Annals of Mathematics 198 (2023), 231-391
https://doi.org/10.4007 /annals.2023.198.1.3

Naked singularities for the
Einstein vacuum equations:
The exterior solution

By IcorR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

Abstract

In this work we initiate the mathematical study of naked singularities
for the Einstein vacuum equations in 3 + 1 dimensions by constructing
solutions which correspond to the exterior region of a naked singularity.
A key element is our introduction of a new type of self-similarity for the
Einstein vacuum equations. Connected to this is a new geometric twisting
phenomenon which plays the leading role in singularity formation.

Prior to this work, the only known examples of naked singularities were
the solutions constructed by Christodoulou for the spherically symmetric
Einstein-scalar-field system, as well as other solutions explored numerically
for either the spherically symmetric Einstein equations coupled to suitable
matter models or for the Einstein equations in higher dimensions.
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Already in the earliest investigations of the Einstein vacuum equations,

(1.1) Ricu, (9) = 0,

the existence of singular solutions forced theorists to confront fundamental

questions concerning the domain of validity for general relativity. Namely,

since (severe) singularities do occur in some solutions, e.g., the Schwarzschild
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solution [Sch16], what is the relevance/predictive power of a non-singular por-
tion of a given solution? Though originally the possibility was entertained
that generic asymmetric perturbations of a spacetime (M, g,,,) satisfying (1.1)
would be regular, the incompleteness theorem of Penrose [Pen65] showed that
when a trapped surface is present, some degree of pathology is in fact a stable
feature. Fortunately, Penrose also suggested a way out of this problem, at least
for isolated self-gravitating systems:

CONJECTURE 1 (The weak cosmic censorship conjecture original version
[Pen69]). For asymptotically flat solutions to the Finstein vacuum equations,
stngularities are always hidden behind an event horizon.

In particular, if the weak cosmic censorship conjecture holds, and if we are
only interested in gravitational physics outside the event horizon, we do not
need to concern ourselves with the structure of singularities!

A singular solution that is not confined within an event horizon is known
as a “naked singularity.” Informally, a naked singularity may be thought of as
a singular solution where the future light cone of the singularity extends to
an asymptotic region in such a way that arbitrarily far away observers may
still intersect the light cone in finite time and thus “see” the singularity. (See
Definition 1.1 below for a precise definition.) In addition to being visible to
far away observers, another important quality of a naked singularity is that
the singular point represents a “genuine” loss of regularity relative to the initial
data. Finally, we note that the “exterior region” of a naked singularity refers
to region of a naked singularity that is in the future of the past light cone of
the singular point.

Previously, Christodoulou constructed naked singularities for the spheri-
cally symmetric Einstein-scalar-field system [Chr94|. In this case, the loss of
regularity referred to in the previous paragraph may be seen as follows: Let m
denote the Hawking mass of a sphere and r denote the area radius of a given
sphere. Then 7 is a scale-invariant quantity that, for regular solutions, must
vanish when r = 0. However, at the singular point of Christodoulou’s solutions,
we have that r = 0 but "* does not converge to 0. In contrast, the Cauchy data
for Christodoulou’s solutions lie in the so-called “absolutely continuous” class
of data that is more regular than the scale-invariant class of bounded variation
data. On a more technical level, we recall that a key role in the construction is
played by a reduction of the self-similar spherically symmetric Einstein-scalar-
field system to a two dimensional autonomous system. The existence of such a
system cannot be expected outside of spherical symmetry, and thus the study
of naked singularities for the Einstein vacuum equations (where the assump-
tion of spherical symmetry would eliminate the dynamics) must take a different
approach. (For a more thorough discussion of Christodoulou’s solutions, see
Sections 1.1-1.1.4.)
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Christodoulou has also constructed naked singularities for the Einstein
dust model [Chr84], and there has been further numerical analysis and con-
struction of naked singularities for the spherically symmetric Einstein equations
coupled to fluid models that allow for pressure [OP90], [JD92]. Additionally,
though we will not survey this here, we note that there is a large numerical
literature concerning other types of naked singularities; see, for example, solu-
tions associated with critical phenomena [Cho93|, [BG16], [Gun99] and higher
dimensional black holes [LP10], [AZ18].

We now give precise definitions of a spacetime not possessing a complete
null infinity and a “naked singularity,” that is, a singularity that is not hidden
behind an event horizon.

Definition 1.1. Let (M, g) posses an asymptotically flat null hypersur-
face H, let L' be a geodesic outgoing null normal vector for H with affine
parameter v, let S, denote a surface of constant v on #H, and define L’ along
‘H to be the unique future directed null vector transversal to H that satisfies
g (le L/) = —2.

Then we say that (M, g,.,) does not posses a complete future null infinity if
there exist a constant A > 0, a sequence {v;}$°; with v; — 0o, and a sequence
{p:i} with p; € S,,, such that the each maximal null geodesic ;, with tangent
vector L' at p;, has affine length less than A.

If (M, g,) does not posses a complete future null infinity and is a maximal
globally hyperbolic development of suitably regular! and complete initial data,
then we say that (M, g,,) contains a naked singularity.

(The original version of) weak cosmic censorship can then be understood as
the statement that naked singularities do not arise from the maximal globally
hyperbolic developments of complete asymptotically flat initial data. We note
that Definition 1.1, which is in the spirit of the definition given in [Chr99b],
has the benefit of not relying on an explicit conformal compactification of the
spacetime.

It is important to note that the “maximality” of a globally hyperbolic
development may depend on the regularity class that the spacetimes are a priori
restricted to lie in. As with other fundamental questions in general relativity,
different regularity frameworks could, in principle, lead to different outcomes for
the weak cosmic censorship conjecture. (Compare with, for example, the role
played by the regularity of the Cauchy horizon in the strong cosmic censorship

We do not here give an explicit definition of “suitably regular,” but simply note that any
given choice of functional framework must be justified; cf. the discussion of Christodoulou’s
naked singularities in Section 1.1 and the discussion of the solutions constructed in this paper
in Section 1.2.
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conjecture [DL17], [LO19a], [LO19b].) Later in the paper we will discuss the
relevant precise notion of maximal globally hyperbolic development.
We now state our main theorem.

THEOREM 1. Let N > 1 be a sufficiently large integer and 0 < e < v K 1
be sufficiently small, potentially depending on N. Then there exists a spacetime
(M, gu) solving the Einstein vacuum equations so that

(1) (M, guw) is covered by coordinates (u,d,04) € [—v?,0) x [0,00) x S* where
v >0, and g, takes the following double-null form:

1.2 g:fQA u®do+ do ® du) + - U) ® — u) .
02 (du @ do + di @ du) + ¢, , (6 — bAd do® —vPd

(2) (M, gu) has the following Penrose diagram:*

(3) There exists a constant ¢ > 0, independent of € and N , so that we have g, €
O (MO {5 = 0}). g € C12* (M), and (g, 05,0.) € O™ ({6 = 0}).

(4) The null hypersurface {u = —v®} is asymptotically flat as © — oo, and
future null infinity I is incomplete in the sense of Definition 1.1.

(5) Along {0 = 0} we have that in a Lie-propagated coordinate frame,

(1.3) Q (u,HA) = (—u)"Q (0‘4) . Pap= u25~jAB (00) . ba=uby (GB) ,

where K, Q, QAB, and by are a suitable positive constant, positive function,
Riemannian metric, and 1-form on S?.

(6) There exists a vector field S = ud, — generator of scaling symmetry —
that is tangent to {0 = 0} and conformally Killing along {v = 0}.

(7) Let m(u) denote the Hawking mass of a sphere S?L,O C {0 =0}. Then we
have a constant C > 0, independent of €, such that

(1.4) G G— -
Area (Si,o)

< Cé,

2For the reader unfamiliar with the Penrose diagram notation, we recommend the discus-
sion in the lecture notes [DR13] and the references therein.
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and so that the shear? Xap = tf ((ﬁau —|—£b)gAB) satisfies the following
bound along {v = 0}:
ela (64) |

—Uu

(1.5) cl< X(u,@A)‘g < CM,

—Uu

where tf denotes the trace-free part, and the function a : S*> — R satisfies
Area ({0 : [a(0)] < 1/2}) S 7.

Remark 1.1. The key mechanism behind the fact that our solution de-
scribes the exterior region of a naked singularity O with the behavior of the
Hawking mass in (7) is that the deformation tensor of b with respect to the
metric ¢ , , on S? is non-vanishing:

Y abp + Y ba = (Loff) 45 -

The parameter ¢ is related to the size of
|V &b| ~ e, |div b| ~ €2

In view of this, the phenomenon described in the theorem is highly non-
symmetric and can be thought of as generated by a rotation of the incoming
cone ¥ = 0; see Remark 1.7. For a further discussion of the importance of b
having a non-trivial deformation tensor, see the discussion after Lemma 3.3.

Remark 1.2. It follows from the method of our proof that, after a suitable
rescaling of the double-null coordinates, the metric extends to {u = 0}\ {0 = 0}
in a Holder continuous fashion and that the area of the spheres S(Q)ﬂ) converge to
infinity as v — oo. Since it is not needed for the interpretation of the solution
as the exterior region of a naked singularity, we will not here pursue sharp
regularity statements for the solution along {u = 0}. Nevertheless it would be
interesting to systematically study and determine the precise behavior of the
solution along {u = 0}.

Remark 1.3. One should contrast the regularity of the outgoing data de-
scribed in (3) with the behavior of the Hawking mass and the shear along the
incoming cone ¥ = 0 as u — 0 in (7); see further discussion in Section 1.2.

Remark 1.4. We will have that |x]|| ~ ¢ 1. In particular, we

2(g2

: : L (s_%% : :
are in a “large data regime.” Furthermore, y4p is only Holder continuous
as ¥ — 0 and the curvature component « satisfies ||0<||L2 (SQ , ) |{u:_yz} ~

d1+e® as § — 0. We note that since the pioneering work [Chr09|, there have
been various works that treat the Einstein equations in large data regimes, for

3This is the shear defined with respect to the geodesic null frame ez = Lp, + Ly and
eq = Q_zﬁaﬁ.
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example, [KR12|, [AL17]. However, in contrast to our situation, these other
large data regimes concerned solutions with initial data that was Minkowskian
along (the analogue of) {0 = 0} and whose evolution typically ended in trapped
surface formation.

Remark 1.5. It is a consequence of the method of proof used that the qual-
itative behavior of solutions described in Theorem 1 is stable to perturbations
of the outgoing characteristic data along {u = —v?} that vanish sufficiently
quickly as © — 0 and v — oo. However, without the vanishing condition at
© = 0, one expects a generic sufficiently regular asymptotically flat perturbation
to create an instability and result in trapped surface formation.

Remark 1.6. It is a straightforward consequence of method of proof that
as € — 0, g, converges to the Minkowski metric in Hllo .- However, in view of
Remark 1.4, this convergence to the Minkowski metric does not hold, already,
in C1.

Remark 1.7. The following schematic diagram may help the reader to vi-
sualize the null geometry of the cone {0 = 0}:

Here S represents an S?-section of the cone, the straight lines represent various
null normal lines, and the curve v represents an orbit of the vector field S
that generates the scaling symmetry along the cone {0 = 0}. In particular,
~ winds around infinitely often as it approaches the point O. (Note that this
diagram is drawn with respect to a different set of coordinates than those used
in the statement of Theorem 1; in fact, in the coordinate system of Theorem 1,
the orbits of S appear as straight lines and instead the null normal lines twist
around the cone. In those coordinates, S = ud, and the null generator L = J9,+
b4V 4.) This twisting of the cone can be considered to be the key mechanism
behind the formation of the naked singularity and serves as replacement for
the role played by the logarithmic growth of the scalar field in Christodoulou’s
solutions.
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Remark 1.8. Lastly, we remark that we actually construct a large family
of spacetimes that satisfy the conclusions of Theorem 1. The various possible
choices of incoming data along the null hypersurface {t = 0} are parametrized
by choices of “(e, 7, d, No, My, M7)-regular 4-tuples”; see Definition 4.5 for the
specifics.

We now quickly outline the rest of the introductory part of the paper.
In Section 1.1 we will review the naked singularities of Christodoulou. Then,
in Sections 1.2 and 1.3 we will compare Christodoulou’s solutions with the
solutions constructed in our Theorem 1. In particular, we will see that the
solutions of Theorem 1 correspond to the exterior region of a naked singularity.
Finally, in Section 1.4 we will discuss the relations between (the proof of our)
Theorem 1 and the formal power series for self-similar solutions derived by
Fefferman—Graham [FG85|, [FG12|. In particular, we will see that underlining
the proof of Theorem 1 is a fundamentally new type of self-similarity of the
FEinstein vacuum equations.

1.1. Christodoulou’s naked singularities for the spherically symmetric
FEinstein-scalar-field system. In the work [Chr94|, Christodoulou studied the
spherically symmetric Einstein-scalar-field system and constructed examples of
naked singularities. Thus, the original formulation of weak cosmic censorship
conjectures fails for this system! (Of course, due to the rigidities imposed by
Birkhoff’s theorem, we cannot hope to set the scalar field to be 0, and thus
Christodoulou’s constructions do not yield naked singularity solutions to the
Einstein vacuum equations.) Despite the existence of these naked singularities,
in a later work [Chr99a|, Christodoulou showed that generically naked singu-
larities do not occur for the spherically symmetric Einstein-scalar-field system,
and thus weak cosmic censorship holds if we relax the statement to the require-
ment that naked singularities do not occur for generic initial data. (It is in fact
this relaxed version of weak cosmic censorship that is the currently accepted
formulation.)

Now we will review in detail the solutions constructed by Christodoulou.

1.1.1. The spherically symmetric Einstein-scalar-field system and k-self-
similarity. A solution to the Einstein-scalar-field system consists of a 3 4+ 1
dimensional Lorentzian manifold (M, h,,) and a real-valued scalar field ¢ :
M — R that satisfy

1 1
(16) Ricu ()= Ry R (h) = 0,00, - §h#yh76&y¢8§¢, h* D, D¢ = 0,

where Ric and R denote the Ricci tensor and scalar curvature respectively, and
D denotes the covariant derivative associated to h.

Under the assumption of spherical symmetry, we may define the quo-
tient manifold (2, g,) = (M, hy) /SO(3), which will be a 1 + 1 dimensional
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Lorentzian manifold with boundary, where the boundary consists of the fixed
points of the SO(3) action. We then have the area radius function r : 2 —
[0, 00) that gives the area of the corresponding SO(3) orbit. Finally, the scalar
field descends to a function ¢ : 2 — R. The equations (1.6) then reduce to

1 1
(1.7) rV,V,r = 59w (1—9"rdyr) —r? (a,@am — ZgWgW‘Sm(;sam) ,
(1.8) VH (r*9,¢) =0, K (g) =7"2(1—0"rd,r) + 0"¢0,¢,

where K denotes the Gaussian curvature and V,, denotes the covariant deriv-
ative associated to g,,. We refer to the system (1.7)-(1.8) as the spherically
symmetric Einstein-scalar-field system.

There are two important symmetries of the spherically symmetric Einstein-
scalar-field system:

(1) Given a triple (g, 7, ¢) solving the system (1.7)—(1.8) and a constant a >0,
the triple (a?g,.,ar, ¢) will also solve (1.7)—(1.8).

(2) Given a triple (g, , ¢) solving the system (1.7)—(1.8) and a real constant b,
the triple (g, 7, ¢ + b) will also solve (1.7)—(1.8).

This leads to the definition of k-self-similarity:

Definition 1.2. Let k € R. We say that a triple (gu.,r, ¢) solving the
spherically symmetric Einstein-scalar-field system is k-self-similar if there exists
a l-parameter group of diffeomorphisms { f,}a>0 of 2 such that

f;g,uu:a2g,uua f;r:ar, f;gb:gb_klOga'
If a triple (g, 7, @) is k-self-similar with £ = 0, then we say that the solution
is scale-invariant.

1.1.2. Solutions of bounded variation. The work [Chr93| established well-
posedness for the spherically symmetric Einstein-scalar-field system in the class
of solutions of bounded variation. Here we will not give a full review of bounded
variation solutions; however, it will be useful to recall the following facts about
the behavior of the Hawking mass m = § (1 - \VT!Q) and the scalar field ¢ for
any solution of bounded variation:

(1) For every outgoing null hypersurface Coyy C 2 with affine parameter v,
the scalar field ¢ is required to be absolutely continuous along Coy¢, and
r% is required to be a function of bounded variation along Cyy¢. Similarly,
for every incoming null hypersurface C;,, C 2 with affine parameter u, the
scalar field ¢ is required to be absolutely continuous along Ci,, and 7“% is
required to be a function of bounded variation along Ci,. Finally, for each
outgoing null hypersurface Cyyt with a compact closure and incoming null
hypersurface Ci, with a compact closure, we must also have that

(1.9) /C 99 4y < o0, /c 0¢

— —ldu < 0.

ov ou
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Note that these integrals are invariant under a reparametrization of the
affine parameters u and v!

(2) Let I" denote the projection to 2 of the fixed points of the SO(3) action
on M. Then, for every null hypersurface C intersecting I', we must have
that

(1.10) lim (T) e = 0.

r—0 \ 7r

1.1.3. Global structure of k-self-similar solutions. In Section 2 of [Chr93|,
Christodoulou analyzed a natural class of scale-invariant solutions and showed
that it is possible to write them all down explicitly (cf. [Rob89]). However,
none of the solutions thus obtained are relevant for the construction of naked
singularities.

More important for us will be the case when k # 0. These solutions,
however, are significantly more complicated, and the bulk of the work [Chr94]
is concerned with a thorough analysis of these. For the current paper, the most
relevant part of Christodoulou’s analysis is the following:

THEOREM 1.1 ([Chr94]). Let0 < k* < 1/3. Then there exist k-self-similar
solutions such that the following properties hold:
(1) The 1 + 1 Lorentzian manifold (2, gu) has a global expression in *“self-
stmilar Bondi coordinates”

g = —e¥du? — 2" dudr, 2 ={(u,r) € (0,—00) x [0,00)},

where v (u,r)=0 (=) and A (u,r) =\ (=L) for suitable functions  and A

(2) The Penrose diagram of (2, g,,) is given by

&// \\
7 L
N NG
O // \\
. X
N
N
.
>
4
-7~ ,
4
4
)
4
4
y
7
P 7
// ¢
SN
4
)
4
4
)
4
7z
:

Here T' denotes the boundary of 2 where r = 0 and that corresponds to
the projection of the fized points of the SO(3) action on M. The point O
corresponds to (u,r) = (0,0) and is a terminal singularity (see point (3)
below). Lastly, N denotes the past light cone of the singular point O, and
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I (future /past null infinity) corresponds to the ideal endpoints of complete
future /past oriented null geodesics.

(3) The hypersurface N is future null geodesically incomplete, yet the solution
cannot be extended to O and remain a solution of bounded variation. This
is a consequence of the requirements (1.9) and (1.10) and either of the
following two facts:

2m k2

(1.11) T’N = 1+ k2 # 0,
1/2
(112) n(o)ly = TR

where n|y = (26*”8% — e*)‘%) |nv denotes an ingoing null vector normal

to N, and we note that since it may be shown that X\ and v are constant
along N, there exists co,c1 € (0,00) so that (u(s),7(s))(ss0p = (—Cos,c15)
is an integral curve of n along N with O corresponding to s = 0.

(4) Along any null geodesic terminating on I~ or I we have that r — co.

(5) The triple (g, ¢,r) forms a solution of bounded variation (where we em-
phasize that O is not included in the spacetime). We have that the radius
function r is in C?(2), the Gauss curvature K (g) is in C°(2), and the

2
scalar field ¢ is in C% (2 \ N) and in i (2).

We note that solutions of this type were also studied numerically in the
work [Bra95|.

It is worth emphasizing that because the gradient of the scalar field is
Holder continuous instead of being merely a function of bounded variation,
the triple (g, 7, ¢) may be considered as being more regular than a solution
of bounded variation. (We again remind the reader that the point O is not
included in the spacetime.) (In fact the solution is also more regular than the
AC-class of absolutely continuous data; cf. [Chr99b], [Chr99a].)

1.1.4. Asymptotically flat truncations. The k-self-similar solutions that we
constructed in Theorem 1.1 are not asymptotically flat; in particular, all of the
solutions constructed by Theorem 1.1 have

lim m (u,r) = co.
r—00

However, the solutions may be “truncated” along an outgoing null hypersurface
to construct an asymptotically flat solution:

THEOREM 1.2. [Chr94] Let 0 < k? < 1/3. There exist a 1+ 1 dimensional
Lorentzian manifold (2, g,,) and functions r,¢ : 2 — R so that (gu,r, ¢)
solves the spherically symmetric Einstein-scalar-field system and (2, gu,) has
the following Penrose diagram:
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In the past of W the spacetime is identical to that produced by Theorem 1.1. As
with the solutions of Theorem 1.1, we have that r — oo for any null geodesic
terminating on 1T. However, in contrast to the solutions produced by Theo-
rem 1.1, the scalar field ¢|c.,, vanishes for sufficiently large r, and the solution
1s asymptotically flat. Lastly, future null infinity is incomplete in the sense of
Definition 1.1.

We emphasize that despite the limited regularity of the solutions of Theo-
rem 1.2, these solutions may be considered naked singularities for the following
three reasons:

(1) The initial data along Cyyt is more regular than that of solutions of bounded
variation.

(2) The work [Chr93] established well-posedness for the spherically symmetric
Einstein-scalar-field system in the class of solutions of bounded variation.

(3) The solutions of Theorem 1.2 cannot be extended to the point O as a
solution of bounded variation.

1.2. Comparison of the solutions of Theorem 1 with the naked singularities
of Christodoulou. In this section we will compare the spacetimes constructed by
this paper’s Theorem 1 with those constructed by Christodoulou’s Theorem 1.2,
and we will see that the solutions of Theorem 1 correspond to the exterior region
of a naked singularity.

There is, of course, the obvious difference that we do not show in this
paper that the spacetimes of Theorem 1 contain a past complete extension
to the past of {0 = 0}. We will discuss the problem of constructing such an
extension in Section 1.3. Thus we now focus on the region in Christodoulou’s
solutions to the future of the hypersurface N. It will be useful to keep in mind
the schematic rule that when comparing the spherically symmetric Einstein-
scalar-field system with the Einstein vacuum equations one should identify 0, ¢
with the ingoing shear XAB and 0,¢ with the outgoing shear X ap.

(1) (Regularity of initial outgoing data). Under the correspondence of 0y,¢
and y4p we find that the data along C,y; is analogous to the data along
{u= *QQ} in that both 0,¢ and x 4p are Holder continuous. Of course, for
the Einstein vacuum equations, we cannot appeal to Christodoulou’s well-
posedness for bounded variation solutions. However, the works [LR15],
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[LR17] have established a local well-posedness result for data where x4p
(and a suitable number of angular derivatives), though required to vanish
near the tip of the cone, are otherwise allowed to only lie in L? along an
outgoing null hypersurface. The theory developed by [LR15|, [LR17] does
not concern itself with the behavior near the “axis”; however we conjecture
that a well-posedness result including the axis may be established for initial
data where xap and X ,, and a suitable number of angular derivatives
thereof are Holder continuous.

(2) (Singular boundary). The asymptotic behavior of the Hawking mass and
X 4 2long {0 = 0} given by (1.4) and (1.5) are analogous to the behavior
of the Hawking mass and n(¢) along A/ given by (1.11) and (1.12). Outside
of spherical symmetry the Hawking mass is not invariant under a change
of foliation of the cone {# = 0}. However, the blow-up of the shear ¥ ,
can be re-phrased in a more invariant fashion as follows. Let v(s) be the
parametrization of a future oriented null geodesic v along {v = 0} induced
by the normal vector field 9, +bY 4. Then one may show that there exists

such v with fv ‘ X ‘g ds = oco. This statement is reparametrization invariant

and corresponds to a logarithmic singularity for along « (which in

Jan
turn formally corresponds to the logarithmic blow-up of the scalar-field in
Christodoulou’s spacetimes). Furthermore, it is also possible to show in
this case the existence of a Jacobi field J that blows-up along . (See also

point (4) in Section 1.3 below.)

(3) (Asymptotic flatness and incompleteness of future null infinity). Both so-
lutions possess an asymptotically flat outgoing null hypersurface and do
not posses a complete future null infinity.

(4) (Underlying self-similar solution). As explained above, Christodoulou’s
solutions are obtained by “truncation” of an underlying self-similar solution.
In contrast, there is no self-similar solution produced at an intermediate
stage during the proof of Theorem 1. However, via an amalgamation of the
techniques and estimates of this paper along with the methods developed
in our previous work [RSRI18|, it is possible to construct an underlying
solution that is self-similar in the sense of possessing a vector field S with
Lsguy = 29w, and so that, in analogy with the relation of Theorems 1.1
and 1.2, a suitable truncation yields spacetimes as in Theorem 1. We will
not pursue this line of approach in this paper since going though a self-
similar solution does not lead to any essential simplification of the proof.
Nevertheless, the solutions of Theorem 1 will be “self-similar as =~ — 07
in the sense that

v .0 .0
ng,w—2gw,—>0as_—u—>0, S—u%—i-(l—%;)va@,
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where k is a positive constant that satisfies k ~ €. In terms of the normal
vector eg, we will have, in particular, that (uE63 — u_leEagA) Guvlo=0 =
—IBA

29uv|o=0. The logarithmic twisting induced by the flow of u can be

considered an analogue to the k-self-similar actions on the scalar field ¢ —
¢ + klog(u).

1.3. Constructing the interior solution. In this paper we will not establish

any results concerning extensions of the spacetime to the past of the hyper-

surface {0 = 0}. However, in a current work in progress we construct a past

extension of the spacetime from Theorem 1 where the new spacetime (M, gu,,)
takes the double-null form (1.2) for (u,,04) € [—v2,0) x [u, 00) x S* and

(1)

) (

3)

The spacetimes (/\?l,gu,,) and (M, g,) coincide in the region (u, 0, GA) €
[—v2,0) x [0,00) x S2.
M, f]w,) has the Penrose diagram:

We have that §,, € CN (M \ ({6=0} U {u=1})), §u € C (M) (where
c is the same constant from point (3) of Theorem 1), and (v, 05Gu) €
C¥Y ({# = 0}). In a neighborhood of any point on the “axis” {0 = u} there
exists a new coordinate system so that g,, is CN. (We emphasize that
clearly the point O does not lie on {u = 0}.)

The timelike curve 7(s) defined by s +— (u,9) = (s,s) for s € [~v2,0)
corresponds to a smooth timelike curve in (M, g,w) (see point (3) above),
has a finite length 202, is future inextendible, and there does not exist
any continuous Lorentzian extension of the spacetime (M, f]m,) where 7 is
extendible to a curve with length greater than 2v2.

We remark that in order to glue in these interior solutions with our exterior

solutions, it is important that in Theorem 1 we actually have considerable

flexibility in the choices of the lapse Q and metric gj g see (1.3).
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1.4. Connections to Fefferman—Graham theory. As we will review in more
detail in Section 2.3, in the works [FG85], [FG12] Fefferman and Graham clas-
sified formal power series expansions corresponding to a certain type of self-
similar solution, and in the work [RSR18| we showed that all of these expansions
correspond to true solutions of the Einstein vacuum equations. The solutions
considered by Fefferman and Graham all share the property that there exists
a null hypersurface H such that the conformal Killing field K* is normal to H.
Among other things, this implies that the cone H is shear free. In contrast, the
underlying self-similar solution for the spacetimes of Theorem 1 (see point (4)
in Section 1.2) posses a null hypersurface H where the conformal Killing field
K* is tangent but not normal and, in particular, the cone is not shear free.
Thus, this provides a genuinely new local model for self-similar solutions. One
may draw an analogy for the relation between these new solutions and the so-
lutions of Fefferman—Graham with the relation of the rotating Kerr black hole
solutions and the Schwarzschild solutions. Finally, we note that one expects
analogues of this construction to work also in higher dimensions.

Beyond the generation of new local models for self-similar solutions, the
(proof of) Theorem 1 is also relevant for the global study of Fefferman and Gra-
ham'’s self-similar solutions. We briefly explain: Fefferman and Graham’s solu-
tions in 3+1 dimensions are parametrized by two choices of data, ¢ , B| (u0)=(~1,0)
and tfangB’(um):(—l,O)’ where tf denotes the trace-free part of a symmetric
(0,2)-S% , tensor; see Section 2.3. In [RSR18| we showed that given such a pair,
there is some € > 0 so that a corresponding self-similar solution exists in the
region (u,v) € {0 < &% < e} N{u € (—00,0)}. It is thus natural to ask about
the global behavior of this solution. In particular, if the data ¢ , B‘(u7v)=(*170)
is close to the round metric and t£0,¢ , pl(uw)=(-1,0) Is suitably small (where tf
denotes the trace-free part of a symmetric (0, 2)-tensor), do we obtain a “global”
solution in the region ({v > 0} N {u < 0})\ {(u,v) = (0,0)}?

Note. One can also look in the “interior region” corresponding to {v < 0},
where one expects the problem to be elliptic as opposed to hyperbolic. However,
in 3+ 1 dimensions one does not expect to find any non-trivial interior solutions
corresponding to the Fefferman—Graham data along the cone {v = 0}. In
dimensions strictly higher than 3 4 1 this rigidity disappears, and the problem
of constructing global interior solutions for small data was positively resolved
in work of Graham-Lee |GL91]. Finally, we note that in dimensions strictly
larger than 3 4+ 1, the global behavior in the exterior region {v > 0}, for a
certain restricted class of small data, reduces to the problem of the stability of
de-Sitter space to small perturbations from 1™, various aspects of which have
been positively resolved in the works [Fri86], [And05], [Rin08].
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It follows from a combination of the techniques of [RSR18| and the es-
timates behind the proof of Theorem 1 that one has existence in a region
{v>0}n{u < 0})\{(u,v)=(0,0)} and, after a suitable change of coordinates,
the metric g extends to the cone {u = 0} in a Holder continuous fashion. It
would be very interesting, however, to determine whether or not the cone
{u = 0} is shear free and thus is itself locally modeled on a Fefferman—
Graham solution. We note that the analogous statement for scale-invariant
solutions to the spherically symmetric Einstein-scalar-field system is true and
is related to Christodoulou’s proof of well-posedness for solutions of bounded
variation [Chr93].
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2. Preliminaries

2.1. Equations of the double-null foliation. In this section we will recall
the form of the Einstein equations in a double null foliation (see [KNO03| for
detailed derivations). We start with a 3 + 1 dimensional Lorentzian manifold
(M, g,u) solving the Einstein vacuum equations. We let {64} denote local co-
ordinates* on S? and assume that for some open U C R2, there exist coordinates
(u, v, HA) € U x S? so that the metric 9w takes the form

(21) g=-20%(du®@dv+dv®du)+ ¢, (d0* — bdu) @ (do¥ — bPdu).

Here €2 is a function on U x S? called the “lapse,” for each (u,v) denotes

’ gAB
the induced Riemannian metric on the corresponding copy of S?, and for each

(u,v), ba, called the “shift,” is a 1-form on the corresponding copy of S?. We will

denote the copy of S? at a particular (u,v) by S?w, and we refer to any tensor

field on M that is tangential to each Sg’v as an “Sg7v—tensor”; see [KN03|. We use
the standard convention that Latin indices are reserved for Si}v—tensors. The
covariant derivative associated to g,, will be denoted by D,, the projection
of Dy and D3 to S?, will be denoted by V4 and V3 respectively, and the

U,

induced covariant derivative of S2 , will be denoted by ¥ 4. We will assume

u,v
that (M, gy, ) is oriented, which allows us to define ¢ , 5 to be the volume form

corresponding to Unless indicated otherwise, norms of S2 ,-tensors are
7

gAB'

4Unless said otherwise, we will assume it understood by the reader that each coordinate
function 8 is only defined on a suitable coordinate patch of S2.
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computed with respect to indices of Si7v—tensors are raised and lowered

Jan
9 ap and the Hodge star operator * applied to an Sgﬁv—tensor
refers to a contraction with ¢ , .

One consequence of the form (2.1) of the metric is that the level sets of u

and v are null hypersurfaces. This leads us to define the following null pair:

s =010, es =07 (0 + b)),

with respect to

which will then satisfy

g(es,€3) = —2.
The Ricci coefficients are the following S%w tensors:
xaB =g (Daes,ep),  X,p=9(Daes,ep),
77A—_§g( 3614)64)7 QA__ig( 4614563)7

.1 . _1
w=—1g (Dyes, eq), w=-q9 (Dses, e3)

(2.2) Ca= %9 (Daey,e3).

We will use 9 to denote an arbitrary Ricci coefficient.

We often refer to the 1-form (4 as the “torsion” 1-form. Note that yap
2

u,v
symmetric tensors. It will be convenient to split x ap and x g into their trace

and x g are simply the second fundamental forms of the S: | and hence are

and trace-free parts:

A 1 Lo 1
XAB =XAB+ WX p Xpyp = Xyp T 53U X up
The Ricci coefficients are related to the derivatives of the metric quantities
Q, 4§ 4> and ba as follows:
1 1
w=-;VilogQ,  w=-;Vslog®, Lo, b4 = —40%¢A,
na=Ca+ValogQ, 1, =-C1+ValogQ,
Lef ap = 2XAB; Lesfap = 2Xap:

Here £ denotes the Lie-derivative.
We let R denote the curvature tensor of g and then define the null curvature
components as follows:

aap = R(ea,es,ep eq),  asp=R(ea,es¢ep,€3),
.1 1
BA = 7R(6A764763764)a éA =-R (eA,€3,€3,€4),
2 2
. .1,
P = ZR (647 €3, ¢4, 63) 9 o = Z ( R) (64, €3, €4, 63) .
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Here * denotes the Hodge star operator. The symmetries of the curvature
tensor and the Einstein vacuum equations imply that o and o are symmetric
trace-free tensors. The curvature components listed above suffice to reconstruct
the entire curvature tensor. (This fact uses both that we are in 3+1 dimensions
and that the Einstein vacuum equations are satisfied.) We will often use ¥ to
denote an arbitrary null curvature component.

Next we recall the notion of signature from [CK93].5

Definition 2.1. For a Ricci coefficient 1 or a null curvature component W,
we define s (1), the signature of 1 or s (), the signature of ¥, by

s (V) = (e3) —#(ea),  s(U)=#(e3) — # (ea),

where # (e3) denotes the number of e3’s that show up in the definition of
and # (es) denotes the number of e4’s that show up in the definition. We have

s(y) =-1, s(try) =—1, s(w) = —1,
s =0, s(n)=0, s(¢)=0,
S(X):l, s(trx):l, s(w) =1,
s(a)=-2, s(8)=-1,

S() =0,  s(0)=0,

) =2 s(B8) =1.

The derivatives of the Ricci coefficients are related to the null curvature
components by the following set of “null-structure equations”

(2.3)  Vatrx+ % (trx)? = —|X|* — 2wtrx,
(24)  ViXap +trxXas = —aap — 2wXaB,
(2.5) VgtrX—F%(trx)zz—‘X’Q—QQtrx,
(2.6) VaXup TUXX 5 = —Qap — 20X, 5

. 1 . . . . 1 .
(2.7)  Vaxap+ ;5 trx¥ap = 2wXap + (V&) 45 + (190) 45 = 5 10 XX 45
(2.8) Vstrx+ %trxtrxz 2p + 2w tr x + 2divny + 2 |77|2 -XX
(29) Vux,p+ %trxXAB =2wX, 5+ (W@Q)AB + (g@Q)AB — %trxﬁmg,
(2.10) Vgatrx+ %trxtrxz 2p + 2w tr x + 2divy + 2 ‘Q‘Z - XX
(2.11) Vana=—(x-(n—mn)), — Ba,

®Qur definition is actually the negative of the definition from [CK93].



(2.12)

(2.13)
(2.14)
(2.15)

(2.16)
and

(2.17)
(2.18)

(2.19)
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V3QA:_(X' (ﬂ_n))A'i_éB?

1
cdrln:U+§X/\§<

1
cdrlﬁz—a—§X/\)2,

1 1
V4g=*p+2&w+*|77|2_77'ﬂ7

2 2
1 1) 2
V3w=§p+2gw+§’ﬂ‘ —n-1n,
K= +1A X 1t t
=P 2X X 4 XX,
A 1 1 )
(df{VX)A—ivAtrX:—ﬁA+§tTXCA—(C‘X)A7

(@ 2),, = 3Vatrx =B, — 5 trxCa+ (¢ D) 40

249

where K denotes the Gaussian curvature of ¢ , ,, and we have used the following

definitions for 1-forms ¥4 and symmetric trace-free (0, 2)-tensors ¢4p:

(6W&0®) =00 + 0 0l — g P00
(V&) 4p = Vats + Yita — §°PYetng ,
o Ao = ¢AGPP G Loc),
¢(1) /w}(z) - ¢ABwj(41)¢(;)7
divip = gPY 4,
arly = ¢APY 4y,
(dive) , = §"“Vpdca.

The null curvature components satisfy the following consequence of the
Bianchi identities:

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

1 R
Vsaap + 5‘51‘&0@43 = (W@ﬂ)AB +4dwaap

—3(XaBp +"XaBo) + ((C+41) ©B) 45,

Vafa+2trxpa = (d,fvoz)A —2wf4 + ((2{—1—@ 'Oé)Aa
V34 —|—tI‘X,BA = WAP-FQQ,BA + (*W)AU
+2(x-B) , +3nap+"nao),

3 1
V40+§trxa:—div*ﬂ+§X/\a—§Aﬁ—2ﬂ/\6,

3 1
Vgo—i—itrxa: —diV*é_ifé/\Q‘FC/\ﬁ_Qn/\é’
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(2.25) V4p+gtrxp=dfvﬁ—%X-a—i-c'ﬁ-i-?yﬁ»
(2.26) Vw+gmgp=—dhﬁ—%iwy+0§—2wé,
Vi, +trxBa=—Vap+2w8,
(2.27) A )
+ (V)0 +2 (1 5) 43 (-mup+71,y0)
(2.28) Vaf , +2trxBa = — (diva) , —2wB , +((2¢ —n) -a) 4,
1 .
(2.20) Viasg + 5tl" XQap = — (W®§)AB +dwayp

-3 (XABP B *XABJ) + ((C B 4ﬂ> ®§)AB :

We refer to this set of equations as the Bianchi equations.
We now recall a well-known lemma from [CK93].

LEMMA 2.1. Let us introduce the rule that

(V) = 14s(8),  s(Vaw) = —1+s(),
S(Va¥) = 1+s(T),  s(Val)=-1+s(0), s(PU)=s(V),
S(6-0) = s () +5 (D),

where 1P stands for any contraction of a -covariant derivative. Then, in any

gAB
given null structure equation or Bianchi equation, each individual summand will

have the same signature.

In the course of our construction we will study spacetimes where the
v-dependence of xap is only Holder continuous, and thus the curvature com-
ponent a4p may be only be understood distributionally (see (2.4)) and, more
importantly, does not lie in L120C. As a first step in the proof of our main
theorem, we will use the results from [LR15], [LR17] that establish local exis-
tence for the characteristic initial value problem for data where x 4p has limited
regularity in the v-direction. One key idea in the works [LR15], [LR17] is to
introduce a renormalization scheme that serves to eliminate the curvature com-
ponent a4p from the Bianchi equations. One can also eliminate the curvature
component « 45, and this will also be useful for us when we study the solution
near the cone {u = 0}; see Section 9. We now present these renormalized
Bianchi equations. We first define

(2.30) p=p-

N =
>=>
<>
Q¢

Il

Q

|
| =

<>

>

[><>
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Then we have

(2.31)
VaBattrxBa=Vap+ (V) ,0+2Ba+2 (X - B) ,+3 (nap+1a0)
1 3
3 (P (0 0+ (F), (AR +5 a5+ mae 1 ),
(2.32)
V4é+gtrx6 — —dV'B—CAB—2nAB— %XA (Yén) - %XA (n&m) ,
(2.33)
5 3 3 1 N 1, ~ 1
V4p—|—§ trxp=divB+¢ - B+2n- - 5X- (Yen) - X (ﬂ®ﬂ)+Z
(2.34)
V35+g tr xo = div'S+C A B —2n A §+%X/\ (V@?)JF%X A (n&n)
(2.35)

3 ,
Vapt trxp = —divB+(- 8

trx [X[%,

—_

9

. - 1, - 1 NE
— 2 f— g% (V) = 5 (nm)+ |3

(2.36)
VaB , +trxB, = —Vap+(*Y) ,6+2w8 ,+2 (X - 8) , — 3 (QAﬁ - *QA(})

(T (V) (KA ~ o (mk X AK).

Finally, we record the well-known expressions for the commutators [V4, \% A]
and [Vg, Y A].
LEMMA 2.2. We have
(2.37)

[QV4, WA ¢Bl -By, — QZ ( A #B XACEBZ. + XBiAﬁC) ¢Bl"‘BiC“‘Bk

- QXA WCQZSBl-"Bkv
(2.38)

k
[QV3, V4] 65,3, =2 (— (*B) 4 ¢5° —x,“na, +XBiA770) Pp,...B,C-By,
i=1

— QXACWc@BlmBk-

Remark 2.1. We observe that the conclusions of Lemma 2.1 extend both
to the renormalized Bianchi equations (2.31)—(2.36) and to the commutation
formulas (2.37) and (2.38).
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The following remark will be important later.

Remark 2.2. One can also consider spacetimes (M, g) where there exist
coordinates (u, v, 9’4) € U x S? so that the metric ¢ takes the form

(2:39) g =20 (du®@dv+dv®du) + ¢, (A0 — brdv) @ (d6® — bPdv) .

We refer to coordinates where the metric takes the form (2.1) as double-null
coordinates with “the shift in the es-direction” and to coordinates with the
metric takes the form (2.39) as double-null coordinates with “the shift in the
e4-direction.” For a spacetime (M, g) with coordinates so that the metric takes
the form (2.39), we define

er =07 (0, +b%0pa), e =070y,

and then all of the equations satisfied by the various double-null unknowns are
the same with the exception of the shift that now satisfies

Lo, b = 40%¢A,
Lastly, it will be useful to introduce the following conventions.

Convention 2.1. The term b < 1 means that one should take b < ¢, where
c is a small constant, independent of all other introduced parameters, but

whose exact value may be determined at the end of the paper. For two positive

constants a and b, a < b means § < 1, and for a positive constant b > 0,

b > 1 means that b1 < 1.

Convention 2.2. We will now describe a schematic notation for certain non-

linear tensorial expressions. Throughout we let ag-z) denote a tensorial quantity.

The schematic notation is defined as follows:
(1) The notation (agl), . ,af;ll)) e (agj), . ,ag)) denotes an expression that
could in principle represent an arbitrary linear combination of contractions

() 0)y,

of tensor products of j-tuples (akl e Ay

(2) The notation (agl), e a(l))k denotes (agl), . ,a(.l)) e (agl), ceey agl)).

» iy 1

k

(3) The notation ¥ (agl), e ,agll)) denotes an arbitrary linear combination of

contractions of terms Wag.i).
(4) The notation Y’ (agl), e ,al(ll)) denotes Y(V (- ¥ (agl), ceey al(ll))))
H‘/_/
J
2.2. The characteristic initial value problem. In the course of the paper
we will need to invoke local existence results for suitable characteristic initial
value problems. In this section we will quickly review the relevant theory.
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Throughout this section, we let ug, u1, vg, and vy be real numbers that satisfy
ug < up and vy < v1.
We start with a definition of a characteristic initial data set.

Definition 2.2. We say that two 1-parameter families

(60 10%). 02 (67) 5 (16°))

for (u,04) € [ug,u1] x S? and (Q(OUt) (v,04), Ef;t) (v,@c)) for (v,04) €
[vo, v1] x S? consisting of nowhere vanishing C' functions Q) and Q')
a continuous vector field (bA)(m), and C' 1-parameter families of Riemannian

t) .
metrics g r B and ¢ Xg on S%, as well as a continuous 1-form ({4) on S?

uo,v0
form a “characteristic initial data set” if the following hold:

(1) We have Q™ |,_,, = Q| _ —and g%g =y = (:g,t) v=v0-

(2) After defining trx, X p and w for u € [uo, u1] by

(Q(in))—1 £8u+b(i“>g§rg = trngﬁg) + 2XAB7
w = _% (Q(in))*l (au i b(in)) log Q(in)’

and the requirement that AB be trace-free, we have that the following
equation is satisfied:

(2.40) (Q(in))_l ((% + b(in)) trx + %

(3) After defining trx, xap, and w for v € [vg, v1] by

(trx)2 = 2wtry — ’X‘z

(€)™ L5, 058 = trxgSh) + 2%up, w= —% (2™) ™" 9, log Q©,

and the requirement that yap be trace-free, we have that the following
equation is satisfied:

- 1
(2.41) (2m) ™ 9, trx + S (trx)? = —2wtry — |32,

Note that the two differential equations that we require the characteristic
data to satisfy are simply the two Raychaudhuri equations (2.3) and (2.5).

Now we recall the following local well-posedness result for the characteristic
value problem.

THEOREM 2.3 (|[Ren90|, [Luk12|). Given any characteristic initial data set
so that

00 0 . )

are smooth, there exists a smooth spacetime (M, gu,) such that
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(1) There exists a positive constant ¢, depending on the initial data set, so that
the metric g, takes the double-null form (2.1) for

(u,v) € {([uo, u1] x [vo,vo + ¢]) U (Juo, uo + ¢ x [vo,v1])}.
(2) We have

(Q’bA’gAB) Jo=vo = (Q(in)’ (bA)(in) ’gf‘i‘%)) ’

(Q’gAB) im0 = (Q(Om)’gfg)) ’

and CA|(u,v):(uo,vo) = ((uo,vo)A'

(w1, v0) (uo,v1)

(0, vo)

Since we will need to consider solutions where the v-dependence of x4 is
only Holder continuous, it will be convenient to refer to the following generaliza-
tion of Theorem 2.3 (which can be deduced from the main results from [LR15],
[LR17]):

THEOREM 2.4 (|[LR15|, [LR17]). Let N be a sufficiently large positive in-
teger, and let -&AB denote a round metric on S? that we extend to [ug, u1] x S

and [vo,v1] x S? by Lie-propagation. Suppose we have a characteristic initial
data set satisfying the following bounds for some C > 0:

[ (0, 108 020)| = g 2o

<o,

LN —

| o), =0 06w <

1Cugvoll v < C H(detg@‘“))_lHL% <C,

| (aerg®™) 7|, <. gt
u,0

o

<

— )

’LfﬁN

.. <C,
LeoHN —

where H' denotes (inhomogeneous) Sobolev norms defined with respect to the

metric § , -
Then there exists a spacetime (M, g,,,) such that

(1) There exists a positive constant ¢, depending on the constant C', so that the
metric g, takes the double-null form (2.1) for (u,v) € {([uo, u1]x[vo, votc])
U ([uo, uo + ¢] x [vo, v1])}.
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(2) We have
(98 9,) e = (2. (1) 43,

(24 ) lumuo = (229, 6557,

and CA’{(um):(uo,vo)} = (Cuo,vo)A-

(3) There exists C' > 0 so that in the region (u,v) € {([uo, u1] X [vo,vo + ¢]) U
([wo, up + ¢] X [vo,v1])}, the metric components, Ricci coefficients, and cur-
vature components have the following reqularity:

(242) H(ﬂ,p, U’é)HLgoLgﬁNfZ <, H(p, 75, Q)HLgOL%IfIN*2 <,
(2.43) H (b, X, X, w,w, Y log Q) HLgOLgOIfIN—Q <
Cay () s g1l o e 2 < €

(4) (M, guw) is a weak solution to Ric,(g9) = 0. In particular, (2.3), (2.5)-
(2.19), and (2.22)(2.36) all hold.

Also, there exists a constant'Y (independent of N') so that we also have the
following blow-up criterion: Let 0 < r1 <wvi —vg and 0 < ro < u; —ug. Then
one of the two possibilities must occur.

(1) There exists a spacetime (M, ) in the double-null form (2.1) that con-
tains

(u,v) € {([uo, u1] X [vo,vo + r1]) U ([ug, up + r2] X [vo,v1])},
(o = (64 ).

(Q gAB) |u o = (Q (out) gX;t ) ’

CA‘{ (u,v)=(uo,v0)} — ( UOWO)A?

and the bounds (2.42)—(2.44) hold for some C’ < co.
(2) For some 0 < s1 <ry and 0 < sy < ry there exists a spacetime (M, gu) in
the double-null form (2.1) that contains

(u,v) € {([uo, u1] x [vo,vo + s1)) U ([uo, uo + s2) X [vo,v1])} = Us, 50,
(Q’bA gAB o=y = (Q bA o ,g%),

(Q gAB) fu=uo = (Q o) g:;t )’
CA‘{ (u,v)=(uo,v0)} — ( uo,vo)
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and

Pt [ A

Finally, we know that the singularities of o must propagate in es-direction;
more specifically, whenever 0y > vg, then

(2.45) ||a\u:u0HL5€[ﬂ fN—2 <00 = sup ||a||L72J€ fN—2 < 00.

0-v1] w€[ug,u1] [00,v1]

Remark 2.3. One may, of course, provide explicit upper bounds on the
optimum values of the constants N and Y, but these will not play any role in
this paper.

2.3. (Asymptotically) self-similar solutions. In this section we revisit the
types of self-similarity (for 3 + 1 dimensional solutions) considered in the

works [FG85], [FG12|, [RSR18].

Definition 2.3. We say that a solution (M, g,,,) given in the double-null
form (2.1) and defined in the region {u < 0} N {0 < =% < ¢} for some ¢ > 0 is
“self-similar” if it is smooth, and in a coordinate frame we have

Q (u,v,9A> =Q (%,0A> , ba (U,U,QB) = uby (%793> ;
UOY: (“’U’ec) o (%’ 90)

for some €, by, and 5} - Equivalently, the “scaling vector field” K = udy +v0,
satisfies

I
—u

(2.46)

ﬁKg;w = 2guu-

Note, in particular, that if a solution (M, g,,) is self-similar, then the
restrictions of €2, ba, and ¢ , , to {v =0} must satisfy the following:
(2.47)
o (0%) =020 0 (10) =0 07). g, (1.0%) =423, 1)

For any Riemannian metric g} ap o0 S?, one natural way to generate a triple
(209 (u, 64), (b)) (u, 65, 2 (u, 6€) )

satisfying the requirement (2.47) and also the Raychaudhuri constraint equa-

tion (2.40) is to set

(2.48) Q0 (w,04) =1, (1™ (u,0%) =0, ¢ (w.0) = ug, ,(6°)

for all u € (—o0,0).
The following result, due to Fefferman—Graham, classifies formal power
series expansions that obtain the incoming data defined by (2.48):
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THEOREM 2.5 ([FG85|, [FG12|). Let ¢, be an arbitrary smooth Rie-
mannian metric on S*. Then there exist {Q® (0)}22,, {(6)@ (0)}2,, and

{gfﬁg (0)}2, so that we obtain a formal metric g, solving Ric,,(g) = 0 by

defining the following formal power series expansions in T and in coordinate

frames:

(2.49) o |
b4 (u,0,08) = u 'S (%)1 (VA)(’) (6%),
=1
(2.50) e (u,v, 90) = u%}AB (90) + u? Z (%)Zg%g (90) .

By a formal solution, we mean that

e if one truncates these sums at some integer N,
e defines a corresponding self-similar double-null metric by using the truncated
sums to define the metric components,

(N)

e and computes the corresponding Ricci tensor Ricy,’,

then, along any constant u-curve, one will have in a coordinate frame that
Ric,g,\,[) = OyN (vp(N)) where p — o0 as N — co. (In particular, we may make
no assertion about the convergence of the the infinite sums in (2.49) and (2.50).)

Furthermore the expansions (2.49) and (2.50) are uniquely determined by
the requirement that the incoming characteristic data satisfy (2.48) and a choice
of tf (gj(l))AB. (Here tf denotes the trace-free part.)

Remark 2.4. As a point of comparison, we can consider the simpler situ-
ation of spherically symmetric solutions ¢ to the wave equation on Minkowski
space,

auav (T(b) =0,

which are self-similar in the sense that

s (U
o) =6 ()
for a suitable function qﬁ It is straightforward to classify all such solutions that
are of bounded variation in the sense of Christodoulou [Chr93]. One finds that
these comprise a 2-parameter class indexed by (a,b) € R? as follows:

a {v <0},
¢ (u,v) = qa+b- {v>0}n{u<0},

a+b {u > 0}.
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The parameter a is, of course, a trivial freedom reflecting the ability to add a
constant to any solution to the wave equation.

In our previous work [RSR18| we accomplished two main goals:

(1) to show that the formal power series expansions of Fefferman—Graham from
Theorem 2.5 correspond to true solutions;

(2) to identify a large class of characteristic initial data sets (see Definition 2.2)
that lead to solutions that, while not self-similar, converge to a self-similar
solution as the point (u,v) = (0,0) is approached.

We will not here undertake a full review of the proof of these results; however,

it will be clarifying to revisit one of the preliminary steps in the analysis. We
start with the following definition:

Definition 2.4. Let (207 (u,04), (b)) (u, 07), #'{}) (u, 0€) ) be defined by
(2.48) restricted to u € [-1,0) and J be a non-negative integer. Choose
C4(0P) and outgoing characteristic data (Q(Out) (v,04), gO;t (v, 90)) defined
for v € [0,7) and satisfying Q@) (=1,64) = Q(u) (0, g4), (““)( 1 90) =
g O;t (0,69), and (2.43). Then we say Ca(AP) and (Q(O‘lt (v, 04), il Ogt (v,0 ))
are “consistent with an asymptotic scale-invariance to order J” if after apply-
ing Theorem 2.3, then along {v = 0} we have the following bounds for any
curvature component ¥ and Ricci coeflicient :

(2.51)

‘Viw‘l" Sig w72, ]VW%] Sijlul77 Wi >0and 0 <5 < J,

where these norms are computed with respect to 9‘1}9)'

Remark 2.5. As was shown in Section 3.11 of [RSR18|, for an exactly
self-similar solution, we will have ‘ViWZ\II‘ ~ij |ul727"7 and ’Viviw’ ~ij
|u|~1=%=J. Thus the bounds (2.51) are motivated by requiring that along {v=0}
the solution is, at worst, as singular as an exactly self-similar solution.

The following is a slight extension of a proposition proved in [RSR18|.

PROPOSITION 2.6. We have that CA and (Q out) gout)) 1s “consistent with
an asymptotic scale-invariance of order J” (see Definition 2.4) for any J € Z>o
if and only if we have

e A ou
(2.52) Ga=0,  (9°)" Lo, (9)) 1mo = 2K oo,

where K denotes the Gaussian curvature of ap- Furthermore, if we assume
that (2.52) is satisfied, set

Nag = tf (Lo, (¢)'55) lo=o.
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and then extend Nap to all of {v = 0} by Lie-propagation with respect to 0,
then we have the following bounds and identities for the Ricci coefficients and
curvature components along {v = 0}:

2
(2.53) trxza, Xap=0 w=0, ayp=0, na=0, n,=0, g, =0,
(2.54) c=0, p=0, trx =—-2uK, |w|=0(1), Yap = —uNap,
(2.55)  Ba=wul[divNa —VaK], |a+u (V& (dVN - VK))| < u| 7L,

Proof. If Q") is assumed to be identically 1 and J = 0, then this is
contained in Proposition 4.1 from [RSR18|; the modifications needed for the
more general Q") and J are straightforward. (See also the discussion in
Section 2.2 of [RSR18].) O

Note that due to the vanishing of the shear ¥ 4 these solutions will not,
in particular, satisfy (1.5). Furthermore, it is an immediate consequence of the
Gauss—Bonnet Theorem that the Hawking mass of any Si,o sphere must vanish.
In particular, we do not have (1.4). In fact, solutions that are self-similar in
the sense of Definition 2.3 or, in view of the main results of [RSR18|, solutions
corresponding to data that is “consistent with an asymptotic scale-invariance
of order 0” may be considered to be analogous to Christodoulou’s solutions of
bounded variation [Chr93| (and also the solutions discussed in Remark 2.4). In
particular, we should not consider the class of solutions from [RSR18| as good
models for naked singularities.

Given the discussion in the previous paragraph, it is natural to wonder
whether self-similar solutions can be built from characteristic initial data sets
that, while satisfying (2.47), are more general than those allowed by (2.48);
however, the following proposition puts a severe restriction on the behavior of
g along {v =0}:

PROPOSITION 2.7. Let (M, g,,) be a solution to the Einstein vacuum
equations that is self-similar in the sense of Definition 2.3. Then we must have
(2.56) EbgAB|”:O =0, LpyQy=0 = 0.

Proof. Omitted. O

Furthermore, using the techniques developed in [RSR18] one can show that
any self-similar solution satisfying (2.56) is isometric to a self-similar solution
whose restriction to {v = 0} satisfies (2.48). Thus, it is clear that in order to
construct naked singularities, we must leave this class of solutions.

3. k-self-similarity and an outline of the proof

A key role in the proof of our main result will be played by a more general
notion of a self-similar solution compared to the type discussed in Section 2.3.
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One way to think about this new self-similarity is as follows: The self-similarity
discussed in Section 2.3 assumes the existence of a double-null foliation whose
domain of validity includes the important null hypersurface {v = 0} and where
the self-similar vector field K takes the form K = ud, +v9,. However, there is
no a priori reason to expect a solution to the Einstein vacuum equations with
a conformal Killing vector field K to admit such a coordinate system.

Our new k-self-similarity still starts with a double-null coordinate system
where the self-similar vector field K takes the form K = ud, + v0,. However,
we no longer assume that the coordinates extend to {v = 0}. Instead, we
require that for an alternative coordinate system (f),u, QA) where 0 = pl72%
the metric extends to {# = 0}. The coordinate system (%, u, 9’4) will still be
a double-null coordinate system, however, the self-similar vector field K will
now take the form K = ud, + (1 — 2k) v9;. Thus we may equivalently think
of k-self-similarity as relaxing (slightly) the requirement that K takes the form
u0y+v0, in a double-null coordinate system. We now give the precise definition.

Definition 3.1. We say that a smooth solution (M, g,,,) given in the double-
null form (2.1) and defined in the region {u < 0} N {0 < % < c} for some
¢ > 0 is “k-self-similar” if in a coordinate frame, we have

Q (u,v,HA) =Q (%,0‘4) , ba (U,U,HB) = uba (%793> )

I (u’ v 90) =W ,p (%’ 90)

for some €, b4, and QAB, and there exists 0 < k < 1 such that in the co-

(3.1)

ordinates (@,U,HA) defined by © = v!=2% for every i4,|j| > 0 (where j is a
multi-index), there exists y(|j|) > 0 such that Eguﬁ(ajg)gw, extends to {0 = 0}

as a O tensor.

Remark 3.1. If k = 0 and the metric in fact extends to {0 = 0} as a smooth
metric, then the metric will be self-similar in the sense of Definition 2.3. We
further emphasize that, as we will see later, the lapse Q of a x-self-similar
solution will satisfy lim,_.q (v”Q (—1,1},9‘4)) =h (HA) for some function h :
S? — (0,00). In particular, a solution in a given double-null coordinate system
(u, v, 6”4) can only possibly be k-self-similar for a unique value of k.

Remark 3.2. We emphasize that the coordinates (u,v,04) in which the
metric is required to satisfy (3.1) are not regular as v — 0. In particular, as

-2
we will see in more detail later, in these coordinates we have Q2 ~ (_Lu) "
While, for the solutions we consider, we will not establish sharp estimates for

v(|4]) for general j, it will follow from our analysis that we have the estimate

2K
1—2k

(3.2) 7(0) <
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In particular, even though a r-self-similar solution is smooth for {¢ > 0} it will
have limited regularity if we include the hypersurface {0 = 0}.

Remark 3.3. The fundamental reason we will need to restrict to |k| < 1 in
this paper is because, in view of the k-constraint equation (see (3.8) below) the
size of k is directly related to the size of (v’“‘Q, 9 b) along {v =0}, and we will
need to have the smallness of (v“Q, 9, b) |y=0 in order to carry out our nonlinear
analysis. However, this constraint is, in principle, just an artifact of our method
of proof and, in view of the regularity constraint (3.2), it is an interesting
problem to construct solutions where « is allowed to be as large as possible.

Despite not allowing for regular limits as v — 0, the (u,v, %) coordinates
are useful because

(1) The self-similar vector field takes the simple form K = ud, + vd,. This
implies that algebraic identities induced by self-similarity take a relatively
simple form (see, for example, Lemma 3.2) and also allows us to view the
class of k-self-similar solutions as a perturbation of the self-similar solutions
of Definition 2.3.

(2) Even though the Ricci coefficients 1) and curvature components ¥ will in
general be singular as v — 0, we will have a very simple procedure for
weighting them appropriately (when ¥ # aup and ¢ # w). Namely,
letting s denote the signature of ¢ and ¥ (see Definition 2.1) we will have
that Q%) and Q°W¥ have regular limits as v — 0; see Lemma 3.1 below.

One may think of the parameter x as being (roughly) the analogue of k2/2 in
Christodoulou’s k-self-similar solutions.

Finally, we note that while it is technically convenient for us to phrase
Definition 3.1 in terms of a coordinate system that is regular along {0 = 0}, it
may be more useful conceptually to think of them as “b-self-similar” solutions.
This is because the need to consider k-self-similar solutions arises when one
wants to construct a self-similar solution with a non-trivial shift b4 along the
incoming cone {0 = 0}, or equivalently, when one wants the scaling symmetry
to induce a twist along the spheres in addition to rescaling in the null direction.
See also Lemma 3.3 and the following discussion.

3.1. The ingoing Raychaudhuri equation and the role of k-self-similarity.
In this section we will explain how k-self-similarity allows us to overcome the
obstacle of Proposition 2.7.

The following lemma shows how to weight the Ricci coefficients and null
curvature components in (u,v,84) coordinates so as to have regular limits as
v — 0.

LEMMA 3.1. Let (M, g) be a k-self-similar solution. Then, in the (u, D, GA)
coordinates, the metric g is of the form



262 IGOR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

g =—20%% (1 —2k)"" (du® do + do ® du)
+ 4 4 (@04 = bAdu) @ (07 — bPdu) .
The self-similar vector field takes the form
K =0, + (1 — 2K) 00;.
Finally, using that, in the form (3.3), the tensor Eguﬁé?gu,, must extend to

{6 =0} as a CYP tensor for 0 < p < v(|j]), we find that the following double
null quantities defined in (u,v,04) coordinates must extend to {v =0} contin-

(3.3)

uously and the restrictions to {v = 0} are smooth tensors in (u, HA):
(34) 0" b gy Qw, v, Cay nas 1y Ry, Qrx
(3.5) O 'Rap, QMtrx, QPaup, 8, poo, Q7' fa

Equivalently, for any Ricci coefficient 1 not equal to w or null curvature
component ¥ not equal to o, we have that Q%Y and Q°V extend continuously
to {v = 0}, where s denotes the signature of b or V. Finally, we note that we

will have
Y=ol < |ul™, QW |y—g| S u?

Proof. This follows in a straightforward manner from the definitions of the
various metric components, Ricci coefficients, and curvature components and

the fact that 3 3
— =1 -2r)v .
o~ (L= 20v ey

Convention 3.1. In the (u,v,HA) coordinates, not all components of the
metric g extend continuously to {v = 0}. Nevertheless, we will refer to the
hypersurface {v = 0} with the understanding that along {v = 0} it only makes
sense to consider the quantities listed in (3.4) and (3.5).

O

Before proceeding, it is useful to note that by differentiating the formulas
in (3.1) we can produce various relations between the Ricci coefficients. We list
the most important ones in the lemma below.

LEMMA 3.2. Let (M, gu) be a self-similar solution or a k-self-similar
solution. Then we have

(V&) 4

N |

2
(3.6) Qtry + Qo trx = = + divh, QXAB+QB)ZAB:
X u u = u
1
(3.7) Qw + %Qw +5L5log 2 = 0.

Proof. See Lemma B.1 of [RSR18] for the proof in the case of a self-similar
solution. The same proof works for the x-self-similar case. O

Observe that any x-self-similar solution g,, in the (u,@, 9A) coordinates
must satisfy the es-Raychaudhuri equation (2.5) along {0 = 0}. This may be
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interpreted as a constraint equation for incoming characteristic xk-self-similar
data. In Lemma 3.3 we compute the precise form of this constraint equation.

LEMMA 3.3. For any k-self-similar solution or self-similar solution, along
{v =0} the following equation must hold:

1 1 1o 4
—divh— Lydivd —  (divd)® = < |¥&b|* — =
(38) U 2 4 u?

‘ 4
+ _—uﬁb log Q — 2 (Lylog Q) (divd),

where we take k = 0 in (3.8) for a self-similar solution. (We note that (3.8) may
be equivalently phrased as an equation for b along S? for b as in Definition 3.1.)

Proof. See Appendix D. O

We emphasize that it follows from Lemma 3.1 that L;log ) extends to
{v =0}. We call equation (3.8) the k-constraint equation.

We can now explain the role of k-self-similarity in the construction of
naked singularities. Recall from the discussion in Sections 1.2 and 2.3 that in
order for the singular point at (u,v) = (0, 0) to formally correspond to a non-BV
singularity in the sense of Christodoulou [Chr93], we desire that the shear of the
incoming cone is non-integrable as u — 0; see also the discussion in item (2) of
Section 1.2. We also desire (see the discussion in Section 1.1.3) for the Hawking

mass m (Si’o) to satisfy that m (Sio) (Area (8370))_1/2 is uniformly bounded
from below as u — 0. For a self-similar solution, every Ricci coefficient v will
satisfy W‘vzo‘g (u,04) = u='h (64) for a suitable function h. Using this, it
is possible to show that the above requirements will hold for a self-similar or
k-self-similar solution only if, for some ¢ > 0, the restriction of the ingoing
shear ¥ , , to {u = —c} N {v = 0} is non-vanishing along a suitable portion of
S?: cf. the Hawking mass calculation later in Lemma 10.3.

For self-similar or x-self-similar solutions, Lemma 3.2 implies Q% 1 B‘UZO
= %(W@b) ap- Thus, in view of the previous paragraph, we are naturally
lead to ask if we can find 9 1p: Q, and bg so that bs has a non-trivial trace-
free deformation tensor and satisfies the x-constraint equation (3.8). However,
Proposition 2.7 implies that this is impossible for self-similar solutions with
% = 0! In contrast, if we allow x to be non-zero, then, as shown in Appen-
dix A, we have an infinite class of solutions to the x-constraint equation where

SThis is conceptually clearest in the case where 2 = 1 and we assume that ba ~ €. In this
case (3.8) suggests that divb ~ ¢* and, along {u = —1} N {v = 0}, equation (3.8) becomes of
the form

atvh = ¢ V&b

*+0(¢) = [ Ivenf = o(e).

This argument can be iterated and suggests that no solutions b exist.
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(W@b) AR 18 non-trivial.” This is the crucial place where k-self-similarity plays
a role in our construction.
We close this section with one final remark about x-self-similar solutions:

Remark 3.4. One may consider a generalization of the notion of x-self-
similar solutions from Definition 3.1 where instead of just being a constant along
{v=0}, s depends on the angular variable £(04), and we have Lyk|,—o=0. (If
the condition Lyk|,—¢ = 0 is violated, one may show that the es-Raychaudhuri
equation cannot be satisfied along {v = 0}.) We will not explicitly consider such
solutions here; however, the possible existence of them will implicitly appear
later in our analysis as we approach the cone {u = 0}; see Section 9.

In the next seven subsections, we will discuss the main steps of the proof
of our main result Theorem 1.

3.2. Degenerate transport equations on S?. In Section 4 we will carry out
an analysis of certain classes of degenerate transport equations on S?. The
linear version of these equations come in two main forms:

(1) The first type is of the form (u+ Lxu+ h - U)A1~~-Ak = F4,...A,, Where x4

is a given vector field on §?, h = Zf:() ci (h(i)) Bt is a given linear
Ap A

combination of (i,7)-tensors on S? for i € [0,k], and Fa,..4, is a given
tensors on S?2. We will furthermore have a smallness assumption on X4
and h. We will show that these equations have unique solutions wu4,...a,
that satisfy suitable a priori estimates. The basic idea is to use the smallness
of X4 and h to treat these equations as perturbations of the identity.

(2) The second type of equation, called the “k-singular equation,” will be of

the form
39 (Lufan— (YEN° (T — sdivbfan ) - 26fan = Hap.

where b4 is a given vector field on S?, we have a Riemannian metric 915
on S?, k is as in Definition 3.1, and H is a given trace-free symmetric
2-tensor on S2. The goal will be to show that there exists a unique solution
fap satisfying appropriate a priori estimates. For a suitable 0 < ¢ < 1
we will have, schematically, that b4 ~ ¢ and x ~ €. In particular, this
equation cannot be treated as a perturbation of the identity. Our analy-
sis will instead be based on exploiting an anti-symmetric structure. This

"The difference with the discussion from footnote 6 is that if we allow & # 0, then we have

1 N
divb = = ’W@b ’ _4k+ 0 (63) ,
and for an appropriate value of Kk ~ ¢, there are no obstructions to finding a solution with

V&b £ 0.
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anti-symmetric structure leads easily to L?-estimates for fap, but we will
have to work considerably harder for higher order estimates. We will also
consider an evolutionary analogue of the k-singular equation on [0, co) x S?:

(310) Lafan+ (Lofan — (VD) oy — 3divbian ) — 26 s = Hap,

This will be treated in a similar fashion to the x-singular equation.

Equations of these types arise in the following fashion: For a k-self-similar
solution, let ¢ stand for one of expressions in (3.4) or (3.5). Then we have that
10) (u, v, 9‘4) =u"% (%, 9’4) for a suitable integer ¢ and some ¢ (a:, 9‘4) that has
a regular limit as « — 0 . In view of this, we will have that

OVsp = —%QV4¢ + Ly¢ + lower order terms.

Since we will also have that vQQV4¢ — 0 as v — 0, it is thus clear that whenever
we restrict a QV3¢ equation to {v = 0} we will obtain an equation of the form

Ly¢ + lower order terms = 0.

We will need to construct solutions to these equations in certain cases, and
in all of these cases except when we study Q7'y, these equations will be of
the type mentioned in item (1). When we carry out this same procedure for
Q~1%, the restriction of the equation for QV3 (Q_l)z) leads to the study of
equation (3.9). Lastly, equation (3.10) will arise when we construct outgoing
characteristic initial data for our solutions. We will want the corresponding
Q1% to be self-similar to leading order as v — 0, and thus the equation for
OV (Q_lfg) will lead to an equation of the form (3.10) that must hold along
this initial outgoing null hypersurface to leading order as v — 0.

Finally, we will use the linear theory developed to undertake a detailed
analysis of certain classes of solutions to the nonlinear s-constraint equation (3.8).

Remark 3.5. Though we will not pursue this direction, we could derive
formal expansions for k-self-similar metrics near {¢ = 0} in the spirit of
Fefferman-Graham [FG85|, [FG12|. We note, however, a significant difference
between our setting and that of Fefferman—Graham; namely, the formal expan-
sions of [FG85], [FG12] are algebraic in that successive terms in the expansion
are given by rational functions of (angular derivatives of ) previous terms in the
expansions, while in our setting deriving even a formal expansion will require
one to solve degenerate transport equations of the type discussed above.

3.3. Constructing the characteristic initial data sets. In Section 5 we con-
struct classes of characteristic initial data sets along the hypersurfaces {0 = 0}
N{u € [-1,0)} and {u = =1} N {0 € [0,v9)} for some 0 < € <« vy < 1.
The desired solution for our main result Theorem 1 will be constructed from
this characteristic initial data. As we have mentioned before, the solutions we
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construct will not be globally k-self-similar; nevertheless, they will become ap-
proximately r-self-similar as =~ — 0. This approximate r-self-similarity will
be reflected in the construction of the characteristic initial data sets.

Before we describe the construction we make the following point about
working in the (u,ﬁ,@A) coordinates versus the (u,U,HA) coordinates: Strictly
speaking, the local existence results must be applied to the metric in (u, 0, 0‘4)
coordinates, since it is only in these coordinates the full metric g extends reg-
ularly to {0 = 0}. However, any statement in the (u, 0, HA) can be translated
into an equivalent statement in the (u, v, 0‘4) coordinates and, as we have men-
tioned before, it is often more convenient to work with metric and double-null
quantities defined in the (u,v,#4) coordinates.

We return now to the discussion of characteristic initial data. Keeping
Lemma 3.1 in mind, the incoming characteristic data we may prescribe are
the restrictions to {v = 0} of v*Q, b4, and 4§ 4> Where, £ > 0 is, for the
moment, a free parameter. Since the change of variables (u,v) — (Au, Av)
leaves the hypersurface {v = 0} invariant (keeping Convention 3.1 in mind),
we immediately obtain a notion of being x-self-similar along {v = 0}. Namely,
the incoming characteristic initial data will be k-self-similar along {v = 0} if
there exist a function Q(64), a vector field b4(67), and a Riemannian metric
gAB(GC) on S? such that

(v”Q,bA,gAB) lv=0 = ((fu)”Q,u_llv)A,UQjAB) .

Furthermore, our choice of incoming characteristic initial data must satisfy the
k-constraint equation (3.8). We allow as our initial data any solution to (3.8)
that satisfies certain regularity and smallness assumptions and if b takes a
certain specific form to leading order in the small parameter € that will measure
the size of b|,—o; see Definition 4.5. In Appendix A we construct an infinite
class of such admissible solutions. For a small constant 0 < € < 1, for all of
these solutions we will have that

(3.11)  |b] ~e, ’d/fvb| < €, lo| < €, |log Q] < 2, K~ €2

where ¢ 4B = u2e2¢§ AB for g AB denoting the round metric. (We will suppress
in this introductory section certain ¢~® losses for 0 < § < 1.) Having thus
determined this incoming data, we set

(Q(in), (), 9&3) = ((—U)HQ,U_%A?“%AB) ‘

The next piece of characteristic data we need to define is the value of the
torsion (4, or equivalently, 4 restricted to (u,v) = (—1,0). From Lemma B.3
and the choice of incoming characteristic data above, in the eventual solution
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N4 satisfies the following equation along {v = 0}:

(3.12) VaqubnA'i‘g (z + div b) na + % ((Y&b) -n) ,

— 2V 4 (Lylog Q) — div (V&) , + %WAdiv b,

Note that 9, + bY 4 has integral curves which are tangent to {v = 0}, and
the right-hand side of (3.12) will be O (eu™?). In particular, keeping (3.11)
in mind, it is straightforward to see that solutions of (3.12) with generic data

|—3‘*‘C6 for a suitable constant C,

posed at {u = —1} will satisfy supge || 2 |u
independent of €. This behavior is more singular than the k-self-similar rate of
|u|~! and we would not be able to effectively control the resulting solution on
a long enough time-scale. We will thus need to fine-tune the initial data for 74
so as to arrange for 14 to satisfy |n| ~ |u|~! (cf. Proposition 2.6). To see how
we might carry out this fine-tuning, it is useful to first note that if (M, g,.) is

k-self-similar, then we would have both |n| ~ |u|~! and that

1 R 1/2
(3.13) Va,+bMAlv=0 = Lsna — B ((W@b) ‘?7)14 3 (u + div b) NA-
(This last expression is derived by using that in a x-self-similar spacetime and in
a coordinate frame we would have that 14 (U, U, HB) =14 (%u, HB) .) Plugging

(3.13) into (3.12) and restricting to {u = —1} leads to the equation

(3.14) Lyna+ (—2+divd) na =2V 4 (Lylog Q) — div (YD) , + %WAdiV b.

Using the theory that we will develop in Section 4, we will be able to show that
this has a unique solution. This unique solution is the prescribed value that
we use for 1 at (u,v) = (—1,0).8

Now we come to the outgoing characteristic data (UHQ(Out),g(Xg)) along

(U,GA) € [0,v] x S?, where 0 < v < 1 is a constant that we may freely
prescribe. We will take v (0ut) simply to be constant in the v-direction. (The
value of v"Q) at v = 0 is fixed already by the value of v"Q(") at y = -1.)
Since the value of ¢ , , is already determined at v = 0 and tr x is determined

by the constraint (2.41), the prescription of gfg;t) may be considered roughly
equivalent to the prescription of Q= 1{p along v € [0,v] and Q! try at v = 0;
see the proof of Proposition 5.4 for details. The problem of prescribing Q! tr
is similar to 774; generic choices of Q! trx along (u,v) = (—1,0) would lead
to Q~!try having a singular behavior as v — 0, which is more singular than

8Note that if we solve the transport equation (3.12) for  from initial data solving (3.14),
then by uniqueness of solutions to transport equations, it must be the case that in the
coordinate frame na (u, GA) =14 (07) and that 7 solves (3.14) when restricted to {u = —1}.
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the s-self-similar rate. Just as with n4 there is a specific value of Q= !try,
obtained by solving the equation
(3.15)

1 2
[,b(Qfl tr X) + (Qfl tr X) (u +divb + f + 2L log Q) = —2K +2divn+2 |17]27

which leads to a behavior consistent with k-self-similarity. It is this unique
value of Q7 !try determined by this equation and the analysis of Section 4
that we take for Q71 tr X! (u,0)=(~1,0)-

The prescription for Q!¢ 45 will be more complicated than that for n4
and Q 1try. We need to pose this for v € [0,v] but it will be conceptually
clarifying to first focus on the prescribed value of Q 'y ap at (u,v) = (—1,0).
In the eventual solution, a consequence of (2.7) is that along {v = 0} we will
have that Q™1 45 satisfies the following propagation equation:

(3.16)

R 1/2 . 1. 1A
Vo, +b (Q_IX)AB "‘5 (; +div b) (Q 1X)AB T (Q 1X)AB

= (V&) 45+ (167) 4y — 3 (7 1) (VD) 15

where n4 and Q7 'try have already been determined in the above analysis.
This equation is schematically of the form

2 @1 4 - 2 (@) = 0 ()

Note that whether or not solutions Q7 1¥ap to equation (3.16) with generic

1. 2K
(3:17) V15 (27'%) 45 + -

data at u = —1 satisfy the s-self-similar bound |Q7'%| < |u|~! depends on
the O(e) term on the left-hand side of (3.17)! Using the theory developed in
Section 4, one can in fact show that generic solutions do not satisfy the k-
self-similar bound. Thus, as with n4 and Q~'try we need to fine-tune the
value of Q7'X4p on (u,v) = (—1,0). We start by observing that if (M, g,,,) is
k-self-similar, then we would have both [Q7'%| ~ |u|~ and that

(3.18)

. L1 1. .
Vo tb (27'X) 4 lo=0 = uw Q%) ap + Lo (A7) 45 — 2 (QX)C(A XB)C-
Plugging (3.18) into (3.17) leads to
(3.19)

1. 1., 2K 1. A\ C 1.
Ly (Q7'%) 45— (5‘1/{"{’_;—251110%9)9 'Xap — (V&b) (A (@ 1X)B)C

= (Yon) 45 + (190) 4 — % (@7 trx) (YD) 4

which is essentially the s-singular equation (3.9). Using the theory developed
in Section 4 we will be able to show that there is a unique solution Q= 'x 5 to
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this equation; however, we will only have the estimate |Q 71 X|y—o| ~ ¢ !|u| 7L,
(Conceptually, the source of the amplification can be easily understood if one
simply drops the anti-symmetric operator term in parentheses in (3.9) and
refers to (3.11).) In particular, this implies that for 0 < % < 1, the best
L> bound we can hope to propagate for xap into our spacetime (M, g, ) is
197 X ez ) S

Given the largeness of x 4p in L°°, we can only hope to control the solution
on a long time-scale if xy4p becomes small after integration in v. In fact, we
will eventually show something much stronger; that is, we will eventually show
that |¢| ~ €elu|~ once % > e=(©97' To understand the possible behavior
of xap for _Lu > 0, and how that affects what characteristic data we should

v

impose, we need to consider equation (3.16) for v > 0. For 0 < % < 1,

u
we expect (optimistically) that the right-hand side and the coefficients of the

—. Furthermore,

e Hul7t

Q'Y ap on the left-hand side will be roughly constant in
just as along {v = 0}, we expect that the initial data for Q~'y4p along {u =
—1}N{0 < v < 1} needs to be fine-tuned in order for Q!¢ 45 to have a bound
as u — 0 that is consistent with x-self-similarity. This suggests that we make a
self-similar ansatz for Q71X 4, freeze the coefficients of (3.16) with their values
at {v = 0}, and then try to understand the set of solutions to (3.16). Since the
resulting equation involves only k-self-similar quantities, it suffices to consider

the restriction to {u = —1} N {0 < v <« 1}. We then obtain the following
analogue of (3.19) along {u = -1} N{0 <v < 1}:
(3.20)

vLy, (Q_IX)AB + Ly|,—o (Q_IX)AB

1 . A 1
— (2divb + 2k — 2L log Q) lo=0 (Qflx)AB — ((W@b) \UZO)C(A (Q 1)()3)0

= (Yén -+ nén— 1 (@ trx) (VED)) oo
AB

Equation (3.20) is a (degenerate) transport equation that, after the change
of variables s = —log(v), is of the same essential form as equation (3.10). The
value of Q71X 4p that we will impose along {u = —1} will be, to leading order
as v — 0, a suitable solution to equation (3.20). We determine this “suitable
solution” as follows. Along integral curves of 9, + b4Y 4, equation (3.20) be-
comes an ordinary differential equation. In particular, solutions to (3.20) are in
one-to-one correspondence with initial data for (3.20) prescribed at 2 . Our
desired Q71X 4p is then obtained by solving (3.20) with the “initial condition”
that Q7 '{apluv=y = 0. Using the theory developed in Section 4 we will see
that this solution converges as v — 0 to the unique solution to (3.19). Thus,
we see that this choice of data effectively drives down Q 'y ap, as v increases
from 0, from a value of size €' to 0 in a fashion that, to leading order, is
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consistent with x-self-similar bounds. In fact, we will see that Q 'y ap ~ € for
UNS [C’ exp (— (Ce)fl) ,Q} for a suitable constant C, which is independent of e.

The fundamental downside of this procedure is that Q= 'y 45 will only be
Hélder continuous as v — 0.2 This restricts the regularity of the solutions we
construct. On a more technical level, this has the effect that ||Q*204||Lz(82_1 N

v IO a5y 5 0 that, among other things, means that a4p is not in L2 and
cannot be controlled directly by energy estimates. However, the most singular
part of g will behave in an approximately x-self-similar manner, and we will
be able to effectively subtract it off.

Having determined our initial data, we may apply Theorem 2.4 to obtain
the existence of a solution in a region as follows:

(0,0)

(_17 OSQ»

Note that the region of local existence obtained by Theorem 2.4 degenerates as
we approach the point (u,?) = (0,0) because the size of our incoming initial
data is diverging as we approach u = 0 along {0 = 0}. In particular, we do not
have any quantitative control of the curve represented by the dashed line as it
approaches (0,0).

3.4. Bootstrap argument for region I. In Section 6 we will carry out a
bootstrap argument and eventually show that the solution constructed in the
previous section may be extended to the region {0 < - < v} N {u € (0,-1]}:

(0,0)

X
u

(_17 03\(\})

Recalling that 0 < ¢ < v < 1 and that Q'Y ag|y—o ~ €1, we see that

v

existence up to the hypersurface - = v may be a considered a “semi-global”

existence result. The scheme we shall use to control the solution in this region

9We note that this loss of regularity appears to be a genuine feature associated to the
construction of k-self-similar solutions that become small away from the cone {# = 0}. Thus,
to construct more regular naked singularities, one must either deviate from solutions based
on k-self-similarity or give up on obtaining smallness away from {¢ = 0}.



NAKED SINGULARITIES FOR THE EINSTEIN VACUUM EQUATIONS 271

is very close in spirit to the scheme used in the work [RSR18], and we refer the
reader to Section 2 of [RSR18] for an overview of how one carries out scale-
invariant estimates for the curvature components and Ricci coefficients. Here
we will simply note the key differences of this paper with the work [RSR18|:
(1) As in [RSR18|, we will not carry out energy estimates directly with null
curvature components, but instead use certain renormalizations of them.

Keeping Lemma 3.1 in mind, we will define

~ . A2 . 2 . .
ayp = Vaup - lim Qayp,  f,=068,-limQs,,
p=p—limp, oc=o0— limo.
v—0 v—0

Here the limits are taken in a Lie-propagated frame. Other than the
weighting by the lapse 2, this is analogous to the scheme from [RSR18].
Since 0 < € < v, unlike in [RSR18], we cannot compensate for the large-
ness of xap (and hence 34) with the smallness of . Instead we will
explicitly subtract off a leading order self-similar ansatz for yap (and

10

>
hence (4). More specifically, we define Q!¢ 5 by self-similarly ex-
>

tending 9*12A3|u:_1 to the whole spacetime, and then define Q 2a4p

> >
and Q7134 to be the parts of aqp and B4 that are sourced by Q7 '¥ 45
in (2.4) and (2.18) respectively; that is,

0 %0 = (L) (W) L. (ﬂflx) ,

> . > >
Q7'8, = —div (9_192> — 7B (9_192) g"c.
A AC

Then we set

>
~ A2 2
aap = “aap — QU “aap,

= o i . [1 _ 1 _
Ba= QA= By~ Jim | 0¥ (@7 ), — gna (2 x|

We will find that a4 and B 4 are both vanishing as v — 0 and have size e.

(2) The renormalization procedure for a4p and B 4 produces inhomogeneous
terms in the Bianchi equations that are large in L*°. However, when car-
rying out the energy estimates, these inhomogeneous terms are always in-
tegrated in v and these integrals will be sufficiently small.

10We note, however, that an analogy may be drawn to the renormalizations of « carried
out in [RSR18] in the n > 2 case.
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2,,—1

v, 1

(3) The Ricci coefficient w will satisfy, in general, Qw ~ € Because v~
is not integrable, we cannot treat such terms perturbatively. Thus, we will
always multiply through with an appropriate power of the lapse €2 so as
to remove w from the equations. This elimination of w in fact removes
the need to have any estimates for w in our bootstrap norm. The correct
power of the lapse turns out be completely determined by signature con-
siderations; that is, you simply multiply any Ricci coefficient or curvature
component of signature s by Q°.

(4) As opposed to the situation studied in [RSR18|, the Ricci coefficients are, in
general, non-vanishing as v — 0. This will force us to work with renormal-
izations of the Ricci coefficients that are analogous to the renormalizations
of the curvature components.

3.5. Bootstrap argument for region II. In Section 7 we will carry out a
bootstrap argument and eventually show that the solution constructed in the
previous section may be extended to the region {v < = < v in{u €
(0, -1} Nn{v < v}:

(1,08

In this region we will have that u and v are comparable. Furthermore, we
will have shown in the previous section that the largeness of x 45 has dissipated
by the time the hypersurface =~ = v is reached. These two facts makes the
analysis considerably simpler than that of region I. In particular, since the
—, this region may be considered to be a finite-in-
time local existence result. The key technique is to use conjugation of various
equations by exp (D%) where 1 < D < ¢! to generate lower order terms of

good signs.

natural “time” variable is

3.6. Shifting the shift and gluing in an asymptotically flat cone. In Sec-
tion 8 we will carry out two preliminary changes to the solution constructed in
Section 7.

First we will equip the portion of the spacetime covered by {1 < & < v}
with a new double-null foliation where the shift vector is in the e4-direction; see
Remark 2.2. We briefly explain the reason for this: In the original double-null
foliation, the shift vector b satisfies the propagation equation

(3.21) Lo, b4 = —4Q%¢A.
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From the analysis of Section 7 we will have that |b‘%:271| ~ €, which im-

plies that in the Lie-propagated coordinate frame, bA|_L:Q—1 ~ ev L.

let @ < 0 and consider a point (@,?) to the future of % = v~

Now

If we try
to integrate (3.21) from % = v~ ! to control b4, the best estimate we could
possibly obtain is

ol S e,

which severely blows up as @ — 0. (In principle, there could be cancellations
with the right-hand side of (3.21), but we will not be able to exploit this.)
However, once we have shifted the double-null foliation to put the shift in the
ey direction, then instead of (3.21) we will have

(3.22) Lo, b = 40%¢A,

This equation will allow us to obtain the desired estimates for b in a straight-
forward fashion.

The second important change will be to glue in an asymptotically flat cone
H along {u = —v?} (which will thus be completely contained in the region
{% > v~1/2}) and apply a local existence result to extend our solution to the
following region:

(_17 03\(\»
We will pose data along H so that by a domain of dependence argument the
solution in the region I and I agrees with the corresponding subset of the
previous solution produced from Section 7. We emphasize that at this step of
the argument, we will not have quantitative control of the region of existence
to the future of H.

3.7. The bootstrap argument for region III. In Section 9 we will carry out
a bootstrap argument and eventually show that the solution constructed in the
previous section may be extended up to {u < 0}:
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(_17 OSQ»

We now explain some of the key ideas for this bootstrap argument:

3.7.1. Ezxpected bounds. The basic expectation as we approach u = 0 for
{v < 1} is that the solution may be modeled by a k-self-similar solution where
the role of {v = 0} is replaced by {u = 0}, and where x may acquire some
angular dependence in the sense of Remark 3.4. However, there is a very
important difference with the analysis that we undertook along {v = 0} and for
0 < 2% < 1t Since we will not require precise information about the u — 0 limits
of all of the double-null unknowns in order to close our bootstrap argument,
it will turn out that we will not need to obtain precise information about the
lapse Y, shear X , o, or curvature component agt

Due to the asymptotically flat cone H, we do not expect the solution to
be exactly modeled on a k-self-similar solution when v > 1; nevertheless, we
will propagate scale-invariant bounds. In particular, for all Ricci coefficients
Y # w,n4, X 45 and curvature components ¥ # a4, we expect the following
bounds to hold in region III:

(3.23) Q7" < ew™ ! [RBS ev 2,

where we let s denote the signature of the Ricci coefficient ¢ or the curvature
component W, and ¥* denotes the difference of ¥ and its Minkowski value.
Note that in contrast to the situation in region I, we will want to eliminate
w from our system, and it is thus natural to weight quantities with Q7° as

1 The main reason for the differences in the study of the solution as u — 0 versus v — 0 is
the following: Our various estimates will employ |u| and v weights. In order to generate lower
order terms of a good sign, in these weights the power of |u| will be generally be non-negative
and the power of v will be non-positive. In some of the situations when the power of the
v-weight is strictly negative, then we will need to subtract off the leading behavior as v — 0
of our Ricci coefficient or curvature component so that our corresponding initial flux is finite.
No analogous issue occurs in the region u — 0.
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opposed to 2°. The lapse ) will satisfy the following bound:

log (_%) ‘

(In principle, one expects to be able to replace € with € in (3.24) but we will
not need this improvement and thus will not try to establish such a bound.)
In analogy with the behavior of a4p near {v = 0}, for fixed v, we expect

(3.24) [log Q| S e

that a4 will be singular as v — 0. In our analysis of region I, we posed
explicitly the value of x 45 along {u = —1}, and we could thus use this value to
effectively subtract off the singular behavior of a4p. As we approach {u = 0}
it is less straightforward to regularize o 45, and we will instead work with
the renormalized Bianchi equations where a4 has been removed; see (2.31)-
(2.36). Similarly, we will forgo explicitly renormalizing out the most singular
self-similar behavior for ¥ 4B Instead, for some 0 < p < 1, we will propagate
the following bound:
v \P
(3.25) )9*13’ <e ( u) v,

Note that this is weaker than the expected bounds

’Q_lz’ < min ((1 + [log” (%) D 6,6_1) ,

which are the true analogues of the bounds satisfied by xap near {0 = 0}.
For w, in analogy to the scheme used in region I, we will multiply through

by a power of the lapse 2 that eliminates w. Thus we will never need to estimate
w in the context of the bootstrap argument.

In contrast to region I, we will propagate estimates that are consistent with
na blowing up as u — 0; more concretely, we will have, for some 0 < p < 1,

v\’ 4
(3.26) |n[§e(_—u> v

Conceptually, the reason we must allow for this is because of the potential
existence of k-self-similar solutions where x has angular dependence; see Re-
mark 3.4. If such a solution existed, then n4 would blow-up logarithmically as
u — 0.

3.7.2. Energy estimates. We now explain the basic idea for our energy esti-
mates. Since we are working with the renormalized Bianchi equations of [LR17],
our “first” Bianchi pair is (8, (p,0)). We write the equations schematically as

(3.27) V4 (28) 4+ (Qtrx) (28) y = =Vas+ (V)0 +---
(3.28) QV3p = —div (2B) + -+,
(3.29) OV36 = div* (Q8) +-- - .
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Written in this way, there are no appearances of w in the equations (3.27)—
(3.29). Next, we would like to conjugate these equations by a suitable weight
function w, contract (3.27) with w3 ,, contract (3.28) with wp, contract (3.29)
with wa, and then integrate by parts. It will be a consequence of our bootstrap
assumptions that within region III,

2
(3.30) Qtry — —| S
v

SHIS]

With this in mind, we let 0 < p < 1 and set

w = (_—u>pv*3/2.
v
(In reality, to avoid certain logarithmic divergences, we use the weight @ =
(77“)101)_3/2(—11)_‘s and then multiply the final estimate by (—u)%, but we will
suppress this point for the introduction.)

We obtain
3 _
(3.31) Wa (w0) , + ((QtrX) - <2 +p> v 1) S
==Y (wp) + (*W)A(w6)+w(~--)A,
(3.32) OV (wp) + _ﬂuwp = —div (W) +w (),
(3.33) OV (w5) + _ﬂuwa — div* (wQB) +w ().

Using (3.30), we see that all of the lower order terms produced by scheme are
positive; furthermore, in the p and & equations, the lower order is proportional
to v~ which is a good weight since we are in a region where - < L

A similar scheme is used for the rest of the Bianchi pairs. Note that the
(—u)~! weights in the lower order terms will produce very good spacetime esti-
mates for all curvature components except for § ,; in particular, the lower order
term proportional to tr x is only important in the analysis of 3 4 8 equation.

For the control of the nonlinear terms, the key observations are the ab-
sence of nonlinear terms that involve contractions of 8, and % 4p and the
absence of any nonlinear term with 74 in (2.36). Finally, in order to apply
Sobolev inequalities, we will also need to commute with angular derivatives;
these commutations will be carried out in a way that avoids the creation of
terms containing 14 in the V4 equations; see (2.37).

3.7.3. Integrating transport equations. We close this sketch of our scheme
for the bootstrap argument with a discussion about integrating transport equa-
tions. For every double-null quantity y, other than Q, w, X AR’ B 4 A and
a,p we will have a V3 equation of the form

Vay +awy = --- .



NAKED SINGULARITIES FOR THE EINSTEIN VACUUM EQUATIONS 277

Here a € R is a suitable constant, which may be determined by the signature
of y. Letting s denote the signature of y, we may derive from this equation

VU(Q*Sy):gf(...)’

where the terms in the --- all are expected to have regular limits as u — 0.
Since Q2 blows-up slowly as u — 0, we can easily integrate these equations
in the u-direction to obtain good estimates for y. Note that even if the only
estimates available for the terms in the --- blow-up as u — 0, as long as the
rate is integrable, the estimate will still close. This is why it will not be a
problem that our energy estimates involve weights that degenerate as u — 0.

For the estimates of €, Xap M4 and QA’ we will only have access to V4
equations. (Note that in our bootstrap argument we will not estimate w or
a,p.) More specifically, we will have that (Q, X AB’nA) satisfy equations of
the following forms:

OV4logQ =0 (ev™!),
_ 1+ 0 (e) _ _
1a 1¢ _ 2
V4 (271K, oma) + (v (2718, 5o ma) = O (ev72).
Integrating these from the hypersurface = = v~!, it is immediately clear
that we cannot expect to show that these quantities are bounded as u — 0;

cf. the discussion of equation (3.21) above. Instead we will close the bootstrap
argument with the bounds (3.24), (3.25), and (3.26).

3.8. Incompleteness of future null infinity, the (u,fz,@A) coordinates, and
the Hawking mass. In Section 10 we will first truncate our solution to region
to {—v? < u < 0} so that we obtain a globally hyperbolic region:

Then we will show the solution obtained has an incomplete future null
infinity in the sense of Definition 1.1 (this will be straightforward given the
estimates we will have already established), we will define global (u,v,6) co-
ordinates by setting © = v!72% (see Definition 3.1), and finally conclude the
proof of Theorem 1 by computing the Hawking mass of each sphere SQZL’O to
establish (1.4).
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4. Degenerate transport equations on S?

In this section we will establish existence results and a priori estimates for
various classes of linear and nonlinear PDE’s that will show up in the context
of setting up our characteristic initial data.

We let T(5:k) (S2) denote the space of (s, k)-tensors on S?, and S (SQ)
will denote the space of symmetric trace-free (0, 2)-tensors. Using the covari-
ant derivative for the round sphere, we may define the corresponding Sobolev
spaces HJ. A metric Jap € H™ax(2.3) als0 allows us to the Sobolev spaces

HI (TR (82)) for j =0,1,... by

meiﬁwwu
=0

where, in general, we let ¥4 denote the covariant derivative associated to
a metric ¢ , ,. We will denote the covariant derivative corresponding to the
round sphere by V4. We will write integrals with d Vol and d Vol to denote
integration against the volume forms of ¢ AB and g AB respectively, and dfv and

2’

div to denote the divergence operators of ¢ 4p and g 4 Tespectively.

We collect various facts about Sobolev spaces inequalities that we will use
later in the following lemmas. We start with two basic Sobolev inequalities
on 2.

LEMMA 4.1. On the round sphere, we have, for any tensor u,

2

@1 Nulle Sp llull7

Proof. This simply follows by applying FEuclidean Sobolev inequalities in
suitable coordinate charts. ([

. 1—2 1 1
Valf <o fullpe £ lula flulF,

It will be useful to compare Sobolev spaces generated by various metrics
4 4 and those generated by the round metric g AB"

LEMMA 4.2. Leti > 2, k > 0, and 9 an be a Riemannian metric on S?
satisfying at least one of the following two assumptions:

(1) We have ¢ , , = 62¢§AB for ¢ € H (S?).
(2) We have ||g —gHHZ < C(i, k) for a suitably small constant C(i,k) that
depends only on i and k.

Then we have that for every (0, k)-tensor w,
Nwl| i ~ige Wl g -
Proof. This is a straightforward consequence of Lemma 4.1. O

The following well-known lemma is also useful.
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LEMMA 4.3. Let wy and wy be tensors on S*. Then, for i > 2, we have
(4.2) lwiwall g S [lwill g lwall g -

Lastly, we record the formula for the commutator between a Lie derivative
and a covariant derivative.

LEMMA 4.4. Let ¢ , , be a Riemannian metric on S?, X4 be a vector field
on S?, and Hp,..p, be a tensor on S?. Then we have

k
V4. Lx| Hp,..B, = Z MOTpacHg, .C.p,,
i=1
where .
Mlape = 5 (Y4780 + V5N ma0 - VoS mas) |
and X7 denotes the deformation tensor of X .
Proof. This is Lemma 7.1.3 in [CK93]|. O

4.1. First order perturbations of the identity.

Definition 4.1. Let X4 be a C' vector field on S?, and let
k

h=3 (),
2

By-B;

7

denote a linear combination of tensors h(Y € T with each h(® continu-
ous. Then we define a differential operator P acting on tensors u4,..a, €

ol (T(O,k) (SQ)) by
Pug,..a, = (u+Lxu+h- U)Al"'Ak )

where we do not specify which indices the contraction (h - u) Apa, is taken
with respect to. (Note, however, that this will always be a k-tensor; e.g.,
Bi--B;
hA1~~-Ai ' UCY+Cy—iB1+B; € T(O’k)-)
Our goal in this section will be to establish a theory that yields existence
and uniqueness results and a priori estimates for solutions u to

(4.3) Pug,..a, = Fa,...a,,

whenever X4 and h satisfy suitable regularity and smallness assumptions. Ul-
timately, because of the smallness assumptions, we will be able to treat the
operator P as a perturbation of the identity. Let M > 0 be a non-negative
integer. Then we define

Ay = sup HVJX‘
0<yj<M+1

+ sup HVJh’
L2(S%)  o<j<M

12(s2)’
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where the L? spaces are defined with respect to the round metric. We will
always work with X and h that satisfy A2 < co. Note that, by Lemma 4.1, we

will thus have H%XHLOO 4B oo S Ao.
The main result of this section will be the following:

PROPOSITION 4.5. Let M > 2 be a positive integer. Then, if Fa,..a, €
HM (T(O’k) (SQ)) and Asg is suitably small, depending on (0,k) and M, and
Apr < 00, then there exists ua,...a, € aM (T(O’k) (SQ)) solving

(4.4) Puy,..a, = Fa,..a,,

and such that moreover Lxua,..a, € HM (T(O’k) (SQ)). We also have that
UA,...A, Satisfies the estimate

Null gar + 1 Lxull gar Skorar (Ane + 1) [|F || -

Finally, if wa,...a, is another solution to (4.4) with the same right-hand side
Faya,,wa,...a, € L?, and Lxwa,...a, € L?, then we must have that WA Ay, =
UAq Ay, -

In order to prove Proposition 4.5 we will introduce an elliptic regularization
of P:

Definition 4.2. For every q > 0, we define the operator
P@ = p_gA,

where A is the Laplace—Beltrami operator associated to the round metric g AB"

Since the operator P is elliptic, it is straightforward to establish exis-

(9)
Aq---

tence and uniqueness for solutions to Py LAy = Fya,.

PROPOSITION 4.6. Let M > 2 be a positive integer, g > 0, Fa,..a, €
HM (T(O’k) (Sz)>, Ay < 00, and As be sufficiently small independently of q.
Then there exists a unique uffl)...Ak e HM+2 (T(O’k) (Sz)) that solves
(4.5) POUY = Fa,.a,.

Proof. We start by showing that ker (P(‘I)) = 0. Indeed, suppose that
WA, ..A, € H1 (T(O’k) (SQ)) is a weak-solution to

(4.6) (w—i—.CXw—l—l“L-w—qﬁw)Al._Alc =0.
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Note that the divergence theorem, a straightforward integration by parts, and
the Sobolev inequality from Lemma 4.1 yield that

| (exwu)avor = —C£x] . ol
> ~CAz [[wllZ

for some constant C' that just depends on k. Thus, taking the inner

s%AB
product of (4.6) with way,...4,, integrating over S?, and integrating by parts
leads to the following identity:

(4.7) /82 [(1 — CAgy — ||| ;) [w]* 4 ¢ |Y7wﬂ d Vol < 0.

Thus, Ay suitably small (and the Sobolev inequality (4.1)) implies w4, ...4, = 0.
The adjoint of P@ is clearly of the same essential form as P@, and thus
the same integration by parts identity also implies that ker ((P(‘J)) ) = 0.

Therefore, by standard L2-elliptic theory, given Fpia, € HM (T(ka) (SQ))
there exists a unique ufgl)mAk € HM+2 (T(O’k) (82)) solving (4.5). O

Now we turn to proof of Proposition 4.5

Proof. Let us fix some k throughout the proof and allow all constants to
depend on them. For each ¢ > 0, we may appeal to Proposition 4.6 to produce
()

a solution u Ay Ay, to equation (4.5). Our plan will be to show that there exists

UA,...a, = limg_o uiqu)---Ak that solves (4.4) and satisfies the desired estimates.

We start by establishing estimates for uffl)__ A, that are uniform as ¢—0.

Repeating the integration by parts that lead to the identity (4.7) now estab-
lishes the basic estimate

(4.8) /((u@>‘2+q‘%u<q>(2>d%m/ 7|2
s2 52

Next, we observe that an integration by parts and Lemma 4.4 establish the
following inequality:

AuD, L xu DY d Vol
q/§,2< X >g

> —Cq/ Uﬁxg} ‘%u(q)r + ‘Vﬁxg) ‘%u(q)‘ )U(Q)H d Vol
SQ
o 2 2 o
> —oq/SQ {(A2+A3) ‘vu@‘ +A3)U<Q>‘ }del.

In particular, we can contract (4.5) with £ Xuffl)_” A, integrate by parts, and

add the result to a suitably large constant times the estimate (4.8), choose ¢
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so that gAs < 1, and then establish that
2 0 2 2 . 9
(4.9) / (‘u@( +q (vu@‘ + ‘Exu(q)‘ ) dVol < / |F|? d Vol.
S2 S2
For higher order estimates we will need to differentiate the equation. Commut-
ing through by VM produces the following equation:
(4.10)
(%Mu(q) + Lx (%Mu(q)) —q (A (%Mu(q)) + [ﬁM, A} u(q))

+ [%M,Ex} ul® 4+ vM (h . u(‘I)) )Bl-uBMAl---Ak = %MFBl---BMAlu-Ako

Let us examine more closely the commutator terms. We have, using Lemma 4.4,

(4.11)
M-1
[%M,/CX} ugl)...BMAl...Ak = ZO (O (%M_%Xg) '%iu(q)>31...BMAl...Ak ’

From the definition of the curvature tensor, we also have
o o M o .
(4.12) [V A]u®| Sar 37 |Vl
i=0

Now we contract (4.10) with %MU(BEZE"'BAIAI"'AIC and integrate by parts as
before. We end up with the estimate (using only that As is sufficiently small)

/ <‘@Mu(q)‘2 +q WMHu(q)‘Q + ‘EX (@Mu(q)) ‘2) d Vol
S2
(4.13) < [0V o [0 A)
S2
+ H@M,Ex] u(Q)‘Q + )VM (h . u(q))ﬂ dVol.
Next we will examine the various terms on the right-hand side of (4.13). Us-

ing (4.12) and an interpolation inequality, for every 0 < p < 1, we may easily
establish that

(4.14) q/S2

2

[@M, A} u(q)r d Vol <M q Hu(q)HﬁM
2

S S A )

HM+1

L
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Taking p sufficiently small we can thus combine (4.14) with (4.9) and (4.13) to
establish

(4.15)
[ (o foreso o)

Sumr /SQ U@MF)Q +|F)? + ‘ (VM Lx] u(‘Z)‘Q + ‘%M (h-u(q))ﬂ .

. 2
Next we turn to the term ) [VM, L’X] u(q)‘ . Using (4.11) and interpolation we

have
L

6M+14X’2 Wiu(q)F

. 2 M1
VM L] ] d Vol Su Z/
i=0 /S?

(4.16)
S,M AM U%Mlu(q)r + ‘u(q)ﬂ d\o/Ol.
S2

Similarly, one may establish that

(4.17)
vM (h.u@))fd\"/ol
%u(q)rd\ofol—i— C(M) Ay “@Mlu(tz)‘2 n ‘u(q)ﬂ e

L,
< Az /
S2 S2

Combining (4.16) and (4.17) with (4.15) and (4.9) and carrying out a straight-
forward induction argument, we obtain the desired uniform estimate

(4.18) [w @], +[|exu®]|, ., Sue (Anr+ 1) 1Pl

(Note that we have simply dropped the higher order term on the left-hand side
multiplied by g.)
Now we turn to a study of the limit of the uffl)._.Ak asqg— 0. Let 0 < ¢p <

q2. We may easily derive
((u(qz) _ u(tn)) 1+ Lx (u(qz) _ u(fn)) +h- (u(qz) _ u(q1))

(4.19) g (ul®) @)

= _ Ao, (@1)
Ay-Ay (QQ Q1)AUA1~--Ak-

Contracting (4.19) with a suitable linear combination of (u(‘p) - u(‘h))A A
L Ag

and Lx (u(qz) — u(‘”))A " and integrating by parts as we have done above
1Ak

then yields

(4.20)

Hu(qz) — la)

L + HEX (u(q2) _ u(lh))‘

Sl — a1l HAU((“)

2z~

L2
S (14 As) a2 — al [1F]] = -
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In the last inequality we have used (4.18). In particular, U(X1)~--Ak and EXuEfl)mAk
form Cauchy sequences as ¢ — 0 in L2. Moreover, by interpolating with (4.18)
we have that both uffl) Ay, and £ Xu%)--- Ay form Cauchy sequences in HS for

any s < M. Let ua,..a, € HM=1 denote limg o UE‘qu)mAk' We clearly then have

that wa,...4, solves the desired equation (4.4). Next, using (4.18), a standard
weak-* compactness argument yields the desired bound

(4.21) lull gar + 1 £xull gar Sar (Ans + 1) [[F | o -
Lastly, we have to show that wa,..4, is unique among all solutions wa,...a,
to (4.4) where ||w|| 2 + ||Lxw|| ;2 < co. Indeed, let wy,...4, be such a solution.
Then, we have
(w—u)+Lx (w—u)+h-(w—u))y,.a, =0

Contracting with (w — u + Lx (w — u)) 4,... 4, and integrating by parts as above
yields immediately that

oo~ uls + 1L (w— w2 =0. 0

4.2. The k-constraint equation. In this section we will study the “k-con-
straint equation.” We first collect below various constants that we will use and
their respective hierarchy of smallness:

(4.22) l<e<y<i<l.

We will assume that

—200

)
€500 7y < 1.

We next fix our conventions for spherical coordinates on S2.

Convention 4.1. Throughout the rest of the paper, we will use (6, ¢) to
denote spherical coordinates on S?, where ¢ € [0,27) is the azimuthal angle,
and 0 € [0, 7| is the polar angle. We also have the corresponding round metric
on the S%, given by the formula ¢ = d6? + sin? 6d¢?.

We now give a sequence of important definitions.

Definition 4.3. We say that a 4-tuple (gAB’

mannian metric ¢ , , on S2, a vector field b on S?, a positive constant £ > 0,

b4k, Q) consisting of a Rie-

and a function  on S? satisfies the x-constraint equation if
, . 1, 1, .
divh — £, (divh) = 5 (divh)® + i ¥ &)
— 4k + 2kdivh — 2071 (£,Q) div b + 4Q71£,Q.

(4.23)

The starting point for our construction of x-self-similar solutions will be a

4-tuple (

I ap b4 K, Q) satisfying the k-constraint equation, which also satisfies
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certain regularity requirements. We now give the relevant definition. We start
by defining a certain type of “seed” data.

Definition 4.4. Given 0 < € < v < 1 and My, My € Z( satisfying
Moy, M; > 1, “seed data” refers to any smooth vector field 4 on S? that

satisfies
0 R
. ~ ~ 0 ~
br=ebt+24,  blpg = / o Zde +7 | 9,
’ r/2 sinf

where r € R satisfies |r| < €, and we require that a satisfy the following:
(1) a(f) is a smooth function of 6;

(2) a(8) is identically 1 for 6 € [2vy, T — 2v];

(3) a(0) is identically 0 for 6 € [0,~7] U [ — v, 7];

(4) |58 s~

a0k | X
Furthermore, we require that z is a smooth vector field on S? with
(4.24) Vart =0, |zl < Mo
Remark 4.1. For
0 .
~ 0 A
b= / W) 39) +r) o,
x/2 sin 6
a computation yields
o a(6) . .
4.25 b= 0p®0p + 0p®0y) .
( ) V& Sin(0) ( &0 + Op&® ¢)

(Here we are raising and lowering indices with the round metric g)
In particular,

o a2
V&b ,=20°0).
We also have o
Vabt =o0.

Now we can define the notion of an (e, 7, d, Ny, My, M7)-regular 4-tuple
(gAB’bA’“’Q)'

Definition 4.5. Let 0 < e € v < § < 1, (NQ,MO,Ml) € (Zs0)?® satisfy
No > 1, My > Ny, and M7 > Ny, and recall that Jap denotes the fixed choice
gAB,bA,Fa, Q) of a metric,
vector field, constant, and function on S? is “(e,,d, No, Mo, My )-regular” if
they solve the x-constraint equation ¢ , , = eQﬂDQAB, bA =04 + %Af (for b4 as
in Definition 4.4) with [, fdVol = 0, and we have

of a round metric on S?. We say that a 4-tuple (

(4.26) Il v + o Ql gaora + 11l gaore S €77,

a2 [l a0l ] 5

HNo—1 H
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Remark 4.2. We briefly explain the role of the function f: The 4-tuple
(g AR b4 K, Q) will determine our metric along the null hypersurface {v=0}.
Since for this induced data along {v = 0} we will need to solve the null con-
straint equation (3.8), we cannot expect to freely choose each of I ap: b4, K,
and 2. In the small data regime, we may conosider (3.8) to be an equation that

determines divb and K, while ¢ AR Q, and curl b are free. Since the function f

satisfies A f= div b, we may consider f and x to be determined in terms of our
choice of ¢ , , and €. (Note that curlb = curl b is fixed by our choice for b.)

Remark 4.3. The key way in which we will use that curl b = curl b is that
it will allow us to understand well the leading order form of b with respect to €
(see Lemmas 4.9 and 4.11). This detailed information will be important in the
proof of Propositions 4.15 and 4.18.

For most of the results of this section we will assume at the beginning
that we have a (€, 7, 6, Ny, My, M1)-regular 4-tuple (gAB, bA, kK, Q) and establish
various additional properties of the 4-tuple. (In Appendix A we show that one
may construct (e,,d, No, My, M7)-regular 4-tuples.) For the sake of brevity
we will generally refer to a (e,7,9d, No, Moy, M;)-regular 4-tuple as a “regular
4-tuple.”

Remark 4.4. Tt is not in fact necessary for our construction to assume that
Jap = ewﬁAB' Instead one may replace ¢ with (¢ —&)AB in both (4.26)
and (4.27). Then, one may show that there exist a diffeomorphism .% and a
function ¢ so that F*¢ , . = 6290.&143 and so that (4.26) and (4.27) all hold with
log 2, b, and f replaced by .Z*logQ, .Z*bA, and .Z*f. We omit the details
as we will not need this more general result.

Convention 4.2. In the remainder of this section we will often be working
with two metrics ¢ , , and g 4 and thus there may be some ambiguity when
raising or lowering indices. Thus we make the following definitions for any
vector field X4:

° A AB ° ° o ° o o
(V@X) igACVcXB-FgABVBXC—gABVcXC,

(W@X)AB - gACWcXB +gABy7BXC _gABWCXC'

In the next lemma, we recall two formulas for how certain differential
operators transform under a conformal change of the metric.

LEMMA 4.7. Let ¢ , . = ez‘PéAB. Then, for any vector field X we have

VaXA=VaxA+2Lyp,  (VOX)'P = (vox)".
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Proof. These follow from the well-known coordinate expressions

x4- 1y x4,
Ya 7i 4 (/9x?)
(Yox)*’ = 94x P + 98 x4 — X, (477) - gAB\}gac (V9x©). O

The next lemma concerns a precise estimate for «.

LEMMA 4.8. Let (gAB,bA,/-i,Q> be a regular 4-tuple in the sense of Defi-
nition 4.5. Then we have

62 T

4.2 S

a?(0) sin(0) df + O (7).

In particular, k ~ €2.

Proof. Integrating (4.23) over S? leads to

—anAdea (8%) + 7 [ [FEaver+ [ [ (atve)? +2n (aiv)
4 S2 g S2 2

— 2071 (£,9) divb — 4 (divb) (log ) } A\l = 0.

(4.29)

From Lemma 4.7 we have
divh = divb + 2Ly = Af + 2L

Thus, using (4.26) and Sobolev inequalities, we have

(4.30) vl o € |[AS]|, .+ 100l e
1/2 1/2 1/2 1/2
SUFLL A + 1Lwel 47 1 Lsell
< 6275.

It follows from (4.29) and the bounds (4.30) and (4.26) that
(4.31) k| S €470 k| = |k S 2

Having established (4.31) and appealing again to (4.30) and (4.26), we now see
that
(4.32)

/ [—% (d,fv b)2+ 2K (d,{v b) —207! (Lp82) div b—4 (d,fv b) (log Q)} dV,()l' < é.
SQ

Next, using Remark 4.1 and Lemma 4.7, we note that
(4.33)

|Y7®b|; — W@b(; = 2¢%a2(0) + 264 (VED, V& (2 + V) ) + W@ (z+ Vf)f.
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From (4.33), the bounds from (4.24) and (4.26), and Sobolev inequalities, we
thus obtain that

(4.34) V&) - 26%2(6)| 5 .

< €279 we then obtain that

~

Since we also have that [|¢]|;

1 R 9 1 21 ™ R 9 . 3
4. _—— b dVpl = — b 0 dod
(439 ey J | VM VP 47r/0 /0 [V &b], sinf dbdg +O (<)
:/ a2(9)sin9d9+o(e3*5).
0
The formula (4.28) then follows from (4.29). O

The next lemma provides a more precise estimate for div b.

LEMMA 4.9. Let (gAB,bA,/i,Q> be a regular 4-tuple in the sense of Defi-
nition 4.5. Then we have

(4.36) divb = iaQ(G) - 12 /0 ’ a(0) sin(0') o’ + O (€2) .
In particular,
(4.37) —divb > —2e% — 739,
Proof. We start by re-writing (4.23) as
(4.38)
(d«fvb— i V&b, +4m> — L (divb— i V&b, +4K)
1 AN TS _ B
=75 (|Y7®b|g) + 5 (divh)” +2mdiv b — 207" (L,Q) divd + 407 £,0.
We have
1815 S € |8 o+ llgs + 1115 S €

Thus we can apply Proposition 4.5 and Lemma 4.7 to conclude that
(4.39)

1 a2
' divd — 7 [V&b[; +4r
1 N

S 63736.

H2

S

H2

;) + % (divb)® + 2rdivh — 207" (£,Q) divb + 491&9‘

Applying a Sobolev inequality thus immediately implies that
_Ligean2 3—36
(4.40) divh = |YEb[ ) —4r + O (7).
Now we combine (4.40) with (4.34) and Lemma 4.8 to obtain (4.36). O
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To leading order in €, the vector field b4 is given by eb?. However, it will
be important for us to have precise estimates on the €2 order part of b*. This
will be established in the next sequence of results.

Definition 4.6. Let a(f) be as in Definition 4.4. We then define a function
h(#) : [0,7] — R by
(4.41)

h(0) = 2si1n6 [(/00 a?(x) sin(z) dx) - (/07r a?(x) sin(z) dx) (1_2(1)80)] .

Now we will establish some useful properties of the function h(0).

LEMMA 4.10. Let h(0) : [0,7] — R be as in Definition 4.6. Then the
following are true:

(1) We have

d 1, 1

(4.42) Sii 525 (sim6h(0)) = 2a%(0) — | /O " 2(2) sin(z) da.

(2) The function h(0) has exactly three zeros, all simple, which occur at § =0,
Yo, and w for |yo — w/2| <.

(3) The function sin(8)h(0) has exactly two interior critical points 61 € [y, 27]
and Oy € [m — 27y, —~]. At 0; there is a local minimum, and at 6y there is
a local mazimum.

(4) There exists a small constant ¢ > 0 (independent of v < 1) so that

2
(4.43) Ih(6)] > ﬁ for 0 € (v /4,50 — ] U [yo + ¢, ™ — 72/4].

(5) Near the poles 8 =0 and 6 = m we have

(4.44) h = —z (1+0 () +0 (6% Vo € [0, 7],
T D11 06))+0(-07)  voer-qal

(4.45)  h=

(6) For |0 —yo| < c (see (4.43)), there exists a constant d > 0, independent of
v, so that

(4.46) h(0) = —dv? (o — 0) + O (7% (yo — 0)°) .

(7) We have the following global bound on h:

k
L (sin(0)h(9))

(4.47) o

Skt veeo, .
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(8) If we are far enough in the interior of [0, 7|, then we have a much better

bound:
k

(4.48) CZQ’f (sin(0)r(0))| <p +* Vo € [3y,m — 3]

(9) We have

(4.49) |Y7® (hOp) {g < min (02 (m 9)2) for 6 € [0, %} U |:7T - %,ﬂ'} ,
(4.50) |V& (hog) {y < for 0 € [yo— 27v,y0 + 29].
(10) We have

(4.51)

Ve (hdy) = <h(9) ZTEZ 41 /0 o2(z) sin(z) dz — %a2(0)> (Sii 98¢>

. cosf 1 [T , , 1, > .
®<51 08¢> (h(e)sin0+4/0 a“(z) sin(z) dx 50 (0)) Op0p.

Proof. Given formula (4.41), equation (4.42) is a straightforward calcula-
tion. Next, we turn to understanding the graph of h(#). We start by considering
the function

(4.52) r(0) = ~a*(0) — - /077 a’(x)sin(x) d.

First of all,

cos(2v) — cos(m — 2v) = / sin(z) dz < / a?(x)sin(x) dzx
2 0

T—y
< sin(z) dz = cos(y) — cos(m — 7).
-
Thus we conclude that

2492+ 0 (+4) g/ a*(z)sin(w)de <2—7"+0 (v).
0

From this it is immediate that there exist 0; € [y,27] and 0 € [1 — 2y, 7 — 7]
such that

(4.53) r(61) =0, r(62) =0, r(0) #0 if 0 # 601 or 5.

In particular, (4.53) and (4.42) imply that 6; and 6y are the interior critical
points of sin(#)h(#). Furthermore, one sees immediately that sin(6)h(6) is
decreasing from 0 to 61, is increasing from 6; to 62, and is decreasing again from
02 to m. We also see immediately that sin(6)h(6) vanishes at 6 =0 and 0 =7
and it is clear that there will be exactly one other zero. It is straightforward to
see that the remaining zero must occur at a g, which satisfies |yg — 7/2| < 2.
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Next, we come to the bound (4.44). For this, we simply examine the
formula (4.41) when 6 € [0,~]. We find that

mm:-ﬁ(Aﬂ&@nm@yu)l_w“m w0 < [0,7]

4 sin(0)
2 4
jh(@):—i (2+O(72))06/i——’—00(0(39)) Vo € [0,7].

This establishes (4.44). The bound (4.45) is established in an analogous fashion.
Next, we examine the behavior near § = yy. Taylor expanding sin(6) yields
that
sin() =1+ 0 ((0 — 7/2)°).
Thus, for 6 — yo sufficiently small (independently of 7), we may use (4.42) to

see that
d

. I
— > A2,
5 (@m0 = 15
We also obtain (4.46) since one easily finds that % (sin(0)h(0)) lo=y, = O (7?).
Finally, using the estimates above, one can also obtain (4.43).

Next, we turn to the bound (4.47). We start with £ = 0. It will be
important to recall that a(z) is globally bounded, is identically 1 for x €

[27, ™ — 2v], and vanishes for x € [0,7] U [r — v, 7]. We have
2 |sin(@)h ()]

/Oe a2 () sin(x) dz — ( /0 " () siny) dy) 1_(3208(9)
1—COS<9>'

/09 (a*(x) — 1) sin() dz — (/Oﬂ (a*(y) — 1) sin(y) dy> .

2y s
5/ sin(zx) dx +/ sin(z) dzx
0 T2y
S

This establishes (4.47) for k = 0. The general case follows similarly. Finally,
we note that (4.48) is proven in a straightforward manner.
It remains to establish (4.49). First of all, using Lemma 4.7, we have that

|V& (hop)| g ‘V® (h@g)’g. In spherical coordinates, the non-zero Christoffel

symbols on the round metric are I‘g s = —sinfcosf and Fie = cotf. Thus,
one easily computes that

o cos 1 1 dh

If we keep in mind equation (4.42) for h, then we see that we will have
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(4.54)

Vé (hoy) = <2h(9) :::z 4 i /07r o?(2) sin(x) dz — ;cﬁ(e)) (miead’)
cos(f) 1

This implies (4.51). The estimate (4.50) is a straightforward consequence of
the formula (4.51). Now, using (4.41), we see that when 6 < ~,

h(0)=— (/07r a?(x) sin(x) da:) (g +0 (93)> .

Combining this with (4.54) thus leads to
[V&n|, < 6°.

A similar argument works when |7 — 6] < 1. O

LEMMA 4.11. Let (gAB’ b4 K, Q) be a regular 4-tuple in the sense of Def-
wnition 4.5. Then we can write
bAV 4 = bV 4 + €h(0)0p + €V 4,
where e satisfies

lell s S €%

Proof. Using (4.42), Lemma 4.7, and Remark 4.1 we may derive the fol-
lowing equation for e:

2 2

(4.55) dive = divb — %az(ﬁ) + EZ / a?(0) sin(0) df — 2Ly, curle = 0.
0

Then, using equations (4.23), (4 28) and (4 25) we may derive the following
equation for D = divb — %a f ) sin(0) do:

(4.56)
2 2

(divb)® + 26div b + L, [%aQ(Q) - % /0 " a2(0) sin(6) d@}

D—r,p=1
2
2 5 62 ™ 5 )
( |Y7®b|g K—ECL (9)+4/0 a“(0) sin(0) d9>
— 2071 (£yQ) divh + 4071 L0

2 62

(div b) + 2kdiv b + Ly [%cﬁ(@) -7 /07r a’(6) sin(f) d@}

_1

2

+ §g (V@i), V& (ez + e2h(0)dp + e))
o 2

+ ‘V@ (ez + €2h(0)0y + e) ‘g

+ R — 2071 (LyQ) div b + 4971 L0,

where, by Lemma 4.8, & is a constant satisfying |&| < €37°
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We start with

(457) el S €70 | Loe|| ., + €lzln lell s + IV 1l ol s
< 64_26.

Next, from (4.55) and elliptic estimates, we obtain

s = —26
(4.58) lell s S || D], + I1o0lle S ||D] , + €72
Next we observe that (4.23) and Proposition 4.5 easily lead to the bound

v bl| 2 < €.
Then we apply Proposition 4.5 to (4.56) and obtain that
D -4 —0 2

(4.59) 1] .. S €77+ llell s + llell3s -
Combining (4.58) and (4.59) leads to

lellzs S €2, ||D)

) 546376' 0O
JiE]

Remark 4.5. Lemma 4.11 shows that f (from Definition 4.5) is forced, in
view of the requirement that (3.8) holds, to take the form

VS = €h(0)dp + e.
See also Remark 4.2.

4.3. The k-singular equation. In this section we will study the “k-singular
equation,” which will later play a fundamental role in setting up our charac-
teristic data; see Section 3.3. This equation will be similar to the equation
Pug,...p, = Fa,...a, from Definition 4.1 except that X4 and h will not have
a smallness condition. Instead, the study of the k-singular equation will be
tractable only because of a certain anti-symmetric structure. We now turn to
the relevant definitions.

Definition 4.7. Let (gAB,bA,ﬁ, Q) be a regular 4-tuple in the sense of

Definition 4.5. Then we say that t € S (Sz) satisfies the corresponding k-
singular equation with the right-hand side H € S (SQ) if
(4.60)

. A NC 1 .
Ltap — 2Kta = (EbtAB — (W@b) (AtB)C — §dfvbtAB) — 2ktap = Hap.

We recall that S (Sz) denotes the space of trace-free symmetric tensors in
7(0,2) (SQ).

It will also be convenient to extend the action of .Z to tensors we,...c, B
by having . just act on the last two indices.



294 IGOR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

Remark 4.6. We quickly recall for the reader where the need to study
equations of this form arises; see the detailed discussion in Section 3.3. Namely,
we will need to pose outgoing characteristic data for our solution. We will desire
to pose this outgoing data in such a way that the prescribed value of Q7 1y is
consistent with the solution behaving in an approximately self-similar fashion
as v — 0. If our spacetime was exactly s-self-similar, then one finds that Q~ !y
must satisfy equation (3.19) along any sphere on {v = 0}. Equation (3.19) is
exactly of the form (4.60) for suitable Hp.

Just as in Section 4.1, it will be convenient to define an elliptic regulariza-
tion of the k-singular equation.

Definition 4.8. Given a k-singular equation as in Definition 4.7 and ¢ > 0,
we define the corresponding g-regularization by

A\ C 1
(4.61)  Lytap — 2ktap — (Y&D) (ateo — idZV btap + qAtap = Hap.
The next lemma identifies an important anti-symmetric structure in (4.60).

LEMMA 4.12. Let (gAB’ b4 K, Q) be a reqular 4-tuple in the sense of Def-
inition 4.5 and £ be defined as in Definition 4.7. Then £ is anti-symmetric
with respect to the Hilbert space structure induced by ¢ , .

Proof. We have
(67" (67" Latashen
=Ly(t-h)— Ly ((g“)AC (gfl)BD) taghcep — (977) ;fl)BD fapLyhep
(t-h)+2 (Log) " (57) " tashen — (67" (57)"" tanLohen
(t-h)+2divh (¢ - h) +2 (Y&b) " ()" taghen
— ()" (47" tanLohen.

Thus, after integrating and applying the divergence theorem, we obtain

/S2 ()" (™) Ltaghep + (57)" (577" tapLhep] d Vbl

AC(

_ / (Lo (t- ) + v b (t- b)) d VoI
S2
=0. O

It will be convenient to have a version of Lemma 4.12 that holds for higher
order tensors (where we lose the exact anti-symmetry).

LEMMA 4.13. Let (gAB’ b4 K, Q) be a reqular 4-tuple in the sense of Def-
inition 4.5, k > 0, we,...c,ap be a (0,k + 2) tensor that is symmetric and
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trace-free in the AB indices, and y be a C* function on S?. Then we have

1 -~ \D
/§2 y lﬁbwcl--~CkAB ~3 (V&b) ™, we,...onBD
L an? Lo Ci--CrAB
3 (V&b) ™ ,wey...coap — 3 (divb) we,...c,aB |w

k
1 N D A k 1
- /SZ [2?/2 (Veb) Ewcl"'D-»-CkABw01 E-CyAB 4 §yd/fvb\w|2 -3 (Lyy) [w]?| -
i=1

Proof. This is proven in a similar fashion as Lemma 4.12. O

The following consequence of Lemma 4.2 is useful.

LEMMA 4.14. Let (gAB’ b4 K, Q) be a reqular 4-tuple in the sense of Def-
wnition 4.5. From the metric ¢ , , we may define Sobolev spaces H' on tensor
fields. For any tensor field wa,...a, € TOF) we have

(4.62) lwll g ~sp llwllgi,  i=0,1,--+, No.
Now we are ready for the analogue of Proposition 4.6.

PROPOSITION 4.15. Let (gAB,bA, K, Q) be a regular 4-tuple in the sense
of Definition 4.5. Let g > 0, Hap € H?2 (8(2) (SQ)>. Then there exists a unique
t%)g € H* (5(2) (SQ)) that solves

A\ C 1
(4.63) Loty — 2nty — (VE0) , tif) — Sdiv oty + &ty = Hap.
Proof. Let us write (4.63) as
L(Q)tfg)B = Hyp.
By standard L2-elliptic theory, in order to prove the proposition, it suffices
to show that ker (L(‘i’)) = {0} and ker ((L(q)) ) = {0}. We start with L(9.
Suppose that we have a trace-free symmetric tensor w4p solving

A 1
(4.64) Lywap — 2kwAB — (W@b)C(A wp)C — 5d,ivbwAB + quAB =0.

Keeping Lemmas 4.12 and 4.8 in mind, we take the inner product of (4.64)
with —w4p and integrate by parts. We end up with

2 3—6 2 2 _
(4.65) /SQ [(e —O(e ))|w|g+q‘77w‘g}d\/bl—0.
Assuming that € is small enough, we conclude that wap = 0. The proof that
ker ((L(q)) ) = {0} is analogous. O

In the next lemma we collect various estimates that will be used to control
commutators later.
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LEMMA 4.16. Let (gAB,
inition 4.5, and let wa, ..., be (0,k)-tensor. Then

b4 K, Q) be a regqular 4-tuple in the sense of Def-

N,
(466)  ||[Lon Lol v, S Pl 0<i<
(4.67)
0 . ) N,
HV@ (£3¢b) wHHZ + H (£3¢d,fvb) wHHZ < M/2 lwl] g » 0<:i< 70,
) N,
(4.68) (Y (V&b)) wl| e Si €7 wll g » 0<i< 7"
(4.69) ||(Vdivb) w|| 5 S =0 wll g7 » 0<i< %
N,
(4.70) 1TV, &) w|| 0 Si lwll grosa s 0<i< 7“,
_ . N,
(4.71) [V, L] w| e Si € Mwll g 0<i< 70
(@72) [ 2]l Si € follgos, 0= 20,
N,
(4~73) H [EBWA] wHHl 5@ 6M1/2 ||wHﬁp+2 ) 0<:< 70

Proof. These all follow in a straightforward fashion from Sobolev inequal-
ities. ([

In the next proposition, we will show that we can take the limit as ¢ — 0 for
the solutions produced by Proposition 4.15; however, the estimates for higher
derivatives of t4p that we get will have a bad dependence on e.

PROPOSITION 4.17. Let (gAB,
of Definition 4.5, and let Hap € HI (S (82)) for1 < j < %. Then there
exists a unique tap € Hi (S’ (Sz)) solving

b4 K, Q) be a reqular 4-tuple in the sense

A\ C 1.,
(4.74) ﬁbtAB—QHtAB—(W(@b) (AtB)C_id/{VbtAB‘f‘Q(EbIOgQ)tAB:HAB-

Moreover, we have the following estimates for t:
(4.75)

42/82

Jj J—k

vy t’ dVbL <5 e CHI N 2420k

k=0 i=0

2
d Vpl.
]
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If we take a £a¢ derivative, then we have the alternative estimate

Jj—1j—k

-1
AN [P e aversy S5 [ ot gonf)avi

k=0 i=0

Fows- [ s
k—0”S?

Proof. Before entering into the details we give a sketch of the proof. First
of all, multiplying the equation through by Q? leads to the equation

R 1
Ly (%) 4 — 262 — (YED) (%) gy — SAlVD (1) 4y = Q*Hap.

(4.76)

H’QdVbl.
g

In view of the bounds (4.26) it is clear that we can assume, without loss of
generality, that Q2 = 1. Now we describe the strategy for the estimates. For
(q)

to

equation (4.63). Our plan will be to show that there exists tap = limg—0 tELU)B

each ¢ > 0, we may appeal to Proposition 4.15 to produce a solution ¢

that solves (4.74) and satisfies the desired estimates. In what follows, we assume
that ¢ < €'%. As usual in such an argument, the fundamental challenge is to
prove estimates for t%_g that are independent of ¢q. In particular, we cannot
exploit the ellipticity coming from the ¢A term.

The basic estimate at our disposal is the one obtained by contracting
equation (4.63) with tEZ])B and using the anti-symmetric structure. (This is
what was exploited to obtain estimate (4.65) in Lemma 4.15.) This leads to an

estimate for €2 ||t(‘Y) ||

(q )

the equation. However, naive commutation produces an equation where the

In order to obtain higher order estimates for t we will need to commute
anti-symmetric structure from (4.74) is completely destroyed. Thus, we will
have to design a careful scheme for commuting. We begin by exploiting the
fact that the coefficients in our equation are almost axisymmetric in that the
commutators with Ly, can be controlled by large powers of €; see Lemma 4.16.
Thus, we may commute with Lg , and repeat the basic L?-estimate to control
e*[| Lo, 1 HL
times HVt H 12 Next, it is also natural to commute with 2. Noting that we

, in terms of quantities we already control and a large power of ¢

have, schematically,

@77) 2t~ En0) Lo, + O (€) Lo, ty + 0 ()1 + O (e?’ ]%t)) ,

we may use the control of ftff]g, Ly ¢t(fj)5, and t(Q) together to control
Ih(O)La,t T

Away from small neighborhoods of 8 = 0, yg, and m, this suffices to control
\Y% Atg)c (with a loss of €7%). In order to cure this degeneration we commute
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equation (4.74) with ¥ 4. The resulting equation does not have the exact anti-
symmetric structure that we used before, but when we carry out localized esti-
mates near 8 = 0, yg, and 7 the additional terms that show up may be analyzed
and turn out to be controllable in terms of previously controlled quantities.
Putting this all together leads to an estimate for \Y Atg)c. A similar strategy
then allows for additional commutations. Given this control, it is straightfor-
ward to prove that t(q)

avoidable downside of the technique we will use is that the identity (4.77) only

converges to a unique limit t4p as ¢ — 0. One un-

allows for us to control 6253975533 in terms of terms O (¢) tff])g and O (€) Ly ¢t(Q)
Similarly, when we commute with Y 4 there are lower order terms produced of
the form O (e!~°) tff])} These terms lead to the fact that the estimate (4.75)
loses additional powers of € every time we consider an extra derivative.

We now turn to the details. First of all, let us agree to the convention
that throughout this proof unless noted otherwise all norms are computed with
respect to ¢ and all volume forms are computed with respect to ¢ AB" Now let

q < €'% and, using Proposition 4.15, let t(Q) solve (4.63). Contracting (4.63)
with — Ef‘%, integrating by parts, and using Lemma 4.12 leads to

(4.78) /SQ[ ot ) +qé? |yt ”N H -l
(4.79) =/, [é‘)t(q)) +q€2‘Y7t( / \H|?.

Next, we want to commute £g¢ (for i < %) through our equation for #(9).
Recalling that we may write our equation as

(4.80) 219 25t 4 gkt = 5
we obtain
(481) 2 (£5,19) =2k (Lh D) +aBLh L)

> quﬁ ([ﬁ%"’% +q4] £§¢t(q)>AB = L}, Hap.
jtk=i—1

The same integration by parts that leads to (4.79) yields

L e o o]

5/ ]%H‘ZJF 3 ’£§¢([Ea¢,$+q4ﬁ}£§¢t@)‘2
§2 k=1

(4.82)
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Let us now examine the second term of the right-hand side of (4.82) a little
more closely. We start by observing that Lemma 4.7 implies

~ oCD /o ~
(4.83) W@bC(AtS;’))C:g (Véb),., " tg_g;D

In particular,

(4.84)
o o A 1
(Lo, 2L wap = [La,, Ls] wAB—gCDV@J (£a¢b)C(A we)p~ 5 (Lo, divb) wap.

Thus, for 0 < i < 22, Lemma 4.16 and (4.82) lead to

Ll
S2

< /

SZ

Next we commute (4.81) with chl_,,cl. We obtain

(Wcl Cy 34>t it ) — 2 (Vlcl“'cl 9¢tAB) +ad (7701 G 8¢t(fgf)3>
Z Yé,.c, ([770,,+1,$+CIM Y, 0 84)7554;1])3)

p+r=l—-1

- > Yor-c §¢([£a¢,$+q4&] tAB)+W01 o Lh,Hap.
jt+k=i—1

ﬁf‘%t(Q)’Q + qé ‘Wﬁf’%t((l)ﬂ

(4.85)

i8¢H’2 4 i <€M1/2 ’th(fI)r + q€M1/2 )Vﬂ_lt(q)r)
=0

(4.86)

Let xo (f) be a non-negative cut-off function that is identically 1 when
0 € {[0,v/4] U [r —~/4, 7]}, is identically 0 for 0 € [y/2, 7 — /2], and satisfies

‘d)“ ‘ < *y_l Now, for 0 < i+ < Mo , we contract with —xo(6 )GQWlCl,,,Cl f%t%

and integrate by parts. We start the analysis by using (4.37) and Lemma 4.13
to see that

@ [ xo (7'0h,t0) - ¥'ch,
. 2
sé [ halr® + ) ]vlﬁ%t(q)\

(4.87) ,
Lpi 4(@)
v'ch, 1 )

4_ 2
Siey

~

/96[077/2]U[7rv/2,7r]

. 2

! 5/ ‘Wlﬁgd’t(‘ﬂ‘ .
O€ly/4y/2]0[r—/2,m— /4]

In the last line we have used (4.49), the fact that b4 vanishes for 6 < 7,
Sobolev inequalities and Lemmas 4.11 and 4.16. With (4.87) established, we

now contract (4.86) with —X0(9)62Y71(,*1...cl£f§¢t5§],)5; and integrate by parts to
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eventually obtain
(4.88)

/S2 Yo (64 ’W’£g¢t(Q)‘2 1 g ‘WIH gd)t(q)r)

l hi U hj
<1 &2 /S2 Y0l (yy L%t(q)) Y E%t(‘?’)

+ g€ /32 ‘Yﬂxo‘ ’Wlﬁi%t(q)‘? +¢2 /S2 o ‘Wlﬁf%H‘ )W’ﬁf%t(q)‘

+ 62/ X0
SQ

v ([W,.Z + qA] chd)t(q)) +

p+r=I-1

+ Y Wl£g¢([£a¢,$+q4ﬁ] ch 1)
k=1

\ng)t@)( .
Using Lemma 4.16 to estimate the commutator term

P T ] )

C1--Cp ([W0p+17$ + qA:| WC;H—Q“‘CZ 28¢th)
and arguing like we did above to control the other commutator term, esti-
mates (4.88) and (4.87) eventually imply the following:

(4.89)

. 2 . 2
J (4[5 cb.9 wa[,10)
0€[0,y/4]V[r—v/4,7]

<

<iti e—o ‘Wlﬁgd)t(’” ‘2 + g0 \chgd)t((n ‘2>

/96['7/477/2]U[7r7/2m7/4] (

o 2
n / 62—5 ‘W]EZ&J(Q)’
0€[0,7/2V[r—v/27] \ g<j<i—1

: . 2 . 2
e |97 1 > +|v'ch, ]

I+i ' 9 ' 9
E / (@) / +1,(q)
+j:0/§2<6M12’Y7]tq‘ +qu12’Y7] tq’>.

This estimate will be used to control ch&-uclcéﬂ%g near 6 = 0and 0 = 7w
in terms of Vlcvl,.,clﬁé¢tfgj)9 for 6 near [y/4,v/2] and [r — /2,7 — /4] and in

-1 ;
terms of WC’1-~~C’zf1 f%tg%.
Now we will discuss another localized higher order estimate. This time we

will localize near § = yg. Let x1(0) be a non-negative function that is identically

1 for |0 — yo| < ~, identically 0 for |# — yo| > 27, and satisfies [Dgx1| < 7 .
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We now turn to an estimate that will be the analogue of (4.87). First of all,
for0<i4+1< %,We have

(4.90)

l
[ 3o () Ve P P, K 97 9 (2h,10)
=1

Sie [ V0,925,007, 9' 5,09

¥ /Six (V8 (6-1))", Yo, -+ Vi - Vo, 5, £5 7"
A L (£g¢t(q>)

S [ (€[ 0,97 5,09 90,9 5,9 + 265,09

AB

In the last line we have used (4.50), Sobolev inequalities, and Lemma 4.11.
We may combine (4.90) with Lemma 4.13 to obtain the following analogue
of (4.87):

&| [ a2 (965,00 - 7'z ¢

_ . 2 . 2

(4.91) 5l+z‘/ (625‘Waﬂ7l 1£g¢t<q>] +7264’Y71£g¢t(‘1)‘ )
Yo—r<O0<yo+~vy

. 2
o a-s|ics o
0€yo—27,90—71U[yo+7,y0+27]

Now we establish an analogue of (4.89) by contracting (4.86) with
—x1(0)e 7701 ) aJ,f}g
and integrating by parts. For 0 <i+41 < %, we have

(4.92)
. 2 . 2
[ (5 o o)
Yyo—y<O<yo+~vy

. 2
2-5 -1
Sﬂ'—i-l / € ’W(%W f?th(q))
Yo—v<0<yo+~

. 2 . 2
y (e )
0€yo—27,90 —7]U[yo+,y0+27]
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. 2
+/ > (e |vch, )
Yo—27<O0<yo+27 \ g<j<i—1

+q?e™? \W’“zgg@f) + (W@‘%Hf

I+i 4 ) 4 )
E / (@) / +1,(q)
—i—j:O/SZ(EMlQ‘Wth) +qu12)Y7J tq‘).

Before carrying out the next estimate, we observe the following conse-
quence of Lemma 4.11 and a Sobolev inequality. For any (0, k)-tensor wa, ...a,,
we have

Lﬂﬁzéémﬁﬂ%wf

2
_ 62—5/ Uﬁad)w’ + "UJ|2:| o 66—45/
S2 S2

Next, for 0 < i +1 < %, we commute (4.81) with .#!, then contract with

(6*21$l£f9¢tffg), and integrate by parts. Keeping in mind the trivial fact that
% commutes with itself, arguing as above and using Lemma 4.16 leads to the
estimate

(4.93) s ,
Vw‘ .

(4.94)
. 2 . 2
/S2 {6441 ‘glﬁ%t(q)‘ e ‘ngﬁz%t(q)‘ }

<. | gl pi gl S (173 @2 1 oM/ [+ o) |2
S [ |t 5 o] o)

Combining with (4.93) leads to
(4.95)
. 2 . 2
/S2 |:64 |h(0)|2l ‘ﬁlagﬁla¢t(q)‘ + q€2 |h(9)|2l ’W‘ng f%t(‘I)‘ :|

. 2 . 2
<1 / (6—40 ’Wl[’l%t(@’ + E eA—2(m+n) ‘Wkﬁgl l%t(Q)’
S2
k+m-+n=I
0<k<!

il i 2 (o @? L M +1,(q)|?
-1—/82 € ‘.L”EZ%H‘ +Z(€ 1/3’Y7]t(q)‘ + qe 1/3’W] t(Q)‘ >
=0
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We now have all of the ingredients to prove
d 4 |k (q) | 2 |k +1,(q) |2
3 e‘vtq’Jrqe‘W tCI‘
k=0 "S?

i—k

< —(246)j Z Ze (2+20)k

k=0 =0

(4.96)

In order to do this, we let j =1,2,..., or L%J, 0<i<j,0<k<i and
then define

. 2 o 2
y(i,j,k)g/s [64)Wk£é—zt(q)‘ +q62‘vk+1£é—zt(q)‘ }7
Y 2
y(i,j,k)i/ Hh Qk’ﬁ”“ ci- Zt(q‘ + q€* |n(0) Qk‘c’ﬁﬂm z()‘ }
S2

From (4.95), we obtain

(4.97)
V(i,j.k) <SPV (6,4, k)

D S T 2’“2/2

p+m+n=k
0<p<k

k+j7—1

£ 3 [ (o] gy,

From (4.89), (4.92), and (4.97) we obtain (with m,n > 0)

Wﬁ'

(4.98)

k
y(ihj? k) 5 6_2_6y (7’ - 1ajak - 1) +Z€_2_§y (Z,j,]{? - 1)
k=1

+ Z m+n+§/2)y(z’_m’jp —2k— 52/ W L ‘

p+m+n=k
0<p<k

k+j—i

w0 3 [ (] oy ).

A straightforward induction argument in 7 and k (using the estimate (4.85)
for the base case) then leads to (4.96). (The estimate (4.96) is not sharp, but
that will not matter for us.) Of course, the estimate (4.96) implies uniform
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bounds of ¢@:
, , i oj—k
as [ [Pl raprof] s, S
k=0 i=0

Having now established uniform estimates for tffl)g as ¢ — 0, we turn to

showing that t%)g converges to a unique tap as ¢ — 0. We now let 0 < g9 < ¢4

Wi£'5¢H)2.

and derive the following:

(4.100)

R4 (t((h)_t(th))AB — % (t(ql) _t(QQ))AB—i_qlA (t(lh) _t(qQ))AB: (2 — q1) At%?g)_

AB
Contracting with (t(‘h) — t(qz’)) , carrying out the usual integration by parts,
and using the bound (4.99) leads to

/ Ht@n) @]’y )@ () — ) ﬂ
S2
<cr |l — g2 / At%ZB) (t(lh) _ t(Qz))AB
SZ

(‘t(qn )| o ’@ (t<q1> _ t(qz))D ,

<l —q2|/ ‘@t(qz)
SQ

This leads to

/ Ut(th) — ¢(a2)
g2

In particular, we immediately see that {tg%}po is Cauchy and we have that

tffj)g —q—0 taB € L?. Furthermore, by a standard compactness argument, we

2

2 +aq1 ‘V (t(ql) — t(Q2)) ’2} SeH g1 — q2]/ ‘ﬁt(flz)
)

can take the limit as ¢ — 0 in all of the bounds for tffj)g that we have established
and obtain that t4p € 5 and satisfies (4.74).
Finally, taking the ¢ — 0 limit in the bounds (4.96) yields (4.75). With

(4.75) it is straightforward to revisit the above estimates and establish (4.76).
([

In the remainder of the section we will study the following evolutionary
analogue of the k-singular equation.

Definition 4.9. Let (gAB,bA,/-s, Q) be a regular 4-tuple in the sense of

Definition 4.5. Let {ta(v,0)},e(0. be a 1-parameter family of C! symmetric
trace-free tensors on S? so that t4p(v,0) is C' in v € (0,v]. Then we say
that tap (v, 0) satisfies the corresponding k-singular evolution equation with
the right-hand side Hap (v,-) € LPS (S?) if

(4.101) vLo,tap + Ltap — 25tap + 2Ly logQtap = Hap.

We start with an analogue of Proposition 4.17.
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PROPOSITION 4.18. Let (gAB’ b4 K, Q) be a regular 4-tuple in the sense of
Definition 4.5, and let {Hap(v)}yeon) be a 1-parameter family of symmetric
trace-free tensors in HI (5 (82)> for1 < j < %. Then then there exists a

unique 1-parameter family {tAp(v)}ve(,0] € Hi (5’ (82)> solving (4.101), and
tap is uniquely determined by tap(v).
Next we let H € HI (5) and use Proposition 4.17 to define t by solving

(4.102) Liap — 2rtap + 2Ly log Qfap = Hap.

Then, for any © > 0, we have the following estimates for tup = tap —tan:

(4.103)
2 ) _x 2
v 5
+ 62/ <9> v &
2 v v 2 v

J
Z [ sup
o Lveldn] L
v _% i k A~
(2) "y, Ae

L2 v

where
Hap = Hap — Hap.
Proof. The proof of this proposition is very similar to the proof of Propo-

sition 4.17, and thus we will only provide a sketch of the proof. First of all,

as with the proof of Proposition 4.17 we may, without loss of generality, take
Q=1
We may write our equation as

vﬁavaB + Liap — 26tap = I:IAB.

Next, we carry out a change of variables s = —log (%) We then obtain the
equation N
(4.104) — Lotap + Liap — 2kt ap = Hap.
In the s-variable, the bound we need to show is
(4.105)
’ s ke 12 O s g 12
Z [ sup eﬁvkt(s)‘ +62/ )eﬁvkt(s)‘ ]
k—0 Ls€[0,0] L? 0 L2

) ds>2+HY7i£§¢£(0))

. . J j_k 50
< 220y (3 e [(/ ‘
k=0 \i=0 0

eTOWzE(’;d)H‘

)
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We now turn to establishing (4.105). First of all, by the theory of charac-
teristics, whenever
SUPs¢0,s0]
with sup,ep so) 1/ (8)l i < C (s0, H) solving (4.104).

We start with the case j = 0. Commuting (4.104) with e leads to

‘ﬁ(s)HHl < o0, we immediately obtain the existence of fap(s,®)

(1106) — Lo, (57) , +2 (cFi1)  — (2 ) (ed) = el Al

We now contract (4.106) with —e16£45 | integrate over [0, so] x S? with respect
to the volume form dsd Vol (which will be the implied volume form throughout
this proof) and then integrate by parts using Lemma 4.12. We obtain

2 9 [P0 .
sup / |s=5 + € / / e1o
3€[0,s0] /S2 0 S2?

(4.107) ’
= sup / |s=5 + € / /
3€[0,s0] /S2 S2

5(Aw(é2 lﬁ) + [ 1Pl

As with the proof of Proposition 4.17 we introduce the convention that all

KS A

el

KS ~

S KS ~
et H -e10t

+/

LA
101

s A
10 H

norms are computed with respect to ¢ unless said otherwise. This estimate will
serve as the analogue of (4.79).

We next explain how to establish (4.105) in the case j = 1. Now, just as
in the proof of Proposition 4.17 we commute (4.106) with Ly, and obtain the
following analogue of (4.81):

— Lo, (€10La,E) ,, +Z (e (La,0)) .

(4108) 1 " R ks ~ kS ~
— (2 — 10) K (eﬁﬁ%t)AB + e10 [ﬁad),-f] tap =€ Ly, Hap.

Now contracting this with el Lo, fAB | integrating by parts, and arguing as in

the derivation of (4.85) leads to the following estimate:
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(4.109)

A2 S0
sup / |s:§+€2/ /
3e[0,50] /52 0o Js2

so ~ KS A~ /\2
< s s
N/o /s2< (Lo, 2] tD 610£3¢t)+/S2 ‘£a¢t‘ oo
Ks |2 S0 2
= sup / eﬁ£a¢t‘ |s§+62/ / el
5€[0,s0] /52 S2
s0 1/2\ 2
([ (LI ) )
0
+6M1/2/ / Vi 2} +/
s2 s2

This estimate is an analogue of (4.85) (with ¢ = 1).
Next, we can, of course, commute our equation with £ to obtain
(4.110)

—Lo, (e0.2) , +Z (D0 (Z)) ,,— (2 - 110> k(e10.2F), =€ LHap.

‘J
oltn

0 H

2
+ |eTot

A2
ﬁad)t ‘s:().

Arguing as in the derivation of (4.107) leads to

A2 S0
sup / |3:§+€2/ /
5€[0,50] /52 0 Js2

s0 o\ 172\ 2 o

5(/ </ > ) + [ |£1
0 s2 2

Now, using (4.111) and arguing as in the proof of Proposition 4.17 with (4.93)
we obtain the following:

KS /\2 SO
sup/ h(@)eﬁﬁaet‘ \5—5—1-62/ / h(0
3€[0,s0] /S2 0 S2
Ks 2 . o 12
ST e e I e e I

5€[0,s0] /' S2

50 s 2 . .2
+€2/ / es {6_2_5)&%]”’ +€_2_6‘t’2+62_25‘Vf‘ }
0 Js2

A 50 o\ 1/2\ 2 .y »
+e / (/ e LH ) +e / |2t
0 S2 S2

(4.111)

eto LH

(4.112)
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Now we combine this with (4.107) and (4.109) to obtain
(4.113)

A2 S0
sup / t ‘s—g—‘rﬁ?/ / h(0
5€[0,s0] /' S2 0 S2
50 ks o |2 1/2 2
< / (/ etoVH ) )
(L (L
SO KS 1/2 KS ~ 1/2 2
e ([ (L ety (o))
0 S2 S2
5 9 95 |& |2 %0 5 495 | |2
+ sup ese ‘Vf‘ ls=5 + ese ’Vf‘
5€[0,s0] /S2 0 S2

<[]

The combination of the left-hand side of the estimates (4.113) and (4.109)
controls V4 f for all @ outside of small neighborhoods of {0, yo, 7}.

As in the proof of Proposition 4.17 we will now commute with ¥ 4 and
carry out localized estimates § = 0, yg, and w. We have

KS KS ~ 2
h(f)eto Ly, Je10 La,t

o A2 A2 ~
Vt‘ +e_2_6)ﬁa¢t‘ +6_2_6}t|2} |s=0-

~ Lo, (e8Wci)  + 2 (55¥ ), — (2 o) 5 (e55¥0)
~[Z, Y] ewi+ eV oHag.

(4.114)

Now we simply follow the derivation (4.89); that is, we contract (4.114) with
—XO(G)VCfAB where x(0) is a suitable cut-off function that is identically 1 for
0 € [0,v/4] U [r — ~/4, ], identically 0 for 0 € [y/2,7 — /2], and satisfies
Ixol Sy~ L. Arguing as in the derivation of (4.89) then leads to

(4.115)

KS

sup/
5€[0,s0] Y {0€[0,y/4)U[r—v/4,7]}

< 62_5 /80/ [
0 {0€lv/4~/2l0[m—/2,m—~/4]}

+ (/Oso </S2 1/2)2%_/S2 Wﬂ2|8=0-

elOWt‘ —|—€/ /
96[0,“//4 [m—~/4,7]}

]

KS

KS ~
et

P
10 H
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Similarly, one may establish the following analogue of (4.92):

KS ~ 2 SO
el Vi| + € / /
0 J{Olyo—,y0+"1}

2
e%Wt

2

sup eio yi

5€[0,s0] /{GE[yo—v,yoJrﬂ}
S0

< 62—5/ /
0 J{0c[yo—2v,y0—]U[yo+7,y0+27]}

+e? OSO /SJ 2}
(L (L 2)1/2)2 + [V o

Combining (4.109), (4.113), (4.115), and (4.116) leads to the establishment
of (4.105) with j = 1.

The proof then concludes with an induction argument completely analo-
gous to Proposition 4.17. O

(4.116)

KS A~

KS A2
eﬁﬁa(bt‘ + |etot

ks A
e10 H

5. Setting up the characteristic initial data

In this section we will set-up the characteristic initial data that will form
the starting point of our construction. We start with a definition/lemma for a

. A
quantity 7 4.
LEMMA 5.1. Let (gAB,bA, K, Q) be a regular 4-tuple. Then, using Propo-

A
sition 4.5, we define a 1-form on S?, n 4, to be the unique solution to

(5.1) (2 divd) Ta—L (1) = 2V aLylog @+ ¥ (VED) ,, — 5 Vadivh

Then we have that

A

7 < Mi/2

HNo—2

JAN
Sl Hﬁaw

HﬁlNo—l
N
Proof. The bound on HnH fiNo—1 follows from Proposition 4.5, Sobolev in-
equalities, Lemma 4.7, and the bounds (4.26).

A
To estimate Ly, 14 we commute (5.1) with Ly, to obtain

(2 —divb) ﬁ%%A — LyLo, (%A) = (Lo, divb) Ta+ [La,, L) Ma
(5.2)
Lo, (29 4Ly log 0+ V7 (VE1),, — LV adivh) .

Then we use Proposition 4.5 again as well as the bounds (4.27) and (4.66). O

A
Next we have a definition/lemma for a quantity Q! try.
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LEMMA 5.2. Let (gAB,bA, K, Q) be a reqular 4-tuple. Then, using Propo-
AN
sition 4.5 we define a function on S?, Q1 trx, to be the unique solution to

AN AN
Ly (Q—l tr x) + <Q—1 tr x) (=1 +divd — 26+ 2L, log Q)
(5.3)

2

)

A A
=—2K + 2divn +2 ‘n

where K denotes the Gaussian curvature of 4 45- Then we have the following
A
bounds for Q1 tr x:

AN
Q ltry—2

A

Lo, ry < Mi/2,

IEIN072 f{Nof?)

Proof. We can re-write (5.3) as

A A
Ly (Ql try — 2) + ((Ql trx> — 2) (—1 +divb — 2K + Q,Cblog(l)
(5.4)

2

)

= —2(K — 1) — 2 (divb — 2 + 2L, log Q) +2d1v%+2’%

A
and then the bound on HQ_I try — 2“1‘311\’0*2 follows from Proposition 4.5,

Lemma 5.1, and the bounds (4.26).
A
In order to estimate £a¢Q*1 tr x we commute (5.3) with Ly, to obtain

(5.5)

JAN yAN
LyLo, (Q—l tr x) + (£3¢Q‘1 tr x) (—1 +divb — 2k + 2L log Q)
)

A A
_ [£3¢,£b] (Q—l trx> — (Q_l trx) La, (—1 +divb — 2k + 2£blog5~)) .

A A
=Ly, (—2K+2d1v17 +2'77

Then we use Proposition 4.5 again as well as the bounds (4.27) and (4.66). O

>
Lastly, we have a definition/lemma concerning the quantity Q=¥ 4 5.

LEMMA 5.3. Let (gAB,bA,m, Q) be a reqular 4-tuple and v > 0. Then,
using Proposition 4.18, we define a 1-parameter family of symmetric trace-free
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>
tensors on S?, {Q_l)ZAB(U)} , in the coordinate frame by solving
ve(0,9]

> > > >
VLY g+ LU g — 2607 R + 2071 <£bQ> O 'Xap

(5.6) A

AN VANJNWAN 1 _ ~
— (W@n) + (n@n) -3 (Q ltrx) (V&) 4
AB AB
>
O 'R aplo= = 0.

Here we have used the natural extension of tensors defined on S? to tensors
defined on S? x [0,v] by simply extending the tensors to be independent of v.

>
We have the following bounds for Q~1x 45 for any constant 1 < Ny < Np:

>
(5.7) sup ‘Q_l X ‘ < e 2N
veE[0,v] HLN1/2]
(5.8)
_th v _DlA —DlA 1-6
sup | {log7tT0d { — |41 Qx| +||vLa, 17 X|| . <e°.
ve(0,v] v HLN1/100] FrLN1/100]

>
Furthermore, we have that lim,_o Q™'Y 45 exists (in a Lie-propagated frame),

and we also have that
> >
Qly— (hm Q—lx)
v—0

Finally, we note that we will have

(5.9) lim v~ 10

v—0

=0.
HLN1/2]

>
(5.10) P x4 = 0.
Remark 5.1. Though it will be sufficient for our purposes, the bound (5.7)
is far from sharp. However, it is possible to show that in fact

-1

~ €

>
HQIX"U:O
2

Thus, while (5.7) could be improved, it is in fact necessary for any estimate of
>
Q1% 4 which is uniform in v to degenerate as € — 0.

Proof. The bound (5.7) and limit (5.9) are immediate consequences of

A
. o A AN et .
Proposition 4.18 (with Hyp= (W@n)AB + (7]®77)AB—§<Q tr X) (W@b)AB),

Proposition 4.17, Lemmas 5.1 and 5.2, and (4.26). (The bound of ¢ =2 may
of course be improved, but this estimate will suffice for this paper.)
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For the bound (5.8) it is clear that we cannot directly appeal to Propo-
sition 4.18. Instead we start by proving that for all 5 > 1 and £ > 1 with
>

0 <j+k < Nj— 1, there is the following bound for Q~1y 45:

. >
(vLo,)’ (Q_IX) lo=v

) >
(vLa,)’ £<9¢ (Q_lﬁ) lv=v

S
Hk

Y

(5.11)
< M/2,

~Y

k-1

To see why (5.11) holds, we note that a direct consequence of (5.6) is that
(5.12)

S
(Uﬁv)] Qilf(AB‘v:y
) ~ A AN ] >
:(—1)3_1($—QK+2£blogQ) (W®77+77®17—2( 1trx>(Y7®b)) ly=0-
AB

Combining (5.12) with (4.26), (4.27), and Lemmas 5.1 and 5.2 then yields (5.11).

Now we define
Ny >
Pap = (vLo,)t 10" (le) .
AB

N
Commuting (5.6) with (v/JaU)LT&J leads to the following equation:
(5.13) VL, PaB + L Pap — 26Pap + 207" (L,2) Pap = 0.

Now we apply Proposition 4.18 (with H= 0) and obtain the following estimate
for P:

2
up P2 s 5 €U [Plcel? )+ 50 0, Ploca |,
(514) ’UE[O U] OO H 100
< el
where in the final inequality we used (5.11).
Next, we observe that after changing variables to s = — log (%), we have

15 021
0s " Q 'xap="P.
In particular, repeatedly integrating from s = 0, using the bounds (5.14)

and (5.11), and then switching back to the v-variable leads to the bound (5.8).
It only remains to establish (5. 10) Contracting (5.6) with gAB leads to

the following equation for © = gAB Q- 15 XAB:

vLs,0 + L3O + %div b0 — 2k0 + 207" (£,2) © = 0.
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This is a transport equation for ©, and since 0|,—, = 0, we conclude that ©
vanishes everywhere. ([l

Now we are ready for the main result of the section.

PROPOSITION 5.4. Let ((gO)AB , (bo)A , K, Q) be a reqular 4-tuple, N > 0
be a sufficiently large integer satisfying 1 << N < Ny, and let v > 0. Then, fore
sufficiently small, there exist an open set U C R? with {v =0} U{u= -1} CcU
and a spacetime (M, gu,) in the double-null form (2.1) for (u,v) e U N{-1 <
u <0} N{0 < v <w} satisfying the following properties:

(1) Within the region U , we have the following reqularity for various double-null

unknowns:
(5.15) (V" Qv Q) € LY,
(5.16) (Q_lﬁA’m o, QﬁA) € Lz?locLi%,locI_:Il]Xm

(/)7 0,08, Q2QAB) € Lg,olocLz,locHl]c\)[m

(5.17) (bA,QXAB,Qfl)(AB,va,Qg, V 4 log Q) € Lyoc ;"flocf—f[f(\fc,
(5.18) (det (4)) " €L, K € L0 LS Hi,

and for every vg > 0, we have
(5.19) @AB € Lyfoe L sy jocHine < 00

(2) All of the quantities listed in (5.15)(5.18) have limits in HN on {v = 0}
U{u=—1}.
(3) The wnitial data along {v = 0} is obtained:

K
. ) . _ . L A
g =0 () 000 =—uCn)s, i () 0=
where the limits are taken in coordinate frames.
(4) We have
4 1 Y
(5.20) NAl{u)=(—1,00) = N4> QX[ {uw)=(—1,0) = 2 trx,
—1 A~ El ~ -1 CD
(5.21) Q7 xaBlu=—1y =2 Xc( (go ) 9By’
A A >
where 1 4, Y trx, and Q™ 1X 45 are as in Lemmas 5.1, 5.2, and 5.3 respec-
tively, and in a coordinate frame along {u = —1}, we define (gO)AB (v, 00)

= (‘gO)AB (90)
(5) We have that Ly, (v5Q) |y=—1 = 0.
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Proof. The idea of the proof is to change variables to (u, 0, HA) defined by
o= (1 —2k)""v!=2% (cf. Definition 3.1) and then apply Theorem 2.4.

We need to determine the correct choice of incoming and outgoing char-
acteristic data sets (in the sense of Definition 2.2) so that after undoing the

coordinate change 0 = (1 — 2/€)71 v172% we end up with the desired space-
time. Let us start with the incoming data and (4[(_;,). Keeping in mind that
dv = v?"dv, we set
in A - k@A (pA (in) A\ -2 A
Q) (u,04) = (—u)*Q (1), Wy (w0) = ?(g,) , . (67,
(in) _ A ~
(bA) (U, QA) =u! (bA)O (04, Cal(-1,0) = 14 — Vald.

Next we turn to the outgoing characteristic data. Here we will set

Qe (9,01) = 0 (04).

> CB
It Will also be convenient to define © ;% = Q71 4 (gal) , which will satisfy
C] A = 0. Keeping in mind that 8; = v?*9,, we see that we will need to define
d5m (5,60%) so that the following all hold:

out

(5.22) gAB ’v 0= gAB’
]'Nf ou AB ou 7A
(5.23) 50 2(g) s (), lomo = Q7
1 N—2 out _ C
(5.24) 50 tf (Dpg >)AB_@(A b0

~— 1~ — ou ou
fﬂ&@ﬂwww”%wt%Q
(5.25) 1 <1 out) 8@ (g(ou‘ﬂ)) >2
2 2 AB

=&www“wwwmﬁ%@wwnwawww~

As usual, the tf denotes the trace-free part, and the AB denote a Lie-propagated

coordinate frame. The condition (5.22) is necessary so that ggrfg u—1 =

out

gAB |U:0, the conditions (5.23) and (5.24) are necessary so that the last two
equalities of (5.20) will hold, and (5.25) is necessary so that (2 41) will hold.
We now follow the well-known procedure for finding such a g " B . We will look

for [l X;t in the form

(out) 9p(0ut) ~ (out)
(5.26) g =€’ gAB ,
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where gfgt) is defined both by (5.26) and the requirement that it has the same
volume form as ¢ , B The constancy of the volume form implies that

AAB
g ngB 0.
Thus, (5.24) is seen to become
~(out) ~2 —92p(out)
(5.27) ofl ) = 2077240, g

(out) 0 ~ _9(out) ~
(5.28) = gAB ) (5, ):gAB(9)+/O (292@(ACgB)Ce 2¢ >dv.

Next, plugging (5.26) into (5.22), (5.25), and (5.23) eventually yields the fol-
lowing second order ordinary differential equation for (1)
(5.29)

825001 | (aﬁ(p(out))2
_ _%Qg (g(out))AC (éj(out)>BD (Q_lec) y @@m))BD (Qflfc) N

1- A
(5.30) im0 =0, om0 = 5O (Q—l tr x) .

We thus see that (5.28), (5.29), and (5.30) determine an integral-differential

out

system for ¢ and g AR
Now, standard arguments and the bound (5.8) show that this integral-

differential system for p(®"*) and g " has a solution for o € [0, (1—2k) " tul=2¥]
satisfying the bounds

(out) — o —
I e N PP L PP

where A > 1 is a suitable constant independent of € and N is a suitable integer
satisfying N < N < Ny.

Having constructed the outgoing and ingoing data, we may appeal to Theo-
rem 2.4 in the (u, 0, GA) variables. (The necessary regularity statements for the
outgoing and ingoing data follow from Definition 4.5 and Lemmas 5.1 and 5.3,
and the bound (5.31).) Finally, we obtain the desired spacetime in the (u, v, GA)
variables by setting

= (1 - 20)0) 5

The regularity statements follow from noting that the lapse €2 of the spacetime
in the (u,v,0) coordinates will satisfy Q ~ v", from the definitions of the
various metric components, Ricci coefficients, and curvature components, and

the fact that
0 R 0

o Ehk =
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Remark 5.2. For any Ricci coefficient 1 not equal to w and any null cur-
vature component ¥ not equal to «, we will have that s (1) or s (¥) gives the
power of €2 that shows up in (5.16) and (5.18).

6. The bootstrap argument for region I
The main result of this section will be the following:

THEOREM 6.1. Let (M, g,,) be a spacetime produced by Proposition 5.4,
and let v > 0 be sufficiently small. Then we can pick € sufficiently small so
that (M, gu) exists in the region {(u,v) —1<u<0and0< 2 < Q}, and
in this region the spacetime satisfies the regularity bounds (5.15)—(5.18) and the
estimates (6.13) and (6.14).

We will prove this theorem with a bootstrap argument. In Section 6.1,
we will define the relevant norms. Then in Section 6.2 we will carry out the
bootstrap argument.

6.1. Norms. Often, instead of working directly with metric quantities 19,
Ricci coefficients v, or null curvature components ¥ we will define quantities 5,
ﬁ% and Q5 where we have subtracted off terms reflecting the leading order
self-similar behavior as v — 0. We turn now to the relevant definitions and
conventions.

Convention 6.1. Throughout this section, unless said otherwise, all norms

of tensorial quantities are computed with respect to and we will always

Iap
use the round metric induced volume form when we integrate on each S?w.

Definition 6.1. We introduce the definition that, unless said otherwise, for
any tensor or function u,

) (u, v, 0A> = 11}i_r>r(1),u (u,v, 9‘4) ,

where the limit is taken with respect to a Lie-propagated coordinate frame if
 is tensorial. Similarly, ¥ 4 will denote the connection with respect to g AR’
and we will overline differential operators such as QV3 or div to indicate that
they should be computed from the v — 0 limits of the relevant quantities. For

example,
— _AB— _ - C
dive = g0V 40 = g** (cgmB +7 ABﬁC) ,
OVs0a = Lo, 04+ Lyoa — X 50,

= C
where V' Ag denotes the Christoffel symbols of ¢ , . (and hence ¥ 45 denote the
Christoffel symbols of ¢ , ).
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We start with metric quantities.

Definition 6.2. Let (M, g) be a spacetime produced by Proposition 5.4.
We define, in the coordinate frame,

—~ _ K K
bA = bA — b4, Qi(v> Q—(”) Q,
YVa=Ya-Va, Jap=9ap— gAB'
Note that it is a consequence of Proposition 5.4 that these limits exist.

Next we turn to Ricci coefficients except for w and xap.

Definition 6.3. Let (M, g,) be a spacetime produced by Proposition 5.4,
let ¥ denote any Ricci coefficient other than y 4p or w, and let s be the signature
of 9. Then we define

O =0y - 0.
Note that it is a consequence of Proposition 5.4 that this limit exists.

For xap, aap, Ba, p, and o, we will need to consider a more involved
renormalization scheme.

>
Definition 6.4.We may uniquely extend Q'Y 45 self-similarly to the whole
spacetime by setting, in the coordinate frame,

Qfl>2AB (uv v, 00) = (_U’)QfleB (3790) :

u

>
(We recall that Q71,5 is defined in the course of Proposition 5.4 (using
Lemma 5.3).)

> > >
Using Q!¢ 45, we now define quantities Q@ 2aap, Q715 , Z, and o

s (1) () o) (o).
e (o) (%)
o (Q )CDWD’

X4
1 . 1 ie) 2 AC ,BD

~

Q

o>

=p—

v
Il

Xt

l\DM—l

Qv
Il
q

X>
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Remark 6.1. Note that both p and Y - X have regular limits as v — 0.
However, p — %)Z - X exhibits cancellation in the sense that we will have

1, .
2 (p—2x-x> =0

even though individually for p and X - X, the best estimate we have is

S e

wlolomol ST, X Klomo| S 1.
An analogous remark holds for o and x A k.
Now we can define the renormalized X ap.

Definition 6.5. Let (M, g,,) be a spacetime produced by Proposition 5.4.
Then we define >
Xap = "%a — Q@ Rap
Next we come to the renormalized curvature components ¥ except for 4.

Definition 6.6. Let (M, g,) be a spacetime produced by Proposition 5.4.
Then we define

>
~ A2 2
asp =Q “aap — Q “aap,

~ e 1 1
Ba=Q 1840718, — §Y7A (@ ttry) — 5714 (Q1try),

For any (@, )
to define
Ris = {(u,v) :u € [-1,u] and v € [0,7]}.
We emphasize that dVol refers to the volume form on the round sphere of
radius 1, and (by our conventions) we calculate |-| with respect to ¢ , .
We are now ready to define the energy norms for the null curvature com-
ponents.

U < 9. Then we define

2

v _o\A—2q+2i
ol oe = sup [/ o =
o i=0 (u,0)ERG,5 0 NG v
3 2q+21 2,
/ / / " 02| Ya| dVoldudz}],
S2 v
9 . ~ 700 T2 i |2
ng%mz sup [ =
Y —0 (u ’U)ERQ(, S? 100

/ / / — 100 T2
S2 52~ 160

2 .
V'a| dVoldv

dVol di,

Y'a

2 o
dVol dii d@} ,
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and for any curvature component ¥ € {p,0, 3 A}’ we have

+2¢
e, ., = o [/ / o
e €Rus s2 1_100

2 12 o
W’xp‘ dVol dil

1= O

OO2

.12 o
W’qz\ dVol di

1
100

Q2
/ 1) 4= 100 T2
S2 v ~ 105

L
NS

2 o
\11‘ dVol dil d@].

For 84, we have

1811%, ... sup

R i= 0 u’l}eRﬂ{,

-2 o
V’B‘ Vol di,

q) 202
/ /S2 ’Ul 2q
100
QQ
/ /S2 1‘@
q) 202

? Vol di

12 5
Wﬁ] dVol di, d@].

We also introduce the notation

Ag a0 = Z ||\P‘|unv .

Ve{a,B,p,0,6,a}

Finally, when it will not cause confusion, we will often suppress a subset of the
(¢,u, ) indices from the &7 or A subscript.

Remark 6.2. As we have mentioned in the introduction, the rationale

behind these weights is similar to the rationale behind the weights in the

work [RSR18]. For the convenience of the reader, we now quickly recapitu-

late the main points:

(1)

We expect the solution to be “asymptotically self-similar” as we approach
(u,v) = (0,0). Thus we choose our norms to be invariant under the rescal-
ing diffeomorphism (u,v, 0‘4) — ()\u, Av, HA) for A > 0. In particular, our
energy norms along constant u or v hypersurfaces should have a total u and
v weight that adds up to 3 plus 2 times the number of angular derivative
commutations. For a spacetime energy norm, the total weight should add
up to 2 plus 2 times the number of angular derivative commutations.

When we carry out the energy estimates for (d, B), we will need to con-
jugate the V3 equation for a by a suitable u-weight. This produces lower
order terms proportional to |u|~!; the norms have to be chosen so that
these additional lower order terms in combination with the already present
terms from tr ya have a good sign in our energy estimate. Every other
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curvature component satisfies a V4 equation, and the conjugation by a
negative v-weight will produce a good spacetime term.

(3) We have to make sure the norms are chosen so that we have a finite con-
tribution to our estimates from initial data and from the inhomogeneities
produced by the various curvature renormalizations.

Next, we have the norms for the Ricci coefficients (except for the lower
regularity norm for tr x and tr x).

Definition 6.8. Let 0 < ¢ < 1/2, =1 <@ < 0, and 0 < % < v. Then we

- —

define the following: for any Ricci coefficient ¢ € {w,n4, X Al A}’

2 4—-9L 49
) —u)* 100
61 Wl =Y s SO [

7q,a, 2—
q,u,0 = (u,v)ERa,ﬁ v 100

W%Z‘Q d\D/OI;

for xap, we have

2 4-2¢+2i ,
o l12 - (_u) ix|? o .
(6.2) HXH%?MM7 = z; “ vs)lé% = T /S2 V'x| dvol
1= s w,
for ¢ € {tr x,tr x}, we set
2 4—-L 49
2 . (—u)*~ 100 2
03 ol =Y s S [ 9] dvel
i=1 (’U,,’U)ERﬂyf) v 100 S2

(Note that the sum starts with i = 1.)
We also introduce the notation

Boao = S 6l .-
PpE{w}
Finally, when it will not cause confusion, we will often suppress a subset of the
(¢,u,?) indices from the % or B subscript.

Next we have a norm for the L? norm of try and tr X

Definition 6.9. Let 0 < ¢ < 1/2, =1 <@ < 0, and 0 < % < v. Then for
Y € {trx, trx}, we define

(u,’l})eRﬂ’f) v° 100

—u)4 100 ~12
(6.4 [l = s S [ avor

q,u,v

We also introduce the notation
Coip = Z 19l 4.5 -
pe{tr x,trx}

Finally, when it will not cause confusion, we will often suppress a subset of the
(p, U, v) indices from the € or € subscript.
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Lastly, we have the norms for the metric coefficients.

Definition 6.10. Let 0 < ¢ < 1/2, =1 <@ <0, and 0 < % < v. Then we
define

2

) 2+2i— - o
Ioll,,, =20 swn S [

i=0 (U,U)ERﬂyﬁ v 100

2
dVol,

2 242i— -1
. (—u) 700 12 .
(6-5) ”bH@,q’iﬂ]’f; = g sup o - Wzb dVol,

i=0 (U,U)ER@{, Ve 100

2 24-2i— L
. (—u) 100 i ~N 12
HlogQH%’a,ﬁ = g sup 5 g Y’ log (Q)‘ dVol,

i=0 (U,U)ERﬂ,ﬁ v° 100

where we recall that V is the covariant derivative with respect to a fixed round
metric g 4 On the sphere. We also introduce the notation

Qqﬂl’ﬁ = Z HﬁH@q,ﬂyﬁ *
V#4

Finally, when it will not cause confusion, we will often suppress a subset of the
(¢, u,?) indices from the & or ® subscript.

Our last definition concerns weighted Sobolev spaces on S?:

Definition 6.11. For any (0, k)-tensor w, (u,v), and i € {0, 1,2}, we define

ol ey = S0 — )’ ( /

j=0

. 1/p
”wHi”(Si,v) = (/52 g(w,w)l’/ dVol) ,

where dVol denotes the volume form of the round sphere.

‘ A S\ 12
g (ij, W]w) dVol) ,

2
u,v

We close with a useful lemma.

LEMMA 6.2. There exists R > 0 (independent of €) so that we have the
following bounds:

> 12 > 2
(6.6) HQ_l)Z i + ||vLa, 27 1Y i < [log® (L) 22 ()2,
a4(s2,) a4(s2 ) U
> 2 v
(6.7) HQ_lﬁ i < |logh (—) €272 (—u)™4
a4(s2 ) —u
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If v is a Ricci coefficient, 1 & {XaB,trx,trx}, s denotes the signature of 1,
and © € {p— 1% %0 — XN X, B. G}, then

2

(6.8) HQme(SQ VR0 Ol ) £ €0
u,0 s
and lastly,
(6.9)
-1 2 -2 2 -2
197 e xllages ) = (=07 HQ“XH&L(S&O)S (=0
(6.10)

P L e

Proof. These bounds follow immediately from Lemmas 5.1-5.3, the con-
struction of (M, g,,,) in Proposition 5.4, and the null structure equations that
relate curvature components to Ricci coefficients. For example, let us con-
sider n4. We have (see footnote 8) that in the coordinate frame, 14 (u, 9B) =

A
Na (GB), and thus the estimate (6.9) for ny follows from the corresponding

A
estimates for n 4 that were established in Lemma 5.1. (]

6.2. The estimates. A standard argument using Proposition 5.4 shows that
Theorem 6.1 will follow from the following proposition.

PROPOSITION 6.3. Let ¢ € (0,1/2), 0 < p < 1, and let (M, gu) be a
spacetime produced by Proposition 5.4 that exists in a rectangle Ry5 for some
€ (—1,0) and v € (0,v] satisfying

(%
0<7~§y7

and that satisfies the “bootstrap assumption”

(6.11) Ag a5+ Bgas+Dgas < 2A€175,

1
4+ sup (—u)**
Daiio (u,v)ERG,5 ;

+ a5 < 2Av,

(6.12) ||¢

W’?\

L2(s2.,)

where A > 1 is a suitable constant.
Then, if € and v are suitably small, depending only on q and p and A, we
have the following estimate, which improves on the bootstrap assumption:

(6.13) g5+ Bopas + Doas < Ae' ™2,

1 o
(614)  |lgl,, ..+ sw > (-w* VK|

R (u,'U)GRaj i=0 L2 (S%’U)
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The proof of Proposition 6.3 will be broken into stages, primarily based
on what norm we are estimating.

6.2.1. Sobolev spaces, Sobolev inequalities, and elliptic estimates on S*. In
this section we will analyze the Sobolev spaces H* and establish some standard
elliptic estimates. We start by observing that the Sobolev spaces generated by
Jap and g g Are comparable.

LEMMA 6.4. Let (M, gu) satisfy the hypothesis of Proposition 6.3, and
let wa,..a, be a (0,k)-tensor. Then we have that
—k .
ol sy ~k (—)* ol ey for i € 0,1,2),
—k
ol ey~ ()™ [l oges
where we recall that H' and LP denote the Sobolev and LP spaces generated by
the round metric 5ZAB'

Proof. This is an immediate consequence of Lemma 4.2, the bootstrap
hypothesis, and the smallness of v and e. (I

Now we observe that the standard Sobolev inequalities hold for the spaces H'

LEMMA 6.5. Let (M, gu) satisfy the hypothesis of Proposition 6.3. Then,
for any (0, k)-tensor wa,...a, and p € [1,00), we have that

lwllzn(sz ) Sox Il )y, suplwl Sk llwllgagss ),

and for any (0, k)-tensor wa,...a, and (0,k')-tensor vy, ...,, , we have
lw-vll go(sa ) Sk Wl gzez ) Wl a2(ss ) -
Proof. This is an immediate consequence of Lemmas 6.4 and 4.1. (|

These Sobolev inequalities will be used repeatedly in our estimates of non-
linear terms, and we will often do so without explicit comment.
We close the section with some standard elliptic estimates.

LEMMA 6.6. Let (M, g,.) satisfy the hypothesis of Proposition 6.3. Then
for any function f, 1-form 04, and symmetric trace-free 2-tensor vag, we have

(6.15)

1Fll2sz,) S G0 1Al sz )y + 1112z, ) -
(6.16)

161l 7552,y S (—w) [\|de9||§12>1(§3,”) + ||C‘/{r19||ﬁli*1(83,v)] fori € {1,2},
(6.17)

Wl is ) S () ldivwl| s sy ) fori e {1,2}.
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Proof. The estimates (6.16) and (6.17) are straightforward consequences
of the following well-known identities and the bootstrap assumptions:

/SQ [[V0]° + K |0°] d Vbl = /82 [[dive]” + [cuelo|*] d VoL,
/[|77u|2+2K|u|2}dv/01:2/ |dtve|* d VoL
S2 S2

Finally, to obtain (6.15), we simply write

div (Vf) =4f, okl (Vf)=0

and apply (6.16). O

6.2.2. Estimates for the curvature component norm </ . The next lemma
will play an important role in the energy estimates for a.

LEMMA 6.7. We have

> > >
(6.18)  QVj (Q_2a) + 1Q tr x (Q_Qa) — 80w (Q_2a> =0.
AB 2 AB AB

Proof. We start by noting that a straightforward calculation shows that
(5.6) is equivalent to

_ > 1 > 7 >
OV <Q‘1§<> +-Qtry (Q‘HZ) — 40w (Q‘HZ)
(6.19) AB 2 AB AB

X 1
= <Y7®77 +nn - 5 (Qttrx) QX)

AB

Next we note that [Wg, [,v] = 0 and that

— ko1 v \"
Qw=———=-L7] () Q.
LT Tou 28 ( —u >
Thus we immediately obtain (6.18). O
Next, we analyze the “initial data” terms that will come up in our energy

estimates.

LEMMA 6.8. Let (M, gu) satisfy the hypothesis of Proposition 6.3. Then,
for every v € (0,v], i € {0,1,2} and curvature component ¥ # a4, we have

(6.20) //Q%—WSO
0 JS2

~12 o
szy( |(—1.0.00) dod Vol S 72,
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Proof. Let us start with 34. It follows from the definition of 84 and (2.18)
that we have

(6.21)
Ba=—(div—div (Q_DlA> EW Q' tr —EV Q~ltr
A ( ) X A+(2 Al X) 9 ( X)A>
_ﬁggBC (Q_I)ZCA>"‘;((H(Q_IUX))A_W(Q1trX)A)'

Before we estimate this, we need to establish some bounds for ;jf A 74, and

K

try. Since along {u = —1} we have that = v™* and

it CcD
“1o _ 0-1g -1
Q X_Q XC(A(,% ) gB)D7
we have the following equations along {u = —1}:

o P _1\CD 1,
(6.22)  Lo,g,,=20" <Q e (901) Ipp+ 3 (@ trx) gAB)’

(6.23)
2) ’

1 N
Lo, (Q_l tr X) =y 2 (2 (Q_l tr X)2 - ‘Q_lx
(6.24)  QVana=v (207 n+Q Lrxn +Q714)

>
It is now straightforward to use the bound (5.8) for Q~1¢ 5 as well as Gron-

wall’s inequality to conclude from (6.21)—(6.24) that
B’ < 61_6.

(6.25) sup v~ !*iio o S

v€(0,v]

Of course, from (6.25) we obtain that (6.20) holds for U = B4. For diap, the
desired bound is immediate from (6.6), the argument above, and the definition
of a AB-

Next we come to 0. Using (2.23), the following equation is easily derived:

~ 3 =0
OV =Q°| — 3 (Q 'try) (a + 2)(/\(2_1X>

(6.26)

i (Q78) + Lxha+ SXAG A (Q76) ] .

Integrating equation (6.26), using also the V4 equation for } 4 and arguing

as above easily lead to the desired bound for o. The bounds for p and 3 4 are
obtained in a similar fashion. (]

Now we are ready to begin the energy estimates.
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PROPOSITION 6.9. Let (M, gu) satisfy the hypothesis of Proposition 6.3.
Then we have

—20
l@.B)ll, ., S 2.

Proof. From (2.20) we may easily derive the following:

(6.27)
1
Vs (2% 4 + 5 X (%) 1 — 8 () (27%a) 4
= (V& (2718) =3 (27 p+7 (271X) 0) + 51 (2778)) 4
Then, from Lemma 6.7 and (6.27) we obtain

(6.28)

<QV3& + 1Q tr xya — 8 (Qw) 62)
2 o AB

= (Ws (Qza) + 5 (g%) 63 (9%) Ly (9”15))
AB
&1
+(V8B) 1+ (3O o+ (27') 0) 508 (27'8)) 4
Fi1

Next, we use (2.21) to derive
(6.29) QVy (Q_lﬂ)A + 20?2 (Q_l trx) (Q_lﬂ)A =divaa+ (n-a),

Our next goal is to write this in terms of B 4 and aqp. We start with

divay = div (Q2Q o

\/

(6.30)
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Similarly,
oo () (o (5 o))
A
o),
A

Combining (6.29) with (6.30) and (6.31) leads to

(6.32)
OV4Ba+ 207 (Q M trx) Ba = Q%divaa + Q% ((2n+1) @),

(6.31)

+Q?

Q 'y (QD15> —2(Q try) Qflﬁ

—~—

L) ()0 (1)

—~——

L) () o)

= Q%divaa + 0 ((2n +1n) @) , + Ea.

Finally, for each i € {0,1,2}, we commute (6.28) with QYY" and (6.32)
with ¥*. We end up with (suppressing the indices on the covariant derivative
in the rest of the proof for typographical purposes)

(6.33) |
avs (oy'a) , + ! ;—ZQtr X (QY'a) ,  —6(Qw) QY dap
=Q(Y&Y'B),  + V& + V' A

+Q[QVs, V] &AB+%Q trxdap+Q [V, Y& 5A3+9Wi(%§2 trx (28) 4.

G1
~ 1 i i
—6 (Qw) aAB) — §Qtrx (QV a)AB —6(Qw) QY 'aap

i

OV.Y'Ba = (Q%div (Y'a) + V' [02 (2n+n) & — 202 (9" trx) B] ),
(6‘34) + Wigg + ([QV4, WZ} §+ [Wl, Q2d,fv} &’)A .

Ga
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\2—q+i
Finally, we conjugate with the weight w = % and obtain

(6.35)

Vs (vQV'a) (2 __qu+ i1 "; o z) (wQY'E) |, —6(0w) wOY'Fan
= wQ (YOV'B) +wQV' € +wQY' Fi +uGy,
(6.36)
v, (wv'5), + L2y,
= wdiv (V') , +w¥' [0% ((2n+1n) - &), — 207 (2" trx) Ba
+wY'E + wGa.

We now note a key fact that by the bootstrap assumptions (6.11) and (6.12)
we have that

(2—q+z 1+

—Uu

Qtrx) (—u)~! > 0.

1
<2 —q> v >0.

Thus, after contracting (6.35) with wQWi&AB, (6.36) with wWigA, adding the
resulting equations together, integrating by parts, and using the bootstrap

Of course we also have that

assumptions, we end up with
(6.37)

w)d-2at2 ) o
sup / / QQ 1 57 Y'a
(u,v)ER4,5 S2 v
3 2q+2i .12
2 | i~
S2 v
4 2q+21
sup / /
1 2
(uv)ERa.5 s v
)4 2q+2z

///S2 U1522;1+2z
///82 MQHZHW (97 (20 + 1) & —20% ( *%rx)[ﬂf

+ ]W’&\ + |g2|2}d\°/ol di d

dVol dv

dVol dii do}

~2
dVol du

~12
dVol du dv

‘QW&’Q + ‘Qyﬂﬂf + |g1|2} dVol div do
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@)5—20+2i
/ / / 11| dVol di, di
S2
q)4-20+2i
/ / / 11| dVol di, do.
S2

Let us start with the analysis of the terms in I. We will group these terms
into three categories:

(1) We have the “linear/data” terms contained in QV'&;. Using the bootstrap
hypothesis, Sobolev inequalities on S?, Lemma 6.2, and the crucial fact
that in the norms (6.1), (6.3), (6.4), and (6.5) we see &5 instead of 2g,
leads to the bound (where we suppress the volume form for typographical
reasons)

(6.38)

5 2q+2i
[

(2) Next, we have the nonlinear terms generated by QY'F; and Gy except for

Qy 5] S 25/ / 109116 log24<®.>.
—Uu
2 26

N

the terms generated by the commutator [Wz, W@} E 45. The contributions
of these terms to I are easily seen to all schematically be one of the following
forms:

QQ Wi(QS1¢1 . QSQ\IJSQ) 2’ QQ ‘Wi(gslwl X &))27 QQ ‘Wi—l(Qslwl X Qszw2 A &) 2’

where

(a) each 1); denotes a Ricci coefficient of signature s; that is not equal to
w or try;

(b) if ¢; multiplies a4p, then we must have ¥; # xap;

(c) if tr x shows up in one of the quadratic terms, it must be acted on by
¥, and tr x cannot be both of the Ricci coefficients in the cubic term:;

(d) each ¥, denotes a null curvature component of signature s; that is not
equal to aap.

Using the bootstrap hypothesis, Sobolev inequalities on S?, and Lemma, 6.2

leads to the bound (where we suppress the volume form for typographical

reasons)

5 2q+2z
I

]yt @ @) + [V @ 0 a)f]

i s 2
Q| |V (- 2wy)

N

62_25.
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Lastly, we have the terms generated by the commutator [WZ,W@)} E AB-
These occur only if i € {1,2} and they are of the following schematic form:

2|y (1) B)|

We have the following immediate consequences of Sobolev inequalities
on S?:

|
Ji7307],, < <||w<’||m .
51530, + 51,157

+[%]

A

Hl

|« ¥3 quwf» 7l

where all of the spaces are defined over Su’v. Thus, using the bootstrap as-
sumption and the smallness of v, we may easily establish that (suppressing

a2’

the volume forms)

///SQ ;22;% ]Wi_l((K,l).B)\Q

i)P—2a+2] -
(6.39) <]ZO/_ / /S2 I 2;1 J ’Wjﬁf
228

N

Now we discuss the terms contained in II from the expression (6.37). We

will again group these into three different categories, which we treat in a similar
fashion to the terms in L.

(1)

We have the “linear/data” terms contained in QWZ'EQ. Using the bootstrap
hypothesis, Sobolev inequalities on S?, and Lemma 6.2 leads to the bound
(where we suppress the volume form for typographical reasons)

(6.40)

[ L=

(2)

977 & ’ <52 25/ / o115 log%(l)
2-26

6

Note that, as opposed to the bound (6.38), we do not need to exploit fully
the vanishing of any Ricci coefficients {E A

Next we have all of the terms except for QY'E; and those generated by the
commutator [WZ, QQd,fv} a 4. These are all of the following schematic form:

; ~ 2
v (@ @ @A) [P (R @) (@) B[
where 1; denotes a Ricci coeflicient of signature s; that is not equal to w.
Using the bootstrap hypothesis, Sobolev inequalities on S?, and Lemma 6.2
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leads to the bound (where we suppress the volume form for typographical
reasons)

641
[ LS e @ @ (55)
+ ‘Wi (Q2 (M) - (2%2eh2) - 5)’2] <,

(3) Finally, we have the terms generated by the commutator [WZ, QQd,fv} QaA.
These will be of the schematic form

- 2
Qv (K1) @)
The same argument that established (6.39) leads to

///s2 HMZQZ‘]W” (K1) - ))2
(6.42) <Z///82 4_2q+2J ‘W%‘

< 62 25.
This concludes the proof that the terms in (6.37) are bounded by €2=20 and
hence finishes the proof. (|

In the next proposition we carry out the analogous energy estimates for
the Bianchi pairs (84, p, o), (p, o, EA)’ and (éA,QAB).

PROPOSITION 6.10. Let (M, g) satisfy the hypothesis of Proposition 6.3.

Then we have that
A < eI

Proof. We may re-write the Bianchi equations (2.22)-(2.29) as follows:
OVs (Q718) , + (Qtrx) Q' B4
(6.43) = Vap+4 () QB4+ "V a5 +2(27'%) - (28)
+3Map+"nac) +Yalp—p)+*Valo—0),
(6.44)
~ 352 (0-1
QVyo + 59 (Q tr X) o
1 -
= Q2 [—div* (Q718) — (n+2n) A (Q718) + FOX NG

—_~—

35 (5) ) et
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(6.45)

OWso 42 (Qtry) o = —div' — - (715) A (@) —n A (Q8) —div* (05)
(6.46)

QVap + 2(22 (Q_l trx)p

_ 2 [d,j./v (Q718) - % (Q%) -a+ (n+2n) - (915)}

)T ) @00
(6.47)

QVs3p + g (Q trz)

— _divi-
(6.48)
V4B, + 9% (7 rx) (28)
= [~ B~ Vp+ Vo +2(Q%) - (27'8) +3 (~up + "no)]
(6.49)
Ovs (28) . +2(Qtrx) (28) ,
= —diva, —4(Qw) QB + 21 - (La) , — div (QTQ)A,
(6.50)
OV4d.p + %QQ (Q ' trx) Q%ayup

p
% (Q—lx) . (Q2g) —n- (Qé) —div (@),

=2 20y -a - Y& (28)

=3(() =" (@) o) + (n—4m) & () | .
(It may be useful for the reader to draw an analogy with this form of the
Bianchi equations and the renormalized Bianchi equations (2.31)-(2.36).)
Now we treat each of the Bianchi pairs ((6.43), (6.44), (6.46)), ((6.45),
(6.47), (6.48)), and ((6.49), (6.50)) just as we treated the (aap,4) pair in
the proof of Proposition 6.9. That is, for each i € {0,1,2}, we commute

each V4 equation with Wih---Aw commute each V3 equation with QVih---Ap

2— a5+
conjugate each equation with the weight (zw) 20 (note that the weight has

vl/Q_T%
changed from Proposition 6.9), and finally carry out the energy estimate. Note
the key point that other than asp, every null curvature component satisfies
a V4 equation, and thus, in analogy to 84 in the proof of Proposition 6.9,

there will be a good spacetime term for p, o, 8,, and a,p with a v-weight

A7



NAKED SINGULARITIES FOR THE EINSTEIN VACUUM EQUATIONS 333

v~ 2100, Thus, (using that we already have estimated a spacetime term for G4
in Proposition 6.9) we end up with

449
(6.51) A2 < €2- 25+§ :/ / / |G| dVol da db,
S2 U 100

where, just as in the proof of Proposition 6.9, the terms making up N; may be
sorted into three categories:

>
(1) We have “linear/data” terms involving Q 2aap, p — p, @A’ and Q%a 5.
We collect all of these terms below:

oV (V- eV (Ve -a)

# ()" () ) wa™)|

—_—— 2

ot @) ( () ((2) 0) 000 )

—Uu —Uu

2

)

ov' (@ @2)", [ov’ (av (22a))["

Let F; denote the sum of all of these terms. Using the bootstrap hypothesis,
Sobolev inequalities on S?, and Lemma 6.2 leads to the bound (where we
suppress the volume form for typographical reasons)

(6.52)

/ / / ot ‘]—' | €2- 26 / / - 10001; 141565 log (U>
S2 v 100 —Uu
<

6

~

(2) Next, we have all of the remaining terms except those generated by com-

mutators of angular operators with W;l,,, 4,- These terms are all of the
following schematic form:

. 2 . ~ 2
(QQ’ 1) ’WZ Q%1 - Q20| (QQ7 1) )Wz (QSlwl . (Qsij% \I/))‘

(QQ7 1) )Wz’—l (9511/11 CQ524hy - (stlp?”{f))‘z’

where

(a) each 1; denotes a Ricci coefficient of signature s; that is not equal to w;

(b) each ¥; denotes an arbitrary null curvature component of signature s;
that is not equal to aap;

(c) each ¥ denotes an arbitrary null curvature component.
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Using the bootstrap hypothesis, Sobolev inequalities on S?, and Lemma 6.2
leads to the bound (where we suppress the volume form for typographical
reasons)

/ / /82 B ujzow[(QZ=1)‘Vi(ﬁ“”l%-{z@\p@f

(6.53) +(021) W (@141 - (Q220,, 7)) ’2

+ (QZ7 1) ’Wi—l (Qs1¢1 . Qssz . (983\1137117))’2 S, 62725'

(3) Finally, we have the terms generated by the commutator of 77541.,, 4, With
angular operators. These are all of the following schematic form:

(@ [ (1) (2000, 7))

9

where Wy denotes a null curvature component of signature s; not equal to
aap, and W also denotes a nulll curvature component not equal to a4p.
Arguing as we did in the proof of Proposition 6.9 leads to the bound

[ @y v (- (o)) 5

O 100

We have thus show that all of the terms on the right-hand side of (6.51) are
bounded by €229, and this completes the proof. O

6.2.3. Estimates for Ricci coefficients other than tr x and X . In this section
we will carry out the estimates for all of the Ricci coefficients other than tr x
and XAB' We start with w.

LEMMA 6.11. Let (M, g,.) satisfy the hypothesis of Proposition 6.3. Then
(6.54) ol < €72

Furthermore, if we define

3 (u,0,0) = (1 —2r)7" ()1—%
) (W)Q Bp B % (%) - (@19 + % > —n-n

1/7 v \F_ 2 s (U0 —2K >
+4(<_u> Q) apd™ | (%) @ s
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then

(6.55) sup / /
(u,v)ERa,5 j—0 S2

Proof. We start by multiplying (2.15) through by Q2 so as to remove the
ww term:

)5+21

“ —dudVol < 22,
v3_ﬁ

_ 11
(6.56) OV = O (2,; +5 nl* —n- 77)

owiat = (2) @ (ot )+ (5)
(()0) (b b1 (G rs)
() e) (1) e @

e (5[ () 07

implies

(6.57)

_ v\ ~(1_ 1 1, . )
v, = <) 02 Pt 3 (P 3 (%) - (Q_lX)>

S o) 015 +1| 2
) X X 9 n n-n
% /T~ Rk O\ 2 -
v v 1. 1,2 _(1 2 ))
+(—u) ((—u) Q) (2/)-1-2]77\ n-n 2’77‘ n-n

=F.
Now for ¢ € {0,1,2}, we can commute (6.57) with Will"‘Ai and use (2.37) to
obtain

(6.58) V4 (Vi n,8V) = V' F+ €D,

where £ is controlled by terms of the schematic form

Y(QF Q) (W), V(02 (9%9) (224,) (D))

where 1; denotes a Ricci coefficient not equal to w of signature s;.
Now we use Lemma 6.2, Proposition 6.10, the bootstrap assumptions (6.11)
and (6.12), smallness of € and v, Sobolev inequalities, Cauchy-Schwarz, and
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Gronwall’s inequality to integrate (6.58) and obtain
(1) ! 1-s( Y =60 1
~ < i e =
(6.:59) H@ HFP(S%,U)N/O 1F sz ) 405 € (—u) (=w)™
Since Lemma 6.2 is easily seen to imply that
1— -2
~(0) =5 V) -1
(6.60) Hg pr(sg,,,) Se (—u) (=u)™

we have proven (6.54).

In order to establish (6.55) we will need to obtain a better v-weight than
we saw in the estimate (6.59). The reason that in (6.59) we are only able to
obtain a maximal v-weight of v! =10 is because of the need to control Wi‘ pp in
the o/-norm. However, if we also integrate in u, then the «/-norm for p comes
with a more negative v-weight. Thus, from (6.58) we derive

4+22 0 .
fQV4 ( / / “(”‘ 3 dudVol>
S2 _m
(6'61) 100/ / u)4+2z m
SQ

vioO T dadvol

U 100

44-2i—
/ (V'F+eD). ( “) " didvol
82 3 ~ 100
implies
. +2z
Sup / / v'o ‘ du dVol
(u,0)ERG,5 S2
4+21 0 .
/ / v’ ]—"‘ 2_7 didVol < . O
100

Next we provide the estimates for 4.

LEMMA 6.12. Let (M, g,.,) satisfy the hypothesis of Proposition 6.3. Then

we have that
Inll 5 < €7°.

Proof. Given that we have the following consequence of (2.11),

(6.62) OVaija = =2 [(Q %) - (n—n) —Q7'8] .,

the proof of this lemma is carried out in an analogous manner to the proof of
Lemma 6.11, and we thus omit the details. (Of course it is strictly easier since
we do not need to establish an analogue of (6.55).) O

Next we will treat 04
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LEMMA 6.13. Let (M, g,) satisfy the hypothesis of Proposition 6.3. Then
we have that

< 61—5
2"~ '

|
Proof. We start with the following consequence of (2.12):
1 . 1 .
(6.63) QVsn, + <2Qtrx+§2x) Ny = <2Qtrx+ﬂx) na+QB,.

Restricting to {v = 0} yields

1 1
(6.64) <QV377 + (29 tr x + QS() 77) = ((29 trx + Qf() N+ Qﬁ)
A

Taking the differences of (6.63) and (6.64) leads to

K
~ 1 ) ~
QVgQA+ <§Qtrx+ﬁz> n,

— 1 —  ~
=QVsn, + <ftrx+§(->ﬁ
(6.65) A\ s /o4

1 1
+ (§QUX+QX> na+Qp, — <<§QtrK+QX>7]+Q§)

=&+ F.

A

Next, for i € {0, 1,2}, we commute with WZ (suppressing indices on Y in the

rest of the proof for typographical reasons) and then conjugate by the weight

(zu)"*> 20
vlffgﬁ

(6.66)
(—u) 2
AVE! (qV ﬁ)
A

1)1_200

2— L +i 1474 . )it et
+( 200 + 5 QterLQx) (%Yﬂn
A

to obtain

—U 200

(—u)2 200 i1~ 0 i i1 <\ wpio—
— 0 [QVg,W]ﬂ+§QtI‘XWﬂ+ Z )4 §Qtrx+QX \% 7

v 200

i1'+i2:i
11750 A
Gi
—u i+2—5d5
v 100

Note that it is a consequence of the bootstrap assumption that
2— & +i N 1+
—U 2

Qtry — ‘QX’ > (—u)~L.
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We also have that G; is a sum of terms that are schematically of the form

V(@ )T, (M) (%) -7
where
(1) 9; denotes a Ricci coefficient of signature s that is one of 14, w, X g OF
trx;
(2) if ¢; = try in the first term, then there must be at least one angular
derivative applied to it;
(3) we cannot have that both 1;’s in the second term are equal to try.

Thus, if we contract (6.66) with (cu )j2
U

6.2, Proposition 6.10, the bootstrap assumptions (6.11) and (6.12), smallness
of € and v, and Sobolev inequalities we end up with

5+22
(6.67) H H sup / / {
(u,v)ERg, S2

C 12 o
© s / b2 W“ﬁ\ Vol
(u,w)e—1x[0,u] /S2 B

S 62_25. 0O

W N and use Lemmas 6.12 and

(Wifﬂ div dVol

Next we provide the estimates for try and xap.

LEMMA 6.14. Let (M, g,u,) satisfy the hypothesis of Proposition 6.3. Then

we have that ,

ltrxlly Svro, [[(tr)lls S €
Proof. We start with the estimate for tr x. From (2.3) we may easily derive,

—0

for any i € {0, 1,2} (suppressing indices on ¥"),
(6.68)

v, (v'irx) = v (22 (5 (@ o)’ + 0 5) ) + [, avi] iy

Now it is straightforward to integrate in the v-direction, use Lemma 6.2, the
bootstrap assumptions (6.11) and (6.12), smallness of € and v, Sobolev inequal-
ities, Cauchy-Schwarz, and Gronwall’s inequality to integrate (6.58) and obtain
in a similar fashion to (6.59) that

P
0

(6.69) ltrxlly €= lltrxlly S vl
Now we come to yap. From (2.4) we may derive the following:
V4 (Q71X) 45 + 2 (27 tr3) (270

= —Q2aAB

2~ v 72%"5 %y —DIA
= Qg — | — 02| Q %« + L, | Q7 x .
—u AB AB

(6.70)
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We thus obtain

(6.71) (e (8,
S () (o),

=¢£.
Commuting with Y' for i € {0,1,2} leads to (suppressing the indices on Wz)
OVaY'Xup =V'E+ [V, QV4] X\
Now we can treat this equation like (6.68), and we end up with

IXll < €. 0

6.2.4. Estimating tr x and X , - The final Ricci coefficients that we need to
estimate are tr x and Y 4B We will need a preliminary definition and lemmas.

Definition 6.12. Let (M, g,,) satisfy the hypothesis of Proposition 6.3.
Then we define the following: In a frame that is Lie-propagated from {v = 0},

(6.72)

= a2t (2)
" <m2)2 (; (o) (OR,y) + (F0) 4y + (n®")AB>

TTNE O\ 2 v . -2k D
1 v — v 1. .
-3 ((—u) Q) Qtrx/o (_—u> QO g do+
2

() 0) 5 () e
= () [ ()

(QTtry) (Q8) — Vp + Vo +2 (2%) B+3 (_anr*ng)L @

1
2

(EDYC R
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(6.74)

a0 () (5) )
1

(6.75) S A
() [
x (—Qflx (=) -0 B0 g n) dv,
A
) o ([ ) g ()

((E)0) e [ ()" o
EA(O) N 7% (1—2)" (W) ((_UUYQ)Q (U>1—2H’

—u
~(1) . = ~(0) ~(1) . = ~(0)
Xap = Xap ~Xap: By =B4— B4
— (1) . —— —(0 N .
trx():trx—trx(), ng):nA—ﬁﬁ)),
(7)== () O

All contractions here are with respect to ¢ ne

Finally, we will let H) denote an expression for which we have

) ey o0 ()

—u
.. ~(0) %(0) . o
The quantities ¥, and 8, represents the leading order (in ) parts

of i 4B and E 4 In the next lemma we show that Eg) does indeed satisfy an

estimate with a larger power of - than Bﬁ{)) does.

LEMMA 6.15. Let (M, g,) satisfy the hypothesis of Proposition 6.3. Then

we have that ES) e 1P and ﬁg) e HD.
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Proof. 1t follows from (6.48) and the definition of ES]) that we have
(6.76)

. v —2Kk__
Lavﬁf:) =+ ( u) 2 [— % Q7 "trx) (8) = Vo + Vo +2(2%) - (27'8)

+3(-np+"0) + Q7% (28) |

* (fu)%(m> TGN L

+2(0X) - B+3(—np+"15) + X 28] |

() (0 - jrana- 9o 9542507

~b> ~ D _D ~ A
+3 (—Qp + *Qo) +Q lxé} R
Commuting with ¥, integrating this in v direction, using the bootstrap assump-
tions, Sobolev inequalities, as well as Proposition 6.10 yield that BS) e HP.
Next, we observe that it follows immediately from Proposition 6.10, the

bootstrap assumptions, and Sobolev inequalities, that if we integrate (6.34) in
the v-direction for i € {0, 1}, we obtain that

~ o \4/5 »

©77) Pl = (22) 07
For n, we may derive the following equation:

(6.78)

—2Kk __

ot = () @[ (@ ) ) 9780y

(L) () G,

() (@) e 3 T 6

“X-(r-n) -9 (n-)]

(L) (5 @

Then, by (6.77), we may argue as we did for 3, to obtain that ﬁg) en®. O

A

~(1) (1)

The next lemma expresses the Codazzi equation in terms of x AB and (3 A
and uses Lemma 6.15.
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LEMMA 6.16. Let (M, g,) satisfy the hypothesis of Proposition 6.3. Then
we have that

, ~(1 1, —q
d/{vxil) - §Y7Atrx( ) = H),
Proof. The proof is given in Appendix C ([

LEMMA 6.17. Let (M, g,) satisfy the hypothesis of Proposition 6.3. Then
we have that

H(trx,X)H%‘ < 61—57 HHXHSK < wio.

Proof. We start with the lower order estimates for tr x. From (2.10) one
may derive

(6.79)
OV 4tr y =207 (—% (@7 trx) (Qtry) +p - % (21) - (@71%) +dtva + ‘ﬂr) ‘

Integrating this in the v-direction and using the bootstrap assumptions, Propo-
sition 6.10, Lemma 6.13, and Sobolev inequalities immediately leads to

(6.80) Htrx“ < vio.
—€
For the Z-norm estimate of tr y, we cannot use its V4 equation because we

do not have any estimates for 773ﬂ " Instead we will use the V3 Raychaudhuri
equation. From (2.5) we may derive the following equation:

(6.81) QVs (Qtry) + % (Q trz)2 +4(Qw) (Qtry) + ‘QX g 0.
Restricting this to {v = 0} yields

1 2
(6.82) QV3 (Qtrx) + 3 (Qtr&)2 +4(Qw) (Qtry) + ’QX’ =0.

Taking the difference of (6.81) with (6.82) leads to

(95 + 644 ) (6rx) + (@rx) trx +4 () trx +b1Y 42 x

——— Y — x =~ 1 ,—2
(6.83) :—4@Qtrx—4gtrx—2ﬁx-x—x-x—5(trx)

ac _ AC BD
=2(07Y) 4T W Wt (T () W%

Now we define

K 2 v . -2k D
1 .
o =& ((U ) Q) QX/ (U ) Q' do,
4 U 0o \—u
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—\ 2
=1 LT 1 v \" — [0\ EIA ;
XAB:XAB+2<(_U> 9) Q“X/O (%) o nd
—~F O\ 2 . —2K >
v \" = cp [P © —14 .
—2<<_u> Q) Xewd ™ | <_u> 7 Xpyp do,
—\ 2
NT AB —~AB v K v U —2K >
-1 - 4—1 AC ,BD —1A .
() = “((_u) “) A A (%) o oo

This then allows us to write
(QVg + E)ZY7A> (‘Efr\i) + (Qtrz) t/r\i—i— 4 (@) t/r\g—l— bNAWAQtrX

AT o~ = ooz 2z oz 12
(684) = 40ty —d@try — 208X — Xk~ 5 (irx)

AT ~AC—~—BD__ __
() PR, ) () 0K ey

Next, we note that it follows immediately from their respective definitions that

. 142600 _14ok~t 142 NP s ©
each of the quantities v+ ftrx , vT TR, p=itee g_l v iTeRpAT
_1+2“XL 5 all depend only on u and 64. Since it is also follows from the
bootstrap assumptions and their respective V4 equations that

— — AB (1)
11)1_1{(1) Ufl+2n (bA( ) tI‘X <g— ) ,

~(1) -~ AC BD
Xup b Vatrxotry. k%, (97 (971 | =0,

and v

we may multiply (6.84) with v=!172% take the limit as v — 0, extend the
resulting equation to be independent of v, and finally multiply by v'=2% and
subtract the result from (6.84) to conclude that

(6.85)
(T% + Z;ZY7A> (tfrz(l)> (Qtrx) trx( ) +4 (Q ) trx( )
— 43¢ )Qtrx QQXABXCDgACgBD 9 (fAc)(l) F@AB@CD B gz(l)WA@
&
— 4wtrx —b- Wtrx — 2(27XAB§LCD (W — gACgBD>

G1
—NAC— 1,2
-2 (g‘l ) gBDQXABQXCD ~3 (tr&) .

Ga
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We then set G = G1 + Ga. Now for ¢ € {1,2}, we commute (6.85) with WZ (sup-

pressing the indices for typographical reasons) and conjugate with the weight
. (—u)it9/4 .
w = (1:1)57; to obtain

Qvs (wvi@(l)) + (9/ i +Qtry + Qtrx+4ﬂw> wy’ trx
¢ retva i T ) i—
(6.86) =wY (£E-G)+w “QV:’,,W]U“K-F 59’51‘&?7 trx}
tw 3V (@ 40 Yy
i1+ig=i
170

It follows easily from the bootstrap assumptions that

9/4+i

+Qtrx+%9tr&+4@2 (—u) L.

i——(1
Thus, we may contract (6.86) with wY'tr X( ), integrate in w, apply the boot-
strap assumption and Sobolev inequalities and, for any (u,v) € Ry and i €
{1, 2}, eventually obtain

(6.87)
2 (214972 u 2 (272
/ )W%rx(”‘ (™" “)5/2 Vol + / / ‘Wtrx(”} O™ ol di
s, 0 1w e 172

05/2
21+11/2
<[ LS|

+/ ‘Wztfrvx ’ |u:,1v_5/2d\nfol.
Sgl,v -

‘4 )Wigﬂ dVol di

Since every term in G involves (implicitly) at least two “tilded” quantities, the
v-weight of v™5/2 is not a problem and it is immediate from the bootstrap

assumptions that

21+11/2
(6.88) / /S2 i

Next, we note that it follows from the definition of trf\i , the V4 equation for
trx, and a straightforward argument using Proposition 5.4 that

2 o
dVoldu, < 7%,

(1)

. 2 o
(6.89) / ‘Wltr X(l)’ lue—1v"2/2dVol < €272,
S2 o
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This leaves us with the £ term. Using Lemma 6.11 and the bootstrap assump-
tions we have that

Q)22 e
//82 e |G| dVoldi

2H—7/2
< E2 26 / /
- v5 52

Now we appeal to Lemmas 6.16 and 6.6 to obtain that

21+7/2
z / R

2z+7/2 4 2
(2-26 — (1) o .
+ E / /S2 T trx ’ dVol du.

Combining (6.87) and (6.88)—(6.91), and another application of Lemmas 6.16
and 6.6 thus leads to

(6.90)

o
vl avold.

2
3| avoldi

(6.91)

2 o 2i49/2 |
(6.92) Z / V' x(”‘ u)TdVol< 228,
- Sz - v
2i49/2
(6.93) Z / “)5 —dVol $ 7%,
v

Recalling that t/r\i = t/r\i(o) + t/rz(l) and iAB = 5(541)3 + X;;, we see that the

proof is finished. O

6.2.5. Estimates for the metric coefficient norm & . Finally we come to the
estimates for the metric coefficients.

LEMMA 6.18. Let (M, g,.,) satisfy the hypothesis of Proposition 6.3. Then
we have

o5l s et

Proof. These estimates are all straightforward consequences of the previ-
ously established estimates and integrating the following equations from v = 0
or u = —1:

_ 0
Lo =—402C", Lag, =207 () 5 (

+b-Y7>log§~2:—2(,~u. O
ou

This concludes the proof of Proposition 6.3, and hence also Theorem 6.1.

7. The bootstrap argument for region 11

The main result of this section will be the following:



346 IGOR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

THEOREM 7.1. Let (M, g,) be a spacetime produced by Proposition 5.4,
and let v > 0 be arbitrarily small. Then we can pick € sufficiently small so that
(M, g) exists in the region {(u,v) =1<u<0and0< 2 < y_l}, and in
this region the spacetime satisfies the regularity bounds (5.15)—(5.18) and the
estimates (7.9).

We will prove this theorem with a bootstrap argument. In Section 7.1
we will define the relevant norms. In Section 7.2, we establish various useful
estimates that follow from Theorem 6.1. Then in Section 7.3 we will carry out
the bootstrap argument.

7.1. Norms. In this section we will present the norms around which we
will base our estimates. Let 0 < v < 1 be a small constant.
Let us set

Qi{ue(O,—l)}ﬂ{ve[0,1]}0{113‘u|<U }7

a5 =QN{u <a}N{v <o}

Finally, we introduce a constant D > 1 and then assume that € is picked small

D 100
€ exp (() ) < 1.
v

Convention 7.1. Throughout this section, unless said otherwise, all norms
and we will always

enough so that

of tensorial quantities are computed with respect to ¢ AB

use the round metric induced volume form d Vol on each Siﬂ,

Definition 7.1. Let ¥ be a null curvature component not equal to a4p or
ap, and let (a, ) satisfy v < I%\ <wv~!. Then the energy norm 64,5 1s defined by

|92 = sup  sup / / exp (DY) 7w (v — )" o Vo,
e 0<]<2 uo ’U() EQ —vug JS?

%)

+/ / exp( )W\If] w)* qu dVol
max(—v~1vg,—1) JS2
Vo uQ

+ / / exp( )W]\I/( W)Y dy du dVol|.
—vug Jmax(—v~lvg,—1)

As usual, for agp and ay g, we drop the u-flux and v-flux respectively:

Jally, = s s | [
0<7<2 (ug,v0)€Qa, —vug J S2

Vo uo
—vug Y max(—v~lvg,—1) JS?

exp ‘ (v —uo)*™¥ dv dVol

2 . .
exp <D%> Wja‘ (vo — w)**¥ dv dudVol|,
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0<7<2 (uo,v0)€Qaq,s

up
<\ /
min(—v~1vg,—1) JS?

Vo ug
Lo /
—vup Y max(—v~lvg,—1) JS?

We also introduce the notation
U

Finally, when it will not cause confusion, we will often suppress a subset of the

exp (D%) ng’z (vo — u)3+2j du dVol

2 ‘ .
‘ (vo — w)**¥ dv dudVol|.

o (02) 7

(@, v) indices from the & or & subscript.
Then we have the corresponding norms for the Ricci coefficients.

Definition 7.2. For any Ricci coefficient v, we let 1* denote the difference
of 1 and its Minkowski value.!? Let (@, 0) satisfy v < \%I < v~L. Then, for any
Ricci coefficient 1), the Ricci coefficient norm % is defined by

Hszz@ = sup sup / exp (DB) V7 op* : (vo — u0)* T dVol.

’ 0<75<2 (up,v0)€ Q4,5 /S? u
We also introduce the notation

SEESY 1Y, , -
"

Finally, when it will not cause confusion, we will often suppress a subset of the
(u,?) indices from the .# or § subscript.

Finally, we have the norm for the metric coefficients.

Definition 7.3. For any metric coeflicient ¢, we let ¢* denote the difference
of ¢ and its Minkowski value.'® Let (,?) satisfy v < & < v~!. Then, for any

|al
metric coefficient ¢ not equal to ¢ , », the metric coefficient norm ¥ is defined by

. v Pk
I¢ll5, . = sup  sup / exp (Df) Yo
’ §2 u

0<5<2 (up,v0)€Qaq,s

2 0
(vg — ug)™ dVol.

We also introduce the notation
6'&'7{) = Z HQZ)Hgﬁj :
@

Finally, when it will not cause confusion, we will often suppress a subset of the
(t,v) indices from the ¢ or & subscript.

"?Equivalently, for ¢ ¢ {trx,trx}, we have 1»* = ¢, and otherwise we have trx* =

try — ﬁ and trx* = trx + vEu.

13 Bquivalently, we have Q* = Q — 1, (b*)* = b*, and $ipg =9, (v— u)QQAB.
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Lastly, we define an “initial data” norm.

Definition 7.4. We set

—vSs
$H =sup sup | sup / /
T 0<j<2 |s€f0,1] s?

[P
v JS2

: 2 ) ;
+ sup sup [ sup / ‘ij* 52+2J—2Hd5+ sup / ‘WWJ*
Sg —sv Sal,s

P 0<5<2 |s€[-1,0] s€[é1,1]

.2 )
VU fu=(s.-oy 8™ ds

o]
'bﬂ .

PROPOSITION 7.2. Let (M, gu) satisfy the hypothesis of Proposition 6.3.
Then we have that

+ sup  sup / |5|;j UW (@ -1 ’2 + ’ng*

0<j<2 se[~1,-0] Js2,

+ sup sup/ UW] —1)‘2+’Y7jg*

0<5<2 s€[v,1]

7.2. Preliminaries consequences of Theorem 6.1.

H S 61_5.

Proof. We start with the curvature components W. First of all, given
that we have closed the bootstrap argument that proves Proposition 6.3, by a
standard preservation of regularity argument (see the proof of Proposition 7.1
from [RSR18|), and at the cost of an additional angular derivative of initial
data, we have the following estimate:

S 2 ,
sup Sup/ ‘WJ\I,’ uitY < 2
0<j<2(u'u)

sup Sup/ ’WJ 77 77 ’ W2t < 220,
0<5<3 (uv)

(7.1)

Integrating (7.1) immediately yields

sup sup sup/ /
¥ 0<j<2 |s€[0,1] /—s S2
L,

Next we come to the Ricci coefficients. We first note that for xap, X AR
NAs 145 and w, the desired bounds manifestly follow from Proposition 6.3.
However, we will need to improve the estimates for tr y and trx and produce
an estimate for w. Let us start with try. We can write the Va4 equation for

W \I" |{(uv) (s,—sv) s ds

2725

~

77]‘1" (u,v) 1s}d3
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try in the following form:

%) 2 202 2

— (Qltrx— ) + <Qltrx— )

ov v—u v—u v—u

2
- - (Q—ltrx— ) —? g

(7.2)

v—1u
Note that it also follows from Lemma 5.2 that

< =9,

—U|| g2 (Si,o)

2
‘Q_l try — —

Thus, it is straightforward to commute to (7.2) with W;l,‘,Ai for i € {0,1,2}
and use the already established bounds to obtain that

< 6176'

(7.3) sup <
H2(s2 )

(u,0)

v—Uu

‘Ql try —

Similarly, from the V4 equation for try, one may derive

Doyt 2 )4 202 @ ey (Qury+ )
(7.4) =0? [2/)— (@71%) - (%) +2djvﬂ+2‘ﬁ‘2}

X
1 1
+ < — 592 (Q_l trx))

V—1Uu

v—u

Using (7.3) and (7.1) allows us to straightforwardly commute to (7.2) with
Yy L4, for i € {0,1,2} and use the already established bounds to obtain that

< 61_6.

Qtrx + <
a2(s2 )

- Vv—Uu

(7.5) sup
(u,0)

From (7.3) and (7.5) the desired bounds for tr y and tr x easily follow.
Next we turn to estimating w. From the V3 equation for w, we may derive
the following:

6) OV (07w - 0720 ) —4(0w) (07w - 0720 ) = - ] ’ —nen.
(7.6) QV3 w 5y (Qw) w 5% p+ n°1
Using that along {u = —1} we have that Q™ 'w — Q722 = 0, we may use (7.6)
in an analogous fashion to the proof of Lemma 6.13 to estabhsh that

(7.7) 02 r H < 1o,

m2(sz,) "~

In turn, this easily implies the desired bound on w.
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Lastly, we just need to improve the bound on ¢ e Since the desired bounds
for the other metric coefficients already follow from Proposition 6.3. For this
we simply note that

Logyp =2 ap
and argue as we did for tr xy and tr x. O

7.3. The estimates. A standard argument using Proposition 5.4 shows that
Theorem 7.1 will follow from the following proposition:

PROPOSITION 7.3. Let v > 0 and (M, g,) be a spacetime produced by
Proposition 5.4 that exists in the region rectangle Rg s for some @ € (—1,0)
and v € (0, 1] satisfying

v
0<7~§2717

and that satisfies the “bootstrap assumlgtotz‘on”

(7.8) Cas + Fap + Gap < 24670
We then claim that (7.8) implies

(7.9) Cap + Fas + Gap < A0

As usual, the proof will be broken up into a few separate estimates. We
start with estimates for the curvature components, then prove estimates for the
Ricci coefficients, and finish with the estimates for the metric coefficients.

Throughout the proofs in this section we will use without comment that
for any point in Q, we have

vlul <v<o M|, wo < ful <v .

Unless said otherwise, we will also allow all of our constants to depend on
v and v~!. We start by observing that the Sobolev spaces generated by ¢ and
& are comparable.

LEMMA 7.4. Let (M, g,,) satisfy the hypothesis of Proposition 7.3. Then
we have that

HwHE['L(S%’U) ~k (’U - u)_k HwH]f[l(S%’v) fO’I"i € {07 ]-a 2}7
lwllzo(ss )~k (0 =)~ wllgsz )

where we recall that H' and LP denote the Sobolev and LP spaces generated by
the round metric é, and the spaces HI are defined as in Definition 6.11.

Proof. This is an immediate consequence of Lemma 4.2, the bootstrap
hypothesis, and the smallness of €. ([l

Now we observe that the standard Sobolev inequalities hold for the
spaces H°.
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LEMMA 7.5. Let (M, gu) satisfy the hypothesis of Proposition 7.3. Then,
for any (0, k)-tensor wa, ...a, , we have that
lwllzn(sz,y Spr lwllaise ) wllzoeqsz ) S lwllgzes )
and for any (0, k)-tensor wa,...a, and (0,k")-tensor VA, .4y, we have
[w-vll gogsa ) Sk [wllgzez ) Wl a2(s ) -
Proof. This is an immediate consequence of Lemmas 7.4 and 4.1. U

These Sobolev inequalities will be used repeatedly in our estimates of non-
linear terms, and we will often do so without explicit comment.

7.3.1. Energy estimates for curvature. We start with the energy estimates
for curvature.

PROPOSITION 7.6. Let (M,g) satisfy the hypothesis of Proposition 7.3.
Then we have
¢ <o

Proof. We may write each Bianchi pair

((aABa BA) ) (5147 (pa J)) ) ((97 U) ’éA) ) (@AagAB))
in the schematic form
(7.10) VD =pu®@ 1y w, V300 = Dol 4y p

where D represents an angular derivative operator defined with respect to ¢ AB
and D* denotes the L? (g)—adjoint on S?. As we have written the equations,
we note that there are “linear terms” hiding in the right-hand sides due to the
presence of tr x and try. For each i € {0,1,2}, we may then commute with
Wi\ L4, and use Lemma 2.2 to obtain an equation of the schematic form (with

indices on ¥’ suppressed)

(7.11)
VaV' O = DY U@ L ¥ (- @)+ VT (-4 - 0) + VO (KW),
&1
VsV 0@ = DV o® 4 ¥ (- 0) + ¥ (e U) + V(KD
&

Before carrying out our energy estimate, we conjugate the equations (7.11)

by w (u,v) = (v — u)3/2 exp (D%), where D is a suitable large positive constant
to be determined later, depending only on v:
(7.12)

(3/2)07"

Vi (wy'e®) - [ + Q—lg} (wY'e®) =D (V' ¥®) + wéy,
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(7.13)
Vs (wY'v®) + {(31/]2_)%_1 i Q—llzﬂ (w¥'¥®) = —D* (w¥'T M) + wé,.

The point of conjugating with the exponential weight is that for D suffi-
ciently large, the coefficient of the linear term on the left-hand sides of (7.12)
and (7.13) will be positive and thus generate a good spacetime term in the
energy estimate. A A

Let (u,v) € Qz5. Multiplying (7.12) by wV' ¥ and (7.13) by wY'w®
carrying out the usual integration by parts, using the bootstrap assumption
(7.8), and appealing to Proposition 7.2 leads to

u , 2 .
sup [/ / w? ‘WI\II(I)‘ |(s,0) ds dVol
v max(—1,—v~1v) J§2

v ; 2 °
+ / / w? [ OO, ) ds dvol
—ou JS?

+D/ / w? (6 — )" qu,m‘%r ‘W\If@)ﬂ di do dVol
S

(7.14)

<D / / ) [|E1 + |€2/?] diidv dVol + €272,
u,v SQ

Here we have used that in the region under consideration, v and |u| are com-
parable and thus we have w? ~ (v—u)?. Next, it is immediate from the
bootstrap assumptions, Sobolev inequalities, and the largeness of D that we
have (suppressing the volume forms)

D~ / / |51| —|—|52\}<D sup/ / (0 —u)~"
u,v S? S2

. : , 2

Vel e 3 wra|(vEK) (vR)
i1+io=1—1

The first term on the right-hand side of (7.15) may be clearly be absorbed

into the left-hand side of (7.14). Next, we note that it is a straightforward

consequence of integrating the V4 equation for p and the bootstrap assumption

(7.15)

that we have

L (0D 0 e

It then follows easily from the Gauss curvature equation and the bootstrap
assumption that

(7.16) s Hexp (D%> (K — 1)HHl 5. (v-u? < te
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Finally, a straightforward induction argument, Proposition 7.6, (7.14), (7.15),
and (7.16) leads to

u , 2 .
sup sup [/ )/S2 w? ’Wz\IJ(I)) |(s,v) ds dVol

0<i<2 W max(—1,—v~1v

v ; 2 °
+ / / w? [0, ) ds dvol
—vu JS§?

+D/ / w? (6 — )" UW\IJ(UF + ‘W\P@ﬂ di do dVol
Quw /S?

< @2y (22
Invoking the bootstrap assumption again finishes the proof. O

7.3.2. Estimates for the Ricci coefficients. Next we turn to the estimates
for the Ricci coefficients.

PROPOSITION 7.7. Let (M,g) satisfy the hypothesis of Proposition 7.3.
Then we have
R <0
Proof. Every Ricci coefficient ¢ € {X , . XaB,w,w, 04,1, } satisfies ¢ =1)*
(recall that ¢* is defined in Definition 7.2) and also satisfies an equation of one
of the following schematic forms:

(7.17) Vap™ = (¥, ¢7) -y + ¥,
(7.18) V™ = (1, ¢7) -3 + ¥,

where v; stands for a Ricci coefficient and ¥ for a null curvature component.
For try and try, we use the corresponding Raychaudhuri equations, which
may be written in the following form:

(7.19)
2 2 dw 1

Vitry' = (1-Q7! - tr " — —2wtrx*—= (trx*) 2 = [%/?
atrx” = ( )(viu)2 e e 2wtr g ()T [XI
(7.20)

_ 2 2 4w 1 2 2
Vatry* = (Q71—1 t*;—2t*——t*—A’
atrx"= ( Vo —ap Ty X X g () - R

Thus, all together every Ricci coeflicient ¢ satisfies an equation of one of the
following forms:
Vap* =€, Vayp* =€,

where £ is controlled by a sum of terms of the following possible schematic forms:
wl 7/];7 wi{ w;a \:[/7 (Qil)*(v_u)ia W (v_u)_lv

with the constraint that aap can only show up in a V4 equations and that
a,p can only show up in a V3 equation.
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Commuting with Wféh,,, 4, leads to equations of the schematic form (with
indices on Y suppressed):
ViYW =Y'E+F, ViVt =V'E+F,
where F; is controlled by a sum of terms of the schematic form:
i X i—1 %
DANCERE T PR AN (GRS
Now we conjugate by w = (v — u) exp (D%) to obtain
i\ Do i i
Vi (w¥'7) + —w¥'" = qV'E +qF,
Vs (w¥'07) + Dogu¥'t = wV'E +

Now we contract with lezlJ* and integrate to obtain, for every (u,v) € Qu.s,

either
7 2 . v D i 2 i o
/ w? ’W Y*| dVol + / / —w? ‘W Y*| dvdVol
S% v —uv SZ o U
(7.21) ’ v '
-1 . 9 io|? o] .o
S D / / (0 —uw)w HW(‘) + | Fil } dv dVol,
—un Si,@
or
7 2 9 v D i 2 . °
/ w? ]W Y*| dVol + / .—;’uﬂ ‘W v*| dudVol
sz, max(—vv—1,1) Si o u
(7.22) ' u '

;2 o
<D! / (v — a)w? Uv’g +!E\2} dit dVol.
max(—vv—1,1) Si,i;

The proof then concludes from the bootstrap assumptions, the largeness of D,
and absorbing the terms from the right-hand side into the spacetimes terms on
the left-hand sides of (7.21) and (7.22). O

7.3.3. Estimates for the metric coefficients. Lastly, we come to the esti-
mates for the metric coefficients.

PROPOSITION 7.8. Let (M, gu) satisfy the hypothesis of Proposition 7.3.

Then we have
® < el

Proof. This follows by simply by integrating the following transport equa-
tions for the metric coefficients,
(7.23) 9 (Q71) = 2w, Lof g =2%as, L =—40°CH,

and controlling the Ricci coefficients on the right-hand side with Proposi-
tion 7.7; see the proof of Proposition 7.7. U

This concludes the proof of Proposition 7.3, and hence also Theorem 7.1.
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8. Shifting the shift and gluing in an asymptotically flat cone

It will be convenient to introduce the following notation:

Wﬁ{(u,v)i—1SU<0, 1§L<2_17 OSUSQ}-
—U

We begin by noting the following consequence of a preservation of regu-
larity argument:

PROPOSITION 8.1. Let 0 < v < 1, let € > 0 be sufficiently small, and let
(M, guw) be a spacetime produced by Theorem 7.1 so that (M, g,.) exists in the
region W, and in this region the spacetime satisfies the regqularity bounds (5.15)—
(5.18) and the estimates (7.9).

Then, for any 1 < N < Ny, we have that

S 2 ,
sup  sup / ‘WJ\I/’ VA2 < 22
0<j<N (uv)EW JSE ,

sup  sup / ‘W] 2+2j§62—26’
0<j<N (u,v)eW 82

sup  sup / ’W] 62726.
0<j<N (u,v)eEW JS2 |
Proof. The proof follows mutatis mutandis as in Proposition 7.2. ([

8.1. Shifting the shift. In this section we construct a new coordinate sys-
tem so that the shift vector is in the e4-direction; see Remark 2.2.

LEMMA 8.2. Let 0 < v < 1, let € > 0 be sufficiently small, and let
(M, guw) be a spacetime produced by Theorem 7.1 so that (M, gu.) exists in the
region W, and in this region the spacetime satisfies the regqularity bounds (5.15)—
(5.18) and the estimates (7.9).

Consider the sphere S 1,1y at the intersection of the null hypersurfaces
’2

{u=—3v} and {v = v}, and then consider an arbitrary cover of S_1, 1, by
2

a set of coordinate charts Uy, ..., Uy with corresponding coordinate functzons

{Gé)} fori = 1,...,k. The functions {Gé)}, originally defined on U;, may

then be extended to W x U; by requiring that Gueé) = avﬁé) = 0. (This is

possible because [0y, 0y] = 0.) These coordinates (u,v,@é)) are, of course, the
coordinates that may be used in the double-null expression (2.1).

Given any choice of coordinates Oé) on S? , we will now define a new

5()(u,v,93) W xU; - R

1
3v
set of functions {98)} on W x S? by requiring that

1
2
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satisfies

(8.1)
. 1 1 .
A BY - pA[ _~, = B A\ _
0 (—v,v,& ) =0 < S0 50,0 ) Yo € [0,v], es (0 )_o.

Then we claim that (u,v, 0‘2 ) form regular coordinates on W x S?. Further-
more, the metric g,,, now takes the following form:

(82) g=-20%(du®dv+dv®du)+g,. (d* —b'dv) @ (db® — bPdv)
for a shift vector bB that is uniquely determined by
(8.3) Lo b =402¢CA, by = b2

Finally, in this new double-null gauge, for any 1 <« N < Ny, we have that

.2 .
sup Sup/ ‘WJ\I,‘ VA2 < 2
0<j<N (uw)eEW JSZ

(8.4)
sup  sup / ‘W] U2+2j < (2-20
0<j<N (u,v)EW JS2 |
and
(8.5) sup  sup / ‘WJ v < 27
0<j<N (u,v)EW JSZ
Proof. We can re-write the transport equation (8.1) defining the new func-
tions 96‘.) as the following equation for 94 = 94 — 94:
o0 o o
(8.6) 5.0+ (b V)0t = b
U

Using Proposition 8.1, it follows easily from (8.6) that for any 1 < N < N,
we have that
o 12 o e
(8.7) sup  sup / )WZJﬁA’ v dVol < 272,
0<j<N (u,v)eW JS2

In particular, it is immediate that for each (u,v) € W, the functions {98)}
form a regular set of coordinate functions on S?w lying in the Sobolev space
HY for any 1 < N < Ny.

Next we argue that the metric takes the desired form (8.2). First of all,

—9_ is tangent to Siv. Thus, we

the change of variables formula implies each 50A

have

9(63,8 ) 9(64,3 ):0.
Furthermore, the change of variables formula implies that there exist b4 and
b4 so that
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However, (8.1) immediately implies that b= 0, and we furthermore have
g (avaaéA) =g (Q€4a8§A) -9 (Z;BaéBaaéA) = EA,
. .12
g (Dy,0y) = g (es,e4) — g (bAﬁA,&,) = - ‘b‘ .

It now follows that the metric takes the form (8.2) for some b, To see that (8.3)
holds, we first note that

bt 9

Ou §hA’

Then the desired propagation equation (8.3) follows from the definition of tor-
sion (2.2):

les, eq] =

(A= Lg(Dacaes) = Ca = Sg(lesealen).

2 4
Finally, the estimates (8.4) and (8.5) follow easily from (8.7), the new
propagation equation for b, and Proposition 8.1. ([l

8.2. Gluing on an asymptotically flat cone. Next we give a definition that
is similar to Definition 2.2.

Definition 8.1. Let (M, g,) be a spacetime produced by Lemma 8.2. We
then say that a 1-parameter family

(Q(out) ('U,HA) ’ (bA)(OUt) (U7QB) : E;;t) (U,90)>

consisting of a non-zero C'' function Q) continuous vector field (bA) (OUt),

1
UZQQ

and a C' Riemannian metric gffgt) on S? form “compatible outgoing gluing
data” if the following hold:

(1) v € [3v,v) implies that
Qlout) (v,0) =Q (—y2,v, 9) , (bA)(Out) (v,0) = b4 (—QQ,U,H) ,
W (0:07) = g4 (0", 0.0).

where Q, b4, and 4 4 are the metric components of the spacetime (M, gu).
(2) After defining trx, Xap, and w for v € [1v,00) by

-1 ou . ou A
(Q(Om)) ﬁaﬁbg(ABt) = tr Xg(ABt) + 2X a8,
W= (Q(out))_1 (81; + b(out) . W) logQ(out)
for a trace-free x ap, we have that the following equation is satisfied:

- 1
(8.8) (Q(Out)) ' (81) + plout) . W) trx + 5 (try)? = —2wtry — %%
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Now we have

PROPOSITION 8.3. Let
(out) out) C
QO (4,64, (b 0,6%) ¢ (0,6 )
(2 (0, 01), (04) ™ (107) 58 (06))
form “ compatible outgoing gluing data’ such that for suitable N > 1, we have

597 (0, (01) " 453)

[N
S

< 00,

sup U
v>21v, i+j<N L2(s?)

where V4 1is the covariant derivative relative to a reference, v-independent,
round metric.
Let

Then there exists T(v) so that there exists a spacetime (./\;l,g,w) defined in a
region (u,v,04) € Hor(v) X S? in the double-null foliation form (8.2) such that
(1) the regularity bounds (2.42)—(2.44) hold;

(2) (M, g,u) agrees with the solution (M, g,) in the region {HrwyN{v < Ju}};

(3) (Q,bA,gAB> ’Hﬂ{vZ%y} = (Q(Out)7 (bA)(Out), ff;t))-

Proof. This may be easily deduced via Theorem 2.3 and a domain of de-
pendence argument. O

In the next proposition we construct “compatible outgoing gluing data”
that we will use to construct an asymptotically flat null cone.

PROPOSITION 8.4. Let (M, gu) be a spacetime produced by Lemma 8.2,
and let QAB denote the reference metric that is used to define the norms in

Proposition 7.3 . Then let {gf;t) (v), Q) (), (bA)(O‘“)}W>;y be any 1-para-

meter family of metrics, functions, and vector fields on' S? that, for some N > 1,
satisfy the following constraints:

(1) (455 (@), 900 @), EH(@0)) = (g5, 26 [y for v € [Su,al,

where (gAB’
time (M,g‘w/);

Q,bA) are the values of the metric components for the space-
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@) (§50(0), 9 ), (N (@) ) = (§,1,0) for v € [2,00);

Vi (95 @), Q€ @), (04 (v)
(e 1.0)) [ VoL 2.

Then there exists Y (v,0) : (3v,00) x S — R such that

(90 10027, (0™ 100%). () 5 (1))

form “compatible outgoing gluing data.” Furthermore, we have the following

(3) sup, SUP) i sz

1
v>50

estimates for ¢, tryx, and x:
2

. 2 .
sup / v/ <10g<,0 —2log(v+v),vtrx — Y ,UX, v2a> v d Vol < 2720,
1<j<N /82 vty
Proof. This follows by using (8.8) and arguing as in the proof of Proposi-
tion 5.4. We omit the details. U

In the next proposition we analyze the behavior of all Ricci coefficients
and curvature components for the initial data produced by Proposition 8.4.

PROPOSITION 8.5. Let (M, gu) be a spacetime produced by Lemma 8.2
and gAB denote the reference metric that is used to define the norms in Propo-
sition 7.3, and let

(90 (). () 00). () 357 0:0))
v>350

be the corresponding “compatible outgoing gluing data” produced by Proposi-
tion 8.4. Let (./\;l,g,w) denote the spacetime produced by Proposition 8.3. Then
for any N satisfying 1 < N < Ny, we have the following estimates for Ricci
coefficients 1 #£ X 4p+w and curvature components ¥ =+ (QABaﬁA) along H.:

sup  sup / ‘W]@Z’*
§%.0

1<j<N (u,v)eH

C2 .
sup  sup / ‘WJ\I/’ v d Vol < €272,
I<G<N (uw)eH JSE,

2 . .
v 24 Vol < 62_25,

For any s > 0, we have that

Co2 .
sup  sup / ‘W])}‘ VTVl <, 27,
1<j<N (uv)eH JSZ , B

C2 L .
sup  sup / ‘Wjﬁ‘ IVl <, 272,
1<j<N (u)eH JS2 B

Proof. Due to Proposition 8.1, we only need to study the case of v > 1. Let
us start with the Ricci coefficients. The desired bounds for w follow immediately
from the fact that Qly is identically 1 for large v and that b| vanishes
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for large v. Proposition 8.4 also already provides the desired bounds for tr x
and ¥ AR Another consequence of Q]y being identically 1 for large v is that

Naly = _QA’” when v is large. Thus, for v > 1, we may derive the following
equation for ng = —n ,:

3 . 1 .
(8.9) Vona+ 5 trxia = divia — 5Vatrx = (0 X)a-

The key point is that
3 3 1
—try 2 —>—forv>1.
2 v

In particular, from (8.10), we have

3 1 .1 .
(8.10) Vo (vn) 4 + <ftrx—f> A =0 [d,{vx— —Vitrx —ny
2 v 2 A
Contracting with vn4 and using the previously established estimates leads to
sup [ Jon? < €7
(u,v)eH JS?

It is straightforward to commute with WJA ,-A,; and then obtain

sup /
(u,w)EH JS2

For tr x, one may derive the following equation for v > 1:

)
—_— t t
v+v>+ rx(rx+v+v

1 2 2 ,

This may be treated just as 14 to produce the desired estimate for try.
For X , 5, we have the following equation for v > 1:

C2
’UV]T)’ 02 < (2-28

Vo (trx +

. I N
VoX g+ 5 0XK 5 = (W®n o XX 77®n>

AB
The key point is that for any s > 0, we will have that v >4 1 implies that
1 1-—
9 trx — ° s v

In particular, one can conjugate by v'~* and proceed as we did for 7.
Finally the desired estimates for p, o, 84, and 8 4 follow immediately from
the equations (2.17), (2.13), (2.18), and (2.19). O

9. The bootstrap argument for region III

The main result of this section will be the following:
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THEOREM 9.1. Let (M, g,) be a spacetime produced by Proposition 8.4.
Then, possibly taking e smaller, we claim that g, in this new coordinate system
may be extended to the region {(u,v): —v?* <u <0 andv >0}, and in this
region the spacetime satisfies the reqularity bounds (5.15)—(5.18) and the esti-
mates (9.2).

We will prove this theorem with a bootstrap argument. In Section 9.1
we will define the relevant norms. Then in Section 9.2 we will carry out the
bootstrap argument.

9.1. Norms. In this section we will present the norms around which we
will base our estimates. We will be interested in regions contained in {u €
(0,—v®)} N {v € [0,00)}. We also introduce a reference Lie-propagated round
metric to define a round volume form dVol.

Let v > 0 be sufficiently small, and set
P={ue(—v*0)}n {Q_l < ﬁ <oo}, Pis=Pn{u<a}n{v <o},
where (u,0) € P.

It will be convenient to avoid working with a 45 and instead only estimate
the renormalized curvature components asp, B4, p, ¢, and 3 4 We will use
the notation ¥ to refer to one of these renormalized curvature components.

As opposed to how we defined the norms for region I, it will be natural to
weight Ricci coefficients and curvature components with 7% where s denotes
the signature. This is because we will want to eliminate w in certain equations.
In contrast, in region I we weighted with (2° because we wanted to eliminate w
from various equations.

Convention 9.1. Throughout this section, unless said otherwise, all norms

of tensorial quantities are computed with respect to and we will always

ap
use the round metric induced volume form d Vol on each S?w
We now define the energy norm for the renormalized curvature components:

Definition 9.1. Let 0 < ¢ < p < 1. For §,, we define the energy norm by

oI,

= sup  sup [(—u)2q/
Ip,i,o 0<5<2 (u,v)EPas max(—vv,—v?)
Cf—\ 2P .
/ 92’y7] ( 3+2J< ) (—t) =27 diy d Vol
+( )2q/ / / W] 15 ‘ 2-‘1—2]
max(—vv,—v2) J—uv—1 JS?

—q\ "% .
X (7) (—a) ™2 dv divd Vol | .
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For any renormalized curvature component ¥ of signature s not equal to B8 A

we have

2¢ = sup sup (u)2q/
I, 0<;5<2 (u,U)EPi,i maX(*U27*QQ)
[ —q 2p B
/ or | (0w 3+2g( ) (—it)~24 divd Vol
2p °
/ / W] _S\IJ ’ 3"’2]( ) dv d Vol
—uy—1 J§2
+ (—u)2q / / /
max(—vy,~—v?) J —up~1 J§?

0\ 2P .
X (7) (=) Y (—=a) " do did Vol | .

¥

Wj (Q—sq,) ‘2 32

We also introduce the notation

- )
JIpap =

P, U, 0

v

Finally, when it will not cause confusion, we will often suppress a subset of the
(p, @, v) indices from the . or J subscript.

Next, we define the low-regularity norm for the Ricci Coefficients.

Definition 9.2. Let 0 < p < 1. For any Ricci coefficient ¢ # na,w, x , 5 of
signature s, we define

01, = s suw /
0< S2

<J<2 (u,v)EPa. s

¥ ()" 2 2+ dVol,

where (Q27%1)" denotes the difference of Q=% and its Minkowski value.
For 1 € {na, x 4}, we define

0l = s s |
. 3

0<7=<2 (u,v)€Pa,s

Wj (Q_s¢) ’2v2j+2 (2}“)2}7 dVol,

where s denotes the signature of .
We also introduce the notation

fpac = Y 1l .
vt

Finally, when it will not cause confusion, we will often suppress a subset of the
(p, @, v) indices from the J# or K subscript.

Now we define the high-regularity norm for the Ricci Coefficients.
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Definition 9.3. Let 0 < ¢ < p < 1. For any Ricci coefficient 1 #
NA, W, XAB of signature s, we define

u v
010, = 5w s (—u [ /
T 0=5=3 (w)€Pa max(—vp,~v?) J/ —up~!
/ Wj (Q_ST/))*
S2

where (Q2751)" denotes the difference of Q~%¢ and its Minkowski value.
For 1 € {na, X 4}, we define

9 Y 2p o
o142 (7“) (—) ™Y (—i) =2 div do dVol,

u
W% = sup  sup (—w)™ /

PR 0<5<3 (u0)€Pas max(—ve,~v?)

/D /
_uyfl S2

where s denotes the signature of .

¥ (2 ) ‘2 % (_i‘)% (—a)~2 di do dVol,

v

We also introduce the notation

Cpai =3 Ielg, ...
YFw

Finally, when it will not cause confusion, we will often suppress a subset of the
(p, @, ) indices from the £ or £ subscript.

Finally, we define the norm for the metric coefficients.
Definition 9.4. Let 0 < p < 1. For any metric coefficient ¢ # ), we define

¥ ()" 2% dVol,

1614, = supswp
P 0<5<3 (uw)ePy s J S2

where (Q27%¢)" denotes the different of Q¢ and its Minkowski value.
For the lapse €2, we define

19204, = sup s [

2 L/ —uN\Z2p
WQ‘ 0% (l) dVol
1<5<3 (u,v)ePa,s

v

o (2

+ sup |logQ?
(u,v)EPa,5

We also introduce the notation

Mo = S 16l -
¢

Finally, when it will not cause confusion, we will often suppress a subset of the
(p, 1, v) indices from the .# or M subscript.
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9.2. Estimates. A standard argument using Proposition 5.4 shows that
Theorem 9.1 will follow from the following proposition:

PROPOSITION 9.2. Let v > 0, and let (M, gu) be a spacetime produced
by Proposition 8.4 that exists in the region rectangle Py for some (4,0) € P
and that satisfies the “bootstrap assumption”

(9.1 Jas + Rap + Lap +Mas < 24670,
We then claim that (9.1) implies
(9.2) Jas + Ras + Lap + Mas < A7

As usual, the proof will be broken up into a few separate estimates. We
start with estimates for the curvature components, then prove estimates for the
Ricci coeflicients, and finish with the estimates for the metric coefficients.

Throughout the proofs in this section we will use without comment that
for any point in P, we have

—u
— <.
v

We start by observing the Sobolev spaces generated by ¢ 4 and g g Are
comparable.

LEMMA 9.3. Let (M, g,) satisfy the hypothesis of Proposition 9.2. Then
we have that

HFUJHIZIi(Si’v) ~p vk ”wnﬁi(giv) fori e {0,1,2,3},
—k
llgoges )~ v Il iogsy -

where we recall that H' and LP denote the Sobolev and LP spaces generated by
the round metric QAB, and the spaces H7 are defined as in Definition 6.11.

Proof. This is an immediate consequence of Lemma 4.2, the bootstrap
hypothesis, and the smallness of €. O

Next, we have an analogue of Lemma 6.6.

LEMMA 9.4. Let (M, g,) satisfy the hypothesis of Proposition 9.2. Then
for any function f, 1-form 04, and symmetric trace-free 2-tensor vap, we have

(9.3)
Hf”HHi(s%’v) S (—u)2 “Angz(ggw) + Hf”ﬁp(sgv) fori e {0,1},
(9.4)
100752,y S (=) [[90 ] s sp ) + w16 s | Jori € {1,2,3},
(9.5)
HVHHZ’(SIQM) < (—u) Hd’fVVHﬁi*l(Sﬁ,v) fori e {1,2,3}.
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Proof. This is proven in the same fashion as Lemma 6.6. (]

Now we observe that the standard Sobolev inequalities hold for the spaces H*.
LEMMA 9.5. Let (M, gu) satisfy the hypothesis of Proposition 9.2. Then,
for any (0, k)-tensor wa,...a, , we have that
lwllzn(sz,y Spo lwllgrgse ys Nwllzeoqsz ) S lwllgzss )

and for any (0, k)-tensor wa,...a, and (0,k")-tensor va,..a; , we have

lw - ollg2 sz ) Sk Wil gz ) 1002z ) -
Proof. This is an immediate consequence of Lemmas 9.3 and 4.1. U
These Sobolev inequalities will be used repeatedly in our estimates of non-

linear terms, and we will often do so without explicit comment.
The following lemma will be frequently used to obtain L7, estimates:

LEMMA 9.6. Let —1 < zp < z1 <0, and let f(x) : [xo, 1] — R satisfy

sup (—2)2 / F@) (—2)2 do = 22 < oo,

536[330,331]
where 61,92 > 0 and 61 + do < 1/2. Then we have

z1
[ 1@ do s (a0 20,

0

where the implied constant is independent of f, xg, x1, and Z.
Proof. Let jo, j1 € Z>o be defined by the requirement that
xg € [-279, —2790 ) and z; € [-2791, 27171,
Then we have

INEE S~ [ e

0 J=jo

J1 _9-i-1 1/2
Sy 2it) ( / (@) (~2)? dx)

j=do -2
Ji
<z Z 97 (61+82—1/2)

J=Jo
< (—mo) /200 7, O

~
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9.2.1. Estimates for curvature. In this section we will prove the energy
estimates for the null curvature components. We start by re-writing the Bianchi
equations in a form that eliminates w from the equations.

LEMMA 9.7. For any spacetime (M, gu) in a double-null foliation, we
have the following equations for the renormalized curvature components:

Q2

Qvs (Q%a) ,, + —

(9.6) ( )AB 2

— Q2 |¥& (28) = 3((W) p+ " (W) ) + (—n + 4n) & (29) |

(Q_l trx) Q%aap

AB’
(9.7)
OV (28) 4 +2(Qtr x) (28) 4, = div (Q%a) , — 6 () (28) 4, — (n- (PPa)) ,,

QVs (Q/B>A +0? (Qfl tr&) QB A

03 = P |\Vap+*Vas +2(X-0) , +3np+"n5) 4

DT D), e n), |

OV,5 + g (Qtry) &
Y e en-pnen - D@0 A (Fén) - L @) A (o)
(9.10)
OVap+ 5 (Qtry) o= div (98) + - (25)
5 Q0 (Vém) — 5 (%) - (nm) + § (Qtrx) K

(9.11)

QV35 + 922 (Qtry) o = Q*|div* (Q7'8) — (n+2n) A (Q71B)

+

9

(%) A (Vo) + 5 (%) A (nm)

| =

(9.12)

QV3p + 922 (Qtry) p=Q*| —div(Q'8) — (n+2n) - (2'8)

3O B - L0710 )+ 0 e o |
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(9.13)
Ov, (Q_lﬁ) (Qtry) (Q )
= —Vap+ Va5 +4(Quw )( ) ((Q X) (QB))A

=3 (np—"n5) , %(VA(( X) - (9%) +7Va ((271%) A ()
S @O @0+ (279 A @0),
We recall the p and & are defined by (2.30).

Next, we carry out an estimate for the Gauss curvature K.

PROPOSITION 9.8. Let (M, gu) satisfy the hypothesis of Proposition 9.2.
Then we have

sup sup / P2

, 2 .
V(K- (v— u)_z)‘ dVol < A=,
iE{O,l} (u,v)epa,{) S2

Recall that the constant A is defined from the bootstrap assumption.
Proof. We first note that from (9.12) and Lemma 2.2, for i € {0,1}, we
may derive the following equation Wih AP
(9.14) OV (V1YY a,0) = v*HIE,
where £ is a sum of expressions of the following schematic form:
VOO () - (728, Y (27 s))]
VU@ ) - (@700 ), PH(PY (@),

where 1); is a Ricci coefficient of signature s; not equal to w and U, denotes
a renormalized curvature component of signature s;. Contracting both sides
of (9.14) with U2+iY721,,,Ai[), integrating by parts, using the bootstrap assump-
tion, and using Proposition 8.1 leads to

sup / A2 W@' )7 2
(’LL,’U)EIP{L@ S%,v

u 2
< </ v2 T I€] |(u’v):(ﬂ7v) di dVOl) + 22,

ax(—vy,—v?)

dvol

Lemma 9.6 then yields
sup (—&)moq

sup / U4+22
(u,0)E€Pq.5 S%yv UE[—vv,u]

g saziiez (Y 100 - 2-25
/ e (v) (=) ™M)= (a,0) it AVOL + €72

max(—vv,—v?2)

ylfIOOp
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Then, using the bootstrap assumptions, Sobolev inequalities, and the smallness
of v, p, and ¢, we obtain

sup  sup / Pt
1€{0,1} (u,v)EPq,5 JS2

2
dVol < 2729,

Y

To go from the control of p to the control of K — 1, we use the following
consequence of the Gauss equation (2.17):

1 *
K—(v—u)_2:—ﬁ—Z(Qtrx)*Q_ltrK— (Q 'try),

2(v - u)

from which the proof is immediately concluded. O
We now carry out the energy estimates for curvature.

PROPOSITION 9.9. Let (M, gu) satisfy the hypothesis of Proposition 9.2.
Then we have
J < e,

Proof. We start with equations (9.11)—(9.13) corresponding to the Bianchi
pair (@ 40 P> 6), which we write in the following form:

(9.15) QV3o = Q*div (Q718) + &1,
(9.16) QV3p = —Q%div (Q7'8) + &,
(9.17) OV4 (718) , + (Qtrx) (27'8) , = —Vap+Vas + &s.

Here &1, & contain terms that are of the following schematic form:

D (@) - ((Q77202) V(27 24)  (277202) - (277 0s))

and &3 contain terms of the schematic form

(@7 ) - ((A772W2) ¥ (A7), (Q772452) - (277439))

where ¥; denotes a renormalized curvature component of signature s;, and 1;
denotes a Ricci coefficient not equal to w of signature s;, and in the cubic term
at most of one of the 1) can be equal to trx or try. The terms in & have
the additional constraint that ¢; & {trx,trx,na}. Now, for i € {0,1,2}, we

commute (9.18) and (9.19) with v3/2 (=2)P (—u)_qu‘l,_,Ai and commute (9.20)
with QW; LA, Using Lemma 2.2, we then end up with (suppressing the indices
on Y' for typographical reasons)
(9.18)
C—uN\P 4 — s —u\P ,
QVS (,U3/2+’L (l) (_u)qvlé_> + b q <v3/2+1 (l) (_u)qué)
v

v —Uu

— O2div* {03/2% <_7u)p (—U)‘QW (Q—lé)} 13/ (;u>l7 ()07,

v
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(9.19)
OAVES <v3/2+i (%u)p (_u)qyﬂﬁ> T p_;uq <03/2+z‘ (%ﬁ)p (_u)qvip)
= i [i42 ()] (o oy (@) 02 (22) (o,
(9.20)

a7y (9 (22 (s @15

N <—3/2 —1 N 2 ;r z'mr x) 3/2H <—Tu>p (—u) QY (Qflé)A

v

-0 (W {03/2%' <_7“)p (—u)_qup} 4y [,U?)/Q—i-i (;U)p (_u)_qu&D

v

A
NP

+ o3/ <Tu> (—u) 1 F;,

where F; and F5 contain terms of the schematic form
V'[9 (1) - ((7°20) ¥ (Q7°2¢) , (2 24) - (2¢3))],
I
VI () - (Q72) - (Q700)), Y (QPK QTN
I 111

and JF3 contains terms of the schematic form
QY [(Q1ghn) - ((22,), ¥ (2724h) , (2 24) - (27%43))],
R

QY () - () - (70)), QYT (K-,

/

\% VI

where the terms with the Gaussian curvature K cannot occur for i = 0, ¥;
denotes a renormalized curvature component of signature s; and v; denotes a
Ricci coefficient not equal to w of signature s;, and in the cubic term at most
one of the 9 can be equal to tr x or tr x. The terms in F3 have the following
additional constraints:

(1) we have v; & {trx,n4};
(2) the only place where tr x can appear, without an angular derivative acting
on it, is as exactly one of the ¢’s in a cubic term;

(3) we can have at most one of {3 } in any of the nonlinear expressions.

X
ZA’2AAB

Next, using that 3/2 < 2, we observe the following consequence of the
bootstrap assumptions:

—-3/2—1 241
(9.21) ( / ! + —;ZQtrx> > vl
v
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Keeping (9.21) in mind, we contract (9.18) with v¥/2+1 (=%)” (—u)~9¥"'5, (9.19)
with o3/2+ (=2)? (—uw)79¥"p, (9.20) with p3/2+ (=2)P (—u)~1QY" (Q_lg)A,
add the resulting equations together, integrate by parts, and multiply the final
result by (—u)?? to obtain

(9.22)

u . 2 .
sup (_U)Qq/ / Q2Wﬂ (Qflﬁ)’ 312
(u,v)EPa.s max(—vy,—v?) J§? o
— 2p R u v
X () (—u)—24dude1+(—u)2q/ /
v max(—vv,—v2) J —uv—1
; 2 )\ TP .
X / QQ}W (Q_lﬁ)’ 22 <7> (—)~24 d i dVol
S? o
v : 2 . —
+ sup / ¥ (5.0)| 6+ (=
(u,0)E€Pa,s —up—1
Y AP Y A
max( vv,—v2) J—up—1 JS§2

><<__“) (—0)"24(—0) " do di dVol

2p
s o o[ ] [3“3( O iy F)
(u,0)E€Pa.5 max(—vv,—v2) J—uv—1 JS?

i 4+2g( u) (— )2‘1|}‘| di dv dVol + sup (—U)Qq
) u€[—v2,0)

)2p di d Vol

2 o
/v2 /S2 3+2j —2q )WJ 1ﬁ, P, 5')‘ > |(’U‘,’U):(S,7Q715) ds dVol
+v—2p/ / ({;3+2j—2p ‘WJ (Q18.5, (;)‘2> |(w)=(—v2,5) 4D dVol.
v S? - CA

Observing that the left-hand side of (9.22) already controls a good space-
time term integral of p and &, one may inductively repeat this analysis for the
remaining Bianchi pairs (6, p, 54) and (54, @ap) and arrive at

(9.23)

i v
5 s (o [ /
(u,0)€Pa.5 max(—vv,—v?) J —uv—1

)\ 2P ~12 C—u\%P .
></ [@3+2ﬂ<.“) (fu)l—%‘f( it (“) (u)—2qyf3|2]dad@dvol
S2 (Y

(%
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—i—Z sup —u)X §)3121 (—5)24 AR \IJ uw)=(3,—v-15) A5 dVol
u€ S2

N
+ y—2p / / @3—&-2]—210
v JS?

where F has the same schematic form as F; and Fo. We now turn to an
analysis of the various terms on the right-hand side of (9.23).
First of all, it follows from Proposition 8.1 that

E: sup _ 2q/ / < )32 (— 2q‘y7]\1,‘ ) )=o) di dVol < -2,
ue S2
7

. . 2 R
U—QP/ / 1')3—1-2]—217 ’WJ\II’ ) |(u,v):(—v2,1‘;) dv dVol < (2-20
v S? v

(after possibly slightly increasing §).
Next we turn to the F3 term and consider first expressions that do not

< |2 .
> ‘(Uﬂ)):(—y?,i)) dv dVol,

contain the Gaussian curvature K. There are no n4’s or w’s, and each expres-
sion is genuinely quadratic in that, using the bootstrap assumption, there are
at least two terms in each expression that are controlled, in a suitable norm, by
¢!=9 and finally each expression can only contain at most one of {x AR B8 A}.

Thus it follows from Sobolev inequalities and the bootstrap assumptions that

i v
sup  (—u)* / /
(u,0)EPq,5 max(—vv,—v2) J—uyv—1t

)\ 2P o
<[ (Z8)" (a2 av, )P divdiavol < 2
§2

(9.24)

For the terms I and II in F, we do not need to exploit the absence of N4 O a
limit on the appearance of X , , or J, because the u-weight is more favorable.
We thus obtain

i v
w o[
(u,v)E€Pa,5 max(—vv,—v2) J —upv—1

(9.25) .\ 2p
x / o020 () a2 (10 divds Vol § .
S2

v

Now we turn to the terms III and VI. For these, we simply argue as in the
derivation of (6.39) and use Proposition 9.8 to obtain that

2p
sup (it [ [0 e (Z2) i
(u,0)EPa.5 max(—vv,—v2) J—uv~—1 JS§2

+ 3+2j( Uu> ( )1 2q |VI|

(9.26)
di do dVol < €220

This concludes the proof. O
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9.2.2. Estimates for the Ricci coefficients. Now we turn to the estimates
for the Ricci coefficients. We start with the low-regularity estimates.

PROPOSITION 9.10. Let (M, gu) satisfy the hypothesis of Proposition 9.2.
Then we have
< 6176'

U~

Proof. If 1 # w,na, X, tr x, tr X, then after applying Lemma 2.2, one easily
establishes that for i € {0, 1,2}, ¢ will satisfy an equation of the form
(9.27) Vs (0171VY, L, (Q709)) = o' HiE,
where s is the signature of 1) and £ is a sum of terms of the schematic form:

V(P V(Y (7)),

V() - (7)), QYT () - () - (7))
where 1); is a Ricci coefficient of signature s; not equal to w and U, is a renor-
malized null curvature component of signature s;.

Now we contract (9.27) with U1+iY7iQ_S¢, integrate by parts, use Propo-
sition 8.1, and use Lemma 9.6 to obtain

(9.28)
. . 2 °
sup / 02+21 Wl (Qfsw)‘ dVol
(u,0)€Pa,5 /S2 ,
u 2
N Ul—H ‘5’ | w,v)=(u,v di dVol + 62_25
S et (,0)=(it0)
S Qlfloop sup (_,&)100q
UE[—vv,ul
U , i\ 100p o
X ,U3+21 ‘g|2 v (_u)flooq‘ o) —(iw div dVol + 62726'
max(—vv,—v?) v (u,v)=(u,v)

Then, using the bootstrap assumptions, Sobolev inequalities, and the smallness
of v, p, and ¢, we obtain

sup  sup / o2
i€{0,1,2} (u,v)€Pa 5 /S2 ,
For 1) € {tr x,tr x} we have an equation of the form
(9.29) OV (V'Y (7)) = oW,
where W contains terms of the schematic form
Y (Y (7)), V(% (w—v) (27 2) ),
V(2 () - (Q7)") QYT () - () - (7))

Y (2 ) ‘2 Vol < &%,
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where 1; is a Ricci coefficient of signature s; not equal to w and U, is a renor-
malized null curvature component of signature s;. Then one my repeat the
above analysis to obtain

sup sup / V22
i6{0,1,2} (uvv)epﬂ,fz S

2
dvVol < 272,

W’i (Q_8¢)*

2
It remains to estimate 14. For this we must use the corresponding V4
equation. Using Lemma 2.2 we obtain, for ¢ € {0, 1,2} (suppressing the indices

on ¥'),

i 1+ i
(9.30) QV4Y'na + — (Qtry) Vina=F,
where F is a sum of expressions of the schematic form

V@B, V@) (@), V(@) - () - (Q4)),
A
where
(1) each 1; denotes a Ricci coefficient of signature s; that is not equal to w,
trx. or x B
(2) each expression can have at most one 1); that is equal to 74;
3) if n4 shows up in the one of the terms making up F, then at least one of
n p g up
the other terms that it is contracted with must be xap or n o Or trx with
an angular derivative applied.

Now we conjugate (9.30) by v+ (—%)p to obtain

(9.31)
09, <U1+i (_Uu)pvin)A n (P—i —1 n 1 —2kz (Qtrx)) RS (%U)pviml
()

We now note that the bootstrap assumptions imply that

—1—7 141
(p Ly “(me)) > P
v 2 v

Thus we can contract (9.31) with v+ (_T“)_p VinA, integrate by parts, and
use Proposition 8.1 to obtain

C—uN\2P |
sup sup / V22 <—u) ‘Wzn
v

1€{0,1,2} (u,v)EPq 5 Sv%,v

! 342 (TUNP 2 | 2o9s
< sup sup / / AR (—) |F|° + e
i€{0,1,2} (u,0)EPg,5 J —uv—1 JS2 v

5 62_26.

2
dVol

Here the F term is controlled via Sobolev inequalities, the bootstrap inequali-
ties, and Proposition 9.9.
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It remains to estimate X ap- For this we first note that by using the V4
equation for 38 1 and arguing as we have just done for 74 (one uses the weight

p2Hi (=

) )_p)7 one may establish

'yl 2p .
sup sup / vt (—) ’ V'3
%0 v n

iE{O,l} (U,U)E'Pﬁj

2
dVol < 272,

Then the desired bound for X , follows from the Codazzi equation (2.18) as well
as the elliptic estimate (9.5). O

Next, we turn to the high regularity estimate for the Ricci coefficients.

PROPOSITION 9.11. Let (M, gu) satisfy the hypothesis of Proposition 9.2.
Then we have

Sa,f] 5 61_6.

Proof. As is well known, in order to obtain these highest order estimates
for the Ricci coefficients we will need to re-write some of the null structure
equations in a way that reduces their top-order dependence on curvature. In
order to do this we first note the following consequences of the Bianchi equations
from Lemma 9.7 and the commutation formulas from Lemma 2.2:

(9.32) Yapdiv (28) = QV4 (Yigs) + &1,
(9.33) QY pdtv (271 8) = —QVs (Vips) + 71,
(9.34) O’V A Ap = QV3 (Y adiv (Q8)) + F2,

where &1 is a sum of terms of the following schematic form:
VL) - ((Q720,), ¥ (2 4k) , (72¢2) - (27%s))]
V(7 4n) - (2 0) - (27003)), V(K -Q70 ),

and F1 and F» are a sum of terms of the followings schematic form:

V202 (@7 1n) - ((0720s) Y (27 "20) (27 "0m) - (2 4s))].
Y (02 (07 (@70 (7)), V(@K Q)

where ¥; denotes a renormalized curvature component of signature s; and 1;
denotes a Ricci coefficient not equal to w of signature s;, and in any term at
most one of the ¢ can be equal to an undifferentiated tr x or trx. The terms
in &1 have the following additional constraints:

(1) We have ; ¢ {tr x.74}.
(2) The only place where tr x can appear, without an angular derivative acting
on it, is as exactly one of the ¢’s in a cubic term or multiplying a .

(3) We can have at most one of {3 } in any of the nonlinear expressions.

A XaAB
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Using (9.32)—(9.34), the null structure equations, and Lemma 2.2 we may
then derive the following:

(9.35) OV (Yige (2 trx)") = Ha,
(9.36) Vs (V44 () — ¥ acliv (25) ) _ 7,
(9.37) Qv3 [Voipdivy + ¥igp| =

(9.38) Vs (Ve (Qrx)*) + — (VABc Qtrx) ) =My,
(9.39) V4 (Vipdivy + Vipp) +20trx (WAdevn + Yipp) = &,

where each F; contains terms of the same type as in F; and F». Furthermore
&3 contains terms of the same type as £ except that we also have terms where
tr x multiplies n " In H; we have terms of the following schematic type:

Y202 (Q710)" - (0 —u) 72, (2724)")]
Y202 ()" - (7 20) - (7% ¢)]

where 1; denotes a Ricci coefficient not equal to w of signature s;. Finally, in
Ho we have terms of the following schematic type:

v° (Qw (v— u)72> , v’ [Qz (Q_sl¢1)* : (9_527/12)1 )
V2 [Q2 ()" (Q7%2u) " (2 )]

where 1); denotes a Ricci coefficient not equal to w of signature s;.
Letting

X € {Fhnol@ )", Vad (@) — 3V adiv(05), Vi pivn + Vi)

we can write any of the V3 equations (9.35), (9.36), (9.37) as

(V3 (1)7/2 (%)p (—u)_qu) + %UWQ_Q (;u)P (—u)"29X

v

— p
= 7/2-4 (7”) (—u) "2 (Hy, Fs, Fy).



376 IGOR RODNIANSKI and YAKOV SHLAPENTOKH-ROTHMAN

Contracting with v7/2 (%“)pX, integrating by parts, using Proposition 8.1,
using the smallness of v, using Sobolev inequalities, and appealing to the boot-
strap assumption leads to

i v
w o
(u,v)EPa,5 max(—vv,—v2) J —upv—1

g\ 2p .
x [ X207 (“) (—a) ™ (—a) 24 di do dVol
S2 v

U v
S s (- | /
(u,v)EPa,5 max(—vv,—v?) J —uy—1

—u

< [ 100 mF) P (
S2 v

,S 62726'

2p .
) (=) (=) "2 diy di dVol + €22

Using Proposition 9.9 and Lemma 9.4 we thus obtain

(9.40)
u v
sup  (—u)* / /
(u,v)EPy,5 max(—vv,—v?) J —uy—1

X/
S2

Next, we re-write (9.38) and (9.39) as
(9.41)

A <U7/2 (;u>p (_u>1/2 (—u) "V g (2 U"X)*)

v v

. <_4 +p N 5 ) (117/2 <;u>p <;u) e (—U)_QQWZBC (Qtr X)*>

v V—1U v v

= (2 (27 g,
(9.42)

Q9. (1772 (1) () (Phpdten + Pi) )
() (7 (2 o> )

2 AN .
v° (Qtrx, Qw,ﬁ)) o7 (%) (—a) " (—0) "2 di do dVol < €229,

v
—u\P
=7/2 (—u) (—u)"29&,.
v
The key point is that using the bootstrap assumptions, we have that
—4 5 —7/2
—I—p+ >0 M—1—29‘51”(21171.
v v—u v
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Thus, contracting (9.41) with v7/2 (_7“)1)( w) "2 (=) 12 WiBC (Qtrx)* and

(9.42) with v7/? ()7 (—u)~2 (Win,ilvn + WAB,O), integrating by parts, using
Proposition 8.1, using (9.44), using Sobolev inequalities, and appealing to the
bootstrap assumption leads to

o L[ L] e
(u,v)EPa,s max(—vv,—v2) J—uv—1 J§2

(9.43) )
2 4, 2|2 . 6 -0\ “N—2q 70 1 TV 296
+ ]W divp + V p( () (i) P dididVol €.

Using Proposition 9.9 we thus obtain

(9.44)
sup (- )2q/ / / [ ‘77 Qtrx’ + ‘W d,{vn’ 1
(u,v)EPa,z max(—vv,—v2) J —up—1 J§2

x 0 (> (=) =29 diy dv dVol < 2%

v

It remains to estimate xap and X ,p- However, the desired estimates
for these follow from the already established Ricci coefficient estimates, the
Codazzi equations (2.18) and (2.19), Proposition 9.9, and the elliptic estimates
from Lemma 9.4. O

9.2.3. Estimates for the metric coefficients. Lastly, we come to the esti-
mates for the metric coefficients.

PROPOSITION 9.12. Let (M, gu) satisfy the hypothesis of Proposition 9.2.
Then we have

mﬁﬂ} < 0,

~

Proof. We first observe that by a mild adaption of the proof of Proposi-
tion 9.11 one may establish that

u
sup  sup (—u)* /

0<5<3 (u,v)EPa,s max(—vv,—v?)

(945) . 2 i —U 2p N 5
X/SQ‘W (Q‘lx*,c)) o1t <U> (—0)" 2 dudVol < 272,

Given (9.45), it is straightforward to use Lemma 9.6, integrate the equations
Lesd g =20, Lob® =407

in the e3 direction, and obtain the desired bounds for ¢ AB and b,
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However, for the lapse 2, we must integrate in the V4 direction to obtain
an estimate for 2 from w:

0y log Q + (b : W) log 2 = —2Qw.

The desired estimate follows immediately by integrating along integral curves
of Oy + bAY 4. a

This concludes the proof of Proposition 9.2, and hence also Theorem 9.1.

10. Incompleteness of future null infinity, the (u,i), GA) coordinates,
and the Hawking mass

In this section we will use Theorem 9.1 to complete the proof of our main
result Theorem 1.

Let (M, guv) be the spacetime produced by Theorem 9.1. We will start
by showing that the hypersurface {u = —v?} is an asymptotically flat null
hypersurface.

LEMMA 10.1. The hypersurface {u = —v?} is asymptotically flat in the
sense that there exists a function ¥ : {u = —v?} — R with the following prop-
erties:

(1) The hypersurface {u = —v?} is diffeomorphic to {(v,04) € [0,00) x S?}.
(2) Let Sy denote a surface of constant ©. Then, when ¥ is sufficiently large,
we have that the induced metric on Sy is f)QQAB, where %AB denotes a Lie-

propagated round metric on S?.

Proof. It is a consequence of Proposition 8.4 that when v > 1 and u = —v?,

we have that

Qgos1ynfu=—v?y = 1, bA|{v>>1}ﬂ{u:—y2} =0,

and that gAB|{v>>1}ﬂ{“:—22} = cpzéAB, where éAB is a Lie-propagated round
metric and there exists a constant C, independent of €, so that

—Cel—¢ (

1-6
e v+uw) < Plos1in{u=—2v2} = e (v+u).

For v > 1, the above facts imply that the es-Raychaudhuri equation becomes

(10.1) Dy trx + % (tr x)? = 0.
Since Proposition 8.4 also implied that
1-46
trx — Tto o> 130 fu=—v?} S >
one can easily solve (10.1) to obtain that for large v, trxy = ﬁ@) where

supy |Q(8) — v| < €79, For v > 1, we have that 9, logy = %trx. Thus, for
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some H () with supy |H(#) — 1| < €'79, we have that
fap=+Q H(O
Now it suffices to define the function @ : {u = —v?} N {v > 1} = R by
¥ (v,0%) = (v+ Q) \/H(0). O

Next, we truncate (M, g,,) to the region {0 > 0} N {-v? < u < 0} and
thus obtain a globally hyperbolic spacetime. For convenience, we continue to
refer to the truncated spacetime as (M, g,,,). We now check that our spacetime
contains a naked singularity.

LEMMA 10.2. The spacetime (M, g,) contains a naked singularity in the
sense of Definition 1.1.

Proof. We take {u = —v?} as our asymptotically flat hypersurface and 9,
as our geodesic normal L'. Then L' = 8, and, since 0, 4+ bAY 4 is geodesic, we
immediately see that every geodesic starting on {u = —v?} with initial tangent
vector 0, leaves the spaces after affine time v2. O

Next, we observe that given Theorem 9.1, a straightforward argument, in
the spirit of Lemma 8.2, allows us to define global coordinates (u,v,#) in the
region {v > 0} N {u < 0} with the shift in the e3 direction. We then define
global (u, 9, 0) coordinates by setting & = v'=2%. (Keep in mind Definition 3.1.)
The regularity statements for g, in Theorem 1 now follow easily by using the
established estimates. Arguing as in the proof of Lemma 3.1, we omit the
details. Lastly, we need to compute the Hawking mass of the spheres SZ,O
along {v = 0}.

LEMMA 10.3. Recall that the Hawking mass of a sphere S?w 1s defined by

m(She) = g /S _ (=p) dVbL

where
Area (Sf“.)) o 1.
Ta pP=pP— §X " X-
It will be useful to keep in mind the fact, which follows easily from (2.17), that
p 1s invariant under the change of coordinates (u,U,GA) — (u, 0, 9’4).
We have that
(1) for any self-similar solution with k = 0, then m (S370> =0;
(2) for the spacetime (M, gu) produced by Theorem 9.1, we will have m (SZD)
~ e|u| > 0.

r =

Proof. Tt follows from Proposition 2.6 that when x = 0 we have that both
p and ¥ AB vanish along {0 = 0}. This clearly implies that m vanishes when

{6=0}.
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Next we consider the case when £ > 0. Keeping in mind that p is invariant
under the change of coordinates (u, v, 9’4) — (u,f), (9‘4), we will work in the
(u, v, HA) coordinates for v > 0 and then take the limit as v — 0. We recall
the propagation equations for p:

(10.2)

3 Lo vém— Lv - mom + Lo il

We know from Lemma 3.1 that p has a regular limit as v — 0 and hence
that m (SZ ) will also have a regular limit as v — 0. Next, we multiply (10.2)
by € and take the limit as v — 0. When v = 0, self-similarity implies that

Oup = —u~'p. Thus using also the identities from Lemma 3.2 we obtain in the
v — 0 limit that
(10.3)
. 1. 3 (2 y 1. .
Lop—2u""p+ 5 (u + div b) p :—Qd/fvg—i-C - (Q28)—2n - (Qé)—§QX Y&n

1 . . 1 - 22
- 59&- (n&n) + EQ Lry |V é&b|”.

The left-hand side of (10.3) simplifies to (u=! + 2divbd) j + Lyp. On the other
hand, using the Codazzi equation, the right-hand side of (10.3) is equal to

-y’ (QﬁA) - (Q8) 4

— S (Ve ™Y = 25 (i)™ + 11—69—1 tr x |V &b|”

= -v*(08,) - (QVBXBA - %QWA trx —¢F () + ;CAQtrX>
= 3% (VE0)"7 = 0%, (n80)™” + S0 |V

= —v*(08,) - V" (n* (%) ,,) + %nAWA (Qtry)

1 2 1 -1 A 512
—§]n| Qtrz+1ﬁ69 trx |V&b|~ .

Thus, integrating (10.3) over 8121,,0 and applying the divergence theorem
leads to

(10.4)

o
-

, [(1 n gd,fvb) pv} dVbl
' Vadivh— Ll (2 v ated) + o e V@b aver

2
u,0
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Now, combining (10.4) with the characteristic initial data estimates from
Section 5 leads to

/S (=p) dVpl = (—u) (0 (€%) +/Sao W%ﬁ | V&b

2} dV,()l) ~ (—u)é.
(]

2
u,0

Appendix A. Examples of (e, d, Ny, My, M;)-regular data

In this section we construct examples of (e,7,9, No, Moy, M7)-regular 4-tuples
(gAB’ b4, K, Q) in the sense of Definition 4.5.

PROPOSITION A.1. Let 0 < € < v < 1, b be a choice of seed data in
the sense of Definition 4.4, and let (No, Mo, M1) € (Zso)® satisfy No > 1,
My > Ny, and My > Ny. Then there exists 6 > 0 satisfying v <€ 6 < 1, a
vector field b* = b* + VAf, and k > 0 solving (4.23) with ¢ , , = -&AB and
Q =1 such that (éAB’bA’ K, 1) is a (€,7,0, No, Mo, My)-reqular 4-tuple in the
sense of Definition 4.5.

Proof. We will look for a solution b of the form
bt =01 + vAf
and construct our solution by an iteration procedure. We define sequences

{Di}2, {ri}52y, and {f;}52, of functions D;, constants x;, and functions f;
as follows. First of all, we set Dy = 0, kg = 0, and fy = 0 and also define

b =0 +VAf; Vi 0.
Now we will explain our inductive construction. Thus we assume that
(Di-1, ki1, fi-1)

have been constructed. For every constant &, we use Proposition 4.5 to define
a function D; (HA, /%) by requiring that

- - 1 1) - 2 -
(A1) D;+ Ly, \D; = 5 (Di_1)2 + 1 ‘V@bi_1 ‘g — 4k + 2k 1D; .
We then choose k; by requiring that
(A.2) / D; (eA, mi) dVol = 0,
S2

and then we set D; (9’4) = D, (GA, /@i). Finally, we require that f; satisfy

(A.3) Af; = Dy, / fidVol = 0.
SQ

Note that the condition (A.2) is a necessary and sufficient orthogonality con-
dition to solve (A.3).
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Now we will show by induction on i that the sequences {D;}°,, {k;}2,
and {f;};2, are well defined and satisfy (for a suitably large A > 0 and suitably
small 0 < § < 1) the estimates

(A4)  Dillg S ACT il gngse < AT, il < ACT
We start with the base case i = 1. The equation for D; may be written (keeping
Remark 4.1 in mind) as
. 3 . Tjw o2 14,
(A.5) D + 4 + LDy = )V@bb = 1€%a%(6) + .
where )
= CeolgaT 2

E=2g (V&b, 2) + yicl

satisfies
< 100

HEHﬁﬁON Py .
We allow & to be an arbitrary constant satisfying the bound
(A.6) 7| < Aex,

Then, if € is sufficiently small and A is sufficiently large, we can apply Propo-
sition 4.5 to obtain a unique D; solving (A.5) and also satisfying the bound

(A7) HDIHI—?NO < A,

Furthermore, re-writing the equation for D; as

(A.8)
(D1 + 4R — i W@BD + L <D1 + 4R — i ]%@BG) = —iﬁ,; (W@B

y
; )

we can appeal again to Proposition 4.5 and Sobolev inequalities to show that

. 1o .12
(A.9) HD1 - ‘V@b‘g F4R|| <6
4 g 1,00
and also that
(A.10) D, (eA, k(l)) - D (eA, R(Q)) =&MW _ 5@,
Next, we will show that we can pick x; satisfying the bound from (A.4) so that
(A.11) / Dy (6%, k1) dVol = 0.
S2

To see this, it suffices to note that we can use (A.10) to write

s 4N e R - .
(A.12) /S2 Dy (64, 7) dVol = ys /§2 Dy (64,0) dVol,

and then note that (A.9) implies that

Dy (6,0) dVol
SQ

2
< €.
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Having picked k1 we then set D (GA) = ]_N)l (9‘4, m). It follows that Dy satisfies
the estimate from (A.4). Finally, it follows immediately from elliptic theory
that we can uniquely define f; by solving

Afi = Dy, / FrdVol = 0,
SQ

and that this f; will satisfy the bound from (A.4).
Having established the base case, we turn to the inductive step. Thus,
we assume that {D;}_1, {f;}/_], and {;}/_] have been constructed and sat-

isfy (A.4). Equation (A.1) (with i = j), which defines D; in terms of the
constant K, may be written as
1 2

- - 1o . -
(A13) Dj + Ebjlej = 5 (Dj_1>2 + 1 ‘v®bj_1‘é — 4K + QHj_le_l.

By the inductive hypothesis, we have

i -6
||bjleﬁ[No+1 S, HbHIf[NOH + ”fj*l”[f[NoJﬂ S 61 .

Thus, we can apply apply Proposition 4.5, the induction hypothesis, Lemma 4.3,
and take €A < 1 to obtain, for any & satisfying (A.6), the following:

- 9 o |2
18] 1m0 < 2502 + 19
+ K1 1 Dj-1ll o

SA264_46—|—62_6+A264_36+A264_36

e

+ 7|

HNo HNo

(A.14)

< A€2_26.

In particular, for any choice of & satisfying the bound (A.6), then ﬁj satisfies
the desired bound from (A.4). Now we can re-write (A.13) as

~ 110 . 2 ~ 1. . 2
(Dj - | V&b, + 4@) + L, (Dj = |[Vébi|. + 4&)
(A.15) / /

(Dj-1)? + 2kj1Dj1.

-t (o) -

Applying Proposition 4.5 and a Sobolev inequality, arguing as in (A.14) and
using €/ A < 1 leads to
< 63_8.

~ 1. 2
(A.16) HDi - ‘V®bj,1‘o + 4R
4 g A2

~ 11. 2
< HDi— 7 ‘V®bj,1‘§+4fa

oo

Since the right-hand side of (A.15) does not depend on &, we also have

(A.17) D; (04, &) — D; (04, 5?) = M — @,
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Thus, we have
= AN\ e R _—_— .
(A.18) /82 D; (6%, %) dVol = 47r+/82 D; (6%,0) dVol.

From the bound (A.16) we obtain

/S 2 D; (6%,0) dVol

In particular, we can pick & so that the left-hand side of (A.18) vanishes and
so that the bound (A.6) is satisfied. We set this choice of & to be x; and then
set D; = f)j (QA,nj). Finally, elliptic theory and the induction hypothesis
uniquely define f; solving

< é

Af; = Dy, /Sz fidVol = 0,

and they satisfy the desired bounds from (A.4). This completes the induction
step, and thus (A.4) holds for all j > 0.

Arguing in a similar fashion with equations derived for the difference of the
quantities, one may show that the sequences {D;}, {fi}, and {k;} are Cauchy
and converge to Do, foo, and koo all satisfying the bound (A.4). Finally, one
sets bA = b4 + @Afoo and K = kso. We will then have that Do, = divb and
it follows that b and x solve equation (4.23). By passing to the limit in the
bounds (A.4), we have

(A.19) I fooll frvosz S €750, o] S €7°.

Thus, after defining § = 35, we have a 4-tuple (;;AB, b4, K, 1) for which we have
verified all of the conditions of being an (e,~,d, No, My, M1)-regular 4-tuple
except for (4.27). However, (4.27) is easily proven by commuting the relevant
equations with Ly, and using that a(6) is axisymmetric and (4.24). We omit
the details. O

Appendix B. Useful tensorial identities
We start with two useful preliminary lemmas.

LEMMA B.1. Let gAB be a Riemannian metric on S?, and let uap and
vap be trace-free symmetric tensors. Then

(B.1) 57 (o) ¥ (A w) = pdfvw + (v ) -

Proof. Let e; be an arbitrary unit vector, and then choose es so that
(e1,e2) is positively oriented. Since e; is arbitrary, it suffices to establish the
identity (B.1) when evaluated on e;.
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We have

(B.2) MoV = Q1111 + 212012 + poolos = 21111 + 212012,
(B.3) pAV = 1112 + (1222 — (12V11 — H22V12 = 2[411V12 — 2[412V11-

Using (B.2) and (B.3) we may now calculate
1 *
5 (Vi(p-v)+ Vi (nAv))

= (771/“1) i1+ pat (Wﬂ/n) + (771/“2) vi2 + f12 (Wﬂ/u)
[4pt]  + (Vap11) viz + pu1 (Yariz) — (Vapaz) vin — paz (Varin) -

Next, we calculate

MlBWcVBC + (WBMC’l) vBC

(B.4)

(B.5) = K11 (W1V11) + H11 (W2V12) + H12 (W1V12) — p12Yari1
=+ (Wmll) v+ (Wz,un) V12 + (W1M12) V2 — (qum) 210
Finally, by inspection we see that (B.4) and (B.5) are the same. O

LEMMA B.2. Let 9 ap be a Riemannian metric on S?, let pap and vap be
trace-free symmetric tensors, and let V4 be a 1-form. Then

po(0-v)—v-(9-p) ="9(nAv),
po(@v)+v-(0-p) =9 p-v),
b (90) = g (0 0) = v (0 )

1 1
+§M‘(19'V)+§V'(19'M)

1 1
2519(;1~V)+§*19(,u/\u).

Proof. The first two identities are obtained in an analogous fashion to the
proof of Lemma B.1. One simply writes out both sides of the identity in an
orthonormal oriented basis. We omit the details. The final identity is an
immediate consequence of the first two. O

LEMMA B.3. Let (M, gu,) be a spacetime satisfying the Einstein vacuum
equations in the double-null gauge. Then we have

(B.6) QAVsna + (Q trx) na + 2 ((QX) . T])A = —QﬁA — 4V 4 (W),

B.7) 08, =div(2%), - %VA (Qtrx) = (n- (29)) 4 + %WA (Qerx),
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(B.8)
OB = iy (Q7) , + 5V (@7 ) — (1 (Q7)) 4 pma (7).
Proof. Using (2.38) we have
(B.9)
QVsn,, =QVs (—77,4 + 2V 4 log Q)
= —QV3na +2 [QV3, V4] logQ — 4V 4 (Qw)
= —QV3na — (Qtrx) (WAlogQ) — 20 (X V)AlogQ — 4V 4 (Qw) .

Plugging (B.9) into (2.12) then yields (B.6).
Finally, (B.7) and (B.8) follow in a straightforward fashion from (2.18)
and (2.19). O
Appendix C. Proof of Lemma 6.16

Proof. For any trace-free symmetric 2-tensor vapg, let us set Fap=QV4v4p.
Then, using Lemma 2.2, we find that

OVdiveg = divF, + Q2 [2(9_1,8) V- (Q_IX v)n+ Qly- (n-v)

—v-(n-Qy) e Q2(Q )PV proa.

(C.1)

Integrating (C.1) in the v-direction with vyp = @AB —1—2143, using (6.72), and
using Lemma B.2 we obtain that

(C.2)

atv (24) , = div (X7 +avox, + /

EHENED]

<; (Q1try) (QXAB) + (W@Q)AB + (ﬁ®ﬂ)AB _ %m (Q_DIXAB) >>

() () 0) (2(o79)
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Next, using Lemma 2.2 and (6.74), we find that
(C.3)

o (o ) = () " ((5)0)
<_

- %QQ (@ o) Ya (Fox+ox”) - 02 (@71%),, " ¥ (Rrx + oY)

(Q-Ttry) (Qtry) +2 <p - % (Q-1%) - (QS()) + 2divy + W) ]

DN | =

Thus we obtain the following analogue of (C.2):
(C.4)
YUY —(1
Va(Qtry) = Va (Qtrx) + Vatrx”

L) (T (e )
v b\~ 7o NF 2
+/0 (<_u> WAK(_U) Q)
(—; (@ 1irx) (Qiry) +2 (p— 3 (@715) - () ) + 2diva + MQ)]

()7 ((5)e)

—% (Q1trx) V4 (Qtrx)

> B
— <Q_1)2) WB (Qtrz)
A

Finally the proof concludes by substituting in (C.2), (C.4), (6.73), and
(6.75) into (B.7), using Lemmas B.1, B.2, 6.15, and B.3, and carrying out all of

the possible cancellations. We omit the straightforward if tedious calculation.
O

) do +HP.

Appendix D. Proof of Lemma 3.3

In this section we give the proof of Lemma 3.3.

Proof. Let us set

Q(0) = lim (”) Qu,u,0), w54 (0) = lim b2 (v, u,0),
(Dl) v—=0 \ —Uu v—0

2 T
ug ,5(0) :il_r}%)gAB (u,v,0).
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Multiplying the es-Raychaudhuri equation (2.8) by Q2 leads to the following
equation:

1 2
(D.2) (Ou + Ly) (Qtrx) + 5 (Qtry)? = - ’QX —4 () (Qtry) .
Next, note that
L VK
(D.3) 11}1_1{(1) EQW =50

Observe that Lemma 3.2 and (D.3) imply the following relations:

2 1 .
Q v=0 = — ) Q% v=0 = 3 )
by e edn oy ea- o),
’ ko1 .
Qwly—o = —— — =Lplog Q.
wlo=o = —5 - — 5L log
Recalling the definition of b and ¢ from (D.1), we may plug in (D.4) into (D.2)

and simplify to obtain

2PV 4 + w2y (4P Y abs) + %u_2 (gABWABB)Q

1 _9-AC-BD /o~ .
(D.5) = d g (Y&b) 4 (V&) oy
2 - - 2 . .
+ (f +2u7 0! (c;;z)) (E + u—lgABWAbB> :
It immediately follows that (3.8) holds. O
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