that

[e3, e4] =
∂̊bA

∂u

∂

∂θ̊A
.

Then the desired propagation equation (8.3) follows from the definition of tor-

sion (2.2):

ζA =
1

2
g (DAe4, e3) ⇒ ζA =

1

4
g ([e3, e4], eA) .

Finally, the estimates (8.4) and (8.5) follow easily from (8.7), the new

propagation equation for b̊, and Proposition 8.1. �

8.2. Gluing on an asymptotically flat cone. Next we give a definition that

is similar to Definition 2.2.

Definition 8.1. Let (M, gµν) be a spacetime produced by Lemma 8.2. We

then say that a 1-parameter familyÅ
Ω(out)

Ä
v, θA

ä
,
Ä
bA
ä(out) Ä

v, θB
ä
, /g

(out)
AB

Ä
v, θC

äã
v≥ 1

2
v

consisting of a non-zero C1 function Ω(out), a continuous vector field
(
bA
)(out)

,

and a C1 Riemannian metric /g
(out)
AB on S2 form “compatible outgoing gluing

data” if the following hold:

(1) v ∈ [12v, v) implies that

Ω(out) (v, θ) = Ω
(
−v2, v, θ

)
,

Ä
bA
ä(out)

(v, θ) = bA
(
−v2, v, θ

)
,

/g
(out)
AB

Ä
v, θC

ä
= /gAB

(
−v2, v, θ

)
,

where Ω, bA, and /gAB are the metric components of the spacetime (M, gµν).

(2) After defining trχ, χ̂AB, and ω for v ∈ [12v,∞) by

Ä
Ω(out)

ä−1
L∂v+b/g

(out)
AB

.
= trχ/g

(out)
AB + 2χ̂AB,

ω
.
=
Ä
Ω(out)

ä−1 Ä
∂v + b(out) · /∇

ä
log Ω(out)

for a trace-free χ̂AB, we have that the following equation is satisfied:

(8.8)
Ä
Ω(out)

ä−1 Ä
∂v + b(out) · /∇

ä
trχ+

1

2
(trχ)2 = −2ω trχ− |χ̂|2 .
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Now we have

Proposition 8.3. LetÅ
Ω(out)

Ä
v, θA

ä
,
Ä
bA
ä(out) Ä

v, θB
ä
, /g

(out)
AB

Ä
v, θC

äã
v≥ 1

2
v

form “compatible outgoing gluing data” such that for suitable Ñ ≫ 1, we have

sup
v> 1

2
v, i+j≤Ñ

ñ∥∥∥∥Li∂v∇̊j

Å
Ω(out),

Ä
bA
ä(out)

, /g
(out)
AB

ã∥∥∥∥
L2(S2v)

ô
<∞,

where ∇̊A is the covariant derivative relative to a reference, v-independent,

round metric.

Let

H
.
=

ßÅß
v

−u
=

1

2
v−1

™
∩

ß
v ∈ (0,

1

2
v]

™ã
∪

Åß
v ≥

1

2
v

™
∩
{
u = −v2

}ã™

and, for a given curve τ(v) : (12v,∞) → (−v2, 0),

Hτ(v)
.
=

ßÅß
1

2
v−1 ≤

v

−u
≤ v−1

™
∩

ß
v ∈ (0,

1

2
v]

™ã

∪

Åß
v ≥

1

2
v

™
∩
{
u ∈ (−v2, τ(v))

}ã™
.

Then there exists τ(v) so that there exists a spacetime
Ä
M̃, gµν

ä
defined in a

region (u, v, θA) ∈ Hτ(v) × S2 in the double-null foliation form (8.2) such that

(1) the regularity bounds (2.42)–(2.44) hold;

(2) (M̃, gµν) agrees with the solution (M, gµν) in the region {Hτ(v)∩{v ≤ 1
2v}};

(3)
Ä
Ω, bA, /gAB

ä
|H∩{v≥ 1

2
v} =

(
Ω(out),

(
bA
)(out)

, /g
(out)
AB

)
.

Proof. This may be easily deduced via Theorem 2.3 and a domain of de-

pendence argument. �

In the next proposition we construct “compatible outgoing gluing data”

that we will use to construct an asymptotically flat null cone.

Proposition 8.4. Let (M, gµν) be a spacetime produced by Lemma 8.2,

and let /̊gAB denote the reference metric that is used to define the norms in

Proposition 7.3 . Then let
{
/̂g
(out)

AB
(v),Ω(out)(v), (bA)(out)

}
v> 1

2
v

be any 1-para-

meter family of metrics, functions, and vector fields on S2 that, for some Ñ ≫ 1,

satisfy the following constraints:

(1)
(
/̂g
(out)

AB
(v),Ω(out)(v), (bA)(out)(v)

)
=
Ä
/gAB,Ω, b

A
ä
|(−v2,v) for v ∈ [12v, v],

where
Ä
/gAB,Ω, b

A
ä

are the values of the metric components for the space-

time (M, gµν);
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(2)
(
/̂g
(out)

AB
(v),Ω(out)(v), (bA)(out)(v)

)
=
Ä̊
/gAB, 1, 0

ä
for v ∈ [2,∞);

(3) supv sup1≤j≤Ñ
∫
S2

∣∣∣∇̊j
((
/̂g
(out)

AB
(v),Ω(out)(v), (bA)(out)(v)

)

−
Ä̊
/gAB, 1, 0

ää∣∣∣2 ˚dVol . ǫ2−2δ .

Then there exists ϕ(out) (v, θ) : (12v,∞)× S2 → R such that
Å
Ω(out)

Ä
v, θA

ä
,
Ä
bA
ä(out) Ä

v, θB
ä
,
Ä
ϕ(out)

ä2
/̂g
(out)

AB

Ä
v, θC

äã
v≥ 1

2
v

form “compatible outgoing gluing data.” Furthermore, we have the following

estimates for ϕ, trχ, and χ̂:

sup
1≤j≤Ñ

∫

S2

∣∣∣∣∇̊j

Å
logϕ− 2 log(v + v), v trχ−

2v

v + v
, vχ̂, v2α

ã∣∣∣∣
2

v2j ˚dVol . ǫ2−2δ.

Proof. This follows by using (8.8) and arguing as in the proof of Proposi-

tion 5.4. We omit the details. �

In the next proposition we analyze the behavior of all Ricci coefficients

and curvature components for the initial data produced by Proposition 8.4.

Proposition 8.5. Let (M, gµν) be a spacetime produced by Lemma 8.2

and /̊gAB denote the reference metric that is used to define the norms in Propo-

sition 7.3, and letÅ
Ω(out)

Ä
v, θA

ä
,
Ä
bA
ä(out) Ä

v, θB
ä
,
Ä
ϕ(out)

ä2
/̂g
(out)

AB

Ä
v, θC

äã
v> 1

2
v

be the corresponding “compatible outgoing gluing data” produced by Proposi-

tion 8.4. Let
Ä
M̃, gµν

ä
denote the spacetime produced by Proposition 8.3. Then

for any N satisfying 1 ≪ N ≪ N0 , we have the following estimates for Ricci

coefficients ψ 6= χ̂
AB
, ω and curvature components Ψ 6=

Ä
αAB, βA

ä
along H:

sup
1≤j≤N

sup
(u,v)∈H

∫

S2u,v

∣∣∣ /∇j
ψ∗
∣∣∣
2
v2j+2 ˚dVol . ǫ2−2δ,

sup
1≤j≤N

sup
(u,v)∈H

∫

S2u,v

∣∣∣ /∇j
Ψ
∣∣∣
2
v2j+4 ˚dVol . ǫ2−2δ.

For any s > 0, we have that

sup
1≤j≤N

sup
(u,v)∈H

∫

S2u,v

∣∣∣ /∇j
χ̂
∣∣∣
2
v2j+2−2s ˚dVol .s ǫ

2−2δ,

sup
1≤j≤N

sup
(u,v)∈H

∫

S2u,v

∣∣∣ /∇j
β
∣∣∣
2
v2j+4−2s ˚dVol .s ǫ

2−2δ.

Proof. Due to Proposition 8.1, we only need to study the case of v ≫ 1. Let

us start with the Ricci coefficients. The desired bounds for ω follow immediately

from the fact that Ω|H is identically 1 for large v and that bA|H vanishes



360 IGOR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

for large v. Proposition 8.4 also already provides the desired bounds for trχ

and χ̂
AB

. Another consequence of Ω|H being identically 1 for large v is that

ηA|v = −η
A
|v when v is large. Thus, for v ≫ 1, we may derive the following

equation for ηA = −η
A
:

(8.9) ∇vηA +
3

2
trχηA = /divχ̂A −

1

2
/∇A trχ− (η · χ̂)A .

The key point is that
3

2
trχ &

3

v
>

1

v
for v ≫ 1.

In particular, from (8.10), we have

(8.10) ∇v (vη)A +

Å
3

2
trχ−

1

v

ã
vηA = v

ï
/divχ̂−

1

2
/∇ trχ− ηχ̂

ò
A

.

Contracting with vηA and using the previously established estimates leads to

sup
(u,v)∈H

∫

S2
|vη|2 . ǫ2−2δ.

It is straightforward to commute with /∇
j
A1···Aj

and then obtain

sup
(u,v)∈H

∫

S2

∣∣∣v /∇j
η
∣∣∣
2
v2j . ǫ2−2δ.

For trχ, one may derive the following equation for v ≫ 1:

∇v

Å
trχ+

2

v + v

ã
+ trχ

Å
trχ+

2

v + v

ã

= −2

Ç
K −

1

(v + v)2

å
+

Å
trχ−

2

v + v

ã
2

v + v
+ 2 /divη + 2 |η|2 .

This may be treated just as ηA to produce the desired estimate for trχ.

For χ̂
AB

, we have the following equation for v ≫ 1:

∇vχ̂AB +
1

2
trχχ̂

AB
=

Å
/∇⊗̂η −

1

2
trχχ̂+ η⊗̂η

ã
AB

.

The key point is that for any s > 0, we will have that v ≫s 1 implies that

1

2
trχ−

1− s

v
&s v

−1.

In particular, one can conjugate by v1−s and proceed as we did for η.

Finally the desired estimates for ρ, σ, βA, and β
A

follow immediately from

the equations (2.17), (2.13), (2.18), and (2.19). �

9. The bootstrap argument for region III

The main result of this section will be the following:



NAKED SINGULARITIES FOR THE EINSTEIN VACUUM EQUATIONS 361

Theorem 9.1. Let (M, gµν) be a spacetime produced by Proposition 8.4.

Then, possibly taking ǫ smaller, we claim that gµν in this new coordinate system

may be extended to the region
{
(u, v) : −v2 ≤ u < 0 and v > 0

}
, and in this

region the spacetime satisfies the regularity bounds (5.15)–(5.18) and the esti-

mates (9.2).

We will prove this theorem with a bootstrap argument. In Section 9.1

we will define the relevant norms. Then in Section 9.2 we will carry out the

bootstrap argument.

9.1. Norms. In this section we will present the norms around which we

will base our estimates. We will be interested in regions contained in {u ∈
(0,−v2)} ∩ {v ∈ [0,∞)}. We also introduce a reference Lie-propagated round

metric to define a round volume form ˚dVol.

Let v > 0 be sufficiently small, and set

P
.
=
{
u ∈ (−v2, 0)

}
∩

ß
v−1 ≤

v

|u|
<∞

™
, Pũ,ṽ

.
= P ∩ {u ≤ ũ} ∩ {v ≤ ṽ},

where (ũ, ṽ) ∈ P.

It will be convenient to avoid working with αAB and instead only estimate

the renormalized curvature components αAB, βA, ρ̌, σ̌, and β
A
. We will use

the notation Ψ̌ to refer to one of these renormalized curvature components.

As opposed to how we defined the norms for region I, it will be natural to

weight Ricci coefficients and curvature components with Ω−s, where s denotes

the signature. This is because we will want to eliminate ω in certain equations.

In contrast, in region I we weighted with Ωs because we wanted to eliminate ω

from various equations.

Convention 9.1. Throughout this section, unless said otherwise, all norms

of tensorial quantities are computed with respect to /gAB, and we will always

use the round metric induced volume form ˚dVol on each S2u,v.

We now define the energy norm for the renormalized curvature components:

Definition 9.1. Let 0 < q ≪ p≪ 1. For β
A
, we define the energy norm by

∥∥∥β
∥∥∥
2

Ip,ũ,ṽ

.
= sup

0≤j≤2
sup

(u,v)∈Pũ,ṽ

[
(−u)2q

∫ u

max(−vv,−v2)

∫

S2
Ω2
∣∣∣ /∇j (

Ω−1β
)∣∣∣

2
v3+2j

Å
−u̇

v

ã2p
(−u̇)−2q du̇ ˚dVol

+ (−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

∫

S2

∣∣∣ /∇j (
Ω−1β

)∣∣∣
2
v̇2+2j

×

Å
−u̇

v̇

ã−2p

(−u̇)−2q dv̇ du̇ ˚dVol

]
.
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For any renormalized curvature component Ψ̌ of signature s not equal to β
A
,

we have

∥∥Ψ̌
∥∥2

Ip,ũ,ṽ

.
= sup

0≤j≤2
sup

(u,v)∈Pũ,ṽ

[
(−u)2q

∫ u

max(−vv,−v2)

∫

S2
Ω2
∣∣∣ /∇j (

Ω−sΨ̌
)∣∣∣

2
v3+2j

Å
−u̇

v

ã2p
(−u̇)−2q du̇ ˚dVol

∫ v

−uv−1

∫

S2

∣∣∣ /∇j (
Ω−sΨ̌

)∣∣∣
2
v̇3+2j

(−u
v̇

)2p
dv̇ ˚dVol

+ (−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

∫

S2

∣∣∣ /∇j (
Ω−sΨ̌

)∣∣∣
2
v̇3+2j

×

Å
−u̇

v̇

ã2p
(−u̇)−1(−u̇)−2q dv̇ du̇ ˚dVol

]
.

We also introduce the notation

Ip,ũ,ṽ
.
=
∑

Ψ̌

∥∥Ψ̌
∥∥

Ip,ũ,ṽ
.

Finally, when it will not cause confusion, we will often suppress a subset of the

(p, ũ, ṽ) indices from the I or I subscript.

Next, we define the low-regularity norm for the Ricci Coefficients.

Definition 9.2. Let 0 < p≪ 1. For any Ricci coefficient ψ 6= ηA, ω, χAB of

signature s, we define

‖ψ‖2
Kp,ũ,ṽ

.
= sup

0≤j≤2
sup

(u,v)∈Pũ,ṽ

∫

S2

∣∣∣ /∇j (
Ω−sψ

)∗∣∣∣
2
v2j+2 ˚dVol,

where (Ω−sψ)
∗

denotes the difference of Ω−sψ and its Minkowski value.

For ψ ∈ {ηA, χAB}, we define

‖ψ‖2
Kp,ũ,ṽ

.
= sup

0≤j≤2
sup

(u,v)∈Pũ,ṽ

∫

S2

∣∣∣ /∇j (
Ω−sψ

)∣∣∣
2
v2j+2

(−u
v

)2p
˚dVol,

where s denotes the signature of ψ.

We also introduce the notation

Kp,ũ,ṽ
.
=
∑

ψ 6=ω

‖ψ‖
Kp,ũ,ṽ

.

Finally, when it will not cause confusion, we will often suppress a subset of the

(p, ũ, ṽ) indices from the K or K subscript.

Now we define the high-regularity norm for the Ricci Coefficients.
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Definition 9.3. Let 0 < q ≪ p ≪ 1. For any Ricci coefficient ψ 6=
ηA, ω, χ̂AB of signature s, we define

‖ψ‖2
Lp,ũ,ṽ

.
= sup

0≤j≤3
sup

(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

∫

S2

∣∣∣ /∇j (
Ω−sψ

)∗∣∣∣
2
v̇1+2j

Å
−u̇

v̇

ã2p
(−u̇)−1(−u̇)−2q du̇ dv̇ ˚dVol,

where (Ω−sψ)
∗

denotes the difference of Ω−sψ and its Minkowski value.

For ψ ∈ {ηA, χ̂AB}, we define

‖ψ‖2
Lp,ũ,ṽ

.
= sup

0≤j≤3
sup

(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)
∫ v

−uv−1

∫

S2

∣∣∣ /∇j (
Ω−sψ

)∣∣∣
2
v̇2j
Å
−u̇

v̇

ã2p
(−u̇)−2q du̇ dv̇ ˚dVol,

where s denotes the signature of ψ.

We also introduce the notation

Lp,ũ,ṽ
.
=
∑

ψ 6=ω

‖ψ‖
Lp,ũ,ṽ

.

Finally, when it will not cause confusion, we will often suppress a subset of the

(p, ũ, ṽ) indices from the L or L subscript.

Finally, we define the norm for the metric coefficients.

Definition 9.4. Let 0 < p≪ 1. For any metric coefficient φ 6= Ω, we define

‖φ‖
Mp,ũ,ṽ

.
= sup

0≤j≤3
sup

(u,v)∈Pũ,ṽ

∫

S2

∣∣∣ /∇j (
Ω−sψ

)∗∣∣∣
2
v2j ˚dVol,

where (Ω−sφ)
∗

denotes the different of Ω−sφ and its Minkowski value.

For the lapse Ω, we define

‖Ω‖
Mp,ũ,ṽ

.
= sup

1≤j≤3
sup

(u,v)∈Pũ,ṽ

∫

S2

∣∣∣ /∇j
Ω
∣∣∣
2
v2j
(−u
v

)2p
˚dVol

+ sup
(u,v)∈Pũ,ṽ

|log Ω|2
∣∣∣∣log2

(−uv
v

)∣∣∣∣ .

We also introduce the notation

Mp,ũ,ṽ
.
=
∑

φ

‖φ‖
Mp,ũ,ṽ

.

Finally, when it will not cause confusion, we will often suppress a subset of the

(p, ũ, ṽ) indices from the M or M subscript.
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9.2. Estimates. A standard argument using Proposition 5.4 shows that

Theorem 9.1 will follow from the following proposition:

Proposition 9.2. Let v > 0, and let (M, gµν) be a spacetime produced

by Proposition 8.4 that exists in the region rectangle Pũ,ṽ for some (ũ, ṽ) ∈ P
and that satisfies the “bootstrap assumption”

(9.1) Iũ,ṽ + Kũ,ṽ + Lũ,ṽ +Mũ,ṽ ≤ 2Aǫ1−δ.

We then claim that (9.1) implies

(9.2) Iũ,ṽ + Kũ,ṽ + Lũ,ṽ +Mũ,ṽ ≤ Aǫ1−1δ.

As usual, the proof will be broken up into a few separate estimates. We

start with estimates for the curvature components, then prove estimates for the

Ricci coefficients, and finish with the estimates for the metric coefficients.

Throughout the proofs in this section we will use without comment that

for any point in P, we have
−u

v
≤ v.

We start by observing the Sobolev spaces generated by /gAB and /̊gAB are

comparable.

Lemma 9.3. Let (M, gµν) satisfy the hypothesis of Proposition 9.2. Then

we have that

‖w‖H̃i(S2u,v)
∼k v

−k ‖w‖H̊i(S2u,v)
for i ∈ {0, 1, 2, 3},

‖w‖L̃p(S2u,v)
∼k v

−k ‖w‖L̊p(S2u,v)
,

where we recall that H̊ i and L̊p denote the Sobolev and Lp spaces generated by

the round metric /̊gAB , and the spaces H̃j are defined as in Definition 6.11.

Proof. This is an immediate consequence of Lemma 4.2, the bootstrap

hypothesis, and the smallness of ǫ. �

Next, we have an analogue of Lemma 6.6.

Lemma 9.4. Let (M, gµν) satisfy the hypothesis of Proposition 9.2. Then

for any function f , 1-form θA , and symmetric trace-free 2-tensor νAB , we have

‖f‖H̃2+i(S2u,v)
. (−u)2

∥∥ /∆f
∥∥
H̃i(S2u,v)

+ ‖f‖H̃i(S2u,v)
for i ∈ {0, 1},

(9.3)

‖θ‖H̃i(S2u,v)
. (−u)

[∥∥ /divθ
∥∥
H̃i−1(S2u,v)

+
∥∥ /curlθ

∥∥
H̃i−1(S2u,v)

]
for i ∈ {1, 2, 3},

(9.4)

‖ν‖H̃i(S2u,v)
. (−u)

∥∥ /divν
∥∥
H̃i−1(S2u,v)

for i ∈ {1, 2, 3}.

(9.5)



NAKED SINGULARITIES FOR THE EINSTEIN VACUUM EQUATIONS 365

Proof. This is proven in the same fashion as Lemma 6.6. �

Now we observe that the standard Sobolev inequalities hold for the spaces H i.

Lemma 9.5. Let (M, gµν) satisfy the hypothesis of Proposition 9.2. Then,

for any (0, k)-tensor wA1···Ak
, we have that

‖w‖L̃p(S2u,v)
.p,k ‖w‖H̃1(S2u,v)

, ‖w‖L̃∞(S2u,v)
.k ‖w‖H̃2(S2u,v)

,

and for any (0, k)-tensor wA1···Ak
and (0, k′)-tensor vA1···A′

k
, we have

‖w · v‖H̃2(S2u,v)
.k,k′ ‖w‖H̃2(S2u,v)

‖v‖H̃2(S2u,v)
.

Proof. This is an immediate consequence of Lemmas 9.3 and 4.1. �

These Sobolev inequalities will be used repeatedly in our estimates of non-

linear terms, and we will often do so without explicit comment.

The following lemma will be frequently used to obtain L∞
u,v estimates:

Lemma 9.6. Let −1 ≤ x0 < x1 < 0, and let f(x) : [x0, x1] → R satisfy

sup
x̃∈[x0,x1]

(−x̃)2δ1
∫ x̃

x0

|f(x)|2 (−x)2δ2 dx
.
= Z2 <∞,

where δ1, δ2 > 0 and δ1 + δ2 < 1/2. Then we have

∫ x1

x0

|f(x)| dx . (−x0)
1/2−δ1−δ2Z,

where the implied constant is independent of f , x0 , x1 , and Z .

Proof. Let j0, j1 ∈ Z≥0 be defined by the requirement that

x0 ∈ [−2−j0 ,−2−j0−1] and x1 ∈ [−2−j1 ,−2−j1−1].

Then we have

∫ x1

x0

|f(x)| dx ≤

j1∑

j=j0

∫ −2−j−1

−2−j

|f(x)| dx

.

j1∑

j=j0

2j(δ2−
1
2)
Ç∫ −2−j−1

−2−j

|f(x)|2 (−x)2δ2 dx

å1/2

. Z

j1∑

j=j0

2j(δ1+δ2−1/2)

. (−x0)
1/2−δ1−δ2Z. �
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9.2.1. Estimates for curvature. In this section we will prove the energy

estimates for the null curvature components. We start by re-writing the Bianchi

equations in a form that eliminates ω from the equations.

Lemma 9.7. For any spacetime (M, gµν) in a double-null foliation, we

have the following equations for the renormalized curvature components:

Ω∇3

(
Ω2α

)
AB

+
Ω2

2

(
Ω−1 trχ

)
Ω2αAB

= Ω2
[
/∇⊗̂ (Ωβ)− 3 ((Ωχ̂) ρ+ ∗ (Ωχ̂)σ) +

(
−η + 4η

)
⊗̂ (Ωβ)

]
AB
,

(9.6)

(9.7)

Ω∇4 (Ωβ)A + 2 (Ω trχ) (Ωβ)A = /div
(
Ω2α

)
A
− 6 (Ωω) (Ωβ)A −

(
η ·
(
Ω2α

))
A
,

Ω∇3 (Ωβ)A +Ω2
(
Ω−1 trχ

)
ΩβA

= Ω2

[
/∇Aρ̌+

∗ /∇Aσ̌ + 2
(
χ̂ · β

)
A
+ 3 (ηρ̌+ ∗ησ̌)A

+
1

2

(
/∇
(
χ̂ · χ̂

)
+ ∗ /∇

(
χ̂ ∧ χ̂

))
A
+

3

2

(
ηχ̂ · χ̂+ ∗ηχ̂ ∧ χ̂

)
A

]
,

(9.8)

Ω∇4σ̌ +
3

2
(Ω trχ) σ̌

= − /div∗ (Ωβ)− η ∧ (Ωβ)−
1

2
(Ωχ̂) ∧

(
/∇⊗̂η

)
−

1

2
(Ωχ̂) ∧

(
η⊗̂η

)
,

(9.9)

Ω∇4ρ̌+
3

2
(Ω trχ) ρ̌ = /div (Ωβ) + η · (Ωβ)

−
1

2
(Ωχ̂) ·

(
/∇⊗̂η

)
−

1

2
(Ωχ̂) ·

(
η⊗̂η

)
+

1

4

(
Ω trχ

)
|χ̂|2 ,

(9.10)

Ω∇3σ̌ +Ω2 3

2

(
Ω trχ

)
σ̌ = Ω2

[
/div∗
(
Ω−1β

)
−
(
η + 2η

)
∧
(
Ω−1β

)

+
1

2

(
Ω−1χ̂

)
∧
(
/∇⊗̂η

)
+

1

2

(
Ω−1χ̂

)
∧
(
η⊗̂η

)
]
,

(9.11)

Ω∇3ρ̌+Ω2 3

2

(
Ω trχ

)
ρ̌ = Ω2

[
− /div

(
Ω−1β

)
−
(
η + 2η

)
·
(
Ω−1β

)

−
1

2

(
Ω−1χ̂

)
·
(
/∇⊗̂η

)
−

1

2

(
Ω−1χ̂

)
·
(
η⊗̂η

)
+

1

4

(
Ω−1 trχ

) ∣∣∣χ̂
∣∣∣
2
]
,

(9.12)
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Ω∇4

(
Ω−1β

)
A
+ (Ω trχ)

(
Ω−1β

)
A

= − /∇Aρ̌+
∗ /∇Aσ̌ + 4 (Ωω)

(
Ω−1β

)
A
+ 2

((
Ω−1χ̂

)
· (Ωβ)

)
A

− 3
(
ηρ̌− ∗ησ̌

)
A
−

1

2

(
/∇A

((
Ω−1χ̂

)
· (Ωχ̂)

)
+ ∗ /∇A

((
Ω−1χ̂

)
∧ (Ωχ̂)

))

−
3

2

(
η
(
Ω−1χ̂

)
· (Ωχ̂) + ∗η

(
Ω−1χ̂

)
∧ (Ωχ̂)

)
A
.

(9.13)

We recall the ρ̌ and σ̌ are defined by (2.30).

Next, we carry out an estimate for the Gauss curvature K.

Proposition 9.8. Let (M, gµν) satisfy the hypothesis of Proposition 9.2.

Then we have

sup
i∈{0,1}

sup
(u,v)∈Pũ,ṽ

∫

S2u,v

v4+2i
∣∣∣ /∇i (

K − (v − u)−2
)∣∣∣

2
˚dVol . Aǫ2−2δ.

Recall that the constant A is defined from the bootstrap assumption.

Proof. We first note that from (9.12) and Lemma 2.2, for i ∈ {0, 1}, we

may derive the following equation /∇
i
A1···Ai

ρ̌:

(9.14) Ω∇3

Ä
v2+i /∇

i
A1···Ai

ρ̌
ä
= v2+iE ,

where E is a sum of expressions of the following schematic form:

/∇
i [
Ω2
(
Ω−s1ψ1

)
·
(
Ω−s2Ψ̌2, /∇

(
Ω−s3ψ3

))]
,

/∇
i−1 ((

Ω−s1ψ1

)
·
(
Ω−s2ψs

)
· ρ̌
)
, /∇

i (
Ω2 /∇

(
Ω−s1Ψ̌1

))
,

where ψi is a Ricci coefficient of signature si not equal to ω and Ψ̌i denotes

a renormalized curvature component of signature si. Contracting both sides

of (9.14) with v2+i /∇
i
A1···Ai

ρ̌, integrating by parts, using the bootstrap assump-

tion, and using Proposition 8.1 leads to

sup
(u,v)∈Pũ,ṽ

∫

S2u,v

v4+2i
∣∣∣ /∇i

ρ̌
∣∣∣
2

˚dVol

.

Ç∫ u

max(−vv,−v2)
v2+i |E| |(u,v)=(u̇,v) du̇ ˚dVol

å2

+ ǫ2−2δ.

Lemma 9.6 then yields

sup
(u,v)∈Pũ,ṽ

∫

S2u,v

v4+2i
∣∣∣ /∇i

ρ̌
∣∣∣
2

˚dVol . v1−100p sup
ů∈[−vv,u]

(−ů)100q

∫ ů

max(−vv,−v2)
v5+2i |E|2

Å
−u̇

v

ã100p
(−u̇)−100q|(u,v)=(u̇,v) du̇ ˚dVol + ǫ2−2δ.



368 IGOR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

Then, using the bootstrap assumptions, Sobolev inequalities, and the smallness

of v, p, and q, we obtain

sup
i∈{0,1}

sup
(u,v)∈Pũ,ṽ

∫

S2u,v

v4+2i
∣∣∣ /∇i

ρ̌
∣∣∣
2

˚dVol . ǫ2−2δ.

To go from the control of ρ̌ to the control of K − 1, we use the following

consequence of the Gauss equation (2.17):

K − (v − u)−2 = −ρ̌−
1

4
(Ω trχ)∗Ω−1 trχ−

1

2(v − u)

(
Ω−1 trχ

)∗
,

from which the proof is immediately concluded. �

We now carry out the energy estimates for curvature.

Proposition 9.9. Let (M, gµν) satisfy the hypothesis of Proposition 9.2.

Then we have

I . ǫ1−δ.

Proof. We start with equations (9.11)–(9.13) corresponding to the Bianchi

pair
Ä
β
A
, ρ̌, σ̌

ä
, which we write in the following form:

Ω∇3σ̌ = Ω2 /div∗
(
Ω−1β

)
+ E1,(9.15)

Ω∇3ρ̌ = −Ω2 /div
(
Ω−1β

)
+ E2,(9.16)

Ω∇4

(
Ω−1β

)
A
+ (Ω trχ)

(
Ω−1β

)
A
= − /∇Aρ̌+

∗ /∇Aσ̌ + E3.(9.17)

Here E1, E2 contain terms that are of the following schematic form:

Ω2
(
Ω−s1ψ1

)
·
((
Ω−s2Ψ̌2

)
, /∇
(
Ω−s2ψ2

)
,
(
Ω−s2ψ2

)
·
(
Ω−s3ψ3

))
,

and E3 contain terms of the schematic form
(
Ω−s1ψ1

)
·
((
Ω−s2Ψ̌2

)
, /∇
(
Ω−s2ψ2

)
,
(
Ω−s2ψ2

)
·
(
Ω−s3ψ3

))
,

where Ψ̌i denotes a renormalized curvature component of signature si, and ψi
denotes a Ricci coefficient not equal to ω of signature si, and in the cubic term

at most of one of the ψ can be equal to trχ or trχ. The terms in E3 have

the additional constraint that ψi 6∈ {trχ, trχ, ηA}. Now, for i ∈ {0, 1, 2}, we

commute (9.18) and (9.19) with v3/2
(
−u
v

)p
(−u)−q /∇

i
A1···Ai

and commute (9.20)

with Ω /∇
i
A1···Ai

. Using Lemma 2.2, we then end up with (suppressing the indices

on /∇
i
for typographical reasons)

Ω∇3

Å
v3/2+i

(−u
v

)p
(−u)−q /∇

i
σ̌

ã
+
p− q

−u

Å
v3/2+i

(−u
v

)p
(−u)−q /∇

i
σ̌

ã

= Ω2 /div∗
ï
v3/2+i

(−u
v

)p
(−u)−q /∇

i (
Ω−1β

)ò
+ v3/2+i

(−u
v

)p
(−u)−qF1,

(9.18)
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Ω∇3

Å
v3/2+i

(−u
v

)p
(−u)−q /∇

i
ρ̌

ã
+
p− q

−u

Å
v3/2+i

(−u
v

)p
(−u)−q /∇

i
ρ̌

ã

= −Ω2 /div

ï
v3/2+i

(−u
v

)p
(−u)−q /∇

i (
Ω−1β

)ò
+ v3/2+i

(−u
v

)p
(−u)−qF2,

(9.19)

Ω∇4

Å
v3/2+i

(−u
v

)p
(−u)−qΩ /∇

i (
Ω−1β

)ã
A

+

Å
−3/2− i

v
+

2 + i

2
Ω trχ

ã
v3/2+i

(−u
v

)p
(−u)−qΩ /∇

i (
Ω−1β

)
A

= −Ω

Å
/∇

ï
v3/2+i

(−u
v

)p
(−u)−q /∇

i
ρ̌

ò
+ ∗ /∇

ï
v3/2+i

(−u
v

)p
(−u)−q /∇

i
σ̌

òã
A

+ v3/2+i
(−u
v

)p
(−u)−qF3,

(9.20)

where F1 and F2 contain terms of the schematic form

/∇
i [
Ω2
(
Ω−s1ψ1

)
·
((
Ω−s2Ψ̌2

)
, /∇
(
Ω−s2ψ2

)
,
(
Ω−s2ψ2

)
·
(
Ω−s3ψ3

))]
︸ ︷︷ ︸

I

,

/∇
i−1 (

Ω2
(
Ω−s1ψ1

)
·
(
Ω−s2ψ2

)
·
(
Ω−s3Ψ̌3

))
︸ ︷︷ ︸

II

, /∇
i−1 (

Ω2K · Ω−s1Ψ̌1

)
︸ ︷︷ ︸

III

,

and F3 contains terms of the schematic form

Ω /∇
i [(

Ω−s1ψ1

)
·
((
Ω−s2Ψ̌2

)
, /∇
(
Ω−s2ψ2

)
,
(
Ω−s2ψ2

)
·
(
Ω−s3ψ3

))]
︸ ︷︷ ︸

IV

,

Ω /∇
i−1 ((

Ω−s1ψ1

)
·
(
Ω−s2ψ2

)
·
(
Ω−s3Ψ̌3

))
︸ ︷︷ ︸

V

, Ω /∇
i−1 (

K · Ω−s1Ψ̌1

)
︸ ︷︷ ︸

VI

,

where the terms with the Gaussian curvature K cannot occur for i = 0, Ψ̌i

denotes a renormalized curvature component of signature si and ψi denotes a

Ricci coefficient not equal to ω of signature si, and in the cubic term at most

one of the ψ can be equal to trχ or trχ. The terms in F3 have the following

additional constraints:

(1) we have ψi 6∈ {trχ, ηA};
(2) the only place where trχ can appear, without an angular derivative acting

on it, is as exactly one of the ψ’s in a cubic term;

(3) we can have at most one of {β
A
, χ̂

AB
} in any of the nonlinear expressions.

Next, using that 3/2 < 2, we observe the following consequence of the

bootstrap assumptions:

(9.21)

Å
−3/2− i

v
+

2 + i

2
Ω trχ

ã
& v−1.
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Keeping (9.21) in mind, we contract (9.18) with v3/2+i
(
−u
v

)p
(−u)−q /∇

i
σ̌, (9.19)

with v3/2+i
(
−u
v

)p
(−u)−q /∇

i
ρ̌, (9.20) with v3/2+i

(
−u
v

)p
(−u)−qΩ /∇

i (
Ω−1β

)
A
,

add the resulting equations together, integrate by parts, and multiply the final

result by (−u)2q to obtain

sup
(u,v)∈Pũ,ṽ

[
(−u)2q

∫ u

max(−vv,−v2)

∫

S2
Ω2
∣∣∣ /∇j (

Ω−1β
)∣∣∣

2
v3+2j

×

Å
−u̇

v

ã2p
(−u̇)−2q du̇ ˚dVol + (−u)2q

∫ u

max(−vv,−v2)

∫ v

−uv−1

×

∫

S2
Ω2
∣∣∣ /∇j (

Ω−1β
)∣∣∣

2
v̇2+2j

Å
−u̇

v̇

ã−2p

(−u̇)−2q dv̇ du̇ ˚dVol

]

+ sup
(u,v)∈Pũ,ṽ

[∫ v

−uv−1

∣∣∣ /∇j
(ρ̌, σ̌)

∣∣∣
2
v̇3+2j

(−u
v̇

)2p
dv̇ ˚dVol

+ (−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

∫

S2

∣∣∣ /∇j
(ρ̌, σ̌)

∣∣∣
2
v̇3+2j

×

Å
−u̇

v̇

ã−2p

(−u̇)−2q(−u̇)−1 dv̇ du̇ ˚dVol

]

. sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

∫

S2

[
v3+2j

Å
−u̇

v̇

ã2p
(−u̇)1−2q |(F1,F2)|

2

+ v4+2j

Å
−u̇

v̇

ã2p
(−u̇)−2q |F3|

2

]
du̇ dv̇ ˚dVol + sup

u∈[−v2,0)
(−u)2q

×

∫ u

−v2

∫

S2

Å
(−s)3+2j(−s)−2q

∣∣∣ /∇j (
Ω−1β, ρ̌, σ̌

)∣∣∣
2
ã
|(u,v)=(s,−v−1s) dŝ ˚dVol

+ v−2p

∫ ∞

v

∫

S2

Å
v̇3+2j−2p

∣∣∣ /∇j (
Ω−1β, ρ̌, σ̌

)∣∣∣
2
ã
|(u,v)=(−v2,v̇) dv̇ ˚dVol.

(9.22)

Observing that the left-hand side of (9.22) already controls a good space-

time term integral of ρ̌ and σ̌, one may inductively repeat this analysis for the

remaining Bianchi pairs (σ̌, ρ̌, βA) and (βA, αAB) and arrive at

I . sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

(9.23)

×

∫

S2

[
v̇3+2j

Å
−u̇

v̇

ã2p
(−u̇)1−2q

∣∣∣F̃
∣∣∣
2
+v̇4+2j

Å
−u̇

v̇

ã2p
(−u̇)−2q |F3|

2

]
du̇ dv̇ ˚dVol
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+
∑

Ψ̌

sup
u∈[−v,0)

(−u)2q
∫ u

−v2

∫

S2

Å
(−ṡ)3+2j(−ṡ)−2q

∣∣∣ /∇j
Ψ̌
∣∣∣
2
ã
|(u,v)=(ṡ,−v−1ṡ) dṡ ˚dVol

+ v−2p

∫ ∞

v

∫

S2

Å
v̇3+2j−2p

∣∣∣ /∇j
Ψ̌
∣∣∣
2
ã
|(u,v)=(−v2,v̇) dv̇ ˚dVol,

where F̃ has the same schematic form as F1 and F2. We now turn to an

analysis of the various terms on the right-hand side of (9.23).

First of all, it follows from Proposition 8.1 that
∑

Ψ̌

sup
u∈[−v,0)

(−u)2q
∫ u

−v

∫

S2

Å
(−ṡ)3+2j(−ṡ)−2q

∣∣∣ /∇j
Ψ̌
∣∣∣
2
ã
|(u,v)=(ṡ,−vṡ) dṡ ˚dVol . ǫ2−2δ,

v−2p

∫ ∞

v

∫

S2

Å
v̇3+2j−2p

∣∣∣ /∇j
Ψ̌
∣∣∣
2
ã
|(u,v)=(−v2,v̇) dv̇ ˚dVol . ǫ2−2δ

(after possibly slightly increasing δ).

Next we turn to the F3 term and consider first expressions that do not

contain the Gaussian curvature K. There are no ηA’s or ω’s, and each expres-

sion is genuinely quadratic in that, using the bootstrap assumption, there are

at least two terms in each expression that are controlled, in a suitable norm, by

ǫ1−δ, and finally each expression can only contain at most one of {χ̂
AB
, β

A
}.

Thus it follows from Sobolev inequalities and the bootstrap assumptions that

sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

×

∫

S2
v̇4+2j

Å
−u̇

v̇

ã2p
(−u̇)−2q |(IV,V)|2 du̇ dv̇ ˚dVol . ǫ2−2δ.

(9.24)

For the terms I and II in F̃ , we do not need to exploit the absence of ηA or a

limit on the appearance of χ̂
AB

or β
A

because the u-weight is more favorable.

We thus obtain

sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

×

∫

S2
v̇3+2j

Å
−u̇

v̇

ã2p
(−u̇)1−2q |(I, II)|2 du̇ dv̇ ˚dVol . ǫ2−2δ.

(9.25)

Now we turn to the terms III and VI. For these, we simply argue as in the

derivation of (6.39) and use Proposition 9.8 to obtain that

sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

∫

S2

[
v̇4+2j

Å
−u̇

v

ã2p
(−u̇)−2q |III|2

+ v̇3+2j

Å
−u̇

v̇

ã2p
(−u̇)1−2q |VI|2

]
du̇ dv̇ ˚dVol . ǫ2−2δ.

(9.26)

This concludes the proof. �
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9.2.2. Estimates for the Ricci coefficients. Now we turn to the estimates

for the Ricci coefficients. We start with the low-regularity estimates.

Proposition 9.10. Let (M, gµν) satisfy the hypothesis of Proposition 9.2.

Then we have

Kũ,ṽ . ǫ1−δ.

Proof. If ψ 6= ω, ηA, χ̂, trχ, trχ, then after applying Lemma 2.2, one easily

establishes that for i ∈ {0, 1, 2}, ψ will satisfy an equation of the form

(9.27) Ω∇3

Ä
v1+i /∇

i
A1···Ai

(
Ω−sψ

)ä
= v1+iE ,

where s is the signature of ψ and E is a sum of terms of the schematic form:

/∇
i (
Ω2Ω−s1Ψ̌1

)
, /∇

i (
Ω2 /∇

(
Ω−s1ψ1

))
,

/∇
i (
Ω2
(
Ω−s1ψ1

)
·
(
Ω−s2ψ2

))
, Ω2 /∇

i−1 ((
Ω−s1ψ1

)
·
(
Ω−s2ψ2

)
·
(
Ω−s3ψ3

))
,

where ψi is a Ricci coefficient of signature si not equal to ω and Ψ̌i is a renor-

malized null curvature component of signature si.

Now we contract (9.27) with v1+i /∇
i
Ω−sψ, integrate by parts, use Propo-

sition 8.1, and use Lemma 9.6 to obtain

sup
(u,v)∈Pũ,ṽ

∫

S2u,v

v2+2i
∣∣∣ /∇i (

Ω−sψ
)∣∣∣

2
˚dVol

.

Ç∫ u

max(−vv,−v2)
v1+i |E| |(u,v)=(u̇,v) du̇ ˚dVol

å2

+ ǫ2−2δ

. v1−100p sup
ů∈[−vv,u]

(−ů)100q

×

∫ ů

max(−vv,−v2)
v3+2i |E|2

Å
−u̇

v

ã100p
(−u̇)−100q|(u,v)=(u̇,v) du̇ ˚dVol + ǫ2−2δ.

(9.28)

Then, using the bootstrap assumptions, Sobolev inequalities, and the smallness

of v, p, and q, we obtain

sup
i∈{0,1,2}

sup
(u,v)∈Pũ,ṽ

∫

S2u,v

v2+2i
∣∣∣ /∇i (

Ω−sψ
)∣∣∣

2
˚dVol . ǫ2−2δ.

For ψ ∈ {trχ, trχ} we have an equation of the form

(9.29) Ω∇3

Ä
v1+i /∇

i (
Ω−sψ

)∗ä
= v1+iW,

where W contains terms of the schematic form

/∇
i
Ä
Ω2 /∇

(
Ω−s1ψ1

)∗ä
, /∇

i
Ä
Ω2 (u− v)−1 ·

(
Ω−s2ψ2

)∗ä
,

/∇
i
Ä
Ω2
(
Ω−s1ψ1

)
·
(
Ω−s2ψ2

)∗ä
, Ω2 /∇

i−1
Ä(
Ω−s1ψ1

)
·
(
Ω−s2ψ2

)
·
(
Ω−s3ψ3

)∗ä
,
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where ψi is a Ricci coefficient of signature si not equal to ω and Ψ̌i is a renor-

malized null curvature component of signature si. Then one my repeat the

above analysis to obtain

sup
i∈{0,1,2}

sup
(u,v)∈Pũ,ṽ

∫

S2u,v

v2+2i
∣∣∣ /∇i (

Ω−sψ
)∗∣∣∣

2
˚dVol . ǫ2−2δ.

It remains to estimate ηA. For this we must use the corresponding ∇4

equation. Using Lemma 2.2 we obtain, for i ∈ {0, 1, 2} (suppressing the indices

on /∇
i
),

(9.30) Ω∇4 /∇
i
ηA +

1 + i

2
(Ω trχ) /∇

i
ηA = F ,

where F is a sum of expressions of the schematic form

/∇
i
(Ωβ)A , /∇

i
((Ωs1ψ1) · (Ω

s2ψ2)) , /∇
i−1

((Ωs1ψ1) · (Ω
s2ψ2) · (Ω

s3ψ3)) ,

where

(1) each ψi denotes a Ricci coefficient of signature si that is not equal to ω,

trχ. or χ̂
AB

;

(2) each expression can have at most one ψi that is equal to ηA;

(3) if ηA shows up in the one of the terms making up F , then at least one of

the other terms that it is contracted with must be χ̂AB or η
A
, or trχ with

an angular derivative applied.

Now we conjugate (9.30) by v1+i
(
−u
v

)p
to obtain

Ω∇4

Å
v1+i

(−u
v

)p
/∇
i
η

ã
A

+

Å
p− 1− i

v
+

1 + i

2
(Ω trχ)

ã
v1+i

(−u
v

)p
/∇
i
ηA

= v1+i
(−u
v

)p
F .

(9.31)

We now note that the bootstrap assumptions imply thatÅ
p− 1− i

v
+

1 + i

2
(Ω trχ)

ã
&
p

v
.

Thus we can contract (9.31) with v1+i
(
−u
v

)−p /∇i
ηA, integrate by parts, and

use Proposition 8.1 to obtain

sup
i∈{0,1,2}

sup
(u,v)∈Pũ,ṽ

∫

S2u,v

v2+2i
(−u
v

)2p ∣∣∣ /∇i
η
∣∣∣
2

˚dVol

. sup
i∈{0,1,2}

sup
(u,v)∈Pũ,ṽ

∫ v

−uv−1

∫

S2
v̇3+2i

(−u
v̇

)2p
|F|2 + ǫ2−2δ

. ǫ2−2δ.

Here the F term is controlled via Sobolev inequalities, the bootstrap inequali-

ties, and Proposition 9.9.
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It remains to estimate χ̂
AB

. For this we first note that by using the ∇4

equation for β
A

and arguing as we have just done for ηA (one uses the weight

v2+i
(
−u
v

)−p
), one may establish

sup
i∈{0,1}

sup
(u,v)∈Pũ,ṽ

∫

S2u,v

v4+2i
(−u
v

)2p ∣∣∣ /∇i
β
∣∣∣
2

˚dVol . ǫ2−2δ.

Then the desired bound for χ̂
A

follows from the Codazzi equation (2.18) as well

as the elliptic estimate (9.5). �

Next, we turn to the high regularity estimate for the Ricci coefficients.

Proposition 9.11. Let (M, gµν) satisfy the hypothesis of Proposition 9.2.

Then we have

Lũ,ṽ . ǫ1−δ.

Proof. As is well known, in order to obtain these highest order estimates

for the Ricci coefficients we will need to re-write some of the null structure

equations in a way that reduces their top-order dependence on curvature. In

order to do this we first note the following consequences of the Bianchi equations

from Lemma 9.7 and the commutation formulas from Lemma 2.2:

/∇
2
AB /div (Ωβ) = Ω∇4

Ä
/∇
2
AB ρ̌
ä
+ E1,(9.32)

Ω2 /∇
2
AB /div

(
Ω−1β

)
= −Ω∇3

Ä
/∇
2
AB ρ̌
ä
+ F1,(9.33)

Ω2 /∇A /∆ρ̌ = Ω∇3

(
/∇A /div (Ωβ)

)
+ F2,(9.34)

where E1 is a sum of terms of the following schematic form:

/∇
2 [(

Ω−s1ψ1

)
·
((
Ω−s2Ψ̌2

)
, /∇
(
Ω−s2ψ2

)
,
(
Ω−s2ψ2

)
·
(
Ω−s3ψ3

))]
,

/∇
((
Ω−s1ψ1

)
·
(
Ω−s2ψ2

)
·
(
Ω−s3Ψ̌3

))
, /∇

(
K · Ω−s1Ψ̌1

)
,

and F1 and F2 are a sum of terms of the followings schematic form:

/∇
2 [

Ω2
(
Ω−s1ψ1

)
·
((
Ω−s2Ψ̌2

)
, /∇
(
Ω−s2ψ2

)
,
(
Ω−s2ψ2

)
·
(
Ω−s3ψ3

))]
,

/∇
(
Ω2
(
Ω−s1ψ1

)
·
(
Ω−s2ψ2

)
·
(
Ω−s3Ψ̌3

))
, /∇

(
Ω2K · Ω−s1Ψ̌1

)
,

where Ψ̌i denotes a renormalized curvature component of signature si and ψi
denotes a Ricci coefficient not equal to ω of signature si, and in any term at

most one of the ψ can be equal to an undifferentiated trχ or trχ. The terms

in E1 have the following additional constraints:

(1) We have ψi 6∈ {trχ, ηA}.
(2) The only place where trχ can appear, without an angular derivative acting

on it, is as exactly one of the ψ’s in a cubic term or multiplying a Ψ̌.

(3) We can have at most one of {β
A
, χ̂

AB
} in any of the nonlinear expressions.
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Using (9.32)–(9.34), the null structure equations, and Lemma 2.2 we may

then derive the following:

Ω∇3

Ä
/∇
3
ABC

(
Ω−1 trχ

)∗ä
= H1,(9.35)

Ω∇3

Å
/∇A /∆(Ωω)−

1

2
/∇A /div (Ωβ)

ã
= F3,(9.36)

Ω∇3

î
/∇
2
AB /divη + /∇

2
AB ρ̌
ó
= F4,(9.37)

Ω∇4

Ä
/∇
3
ABC (Ω trχ)∗

ä
+

5

v − u

Ä
/∇
3
ABC (Ω trχ)∗

ä
= H2,(9.38)

Ω∇4

Ä
/∇
2
AB /divη + /∇

2
AB ρ̌
ä
+ 2Ω trχ

Ä
/∇
2
AB /divη + /∇

2
AB ρ̌
ä
= E2,(9.39)

where each Fi contains terms of the same type as in F1 and F2. Furthermore

E3 contains terms of the same type as E1 except that we also have terms where

trχ multiplies η
A
. In H1 we have terms of the following schematic type:

/∇
3
î
Ω2
(
Ω−s1ψ1

)∗
·
Ä
(v − u)−2 ,

(
Ω−s2ψ2

)∗äó
,

/∇
2
î
Ω2
(
Ω−s1ψ1

)∗
·
(
Ω−s2ψ2

)
·
(
Ω−s3ψ3

)ó
,

where ψi denotes a Ricci coefficient not equal to ω of signature si. Finally, in

H2 we have terms of the following schematic type:

/∇
3
Ä
Ωω (v − u)−2

ä
, /∇

3
î
Ω2
(
Ω−s1ψ1

)∗
·
(
Ω−s2ψ2

)∗ó
,

/∇
2
î
Ω2
(
Ω−s1ψ1

)∗
·
(
Ω−s2ψ2

)∗
·
(
Ω−s3ψ3

)ó
,

where ψi denotes a Ricci coefficient not equal to ω of signature si.

Letting

X ∈

ß
/∇
3
ABC(Ω

−1 trχ)∗, /∇A /∆(Ωω)−
1

2
/∇A /div(Ωβ), /∇

2
AB /divη + /∇

2
AB ρ̌

™
,

we can write any of the ∇3 equations (9.35), (9.36), (9.37) as

Ω∇3

Å
v7/2

(−u
v

)p
(−u)−2qX

ã
+

p

−u
v7/2−q

(−u
v

)p
(−u)−2qX

= v7/2−q
(−u
v

)p
(−u)−2q (H1,F3,F4) .
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Contracting with v7/2
(
−u
v

)p
X, integrating by parts, using Proposition 8.1,

using the smallness of v, using Sobolev inequalities, and appealing to the boot-

strap assumption leads to

sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

×

∫

S2
|X|2 v̇7

Å
−u̇

v̇

ã2p
(−u̇)−1(−u̇)−2q du̇ dv̇ ˚dVol

. sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

×

∫

S2
|(H1,F3,F4)|

2 v̇7
Å
−u̇

v̇

ã2p
(−u̇)(−u̇)−2q du̇ dv̇ ˚dVol + ǫ2−2δ

. ǫ2−2δ.

Using Proposition 9.9 and Lemma 9.4 we thus obtain

sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

×

∫

S2

∣∣∣ /∇3 (
Ω trχ,Ωω, η

)∣∣∣
2
v̇7
Å
−u̇

v̇

ã2p
(−u̇)−1(−u̇)−2q du̇ dv̇ ˚dVol . ǫ2−2δ.

(9.40)

Next, we re-write (9.38) and (9.39) as

Ω∇4

Å
v7/2

(−u
v

)p (−u
v

)−1/2

(−u)−2q /∇
3
ABC (Ω trχ)∗

ã

+

Å
−4 + p

v
+

5

v − u

ãÅ
v7/2

(−u
v

)p (−u
v

)−1/2

(−u)−2q /∇
3
ABC (Ω trχ)∗

ã

= v7/2
(−u
v

)p (−u
v

)−1/2

(−u)−2qH2,

(9.41)

Ω∇4

Å
v7/2

(−u
v

)p
(−u)−2q

Ä
/∇
2
AB /divη + /∇

2
AB ρ̌
äã

+

Å
−7/2 + p

v
+ 2Ω trχ

ãÅ
v7/2

(−u
v

)p
(−u)−2q

Ä
/∇
2
AB /divη + /∇

2
AB ρ̌
äã

= v7/2
(−u
v

)p
(−u)−2qE2.

(9.42)

The key point is that using the bootstrap assumptions, we have that

−4 + p

v
+

5

v − u
& v−1,

−7/2 + p

v
+ 2Ω trχ & v−1.
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Thus, contracting (9.41) with v7/2
(
−u
v

)p
(−u)−2q

(
−u
v

)−1/2 /∇
3
ABC (Ω trχ)∗ and

(9.42) with v7/2
(
−u
v

)p
(−u)−2q

Ä
/∇
2
AB /divη + /∇

2
AB ρ̌
ä
, integrating by parts, using

Proposition 8.1, using (9.44), using Sobolev inequalities, and appealing to the

bootstrap assumption leads to

sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

∫

S2

[Å
−u̇

v̇

ã−1 ∣∣∣ /∇3
Ω trχ

∣∣∣
2

+
∣∣∣ /∇2 /divη + /∇

2
ρ̌
∣∣∣
2
]
v̇6
Å
−u̇

v̇

ã2p
(−u̇)−2q du̇ dv̇ ˚dVol . ǫ2−2δ.

(9.43)

Using Proposition 9.9 we thus obtain

sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

∫ v

−uv−1

∫

S2

ñÅ
−u̇

v̇

ã−1 ∣∣∣ /∇3
Ω trχ

∣∣∣
2
+
∣∣∣ /∇2 /divη

∣∣∣
2
ô

× v̇6
Å
−u̇

v̇

ã2p
(−u̇)−2q du̇ dv̇ ˚dVol . ǫ2−2δ.

(9.44)

It remains to estimate χ̂AB and χ̂
AB

. However, the desired estimates

for these follow from the already established Ricci coefficient estimates, the

Codazzi equations (2.18) and (2.19), Proposition 9.9, and the elliptic estimates

from Lemma 9.4. �

9.2.3. Estimates for the metric coefficients. Lastly, we come to the esti-

mates for the metric coefficients.

Proposition 9.12. Let (M, gµν) satisfy the hypothesis of Proposition 9.2.

Then we have

Mũ,ṽ . ǫ1−δ.

Proof. We first observe that by a mild adaption of the proof of Proposi-

tion 9.11 one may establish that

sup
0≤j≤3

sup
(u,v)∈Pũ,ṽ

(−u)2q
∫ u

max(−vv,−v2)

×

∫

S2

∣∣∣ /∇j (
Ω−1χ∗, ζ

)∣∣∣
2
v1+2j

Å
−u̇

v

ã2p
(−u̇)−2q du̇ ˚dVol . ǫ2−2δ.

(9.45)

Given (9.45), it is straightforward to use Lemma 9.6, integrate the equations

Le3/gAB = 2Ωχ
AB
, L∂u b̊

A = 4Ω2ζA

in the e3 direction, and obtain the desired bounds for /gAB and b̊A.
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However, for the lapse Ω, we must integrate in the ∇4 direction to obtain

an estimate for Ω from ω:

∂v log Ω +
(
b · /∇

)
log Ω = −2Ωω.

The desired estimate follows immediately by integrating along integral curves

of ∂v + bA /∇A. �

This concludes the proof of Proposition 9.2, and hence also Theorem 9.1.

10. Incompleteness of future null infinity, the
(
u, v̇, θA

)
coordinates,

and the Hawking mass

In this section we will use Theorem 9.1 to complete the proof of our main

result Theorem 1.

Let (M, gµν) be the spacetime produced by Theorem 9.1. We will start

by showing that the hypersurface {u = −v2} is an asymptotically flat null

hypersurface.

Lemma 10.1. The hypersurface {u = −v2} is asymptotically flat in the

sense that there exists a function ṽ : {u = −v2} → R with the following prop-

erties:

(1) The hypersurface {u = −v2} is diffeomorphic to {(ṽ, θA) ∈ [0,∞)× S2}.

(2) Let Sṽ denote a surface of constant ṽ . Then, when ṽ is sufficiently large,

we have that the induced metric on Sṽ is ṽ2̊/gAB , where /̊gAB denotes a Lie-

propagated round metric on S2 .

Proof. It is a consequence of Proposition 8.4 that when v ≫ 1 and u = −v2,
we have that

Ω|{v≫1}∩{u=−v2} = 1, bA|{v≫1}∩{u=−v2} = 0,

and that /gAB|{v≫1}∩{u=−v2} = ϕ2̊/gAB, where /̊gAB is a Lie-propagated round

metric and there exists a constant C, independent of ǫ, so that

e−Cǫ
1−δ

(v + v) ≤ ϕ{v≫1}∩{u=−v2} ≤ eCǫ
1−δ

(v + v) .

For v ≫ 1, the above facts imply that the e4-Raychaudhuri equation becomes

(10.1) ∂v trχ+
1

2
(trχ)2 = 0.

Since Proposition 8.4 also implied that
∣∣∣∣trχ−

2

v + v

∣∣∣∣ |{v≫1}∩{u=−v2} .
ǫ1−δ

v
,

one can easily solve (10.1) to obtain that for large v, trχ = 2
v+Q(θ) where

supθ |Q(θ)− v| . ǫ1−δ. For v ≫ 1, we have that ∂v logϕ = 1
2 trχ. Thus, for
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some H(θ) with supθ |H(θ)− 1| . ǫ1−δ, we have that

/gAB = (v +Q)2H(θ)̊/gAB.

Now it suffices to define the function ṽ : {u = −v2} ∩ {v ≫ 1} → R by

ṽ
Ä
v, θA

ä .
= (v +Q)

»
H(θ). �

Next, we truncate (M, gµν) to the region {v̇ ≥ 0} ∩ {−v2 ≤ u < 0} and

thus obtain a globally hyperbolic spacetime. For convenience, we continue to

refer to the truncated spacetime as (M, gµν). We now check that our spacetime

contains a naked singularity.

Lemma 10.2. The spacetime (M, gµν) contains a naked singularity in the

sense of Definition 1.1.

Proof. We take {u = −v2} as our asymptotically flat hypersurface and ∂v
as our geodesic normal L′. Then L′ = ∂u and, since ∂u + bA /∇A is geodesic, we

immediately see that every geodesic starting on {u = −v2} with initial tangent

vector ∂u leaves the spaces after affine time v2. �

Next, we observe that given Theorem 9.1, a straightforward argument, in

the spirit of Lemma 8.2, allows us to define global coordinates (u, v, θ) in the

region {v > 0} ∩ {u < 0} with the shift in the e3 direction. We then define

global (u, v̂, θ) coordinates by setting v̂ = v1−2κ. (Keep in mind Definition 3.1.)

The regularity statements for gµν in Theorem 1 now follow easily by using the

established estimates. Arguing as in the proof of Lemma 3.1, we omit the

details. Lastly, we need to compute the Hawking mass of the spheres S2u,0
along {v̂ = 0}.

Lemma 10.3. Recall that the Hawking mass of a sphere S2u,v̇ is defined by

m
(
S2u,v̇

) .
=

r

8π

∫

S2u,v̇

(−ρ̌) d /Vol,

where

r
.
=

√
Area

Ä
S2u,v̇

ä

4π
, ρ̌

.
= ρ−

1

2
χ̂ · χ̂.

It will be useful to keep in mind the fact, which follows easily from (2.17), that

ρ̌ is invariant under the change of coordinates
(
u, v, θA

)
7→
(
u, v̂, θA

)
.

We have that

(1) for any self-similar solution with κ = 0, then m
Ä
S2u,0

ä
= 0;

(2) for the spacetime (M, gµν) produced by Theorem 9.1, we will have m
Ä
S2u,0

ä

∼ ǫ2|u| > 0.

Proof. It follows from Proposition 2.6 that when κ = 0 we have that both

ρ and χ̂
AB

vanish along {v̂ = 0}. This clearly implies that m vanishes when

{v̂ = 0}.
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Next we consider the case when κ > 0. Keeping in mind that ρ̌ is invariant

under the change of coordinates
(
u, v, θA

)
7→
(
u, v̂, θA

)
, we will work in the(

u, v, θA
)

coordinates for v > 0 and then take the limit as v → 0. We recall

the propagation equations for ρ̌:

∇3ρ̌+
3

2
trχρ̌ = − /divβ+ζ · β − 2η · β −

1

2
χ̂ · /∇⊗̂η −

1

2
χ̂ ·
(
η⊗̂η

)
+
1

4
trχ

∣∣∣χ̂
∣∣∣
2
.

(10.2)

We know from Lemma 3.1 that ρ̌ has a regular limit as v → 0 and hence

that m
(
S2u,v

)
will also have a regular limit as v → 0. Next, we multiply (10.2)

by Ω and take the limit as v → 0. When v = 0, self-similarity implies that

∂uρ̌ = −u−1ρ̌. Thus using also the identities from Lemma 3.2 we obtain in the

v → 0 limit that

Lbρ̌− 2u−1ρ̌+
3

2

Å
2

u
+ /div b

ã
ρ̌ =−Ω /divβ+ζ · (Ωβ)−2η · (Ωβ)−

1

2
Ωχ̂ · /∇⊗̂η

−
1

2
Ωχ̂ ·

(
η⊗̂η

)
+

1

16
Ω−1 trχ

∣∣ /∇⊗̂b
∣∣2 .

(10.3)

The left-hand side of (10.3) simplifies to
(
u−1 + 3

2div b
)
ρ̌+ Lbρ̌. On the other

hand, using the Codazzi equation, the right-hand side of (10.3) is equal to

− /∇
A
Ä
Ωβ

A

ä
− ηA

(
Ωβ
)
A

−
1

2
χ̂
AB

(
/∇⊗̂η

)AB
−

1

2
χ̂
AB

(
η⊗̂η

)AB
+

1

16
Ω−1 trχ

∣∣ /∇⊗̂b
∣∣2

= − /∇
A
Ä
Ωβ

A

ä
− ηA

Å
Ω∇Bχ̂

BA
−

1

2
Ω /∇A trχ− ζB

Ä
Ωχ̂

AB

ä
+

1

2
ζAΩ trχ

ã

−
1

2
Ωχ̂

AB

(
/∇⊗̂η

)AB
−

1

2
Ωχ̂

AB

(
η⊗̂η

)AB
+

1

16
Ω−1 trχ

∣∣ /∇⊗̂b
∣∣2

= − /∇
A
Ä
Ωβ

A

ä
− /∇

B
Ä
ηA
(
Ωχ̂
)
AB

ä
+

1

2
ηA /∇A

(
Ω trχ

)

−
1

2
|η|2Ω trχ+

1

16
Ω−1 trχ

∣∣ /∇⊗̂b
∣∣2 .

Thus, integrating (10.3) over S2u,0 and applying the divergence theorem

leads to

u−1

∫

S2u,0

[(
1 +

u

2
/div b
)
ρ̌
]
d /Vol

=

∫

S2u,0

ï
1

2
ηA /∇A /div b−

1

2
|η|2
Å
2

u
+ /div b

ã
+

1

16
Ω−1 trχ

∣∣ /∇⊗̂b
∣∣2
ò
d /Vol.

(10.4)
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Now, combining (10.4) with the characteristic initial data estimates from

Section 5 leads to
∫

S2u,0

(−ρ̌) d /Vol = (−u)

Ç
O
(
ǫ3
)
+

∫

S2u,0

ï
|η|2 +

K

16

∣∣ /∇⊗̂b
∣∣2
ò
d /Vol

å
∼ (−u)ǫ2.

�

Appendix A. Examples of (ǫ, γ, δ,N0,M0,M1)-regular data

In this section we construct examples of (ǫ,γ,δ,N0,M0,M1)-regular 4-tuplesÄ
/gAB, b

A, κ,Ω
ä

in the sense of Definition 4.5.

Proposition A.1. Let 0 < ǫ ≪ γ ≪ 1, b̌A be a choice of seed data in

the sense of Definition 4.4, and let (N0,M0,M1) ∈ (Z>0)
3

satisfy N0 ≫ 1,

M0 ≫ N0 , and M1 ≫ N0 . Then there exists δ > 0 satisfying γ ≪ δ ≪ 1, a

vector field bA = b̌A + ∇̊Af , and κ > 0 solving (4.23) with /gAB = /̊gAB and

Ω = 1 such that
Ä̊
/gAB, b

A, κ, 1
ä

is a (ǫ, γ, δ,N0,M0,M1)-regular 4-tuple in the

sense of Definition 4.5.

Proof. We will look for a solution b of the form

bA = b̌A + ∇̊Af

and construct our solution by an iteration procedure. We define sequences

{Di}
∞
i=0, {κi}

∞
i=0, and {fi}

∞
i=0 of functions Di, constants κi, and functions fi

as follows. First of all, we set D0 = 0, κ0 = 0, and f0 = 0 and also define

bAi
.
= b̌A + ∇̊Afi ∀i ≥ 0.

Now we will explain our inductive construction. Thus we assume that

(Di−1, κi−1, fi−1)

have been constructed. For every constant κ̃, we use Proposition 4.5 to define

a function D̃i

(
θA, κ̃

)
by requiring that

(A.1) D̃i + Lbi−1
D̃i =

1

2
(Di−1)

2 +
1

4

∣∣∣∇̊⊗̂bi−1

∣∣∣
2

/̊g
− 4κ̃+ 2κi−1Di−1.

We then choose κi by requiring that

(A.2)

∫

S2
D̃i

Ä
θA, κi

ä
˚dVol = 0,

and then we set Di

(
θA
) .
= D̃i

(
θA, κi

)
. Finally, we require that fi satisfy

(A.3) ∆̊fi = Di,

∫

S2
fi ˚dVol = 0.

Note that the condition (A.2) is a necessary and sufficient orthogonality con-

dition to solve (A.3).
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Now we will show by induction on i that the sequences {Di}
∞
i=1, {κi}

∞
i=1

and {fi}
∞
i=1 are well defined and satisfy (for a suitably large A > 0 and suitably

small 0 < δ̃ ≪ 1) the estimates

(A.4) ‖Di‖H̊N0 ≤ Aǫ2−2δ̃, ‖fi‖H̊N0+2 ≤ Aǫ2−3δ̃, |κi| ≤ Aǫ2−δ̃.

We start with the base case i = 1. The equation for D̃1 may be written (keeping

Remark 4.1 in mind) as

(A.5) D̃1 + 4κ̃+ Lb̌D̃1 =
1

4

∣∣∣∇̊⊗̂b̌
∣∣∣
2

/̊g
=

1

4
ǫ2a2(θ) + E,

where

E
.
=
ǫ

2
/̊g
Ä
∇̊⊗̂b̃, z

ä
+

1

4
|z|2

/̊g

satisfies

‖E‖H̊30N . ǫ100.

We allow κ̃ to be an arbitrary constant satisfying the bound

(A.6) |κ̃| ≤ Aǫ2−δ̃.

Then, if ǫ is sufficiently small and A is sufficiently large, we can apply Propo-

sition 4.5 to obtain a unique D̃1 solving (A.5) and also satisfying the bound

(A.7)
∥∥∥D̃1

∥∥∥
H̊N0

≤ Aǫ2−2δ̃.

Furthermore, re-writing the equation for D̃1 as

(A.8)Å
D̃1 + 4κ̃−

1

4

∣∣∣∇̊⊗̂b̌
∣∣∣
2
ã
+ Lb̌

Å
D̃1 + 4κ̃−

1

4

∣∣∣∇̊⊗̂b̌
∣∣∣
2

/̊g

ã
= −

1

4
Lb̌

Å∣∣∣∇̊⊗̂b̌
∣∣∣
2

/̊g

ã
,

we can appeal again to Proposition 4.5 and Sobolev inequalities to show that

(A.9)

∥∥∥∥D̃1 −
1

4

∣∣∣∇̊⊗̂b̌
∣∣∣
2

/̊g
+ 4κ̃

∥∥∥∥
L∞

. ǫ3,

and also that

(A.10) D̃1

Ä
θA, κ̃(1)

ä
− D̃1

Ä
θA, κ̃(2)

ä
= κ̃(1) − κ̃(2).

Next, we will show that we can pick κ1 satisfying the bound from (A.4) so that

(A.11)

∫

S2
D̃1

Ä
θA, κ1

ä
˚dVol = 0.

To see this, it suffices to note that we can use (A.10) to write
∫

S2
D̃1

Ä
θA, κ̃

ä
˚dVol =

κ̃

4π
+

∫

S2
D̃1

Ä
θA, 0

ä
˚dVol,(A.12)

and then note that (A.9) implies that
∣∣∣∣
∫

S2
D1 (θ, 0) ˚dVol

∣∣∣∣ . ǫ2.
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Having picked κ1 we then setD1

(
θA
) .
= D̃1

(
θA, κ1

)
. It follows thatD1 satisfies

the estimate from (A.4). Finally, it follows immediately from elliptic theory

that we can uniquely define f1 by solving

∆̊f1 = D1,

∫

S2
f1 ˚dVol = 0,

and that this f1 will satisfy the bound from (A.4).

Having established the base case, we turn to the inductive step. Thus,

we assume that {Di}
j−1
i=1 , {fi}

j−1
i=1 , and {κi}

j−1
i=1 have been constructed and sat-

isfy (A.4). Equation (A.1) (with i = j), which defines D̃j in terms of the

constant κ̃, may be written as

(A.13) D̃j + Lbj−1
D̃j =

1

2
(Dj−1)

2 +
1

4

∣∣∣∇̊⊗̂bj−1

∣∣∣
2

/̊g
− 4κ̃+ 2κj−1Dj−1.

By the inductive hypothesis, we have

‖bj−1‖H̊N0+1 .
∥∥b̌
∥∥
H̊N0+1 + ‖fj−1‖H̊N0+2 . ǫ1−δ̃.

Thus, we can apply apply Proposition 4.5, the induction hypothesis, Lemma 4.3,

and take ǫδ̃A≪ 1 to obtain, for any κ̃ satisfying (A.6), the following:

∥∥∥D̃j

∥∥∥
H̊N0

.
∥∥∥(Dj−1)

2
∥∥∥
H̊N0

+

∥∥∥∥
∣∣∣∇̊b̌

∣∣∣
2
∥∥∥∥
H̊N0

+

∥∥∥∥
∣∣∣∇̊2f

∣∣∣
2
∥∥∥∥
H̊N0

+ |κ̃|

+ |κj−1| ‖Dj−1‖H̊N0

. A2ǫ4−4δ̃ + ǫ2−δ̃ +A2ǫ4−3δ̃ +A2ǫ4−3δ̃

≤ Aǫ2−2δ̃.

(A.14)

In particular, for any choice of κ̃ satisfying the bound (A.6), then D̃j satisfies

the desired bound from (A.4). Now we can re-write (A.13) as
Å
D̃j −

1

4

∣∣∣∇̊⊗̂bj−1

∣∣∣
2

/̊g
+ 4κ̃

ã
+ Lbj−1

Å
D̃j −

1

4

∣∣∣∇̊⊗̂bj−1

∣∣∣
2

/̊g
+ 4κ̃

ã

= −
1

4
Lbj−1

Å∣∣∣∇̊⊗̂bj−1

∣∣∣
2

/̊g

ã
+

1

2
(Dj−1)

2 + 2κj−1Dj−1.

(A.15)

Applying Proposition 4.5 and a Sobolev inequality, arguing as in (A.14) and

using ǫδ̃A≪ 1 leads to

(A.16)

∥∥∥∥D̃i −
1

4

∣∣∣∇̊⊗̂bj−1

∣∣∣
2

/̊g
+ 4κ̃

∥∥∥∥
L∞

.

∥∥∥∥D̃i −
1

4

∣∣∣∇̊⊗̂bj−1

∣∣∣
2

/̊g
+ 4κ̃

∥∥∥∥
H̊2

. ǫ3−δ̃.

Since the right-hand side of (A.15) does not depend on κ̃, we also have

(A.17) D̃j

Ä
θA, κ̃(1)

ä
− D̃j

Ä
θA, κ̃(2)

ä
= κ̃(1) − κ̃(2).
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Thus, we have

(A.18)

∫

S2
D̃j

Ä
θA, κ̃

ä
˚dVol =

κ̃

4π
+

∫

S2
D̃j

Ä
θA, 0

ä
˚dVol.

From the bound (A.16) we obtain
∣∣∣∣
∫

S2
D̃j

Ä
θA, 0

ä
˚dVol

∣∣∣∣ . ǫ2.

In particular, we can pick κ̃ so that the left-hand side of (A.18) vanishes and

so that the bound (A.6) is satisfied. We set this choice of κ̃ to be κj and then

set Dj
.
= D̃j

(
θA, κj

)
. Finally, elliptic theory and the induction hypothesis

uniquely define fj solving

∆̊fj = Dj ,

∫

S2
fj ˚dVol = 0,

and they satisfy the desired bounds from (A.4). This completes the induction

step, and thus (A.4) holds for all j ≥ 0.

Arguing in a similar fashion with equations derived for the difference of the

quantities, one may show that the sequences {Di}, {fi}, and {κi} are Cauchy

and converge to D∞, f∞, and κ∞ all satisfying the bound (A.4). Finally, one

sets bA = b̌A + ∇̊Af∞ and κ = κ∞. We will then have that D∞ = /div b and

it follows that b and κ solve equation (4.23). By passing to the limit in the

bounds (A.4), we have

(A.19) ‖f∞‖H̊N0+2 . ǫ2−3δ̃, |κ∞| . ǫ2−δ̃.

Thus, after defining δ
.
= 3δ̃, we have a 4-tuple

Ä̊
/gAB, b

A, κ, 1
ä

for which we have

verified all of the conditions of being an (ǫ, γ, δ,N0,M0,M1)-regular 4-tuple

except for (4.27). However, (4.27) is easily proven by commuting the relevant

equations with L∂φ and using that a(θ) is axisymmetric and (4.24). We omit

the details. �

Appendix B. Useful tensorial identities

We start with two useful preliminary lemmas.

Lemma B.1. Let /gAB be a Riemannian metric on S2 , and let µAB and

νAB be trace-free symmetric tensors. Then

(B.1)
1

2

(
/∇ (µ · ν) + ∗ /∇ (µ ∧ ν)

)
= µ /divν +

(
ν · /∇

)
· µ.

Proof. Let e1 be an arbitrary unit vector, and then choose e2 so that

(e1, e2) is positively oriented. Since e1 is arbitrary, it suffices to establish the

identity (B.1) when evaluated on e1.
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We have

µ · ν = µ11ν11 + 2µ12ν12 + µ22ν22 = 2µ11ν11 + 2µ12ν12,(B.2)

µ ∧ ν = µ11ν12 + µ12ν22 − µ12ν11 − µ22ν12 = 2µ11ν12 − 2µ12ν11.(B.3)

Using (B.2) and (B.3) we may now calculate

1

2

(
/∇1 (µ · ν) + ∗ /∇1 (µ ∧ ν)

)

=
(
/∇1µ11

)
ν11 + µ11

(
/∇1ν11

)
+
(
/∇1µ12

)
ν12 + µ12

(
/∇1ν12

)

[4pt] +
(
/∇2µ11

)
ν12 + µ11

(
/∇2ν12

)
−
(
/∇2µ12

)
ν11 − µ12

(
/∇2ν11

)
.

(B.4)

Next, we calculate

µ1B /∇Cν
BC +

(
/∇BµC1

)
νBC

= µ11
(
/∇1ν11

)
+ µ11

(
/∇2ν12

)
+ µ12

(
/∇1ν12

)
− µ12 /∇2ν11

+
(
/∇1µ11

)
ν11 +

(
/∇2µ11

)
ν12 +

(
/∇1µ12

)
ν12 −

(
/∇2µ12

)
ν11.

(B.5)

Finally, by inspection we see that (B.4) and (B.5) are the same. �

Lemma B.2. Let /gAB be a Riemannian metric on S2 , let µAB and νAB be

trace-free symmetric tensors, and let ϑA be a 1-form. Then

µ · (ϑ · ν)− ν · (ϑ · µ) =∗ ϑ (µ ∧ ν) ,

µ · (ϑ · ν) + ν · (ϑ · µ) = ϑ (µ · ν) ,

µ · (ϑ · ν) =
1

2
µ · (ϑ · ν)−

1

2
ν · (ϑ · µ)

+
1

2
µ · (ϑ · ν) +

1

2
ν · (ϑ · µ)

=
1

2
ϑ (µ · ν) +

1

2
∗ϑ (µ ∧ ν) .

Proof. The first two identities are obtained in an analogous fashion to the

proof of Lemma B.1. One simply writes out both sides of the identity in an

orthonormal oriented basis. We omit the details. The final identity is an

immediate consequence of the first two. �

Lemma B.3. Let (M, gµν) be a spacetime satisfying the Einstein vacuum

equations in the double-null gauge. Then we have

Ω∇3ηA +
(
Ω trχ

)
ηA + 2

((
Ωχ̂
)
· η
)
A
= −Ωβ

A
− 4 /∇A (Ωω) ,(B.6)

Ωβ
A
= /div

(
Ωχ̂
)
A
−

1

2
/∇A

(
Ω trχ

)
−
(
η ·
(
Ωχ̂
))
A
+

1

2
ηA
(
Ω trχ

)
,(B.7)
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(B.8)

Ω−1βA = − /div
(
Ω−1χ̂

)
A
+

1

2
/∇A

(
Ω−1 trχ

)
−
(
η ·
(
Ω−1χ̂

))
A
+

1

2
ηA
(
Ω−1 trχ

)
.

Proof. Using (2.38) we have

Ω∇3ηA = Ω∇3

(
−ηA + 2 /∇A log Ω

)

= −Ω∇3ηA + 2
[
Ω∇3, /∇A

]
log Ω− 4 /∇A (Ωω)

= −Ω∇3ηA −
(
Ω trχ

) (
/∇A log Ω

)
− 2Ω

(
χ̂ · /∇

)
A
log Ω− 4 /∇A (Ωω) .

(B.9)

Plugging (B.9) into (2.12) then yields (B.6).

Finally, (B.7) and (B.8) follow in a straightforward fashion from (2.18)

and (2.19). �

Appendix C. Proof of Lemma 6.16

Proof. For any trace-free symmetric 2-tensor νAB, let us set FAB
.
=Ω∇4νAB.

Then, using Lemma 2.2, we find that

Ω∇4 /divνA = /divFA +Ω2
[
2(Ω−1β) · ν − (Ω−1χ · ν)η +Ω−1χ · (η · ν)

− ν · (η · Ω−1χ)
]
A
− Ω2(Ω−1χ)BC /∇BνCA.

(C.1)

Integrating (C.1) in the v-direction with νAB = Ωχ̂
AB

+ ˜̂χ
AB

, using (6.72), and

using Lemma B.2 we obtain that

/div
(
Ωχ̂
)
A
= /div

(
˜̂χ(1)

)
A
+ /divΩχ̂

A
+

∫ v

0

[
/∇
B

(Å
v̂

−u

ã−2κ
ÇÅ

v̂

−u

ãκ
Ω

å2

(
−
1

2
(Ω−1 trχ)

Ä
Ωχ̂

AB

ä
+
(
/∇⊗̂η

)
AB

+
(
η⊗̂η

)
AB

−
1

2
Ω trχ

Ç
⊲

Ω−1χ̂AB

å))

+

(Å
v̂

−u

ã−2κ
ÇÅ

v̂

−u

ãκ
Ω

å2
(
2

Ç
⊲

Ω−1β

åB
Ωχ̂

AB

−

ÇÇ
⊲

Ω−1χ̂

å
· Ωχ̂

å
η
A
+ ∗η

A

ÇÇ
⊲

Ω−1χ̂

å
∧ Ωχ̂

å
−

1

2
(Ω−1 trχ) /div

(
Ωχ̂
)
A

−

Ç
⊲

Ω−1χ̂

åBC
/∇B

(
Ωχ̂
)
CA

)

+

Å
v̂

−u

ã−2κ
ÇÅ

v̂

−u

ãκ
Ω

å2Ç ⊲

Ω−1χ̂ · div
(
Ωχ̂
)
+

1

2
Ω−1 trχdiv

(
Ωχ̂
)
å]

dv̂ +H(2).

(C.2)
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Next, using Lemma 2.2 and (6.74), we find that

Ω∇4 /∇A

(
Ω trχ+ t̃rχ

(0)
)
=

Å
v

−u

ã−2κ

/∇A

[ÇÅ
v

−u

ãκ
Ω

å2

Ç
−
1

2
(Ω−1 trχ)

(
Ω trχ

)
+ 2

Å
ρ−

1

2
(Ω−1χ̂) ·

(
Ωχ̂
)ã

+ 2 /divη +
∣∣∣η
∣∣∣
2
å]

−
1

2
Ω2
(
Ω−1 trχ

)
/∇A

(
Ω trχ+ t̃rχ

(0)
)
− Ω2

(
Ω−1χ̂

) B

A
/∇B

(
Ω trχ+ t̃rχ

(0)
)
.

(C.3)

Thus we obtain the following analogue of (C.2):

/∇A

(
Ω trχ

)
= /∇A

(
Ω trχ

)
+ /∇At̃rχ

(1)

+

∫ v

0

Å
v̂

−u

ã−2κ
ÇÅ

v̂

−u

ãκ
Ω

å2Ç ⊲

Ω−1χ̂+
1

2
Ω−1 trχ

å
/∇AΩ trχdv̂

+

∫ v

0

(Å
v̂

−u

ã−2κ

/∇A

[ÇÅ
v̂

−u

ãκ
Ω

å2

Ç
−
1

2
(Ω−1 trχ)

(
Ω trχ

)
+ 2

Å
ρ−

1

2
(Ω−1χ̂) ·

(
Ωχ̂
)ã

+ 2 /divη +
∣∣∣η
∣∣∣
2
å]

Å
v̂

−u

ã−2κ
ÇÅ

v̂

−u

ãκ
Ω

å2
[
−
1

2
(Ω−1 trχ) /∇A

(
Ω trχ

)

−

Ç
⊲

Ω−1χ̂

å B

A

/∇B

(
Ω trχ

)
])

dv̂ +H(2).

(C.4)

Finally the proof concludes by substituting in (C.2), (C.4), (6.73), and

(6.75) into (B.7), using Lemmas B.1, B.2, 6.15, and B.3, and carrying out all of

the possible cancellations. We omit the straightforward if tedious calculation.

�

Appendix D. Proof of Lemma 3.3

In this section we give the proof of Lemma 3.3.

Proof. Let us set

Ω̌ (θ)
.
= lim

v→0

Å
v

−u

ãκ
Ω (v, u, θ) , u−1b̌A(θ)

.
= lim

v→0
bA (v, u, θ) ,

u2/̌gAB(θ)
.
= lim

v→0
/gAB (u, v, θ) .

(D.1)
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Multiplying the e3-Raychaudhuri equation (2.8) by Ω2 leads to the following

equation:

(D.2) (∂u + Lb)
(
Ω trχ

)
+

1

2

(
Ω trχ

)2
= −

∣∣∣Ωχ̂
∣∣∣
2
− 4 (Ωω)

(
Ω trχ

)
.

Next, note that

(D.3) lim
v→0

v

u
Ωω =

κ

2u
.

Observe that Lemma 3.2 and (D.3) imply the following relations:

Ω trχ|v=0 =
2

u
+ /div b, Ωχ̂

AB
|v=0 =

1

2

(
/∇⊗̂b

)
AB

,

Ωω|v=0 = −
κ

2u
−

1

2
Lb log Ω̌.

(D.4)

Recalling the definition of b̌ and /̌g from (D.1), we may plug in (D.4) into (D.2)

and simplify to obtain

u−2
/̌g
AB /∇Ab̌B + u−2Lb̌

Ä
ǧAB /∇Ab̌B

ä
+

1

2
u−2
Ä
/̌g
AB /∇Ab̌B

ä2

= −
1

4
u−2

/̌g
AC
/̌g
BD ( /∇⊗̂b̌

)
AB

(
/∇⊗̂b̌

)
CD

+

Å
2κ

u
+ 2u−1Ω̌−1

(
Lb̌Ω̌

)ãÅ2
u
+ u−1

/̌g
AB /∇Ab̌B

ã
.

(D.5)

It immediately follows that (3.8) holds. �
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